Ensuring Reliable Networks ' rECh

End-to-End Protection Wrapper Generator

User Manual
Version: 2.0.1
Date: 13.03.2015

Document number: D-MSP-G-70-001

TTTech Automotive GmbH
Schoenbrunner Str. 7, A-1040 Vienna, Austria, Tel. + 43 1 585 34 34-0, Fax +43 1 585 34 34-90, support@tttech-automotive.com

The data in this document may not be altered or amended without special notification from TTTech Automotive GmbH. TTTech Automotive GmbH
undertakes no further obligation in relation to this document. The software described in it can only be used if the customer is in possession of a general
license agreement or single license.

Using and copying is only allowed in concurrence with the specifications stipulated in the contract. Under no circumstances may any part of this
document be copied, reproduced, transmitted, stored in a retrieval sy stem, or translated into another language without written permission of TTTech
Automotive GmbH.

The names and designations used in this document are trademarks or brands belonging to the respective owners.

© 2015 TTTech Automotive GmbH. All rights reserv ed. Subject to changes and corrections.
TTTech Automotive GmbH Confidential and Proprietary Information

End-to-End Protection Wrapper Generator Ensuring Reliable Networks] rkCh

Page 2

Table of Contents

1 Introduction 4
1.1 E2E Protection Wrapper GeNeIator..........ccuiiimiiieiriiiriis i erms s reasrma s sra s s sanssemaseeassenansss 4
1.2 ToOlS INtegration.........ccovuiiuiieiiiii s s s e s ra s rra s rra s e s e s rn s ensssnssnansnnnsnnssnnsennsennns 5
L T LT 0 1 5
2 Versions 7
3 Installation 7
4 Preprocessor 8
4.1 Preprocessor Help.......o it s rr s s s s s s e s e mn s r s e s e n e e e 8
411 USING the PrePrOCESSON ..ot s e e s s ae e ae e s m e b e s e ae e b me e e e nn s 8

4.1.2 Behavior and Log OUEPUL ... e s s s e e 11

4.1.3 Log Message FOrmat ... e s s e e e e 11

4.1.4 Warning and INfo LOG MESSAQEScccerrimirrniriiiris i s s s s s s s ms s s 12

5 E2E Protection Wrapper Generator 14
5.1 USINg the GeNerator........ccccoiiuiiieiiiiiii s rrs e rra s rr s rn s rn s s s s s e rrassnasemasrmnsnansrassnnssnnsnnns 14
LI =0 o o 1o T 1 = 15
LT 41 15

5.2.2 Description of FIEMENLS ... e 18

5.2.3 File Content CheCKSccceriiiiiiiiiinic i a e s n e s p e e s 24

6 Generated Code 26
g O | 26
L e O [11 4 1172 1o T 26

L T - 1 27

6.1.3 Transmission and ReCEPLION ...t ———— 27

6.1.4 Usage EXamPle COAEcciiriiiiiiriiinis i s s s s s s s s a s n e s n e n e s 29
APPIICAtIoN SAMPIE COUEeiuiieiieie ettt h e b e bbbt e bt et e e aeenneesaeenae e 29

6.1.5 Differences to SW-C End-to-End Communication Protection Libraryccccccvniiriiicnicninnnns 32

7 File Structure 44
8 Functional Specification 45
8.1 RetUrN ValUes..... e e e e 45
8.2 Function E2EPW_WTite_<P>_<0O> ().icuiicirmiirmirairarrrsrnsrnssasssassnassnassnsssmsssnsssnssenssnnssnsssnns 45
8.3 Function E2EPW_Read_<SP>_<0O> ()euuireuirmucirrairrnrirmiirnairnasrrasssrnssssmnssennssennssmnnsssensssennns 47
9 Environment Specifics 51
9.1 Vector DaVinci Developer/RTE Configurator for AUTOSAR 3.2.........c.ccoireiiinirrnnienrcneeeennes 51
9.1.1 Configuration REeSIIICIONS ... s s 51

9.1.2 Preprocessor RESIIICIONS ...t s 51

9.1.3 E2EPW and RTEin a Safety-Related System ... e 51

L 72 0 14 1= g Lt o 52

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

End-to-End Protection Wrapper Generator Ensuring Reliable Networks ’ rECh

Page 3

10 Integration Notes 53
10.1 Checking the Tool INPUL.........coeuiiii e e e 53
10.2 Checking the Generated Files.........ccoiiiiiuiiiiiiiiiiii s 53
10.3 Performing an Integration TesSt.........cccciiiiiiiiiiiiir s ra s s s e m s emnsrnn s 53
10.3.1 Using Restbus Simulation ... 53

=T o) LIS T =Y =T To TSR 55

Integration Test MeSSage SEQUENCE..........c.cciiiiiiiiiiiees sttt r ettt a e e see st et e e 58

Hints for INtegration TEST SEIUDciiiiie e 63

10.3.2 Using INtra-ECU Signalingcccccevmnmnmnmnniininsnnsssss s st ssssssssssssassassassassanas 63

SeNAING COITECE MESSAJES ...ttt ettt ettt sb e bt bttt e e e e b e b st se e e s e b e e nesrenae e nes 64

Sending Manipulated MESSAESccuveeeiiiiiiiiriite ittt sttt 64

11 Abbreviations 66
12 Glossary 67
13 References 68

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Introduction Ensuring Reliable Networks , rreCh

Page 4

1 Introduction

Many automotive applications are distributed among several electronic control units
(ECU) and include communication via embedded networks. The exchanged data is
often critical (for example, car speed or steering angle), and incorrect data could
endanger both, the driver and the car. Therefore, special mechanisms have been
introduced to prevent the processing of incorrect data. One of them is the End-to-End
Communication Protection Library (E2Elib), which has been standardized in
AUTOSAR[AS_E2E_SWS] .

Most automotive networks protect data with checksums. These mechanisms are not
adequate for protecting the application data, because errors in gateways or software
layers within the ECU could destroy the data before and after it is transferred over the
network. End-to-end protection also covers this path. The E2Elib uses an additional
checksum and a sequence counter in order to detect false and missing data directly in
the application.

The figure below shows an I-PDU with a length of four bytes and a signal with two
bytes:

HlEEEEEEEEEE RN |

Byte 0 Byte 1 Byte 2 Byte 3

The end-to-end communication protection requires additional signals in the
protected signal area for the checksum and the sequence counter:

e — — e e e
| \ CRC | | ‘ ‘ ‘ “ Seq. counter | | \ Data | |
e e e e —— e e e e e e e e e e e e e S

Byte 0 Byte 1 Byte 2 Byte 3

For details about this mechanism, see the AUTOSAR EZ2EIlib Specification
[AS E2E SWS]® and the communication protection specification of the original
equipment manufacturer.

1.1 E2E Protection Wrapper Generator

Applications using the E2Elib or similar communication protection mechanisms have
one major problem: the E2E library protection routines need the FPDU representation to
apply protection mechanisms.

Therefore, the application would have to provide the DE in that FPDU representation,
which means that the signals of the DE must be marshaled using information the
application normally does not have: byte order, bit length and start bit position of each
signal, and the length of the -PDU.

To write CPU-independent code and reuse application functions for more than one
customer (OEM), it is necessary to have a software layer to deal with this. Usually, a so-
called COM layer is used. The application of the E2E-Lib must create a similar layer
beside or above COM. That is, the application must implement parts of the COM layer
again. The application must know details of the communication system that can normally
be accessed only in lower layers.

The E2E Protection Wrapper (E2EPW) provides a layer that circumvents this
problem. The protection wrapper is generated code. That code consists of copy
routines which know about the FPDU layout and contain calls to the E2Elib routines. For
transmission, the application passes the DE to the wrapper instead of the RTE. The

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Introduction Ensuring Reliable Networks ' rrGCh

Page 5

wrapper then builds the I-PDU representation, invokes the E2E library function, and then
the RTE function. For reception, the application calls the wrapper instead of the RTE.
The wrapper receives the DE from the RTE and invokes the E2E library function before
returning the DE.

According to the AUTOSAR EZ2Elib Specification [AS E2E SWS] %, the E2E
Protection Wrapper Generator (E2EPWG) generates the code for the protection
wrapper from a specific E2EConfig file.

Note: This user manual does not cover safety-related topics. For safety-critical projects
that need to fulfill ISO 26262 requirements, refer to the End-to-End Protection Wrapper
Safety Manual [TT_E2EPW SM] .

1.2 Tools Integration
This document describes how to use the E2ZEPWG developed by TTTech Automotive.
Example (integration into the Vector tools environment):

In this environment, a special preprocessor is available. This preprocessor converts the
XML files produced by the Vector tools to a E2EConfig file that can be used as an

input for the E2EPWG.
/ . developed according to
IS_O 2&262_ASIL D
/ \

E2EPW

XML

Overview of the E2EPW Generator and Preprocessor

1.3 Use Cases

End-to-end protection is a technique that has been used in safety-relevant distributed
applications, in the automotive and other industrial sectors for quite some time. The
E2EPW is intended for use in all areas where checksum (CRC) and sequence
counter (SC) are used in the data area for end-to-end communication protection.
However, the way data is exchanged differs slightly in different scenarios. The defined
use cases are:

¢ AUTOSAR E2E Protection Wrapper with RTE for data exchange (use case
AUTOSAR RTE)

* AUTOSAR EZ2E Protection Wrapper without RTE (use case AUTOSAR NO

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Introduction Ensuring Reliable Networks , r’-GCh

Page 6

RTE)

e J1939 CAN stack with an E2E Protection Wrapper using the transport layer (use
case J1939 CAN)

Currently, only the use cases AUTOSAR RTE and AUTOSAR NO RTE are supported.
This user manual gives a detailed description of use case AUTOSAR RTE only.

Overview of Use Case AUTOSAR RTE

In this use case, the SW-C sends/receives DataElement (complex data element of
AUTOSAR) data structures, consisting of fields for signals and a special CRC and SC
signal. The Protection Wrapper is called by the SW-C.

At transmission (see left figure below), the Protection Wrapper calculates the CRC
and SC and passes the DataElement to the RTE.

At reception (see right figure below), the Protection Wrapper checks the CRC and SC
in the received DataElement and passes it to the SW-C.

The status provides additional information, such as error codes and the number of lost
DataElements.

~

()
SW-C DataElem with
DataElem Status CRC. SC Status

N X/

E2Elb |« Protection Wrapper E2Elb «—» Protection Wrapper

-
SW-C

g J g o J

: DataElem with CRC, SC DataElem with CRG SC

Overview of Use Case AUTOSAR RTE

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Introduction Ensuring Reliable Networks ' rrGCh

Page 7

2 \ersions

This User Manual describes
¢ the Preprocessor Version 2.0.2 and
¢ the Protection Wrapper Generator Version 2.0.1.

3 |nstallation

The Preprocessor and the E2ZEPWG are Windows console applications. There is no
special installation procedure for them.

If the E2EPW is shipped together with Vector BSW, the files
® E2EPW MemMap.inc and

® E2EPW Compiler Cfg.inc

are already incorporated into the Vector BSW.

Otherwise the files E2EPW Compiler Cfg.inc and E2EPW MemMap.inc are
also shipped with the Preprocessor and the E2EPWG and are example files that must
be adapted to the actual build environment and requirements according to the
AUTOSAR Specification of Compiler Abstraction [AS COMABS SWS]®® and the
AUTOSAR Specification of Memory Mapping [AS_MEM_SWS] ®® .

For tool integration, the Preprocessor can be invoked using the command line
parameters. Please refer to the respective tool manual for how to do this.

Note: If the Preprocessor and the E2EPWG are part of a software package, they may
be installed and integrated transparently. The content of
E2EPW Compiler Cfg.inc and E2EPW MemMap.inc may then be already
included in the corresponding Compiler Cfg.h and MemMap.h files of the software
package.

The Preprocessor is built with py2exe and includes Python 2.7.3 and Ixml 2.2.8.

The corresponding software licenses for these open source packages are contained in
the file LICENSE, which is bundled with the Preprocessor executable.

The following DLLs must be available in the system:

® USER32.d11

® SHELL32.d11

® WSOCK32.d11

® ADVAPI32.d11
®*Ws2 32.d11

® KERNEL32.d11
® MSVCR90.d11

Note: If this DLL is not available, it must be installed manually. The installer for this

DLL is availbale from http://www.microsoft.com/downloads/details.aspx?
FamilylD=9b2da534-3e03-4391-8a4d-074b9f2bc1bf&displaylang=en

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

http://www.microsoft.com/downloads/details.aspx?FamilyID=9b2da534-3e03-4391-8a4d-074b9f2bc1bf&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=9b2da534-3e03-4391-8a4d-074b9f2bc1bf&displaylang=en

Installation Ensuring Reliable Networks ' rrGCh

Page 8

4 Preprocessor

The Preprocessor takes the ECU information of the system description and the SW-C
design information as an input. The output of the Preprocessor is a E2EConfig file (in
a specific format) that can be interpreted by the E2ZEPWG in order to generate the
protection wrapper code.

The behavior of the preprocessor is controlled with command line parameters -

41 Preprocessor Help

The behavior of the Preprocessor is controlled with command line parameters.

Calling the preprocessor with the command line parameter —h gives the following

output:

E2EPWG PreProcessor v2.0.2
Usage: pwg preprocessor.exe [options] ProjectName [SystemDescriptionComm]
SystemDescription OutputDir

Options:

-h, --help show this help message and exit

-b BYTEORDER, --cpu-byte-order=BYTEORDER
Set the cpu-byte-order to BYTEORDER. Valid values are:
BIG_ENDIAN, LITTLE ENDIAN, HIGH BYTE_ FIRST,
LOW BYTE FIRST.

-e FILE, --e2epwg=FILE
Execute E2EPWG using the config file created by the
PreProcessor.

-v LEVEL, --verbose=LEVEL
Output extended information (with LEVEL verbosity

level). Levels above 1 are useful for debugging.

-f, --error_ format Enables the Vector tool error format.

-E FILE, --ecuc=FILE Additional ECU Description File containing byte-order
data.

411 Using the Preprocessor
To run the Preprocessor, enter the following command in a command prompt
window:
PwWg _preprocessor.exe [<options>] <ProjectName>
[<SystemDescriptionComm>] <SystemDescription> <OutputDir>
End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Preprocessor

Ensuring Reliable Networks , rrECh

Page 9

The following table describes the mandatory command line parameters:

Name

Meaning

<ProjectName>

This is an arbitrary name. This parameter is used as
the file name of the generated configuration file.

[<SystemDescriptionCom
m>]

This parameter specifies the location and name of
the (ECU extract of the) system description file. It
contains the communication part of the system
description, e.g.,, the signals and their
corresponding mapping to FPDUs.

