

MICROSAR EcuM Flex

Technical Reference

SysService_Asr4EcuM

Version 6.00.01

Authors Jochen Vorreiter

Status Released

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 2
based on template version 4.8.3

Document Information

History

Author Date Version Remarks

Jochen Vorreiter 2012-06-06 1.00.00 Initial Setup

Jochen Vorreiter 2013-01-30 1.00.01 ESCAN00064669 Updated compiler
abstraction and memory mapping

Jochen Vorreiter 2013-05-03 1.01.00 Added support of post-build-loadable

Added support of asynchronous
transceiver handling in 3.9.2

Added API
EcuM_ClearValidatedWakeupEvent()

in 5.2.10

Extended description of
EcuM_StartupTwo() in 5.2.3

Jochen Vorreiter 2013-10-31 2.00.00 ESCAN00069010 Added support for Alarm
Clock in 3.14

ESCAN00071546 Added Multi Core
support in 3.15

New API
EcuM_GoToSelectedShutdownTarget

ESCAN00071553 Changed handling of
wakeup source states in 5.1

Changes in chapter 4.2 Critical Sections

ESCAN00071552 Removed
BswM_EcuM_CurentState notification

Jochen Vorreiter 2014-06-03 3.00.00 Added Support for EcuM fixed

ESCAN00073631 Fixed missing
description of EcuM_BswErrorHook()

Jochen Vorreiter 2014-11-04 4.00.00 Added Support for Post-Build Selectable

Added chapter 3.15.1.2.1 Driver
initialization on the Slave Core.

Added chapter 3.15.5 Reconfiguration of
the BSW Core ID

Added MICROSAR specific CanSM
handling in 3.18.2.3.3

ESCAN00079382 Fixed missing
description of the StateRequest Port in
5.8.1.1

ESCAN00077124 Fixed description of
Critical Sections in 4.2

ESCAN00079407, ESCAN00068331 Fixed
description in Type Definitions of
EcuM_WakeupStateType in 5.1

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 3
based on template version 4.8.3

Jochen Vorreiter 2014-11-25 4.00.01 Adapted description of
EcuM_DeterminePbConfiguration

Jochen Vorreiter 2015-01-26 4.01.00 Updated the Include structure and added
two files in 4.1.2

Updated access on PB and Variant data in
DriverInitLists in Ch. 5.7.2

Jochen Vorreiter 2015-07-14 5.00.00 Added new EcuM error ID for invalid
CoreID in Ch. 3.11.3

Added support for Mode Handling, see Ch.
3.16, 5.3.13 and 5.5

Removed subchapters “Parameter
Checking” from Ch. 3.11

Added missing API ID in Table 3-8
 Service IDs

Jochen Vorreiter 2016-11-15 6.00.00 Added support for PNC notifications to

ComM about Wakeup Events

Jochen Vorreiter 2017-11-30 6.00.01 ESCAN00096797 Added hint to
EcuM_Shutdown API description

Reference Documents

No. Source Title Version

[1] AUTOSAR AUTOSAR_SWS_ECUStateManager.pdf V3.0.0

[2] AUTOSAR AUTOSAR_SWS_DevelopmentErrorTracer.pdf V3.2.0

[3] AUTOSAR AUTOSAR_SWS_DiagnosticEventManager.pdf.pdf V4.2.0

[4] AUTOSAR AUTOSAR_TR_BSWModuleList.pdf V1.6.0

[5] AUTOSAR AUTOSAR_EXP_ModemanagementGuide.pdf V1.0.0

[6] VECTOR TechnicalReference_PostBuildLoadable.pdf see delivery

[7] AUTOSAR AUTOSAR_SWS_ECUStateManagerFixed.pdf V1.4.0

[8] VECTOR TechnicalReference_IdentityManager.pdf see delivery

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 4
based on template version 4.8.3

Contents

1 Component History .. 13

2 Introduction... 14

2.1 Architecture Overview .. 15

3 Functional Description ... 17

3.1 Features .. 17

3.2 States of EcuM flex .. 19

3.3 States of EcuM fixed .. 20

3.4 The State Diagram of the EcuM flex... 22

3.5 The State Diagram of the EcuM with fixed state machine 23

3.6 Initialization .. 24

3.6.1 EcuM_Init ... 24

3.6.2 EcuM_StartupTwo .. 24

3.6.2.1 EcuM_StartupTwo in case of EcuM flex 24

3.6.2.2 EcuM_StartupTwo in case of EcuM fixed 24

3.6.3 Initialization Order .. 24

3.6.4 Additional Code in the Initialization Callouts 25

3.6.5 Inclusion of Additional Header Files ... 26

3.6.6 Configuration Set Selection .. 26

3.7 Initialization of a MultiCore ECU ... 27

3.8 Shutdown Targets .. 27

3.8.1 Using the API EcuM_SelectShutdownTarget().................................. 27

3.8.2 Default Shutdown Target .. 27

3.8.3 Reset Modes .. 27

3.8.4 Sleep Modes .. 28

3.9 Wake-up Sources .. 28

3.9.1 Validation Timeout .. 28

3.9.2 Check-Wakeup Validation Timeout ... 29

3.9.3 ComM Channel Reference ... 29

3.9.4 Polling of Wake-up Sources ... 29

3.9.5 MCU Reset Reason ... 29

3.10 Main Functions .. 30

3.10.1 Wake-up Validation Protocol .. 30

3.10.2 Wake-up Validation Protocol for asynchronous Can transceiver 32

3.11 Error Handling .. 33

3.11.1 Development Error Reporting ... 33

3.11.2 Production Code Error Reporting ... 35

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 5
based on template version 4.8.3

3.11.3 EcuM_ErrorHook ... 35

3.12 Callout Execution Sequences .. 36

3.12.1 Callouts from Startup to Run .. 36

3.12.2 Callouts from Run to Sleep (Halt) and back to Run 37

3.12.3 Callouts from Run to Reset .. 38

3.12.4 Callouts from Run to Off ... 38

3.13 EcuM Flex Users and Defensive Behavior ... 39

3.14 Alarm Clock ... 40

3.14.1 Configuring the Gpt to provide the Time base 40

3.14.2 Configuring the EcuM for using the Alarm Clock 40

3.14.3 Setting of the EcuM Clock .. 41

3.14.4 Setting of a Time Triggered Wake Up Alarm 41

3.15 MultiCore Ecu .. 42

3.15.1 Initialization of a MultiCore ECU ... 42

3.15.1.1 Initialization on the Master Core 42

3.15.1.2 Initialization on the Slave Core 43

3.15.1.2.1 Driver initialization on the Slave Core......... 43

3.15.2 Sleep handling of slave cores .. 44

3.15.3 Blocking of the BSW Scheduler during Sleep 45

3.15.4 Shutdown of the MultiCore ECU .. 45

3.15.5 Reconfiguration of the BSW Core ID .. 45

3.16 Mode Handling for EcuM Flex .. 46

3.16.1 Mode Handling ... 46

3.16.2 Run Request Protocol .. 47

3.17 Generated Template Files .. 48

3.18 Wake-up Event Handling and Wake-up Validation ... 48

3.18.1 Wake-up after a Physical Sleep Mode .. 48

3.18.1.1 Use Case Description .. 48

3.18.1.2 Execution Flow .. 49

3.18.1.3 Callout Implementation Examples 49

3.18.2 Wake-up Validation of Communication Channels (ECUM in RUN
State) ... 50

3.18.2.1 Use Case Description .. 50

3.18.2.2 Execution Flow .. 50

3.18.2.3 Callout Implementation Examples 51

3.18.2.3.1 EcuM_CheckWakeup 51

3.18.2.3.2 EcuM_CheckValidation 51

3.18.2.3.3 EcuM_StartWakeupSources and
EcuM_StopWakeupSources in the case
of a MICROSAR CanSM 51

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 6
based on template version 4.8.3

3.18.2.3.4 EcuM_StartWakeupSources and
EcuM_StopWakeupSources in the case
of a non MICROSAR CanSM 52

4 Integration ... 53

4.1 Scope of Delivery ... 53

4.1.1 Static Files ... 53

4.1.2 Dynamic Files .. 53

4.2 Critical Sections ... 54

4.3 Include Structure .. 55

4.4 Dependencies on other BSW Modules ... 56

4.4.1 BswM ... 56

4.4.1.1 BswM and EcuM fixed ... 56

4.4.2 AUTOSAR OS ... 56

4.4.3 MCU .. 56

4.4.4 DEM ... 56

4.4.5 DET ... 56

4.4.6 ComM .. 56

4.4.6.1 ComM and EcuM fixed ... 56

4.4.7 SchM ... 57

4.4.8 Gpt ... 57

4.4.9 NvM ... 57

5 API Description ... 58

5.1 Type Definitions ... 58

5.2 Services Provided by EcuM ... 62

5.2.1 EcuM_MainFunction .. 62

5.2.2 EcuM_Init ... 63

5.2.3 EcuM_StartupTwo .. 64

5.2.4 EcuM_Shutdown .. 65

5.2.5 EcuM_SelectShutdownTarget .. 66

5.2.6 EcuM_GetShutdownTarget .. 67

5.2.7 EcuM_GetLastShutdownTarget .. 68

5.2.8 EcuM_GetPendingWakeupEvents ... 69

5.2.9 EcuM_ClearWakeupEvent ... 69

5.2.10 EcuM_ClearValidatedWakeupEvent ... 70

5.2.11 EcuM_GetValidatedWakeupEvents .. 71

5.2.12 EcuM_GetExpiredWakeupEvents .. 72

5.2.13 EcuM_GetBootTarget ... 72

5.2.14 EcuM_SelectBootTarget ... 73

5.2.15 EcuM_StartCheckWakeup ... 74

5.2.16 EcuM_EndCheckWakeup .. 75

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 7
based on template version 4.8.3

5.2.17 EcuM_GetVersionInfo .. 75

5.2.18 EcuM_RequestRUN ... 76

5.2.19 EcuM_ReleaseRUN ... 77

5.2.20 EcuM_RequestPOST_RUN ... 78

5.2.21 EcuM_ReleasePOST_RUN ... 79

5.3 Services Provided by EcuM flex ... 80

5.3.1 EcuM_SelectShutdownCause .. 80

5.3.2 EcuM_GetShutdownCause .. 81

5.3.3 EcuM_GoHalt... 81

5.3.4 EcuM_GoPoll ... 82

5.3.5 EcuM_GoDown .. 83

5.3.6 EcuM_GoToSelectedShutdownTarget .. 84

5.3.7 EcuM_SetRelWakeupAlarm ... 85

5.3.8 EcuM_SetAbsWakeupAlarm .. 86

5.3.9 EcuM_AbortWakeupAlarm ... 87

5.3.10 EcuM_GetWakeupTime ... 88

5.3.11 EcuM_SetClock ... 89

5.3.12 EcuM_GetCurrentTime .. 90

5.3.13 EcuM_SetState .. 91

5.4 Services Provided by EcuM fixed ... 92

5.4.1 EcuM_GetState .. 92

5.4.2 EcuM_KillAllRUNRequests .. 93

5.4.3 EcuM_KillAllPostRUNRequests ... 94

5.5 Services Used by EcuM ... 95

5.6 Callback Functions ... 96

5.6.1 EcuM_SetWakeupEvent .. 96

5.6.2 EcuM_ValidateWakeupEvent ... 97

5.6.3 EcuM_AlarmCheckWakeup.. 98

5.6.4 Callback Functions by EcuM fixed .. 99

5.6.4.1 EcuM_CB_NfyNvMJobEnd .. 99

5.7 Configurable Interfaces .. 99

5.7.1 Notifications ... 99

5.7.2 Callout Functions ... 99

5.7.2.1 EcuM_ErrorHook ... 100

5.7.2.2 EcuM_OnGoOffOne ... 100

5.7.2.3 EcuM_OnGoOffTwo ... 101

5.7.2.4 EcuM_AL_SwitchOff .. 101

5.7.2.5 EcuM_AL_Reset .. 102

5.7.2.6 EcuM_AL_DriverInitZero .. 102

5.7.2.7 EcuM_AL_DriverInitOne .. 103

5.7.2.8 EcuM_AL_DriverRestart .. 104

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 8
based on template version 4.8.3

5.7.2.9 EcuM_AL_SetProgrammableInterrupts 105

5.7.2.10 EcuM_McuSetMode ... 105

5.7.2.11 EcuM_WaitForSlaveCores ... 106

5.7.2.12 EcuM_StartOS ... 106

5.7.2.13 EcuM_ShutdownOS... 107

5.7.2.14 EcuM_GenerateRamHash ... 108

5.7.2.15 EcuM_CheckRamHash .. 108

5.7.2.16 EcuM_SleepActivity ... 109

5.7.2.17 EcuM_EnableWakeupSources 110

5.7.2.18 EcuM_DisableWakeupSources 110

5.7.2.19 EcuM_StartWakeupSources ... 111

5.7.2.20 EcuM_StopWakeupSources ... 111

5.7.2.21 EcuM_CheckWakeup... 112

5.7.2.22 EcuM_CheckValidation .. 112

5.7.2.23 EcuM_DeterminePbConfiguration 113

5.7.2.24 EcuM_BswErrorHook ... 114

5.7.3 Callout Functions by EcuM flex .. 115

5.7.3.1 EcuM_GptStartClock ... 115

5.7.3.2 EcuM_GptSetSleep ... 116

5.7.3.3 EcuM_GptSetNormal ... 117

5.7.3.4 EcuM_AL_DriverInitBswM_<ID> 118

5.7.4 Callout Functions by EcuM fixed .. 119

5.7.4.1 EcuM_AL_DriverInitTwo .. 119

5.7.4.2 EcuM_AL_DriverInitThree .. 120

5.7.4.3 EcuM_OnEnterRun .. 121

5.7.4.4 EcuM_OnExitRun .. 121

5.7.4.5 EcuM_OnGoSleep ... 122

5.7.4.6 EcuM_OnPrepShutdown ... 122

5.7.4.7 EcuM_OnExitPostRun ... 123

5.7.4.8 EcuM_OnFailedNvmWriteAllJobReaction 123

5.7.4.9 EcuM_OnWakeupReaction .. 124

5.7.4.10 EcuM_OnRTEStartup .. 124

5.8 Service Ports ... 125

5.8.1 Client Server Interface ... 125

5.8.1.1 Provide Ports on EcuM Side .. 125

5.8.1.1.1 ShutdownTarget Port 125

5.8.1.1.2 BootTarget Port .. 125

5.8.1.1.3 AlarmClock Port 126

5.8.1.1.4 StateRequest Port.................................... 126

5.8.1.2 Require Ports on EcuM Side .. 127

1.1.1.1.1 currentMode Port 127

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 9
based on template version 4.8.3