This file is optional for AUTOSAR 3 formats,
because itis only necessary if the information is not
already contained in SystemDescription,
which is always the case for AUTOSAR 4 formats.

<SystemDescription>

This parameter specifies the location and name of
the system description file (application part). This
file contains the design of the software components
together with all the tasks, events, ports and
(variable) data prototypes.

It can also contain signals, -PDUs and mappings
between signals and -PDUs. For AUTOSAR 4
formats, this information is mandatory.

The ECU file is an XML file with a format that
conforms to the meta model of the AUTOSAR
specification versions 3.1.4, 3.2.1, 3.2.2, 4.0.3,
4.1.2, or 4.1.3. The file is generated by the Vector
tools. The file extensionis .arxml.

<OutputDir>

This parameter specifies the path where the
generated configuration file will be stored.

The following table describes the optional command line parameters:

Name

Meaning

-h

Shows the help message %.

-b BYTEORDER,
--cpu-byte-order=BYTEORDER

This parameter specifies the value that must be
assigned to the attribute Byte order crpu of the
generated E2EConfig file.

The CPU byte order must be provided, either by
using command line parameter -b or -E.

Possible values:
= BIGiENDIAN (:HIGHiBYTEiFIRST),

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH
TTTech Automotive Confidential and Proprietary

Preprocessor Ensuring Reliable Networks , ‘ ‘ eCh

Page 10

Name Meaning

* LITTLE ENDIAN (=LOW BYTE FIRST).

~e FILE, --e2epwg=FILE This parameter specifies the location of the
E2EPWG. When this parameter is specified, the
generator is invoked after the Preprocessor has
successfully generated the E2EConfig file.

The command line option —e accepts a path to an
executable file (the E2ZEPWG) and calls this file after
configuration generation as follows:

<FILE> <OutputDir>\<EcuProjectName>.cfg
<OutputDir>

where
= <rILE> iS the executable file rFrrz,

» <OoutputDir> iS the outputpir parameter provided
to the Preprocessor and

® <EcuProjectName> is the EcuProjectName
parameter provided to the Preprocessor.

v LEVEL, This parameter is used for detailed error
TTverbosemLEVEL reporting. The higher the verbosity level, the more
detailed is the report.

Possible values:

= Levels above 1 are useful for debugging. The
default value is 0 (a short error notice is written to
stderr).

= For level 1, the context of the action that failed is
also printed to stderr. If the error occurred
during the parsing of the XML input data, the
location within the XML file (line number) is
provided.

» For level 2, the XPATH query that failed is also
printed. If the XPATH query is not based on the
root node, the location within the XML document,
from where the XPATH query was started, is also
provided.

-t This parameter enables the error format needed by
--error_format the Vector tools to parse the output messages of the
Preprocessor.

B This parameter is used to provide the ECUC file,
Toecue which contains the definition of the CPU byte order.
If this option is not used, the byte order must be
provided by using the -b parameter.

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Preprocessor Ensuring Reliable Networks , ‘ ‘ eCh

Page 11

Note: Given the call parameters above, the E2EPWG will put all the generated files into
the <outputDir> directory. If a file created by the E2ZEPWG exists already, e.g., from
a previous run, the generator will output an error message and exit. It is therefore
recommended to provide an empty, but existing<OutputDir> directory to the
Preprocessor when the command line option -e is used.

4.1.2 Behavior and Log Output

The overall behavior of the Preprocessor was changed for version 1.6.1, 2.0.1 and
onward. Previously, the Preprocessor would have aborted with an error message if the
resulting E2EConfig file had not been complete/valid regarding the provided ARXML
input.

The new behavior performs a best-effort strategy to provide as much content derived
from the input ARXML as possible, even if the result is only partial and not a valid
E2EConfig file. This has several implications:

* Almost all error messages are now reported as warning. This is mainly due to the
default behavior of the default tool chain (Vector DaVinci), which discards alll
generated output if an error is reported.

* Warnings may build up and result in causally linked warning messages.

* The overall amount of log output messages increases drastically as the preprocessor
continues to process the input ARXML, where it previously would have simply aborted
with a single error message.

* The generated E2EConfig file may not be valid and result in an error message of the
E2EPW Generator. Manual adaptions of the E2EConfig file or of the ARXML input
may be necessary to get a valid E2EConfig file. Hints are provided in [Warning] and
[Info] messages.

* EndToEndProtections may be skipped due to errors and a warning message is
provided. There will not be a corresponding Protected Area defined in the eventually
generated E2EConfig file.

In general, log output is written to stderr.

41.3 Log Message Format

The format of log output messages is aligned to the format specification of the Vector
DaVinci tools.
The format is as follows:

[<Severity>] E2E<ID> - <Summary>
- <Description>

Where <severity>is one of the following:

® [1nfo] - Forinformation only, guiding through the process or indicating what the
Preprocessor currently does.

®* (warning] - Depending on the particular message, this can be a simple indication as
"that there might be a problem" as well as a severe warning like "the output file is
incomplete / cannot be used as is".

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Preprocessor
Page 12

Ensuring Reliable Networks , rreCh

® Error] - For hard errors where no output can be created. Typically, these are run-
time errors, e.g. input file missing, cannot write to file, or unrecoverable parsing errors.

<1p> is a five-digit number indicating the message type.

<summary> iS optional and provides a short summary of the particular message.

<pescription> provides detailed information about the cause of the message.

4.1.4 Warning and Info Log Messages

The Preprocessor provides helpful log output, which should always be checked for

[Warning] and [Info] messages.

Some of the [Info] messages are only provided if the verbose level is greater 0
(command line option -v / --verbose).

This section lists common [Warning] and [Info] log messages and describes their
meaning. Some of them are also related to each other.

Message

Description

[Info] E2E01004 -

- Found maximum value for
MaxDeltaCounterlnit of 15 which
should actually be 14 - value will be
corrected in generated E2E-config file

This message occours if MaxDeltaCounterlnit is set to the
maximum value as described in SWS_E2Elibrary, which is
apparently not a meaningful value and therefore rejected by
the E2EPW Generator. Background: MaxDeltaCounterlnit is
used to initialize the status variable MaxDeltaCounter. The
maximum possible value is 14 (Profile 1) respectively 15
(Profile 2). However, MaxDeltaCounter is always incremented
by the E2Elib before it is used. Therefore, a
MaxDeltaCounterlnit value of 13 and 14 is semantically
equivalent with Profile 1 (14 and 15 are equivalent with Profile
2). The E2EPW Generator, however, is pessimistic and
assumes an erroneous configuration if a configuration value
makes no sense. Therefore, the Preprocessor adapts the
value and provides an [Info] message. Additionally, the
Preprocessor places a comment after the corrected value in
the E2EConfig file.

[Info] E2E01100 -

Could not find adequate signals in
signal group
'example_sgrp_with_offset' to be
configured as protection signals

- trying non-zero data offset of signal
group to find matching signals.

Only appears if verbose lewel is greater 0. It indicates that the
protection signals could not be found at their expected
position, but they simply might be offset from the start. The
preprocessor then tries several offsets to find a matching
value for all signals. If a matching offset is found, another
[Info] E2E01100 message is provided.

[Info] E2E01100 -

Signal Group offset seems to fit with
offset 16 (at begin of first signal)

This message only appears if the previous [Info]
E2E01100 message was provided. It states the result of the
offset search. Please note that the E2EPW Generator has no
direct support for non-zero offsets, so the Preprocessor will
substract this offset value from the Bit_Position of each signal

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH
TTTech Automotive Confidential and Proprietary

Preprocessor

Ensuring Reliable Networks , rreCh

Page 13

Message

Description

in the E2EConfig file. This is also stated as a comment before
the signals block in the corresponding Protected_Area in the
E2EConfig file.

[Warning] E2E00210 -

- Could not determine position/name
of (all) protection signals in signal
group
'Eng_Rs_EngCtrl_Pr2_24huh6mozixa
c7wbqdhljanf Resulting E2E Config
file must be adapted manually
regarding Bit_Position and
Signal_Property

This [Warning] message indicates that there was no match
for the determination of protection signals. This might be due
to a mismatching Bit Position of single signals,

Signal Type or Bit Length, but most probably there is a
misconfiguration in the system (missing mapping of signals
to data elements, or signal layout configuration). The E2EPW
Generator will not accept this E2EConfig file without
modification.

[Info] E2E01101 -

- There was an error/warning during
processing an End-To-End-Protection
(‘End-To-End-Protection_SHORT-
NAME'). No E2E config section will
be generated for this End-To-End-
Protection. Howewer, continuing to
process remaining End-To-End-
Protections.

This info message refers to a previously stated warning for
that End-To-End-Protection. The sewerity of that warning leads
to this info message, which states that the preprocessor did
not generate a Protected_Area for that End-To-End-
Protection. However, it will go on with processing the next
End-To-End-Protection.

[Warning] E2E01003 -

- Profile 'PROFILE_04' is not
supported/ignored for E2EPW
configuration generation - Please use
E2E Transformer (E2EXf) generator.
Found End-To-End-Profile with
Category 'PROFILE_04'
Example.arxml.

If Profile 4, 5, or 6 are found, the Preprocessor provides a
warning message, which states that these profiles are not
handled by the Preprocessor. End-To-End-Protections are
ignored, so that they can be processed using the E2E
Transformer (E2EXf) tool chain.

[Warning] E2E00206 -

- No supported End-to-End protection
found.

A follow-up warning message to message [Info]
E2E01101 or [Warning] E2E01003. Ifall End-To-End-
Protections are skipped due to severe warnings, no
E2EConfig file will be generated. Also, no final "Configuration
file <filename> successfully written." message will be
provided.

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH
TTTech Automotive Confidential and Proprietary

Preprocessor Ensuring Reliable Networks , ‘ ‘ eCh

Page 14

> E2E Protection Wrapper Generator

The generator is a Microsoft Windows console application. It uses an E2EConfig file to
generate files that contain the E2EPW code.

The Windows version on which the generator was tested during development is noted in
the corresponding Safety Manual [TT_E2EPW_SM] *®. An addendum also confirms
compatibility with Microsoft Windows 7. However, as there are no special system
requirements, the generator should run without problems on all Windows version since
Microsoft Windows XP SP3.

5.1 Using the Generator

To use the generator, use the following command line:
pwg.exe <config-file> <output-path>

where <config-file> and <output-path> must exist.
The following table lists the command line parameters:

Name Meaning

<config-file> This parameter specifies the path to a valid
E2EConfig file'.

<output-path> This parameter specifies the path to which the
generator will write the created files.

The E2ZEPWG will output an error message and quit if something goes wrong. This will
be the case if:

® command line parameters are omitted.
¢ the E2EConfig file could not be found.
¢ the output path does not exist.

® the <config-file> orthe <output-path> parameter exceeds the maximum
length of a valid file path (260 characters).

¢ the major version of the E2EConfig file and the E2ZEPWG do not match.

* the minor version of the E2EConfig file is larger than the minor version of the
E2EPWG.

¢ the E2EConfig file has an invalid syntax.
¢ the E2EConfig file has an invalid content.
* afile the E2EPWG wants to create already exists (for example, from a previous run).
¢ afile /0 error occurs, such as insufficient disk space or missing write permissions.
* there is not enough memory left.

Note: ltis also possible to call the E2EPWG directly from the preprocessor.

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

E2E Protection Wrapper Generator Ensuring Reliable Networks , rreCh

5.2 E2EConfig file

Page 15

This Section gives a description of the syntax ' of the E2EConfig file and its elements
18

5.21 Syntax

The E2EConfig file version 2.0.0 syntax has a human-readable text format. The
encoding is ASCIl. Comments can be added using C++-style syntax:

/* comment until asterisk-slash */
// comment until end of line

All the keywords (field names and keyword values) are case-sensitive.
Note: The order of the field names is fixed.

The syntax is given in EBNF:

Symbol

Meaning

A name on the left side of the : := is expressed with the syntax on
its right side.

<>

Angle brackets are used to mark objects that are specified later.

The definition separator symbol indicates choice. Exactly one of
the choices must appear.

The text between the square brackets is optional.

The text between the curly brackets may be omitted or may
appear once or may be repeated arbitrarily. The brackets are
underlined to distinguish them from the literals "{" and "}".

<string>

Indicates any character string enclosed in double quotes (i.e.,
"string").

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001

TTTech Automotive Confidential and Proprietary

E2E Protection Wrapper Generator Ensuring Reliable Networks ’ rrec,,

Page 16

The syntax is as follows:

<E2EPW_configuration_file> ::=
E2EPW configuration
{
Version Major = <integer> ;
Version Minor = <integer> ;
Version Patch = <integer> ;
Protected Areas <protected area> {,<protected_area>} ;

<protected area> ::=
{
PDE Name = <string> ;
PDE Type = <string> ;
Node Name = <string> ;

Direction = <direction> ;

Byte Order CPU = <byte order> ;

Bit Order = <bit order> ;

Bit Counting = <bit counting> ;

Unused Bit Value = <integer> ;

Check DeSerial = <no_yes> ;

[Includes H = <string list> ;]

[Includes C = <string list> ;]

Profile <profile p01>

| <profile p02>

Signals <signal> {,<signal>} ;

Protection Wrapper <autosar rte>
| <autosar_no_rte>
| <j1939 can>

<profile p01> ::=
{
Category = P01 ;
Data Length = <integer> ;
Data_ ID = <hex> ;
Data ID Mode = <data id mode> ;
Max Delta Counter Init = <integer> ;
CRC_Offset = <hex> ;
Counter Offset = <hex> ;
Data ID Nibble Offset = <hex> ;
Max No New Or Repeated Data = <integer> ;
Sync_Counter Init = <integer> ;

<profile p02> ::=
{
Category = P02 ;
Data Length = <integer> ;
Data ID List = <hex list 16> ;
Max Delta Counter Init = <integer> ;
Max No New Or Repeated Data = <integer> ;
Sync_Counter Init = <integer> ;
Offset = <integer> ;
b
<signal> ::=
{
Signal Name = <string> ;
Signal Type = <sig type> ;
Signal ID = <integer> ;
Signal Property = <sig prop> ;
Byte Order = <byte order> ;
Bit Length = <integer> ;
Bit Position = <integer> ;

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

E2E Protection Wrapper Generator Ensuring Reliable Networks ’ rrECh

Page 17
<autosar_rte> ::=
{
E2EPW Usecase = AUTOSAR RTE ;
Port Name = <string> ;
VDP Name = <string> ;
Is_Opaque = <no_yes> ;
Use Call By Ref = <no_yes> ;
Use RTE Update = <no_yes> ;
Use RTE_Instance = <no_yes> ;
b
<autosar_no_rte> ::=
{
E2EPW Usecase = AUTOSAR NO_RTE ;
Signal Grp ID = <integer> ;
Is Opaque = <no_yes> ;
b
<j1939 can> ::=
{
E2EPW Usecase = J1939 CAN ;
PGN_Number = <integer> ;
Is Opaque = <no_yes> ;
b
<direction> ::=
RX | TX
<byte order> ::=
LITTLE _ENDIAN | BIG_ENDIAN
<bit_order> ::=
DECREASING | INCREASING
<bit counting> ::=
SAWTOOTH | MONOTONE
<no_yes> ::=
NO | YES
<string list> ::=
<string> {,<string>}
<data_id_mode> ::=
BOTH | ALT | LOW | NIBBLE
<hex list 16> ::=
<hex>, <hex>, <hex>, <hex>
, <hex>, <hex>, <hex>, <hex>
, <hex>, <hex>, <hex>, <hex>
, <hex>, <hex>, <hex>, <hex> ;
<sig type> ::=
UINT8 | UINT16 | UINT32 | SINT8 | SINT16 | SINT32 | BOOLEAN | UINTS8N
<sig prop> ::=
NORMAL | CHK | SEQCNT | NIBBLE
<integer> ::=
<digit>{<digit>}
<digit> ::=
ol 112113141 51617138129
End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

E2E Protection Wrapper Generator Ensuring Reliable Networks , rreCh

Page 18

<hex> ::=
<hex prefix><hex digit>{<hex digit>}

<hex_prefix> ::=
Ox | OX

<hex digit> ::
<digit> | a | b | c | dl e | £] A BJ|]CI|DI|E]|F

5.2.2 Description of Elements

Although the syntax of the E2EConfig file is defined for 3 use cases and several
profiles, only the use case AUTOSAR RTE is supported by the delivered package.
Depending on the delivered E2EPWG variant, different profiles may be supported. The
E2EPWG checks the semantics for plausibility, but further checks must be done
manually. They are described in the E2E Protection Wrapper Safety Manual
[TT E2EPW _SM] ®. Also, the cause of validation errors is explained here.

The description of the semantics is structured in the same way as the BNF description
of the syntax.

A C-identifier is a string that has some limitations regarding the contained characters
and the length: It starts with a letter or an underscore and contains only letters,
numbers, and underscores. It must not be identical to one of the ANSI C keywords. The
maximum length of a C-identifier allowed in the E2EConfig file is 128 characters.

A name identifier is a string that consists only of letters, numbers, and underscores
(max. 128 characters).

<E2EPW_configuration file>

Version Major Must match the corresponding values of the E2EPWG version.

Version Minor Must be smaller than or equal to the corresponding values of the
E2EPWG version.

Version_Patch Can differ from the corresponding value of the E2EPWG version.

<protected area>

PDE_Name This parameter defines a name identifier for the PDE. This string
is used as part of the file name of some of the generated files. It
must not be longer than 128 characters. For the use case
AUTOSAR RTE, PDE_Name must be equal to VDP_Name.

PDE_Type This parameter defines the data type of the PDE data structure.
This string is a C-identifier or begins with struct followed by a
white space and a C-identifier. The C-identifier part must not be
longer than 128 characters in both cases. PDE_Type must match
the data type defined for and used by the application.

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

E2E Protection Wrapper Generator Ensuring Reliable Networks] rreCh

Page 19

Node_Name This parameter defines the name identifier that is used as a part
of the file name of some of the generated files. It must not be longer
than 128 characters. For use case AUTOSAR RTE, the SW-C type
must be used (name of the software component).

Direction This parameter defines the direction of the message flow.

= TX means that the PDE is sent by the application, therefore the
E2EPW must provide a write function.

= RX means that the PDE is received, so the E2EPW must
provide a read function.

Byte_Order CPU This parameter defines the byte order of the host CPU.

= BIG ENDIAN means that the most significant byte is stored at
the lowest address.

» LITTLE ENDIAN means that the least significant byte is stored
at the lowest address.

Bit_Order This parameter defines the ordering of the bits within a byte. In

AUTOSAR, this is used to define the order of bits that are

transmitted.

= DECREASING means that the logical numeration of bits in a byte
is decreasing, e.g., 7, 6, 5, 4, 3, 2, 1, 0 for the first byte of a
sequence.

= INCREASING means that the logical numeration of bits in a byte
is increasing, e.g., 0,1,2,3,4,5,6,7 for the first byte of a
sequence.

Bit_Counting This parameter defines the order of significance of bits over a
transmitted data unit.

= MONOTONE means that the significance is either increasing or
decreasing constantly, while

= SAWTOOTH means that there is a discontinuity between
consecutive bytes.

Only the following combinations of Bit Order and
Bit Counting are supported:

= DECREASING with SAWTOOTH and
= INCREASING with MONOTONE.

Unused_Bit_Value This parameter defines the value to which unused bits in the I-
PDU must be set. The only valid values are 0 and 1.

Check_DeSerial If YES, a deserialization check is done when a PDE is received.
The value can only be YES if Direction is RX and Is Opaque is
NO. In [AS E2E SWS]'%® this value is defined to be YES if
Direction is RX and Is Opagque is NO.

Includes_H This parameter defines the external include files that must be
included in the generated header files. Each file name must be
unique within this list, and the length of each file name must not be
greater than 260 characters.

For use case AUTOSAR RTE, the value will contain Rte Type.h
and the header file of the application.

Includes_C This parameter defines the external include files that must be

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

E2E Protection Wrapper Generator Ensuring Reliable Networks] rreCh

Page 20

included in the generated source files. Each file name must be
unique within this list, and the length of each file name must not be
greater than 260 characters.

For use case AUTOSAR RTE, all necessary files are included in
Includes H.

<profile p01>

Category This parameter defines the name of the profile, in this case P01.
Unsupported profiles will cause an error message that is reported
by the E2EPWG.

Data_ Length This parameter defines the length of the I-PDU in bits. The
minimum value is 16. The maximum value is 240. The value must
be a multiple of 8.

R The sender and the receiver share the same Data_ID, which is
incorporated into the CRC calculation. In this way, it is possible to
detect if the sender and/or receiver is the intended one or not. The
Data_ ID has 2 bytes. For profile PO1, the Data ID is equivalent
to the Application ID in [BMW_LAST _KOMM)] 68"

Data_ID Mode This parameter defines how the Data ID is incorporated into the

CRC calculation. a

= BOTH means that both bytes of the bata ID are used for CRC
calculation (lower byte first). -

= LOW means that only the lower byte is used.

= ALT means that the lower byte is used when the counter is even,
otherwise the higher byte is used.

= NIBBLE means that the lower 8 bits are used for implicit
inclusion in CRC calculation, while additional 4 bits are explicitly
placed in the transmitted I-PDU array as distinct signal.

Max_Delta Counter_Init | This parameter defines the initialization value of the variable
Max Delta Counter as specified in [TT E2EPW SM] 68 The
value must be in the closed interval [0...13].

CRC_Offset This parameter determines, in bits, the offset of the CRC byte in
the I-PDU array. It must be a multiple of 8. The CRC_Offset is
the position of the least significant bit.

Counter Offset This parameter determines, in bits, the offset of the Counter in the
I-PDU array. It must be a multiple of 4. The Counter Offset is
the position of the least significant bit.

Data ID Nibble Offset Determines the offset of the Data ID nibble in the PDU array in bits.
The Data_ID_Nibble_Offset is the position of the least significant
bit.

Max No_New Or Repeated | The threshold value of maximum consecutive data losses or
Data repetitions before re-synchronization according to AUTOSAR SWS
E2Elib is performed. The value must be in the closed interval

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

E2E Protection Wrapper Generator Ensuring Reliable Networks , rreCh

Page 21

[0...15]. Backward-compatibility to previous EZ2Elib profile
versions without this feature is given by the default value 15.

Sync_Counter_Init After re-synchronization according to AUTOSAR SWS EZ2Elib is
performed, Sync_Counter_Init determines how many SYNC states
are returned on valid receptions before normal operation continues.
The value must be in the closed interval [0...255]. Backward-
compatibility to previous EZ2EIlib profile wversions without this
features is given by the default value 0.

<profile p02>

Category This parameter defines the name of the profile, in this case P02.
Unsupported profiles will cause an error message that is reported
by the E2EPWG.

Data_Length This parameter defines the length of the I-PDU in bits. The
minimum value is 16. The maximum value is 2048. The value must
be a multiple of 8.

Data_ID_List This parameter defines a list of 16 values in hexadecimal format.
Each value must be in the range 0x00...0xff. This is the list
of data IDs as specified in [TT_E2EPW_SM] 68

Max_Delta Counter_Init | This parameter defines the initialization value of the variable
Max Delta Counter as specified in [TT_E2EPW_SM] %8 The
value must be in the closed interval [0...14].

Max No New Or Repeated | The threshold value of maximum consecutive data losses or
Data repetitions before re-synchronization according to AUTOSAR SWS
E2Elib is performed. The value must be in the closed interval
[0...16]. Backward-compatibility to previous E2Elib profile
versions without this feature is given by the default value 16.

Sync_Counter Init After performing are-synchronzation according to AUTOSAR SWS
E2Elisb, Sync_Counter_Init determines how many SYNC states
are returned on valid receptions before normal operation continues.
The value must be in the closed interval [0...255]. Backward-
compatibility to previous EZ2EIlib profile wversions without this
features is given by the default value 0.

Offset Additional offset of the CRC and sequence counter signals in the
PDU array in bits. The value must be a multiple of 8. Backward-
compatibility to previous E2Elib profile versions without this feature
is given by the default value 0.

<signal>
Signal Name This parameter defines the name of the signal. The signal name is
unique within the protected area. The signal name must be the
End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

E2E Protection Wrapper Generator Ensuring Reliable Networks] rreCh

Page 22

same as the one that is defined in the data type definition of the
data element used by the application. The value must be a valid C-
identifier.

Signal_Type This parameter defines the data type of the signal. It must be the
same as in the data type definition of the data element used by the
application. The value must be a valid C-identifier.

Signal ID This parameter defines the unique numeric identifier of a signal.
For use case AUTOSAR RTE, the only requirement to the
Signal ID is that it must be in the range [0...65535] and be
unique within the protected area.

Signal Property This parameter defines if the signal is a normal user signal
(Signal Property is NORMAL) or a special signal used for the
protection of the protected area. There must be exactly one signal
with Signal Property CHK for the profiles P01, P02 and exactly
one with the Signal Property SEQCNT for all profiles. Also,
Bit Length, Bit Position and Signal Type must meet the
requirements and settings for the used profile. The allowed value for
Bit Position also depends onthe Byte Order of the signal.

Byte_Order This parameter defines the byte order of the signal. Depending on
this value and the values of Bit Length and Bit Position, the
signal is mapped to the corresponding I-PDU.

Bit Length This parameter defines the length of the signal in bits.
= Ifthe Signal Type is BOOLEAN, Bit Length must be 1.

= If the Signal Type is UINTS8N, the signal length must be a
multiple of 8.

Bit_Position This parameter defines the position of the signal within the I-PDU.

= [f Byte Order is LITTLE ENDIAN, Bit Position defines
the posiﬁon of the least signiﬁ_cant bit. B

» If Byte Order is BIG ENDIAN, Bit Position defines the
position_ofthe most signﬁcant bit. -

= If the Signal Type is UINTS8N, this parameter specifies the
least significant bit of the first byte.

There are further restrictions that must be met, some of them are provided in this
section. However, all restrictions, if not explicitly stated in the safety manual, are also
automatically checked by the E2EPWG. Therefore, this section is for information
purposes only.

= Signals must not overlap each other or exceed the I-PDU length.
*» The signal Type of both, the checksum and the sequence counter signal must be

UINTS.

Profile 1'%

» The checksum signal must be byte-aligned (i.e., it can occupy any byte of the
protected area). The Bit Length mustbe 8.

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

E2E Protection Wrapper Generator Ensuring Reliable Networks] rreCh

Page 23

» The sequence counter signal must be positioned in the 4 least or most significant bits
of any byte of the protected area. The Bit Length must be 4.

» The data ID nibble signal must be present if Data ID Mode is NIBBLE and be

positioned in the 4 least or most significant bits of any byte? of the protected area. The
Bit Length mustbe 4.

Profile 2'%

» The checksum signal must be positioned in the 8 bits of the first byte of the protected
area.

oForByte Order

BIG_ENDIAN, the Bit Position mustbe?7.
LITTLE ENDIAN,the Bit Position mustbe O.
oThe Bit Length mustbe 8.

oForByte Order

» The sequence counter signal must be positioned in the 4 least significant bits of the
second byte of the protected area.

oForByte Order = BIG ENDIAN,the Bit Position mustbe 11.
oForByte Order LITTLE ENDIAN,the Bit Position mustbe 8.
oThe Bit Length mustbe 4.

<autosar_rte>

EZEPW_Usecase Value must be AUTOSAR RTE.

Port_Name This parameter defines the name identifier of the communication
port. This parameter is used as a part of the names of some
generated functions.

VDP_Name This parameter defines the name identifier of the VDP. This
parameter is used as a part of the names of some generated
functions. The parameter VDP_Name must be the DataElement
name used by the RTE.

Is_Opaque This parameter defines if the PDE is provided as |-PDU at
application level. If YES, the application is responsible for marshaling
or unmarshaling the DE. The DE is provided as byte array to the
protection wrapper. Also, the lower layers must be configured to
handle the DE as I-PDU.

Use_Call By Ref For complex data types, the RTE expects that DEs are provided by
reference. If Direction is RX, the RTE always expects the DE to
be provided by reference.

USE_RTE_Update If YES, the E2EPW calls the RTE function
Rte IsUpdated <p> <o> (), where <p> is the port and <o>
the variableDataElement. The value must be NoO, if the
AUTOSAR RTE does not support this function.

Use RTE_Instance Must be YES if the SW-C supports multiple RTE instances (multiple
instantiation). Otherwise, the value must be NO.

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

E2E Protection Wrapper Generator Ensuring Reliable Networks] rreCh

Page 24

5.2.3 File Content Checks

This Section only lists a selection of important checks revealing missing files or files that
cannot be compiled. For detailed instructions on how to check a E2EConfig file, refer

to the E2E Protection Wrapper Safety Manual [TT_E2EPW_SM] .

» The parameter combination PDE Name, Node Name, Port Name and
Direction must be unique within the E2EConfig file. Also, the parameter
combination VDP Name, Node Name, Port Name, and Direction must be
unique within the E2EConfig file.

*» The PDE Name needs not be unique, but make sure by review that PAs with the
same PDE_Name have the same signal definition if marshaling is required.

= Make sure that file names generated by the E2ZEPWG do not exceed the limitations of
the file system or the operating system.