6 AUTOSAR Standard Compliance... 128

6.1 Deviations .. 128

6.1.1 Deviation in the Naming of API Parameters 128

6.1.1.1 ResetSleepMode ... 128

6.1.1.2 TargetState .. 128

6.1.1.3 ShutdownTarget ... 128

6.1.1.4 Target (ShutdownTarget) .. 128

6.1.1.5 Target (BootTarget) .. 128

6.1.1.6 Sources ... 128

6.1.2 Starting of the Validation Timer... 128

6.1.3 Multiplicity of Parameters ... 128

6.1.3.1 EcuMResetReasonRef .. 128

6.1.3.2 EcuMSleepMode ... 129

6.1.3.3 EcuMConfigConsistencyHash 129

6.1.3.4 Removed parameter ConfigPtr from DriverInit Lists 129

6.2 Additions/ Extensions ... 129

6.2.1 Additional Configuration Parameters .. 129

6.2.2 Buffering of Wake ups if the BswM is Not Initialized 129

6.2.3 Buffering of Wake ups if the ComM is Not Initialized 130

6.2.4 Additional API EcuM_ClearValidatedWakeupEvent 130

6.2.5 Support of Asynchronous Transceiver Handling 130

6.2.6 Deferred notification of the BswM about wake-up events 130

6.2.7 Additional Callback EcuM_AlarmCheckWakeup 130

6.2.8 Additional API EcuM_GoToSelectedShutdownTarget 130

6.2.9 Additional Callout EcuM_WaitForSlaveCores 130

6.2.10 Support of EcuM fixed .. 130

6.2.10.1 Shutdown Target ECUM_STATE_RESET 130

6.2.10.2 Synchronization of EcuM and RTE modes 131

6.3 Limitations.. 131

6.3.1 Inter Module Checks .. 131

6.3.2 Recording of Shutdown Causes ... 131

6.3.3 Not Supported Configuration Parameters and Containers 131

6.3.4 Wake-up Events after Reset Reason Translation are not Validated 131

6.3.5 EcuM Fixed Limitations .. 131

7 Glossary and Abbreviations .. 133

7.1 Glossary .. 133

7.2 Abbreviations ... 133

8 Contact .. 134

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 10
based on template version 4.8.3

Illustrations

Figure AUTOSAR 4.0.3 Architecture Overview Figure 2-1 AUTOSAR
architecture ... 15

Figure 2-2 Interfaces to adjacent modules of the EcuM ... 16
Figure 3-1 The state diagram of the EcuM flex .. 22
Figure 3-2 State Diagram of the EcuM with fixed state machine .. 23
Figure 3-3 Example Wake-up Validation .. 31
Figure 3-4 Example Wake-up Validation for asynchronous Can Transceivers 32
Figure 3-5 Startup Sequence on a Master Core ... 42
Figure 3-6 Startup Sequence on a Slave Core ... 43
Figure 4-1 Include structure ... 55

Tables

Table 1-1 Component history.. 13
Table 3-1 Supported AUTOSAR EcuM common features ... 17
Table 3-2 Supported AUTOSAR EcuM flex features ... 18
Table 3-3 Supported AUTOSAR EcuM fixed features ... 18
Table 3-4 Features provided beyond the AUTOSAR standard 18
Table 3-5 States of the EcuM ... 19
Table 3-6 States of the EcuM ... 21
Table 3-7 Initialization Order ... 25
Table 3-8 Service IDs ... 34
Table 3-9 Errors reported to DET ... 34
Table 3-10 Errors reported to DEM ... 35
Table 3-11 Description of EcuM internal Error Codes ... 36
Table 3-12 Callouts from Startup to Run ... 36
Table 3-13 Callouts from Run to Sleep (Halt) and back to Run 37
Table 3-14 Callouts from Run to Reset ... 38
Table 3-15 Callouts from Run to Off ... 38
Table 3-16 Gpt Channel Configuration ... 40
Table 3-17 Sleep handling on Slave Cores ... 44
Table 3-18 Mapping of States to Modes ... 46
Table 4-1 Static files ... 53
Table 4-2 Generated files ... 54
Table 4-3 Critical Sections .. 54
Table 5-1 Type definitions ... 61
Table 5-2 EcuM_MainFunction ... 62
Table 5-3 EcuM_Init ... 63
Table 5-4 EcuM_StartupTwo .. 64
Table 5-5 EcuM_Shutdown .. 65
Table 5-6 EcuM_SelectShutdownTarget ... 66
Table 5-7 EcuM_GetShutdownTarget ... 67
Table 5-8 EcuM_GetLastShutdownTarget .. 68
Table 5-9 EcuM_GetPendingWakeupEvents .. 69
Table 5-10 EcuM_ClearWakeupEvent .. 69
Table 5-11 EcuM_ClearValidatedWakeupEvent ... 70
Table 5-12 EcuM_GetValidatedWakeupEvents .. 71
Table 5-13 EcuM_GetExpiredWakeupEvents ... 72
Table 5-14 EcuM_GetBootTarget ... 72
Table 5-15 EcuM_SelectBootTarget ... 73
Table 5-16 EcuM_StartCheckWakeup .. 74

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 11
based on template version 4.8.3

Table 5-17 EcuM_EndCheckWakeup ... 75
Table 5-18 EcuM_GetVersionInfo ... 75
Table 5-19 EcuM_RequestRUN ... 76
Table 5-20 EcuM_ReleaseRUN .. 77
Table 5-21 EcuM_RequestPOST_RUN .. 78
Table 5-22 EcuM_ReleasePOST_RUN .. 79
Table 5-23 EcuM_SelectShutdownCause .. 80
Table 5-24 EcuM_GetShutdownCause ... 81
Table 5-25 EcuM_GoHalt ... 81
Table 5-26 EcuM_GoPoll .. 82
Table 5-27 EcuM_GoDown .. 83
Table 5-28 EcuM_GoToSelectedShutdownTarget... 84
Table 5-29 EcuM_SetRelWakeupAlarm.. 85
Table 5-30 EcuM_SetAbsWakeupAlarm ... 86
Table 5-31 EcuM_AbortWakeupAlarm .. 87
Table 5-32 EcuM_GetWakeupTime .. 88
Table 5-33 EcuM_SetClock .. 89
Table 5-34 EcuM_GetCurrentTime ... 90
Table 5-35 EcuM_SetState ... 91
Table 5-36 EcuM_GetState .. 92
Table 5-37 EcuM_ KillAllRUNRequests .. 93
Table 5-38 EcuM_ KillAllPostRUNRequests ... 94
Table 5-39 Services used by the EcuM .. 96
Table 5-40 EcuM_SetWakeupEvent ... 96
Table 5-41 EcuM_ValidateWakeupEvent .. 97
Table 5-42 EcuM_AlarmCheckWakeup .. 98
Table 5-43 EcuM_AlarmCheckWakeup .. 99
Table 5-44 EcuM_ErrorHook .. 100
Table 5-45 EcuM_OnGoOffOne ... 100
Table 5-46 EcuM_OnGoOffTwo .. 101
Table 5-47 EcuM_AL_SwitchOff ... 101
Table 5-48 EcuM_AL_Reset ... 102
Table 5-49 EcuM_AL_DriverInitZero .. 102
Table 5-50 EcuM_AL_DriverInitOne ... 103
Table 5-51 EcuM_AL_DriverRestart ... 104
Table 5-52 EcuM_AL_SetProgrammableInterrupts... 105
Table 5-53 EcuM_McuSetMode ... 105
Table 5-54 EcuM_WaitForSlaveCores .. 106
Table 5-55 EcuM_StartOS .. 106
Table 5-56 EcuM_ShutdownOS ... 107
Table 5-57 EcuM_GenerateRamHash .. 108
Table 5-58 EcuM_CheckRamHash .. 108
Table 5-59 EcuM_SleepActivity .. 109
Table 5-60 EcuM_EnableWakeupSources ... 110
Table 5-61 EcuM_DisableWakeupSources ... 110
Table 5-62 EcuM_StartWakeupSources .. 111
Table 5-63 EcuM_StopWakeupSources .. 111
Table 5-64 EcuM_CheckWakeup ... 112
Table 5-65 EcuM_CheckValidation ... 112
Table 5-66 EcuM_DeterminePbConfiguration ... 113
Table 5-67 EcuM_BswErrorHook ... 114
Table 5-68 EcuM_GptStartClock .. 115
Table 5-69 EcuM_GptSetSleep .. 116
Table 5-70 EcuM_GptSetNormal .. 117

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 12
based on template version 4.8.3

Table 5-71 EcuM_AL_DriverInitBswM .. 118
Table 5-72 EcuM_AL_DriverInitTwo ... 119
Table 5-73 EcuM_AL_DriverInitThree... 120
Table 5-74 EcuM_OnEnterRun... 121
Table 5-75 EcuM_OnExitRun ... 121
Table 5-76 EcuM_OnGoSleep .. 122
Table 5-77 EcuM_OnPrepShutdown .. 122
Table 5-78 EcuM_OnExitPostRun .. 123
Table 5-79 EcuM_OnFailedNvmWriteAllJobReaction ... 123
Table 5-80 EcuM_OnFailedNvmWriteAllJobReaction ... 124
Table 5-81 EcuM_OnRTEStartup ... 124
Table 5-82 Shutdown Target Port ... 125
Table 5-83 BootTarget Port ... 125
Table 5-84 AlarmClock Port .. 126
Table 5-85 StateRequest Port .. 126
Table 5-86 currentMode Port .. 127
Table 7-1 Glossary ... 133
Table 7-2 Abbreviations .. 133

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 13
based on template version 4.8.3

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

1.00.00 Adaption to AUTOSAR Release 4

1.01.00 Added support of configuration variant Post-Build Loadable

Added support of asynchronous transceiver handling

2.00.00 Added support for handling of MultiCore ECUs

Added support of Alarm Clock to provide the absolute time and handling
of time triggered wake-ups.

3.00.00 Added support for EcuM with fixed state machine

4.00.00 Added support for Post-Build Selectable

5.00.00 Added support for Mode Handling in EcuM Flex

Table 1-1 Component history

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 14
based on template version 4.8.3

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module EcuM as specified in [1] and [7].

Supported AUTOSAR Release*: 4.0.3

Supported Configuration Variants: Pre-Compile, Post-Build Loadable

Vendor ID: ECUM_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: ECUM_MODULE_ID 10 decimal

(according to ref. [4])

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

This document describes the functionality and API of the ECU State Manager (EcuM) as a
hardware independent module.

The main tasks of the EcuM are:

> Initialization of BSW (Basis Software) modules that are needed to start the operating
system

> Preparation of the microcontroller for a sleep phase and the following wake up

> Performing an ordered shut down or reset of the ECU

> Validation of occurred wake ups via the wake-up validation protocol

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 15
based on template version 4.8.3

2.1 Architecture Overview

The following figure shows where the EcuM is located in the AUTOSAR architecture.

Figure AUTOSAR 4.0.3 Architecture Overview Figure 2-1 AUTOSAR architecture

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 16
based on template version 4.8.3

The next figure shows the interfaces to adjacent modules of the EcuM. These interfaces
are described in chapter 5.2 Services Provided by EcuM and 5.5 Services Used by EcuM.

Figure 2-2 Interfaces to adjacent modules of the EcuM

 cmp Architecture_Ov erv iew

SW-C / RTE SchM AUTOSAR OS Dem

Det

ComM Mcu

other BSW ModulesEcuM

BswM

Gpt Nv M

Rte

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 17
based on template version 4.8.3

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
EcuM.

The AUTOSAR standard functionality is specified in [1] and [7], the corresponding features
are listed in the tables:

> Table 3-1 Supported AUTOSAR EcuM common features

> Table 3-2 Supported AUTOSAR EcuM flex features

> Table 3-3 Supported AUTOSAR EcuM fixed features

For further information of not supported features see also chapter 6.

Vector Informatik provides further EcuM functionality beyond the AUTOSAR standard. The
corresponding features are listed in the table:

> Table 3-4 Features provided beyond the AUTOSAR standard

The following features specified in [1] and [7] are supported:

Supported AUTOSAR Standard Conform Features

Configuration of different wake-up sources.

Configuration of EcuM users.

Configurable startup sequence of the BSW stack that is needed before starting the OS.

Possibility to add additional initialization code into the initialization lists.

Notification of the BswM if a wake-up event occurs on a wake-up source.

Notification of the ComM if a wake-up event occurs on communication channels.

Assignment of communication channels to wake-up sources.

Configuration of different sleep modes.

Selection of different shutdown targets.