» Most Windows applications are bound to a restrictive limitation: Using the standard
file access functions restricts the total path length to 260 characters, including the
drive letter prefix and the null termination character. This also refers to relative paths,
and can only be mitigated by path substitution using the DOS command subst.

» The files generated by the E2EPWG are named according to the following patterns.
These files contain the protection wrapper interface functions:
OEZ2EPW <Node Name> <Port Name> <PDE Name> <Direction>.h
OEZ2EPW <Node Name> <Port Name> <PDE Name> <Direction>.cC
These files contain the marshaling functions if required:
OEZEPW Marshal <PDE Name>.h
OEZEPW Marshal <PDE Name>.c
These files contain the deserialization check function if required:
OEZ2EPW CheckDeserial <PDE Name>.h
OEZ2EPW CheckDeserial <PDE Name>.cC

* |t must be ensured that the overall file name length does not exceed the 260
character limit for the absolute path length. Otherwise it will not be possible to
create some files, and the E2EPWG will exit with an error message.

» The generated code contains memory mapping defines, which require a
corresponding counterpart in the MemMap . h include file. Otherwise, the MemMap . h
include file will prompt the compiler to display a warning or error message. There are
three types of defines used in the generated code:

1. Defines with the prefix E2EPW _, which are provided inthe E2EPW_MemMap . inc

file and should be incorporated into the MemMap . h include file of the system, and
2. SW-C-specific defines.

The SW-C specific defines are:

- <swc> START SEC CODE

- <swc> STOP SEC CODE

- <swc> START SEC CONST UNSPECIFIED

- <swc> STOP SEC CONST UNSPECIFIED

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

E2E Protection Wrapper Generator Ensuring Reliable Networks ’ rreCh

Page 25

- <swc> START SEC VAR INIT UNSPECIFIED
- <swc> STOP_SEC VAR INIT UNSPECIFIED
- <swc> START SEC VAR NOINIT UNSPECIFIED
- <swc> STOP SEC VAR NOINIT UNSPECIFIED
- <swc> START SEC VAR ZERO INIT UNSPECIFIED
- <swc> STOP SEC VAR ZERO INIT UNSPECIFIED
where <swc> is the value of the configuration field Node Name.
These are assumed to be provided in a file <swc> MemMap.h, which is
generated by the RTE generator or must be created manua_lly.
3. The defines for software component independent code (marshaling and check-
deserialization check) are:
- E2EPW_START SEC CODE LIB

- E2EPW_STOP_SEC_CODE_LIB.

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Ensuring Reliable Networks] rrECh

E2E Protection Wrapper Generator
Page 26

6 Generated Code

6.1 API

This Section describes the API of the generated functions.

Note: When referring to a byte number within a multi-byte value, the number
describes bytes of increasing order. Byte 0 is therefore of least significance.

The function names use the following placeholders:

Placeholder |Config field |Description

<node> Node Name The node name. Also referred to as SW-C name.

<o> VDP_Name The VariableDataPrototype (VariableDataElement)

of the messages through a port.

<p>, <port> Port Name The port name.

<pde> PDE_Name The PDE name.

<profile> Category P01 or P02, depending on the E2Elib profile used.

<pde-type> PDE_Type The data type of the PDE.

<rxtx> Direction The direction (RX or Tx) in lowercase.

6.1.1 Initialization

Syntax void E2EPW WritelInit <p> <o>x ()

Reentrancy reentrant

Parameters none

Return value none

Description This function initializes the E2Elib communication state for a DE
defined by <p> and <o> on the sender side.

© 2015 TTTech Automotive GmbH
TTTech Automotive Confidential and Proprietary

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

Generated Code Ensuring Reliable Networks] r’-ECh

Page 27
Syntax void E2EPW ReadInit <p> <o> ()
Reentrancy reentrant
Parameters none
Return value none
Description This function initializes the E2Elib communication state for a DE
defined by <p> and <o> on the receiver side.
6.1.2 Status
Syntax E2E <profile>ProtectStateType *
E2EPW Get ProtectState <p> <o> ()
Reentrancy | reentrant
Parameters | none
Return value | E2E <profile>ProtectStateType pointerto
* E2E <profile>ProtectStateTyp
e
Description | Returns a pointer to the current E2Elib communication state on the
sender side.
Syntax E2E <profile>CheckStateType *

E2EPW Get CheckState <p> <o> ()

Reentrancy |reentrant

Parameters | none

Return value | E2E_<profile>CheckReceiverSt | pointerto
ateType* E2E <profile>CheckStateType

Description | Returns a pointer to the current E2Elib communication state on the
receiver side.

6.1.3 Transmission and Reception

The following function is provided for protected transmission with E2EPW:

Syntax uint32 E2EPW Write <p> <o>

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Generated Code
Page 28

Ensuring Reliable Networks ' rreCh

Return value

([Rte Instance instance,] <type> [*] AppData)
Reentrancy | not reentrant
Parameters instance | The instance value is passed to Rte Write <p> <o> (). This
(in) is an optional parameter, which depends on the configuration option
Use RTE Instance.
AppData | This parameter defines the DE to be protected and transmitted. Its
type, <type>, depends on the configuration of the DE.
This parameter can be called:
= by value (AppData is passed by value) or
= by reference (a pointer to AppData is passed).
uint32

Byte 0, the return-code of E2E_Protect ():

* E2E_E INPUTERR NULL

* E2E_E INPUTERR WRONG

* E2E_E OK (default)

Byte 1, the retumn-code of Rte Write <p> <o> ():
* RTE_E COM_STOPPED

" RIE_E_SEG_FAULT
" RTE_E OK (default)

Byte 2, the result of the AppData=NULL check:
" E2E_E INPUTERR NULL
" E2E_E OK (default)

Byte 3, always 0

Note: The default value is the value that is used when the corresponding function/check
is not called (e.g., in case of a previous error).

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH
TTTech Automotive Confidential and Proprietary

Generated Code Ensuring Reliable Networks] rr96h

Page 29
The following function is provided for protected reception with E2EPW:
Syntax uint32 E2EPW Read <p> <o>
([Rte Instance instance,] <type> [*] AppData)
Reentrancy | not reentrant
Parameters instance | The instance value is passed to Rte Read <p> <o> (). This
(in) is an optional parameter, which depends on the configuration option

Use RTE Instance.

AppDbata This parameter defines the DE to be protected and transmitted. Its
type, <type>, depends on the configuration of the DE.

Return value | @int32 Byte 0, the return-code of E2E_Check ():
* E2E E_INPUTERR NULL

* E2E_E_INPUTERR WRONG

" E2E E OK (default)

Byte 1, the return-code of Rte Read <p> <o> ():
» RTE E INVALID

RTE E MAX AGE EXCEEDED

RTE E NEVER RECEIVED

RTE_E UNCONNECTED

RTE_E OK (default)

Byte 2, the result of the AppData=NULL check:
E2E E INPUTERR NULL
E2E E OK

Byte 3/Bit 7, deserial check:
* 1 (E2EPW _DESERIAL ERR)
* 0 (default)

Byte 3/Bit 0...6, State->Status:

" E2E <profile>STATUS OK: 0x00

" E2E <profile>STATUS NONEWDATA: 0x01

" E2E <profile>STATUS WRONGCRC: 0x02

" E2E <profile>STATUS SYNC: 0x03

* E2E <profile>STATUS INITIAL: 0x04

" E2E <profile>STATUS REPEATED: 0x08

" E2E <profile>STATUS OKSOMELOST: 0x20

" E2E <profile>STATUS WRONGSEQUENCE 0x40

Note: The default value is the value that is used when the corresponding function/check
is not called (e.g., in case of a previous error).

6.1.4 Usage Example Code

6.1.4.1 Application Sample Code

This is an application sample code to be used with use case AUTOSAR RTE ** and
profile 2"V,

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Generated Code Ensuring Reliable Metworks ' rreCh

Page 30
The following code example is a guideline only and must be adapted to the respective
application design. In particular, the error handling depends on the application and on
how and when to use the received data in case of errors.
The placeholders defined in the previous sections are used here again with the same
meaning.
Necessary include files:
#include "E2EPW_<node> <port> <pde>.h"
Convenience Code
#define RETURNCODE E2E (x) ((uint32) (x) & OXFF)
#define RETURNCODE RTE (x) (((uint32) (x) & OxFFO00) >> 8)
#define RETURNCODE APPDATA (x) (((uint32) (x) & OxFF0000) >> 16)
#define RETURNCODE E2ESTATUS (x) (((uint32) (x) & 0x7F000000) >> 24)
#define RETURNCODE DESER (x) (((uint32) (x) & 0x80000000) >> 31)
const uint32 elepw read status ok u32 =
(0<<31) /* Deserial-Check */
| ((E2E_PO2STATUS OK & 0x7F)<<24) /* ReceiverStatus */
| (E2E_E OK<<16) /* Protection Wrapper */
| (RTE_E_OK<<8) /* Rte Read/Rte Write */
| (E2E_E_OK); /* E2E_P02Check/E2E_P02Protect */
const uint32 eZepw write status ok u32 =
(0<<31) /* Deserial-Check */
| (E2E_E_OK<<16) /* Protection Wrapper */
\ (RTE_E OK<<8) /* Rte Read/Rte Write */
| (E2E_E OK); /* E2E_P02Check/E2E_P02Protect */
Code for Initialization
/* initialize all tx */
E2EPW WriteInit <p> <o> ();
/* initialize all rx */
E2EPW ReadInit <p> <o> ();
Code for Transmission and Check of Return Values
uint32 r tx u32;
Rte Instance inst;
<type> AppData;
<type> * AppDataPtr = &AppData;
/* set AppData */
/* send AppData */
r tx u32 = E2EPW Write <p> <o> (inst, AppDataPtr);
if (r_tx u32 != elZepw write status ok u32)
{
/* something went wrong - find out what */
if (RETURNCODE APPDATA (r_ tx u32) != E2E E OK)
{
/* AppDataPtr was NULL */
End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Generated Code

Ensuring Reliable Metworks] rrECh

}

if (RETURNCODE E2E (r tx u32) != E2E E OK)

{

/* E2Elib reported some error */

if (RETURNCODE RTE (r tx u32) != RTE E OK)

/* RTE reported some error */

Page 31

Code for Reception and Check of Return Values

uint32 r rx u32;

Rte Instance inst;

<type> AppData;

<type> * AppDataPtr = &AppData;

/* receive AppData */

r rx u32 = E2EPW Read <p> <o> (inst, AppDataPtr);

if (r rx u32 != e2epw read status ok u32)
{
/* something went wrong - find out what */
if (RETURNCODE APPDATA (r rx u32) != E2E E OK)

/* AppDataPtr was NULL */

if (RETURNCODE E2E (r rx u32) != E2E E OK)

/* E2Elib reported some error */

if (RETURNCODE RTE (r rx u32) != RTE E OK)

/* RTE reported some error */

if (RETURNCODE DESER (r_rx u32) != 0)

/* E2EPW detected some deserialization error caused by the COM */

if (RETURNCODE E2ESTATUS (r_rx u32) != E2E PO02STATUS_ OK)

/* E2Elib detected some status other than ok */

switch (RETURNCODE E2ESTATUS (r rx u32))

{

case E2E PO2STATUS NONEWDATA:
break;

case E2E _PO02STATUS WRONGCRC:
break;

case E2E PO2STATUS SYNC:
break;

case E2E_POZSTATUS_INITIAL:
break;

case E2E PO2STATUS REPEATED:
break;

case E2E PO2STATUS OKSOMELOST:

ok */

break;

case E2E PO2STATUS WRONGSEQUENCE:

*/

break;

/* no new message was available */
/* CRC was wrong */

/* sync in progress */

/* first data received */

/* message was repeated */

/* some messages were lost, but it's

/* message had invalid sequence count

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH
TTTech Automotive Confidential and Proprietary

Generated Code Ensuring Reliable Networks] r’-eCh

Page 32

}

Note: For debugging, all values of E2E P0O2CheckStatesType () may be
relevant. Then the function E2EPW_Get CheckState <p> <o> () canbe used to
retrieve state information.

6.1.5 Differences to SW-C End-to-End Communication Protection Library

The implementation of the E2EPW is based on the guideline in[AS_E2E_SWS] %,
Annex B.

However, there are some deviations from the guideline.
Deviations are required/suggested due to:

* Incompleteness or errors in the guideline of the initial AUTOSAR Release 4.0.1/3.2.1,
or

* Extensions for easier integration and application of the E2EPW API, or

* Backward-compatibility with previous versions of the E2EPW by TTTech.
The deviations are listed here:

Title APl Extension
AUTOSAR AUTOSAR does not provide APIfunctions to initialize the E2Elib
3.21/4.01 communication state.

TTTech E2EPW | Additional functions:

1.3 E2EPW Init <p> <o> rx () and

E2EPW Init <p> <o> tx ()

AUTOSAR 4.2.1 Init Functions defined as:

Std ReturnType E2EPW WriteInit <p> <o> (Rte Instance
<instance>)

TTTech E2EPW | Renamed functions to conform to AUTOSAR Release: 4.2.1:

2.0 void E2EPW ReadInit <p> <o> (void) and
void E2EPW WriteInit <p> <o> tx (void)

Reason APl extension:
Initialization shall be possible each time the application is reset.
Renaming of initialization functions due to increase compatibility
to AUTOSAR specification document. However, return value is
not used, the parameter must not be present according to
AUTOSAR specification.

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Generated Code

Ensuring Reliable Networks] r’-ECh

Page 33
Title APl Extension
AUTOSAR AUTOSAR does not provide API functions for retrieving the
3.2.1/4.01 current E2Elib communication state.

TTTech E2EPW
13

Additional functions:
E2E <profile>SenderStateType *

E2EPW Get SenderState <p> <o> (void)
and
E2E <profile>ReceiverStateType *

E2EPW Get ReceiverState <p> <o> (void)

Where <profile> is the short name of the profile.

AUTOSAR 4.2.1

TTTech E2EPW
2.0

Renamed additional functions to reflect renamed state type of
E2Elib:

E2E <profile>ProtectStateType *

E2EPW Get ProtectState <p> <o> (void)
and
E2E <profile>CheckStateType *

E2EPW Get CheckState <p> <o> (void)

Where <profile> is the short name of the profile.

Reason

API extension: The AUTOSAR guideline does not include an
APl to retrieve the current state.

Note: The internal State variable has been moved from function
level to module level.

The internal State variable cannot be read directly, but only by
these functions.

Title

Communication State State.

AUTOSAR
3.2.1/4.01

The communication state is function-local (in E2EPW Read/
Write <p> <o> ()).

TTTech E2EPW
13

The communication state is defined at module level.

AUTOSAR 4.2.1

The communication state is defined at module level.

TTTech E2EPW
2.0

The communication state is defined at module level.

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH
TTTech Automotive Confidential and Proprietary

Generated Code

Page 34

End-to-End Protection Wrapper Generator 2.0.1

Ensuring Reliable Metworks] rrECh

Title Communication State State.

Reason The Communication State must be accessible among several
functions in the module, variables must be defined at module
level to be memory-mapped using the MemMap approach of
AUTOSAR.

Title Deserialization return value of E2EPW Read <p> <o> ()
(see E2E0265)

AUTOSAR AUTOSAR specifies byte 3 of the return value to mark a

3.2.1/4.01 deserialization error, which is 0 (OK) or 1 (failed).

TTTech E2EPW
13

The value of the deserialization error has been moved to bit 7 of
byte 3. Use bits 0-6 for the value of state->status.

AUTOSAR 4.2.1

The layout of the return value changed various times in previous
AUTOSAR releases. No backward-compatibility between
releases. Deserialization error is currently reported in byte 1.

TTTech E2EPW
2.0

The layout is backward-compatible to TTTech E2ZEPW 1.3.

Reason

Usage:

With the state->status value in the return value of function
E2EPW Read <p> <o> (), the reception result can be easily
analyzed. A call of function E2EPW Get Receiverstate <p> <o>
() is only required for special cases, like retrieving state-
>LostData if State->Status is
E2E <profile>STATUS OKSOMELOST, Where <profile> is the short
name of the profile.

Title

Return value layout of E2EPW Write <p> <o>
E2EPW_Read <p> <o> ()

() and

AUTOSAR
3.2.1/4.01

AUTOSAR specifies the following for £2Epw write <p> <o> ():

byte 0is the return value of E2E <profile>Protect ().
byte 1is the status of rte wWrite <p> <o> ().

byte 2 is the status of e2epw write <p> <o> () internal

checks.
byte 3is e2E E ok (not used).

and for E2EPW _Read <p> <o> ():

byte 0Ois the return value of E2E_<profile>Check ().

Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH
TTTech Automotive Confidential and Proprietary

Generated Code

Ensuring Reliable Networks] r’-ECh

Page 35
Title Return value layout of E2EPW Write <p> <o> () and
E2EPW_Read <p> <o> ()
byte 1is the status of Rte Read <p> <o> ().
byte 2 is the status of E2EPw Read <p> <o> () internal

checks.
byte 3is the status of the deserialization check (bit extension)

TTTech E2EPW
1.3

The value of the deserialization error has been moved to bit 7
of byte 3. Use bits 0-6 for the value of state->sStatus.

AUTOSAR 4.2.1

The layout of the return value changed various times in previous
AUTOSAR releases. No backward-compatibility between
releases.

The current layout for E2EPW Write <p> <o> ():

byte Ois the status of Rte wWrite <p> <o> ().

byte 1 is the status of r2epw write <p> <o> () internal
checks.
byte 2is the return value of E2E_<profile>Protect ().
byte 3is £2r £ ok (not used).
and for E2EPW Read <p> <o> ()
byte 0is the status of Rte Read <p> <o> ().
byte 1 is the status of E2EPw Read <p> <o> () internal

checks, including deserialization (bit extension) check.
byte 2is the return value of E2E <profile>Check ().

byte 3is the value of
(E2E7<profile>CheckStatusType).

State->Status

TTTech E2EPW
2.0

The layout is backward-compatible to TTTech E2EPW 1.3.

Reason Initially, the deviation was to fix severe flaws in the AUTOSAR
specification. Now, backward-compatibility to previous versions
of TTTech E2ZEPW is to be maintained.

Title Abortion in case of errors

AUTOSAR AUTOSAR defines that all steps in E2EPW Read/Write <p> <o>

3.21/4.01 () are evaluated even in case of errors.

TTTech E2EPW
13

In case of an error, the generated function aborts and returns a
proper error code. This includes the following kinds of errors:

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH
TTTech Automotive Confidential and Proprietary

Generated Code

Ensuring Reliable Networks] r’-ECh

Page 36
Title Abortion in case of errors

e NuLL check of parameter apppata,

* E2E <profile>Protect/Check () returns an error,

* RTE Write <p> <o> () returns an error or

« deserialization check returns an error.

Where <profile> is the short name of the profile.

Note that the return-values of RTE Read <p> <o> () is not

considered to be an error (in the manner that

E2EPW Read <p> <o> () needs to abort).

AUTOSAR 4.2.1 | Changed specification to abort in case of error, as in TTTech

E2EPW 1.3

TTTech E2EPW | Behavior as in TTTech E2ZEPW 1.3 and therefore conform to
20 AUTOSAR4.2.1.
Reason Safer code:

Continuation does not make sense after an error was detected.

Continuation in case of an error can cause other errors.

Title Return Code Interpretation for E2EPW_Read/Write <p> <o>

AUTOSAR All steps in E2EPW Read/Write <p> <o> () are done even if

3.2.1/4.01 errors occur. Thus, each byte 0..3 of the return value gets a
corresponding value.

TTTech E2EPW/| In case of error, E2EPW Read/Write <p> <o> () aborts and the

1.3 result values of further steps still have default values.

The return codes are interpreted as follows:

E2EPW_Read <p>_ <o> ():

1. If byte 0 is unequal to 2 = ok (0), then a severe error
occurred in E2E <profile>Check (). All other bytes are
irrelevant.

2. If byte 2 is unequal to =2 £ ok (0), then a severe error
occurred in the Protection Wrapper code. All other bytes are
irrelevant.

3. fbit 7 in byte 3 is 1, then the deserialization check failed. All
other bytes are irrelevant.

4. If byte 0 and byte 2 are z2r £ _ox and bit 7 of byte 3 is 0,
then
a. byte 1 holds the return value of Rte RrRead <p> <o> () and
b. bits 0...6 in byte 3 hold the communication status from

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001

TTTech Automotive Confidential and Proprietary

Generated Code

Ensuring Reliable Networks] r’-ECh

Page 37

Title

Return Code Interpretation for E2EPW_Read/Write <p> <o>

E2E <profile>Check ().
Both are to be interpreted by the application.
E2EPW Write <p> <o> ():

1. If byte 0 is unequal to E2E £ Ok

occurred in E2E <profile>Protect
irrelevant.

(0), then a severe error
(). All other bytes are

2. If byte 2 is unequal to 2 = ok (0), then a severe error
occurred in the Protection Wrapper code. All other bytes are
irrelevant.

3. f byte 0 and byte 2 are e2e £ ok, then byte 1 holds the return
value of rRTE write <p> <o> (), Which is to be interpreted by
the application.

4. Byte 3 is always 0.

AUTOSAR 4.2.1

Changed specification to abort in case of error, as in TTTech
E2EPW 1.3.

TTTech E2EPW
2.0

Behavior as in TTTech E2EPW 1.3 and therefore conform to
AUTOSAR4.2.1.

Reason Interpretation is consequence of abortion in case of severe
errors.

Title Variables ret0...ret3 in E2EPWw_Read/Write_<p> <o> ()

AUTOSAR AUTOSAR defines a separate variable for each check within the

3.2.1/4.0.1 read/write function.

TTTech E2EPW
13

The generated code holds an internal uint32 variable, which
represents the return value and is filled in case of an error.

It is a merge of the variables reto0..rets.

AUTOSAR 4.2.1

AUTOSAR specification more relaxed on the internal variables,
semantically backward-compatible. Code Example and activity
diagrams use more verbose names.

TTTech E2EPW
2.0

AsinTTTech E2EPW 1.3.

Reason

Simpler code:

Before each step, it must be evaluated whether an error has
raised or not. A single uint32 variable makes these evaluations
simpler.

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH
TTTech Automotive Confidential and Proprietary

Generated Code Ensuring Reliable Networks] r’-ECh

Page 38

Title NuLL_PTR check at begin of E2EPW_Read/Write_<p> <o> ()

AUTOSAR AUTOSAR proposes a nuLt, pTr check for apppata at the end of

3.2.1/4.0.1 the function.

TTTech E2EPW | The nurL check is the first step to do in the functions.

1.3

AUTOSAR 4.2.1 | Changed specification to check apppata at beginning and abort
in case of error, as in TTTech E2EPW 1.3.

TTTech E2EPW |Behavior as in TTTech E2EPW 1.3 and therefore conform to

2.0 AUTOSAR4.2.1.

Reason Safer code: Applying apppata before nurr pTrR check may
cause other errors.

Title E2E_USING RTE ISUPDATED

AUTOSAR AUTOSAR uses a #define to control the setting of

3.2.1/4.01 State->NewDataAvailable.

TTTech E2EPW | The configuration of state->NewbataAvailable iS moved to the

13 E2EConfig file.

As a result, the generated code contains either
State->NewDataAvailable = Rte IsUpdated <p> <o>
0
or
State->NewDataAvailable = TRUE
There is no #define anymore.

AUTOSAR 4.21 |[Rrte TsUpdated <p> <o> () IS no longer used (since 4.1.1),
return value of Rte Read <p> <o> () is used instead now (non-
configurable). K return is not RrTeE E 0k, then state-
>NewDataAvailable iS setto FALSE.

TTTech E2EPW | Backward-compatible to TTTech E2ZEPW 1.3. Return value of

20 Rte Read <p> <o> () does not affect further evaluation, but is
returned in the E2EPW return code. Therefore, while in
AUTOSAR 4.2.1 the unavailability of new data by the RTE would
be treated as "no new data", it will be treated as "repeated"
here, if Rte_IsUpdated_Rrte Tsupdated <p> <o> ()is notused.

Reason All configuration for generated code is gathered in the
E2EConfig file. Simpler code.

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Generated Code Ensuring Reliable Networks] r’-QCh

Page 39

Title Encapsulation of marshaling in separate function.

AUTOSAR AUTOSAR defines the marshaling code directly in the wrapper

3.2.1/4.01 code.

TTTech E2EPW |r2EPw Read/Write <p> <o> () calls a separate function

1.3 E2EPW Marshal <pde> ().

AUTOSAR 4.2.1 | No change to AUTOSAR 3.2.1/4.0.1.

TTTech E2EPW | Backward-compatible to TTTech E2ZEPW 1.3.

20

Reason Simpler code. Improved structure. Code-sharing for same Signal
Group (e.g. multiple Receivers) possible.

Title Encapsulation of deserialization check in separate
function.

AUTOSAR AUTOSAR defines the code for the check directly in the wrapper

3.2.1/4.0.1 code.

TTTech E2EPW |r2EPw Read/Write <p> <o> () calls a separate function

1.3 E2EPW CheckDeserial <pde> ().

AUTOSAR 4.21 | No change to AUTOSAR 3.2.1/4.0.1.

TTTech E2EPW | Backward-compatible to TTTech E2ZEPW 1.3.

2.0

Reason Simpler code. Improved structure. Code-sharing for same Signal
Group (e.g. multiple Receivers) possible.

Title Variants for parameters of E2EPW_Read/Write <p> <o> ()

AUTOSAR AUTOSAR defines the parameters tnstance and apppata (call

3.2.1/4.0.1 by reference).

TTTech E2EPW | The following variants are configurable:

1.3 Instance May be given as a parameter or not. However, it has
no meaning to the functionality of the E2ZEPW code and is merely
used as call parameter for Rte Read/Write <p> <o> ().
AppData can be passed call by value or call by reference. For
E2EPW Read <p> <o> (), itis always call by reference.

AUTOSAR 4.2.1 | Parameter instance is specified in all API functions as optional,

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Generated Code

Page 40

End-to-End Protection Wrapper Generator 2.0.1

Ensuring Reliable Metworks] rrECh

Title Variants for parameters of E2EpPW_Read/Write_<p>_<o> ()
additional specifications state that the Instance feature is
explicitly not supported by E2E.

TTTech E2EPW | Backward-compatible to TTTech E2ZEPW 1.3.

2.0

Reason Call signature of E2EPW Read/Write <p> <o> () is aligned to the
specification of rte Read/write <p> <o> () inthe AUTOSAR
RTE document.

Title Variables Config and ConfigVal in E2EPW_Read _<p>_<o> ()
and E2EPW_Write_<p>_<o> () are ‘const'.

AUTOSAR The variables config and configval are declared static and

3.2.1/4.01 non-constant.

TTTech E2EPW
13

Config and ConfigVal are defined static and const.

AUTOSAR 4.2.1

config was renamed to config <p> <o>and is defined as static
and const. configval was removed from the code examples in
4.2.1 as itis not required to achieve the desired functionality.

TTTech E2EPW
2.0

Backward-compatible to TTTech E2ZEPW 1.3.

Reason = static is by specificationin [AS E2E SWS] .
* const moves the variables from (often sparse) RAM to ROM.
Note: The variables have been renamed to config <p> <o> and
Configval <p> <o> to satisfy MISRA rules. This has no effect on
the E2EPW API.

Title Redundant Wrapper not implemented

AUTOSAR Specified as an optional feature in AUTOSAR.

TTTech E2EPW
13

Redundant Wrapper (E2EPW Writel/2 <p> <o>
E2EPW Readl/2 <p> <o> ()),Whichis notimplemented.

Only single channel is implemented.

AUTOSAR 4.2.1

No change.

TTTech E2EPW
2.0

Backward-compatible to TTTech E2ZEPW 1.3.

Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH
TTTech Automotive Confidential and Proprietary

Generated Code Ensuring Reliable Networks] r’-QCh

Page 41

Title Redundant Wrapper not implemented

Reason The Redundant Wrapper is not an appropriate solution to
achieve the system-wide ASIL D level. Another solution (e.g.,
ASIL D HW) would be a better approach. However, redundant
channels can be modeled on SW-C level.

Title Direct use of opaque parameter in E2EPW_Write <p> <o> ()
AUTOSAR When the parameter apppata is opaque, E2EPW Write <p> <o>
3.2.1/4.0.1 () copies the array to a local variable pata. Then it protects pata

and copies crc and counter in pata back to apppata and
passes AppData {0 Rte Write <p> <o> ().

TTTech E2EPW | When the parameter apppata iS Opaque, E2EPW Write <p> <o>

1.3 () passes apppata directly t0 E2E <profile>Protect and
Rte Write <p> <o> ().Nolocalvariable is used.
Side-effect:

" AppData iS modified.

» After E2EPW Write <p> <o> () returned, crc and counter are
visible to the application.

AUTOSAR 4.2.1 | No change.

TTTech E2EPW | Backward-compatible to TTTech E2ZEPW 1.3.

2.0

Reason Improved runtime performance (no copy), less memory
consumption (no copy).

Title The array ppa_<port> <vdp> au8 [] is module-local.