Selection of different shutdown causes.

Generation of the SW-C description file needed for the generation of the RTE.

Service Port: EcuM_ShutdownTarget

Service Port: EcuM_BootTarget

Consistency hash checking according to AUTOSAR specification

Post-build configuration of the EcuM

Support of MultiCore ECUs

Run / Post_Run Request Protocol

Mode Port: EcuM_CurrentMode

Table 3-1 Supported AUTOSAR EcuM common features

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 18
based on template version 4.8.3

The following EcuM flex features specified in [1] are supported:

Supported AUTOSAR EcuM flex Features

Configuration of different reset modes.

Service Port: EcuM_AlarmClock

Defensive Behavior to check the valid call of EcuM_GoDown

Alarm clock to provide an absolute time and handling of time triggered wake-ups.

Table 3-2 Supported AUTOSAR EcuM flex features

The following EcuM fixed features specified in [7] are supported:

Supported AUTOSAR EcuM fixed Features

Full initialization of the Stack via configurable DriverInitLists

Fixed state machine to control the ECU states

Allow communication via ComM_CommunicationAllowed when entering the ECUM_STATE_RUN

Handle NvM_WriteAll() and NvM_CancelWriteAll()

Start and stop of the RTE

Table 3-3 Supported AUTOSAR EcuM fixed features

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

Adding of additional initialization code by the configuration tool

Wake-up Events are buffered until the BswM and the ComM are initialized

Support of asynchronous transceiver handling (Introduced API EcuM_StartCheckWakeup +
EcuM_EndCheckWakeup)

Providing an additional API EcuM_ClearValidatedWakeupEvent() to clear only validated, but not
pending wake-up events

Providing an additional API EcuM_GoToSelectedShutdownTarget() to decide EcuM internal if
EcuM_GoPoll(), EcuM_GoHalt() or EcuM_GoDown() has to be called, depending on the selected
shutdown target [EcuM flex only]

Configuration of the Core ID on which the BSW is initialized

Notification of the ComM if a wake-up event occurs on a PNC

Table 3-4 Features provided beyond the AUTOSAR standard

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 19
based on template version 4.8.3

3.2 States of EcuM flex

These states indicate the current internal EcuM Operation State.

Module State Activities Point in Time

ECUM_STATE_STARTUP Initializes the drivers out of
the EcuM_DriverInitZero
list.

Entered during EcuM_Init().

ECUM_STATE_STARTUP_ONE Initializes the drivers out of
the EcuM_DriverInitOne
list.

Reset reason translation,
setting of the default
shutdown target and at the
end start the operating
system.

Entered during EcuM_Init().

ECUM_STATE_STARTUP_TWO Initializes the BswM and
the SchM.

Former buffered Wake-up
Events are notified to the
BswM.

Entered during
EcuM_StartupTwo().

ECUM_STATE_APP_RUN After initializing the
necessary BSW, the EcuM
is in the Run state.

Entered during
EcuM_StartupTwo(),
EcuM_GoSleep(), EcuM_GoPoll()
or during the MainFunction.

ECUM_STATE_GO_SLEEP Prepares the ECU for the
upcoming sleep phase.

Entered during EcuM_GoSleep().

ECUM_STATE_SLEEP Handles the sleep. Entered during EcuM_GoHalt() or
EcuM_GoPoll().

ECUM_STATE_GO_OFF_ONE Prepares the ECU for the
upcoming Off phase.

The SchM and the BswM
are deinitialized in this
phase and the
EcuM_OnGoOffOne()
Callout is invoked.
Finally the operating
system will be shut down.

Entered during EcuM_GoDown().

ECUM_STATE_GO_OFF_TWO The configured shutdown
target is called by the
EcuM.

Entered during
EcuM_Shutdown().

ECUM_STATE_WAKEUP_ONE The hardware is
reinitialized after a former
sleep mode.

ECUM_STATE_WAKEUP_VALIDATION Waits for the validation of
an occurred wake up.

After a wake-up event has
occurred that needs validation.

Table 3-5 States of the EcuM

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 20
based on template version 4.8.3

3.3 States of EcuM fixed

These states indicate the current internal EcuM Operation State which can be retrieved via
the API 5.4.1 EcuM_GetState.

All the states, except ECUM_STATE_STARTUP and ECUM_STATE_ERROR are notified
to the BswM. In some state transitions an RTE mode switch will be performed.

Module State Activities RTE Mode

ECUM_STATE_STARTUP Initializes the drivers via the
DriverInitLists.

Reset reason translation, setting
of the default shutdown target
and at the end start the
operating system.

Initializes the BswM, the SchM
and the RTE.

Former buffered Wake-up
Events are notified to the BswM.

ECUM_RTE_STARTUP
(initial mode)

ECUM_STATE_APP_RUN EcuM stays in this state while
there are active Run Requests,
the EcuM Self Run Request
timeout has not expired or
ComM Channels are in
communication.

ECUM_RTE_RUN

ECUM_STATE_APP_POST_RUN Post Run Requests keep the
EcuM in this state.

ECUM_RTE_POST_RUN

ECUM_STATE_PREP_SHUTDOWN Shutdown the DEM and transit
directly to
ECUM_STATE_GO_SLEEP or
ECUM_STATE_GO_OFF_ONE

ECUM_RTE_POST_RUN

ECUM_STATE_GO_SLEEP EcuM triggers the
NvM_WriteAll() job.

EcuM remains in this state until
the NvM calls
EcuM_CB_NfyNvMJobEnd() or
the occurrence of a wake up
event cancels the sleep
process. In case of a wake up
event, NvM_CancelWriteAll() is
called.

ECUM_RTE_SLEEP

ECUM_STATE_SLEEP Handles the sleep and a wake
up from sleep.

ECUM_RTE_SLEEP

ECUM_STATE_GO_OFF_ONE Stops the RTE and triggers
NvM_WriteAll().

EcuM remains in this state until
the NvM call
EcuM_CB_NfyNvMJobEnd().

ECUM_RTE_SHUTDOWN

ECUM_STATE_WAKEUP_VALIDATION Waits for the validation of an
occurred wake up.

ECUM_RTE_SLEEP

ECUM_STATE_WAKEUP_REACTION Wait for completion of a
potential NvM_CancelWriteAll().

ECUM_RTE_SLEEP

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 21
based on template version 4.8.3

Module State Activities RTE Mode

ECUM_STATE_WAKEUP_WAKESLEEP - ECUM_RTE_WAKE_SLEEP

ECUM_STATE_ERROR The EcuM_ErrorHook is called
in this state.

This state is only reached if the
ShutdownOS() or
EcuM_AL_SwitchOff returns to
the EcuM.

-

Table 3-6 States of the EcuM

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 22
based on template version 4.8.3

3.4 The State Diagram of the EcuM flex

The following figure shows the EcuM state diagram with all state transitions, the
corresponding conditions and actions:

Figure 3-1 The state diagram of the EcuM flex

stm EcuPhases

SLEEP

(from Features)

ECUM_STATE_SLEEP

EcuM_Init

called

Off

STARTUP

ECUM_STATE_STARTUP_ONE (EcuM_Init)

notes

Perform the actions in the StartPreOS Sequence:

- Set Interrupts

- DriverInitZero (init Block0)

- Determine PbConfiguration (return a pointer to the config struct

that contain post-build config data from EcuM and all other BSWs)

- Check consistency of the configuration data

- DriverInitOne (init Block1)

- Get Mcu reset reason

- Select default shutdown target

- Start OS

ECUM_STATE_STARTUP_TWO (EcuM_StartupTwo)

notes

Perform the actions in the StartPostOS Sequence:

- Init BSW Scheduler

- Init BSW Mode Manager

- Notify the BswM about Wakeups during Startup

Final

ECUM_STATE_GO_SLEEP

(EcuM_EnterSleep)

notes

EcuM prepares the Hardware for going to

sleep and setting the WakeUp sources.

(from Features)

Poll

notes

EcuM checks for pending wakeups

cyclically by call ing

EcuM_CheckWakeup().

Auxiliary EcuM_SleepActivity() must

be called for e.g. updating the alarm

clock.

Halt

notes

No more code is executed.

Before halting the MCU, EcuM must

invoke GenerateRamHash and call

CheckRamHash before leaving halt.

On Multicore: Only check the master

core.

ECUM_STATE_WAKEUP_ONE

(EcuM_WakeupRestart)

(from Features)

SHUTDOWN

Final

Final

ECUM_STATE_GO_OFF_ONE (EcuM_GoDown)

notes

Activities in the OffPreOS Phase:

- De-Init BSW Mode Manager

- De-Init BSW Scheduler

- Check for pending wakeup events

- Set RESET as shutdown target, if wakeup events are pending

- Shutdown OS

ECUM_STATE_GO_OFF_TWO

EntryPoint

EntryPoint

A shutdown target must

be set by the BswM or

another SW-C before

GoHalt or GoPoll is

called.

If a wakeup event

occurs the Shutdown

sequence shall be

completed and restart

immediately thereafter.

EntryPoint

UP

ECUM_STATE_RUN (EcuM_EnterSleep,

EcuM_MainFunction,

EcuM_StartupTwo)

notes

Tasks in the UP Phase:

- WakeUp Validation

ECUM_STATE_WAKEUP_VALIDATION

(EcuM_EnterSleep)

If in ECUM_STATE_WAKEUP_VALIDATION

no wakeup will be validated, the BswM can

set the EcuM back to sleep by calling GoHalt

() or GoPoll().

[Shutdown Target == ECUM_STATE_RESET]

/Action: EcuM_AL_Reset

BSW Scheduler started

& BswM_Init called

EcuM_StartupTwo() is called by

OS or by a task

EcuM_GoOff

[GoHalt() or GoPoll() is invoked by

BswM]

[ValidatedWakeups = True]

/

[call Mcu_Setmode(GoHalt)]

WakeUP Event

[No WakeUp

occured]

[No WakeUp

occured]

[ValidatedWakeups = False]

[Shutdown Target == ECUM_STATE_OFF]

/EcuM_AL_SwitchOff

EcuM_Shutdown

[call EcuM_WakeupRestart]

[GoHalt() or GoPoll()]

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 23
based on template version 4.8.3

3.5 The State Diagram of the EcuM with fixed state machine

The following figure shows the EcuM state diagram with all state transitions and the
corresponding RTE modes:

Figure 3-2 State Diagram of the EcuM with fixed state machine

 stm EcuMFixedStateMachine_Ov erv iew

SLEEP Mode

WAKE_SLEEP Mode

SHUTDOWN Mode

POST_RUN Mode

RUN Mode

STARTUP

from Startup

Code

ECUM_STATE_ INIT

notes

Init Sequence I:

EcuM_AL_SetProgrammableInterrupts() [type:callout]

EcuM_AL_DriverInitZero [type:callout]

EcuM_DeterminePbConfiguration [type:callout]

EcuM_AL_DriverInitOne [type:callout] e.g. Dem_Init

Retrieve reset reason from MCU module and map it to an wakeup source

Start OS

ECUM_STATE_ APP_RUN

notes

Decrease the EcuM SelfRequest Timeout.

EcuM remains in RUN state for minimum duration of SelfRequestTimeout.

Consider wakeup validation for communication channels.

ECUM_STATE_APP_POST_RUN

ECUM_STATE_

PREP_SHUTDOWN

ECUM_STATE_ GO_OFF_ONE

notes

BswM notification about ECUM_STATE_ GO_OFF

Rte_Stop

SchM_DeInit

BswM_DeInit

ShutdownOS

ECUM_STATE_ GO_SLEEP

ECUM_STATE_SLEEP

ECUM_STATE_

WAKEUP_VALIDATION

ECUM_STATE_ WAKEUP_REACTION

ECUM_STATE_WAKE_SLEEP

Init finished and Rte has sent its feedback

enter RUN mode

leave RUN mode

enter POST_RUN mode

leave POST_RUN mode

enter SHUTDOWN mode

enter SLEEP

mode

enter WAKE_SLEEP mode

enter SLEEP mode

Wakeup validation necessary

to switch into RUN mode?

switch back into

RUN mode

leave

SHUTDOWN

Mode

shutdown

target?

ECUM_STATE_STARTUP

notes

Init Sequence II:

Init BSW Scheduler (SchM_Init)

Init BswM (BswM_Init)

EcuM_AL_DriverInitTwo [type:callout]

EcuM_OnRTEStartup [type:callout]

Start Rte

EcuM_AL_DriverInitThree [type:callout]

Interrupts are

available now!