AUTOSAR The variable to store the marshaled version of a given PDE is

3.2.1/4.0.1 local in E2EPW Read <p> <o> () and E2EPW Write <p> <o> ().

TTTech E2EPW | The variable is module-local and static.
1.3

AUTOSAR 4.2.1 | The variable is still local in the code example.

TTTech E2EPW | No change to TTTech E2ZEPW 1.3.

2.0
Reason MemMap.h iS used for both, the function and the variable. MemMap
sections cannot be stacked.
End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Generated Code Ensuring Reliable Networks] r’-eCh

Page 42
Title Profile configuration is module-local.
AUTOSAR The profile configuration constant £2eE <profile>ConfigType iS
3.2.1/4.0.1 local in E2EPW _Read <p> <o> () and E2EPW Write <p> <o> ().
TTTech E2EPW | The constantis module-local and static.
1.3
AUTOSAR 4.2.1 | The profile configuration is defined as module-local as constant.
TTTech E2EPW | No change to TTTech E2ZEPW 1.3.
2.0
Reason MemMap.h IS used for both, the function and the variable. MemMap

sections cannot be stacked.
End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Generated Code

Ensuring Reliable Networks , rreCh

Page 43
Title File Structure
AUTOSAR A separate pair of files (x.c and *.n) for each SW-C, containing
3.2.1/4.0.1 wrapper code for all protected data elements on this SW-C:

® E2EPW <swc>.h and

® E2EPW <swc>.c.

TTTech E2EPW
1.3

A separate pair of files (x.c and =.n) for each protected data
element:

® E2EPW <swc> <p> <o>.h and

® E2EPW <sws> <p> <o>.cC.

The code for marshaling and deserialization check is also
extracted into separate files:

® E2EPW Marshal <pde>.c

® E2EPW Marshal <pde>.h

® E2EPW CheckDeserial <pde>.c
® E2EPW CheckDeserial <pde>.h
Where

e <swc> iS the Node Name

* <p> is the Port Name

* <o>isthe VDP_ Name

* <pde> is the PDE_ Name

AUTOSAR 4.2.1

The file structure has not changed since AUTOSAR 3.2.1/4.0.1.

TTTech E2EPW

No change to TTTech E2ZEPW 1.3.

2.0
Reason Significantly simpler design of the E2EPWG. Shared code for
marshaling/deserial check for the same PDE.
End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001

TTTech Automotive Confidential and Proprietary

Generated Code
Page 44

7 File Structure

Ensuring Reliable Metworks ' rr96h

The file structure of the generated files is shown in the figure below (for Profile 2 ?"). For

simplicity, inclusions of the files StdTypes.h, MemMap.h,

<swc> MemMap.h and

of files stated in Includes Hand Includes_C are not shown.

cmp File Structure /

SWC implementation files

E2E Protection Wrapper interface generated by the

E2E Protection Wrapper Generator.
One source and one header file per PDE.

E2EPW_<node>_<port>_<pde>_<rxtx>.c

L 0 | Il et . 7

I AN /I .

:: N\ N S 7 «include»

t N ; RTE interface of SWC
! «headerFile» generated by

I E2EPW_<node>_<port>_<pde>_<rxtx>.h AUTOSAR toolchain.
1} T

1 :

1 ~ \«include» A

] ~ ‘

|| i ~ < ’

" E2EPW_CheckDeserial_<pde>.c N\ !

1})

I «include» «headerFile»

T e N (i - N RTE_<SWC-Type-short name>.h
1} N

1} N

1} A

1) «headerFile»

I «include» E2EPW_CheckDeserial_<pde>.h

=

E2EPW_Marshal_<pde>.c

«include»

«include»

«include»

«headerFile»
E2EPW_Marshal_<pde>.h

I_____________________>

<<

«headerFile»
:E2E_P02.h

File structure

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH
TTTech Automotive Confidential and Proprietary

File Structure Ensuring Reliable Networks ' rr96h

Page 45

8 Functional Specification

This Section contains the functional specification of the two main functions of the
protection wrapper: E2ZEPW_Write <p> <o> () and E2EPW_Read <p> <o> ()

8.1 Return values

The return values of the write and read function are a composition of several values.

Each step or function call within the write and read function results in a value that is
incorporated into the return value of the function. As the further execution of the read or
write function depends on the result of such a step or function call, the return value is
referred to as status.

The status value is a 32-bit unsigned integer value which is composed as follows:

E2EPW_Write_ ()

| 0 | AppData==NULL | Rte_Write_<p>_<o0> () | E2E_<profile>Protect () |

31 24 16 8 0

E2EPW_Read_ ()

E2EPW_CheckDeserial _ ()

State -> Status | AppData==NULL | Rte_Read_<p>_<o> () | E2E_<profile>Check () |

Note: The figures above show the logical bit and byte order. The generated code uses
logical bit operations to maintain this logical representation regardless of the platform
byte order.

8.2 Function E2EPW_Write_<p>_<o0> ()
Depending on the configuration, the E2EPW_Write <p> <o> () function is
generated differently.
Options that affect the data flow are:
® Use Call By Ref
® IsOpaque

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Functional Specification Ensuring Reliable Networks ' rr96h

Page 46

The following figures show variants of the E2EPW_Write <p> <o> () function:

| act E2EPW_Write Marshal /

E2EPW_Write_<p>_<o> ([Rte_Instance], AppData)

’

(set status to OK)

- - - | thiscode isonly generated if
AppData == NULLX et [TROET Use_Call_By_Ref = YES
[FALSE] \I/ -
4< udpate status value)
status == OK
[TRUE]
[FALSE]

marshal AppData into an uint8 array using
E2EPW_Marshal_<pde> ()

status == OK [TRUE]
[FALSE]
call E2EP02_Protect with
marshaled uint8 array

4deate status value)

status == OK [TRUE]

[FALSE] Q/

set AppData fields for crc and sequence
counter to the values calculated by
E2EP02_Protect ()

status == OK [TRUE]

[FALSE]

transmit AppData by calling
Rte_Write_<p>_<o> ()

4< Update status value >
(return status value >

return

E2EPW_Write <p> <o> () with Use_Call By Ref = YES and Is_Opaque = NO

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Functional Specification Ensuring Reliable Networks ' rr96h

Page 47

| act E2EPW_Write Opaque /

E2EPW_Write_<p>_<o> ([Rte_Instance], AppData)

?

(set status to OK)

this code isonly generated

AppData == NULL T - [TRUE] if Use_Call_By_Ref=YES
[FALSE] 7
e
—@date status value)
status == OK [TRUE]
[FALSE]

call E2EP02_Protect ()
with AppData
—Lupdate status)

[TRUE]

status == OK

[FALSE]
transmit AppData using

Rte_Write_<p>_<o0> ()

(Update status value)
(return status value >

g

return

E2EPW_Write <p> <o> () with Use_Call By Ref = YES and Is_Opaque = YES

8.3 Function E2EPW_Read_<p>_<o> ()
Depending on the configuration, the E2EPW_Read <p> <o> () function is
generated differently. Options that affect the data flow are:
® CheckDeserial
® TsOpagque
® Use Rte Update

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Functional Specification Ensuring Reliable Networks ' rr96h

Page 48

The following figures show variants of the E2EPW_Read <p> <o> () function:

[act E2EPW_Read /

E2EPW_Read_<p>_<o> ([Rte_Instance], AppData)

?

C set status to OK)

Gew DataAv ailable = TRU@

AppData == NUYITRUE]

[FALSE]
—< update status value)

status == OK

[TRUE]

[FALSE] l
get AppData by calling
Rte_Read_<p>_<o> ()
4< Store return value)

[TRUE]

Vv

marshal AppData into an uint8 array using
E2EPW_Marshal_<pde> ()

V

update ppa with values of
checksum and sequence
counter

status == OK

[FALSE]

status == OK [TRUE]

[FALSE] call E2EP02_Check () with
uint8 array

update status including return value of
Rte_Read_<p>_<o> ()
(return status value)

return

E2EPW_Read_<p>_ <o> () with CheckDeserial=NO, Use_Rte_Update=NO and Is_Opaque=NO

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Functional Specification

Ensuring Reliable Metworks l rrECh

Page 49

7act E2EPW_Read IsUpdated CheckDeserial

set status to OK

set NewDataAv ailable by calling
Rte_lIsUpdated_<p>_<o> ()

E2EPW_Read_<p>_<o> ([Rte_Instance], AppData)

this code is only generated if
Use_Rte_Update = YES;
otherwise, NewDataAvailable is set to

return status value

retum

TRUE.
,
NewDataAvailable == TRUE o
= [TRUE]
[FALSE] AppData == NULL
[TRUE]
Update status value
status == OK [TRUE]
[FALSE] .
get AppData by calling Rte_Read_<p>_<o0>|
0
\ Store return value) this code Isonly
status == OK et TTTTTTTTT generated if
=T [TRUE] CheckDeserial = YES
[FALSE] = J
check signal values by calling)
E2EPW_CheckDeserial_<pde> () !
'
!
Update status ~~ Jr--------- '
status == OK [TRUE]
[FALSE] marshal AppData into an uint8 array using
E2EPW_Marshal_<pde> ()
update uint8 array with
values of checksum and
sequence counter
status == OK [TRUE]
[FALSE]) The uint8 array may contain data
call EZEP_OZ—C"ECK Owith) ___ | from a previous call, depending on
uint8 array the value of NewDataAvailable. Thi
is due to E2Elibary specification.
update status including
return value of
Rte_Read_<p>_<o>

E2EPW_Read_<p> <o> () with CheckDeserial

YES, Use_Rte Update

YES and Is_Opaque NO

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH

TTTech Automotive Confidential and Proprietary

Functional Specification
Page 50

Ensuring Reliable Metworks ’ rreCh

7act E2EPW_Read IsUpdated Opaque /

E2EPW_Read_<p>_<o> ([Rte_lInstance], AppData)

set status to OK

return status value

return

set NewDataAv ailable by calling this code is only generated if
Rte_lsUpdated_<p>_<o>() [-----1 Use_Rte_Update = YES;
otherwise, NewDataAvailable
_-| issetto TRUE.
NewDataAvailable == TRUE Il
- [TRUE]
[FALSE] AppData == NULL
[TRUE]
[FALSE]
update status value
status == OK
[TRUE]
[FALSE] 1/
receive AppData by calling
Rte_Read_<p>_<o> ()
Store return value
status == OK [TRUE]
[FALSE]
copy AppData to uint8
array using
E2EPW_Memcpy ()
== OK
status == Ol [TRUE
[FALSE] The uint8 array may contain
call E2EP02_Check () with CEIR et @ Pl
uints array -| depending on the value of
NewDataAvailable. Thisis
due to E2Elibary
specification.
update status including
return value of
Rte Read <p> <o>

E2EPW_Read <p>_ <o> () with CheckDeserial = NO, Use_Rte Update = YES and Is_Opaque =

= YES

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH
TTTech Automotive Confidential and Proprietary

Environment Specifics Ensuring Reliable Networks] r’-eCh

Page 51

9 Environment Specifics

This Section explains the properties and restrictions of the build and runtime
environment. They affect the Preprocessor, the E2EPWG and the E2EConfig file, and
depend not only on the build environment, but also on the AUTOSAR revision, the use
case, and the supported profiles of the protection wrapper generator and the
preprocessor.

9.1 Vector DaVinci Developer/RTE Configurator for AUTOSAR 3.2

In this build environment, only the use case AUTOSAR RTE # is available. The
Preprocessor and Generator support one or more of the E2Elib profiles P01 *° and
P02 , depending on the product license purchased.

The Preprocessor and Generator are integrated into this environment, and are
automatically invoked when building the project. See the corresponding DaVinci user
manuals for details.

9.1.1 Configuration Restrictions

There are several restrictions to the configuration when the Vector RTE for AUTOSAR
3.2 and AUTOSAR 4.0 is used:

* TsOpaque must always be NO (the RTE does not support opaque DEs)
® Use Call By Ref must always be YES (only record-type DEs are supported by

the RTE)
® Use Rte Update is YES by default. If the RTE in the given system does not support
the function Rte Is Updated <p> <o> (), then Use Rte Update must be

NO. The preprocessor for this build environment generates E2EConfig files that
conform to those restrictions. Restrictions relating to the preprocessor itself are
described in the following Section.

9.1.2 Preprocessor Restrictions

* The preprocessor uses the name of the VDP (VDP_Name) for the PDE_Name and the
SW-C name for the Node Name inthe E2EConfig file.

The combination of the attributes Node Name and VDP Name in the configuration
must be unique. As the PDE_Name can be chosen freely (it is only used in file names
and internal functions such as Marshal and CheckDeserial), it can be changed
manually in the E2EConfig file. With the DaVinci tools release R12, the DaVinci
Develooer supports SW-C-specific defines for the memory mapping (see also Other
issues **). Node Name must be the SW-C name because this identifier is used in
the generated MemMap defines.

®* The Byte Order CPU must be provided as command line parameter. The default
value is LITTLE ENDIAN. lfthe Byte Order CPU is not set to the correct value,
signals with a Iength of more than 8 bits are not correctly marshaled.

9.1.3 E2EPW and RTE in a Safety-Related System
If a safety-relevant application developed according to ISO 26262 calls functions which
are generated by a tool in QM quality, the called functions must be considered as

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Environment Specifics Ensuring Reliable Networks] r’-eCh

Page 52

safety-relevant as well, as they can potentially interfere with the calling application (e.g.,
by overwriting data, consuming execution time, etc.). Therefore, additional measures
can be necessary to ensure freedom from interference. These can be applied at the
function level (e.g., code reviews, tests, development process) or already at the system
design level (decoupling).

In the present implementation, the generated E2EPW directly calls RTE functions which
are generated by a tool in QM quality (i.e., the DaVinci RTE Configurator), which fits
into the scenario described above. As the RTE functions are rather small and simple,
both kinds of measures (code review and decoupling) are suitable, whereas the
complex COM is almost impossible to be tackled without decoupling. The following
example illustrates both cases.

Example:

A safety-related software component SW-C A sends a message using the E2EPW. As
the RTE is generated by the RTE generator, the RTE code of SW-C A must be
reviewed manually by the integrator to meet the requirements of ISO 26262. However,
the function Rte Write <p> <o> () (see Functional specification *) calls some
COM functions, which are also not developed according to ISO 26262. Therefore, the
safety-related SW-C A sends the protected data element to another SW-C B. This SW-
C B runs in a different context (i.e., in the same as the COM) and can call the COM
directly. Thus the SW-C B is used as a proxy, and the E2ZEPW is only called in SW-C A.
The RTE and the E2ZEPW must be configured accordingly.

9.2 Other Issues

* As of version 1.3, the E2EPWG uses the contents of the configuration field
Node Name to generate SW-C specific defines for the memory mapping. As of
version 2.0.1, those must be defined in the corresponding <swc> MemMap.h
include file of the software component which are generated by the RTE gnerator. If not
present, a compiler warning or error may be triggered.

* File names of the generated files can become very long. As the maximum length of
most string-type fields in the E2EConfig file is 128 characters, it is possible that files
cannot be generated due to file name or path length restrictions.

For example, Windows XP and Windows 7 restrict the maximum total path
length to 260 characters (including the terminating null character). If Node Name,
PDE Name and VDP_Name are very long, the generated files can easily exceed this
length, especially if they are generated into a subdirectory. A possible solution is to
choose a short PDE Name and change it manually in the E2EConfig file.

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Environment Specifics Ensuring Reliable Networks] rr96h

Page 53

10 Integration Notes

This Section contains further information and work instructions regarding the integration
and integration testing of the E2EPW and the E2Elib.

It extends the requirements and comments of the E2E Protection Wrapper Safety
Manual ([TT _E2EPW _SM] ®®)and provides further explanations and code examples.

10.1 Checking the Tool Input

Make sure the settings in the Vector tools are as expected and the signals are mapped
correctly to the signals on the bus.

This can be done by comparing the communication specification of the system
specification with the settings in the Vector tools and the content of the generated
E2EConfig file. A detailed description of the syntax and semantics of the E2EConfig file
can be found in Section E2EConfig file '

10.2 Checking the Generated Files

Make sure that

¢ the E2EConfig file generated by the preprocessor is generated correctly (generation
messages/errors on stdout — it is not sufficient to watch message on stdout, the
E2EConfig file must be checked).

¢ the files generated by the E2ZEPWG (pwg . exe) are generated correctly (generation
messages/errors on stdout).

¢ the files are compiled and linked correctly to the binary (. e1f file, memory mapping;
build environment messages/errors).

10.3 Performing an Integration Test

There are several ways to ensure that End-to-End Protection is integrated properly. The
most common option is to build the target and perform an integration test by simulating
the environment. For End-to-End Protection, this could be done by simulating the
communication of the other ECUs on the communication network (restbus simulation *®
)- Here, the communication network is simulated, and messages are sent to and
received from the target ECU. This can be done with or without a special test
application, depending on the test requirements (unaltered target, test coverage, etc.),
which also depends on the application using End-to-End Protection.

Another way to perform an integration test is a self-test using internal (intra-ECU)
signaling ®®. A sending and a receiving software component communicates with End-
to-End Protection. After checking that End-to-End Protection is working when no fault is
present, the sender produces sequences of messages simulating predefined faults.

10.3.1 Using Restbus Simulation

A common way to check the effectiveness of the End-to-End protection is to test it by
simulating the bus communication. This also enables testing of the fault handling
mechanisms of the receiving application using the End-to-End Protection. As the
E2EPW only reports the status of the End-to-End protection, the test highly relies on the

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Integration Notes Ensuring Reliable Networks 1 r’-ECh

Page 54

receiving application using the E2EPW and its behavior in case of communication
faults.
The sender application does not get any information about the state of the End-to-End
protection. The test of the sender side is therefore always straight forward: Send some
predefined data, check if the checksum is correct regarding the sent data and the
DatalD, and check if the sequence counter is incremented with each message.
If there are no special requirements given by the application, a test for the End-to-End
protection at the receiver shall systematically provoke the different communication
status values the E2ZEPW can report:

E2Elib <profile> status defines Description

E2E <profile>STATUS INITIAL Initial (Message ok)

E2E <profile>STATUS OK Message ok

E2E_<profile>STATUS WRONGCRC Wrong CRC

E2E_<profile>STATUS_OKSOMELOST Some messages lost, but within tolerance

E2E <profile>STATUS WRONGSEQUENCE Messages received in wrong sequence

E2E <profile>STATUS REPEATED Message repeated

E2E <profile>STATUS NONEWDATA No new message
By its design, the E2EPW only reports symptoms of communication faults, not their
cause. Using additional information, the application can derive some possible causes,
depending on assumptions regarding attributes of the system and communication
behavior.
An example list of communication faults and the status reported by the E2EPW:

Status Wrong Messages lost Invalid Message No new

Fault CRC sequence repeated Message

Bit flip X

Byte swap X

Wrong X

sender1

Message(s) X X X

lost on bus

Message not X X

sent (in time)

Message X

repeated at

sender

1 Refers to masquerading / message insertion

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Integration Notes Ensuring Reliable Networks] r’-eCh

Page 55

There are some faults that induce a characteristic sequence of status values. Some
values depend on the system (communication) characteristics, others are reported in
sequence:

For the scenario where messages are lost on the bus, a periodically checking receiver
would yield a status depending on the following cases:

1. As long as no message has been received after a startup/restart, the status is
NONEWDATA.

2. If a message has been received since the last startup/restart, then, depending on the
number of lost messages and the configuration, the status might be either
messages lost Or invalid sequence, depending on the setting of
Max Delta Counter Init. Also, message ok Or message repeated
would also be possible if a multiple of 16 (15 for E2EIlib profile 1) messages were
lost consecutively. For the latter case, the sequence checking capabilities of End-to-
End Protection would not be suitable if the system is expected to be capable of such
a fault.

10.3.1.1 Example Scenarios

The following examples show how important the system attributes and assumptions are
for the handling of communication faults.

Example 1:

Assuming a given system of a sender ECU and a receiver ECU, having the following

properties:

1. The sender application is called periodically to send an end-to-end-protected
message.

2. The sender communication stack periodically takes the last message sent by the
sender application and sends it over the communication bus.

3. The receiver communication stack periodically checks for received messages on the
bus.

4. The receiver application periodically queries the communication stack for received
messages using the E2ZEPW.

5. All periods are equal; the tasks are in sync with each other.

The following fault is simulated: after message 3, the sender application misses its
deadline for sending the end-to-end-protected message.

The result of the fault in the system: The sender communication stack does not get the
next message (counter=4) and sends the last message (counter=3) again on the
bus. The receiver receives the old message (counter=3) again. In the next
communication cycle, the sender application sends the next message (counter=5) at
the proper time. The sender communication stack takes the message (counter=5)
and sends it on the bus.

Status values reported by the E2ZEPW at the receiver side:

Call Number Sequence counter Status
1 1 E2E7<profile>STATUSilNITIAL
2 2 E2E <profile>STATUS OK
End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Integration Notes Ensuring Reliable Networks 1 r’-ECh

Page 56
Call Number Sequence counter Status
3 3 E2E <profile>STATUS OK
4 3 E2E_<profile>STATUS_REPEATED
5 5 E2E <profile>STATUS OKSOMELOST
6 6 E2E <profile>STATUS OK
Example 2:
In the next scenario, the same fault as in Example 1 is introduced, but some of the
above assumptions are extended:
* The sender communication stack uses an update bit (extends assumption 2).
* The receiver communication stack evaluates the update bit (extends assumption 3).
* The E2EPW checks for wupdated data (by using the RTE function
Rte Is Updated <p> <o> ();extends assumption4).
Now the faultis perceived in a slightly different way:
Call Number Sequence counter Status
1 1 E2E <profile>STATUS INITIAL
2 2 E2E <profile>STATUS OK
3 3 E2E <profile>STATUS OK
4 3 E2E7<profile>STATUSiNONEWDATA
5 5 E2E <profile>STATUS OKSOMELOST
6 6 E2E <profile>STATUS OK
Here, instead of Repeated, No new messageis reported.
Example 3:
As a next modification, let the sender communication stack use a queue for the sent
messages:
Call Number Sequence counter Status
1 1 E2E <profile>STATUS INITIAL
2 2 E2E <profile>STATUS OK
3 3 E2E <profile>STATUS OK
4 3 E2E <profile>STATUS NONEWDATA
5 4 E2E <profile>STATUS OK
End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Ensuring Reliable Networks ' rr96h

Integration Notes
Page 57

Call Number Sequence counter Status

6 5 E2E_<profile>STATUS OK

Here, the sender misses the deadline for message 4, and as a result the messages are
queued.The message with counter 4 is received in call 5, as there was no new
message received before. By assuming that the receiving application was executed as
specified, a timing violation can be derived by the receiving application when receiving
message with counter 4 in call 5, when expecting message with counter 5.

© 2015 TTTech Automotive GmbH

End-to-End Protection Wrapper Generator 2.0.1
TTTech Automotive Confidential and Proprietary

Document number: D-MSP-G-70-001

Integration Notes Ensuring Reliable Networks] r’-eCh

Page 58

Example 4:
Using the original assumptions, but with the following fault scenario:

After call 3, the receiver communication stack is not called before the receiver
application tries to receive the next message.

The result of the fault on the system: the receiver application misses the deadline for
message 4. It receives the old message with counter 3 again, and then the receiver
communication stack is called and receives the new message with counter 4. Before
the receiver application is called the next time, the receiver communication stack
receives the next message, with counter 5.

Call Number Sequence counter Status

1 1 E2E_<profile>STATUS INITIAL

2 2 E2E <profile>STATUS OK

3 3 E2E <profile>STATUS OK

4 3 E2E <profile>STATUS REPEATED

5 5 E2E <profile>STATUS OKSOMELOST
6 6 E2E <profile>STATUS OK

Here, the reported status values are the same as in the first scenario. The conclusion is
that the cause of the perceived communication fault cannot be determined reliably
without further information (which is out of the scope of the E2EPW).

10.3.1.2 |ntegration Test Message Sequence

In this Section, a small example integration test is provided using fixed sequences of
messages to trigger all status values the E2EPW can report.

The following system properties are assumed:

1. The receiver communication stack periodically checks for received messages on the
bus.

2. The receiver application periodically queries the communication stack for received
messages using the E2ZEPW.

3. All periods are of equal duration; the tasks are ‘in sync’ with each other.

4. The receiver application uses the RTE function Rte IsUpdated <p> <o> () to
determine if a new message is received since the last call of Rte Read <p> <o>
0.

9. The E2Elib configuration has Max Delta Counter Init = 2, SyncCounterInit
= 0.

Each of the following tables is a message sequence. The message sequence of the
first table is retrieved by sending valid messages and recording them. The message
sequences of the other tables are modifications of the message sequence of the first
table.

The meaning of the columns of the following tables is:

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Integration Notes Ensuring Reliable Networks 1 r’-ECh

Page 59
Call The call number of the function E2EPW_Read <p> <o> ().
SC The sequence counter value of the message sent over the bus
by the E2EPW.
CRC » OK ifthe CRC is as expected.
» NOK if the CRC is wrong.
Status The expected status value reported by the E2ZEPW.
Description A short description of the semantics of the simulated faullt.
& For E2Elib profile 1%, there is no counter value 15. This line
can be omitted.
Sequence of correct messages:
Call | SC CRC | Status Description
1 0 OK |E2E <profile>STATUS INITIAL
2 1 OK E2E <profile>STATUS OK
3 2 OK E2E <profile>STATUS OK
4 3 OK | E2E <profile>STATUS OK
5 4 OK E2E <profile>STATUS OK
6 5 OK E2E <profile>STATUS OK
7 6 OK | E2E <profile>STATUS OK
8 7 OK E2E <profile>STATUS OK
9 8 OK | E2E <profile>STATUS OK
10 9 OK E2E <profile>STATUS OK
11 10 OK E2E <profile>STATUS OK
12 11 OK | E2E <profile>STATUS OK
13 12 OK E2E <profile>STATUS OK
14 13 OK E2E <profile>STATUS OK
15 14 OK | E2E <profile>STATUS OK
16 15% OK E2E <profile>STATUS OK
Deleted and repeated messages:
Call SC CRC | Status Description
1 0 OK |E2E <profile>STATUS INITIAL First message.
End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Integration Notes
Page 60

Ensuring Reliable Networks] rrECh

Call SC CRC | Status Description

2 1 OK | E2E <profile>STATUS OK

3 - - E2E <profile>STATUS NONEWDATA No new message received.

4 3 OK |E2E <profile>STATUS OKSOMELOST | One message lost (2).

5 4 OK |E2E <profile>STATUS OK

6 5 OK |E2E <profile>STATUS OK

7 5 OK |E2E <profile>STATUS REPEATED Message 5 received again.

8 7 OK |E2E <profile>STATUS OKSOMELOST | One message lost (6).

9 8 OK |E2E <profile>STATUS OK

10 9 OK |E2E <profile>STATUS OK

11 9 OK |E2E <profile>STATUS REPEATED Message 9 received again.

12 10 OK |E2E <profile>STATUS OK Message 10 received at call
1.

13 11 OK E2E <profile>STATUS OK Message 11 received at call
12.

14 13 OK |E2E <profile>STATUS OKSOMELOST [One message lost (12).

15 14 OK | E2E <profile>STATUS OK

16 15%* OK |E2E <profile>STATUS OK

Wrong CRC due to different failure modes:

Cycle SC CRC | Status Description

1 0 OK |E2E <profile>STATUS INITIAL

2 1 OK |E2E <profile>STATUS OK

3 2 NOK | E2E <profile>STATUS WRONGCRC Bit flip in message.

4 3 OK |E2E <profile>STATUS OKSOMELOST | One message lost (2).

5 4 OK E2E <profile>STATUS OK

6 5 NOK |[E2E <profile>STATUS WRONGCRC Used different DatalD.

7 6 OK |E2E <profile>STATUS OKSOMELOST | One message lost (5).

8 7 OK | E2E <profile>STATUS OK

9 8 OK | E2E <profile>STATUS OK

10 13 NOK |[E2E <profile>STATUS WRONGCRC Bit flip in sequence counter
signal.

11 14 NOK | E2E <profile>STATUS WRONGCRC Bit flip in sequence counter
signal.