ECUM_STATE_

GO_OFF_TWO

[valid wakeup event && Rte has sent its

feedback && NvM_WriteAll is canceled]

/Dem_Init

EcuM_OnEnterRun [type: callout]

BswM_EcuM_CurrentState

(ECUM_STATE_APP_RUN)

ComM_CommunicationAllowed(TRUE)

/Rte notification about SHUTDOWN

EcuM_OnGoOffOne [Type: callout]

Dem_Shutdown

NvM_WriteAll

/Rte notification about SLEEP

EcuM_OnGoSleep [Type: callout]

Dem_Shutdown

NvM_WriteAll (when coming from PREP_SHUTDOWN)

[wakeup reaction is

SLEEP]

[NO - "normal" startup]

/EcuM_OnEnterRun [type: callout]

ComM_CommunicationAllowed(TRUE)

[YES - wakeup by wakeup source with integrated power control]

/RTE notification about SLEEP

[shutdown target is SLEEP] [shutdown target is not SLEEP]

[NvM finished its write job && no valid wakeup

existent && Rte has sent its feedback]

/BswM_EcuM_CurrentState(ECUM_STATE_SLEEP)

[All RUN requests released && SelfRequestTimeout reached &&

Rte has sent its feedback && ComM channels are not in state

COMM_NO_COM_PENDING_REQUEST]

/Clear all Wakeup Events

BswM_EcuM_CurrentState/(ECUM_STATE_APP_POST_RUN)

EcuM_OnExitRun [type: callout]

ComM_CommunicationAllowed(FALSE)

[(RUN state requested || EcuM has valid

wakeup || ComM channel is pending) && Rte

has sent its feedback]

/EcuM_OnEnterRun [type:callout]

EcuM_EnableCommunication(TRUE) [type:

callout]

[All POST_RUN requests released &&

Rte has sent its feedback]

/EcuM_OnExitPostRun [type: callout]

[Rte has sent its feedback]

[wakeup event occured && Rte

has sent its feedback]

/NvM_CancelWriteAll

EcuM_AL_DriverRestart [type:

callout]

[wait for NvM AND

asynchron wakeup

events]

[no pending or valid wakeup

occured]

[wakeup event occured]

/BswM_EcuM_CurrentState(ECUM_STATE_WAKEUP_VALIDATION)

EcuM_OnWakeupReaction()

[wakeup event

pending]

[wakeup event not pending]

/BswM_EcuM_CurrentState

(ECUM_STATE_WAKEUP_REACTION)

EcuM_OnWakeupReaction [type: callout]

[Execution of ShutdownOS() successful]

/EcuM_OnGoOffTwo [Type: callout]

Rte_Stop()

SchM_DeInit()

BswM_DeInit()

ShutdownOS()

[NvM_WriteAll finished &&

Rte has sent its feedback]

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 24
based on template version 4.8.3

3.6 Initialization

The initialization of the EcuM is split into two parts: one part is the initialization before the
OS is up and running and the second part must be executed when the OS is started.

3.6.1 EcuM_Init

The first part will be performed by the function EcuM_Init() (refer to chapter 5.2.2). This
function executes the DriverInitLists “EcuMDriverInitListZero” and “EcuMDriverInitListOne”
where the basic driver initialization should be performed. EcuM_Init() starts the AUTOSAR
OS by calling the function StartOS() (refer to chapter 5.2.3).

3.6.2 EcuM_StartupTwo

The second part of the initialization sequence will be executed by the EcuM API
EcuM_StartupTwo(). The integrator must ensure that this function is called once right after
the start of the OS.

3.6.2.1 EcuM_StartupTwo in case of EcuM flex

When EcuM_StartupTwo() is left, the EcuM flex is in Run state and passes the control of
the ECU to the BswM.

3.6.2.2 EcuM_StartupTwo in case of EcuM fixed

In case of EcuM fixed, in EcuM_StartupTwo() the DriverInitLists “EcuMDriverInitListTwo”
and “EcuMDriverInitListThree” can be used to initialize the whole stack.

3.6.3 Initialization Order

Depending on which modules are needed for starting the operating system the initialization
lists can look different.
In the following an example initialization order is given. Init Block 0 corresponds to the
EcuM_AL_DriverInitZero() (refer to chapter 5.7.2.6) and Init Block 1 corresponds to
EcuM_AL_DriverInitOne() (refer to chapter 5.7.2.7).

Caution
At the end of the EcuM_StartupTwo the EcuM is fully initialized. That does not mean
that the whole stack is initialized, it means only that the EcuM has passed the control
over to the BswM. Further initialization is done by the BswM.

Caution
At the end of the EcuM_StartupTwo the EcuM fixed transits to
ECUM_STATE_APP_RUN in case of a validated wake up, e.g. set by the MCU Reset
Reason (refer to chapter 3.9.5).

If this wake up was cleared (in EcuMDriverInitListTwo), the EcuM transits to
ECUM_STATE_WAKEUP_VALIDATION and performs a wake up validation if any wake
up source is pending.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 25
based on template version 4.8.3

Initialization Group

Init Block0

Det_Init()

Dem_PreInit(ConfigPointer)

Init Block1

Mcu_Init(ConfigPointer)

Gpt_Init(ConfigPointer)

Wdg_Init()

WdgM_Init()

Adc_Init(ConfigPointer)

Icu_Init(ConfigPointer)

Pwm_Init(ConfigPointer)

Table 3-7 Initialization Order

3.6.4 Additional Code in the Initialization Callouts

If the user needs more than the initialization routines offered by the AUTOSAR modules,
the configuration tool offers the facility to add own Code to the DriverInitLists. To use this
feature the user has to choose “Code” instead of a MSN, then the code can be added to a
special field.

The user code is added to the Init Block 0 or Init Block 1 as configured by the user.

Example
In this example the routine Mcu_InitClock() is added to the DriverInitListOne:

> Open the Initialization dialogue

> Go to the configuration of DriverInitListOne in the Pre-OS Init Sequence

> Add an InitItem to the list and choose a name like “McuInitClock”

> Choose “Code” in the field Type

> In the field “Code” you can insert: “Mcu_InitClock();”

> Reorder the position of the InitItem

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 26
based on template version 4.8.3

3.6.5 Inclusion of Additional Header Files

If the user needs additional headers for using in the EcuM_Callout_Stubs.c file, the EcuM
offers the possibility of adding them by the configuration tool.

Note
All header files of the modules that are initialized in the DriverInitLists must be
included into the additional header files because they are not included
automatically.

3.6.6 Configuration Set Selection

The AUTOSAR compatible mechanism to select the configuration set which should be
used for module initialization considers the following aspects:

> Most of the AUTOSAR modules provide a configuration reference to the provided
configuration sets

> Some modules are initialized without a configuration pointer (Init-function signature
<MSN>_Init(void))

> Some modules have an Init-function signature with configuration pointer but make
no use of it, therefore, they need to be initialized with a NULL_PTR.

The user must decide which routines use a configuration pointer. For these routines the
configuration reference must be configured.

> Module uses a configuration pointer for its initialization:

- Select in the DriverInitList a MSN via the field Type (e.g. Dem)

- Select the corresponding Service (e.g. Dem_PreInit)

- Configure the corresponding Configuration Pointer for that MSN (e.g.
DemConfigSet)

- Result: The EcuM generates “Dem_PreInit(&DemConfigSet)”

> Module has a void Init-function signature

- Select in the DriverInitList a MSN via the field Type (e.g. Det)

- Select the corresponding Service (e.g. Det_Init)

- Do not configure the corresponding Configuration Pointer for this MSN

- Result: The EcuM generates: “Det_Init()”

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 27
based on template version 4.8.3

Caution
If a module initialization routine requires a configuration set as parameter, the
corresponding reference to the module must be configured.

This is also necessary if the initialization routine does not use the parameter. The
reference must be configured, otherwise the parameter list will be generated empty.

3.7 Initialization of a MultiCore ECU

The initialization of a MultiCore Ecu is described in chapter 3.15.1 Initialization of a
MultiCore ECU.

3.8 Shutdown Targets

The EcuM provides the possibility to select a shutdown target that is used for the next
shutdown, initiated by calling EcuM_GoDown() (refer to chapter 5.3.5),
EcuM_GoPoll()(refer to chapter 5.3.4) or EcuM_GoHalt()(refer to chapter 5.3.3).

The following three different targets can be selected by a SWC or a BSW module:

> ECUM_STATE_SLEEP

> ECUM_STATE_RESET

> ECUM_STATE_OFF

Note
The two targets ECUM_STATE_SLEEP and ECUM_STATE_RESET have an
additional mode parameter, which is used to identify the configuration for the
Sleep mode or to identify the reason for an upcoming reset of the ECU.

3.8.1 Using the API EcuM_SelectShutdownTarget()

The API EcuM_SelectShutdownTarget()(refer to chapter 5.2.5) can only be used when the
EcuM is in the state ECUM_STATE_RUN. In the startup phase or during the sleep phase it
is not allowed to change the shutdown target.

3.8.2 Default Shutdown Target

A Default shutdown target must be set during the configuration. This is the first target that
is selected as shutdown target after a startup. During runtime the shutdown target can be
changed by another BSW or SWC via the API EcuM_SelectShutdownTarget().

3.8.3 Reset Modes

The reset modes can be used to identify the reason for an upcoming ECU reset. A set of
reset modes is defined by the AUTOSAR standard. Additional modes can be added by the
configuration.
The reset mode is passed over to the Callout EcuM_AL_Reset(EcuM_ResetType) and the
user can implement different ways to reset the ECU, depending on the reason for this
reset.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 28
based on template version 4.8.3

The Vector extension ECUM_RESET_WAKEUP is used as the reset mode in the case of a
late wake-up event in the shutdown phase. If a wake-up occurs during the shutdown
procedure, the shutdown target is changed by the EcuM to ECUM_STATE_RESET and
the described mode is used.

Caution
Reset Modes are only available if EcuM flex is used.

3.8.4 Sleep Modes

A sleep mode holds the information about the configured sleep modes and the
corresponding relevant settings. The following items can be set for a sleep mode:

> Reference to a configured MCU mode that is executed for that sleep mode.

> Active Wake-up Sources during this sleep mode.

3.9 Wake-up Sources

The EcuM flex offers the possibility to configure wake-up sources for all modules that have
the functionality to wake up the ECU. The EcuM handles the Wake-up Validation Protocol
for these sources as described in 3.10.1 Wake-up Validation Protocol.

The Wake-up Sources have several configurable attributes as described in the following
section.

3.9.1 Validation Timeout

For every source, except for the standard sources 0 – 4, a validation timeout timer can be
configured. This timer specifies the time (in seconds) until the wake-up source must be
validated by calling EcuM_ValidateWakeupEvent().

If the wake-up event is not validated during that time the EcuM sets this event to “expired”
and reports it to the BswM.

Note
The following reset mode is defined by Vector as an extension to the standard
AUTOSAR modes:

▪ ECUM_RESET_WAKEUP

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 29
based on template version 4.8.3

Note
The following standard wake-up sources are pre-configured and do not need the wake-
up validation protocol:

> ECUM_WKSOURCE_POWER

> ECUM_WKSOURCE_RESET

> ECUM_WKSOURCE_INTERNAL_RESET

> ECUM_WKSOURCE_INTERNAL_WDG

> ECUM_WKSOURCE_EXTERNAL_WDG

3.9.2 Check-Wakeup Validation Timeout

For every source, except for the standard sources 0 – 4, a check wake-up validation
timeout timer can be configured. This timer specifies the time (in seconds) until the wake-
up source must be set by calling EcuM_SetWakeupEvent().

This timer can be used for e.g. asynchronous transceiver drivers, which cannot check the
wake-up source in the context of EcuM_CheckWakeup.

3.9.3 ComM Channel Reference

If the configured Wake-up Source is a ComM Channel, the reference to the corresponding
channel can be configured by the parameter EcuMComMChannelRef.

If this reference is configured and a validated wake-up event occurred, the EcuM calls the
function ComM_EcuM_WakeupIndication() and reports it to the ComM.

Note
Only Wake-up Sources which represent a ComM Channel can lead to a wake up in the
state ECUM_STATE_RUN. Other Wake-up Sources are ignored during this state.

3.9.4 Polling of Wake-up Sources

If a Wake-up Source needs to be polled to detect wake-up events this parameter must be
set. In that case, the sleep can be entered by calling EcuM_GoPoll() and the EcuM polls
all Wake-up Sources that are active during that Sleep mode and the polling parameter is
set.

3.9.5 MCU Reset Reason

The EcuM calls the routine Mcu_GetResetReason() to acquire the reason for the recent
reset. The EcuM iterates over all configured Wake-up Sources and checks if the
configured Reset Reason of one Wake-up Source matches to the return value of the MCU.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 30
based on template version 4.8.3

If a reset reason is found, the EcuM maps this MCU reset reason to an EcuM Wake-up
Source and reports the event to the BswM. The regular wake-up validation is done by the
EcuM in case it is required by the source.

Note
If the reset reason translation is not successful and no reset reason can be determined,
the EcuM reports to the BswM the default reset reason ECUM_WKSOURCE_RESET.

3.10 Main Functions

3.10.1 Wake-up Validation Protocol

The wake-up validation protocol provides a standardized way to recognize valid controller
wake ups after a sleep phase.

For all user configured wake-up sources the parameter “Validation Timeout” is
configurable. If the parameter is set to a value which is not 0, the wake-up validation
protocol is active for that source.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 31
based on template version 4.8.3

Example
In the following example the whole wake-up validation procedure can be seen. A wake-
up event occurs for the ComMChannel CanIf and needs validation. The validation is
processed and the wake-up event is notified to the BswM and to the ComM.

Figure 3-3 Example Wake-up Validation

sd WakeupValidation

Module

Integration Code

(EcuM_Callout_Stubs)

Module

EcuM

Interrupt SourceCanIf «EmbeddedInterface»

ComM

«EmbeddedInterface»

BswM

loop WHILE wakeup ev ent has not been v alidated

opt wakeup ev ent is v alidated

Interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

CanIf_CheckWakeup(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

BswM_EcuM_CurrentWakeup(EcuM_WakeupSourceType, EcuM_WakeupStatusType ECUM_WKSOURCE_PENDING)

EcuM_StartWakeupSources(EcuM_WakeupSourceType)

EcuM_CheckValidation(EcuM_WakeupSourceType)

CanIf_CheckValidation(EcuM_WakupSourceType)

EcuM_ValidateWakeupEvent(EcuM_WakeupSourceType)

BswM_EcuM_CurrentWakeup(EcuM_WakeupSourceType, EcuM_WakeupStatusType ECUM_WKSOURCE_VALIDATED)

ComM_EcuM_WakeUpIndication(NetworkHandleType)

EcuM_StopWakeupSources(EcuM_WakeupSourceType)

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 32
based on template version 4.8.3

3.10.2 Wake-up Validation Protocol for asynchronous Can transceiver

For all user configured wake-up sources the parameter “Check Validation Timeout” is
configurable. If the parameter is set to a value which is not 0, the check wake-up validation
protocol is active for that source.

For these sources the call of EcuM_SetWakeupEvent must not occur in the context of
EcuM_CheckWakeup.

Example
In the following example parts of the wake-up validation procedure can be seen for an
asynchronous Can transceiver.

Figure 3-4 Example Wake-up Validation for asynchronous Can Transceivers

sd WakeupValidation

Module

Integration Code

(EcuM_Callout_Stubs)

Module

EcuM

Interrupt Source (CanTrcv

Hardware

CanIf CanTrcvIcu «EmbeddedInterface»

BswM

Program flow continues, if Ecu was in a sleep mode the wake-up procedure

is performed. If the Ecu was in Run mode, the Run mode continues as

before.

As soon as the transceiver gets a response via SPI about a valid wake-up

event, the CanTrcv calls EcuM_SetWakeupEvent in the positive case.

alt Wait for Wakeup Indication by Transceiv er

[positive Wakeup Indication]

[negative Wakeup Indication]

[Timeout]

Interrupt()

EcuM_CheckWakeup(WAKEUP_SOURCE_CAN)

EcuM_StartCheckWakeup(WAKEUP_SOURCE_CAN)

WAKEUP_SOURCE_CAN, ECUM_WKSTATUS_CHECKWAKEUP(source, state)

start CheckWakeupTimer()

CanIf_CheckWakeup(WAKEUP_SOURCE_CAN)

CanTrcv_CB_WakeupByBus()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

BswM_EcuM_CurrentWakeup(WAKEUP_SOURCE_CAN,

ECUM_WKSTATUS_VALIDATED)

EcuM_EndCheckWakeup(EcuM_WakeupSourceType)

BswM_EcuM_CurrentWakeup(WAKEUP_SOURCE_CAN, ECUM_WKSTATUS_EXPIRED)

CheckWakeupTimerExpired()

BswM_EcuM_CurrentWakeup(WAKEUP_SOURCE_CAN, ECUM_WKSTATUS_EXPIRED)

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 33
based on template version 4.8.3

3.11 Error Handling

3.11.1 Development Error Reporting

Development errors are reported to the DET using the service Det_ReportError() as
specified in [2], if development error reporting is enabled
(ECUM_DEV_ERROR_DETECT==STD_ON).

The reported EcuM ID is 10.

The reported service IDs identify the services which are described in 5.2. The following
table presents the service IDs and the related services:

Service ID Service

0x00 EcuM_GetVersionInfo()

0x01 EcuM_Init()

0x02 EcuM_Shutdown()

0x03 EcuM_RequestRun()

0x04 EcuM_ReleaseRun()

0x05 EcuM_KillAllRUNRequests()

0x06 EcuM_SelectShutdownTarget()

0x07 EcuM_GetState()

0x08 EcuM_GetLastShutdownTarget()

0x09 EcuM_GetShutdownTarget()

0x0A EcuM_RequestPOST_RUN()

0x0B EcuM_ReleasePOST_RUN()

0x0C EcuM_SetWakeupEvent()

0x0D EcuM_GetPendingWakeupEvents()

0x12 EcuM_SelectBootTarget()

0x13 EcuM_GetBootTarget()

0x14 EcuM_ValidateWakeupEvent()

0x15 EcuM_GetValidatedWakeupEvents()

0x16 EcuM_ClearWakeupEvent()

0x18 EcuM_MainFunction()

0x19 EcuM_GetExpiredWakeupEvents()

0x1A EcuM_StartupTwo()

0x1B EcuM_SelectShutdownCause()

0x1C EcuM_GetShutdownCause()

0x1D EcuM_GetMostRecentShutdown()[not supported in this release]

0x1E EcuM_GetNextRecentShutdown()[not supported in this release]

0x1F EcuM_GoDown()

0x20 EcuM_GoHalt()

0x21 EcuM_GoPoll()

0x22 EcuM_SetRelWakeupAlarm()

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 34
based on template version 4.8.3

Service ID Service

0x23 EcuM_SetAbsWakeupAlarm()

0x24 EcuM_AbortWakeupAlarm()

0x25 EcuM_GetCurrentTime()

0x26 EcuM_GetWakeupTime()

0x27 EcuM_SetClock()

0x28 EcuM_StartCheckWakeup()

0x29 EcuM_EndCheckWakeup()

0x30 EcuM_ClearValidatedWakeupEvent()

0x2A EcuM_KillAllPostRUNRequests()

0x2B EcuM_SetState()

0x65 EcuM_CB_NfyNvMJobEnd()

Table 3-8 Service IDs

The errors reported to DET are described in the following table:

Error Code Description

0x10 ECUM_E_UNINIT A service was called prior to initialization.

0x11 ECUM_E_SERVICE_DISABLE
D

Error code defined by AUTOSAR SWS (not used in this
implementation).

0x12 ECUM_E_NULL_POINTER A null pointer was passed as an argument.

0x13 ECUM_E_INVALID_PAR A parameter was invalid (not specified)

0x14 ECUM_E_MULTIPLE_RUN_RE
QUESTS

EcuM_RequestRUN or EcuM_ RequestPOST_RUN was
called two times by the same user without release.

0x15 ECUM_E_MISMATCHED_RUN
_RELEASE

EcuM_ReleaseRUN or EcuM_ ReleasePOST_RUN was
called by a user without a previous request.

0x16 ECUM_E_STATE_PAR_OUT_
OF_RANGE

API service EcuM_SelectShutdownTarget() called with
parameter not in expected range

0x17 ECUM_E_UNKNOWN_
WAKEUP_SOURCE

Wake-up source ID is not known by ECU State Manager

0x20 ECUM_E_MODULE_NOT_IN_
STARTUP

EcuM_StartupTwo() is called and the EcuM is not in state
EcuM_Startup_One which is entered in EcuM_Init().

0x21 ECUM_E_MODULE_NOT_IN_
PREPSHUTDOWN

EcuM_Shutdown() was invoked without calling
EcuM_GoDown().

0x22 ECUM_E_MODULE_NOT_IN_
RUN_STATE

This error will be reported if the callout EcuM_AL_SwitchOff()
does not switch off the ECU.

0x23 ECUM_E_NO_SLEEPMODE_C
ONFIGURED

This error will be reported if EcuM_GoPoll() or
EcuM_GoHalt() is called and no SleepMode is configured.

0x24 ECUM_E_INVALID_STATERE
QUEST

A state which was requested is invalid, perhaps because a
former request is not finished yet.

Table 3-9 Errors reported to DET

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 35
based on template version 4.8.3

3.11.2 Production Code Error Reporting

By default, production code related errors are reported to the DEM using the service
Dem_ReportErrorStatus() as specified in [3], if production error reporting is enabled

(In the case that a reference to a Dem event parameter is configured in
EcuMDemEventParameterRefs).

If another module is used for production code error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature
as the service Dem_ReportErrorStatus().

The errors reported to DEM are described in the following table:

Error Code Description

ECUM_E_RAM_CHECK_FAILED The RAM check during wake-up failed.

ECUM_E_CONFIGURATION_DATA_INCONSISTENT Post build configuration data is inconsistent.

ECUM_E_IMPROPER_CALLER Defensive behavior checks have detected
improper use of the module.

ECUM_E_ALL_RUN_REQUESTS_KILLED The API EcuM_KillAllRUNRequests() was
called.

Table 3-10 Errors reported to DEM

Caution
Only ECUM_E_IMPROPER_CALLER and ECUM_E_ALL_RUN_REQUESTS_KILLED
are passed to the Dem directly out of the static code. In the other cases
EcuM_ErrorHook (see 3.11.3) is called and the integrator has to decide what happens
in the case of these errors.

3.11.3 EcuM_ErrorHook

The EcuM has an own ErrorHook which offers the integrator the possibility to react on
occurring errors during runtime.

Error Code Description

ECUM_E_HOOK_RAM_CHECK_FAILED If the Ram check has failed after a sleep
phase, the ErrorHook is called with this
parameter.

ECUM_E_HOOK_CONFIGURATION_DATA_INCONSISTENT If the consistency check of pre-compile
and link-time parameters in variant post-
build has failed, the ErrorHook is called
with this parameter.

ECUM_E_HOOK_WRONG_ECUM_USAGE If the call of ShutdownOS returns to the
EcuM.
ShutdownOS has to call
EcuM_Shutdown() to perform a

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 36
based on template version 4.8.3

Error Code Description

shutdown.

ECUM_E_HOOK_INVALID_COREID The OS returned an invalid CoreID via
the API GetCoreID().

Table 3-11 Description of EcuM internal Error Codes

The integrator has to implement the behavior of the EcuM in this situation. The EcuM
reports the error not by default to the Dem. If this is desired, the integrator has to call the
Dem.

3.12 Callout Execution Sequences

This chapter describes the execution order of callouts and important functions. This may
be useful while integrating the software stack.

Caution
The execution sequences are not relevant for EcuM fixed.

3.12.1 Callouts from Startup to Run

STARTUP – RUN

Execution in EcuM_Init()

▪ EcuM_AL_SetProgrammableInterrupts()

▪ EcuM_AL_DriverInitZero()

▪ EcuM_AL_DriverInitOne()

▪ Mcu_GetResetReason()

▪ EcuM_SetWakeupEvent(ResetReason)

▪ StartOS(ECUM_DEFAULTAPPMODE)

Execution in EcuM_StartupTwo()

▪ SchM_Init()

▪ BswM_Init(NULL_PTR / CfgPtr_BswM)

▪ If Wake-up Events have occurred before BswM_Init:

▪ BswM_EcuM_CurrentWakeup(WakeupSource, ECUM_WKSTATUS_VALIDATED)

Table 3-12 Callouts from Startup to Run

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 37
based on template version 4.8.3

3.12.2 Callouts from Run to Sleep (Halt) and back to Run

Run – Sleep (Halt) – Run

Selection of the ShutdownTarget must be done before the transition to sleep e.g. by the BswM

▪ EcuM_SelectShutdownTarget(ECUM_STATE_SLEEP, resetSleepMode)

All validated wake-up events must be cleared, e.g. by the BswM

▪ EcuM_ClearValidatedWakeupEvent(ECUM_WKSOURCE_ALL_SOURCES)

GoHalt must be called e.g. by the BswM

▪ EcuM_GoHalt()

Execution in EcuM_GoHalt()

▪ BswM_EcuM_CurrentWakeup(wakeupSource, ECUM_WKSTATUS_NONE)

▪ EcuM_EnableWakeupSources(wakeupSource)

▪ GetResource(ECUM_OS_RESOURCE)

▪ DisableAllInterrupts()

▪ EcuM_GenerateRamHash()

▪ Mcu_SetMode(ECUM_SLEEPMODELIST[ECUM_CURRENTSLEEPMODE].mcuMode)

▪ EnableAllInterrupts()

▪ EcuM_CheckRamHash()

▪ If CheckRamHash has failed

▪ EcuM_ErrorHook(ECUM_E_HOOK_RAM_CHECK_FAILED)

▪ DisableAllInterrupts()

▪ Mcu_SetMode(ECUM_NORMALMCUMODEREF)

▪ EnableAllInterrupts()

▪ EcuM_DisableWakeupSources(EcuM_PendingWakeups |
EcuM_ValidatedWakeups))

▪ BswM_EcuM_CurrentWakeup(EcuM_PendingWakeups |
EcuM_ValidatedWakeups), ECUM_WKSTATUS_DISABLED)

▪ EcuM_Al_DriverRestart()

▪ ReleaseResource(ECUM_OS_RESOURCE)

Table 3-13 Callouts from Run to Sleep (Halt) and back to Run

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 38
based on template version 4.8.3

3.12.3 Callouts from Run to Reset

Run – Reset

Selection of the ShutdownTarget must be done before the transition to Off e.g. by the BswM

▪ EcuM_SelectShutdownTarget(ECUM_STATE_RESET, resetMode)

GoDown must be called e.g. by the BswM

▪ EcuM_GoDown()

Execution in EcuM_GoDown()

▪ EcuM_OnGoOffOne()

▪ BswM_Deinit()

▪ SchM_Deinit()

▪ ShutdownOS(E_OK)

Shutdown must be called from the ShutdownHook

▪ EcuM_Shutdown()

Execution in EcuM_Shutdown()

▪ EcuM_OnGoOffTwo()

▪ EcuM_AL_Reset(EcuM_CurrentShutdownMode)

Table 3-14 Callouts from Run to Reset

3.12.4 Callouts from Run to Off

Run – Reset

Selection of the ShutdownTarget must be done before the transition to Off e.g. by the BswM

▪ EcuM_SelectShutdownTarget(ECUM_STATE_Off, 0)

All validated wake-up events must be cleared, e.g. by the BswM

▪ EcuM_ClearValidatedWakeupEvent(ECUM_WKSOURCE_ALL_SOURCES)

GoDown must be called e.g. by the BswM

▪ EcuM_GoDown()

Execution in EcuM_GoDown()

▪ EcuM_OnGoOffOne()

▪ BswM_Deinit()

▪ SchM_Deinit()

> If a wake-up event has occurred, the Shutdown Target will be changed to
ECUM_STATE_RESET and the reset mode will be ECUM_RESET_WAKEUP

▪ ShutdownOS(E_OK)

Shutdown must be called from the ShutdownHook

▪ EcuM_Shutdown()

Execution in EcuM_Shutdown()

▪ EcuM_OnGoOffTwo()

▪ EcuM_AL_SwitchOff()

Table 3-15 Callouts from Run to Off

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 39
based on template version 4.8.3

3.13 EcuM Flex Users and Defensive Behavior

The EcuM offers the facility to configure flex Users to identify the caller of the routine
EcuM_GoDown. The calling module has to use its Module ID as specified by AUTOSAR in
[4].