12 11 OK |E2E <profile>STATUS OKSOMELOST | Two messages lost (with
sequence counter values 9 and

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH

TTTech Automotive Confidential and Proprietary

Integration Notes

Ensuring Reliable Networks , rrECh

Page 61
Cycle SC CRC | Status Description
10).
13 12 OK |E2E <profile>STATUS OK
14 13 OK |E2E <profile>STATUS OK
15 14 OK E2E <profile>STATUS OK
16 15% OK E2E <profile>STATUS OK
Sequence error because of swap and sender reset:
Cycle | SC CRC | Status Description
1 0 OK |E2E <profile>STATUS INITIAL
2 1 OK [E2E <profile>STATUS OK
3 2 OK |E2E <profile>STATUS OK
4 4 OK |E2E <profile>STATUS_ OKSOMELOS | One message lost (3).
T
5 3 OK | E2E <profile>STATUS WRONGSEQU | Messages 3 and 4 swapped.
ENCE
6 5 OK |E2E <profile>STATUS OK
7 6 OK [E2E <profile>STATUS OK
8 - - E2E <profile>STATUS NONEWDATA [No new message received.
9 0 OK |E2E <profile>STATUS WRONGSEQU | Sender was reset.
ENCE
10 1 OK E2E <profile>STATUS WRONGSEQU
ENCE
11 2 OK |E2E <profile>STATUS WRONGSEQU
ENCE
12 3 OK E2E <profile>STATUS WRONGSEQU
ENCE
13 4 OK |E2E <profile>STATUS WRONGSEQU
ENCE
14 5 OK |E2E <profile>STATUS WRONGSEQU
ENCE
15 6 OK |E2E <profile>STATUS REPEATED
16 7 OK E2E <profile>STATUS OK

Sequence error because of receiver timing violation:

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH

TTTech Automotive Confidential and Proprietary

Integration Notes
Page 62

Ensuring Reliable Networks , rreCh

Call |SC CRC | Status Description
1 0 OK E2E <profile>STATUS INITIAL
2 1 OK E2E <profile>STATUS OK
3 2 OK E2E <profile>STATUS OK
4 - - E2E <profile>STATUS NONEWDAT | No new data received (extra call
A of receiver task simulated).
5 - - E2E <profile>STATUS NONEWDAT | No new data received (extra call
A of receiver task simulated).
6 5 OK E2E <profile>STATUS OKSOMELO | Two messages lost (3, 4).
ST
7 6 OK E2E <profile>STATUS OK
8 10 OK E2E <profile>STATUS WRONGSEQ [Three messages lost because
UENCE E2EPW Read <p> <o> () was
n I hr imes in a row.
9 11 OK E2E <profile>STATUS WRONGSEQ ot called three times in a ro
— - Only two losses are tolerated
UENCE
because of
10 12 OK E2E_<profile>STATUS WRONGSEQ |Max_Delta Counter Init =
UENCE 2.
. As the sequence counter of the
11 13 OK E2E_<profile>STATUS_WRONGSEQ | gender increases, but the receiver
UENCE expects values 7, 8 or 9, the
12 |14 OK |E2E <profile>STATUS wrONGsEq | E2EPW reports an error.
UENCE
13 15* OK E2E <profile>STATUS WRONGSEQ
UENCE
14 0 OK E2E <profile>STATUS WRONGSEQ
UENCE
15 1 OK E2E <profile>STATUS WRONGSEQ
UENCE
16 2 OK E2E <profile>STATUS WRONGSEQ
UENCE
17 3 OK E2E <profile>STATUS WRONGSEQ
UENCE
18 4 OK E2E <profile>STATUS WRONGSEQ
UENCE
19 5 OK E2E <profile>STATUS WRONGSEQ
UENCE
20 6 OK E2E <profile>STATUS REPEATED | Got the same sequence counter
as last valid message.
21 7 OK E2E <profile>STATUS OK Finally got a wvalid sequence
counter.

End-to-End Protection Wrapper Generator 2.0.1
Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH

TTTech Automotive Confidential and Proprietary

Integration Notes Ensuring Reliable Networks] rr96h

Page 63

10.3.1.3 Hints for Integration Test Setup

Using the tables in the Section above, it is necessary to be able to check the
correctness of protected messages as well as to generate correct and incorrect
messages according to the test sequences.

One way to establish this is to build a test environment that provides the EZ2Elib
functionality and generates and checks protected messages dynamically. If this is not
possible, static message sequences can be used:

1. For each data element received using the E2EPW, configure another data element
that is sent using the E2ZEPW.

2. Send 16 messages and record them. Make sure that this sequence of messages
corresponds to the message sequence listed in Table Sequence of correct
59

messages > and make sure that the CRC is correct.

3. Build the message sequences of the other tables by adapting the recorded
messages.

4. Use the message sequences to test the E2EPW for the data elements it is
configured to receive and check the reported return values.

Note: To get the message sequences of the other tables, the original message
sequence must be adapted (reordering, bit-manipulation,...). For message 5 in Table
Wrong CRC due to different failure modes®®, the CRC must be calculated with a
different message ID. This can be done with the sent messages, but by modifying the
configuration of the E2ZEPW to use a different message ID and record message 5 of the
sequence.

10.3.2 Using Intra-ECU Signaling

Another way to test the E2EPW and the E2EIlib is to set up a software component that
checks the functionality by sending end-to-end-protected messages, manipulating them
according to some fault assumptions, and evaluating the reported status of the E2EPW
on the receiver side. This can be done at any time, possibly at startup, regularly during
runtime, or after a software update.

Note1: This test only covers the code of the E2Elib and the part of the E2EPW that is
used for the protected messages sent/received. There is no test coverage for the actual
E2EPW code used by the other applications, or for the code of the communication
layers or the applications themselves.

Prerequisites: A sender and a receiver port using the E2EPW must be configured and
connected. Both ports must use the same VDP.

Note 2: As those ports do not send to or receive from a communication bus, there is no
tool support for adding End-to-End Protection (an FPDU layout is needed for the
marshaling). The configuration of End-to-End Protection must be done manually. A
convenient way to do this is to reuse an existing data element and copy the signal
definitions from there.

Note 3: The function Rte IsUpdated <p> <o> () must be emulated if it is used
by E2EPW Read <p> <o> (), which is assumed in the message sequences
described in this document. Therefore, the Use RteUpdate must be YES in the
E2EConfig file. The RTE generator must not generate the function, because the return
value must be chosen according to the message sequence: Each time a message is

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Integration Notes Ensuring Reliable Networks] rr96h

Page 64

sent by the sender, the function Rte IsUpdated <p> <o> () must return TRUE
once. The user must provide this function.

As the RTE functions Rte Write <p> <o> () and Rte Read <p> <o> () only
pass on pointers to the sent/received data structure, there is no need for multiple
software components or even runnables for this test. However, transmission using
multiple software components can be beneficial if memory partitioning is used, and is
hence also subject to this test.

E2Etest_CP::E2Etest_CT

Send _SiGroup_P [

— 1] Recv_SiGroup_P

Software component setup

10.3.2.1 Sending Correct Messages

The correct messages sequence (see Table Sequence of correct messages *) is
the simple part: The sender just sends messages using E2EPW Write <p> <o>
(), and the receiver checks the reported status returned by E2EPW_Read <p> <o>
().

10.3.2.2 Sending Manipulated Messages

For manipulated messages, the sender cannot use the function
E2EPW Write <p> <o> () directly, because not all manipulation operations can
be performed before or after the call of E2EPW Write <p> <o> () (eg., the
manipulation of the DatalD used for the CRC calculation). Therefore, the sender must
emulate the function E2EPW Write <p> <o> () and modify it according to the
message sequence. The functional behavior of the E2EPW write function is as follows:

1. Build a byte array representing the FPDU of the data element by calling the function
E2EPW Marshal <pde> (). The parameters are a pointer to the array and a
pointer to the data element.

2. Call E2E_<profile>Protect (), with the parameters being pointers to the
configuration data structure, to the status data structure and to the FPDU
byte array.

3. Extract the counter and CRC value from the byte array (configuration-dependent
position) and write them to the corresponding signals in the data element data
structure.

4. CallRte Write <p> <o> () withthe data element as parameter.

To generate and send manipulated messages, the configuration and/or status of the
E2Elib must be altered (sequence counter value, DatalD, ...), and data manipulation
may be necessary (to provoke a wrong CRC), before sending the data with
Rte Write <p> <o> (). While the status data structure is available to the
application, the configuration data structure is declared as static const in the
E2EPW Write <p> <o> () function and therefore not accessible. The application
must emulate E2EPW_Write with its own configuration data structure, which can then

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Integration Notes Ensuring Reliable Metworks] rr96h

Page 65
be altered if necessary.

The steps to send manipulated messages are:

1. Prepare the data element.

2. Call the function E2EPW Marshal <pde> () with a pointer to the data
element data structure and a pointer to a byte array in order to get a byte array
representing the FPDU of the data element.

3. Alter the Counter field of the status data structure to be <Counter value> -1
mod 16 (mod 15 for profile 1) according to the message sequence.

4. Alter the configuration data structure, if necessary (e.g., change the DatalD
field).

5. Call E2E <profile>Protect (), with the parameters being pointers to the
configuration data structure, to the status data structure and to the FPDU
byte array.

6. Extract the counter and CRC value from the byte array according to the E2Elib
configuration and write them to the signals in the me s sage data structure.

7. Manipulate the data element data structure, if necessary (according to message
sequence).

8. Call Rte Write <p> <o> () with a pointer to the data element data
structure.

9. Maintain the value returned by Rte IsUpdated <p> <o> ().

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Integration Notes
Page 66

11 Abbreviations

Ensuring Reliable Networks , rrECh

Abbreviation Description

API Application Programming Interface

ASIL Application Safety Integrity Level

coM Communication layer, a software layer that un/packs signal
from a network PDU

CRC Cyclic Redundancy Check

DE Data Element

E2EConfig file E2E Configuration File, which is the input for the E2EPWG

E2EPW E2E Protection Wrapper

E2EPWG E2E Protection Wrapper Generator

E2Elib End-to-End Communication Protection Library

EBNF Extended Backus-Naur-Form (see http:/en.wikipedia.org/
wiki/Extended Backus Naur_Form)

ECU Electronic Control Unit

QM Quality Management (safety level according to company
standards, but not ISO26262)

PA Protected Area

PDE Protected Data Element

I-PDU Interaction Layer Protocol Data Unit

PGN Parameter Group Number

RTE Run-Time Environment

SC Sequence Counter

SW-C, SWC Software Component

VDP Variable Data Prototype

End-to-End Protection Wrapper Generator 2.0.1

Document number: D-MSP-G-70-001

© 2015 TTTech Automotive GmbH
TTTech Automotive Confidential and Proprietary

http://en.wikipedia.org/w/index.php?title=Extended_Backus%E2%80%93Naur_Form&oldid=460363611
http://en.wikipedia.org/w/index.php?title=Extended_Backus%E2%80%93Naur_Form&oldid=460363611
http://en.wikipedia.org/w/index.php?title=Extended_Backus%E2%80%93Naur_Form&oldid=460363611

Abbreviations Ensuring Reliable Networks , rrECh

Page 67

12 Glossary

Term Description

Communication stack | The Autosar software stack (in the context of E2EPW:
Flexray or CAN stack).

Data Element (DE) A C-like structure containing signal values. Used at
application level. A DE is the smallest unit that can be
transmitted/received with a single transmission/reception-
function from the application view.

If the transmission/reception of a Data Element is protected
by the E2EIlib, itis called a Protected Data Element.

(E2E)Protection A set of API functions that encapsulates the protection and

Wrapper check mechanisms of the E2Elib at application level:

= At sender side, there is an API function which adds CRC
and counter to the data and passes it along to the next
lower layer (RTE, COM or Transport layer).

= At reception side, there is an API function that receives
data from the lower layer, checks its CRC and counter
and returns a state telling if the data is correct or not.

Marshaling The process of copying the DE (a C struct) to the -PDU
representation of the DE. The CRC evaluation is done on
the -PDU representation.

Protected Area The E2EConfig file contains a list of Protected Areas. Each
protected area holds all information that is required to
generate wrapper code to send/receive a certain signal
group using the COM layer:

¢ information for the E2EPW API (e.g., the PDE name,
node name, communication direction),

¢ information for the calls of the COM API (e.g., signal
group ID, opaque property), and

¢ information on signals for marshaling (signal positions,
signal lengths).

Protected Data | See Data Element.
Element
End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH

Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

Glossary Ensuring Reliable Metworks ' rreCh

Page 68

13 References
[TT_E2EPW_SM] TTTech Automotive GmbH. E2E Protection Worapper Safety Manual,
SafetyManual_E2EPW.pdf, D-MSP-M-70-002

[AS_E2E_SWS] AUTOSAR. Specification of SW-C End-to-End Communication Protection Library,
Version 1.2.0, Release 3.2.1, Annex B Section 12.1.

[TT_E2EPO1_SM] TTTech Automotive GmbH, EZ2Elib Profile-1 Safety Manual, D-MSP-M-70-003, V
1.1.8, 2012

[TT_E2EP02_SM] TTTech Automotive GmbH, E2EIib Profile-2 Safety Manual, D-001-M-70-001, V 1.2.9,
2012

[BMW_LAST KOMM] Lastenheft Bordnetz-Kommunik ation, 10000235-000-09, BMW Group, 2009
[AS_COMABS_SWS] AUTOSAR Gbr, Specification of Compiler Abstraction, ID 051, V2.1.0, Rel. 3.2.1
[AS_MEM_SWS] AUTOSAR Gbr, Specification of Memory Mapping, 1D 128, V1.2.1, Rel 3.2.1

End-to-End Protection Wrapper Generator 2.0.1 © 2015 TTTech Automotive GmbH
Document number: D-MSP-G-70-001 TTTech Automotive Confidential and Proprietary

	1 Introduction
	1.1 E2E Protection Wrapper Generator
	1.2 Tools Integration
	1.3 Use Cases

	2 Versions
	3 Installation
	4 Preprocessor
	4.1 Preprocessor Help
	4.1.1 Using the Preprocessor
	4.1.2 Behavior and Log Output
	4.1.3 Log Message Format
	4.1.4 Warning and Info Log Messages

	5 E2E Protection Wrapper Generator
	5.1 Using the Generator
	5.2 E2EConfig file
	5.2.1 Syntax
	5.2.2 Description of Elements
	5.2.3 File Content Checks

	6 Generated Code
	6.1 API
	6.1.1 Initialization
	6.1.2 Status
	6.1.3 Transmission and Reception
	6.1.4 Usage Example Code
	6.1.4.1 Application Sample Code

	6.1.5 Differences to SW-C End-to-End Communication Protection Library

	7 File Structure
	8 Functional Specification
	8.1 Return values
	8.2 Function E2EPW_Write_<p>_<o> ()
	8.3 Function E2EPW_Read_<p>_<o> ()

	9 Environment Specifics
	9.1 Vector DaVinci Developer/RTE Configurator for AUTOSAR 3.2
	9.1.1 Configuration Restrictions
	9.1.2 Preprocessor Restrictions
	9.1.3 E2EPW and RTE in a Safety-Related System

	9.2 Other Issues

	10 Integration Notes
	10.1 Checking the Tool Input
	10.2 Checking the Generated Files
	10.3 Performing an Integration Test
	10.3.1 Using Restbus Simulation
	10.3.1.1 Example Scenarios
	10.3.1.2 Integration Test Message Sequence
	10.3.1.3 Hints for Integration Test Setup

	10.3.2 Using Intra-ECU Signaling
	10.3.2.1 Sending Correct Messages
	10.3.2.2 Sending Manipulated Messages

	11 Abbreviations
	12 Glossary
	13 References