Note
To use this feature, the switch EcuMEnableDefBehaviour must be active.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 40
based on template version 4.8.3

3.14 Alarm Clock

The EcuM flex offers the possibility to configure a clock which provides the absolute time
since the last power-on reset of the ECU. This clock can be used to retrieve the current
system time via the API EcuM_GetCurrentTime and to wake up the ECU from sleep
phases.

In sleep phases the ECU will be woken up by the Gpt every second, depending if the Gpt
supports this. If the wake up by the Gpt is the only wakeup event, the EcuM will increment
the system clock and falls back to sleep again. If a wake up alarm has expired, the EcuM
will call EcuM_SetWakeupEvent() to indicate a valid wake up of the ECU.

Note
To use this feature, the switch EcuMAlarmClockPresent must be active.

3.14.1 Configuring the Gpt to provide the Time base

To support the Alarm Clock, a Gpt channel must be configured in a way which leads to an
interrupt every second. For a correct behavior of the Alarm Clock, even in sleep phases,
the channel must be configured as followed:

Gpt Channel Parameter Value

GptChannelMode GPT_CH_MODE_CONTINUOUS

GptEnableWakeup True

GptNotification EcuM_AlarmCheckWakeup

GptWakeupSourceRef Choose here the same Wakeup Source as configured for
EcuM parameter EcuMAlarmWakeupSource

Table 3-16 Gpt Channel Configuration

Caution
The implementation of the EcuM alarm clock requires that the Gpt provides a time base
of exactly one second. If this is not supported by Gpt, the EcuM does not perform a
correction of the time base.

3.14.2 Configuring the EcuM for using the Alarm Clock

For setting a wake up alarm during the runtime of the ECU, an EcuMAlarmClock with a
reference to an EcuMFlexUserConfig must be configured.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 41
based on template version 4.8.3

The Gpt channel configured in 3.14.1 must be referenced by the EcuM parameter
EcuMGptChannelRef.

3.14.3 Setting of the EcuM Clock

The API EcuM_SetClock is offered to allow configuring an EcuMFlexUser to modify the
system time during runtime. This user must be set as reference in the configuration
parameter EcuMSetClockAllowedUserRef.

Only if this reference is configured, the usage of the API EcuM_SetClock is allowed for this
user.

3.14.4 Setting of a Time Triggered Wake Up Alarm

Via the APIs EcuM_SetRelWakeupAlarm and EcuM_SetAbsWakeupAlarm the configured
EcuMFlexUsers can set wake up alarms during the runtime of the ECU. This wake up
alarm will be active during the next sleep phase.

The wake up alarm can be cancelled by the user during runtime of the ECU via the API
EcuM_AbortWakeupAlarm.

Note
One single EcuMFlexUser can only set one single wake up alarm.

Caution
All wake up alarms are cleared if the ECU wakes up from a sleep phase, even if the
reason for this wake up was not time triggered. The wake up alarms must be rearmed
before the next sleep phase is entered.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 42
based on template version 4.8.3

3.15 MultiCore Ecu

The EcuM offers the possibility to handle multi core ECUs. The handling of the
initialization, sleep and shutdown differs to a single core ECU and is described in the
following.

3.15.1 Initialization of a MultiCore ECU

3.15.1.1 Initialization on the Master Core

After power-on of the ECU, the master core starts running and EcuM_Init() should be
called in the startup code. At the end of EcuM_Init() the callout EcuM_StartOS() is called.

In the callout EcuM_StartOS() all other slave cores are started via the OS API StartCore().

Example
In the following example the startup sequence of the master core for a ECU with 4
cores can be seen:

Figure 3-5 Startup Sequence on a Master Core

Note
The callout EcuM_StartOS() is filled by the configuration tool per default. In some
cases it might be necessary to adapt this callout.

 sd MasterCore Initialization

Module

EcuM

Module

Os

Startup Code Module

Integration Code

(EcuM_Callout_Stubs)

Module

SchM

Module

BswM

InitTask

EcuM_Init()

PreOS

initialization

sequence of

EcuM()

EcuM_StartOS(AppModeType)

StartCore(CoreID1, &Status)

StartCore(CoreID2, &Status)

StartCore(CoreID3, &Status)

StartOS(appMode)

ActivateTask()

EcuM_StartupTwo()

SchM_Init()

BswM_Init(const BswM_ConfigType *)

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 43
based on template version 4.8.3

3.15.1.2 Initialization on the Slave Core

After the slave core has been started by the master core, it also starts running with the
startup code. EcuM_Init() is called from the startup code, but on the slave core only driver
initialization and a call to StartOS() is performed via the callout EcuM_StartOS().

Example
In the following example the startup sequence of a slave core for a ECU with 4 cores
can be seen:

Figure 3-6 Startup Sequence on a Slave Core

Caution
On the slave core a call to EcuM_StartupTwo() is only necessary if the initialization of
the SchM should be done by the EcuM.

The BswM is currently not initialized on a slave core in this release!

3.15.1.2.1 Driver initialization on the Slave Core

The callouts EcuM_AL_DriverInitZero() and EcuM_AL_DriverInitOne() are also called on
slave cores, but the generated code is only executed on the master core.

 sd Slav eCore Initialization

Module

EcuM

Module

Os

Startup Code Module

Integration Code

(EcuM_Callout_Stubs)

Module

SchM

InitTask

EcuM_Init()

EcuM_AL_DriverInitZero()

EcuM_AL_DriverInitOne()

EcuM_StartOS(AppModeType)

StartOS(appMode)

ActivateTask()

EcuM_StartupTwo()

SchM_Init()

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 44
based on template version 4.8.3

On which core the driver initialization is called, is determined via the OS API GetCoreID(),
as it can be seen in the code example below.

A slave core specific handling has to be implemented by the user.

Example
/***

* EcuM_AL_DriverInitZero

***/

FUNC(void, ECUM_CODE) EcuM_AL_DriverInitZero(void)

{

 if(GetCoreID() == ECUM_CORE_ID_MASTER)

 {

 MasterCore_Init();

 }

/***

 * DO NOT CHANGE THIS COMMENT! <USERBLOCK EcuM_AL_DriverInitZero>

DO NOT CHANGE THIS COMMENT!

***/

 /* Add implementation of EcuM_AL_DriverInitZero() */

 return;

/***

 * DO NOT CHANGE THIS COMMENT! </USERBLOCK> DO NOT CHANGE THIS

COMMENT!

***/

}

3.15.2 Sleep handling of slave cores

The EcuM flex supports two different ways to set the ECU to sleep, with and without
synchronization of all cores. Which handling is used depends on the boolean parameter
EcuMSlaveCoreHandling

EcuMSlaveCoreHandling Behavior

False The Master Core does not care about slave cores during the
sleep mode. Depending on the used hardware, it might
happen that the Master Core has switched already to sleep
and the slave cores are still running.

True The Master Core waits on the way to sleep (initiated via
EcuM_GoHalt() / EcuM_GoPoll()) till all slave cores has
already switched to sleep. During wait for the slave cores,
the callout EcuM_WaitForSlaveCores is called cyclically till
all cores have switched their state to sleep. The callout can
be used to set the slaves to sleep.

Table 3-17 Sleep handling on Slave Cores

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 45
based on template version 4.8.3

3.15.3 Blocking of the BSW Scheduler during Sleep

If only one BSW scheduler is used on the master core, it is sufficient to configure only one
OsResource which is blocked during the sleep mode.

If there is more than one BSW scheduler running on several cores, it is necessary to
configure an OsResource for every core. The configuration tool assigns automatically the
configured OsResource to the corresponding core.

3.15.4 Shutdown of the MultiCore ECU

It is necessary to call EcuM_GoDown() on all cores which have a running SchM to assure
a regular de-initialization of the SchM.
Finally after EcuM_GoDown() was called for all these slave cores, the API can be called
on the master core. This leads via the callout EcuM_ShutdownOS to a call of the OS API
ShutdownAllCores(). This API synchronizes all cores and stops the slaves.

Note
If the SchM is only running on the master core it is sufficient to call EcuM_GoDown() on
the master core only.

3.15.5 Reconfiguration of the BSW Core ID

The EcuM supports the configuration of the BSW Core Id. Per default the master Core Id
is mapped to the OS define OS_CORE_ID_MASTER (Id 0).

If the BSW shall run on another Core, the Id has to be configured via the configuration tool.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 46
based on template version 4.8.3

3.16 Mode Handling for EcuM Flex

3.16.1 Mode Handling

The BswM can set a specific EcuM state (via EcuM_SetState) which is mapped to the
corresponding mode and an Rte mode switch will be initiated by the EcuM. The mapping
of states to modes can be seen in Table 3-18.

After the mode switch is initiated, the EcuM polls the Rte in each MainFunction cycle if the
mode switch is executed successfully. After the Rte has acknowledged the successful
mode switch execution, the EcuM will notify the BswM about the finished mode switch.

EcuM State EcuM Mode

ECUM_STATE_STARTUP RTE_MODE_EcuM_Mode_STARTUP

ECUM_STATE_SLEEP RTE_MODE_EcuM_Mode_SHUTDOWN

or

RTE_MODE_EcuM_Mode_SLEEP

ECUM_STATE_APP_RUN RTE_MODE_EcuM_Mode_RUN

ECUM_STATE_APP_POST_RUN RTE_MODE_EcuM_Mode_POST_RUN

ECUM_STATE_SHUTDOWN RTE_MODE_EcuM_Mode_SHUTDOWN

or

RTE_MODE_EcuM_Mode_SLEEP

Table 3-18 Mapping of States to Modes

Note
In case of a requested state ECUM_STATE_SHUTDOWN or ECUM_STATE_SLEEP,
the corresponding mode depends on the currently configured shutdown target.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 47
based on template version 4.8.3

3.16.2 Run Request Protocol

The run request protocol is a mechanism for applications or Software Components (SW-C)
to request RUN state explicitly via EcuM_RequestRUN. The EcuM notifies the BswM
about an active application request. If the application has nothing to do anymore it must
release the previous requested RUN state. If no other SW-C has requested RUN state the
ECU State Manger will notify the BswM that no application request is active anymore.

If SW-C needs special preparation for one of the shutdown states (SLEEP, OFF, RESET)
the SW-C must request POST RUN state. This is the same mechanism like requesting
RUN state. So, the POST RUN state has to be released after the job of the application is
finished. It is very important for SW-C’s which needs POST RUN state activities to request
the POST RUN state before releasing the RUN request. Otherwise it is possible that the
application doesn't get the chance to execute its POST RUN activities, depending on the
BswM configuration.

To request RUN or POST RUN state each SW-C must be a configured user of the ECU
State Manager. Therefore it is necessary to define one user for each SW-C to place
requests.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 48
based on template version 4.8.3

3.17 Generated Template Files

A generated template file in this document is a file which:
> is generated by the generation tool at every generation process
> the user can modify this template for his needs
> the changes made by the user will not be overwritten at the next generation process

In order not to overwrite the changes made by the user, the template file contains special
comments. The user must insert his code between the two comments which delimit the
user block. The comments have the following format:

/***
 * DO NOT CHANGE THIS COMMENT! <USERBLOCK FUNCTIONNAME> DO NOT CHANGE THIS COMMENT!
***/

/**
 * DO NOT CHANGE THIS COMMENT! </USERBLOCK> DO NOT CHANGE THIS COMMENT!
**/

Caution
Do not modify or delete these comments.

3.18 Wake-up Event Handling and Wake-up Validation

The handling of Wake-up Sources and Wake-up Validation has to be configured and
implemented specifically for every ECU. The following list provides a short overview which
callouts are affected:

▪ EcuM_EnableWakeupSources(), (refer to Ch. 5.7.2.17)
▪ EcuM_DisableWakeupSources(), (refer to Ch. 5.7.2.18)
▪ EcuM_CheckWakeup(), (refer to Ch. 5.7.2.21)
▪ EcuM_StartWakeupSources(), (refer to Ch. 5.7.2.19)
▪ EcuM_StopWakeupSources(), (refer to Ch. 5.7.2.20)

The integration task is to fill these callouts with code which fulfill the ECU specific
requirements. The following paragraphs illustrate two example use cases:

▪ Wake-up after a physical sleep mode
▪ Wake-up validation of communication channels (EcuM in Run state)

3.18.1 Wake-up after a Physical Sleep Mode

3.18.1.1 Use Case Description

A raising edge on an ICU channel shall bring the ECUM into RUN state. A wake-up source
“ECUM_WKSOURCE_ICU_CH0” is configured for that. The name of the configured ICU
channel is Icu_Channel0.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 49
based on template version 4.8.3

No wake-up validation shall be performed on that wake-up event. This wake-up event is
the only active wake-up event for the desired sleep mode.

3.18.1.2 Execution Flow

> EcuM is in ECUM_STATE_RUN
> BswM calls EcuM_GoHalt()

▪ Callout EcuM_EnableWakeupSources() is executed.
▪ EcuM transits to sleep, Mcu_SetMode() is called

> External event triggers ICU hardware to raise an interrupt
> Callout EcuM_CheckWakeup() is executed by ISR
> API function EcuM_SetWakeupEvent() is executed
> EcuM executes implicitly EcuM_ValidateWakeupEvent() because wake-up event is

instantly valid
> EcuM transits from ECUM_STATE_SLEEP to ECUM_STATE_WAKEUP_ONE
> EcuM transits from ECUM_STATE_WAKEUP_TWO to ECUM_STATE_ RUN

▪ Callout EcuM_DisableWakeupSources() is executed

3.18.1.3 Callout Implementation Examples

FUNC(void, ECUM_CODE) EcuM_EnableWakeupSources(EcuM_WakeupSourceType

wakeupSource)

{

 /* Check for each configured wake-up source the corresponding bit

 * is set. Here the bit for the ICU wake-up source must be set

 */

 if ((wakeupSource & ECUM_WKSOURCE_ICU_CH0) != 0)

 {

 Icu_EnableNotification(Icu_Channel0);

 Icu_EnableWakeup(Icu_Channel0);

 Icu_SetMode(ICU_MODE_SLEEP);

 }

 /* … */

}

FUNC(void, ECUM_CODE) EcuM_CheckWakeup(EcuM_WakeupSourceType wakeupSource)

{

 if ((wakeupSource & ECUM_WKSOURCE_ICU_CH0) != 0)

 {

 /* no validation necessary, so call EcuM_SetWakeupEvent() */

 EcuM_SetWakeupEvent(ECUM_WKSOURCE_ICU_CH0);

 }

 /* … */

}

FUNC(void, ECUM_CODE) EcuM_DisableWakeupSources(EcuM_WakeupSourceType

wakeupSource)

{

 if ((wakeupSource & ECUM_WKSOURCE_ICU_CH0) != 0)

 {

 Icu_DisableNotification(Icu_Channel0);

 Icu_DisableWakeup(Icu_Channel0);

 Icu_SetMode(ICU_MODE_NORMAL);

 }

}

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 50
based on template version 4.8.3

3.18.2 Wake-up Validation of Communication Channels (ECUM in RUN State)

3.18.2.1 Use Case Description

A wake-up capable CAN hardware is assumed. A message on a CAN channel shall be
recognized and set the CAN channel into normal operation mode (which will be triggered
by ComM). A wake-up source ECUM_WKSOURCE_CAN0 is configured for that. Wake-up
Validation shall be performed for that channel.

3.18.2.2 Execution Flow

> ECUM is in RUN state, the CAN channel is in sleep state and is able to detect wake-up
events

> Callout EcuM_CheckWakeup() is executed by ISR

> API EcuM_SetWakeupEvent() is executed, EcuM starts wake-up validation timeout

> EcuM_MainFunction() triggered by SCHM

▪ (a) ECUM detects a pending wake-up event and executes callout
EcuM_StartWakeupSources()

▪ (b) ECUM executes callout EcuM_CheckValidation()

▪ Note: step (b) may be executed several times, with each EcuM_MainFunction()
call until the wake-up event is validated or expired, but
EcuM_StartWakeupSources() is executed only once.

> Case Validation successful:

▪ API EcuM_ValidateWakeupEvent() is executed, within this routine
ComM_WakeUpIndication() is called

▪ EcuM_MainFunction() triggered by SCHM

▪ ECUM stops validation timeout

> Case Validation failed:

▪ ECUM executes callout EcuM_StopWakeupSources()

▪ The pending wake-up changes to an expired wake-up source

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 51
based on template version 4.8.3

3.18.2.3 Callout Implementation Examples

3.18.2.3.1 EcuM_CheckWakeup

FUNC(void, ECUM_CODE) EcuM_CheckWakeup(EcuM_WakeupSourceType wakeupSource)

{

if((wakeupSource & ECUM_WKSOURCE_CAN0) != 0)

{

CanIf_CheckWakeup(ECUM_WKSOURCE_CAN0);

}

}

3.18.2.3.2 EcuM_CheckValidation

FUNC(void, ECUM_CODE) EcuM_CheckValidation(EcuM_WakeupSourceType wakeupSource)

{

if ((wakeupSource & ECUM_WKSOURCE_CAN0) != 0)

{

/* Query the driver if the wake-up event was valid */

CanIf_CheckValidation(ECUM_WKSOURCE_CAN0);

}

}

3.18.2.3.3 EcuM_StartWakeupSources and EcuM_StopWakeupSources in the case
of a MICROSAR CanSM

If the used CanSM module is a MICROSAR module, the following implementation can be
used.

FUNC(void, ECUM_CODE) EcuM_StartWakeupSources(EcuM_WakeupSourceType

wakeupSource)

{

 if ((wakeupSource & ECUM_WKSOURCE_CAN0) != 0)

 { /* CanSM needs the corresponding Network Handle */

 if (CanSM_StartWakeupSources(0x00) == E_NOT_OK)

 {

 /* place ECU depended error handling here */

 }

 }

}

void EcuM_StopWakeupSources(EcuM_WakeupSourceType wakeupSource)

{

 if ((wakeupSource & ECUM_WKSOURCE_CAN0) != 0)

 { /* CanSM needs the corresponding Network Handle */

 if (CanSM_StopWakeupSources(0x00, wakeupSource) == E_NOT_OK)

 {

 /* place ECU depended error handling here */

 }

 }

}

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 52
based on template version 4.8.3

3.18.2.3.4 EcuM_StartWakeupSources and EcuM_StopWakeupSources in the case
of a non MICROSAR CanSM

If the used CanSM module is a non MICROSAR module, the following implementation can
be used.

FUNC(void, ECUM_CODE) EcuM_StartWakeupSources(EcuM_WakeupSourceType

wakeupSource)

{

 CanIf_ControllerModeType CanIfCtrlMode;

if ((wakeupSource & ECUM_WKSOURCE_CAN0) != 0)

{

/* determine in which is the current Can Controller state */

(void)CanIf_GetControllerMode(0, &CanIfCtrlMode);

/* in case the Can Controller is not CANIF_CS_STARTED */

if (CANIF_CS_STARTED != CanIfCtrlMode)

{

/* Set the controller and transceiver mode into normal operation mode*/

CanIf_SetTrcvMode(0, CANIF_TRCV_MODE_NORMAL);

CanIf_SetControllerMode(0, CANIF_CS_STOPPED);

CanIf_SetControllerMode(0, CANIF_CS_STARTED);

}

else

{

/* Stack already up and running */

}

 }

}

FUNC(void, ECUM_CODE) EcuM_StopWakeupSources(EcuM_WakeupSourceType wakeupSource)

{

if ((wakeupSource & ECUM_WKSOURCE_CAN0) != 0)

{

/* Validation was not successful, set the CAN controller and

* Transceiver back to sleep mode. */

CanIf_SetControllerMode(0, CANIF_CS_STOPPED);

CanIf_SetControllerMode(0, CANIF_CS_SLEEP);

CanIf_SetTrcvMode(0, CANIF_TRCV_MODE_STANDBY);

}

}

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 53
based on template version 4.8.3

4 Integration

This chapter gives necessary information for the integration of the MICROSAR EcuM into
an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the EcuM contains the files which are described in the chapters 4.1.1 and
4.1.2:

4.1.1 Static Files

File Name Source
Code
Delivery

Object
Code
Delivery

Description

EcuM.c


This is the source file of the EcuM. It contains the
implementation of the EcuM interfaces.

EcuM.h
 

This is the header file of the EcuM. It declares the
interfaces of the MIRCROSAR module EcuM.

EcuM_Cbk.h
 

Contains the prototypes of the provided callbacks and
callout functions.

Table 4-1 Static files

Do not edit manually

The static files listed above must not be edited by the user!

4.1.2 Dynamic Files

The dynamic files are generated by the configuration tool.

File Name Description

EcuM_Cfg.h Contains the configuration of the EcuM.

EcuM_Cfg.c Contains the generated configuration data of the EcuM

EcuM_PrivateCfg.h Contains configuration data which is only relevant for the EcuM
implementation. This file must be only included by the EcuM
implementation files.

EcuM_Generated_Types.h Contains all provided types of the EcuM.

EcuM_PBcfg.c Contains the post-build configuration of the EcuM.

EcuM_Callout_Stubs.c Template for the callout code which has to be filled by the integrator.

EcuM_Init_PBcfg.c This file contains configuration pointers to post-build modules.

EcuM_Init_PBcfg.h This file contains the definition of the global post-build struct.

EcuM_Init_Cfg.c This file contains configuration pointers to variant modules.

EcuM_Init_Cfg.h This file contains the definition of the variant modules struct.

EcuM_Error.h This file provides an BSW Error function for post-build-loadable

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 54
based on template version 4.8.3

Table 4-2 Generated files

4.2 Critical Sections

The EcuM calls the following function when entering a critical section:

> void SchM_Enter_EcuM_ECUM_EXCLUSIVE_AREA_0(void)

> When the critical section is left the following function is called by the EcuM:

> void SchM_Exit_EcuM_ECUM_EXCLUSIVE_AREA_0(void)

Critical Section Define Interrupt Lock

ECUM_EXCLUSIVE_AREA_0 No interrupt by any wake-up interrupt is
allowed. These interrupts must be locked in
this exclusive area.

ECUM_EXCLUSIVE_AREA_1 If it cannot be assured that a 32bit variable
is written atomically, this exclusive area
must be configured as a spin lock to
protect access on global state variables.

Note
The configuration of this exclusive
area is only necessary in the case
of a multi core ECU

ECUM_EXCLUSIVE_AREA_2 No task switch and no interrupt from the
Gpt is allowed in this exclusive area to
protect the global system time.

Note
The configuration of this exclusive
area is only necessary if the
feature Alarm Clock is enabled

Table 4-3 Critical Sections

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 55
based on template version 4.8.3

4.3 Include Structure

Figure 4-1 Include structure

 class include Structure

EcuM.c

EcuM.h

EcuM_Cbk.h

EcuM_Cfg.h

SchM_EcuM.h

EcuM_Callout_Stubs.c

EcuM_Generated_Types.h

EcuM_PBcfg.c

EcuM_PrivateCfg.h

Rte_EcuM_Type.h

Std_Types.h

BswM.h

Det.hDem.h Mcu.h Os.h

ComM_EcuMBswM.h

BswM_EcuM.h

Rte_Main.h

ComM.h

EcuM_Error.h

EcuM_Cfg.c

EcuM_Init_PBcfg.h

EcuM_Init_PBcfg.c

NvM.h

EcuM_Init_Cfg.c

EcuM_Init_Cfg.h

«include

in case of

EcuM

fixed»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»
«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 56
based on template version 4.8.3

4.4 Dependencies on other BSW Modules

4.4.1 BswM

The EcuM module depends on the BswM. The EcuM performs the initialization of the
BswM during EcuM_StartupTwo().

The states of all wake-up sources are reported to the BswM in the case of a changing
wake-up source.

The usage of the BswM cannot be switched off.

4.4.1.1 BswM and EcuM fixed

The EcuM reports all state changes described in 3.6.2.1 to the BswM.

4.4.2 AUTOSAR OS

The EcuM module depends on the AUTOSAR OS. It starts and performs the shutdown of
the OS.
The EcuM needs a valid reference within the EcuC file to a configured OS application
mode. Additionally an OsResource must be configured to block other tasks during a sleep
mode.
The usage of the OS cannot be switched off.

4.4.3 MCU

The EcuM module depends on a MCU. The MCU mode settings are used to enter power
saving modes in the phases ECUM_STATE_SLEEP and ECUM_STATE_OFF, it is also
used to restore the normal MCU mode. Every sleep mode must have configured a MCU
mode which will be entered in that sleep mode.

After a reset, the MCU is called to get the reason for the current reset.

The usage of the MCU cannot be switched off.

4.4.4 DEM

The EcuM depends on the DEM. The EcuM supports the pre-initialization of the DEM and
if the production errors for the EcuM are configured as active, the EcuM reports some
Errors to the DEM. Refer to chapter 3.11.2 for more information.
The usage of the DEM can be switched off.

4.4.5 DET

The EcuM depends on the DET. The EcuM performs the initialization and reports
development errors for diagnostic purposes. Refer to chapter 3.11.1 for more information.
The usage of the DET can be switched off.

4.4.6 ComM

This module depends on the ComM. The EcuM manages the validation of communication
channels. In the case of a validated wake-up event from a communication channel, the
EcuM reports this event to the ComM.

4.4.6.1 ComM and EcuM fixed

In the transition to ECUM_STATE_APP_RUN, the EcuM calls
ComM_CommunicationAllowed() for all configured communication channels.

In ECUM_STATE_APP_RUN, the ComM API ComM_GetState() is called for every
communication channel in EcuM_MainFunction.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 57
based on template version 4.8.3

If ComM_GetState() returns COMM_NO_COM_NO_PENDING_REQUEST for all
channels, the EcuM can leave the ECUM_STATE_APP_RUN.

4.4.7 SchM

The EcuM module depends on the SchM. The EcuM performs the initialization of the
SchM during EcuM_StartupTwo().

The usage of the SchM cannot be switched off.

4.4.8 Gpt

In the case that the Alarm Clock is enabled, the EcuM depends on the Gpt. The EcuM
initialize the Gpt (has to be done in EcuM_AL_DriverInitOne) and starts the corresponding
timer during EcuM_StartupTwo(). On the way to sleep, the mode of the Gpt is switched to
sleep and the normal mode is recovered after a wake-up from sleep.

4.4.9 NvM

The EcuM handles the call of NvM_WriteAll() and NvM_CancelWriteAll(). Both calls are
protected with a configurable timeout to guarantee a shutdown of the ECU even in case of
a defect NvM.

Caution
Dependency to the NvM exists only in case of EcuM fixed.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 58
based on template version 4.8.3

5 API Description

5.1 Type Definitions

The types defined by the EcuM are described in this chapter.

Type Name C-Type Description Value Range

EcuM_StateType uint8 Encodes all states and
sub states provided by
the ECU State
Manager.

ECUM_SUBSTATE_MASK

Get the current state by AND
gating the state with this mask. All
states are delivered including
substates.

ECUM_STATE_STARTUP

STARTUP super state

ECUM_STATE_STARTUP_ONE

Initialization of drivers which don’t
need OS support.

ECUM_STATE_STARTUP_TWO

Initialization of drivers which need
OS support.

ECUM_STATE_WAKEUP

WAKE-UP super state

Not used in this EcuM flex
Implementation!

ECUM_STATE_WAKEUP_ONE

Reinitializing of drivers for normal
operation.

ECUM_STATE_WAKEUP_VALIDATIO
N

Waits for validation of a wake-up
event

ECUM_STATE_WAKEUP_REACTION

Computes the appropriate wake-up
reaction

Not used in this EcuM flex
Implementation!

ECUM_STATE_WAKEUP_TWO

Prepares the ECU for RUN state

Not used in this EcuM flex
Implementation!

ECUM_STATE_WAKEUP_WAKESLE
EP

A short system phase where the
ECU transit from a wake-up directly
to sleep again.

Not used in this EcuM flex
Implementation!

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 59
based on template version 4.8.3

Type Name C-Type Description Value Range

ECUM_STATE_WAKEUP_TTII

Performs the TTII protocol

Not used in this EcuM flex
Implementation!

ECUM_STATE_RUN

Normal ECU operation super state

ECUM_STATE_APP_RUN

ECU is in normal operation state

Not used in this EcuM flex
Implementation!

ECUM_STATE_APP_POST_RUN

ECU performs POST RUN
activities

Not used in this EcuM flex
Implementation!

ECUM_STATE_SHUTDOWN

Shutdown super state

ECUM_STATE_PREP_SHUTDOWN

Prepares the ECU for the following
shutdown sequence.

Not used in this EcuM flex
Implementation!

ECUM_STATE_GO_SLEEP

Activation of the wake-up sources

ECUM_STATE_GO_OFF_ONE

Shutdown of system services

ECUM_STATE_GO_OFF_TWO

Performs a RESET or switches off
the ECU

ECUM_STATE_SLEEP

ECU is in sleep state (this
information cannot be retrieved)

ECUM_STATE_OFF

ECU is without power supply (this
information cannot be retrieved)

EcuM_WakeupSource
Type

uint32 Each bit in this type
identifies a wake-up
source.

ECUM_WKSOURCE_POWER

Identifies a power on reset (bit 0)

ECUM_WKSOURCE_RESET

Identifies a hardware reset (bit 1)

ECUM_WKSOURCE_INTERNAL_RE
SET

Identifies resets which only reset
the core of the microcontroller but
not the peripherals. This source
also indicates unhandled

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 60
based on template version 4.8.3

Type Name C-Type Description Value Range

exceptions (bit 2)

ECUM_WKSOURCE_INTERNAL_WD
G

Identifies a reset by internal
watchdog (bit 3)

ECUM_WKSOURCE_EXTERNAL_W
DG

Identifies a reset by external
watchdog (bit 4). (This is only
possible if the hardware supports
this feature)

ECUM_WKSOURCE_ALL_SOURCES

Identifies each wake-up source

ECUM_WKSOURCE_NONE

Value 0. This is a MICROSAR
ECUM extension and identifies an
invalid wake-up source.

ECUM_WKSOURCE_<NAME>

Can be extended by configuration

EcuM_UserType uint8 ID of the Users which
are able to request
RUN state. Each user
must have a unique ID.

0..255

The Range depends on the
number of configured users

EcuM_WakeupStateTy
pe

uint8 The type describes
possible results of the
WAKE-UP
VALIDATION state.

ECUM_WKSTATUS_NONE

The wake-up source is Disabled

ECUM_WKSTATUS_PENDING

The wake-up event was detected
but not yet validated

ECUM_WKSTATUS_VALIDATED

The wake-up event is valid

ECUM_WKSTATUS_EXPIRED

The wake-up event has not been
validated and has already expired.

ECUM_WKSTATUS_ENABLED

The wake-up source is enabled
(armed) and is ready for detecting
wake-up events.

ECUM_WKSTATUS_CHECKWAKEUP

Asynchronous wake-up event is
detected but SetWakeupEvent has
not been called yet.

EcuM_BootTargetType uint8 Defines the boot target
which should be
chosen in the next start
up.

ECUM_BOOT_TARGET_APP

Boot into application mode

ECUM_BOOT_TARGET_BOOTLOAD
ER

Boot into boot loader mode

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 61
based on template version 4.8.3

Type Name C-Type Description Value Range

EcuM_ResetType uint8 This type describes
the reset
mechanisms
supported by the
ECU State Manager.

It can be extended by
configuration.

ECUM_RESET_MCU

Microcontroller reset via
Mcu_PerformReset

ECUM_RESET_WDG

Watchdog reset via
WdgM_PerformReset

ECUM_RESET_IO

Reset by toggling an I/O line

ECUM_RESET_WAKEUP

Reset in the case of a wake-up
event during shutdown

ECUM_RESET_<NAME>

Can be extended by configuration.

EcuM_ShutdownCau
seType

uint8 This type describes
the cause for a
shutdown

by the ECU State
Manager.

It can be extended by
configuration.

ECUM_CAUSE_UNKNOWN

No cause was set.

ECUM_CAUSE_ECU_STATE

ECU state machine entered a
state for shutdown

ECUM_CAUSE_WDGM

Watchdog Manager detected a
failure

ECUM_CAUSE_DCM

Diagnostic Communication
Manager requests a

shutdown due to a service request

ECUM_CAUSE_<NAME>

Can be extended by configuration.

Table 5-1 Type definitions

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 62
based on template version 4.8.3

5.2 Services Provided by EcuM

5.2.1 EcuM_MainFunction

Prototype

void EcuM_MainFunction (void)

Parameter

void none

Return code

void none

Functional Description

The service which implements all activities of the ECU state Manager while OS is up and running. In the
MainFunction the wake-up validation is handled. This service must be called on a periodic basis from an
adequate OS task.

▪ The service also carries out the wake-up validation protocol. The smallest validation timeout
typically should limit the period.

▪ As a rule of thumb, the period of this service should be in the order of half as long as the shortest
time constant mentioned in the topics above

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

▪ Called by SchM

Call Context

▪ Function could be called from task level

Table 5-2 EcuM_MainFunction

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 63
based on template version 4.8.3

5.2.2 EcuM_Init

Prototype

void EcuM_Init (void)

Parameter

void none

Return code

void none

Functional Description

The Init function is called to initiate the startup procedure that takes place before the OS is started.

Additionally in this API all EcuM variables that need initialization are initialized.

Caution
After EcuM_Init() the EcuM is not in the running state, to achieve this state
EcuM_StartupTwo() has to be called.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

▪ called by start-up code

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-3 EcuM_Init

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 64
based on template version 4.8.3

5.2.3 EcuM_StartupTwo

Prototype

void EcuM_StartupTwo (void)

Parameter

void none

Return code

void none

Functional Description

The function implements the startup phase where the OS is already running. EcuM_AL_DriverInitTwo() is
called within this function. This function should be scheduled by a task directly after StartOS() and only be
called once.

Caution
The integrator has to ensure that the EcuM_StartupTwo is not interrupted by any other
function or task.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-4 EcuM_StartupTwo

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 65
based on template version 4.8.3

5.2.4 EcuM_Shutdown

Prototype

void EcuM_Shutdown (void)

Parameter

void none

Return code

void none

Functional Description

This function performs a reset or switches off the ECU (depending on which shutdown target is currently
chosen).

Note
This function shall be called inside the OS ShutdownHook() routine. The integrator is
responsible to perform this task.

Caution
The API EcuM_Shutdown must be called only for the core which is responsible for the
shutdown of the ECU.

If the OS ShutdownHook() is called on each core, the implementation of the hook has
to take care that EcuM_Shutdown is not called on every core.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

▪ Must only be called on the core which is responsible for the shutdown.

Call Context

▪ Function should be called from the ShutdownHook of the Os.

Table 5-5 EcuM_Shutdown

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 66
based on template version 4.8.3

5.2.5 EcuM_SelectShutdownTarget

Prototype

Std_ReturnType EcuM_SelectShutdownTarget (EcuM_StateType targetState,
uint8 resetSleepMode)

Parameter

targetState One of these values:

▪ ECUM_STATE_OFF

▪ ECUM_STATE_SLEEP

▪ ECUM_STATE_RESET

resetSleepMode Depending on the parameter targetState this represents a sleep mode or a
reset mode.

Return code

E_OK success

E_NOT_OK error

Functional Description

This service selects a shutdown target in which the shutdown sequence should change

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is reentrant. The EcuM must be in RUN state.

▪ The ECU State Manager does not define any mechanism to resolve issues arising from parallel
requests. It is rather assumed that there will be one application which is ECU specific and handles
these kinds of issues.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-6 EcuM_SelectShutdownTarget

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 67
based on template version 4.8.3

5.2.6 EcuM_GetShutdownTarget

Prototype

Std_ReturnType EcuM_GetShutdownTarget (EcuM_StateType *target,

 uint8 *resetSleepMode)

Parameter

target One of these values:

▪ ECUM_STATE_OFF

▪ ECUM_STATE_SLEEP

▪ ECUM_STATE_RESET

resetSleepMode Depending on the parameter target this represents a sleep mode or a reset
mode. If the target is ECUM_STATE_OFF this parameter is 0.

Return code

E_OK success

E_NOT_OK error

Functional Description

Returns the actual chosen shutdown target.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is reentrant.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-7 EcuM_GetShutdownTarget

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 68
based on template version 4.8.3

5.2.7 EcuM_GetLastShutdownTarget

Prototype

Std_ReturnType EcuM_GetLastShutdownTarget (EcuM_StateType *target,
 uint8 *resetSleepMode)

Parameter

target One of these values:

▪ ECUM_STATE_OFF

▪ ECUM_STATE_SLEEP

▪ ECUM_STATE_RESET

resetSleepMode Depending on the parameter target this represents a sleep mode or a reset
mode. If the target is ECUM_STATE_OFF this parameter is 0.

Return code

E_OK success

E_NOT_OK error

Functional Description

This function returns not the current shutdown target but the shutdown target set before the last reset. This
function always shall return the same value until the next shutdown.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is reentrant.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-8 EcuM_GetLastShutdownTarget

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 69
based on template version 4.8.3

5.2.8 EcuM_GetPendingWakeupEvents

Prototype

EcuM_WakeupSourceType EcuM_GetPendingWakeupEvents (void)

Parameter

void none

Return code

EcuM_WakeupSourceTyp
e

Every bit set in the return value indicates a wake-up source where the
validation is in progress.

Functional Description

Returns wake-up events which have been set but not yet validated.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is reentrant.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-9 EcuM_GetPendingWakeupEvents

5.2.9 EcuM_ClearWakeupEvent

Prototype

void EcuM_ClearWakeupEvent (EcuM_WakeupSourceType WakeupSource)

Parameter

WakeupSource Wake-up event(s) which should be cleared

Return code

void none

Functional Description

Clears the pending, validated and expired wake-up events which are passed by the parameter.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is reentrant.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-10 EcuM_ClearWakeupEvent

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 70
based on template version 4.8.3

5.2.10 EcuM_ClearValidatedWakeupEvent

Prototype

void EcuM_ClearValidatedWakeupEvent (EcuM_WakeupSourceType WakeupSource)

Parameter

WakeupSource Wake-up event(s) which should be cleared

Return code

void none

Functional Description

Clears only the validated wake-up events which are passed by the parameter.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is reentrant.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-11 EcuM_ClearValidatedWakeupEvent

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 71
based on template version 4.8.3

5.2.11 EcuM_GetValidatedWakeupEvents

Prototype

EcuM_WakeupSourceType EcuM_GetValidatedWakeupEvents (void)

Parameter

void none

Return code

EcuM_WakeupSourceType ID of the wake-up source which was responsible for the wake-up

Functional Description

This function returns wake-up event which causes the wake-up of the ECU from the previous sleep mode.

Caution
The validated Wake-up Events must be cleared before the EcuM is set to sleep. The
EcuM does not clear those events by itself.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is reentrant.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-12 EcuM_GetValidatedWakeupEvents

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 72
based on template version 4.8.3

5.2.12 EcuM_GetExpiredWakeupEvents

Prototype

EcuM_WakeupSourceType EcuM_GetExpiredWakeupEvents (void)

Parameter

void none

Return code

EcuM_WakeupSourceType ID's of wake-up sources which are expired in the validation process.

Functional Description

Returns all events that have been set and for which validation has failed. Events which do not need
validation must never be reported by this service.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is reentrant.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-13 EcuM_GetExpiredWakeupEvents

5.2.13 EcuM_GetBootTarget

Prototype

Std_ReturnType EcuM_GetBootTarget (EcuM_BootTargetType *BootTarget)

Parameter

BootTarget The current selected BootTarget

Return code

E_OK success

E_NOT_OK error

Functional Description

Returns the current selected boot target of the ECU.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is reentrant.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-14 EcuM_GetBootTarget

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 73
based on template version 4.8.3

5.2.14 EcuM_SelectBootTarget

Prototype

Std_ReturnType EcuM_SelectBootTarget (EcuM_BootTargetType BootTarget)

Parameter

BootTarget The selected BootTarget

Return code

E_OK success

E_NOT_OK error

Functional Description

Sets the boot target for the next boot.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is reentrant.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-15 EcuM_SelectBootTarget

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 74
based on template version 4.8.3

5.2.15 EcuM_StartCheckWakeup

Prototype

void EcuM_StartCheckWakeup (EcuM_WakeupSourceType WakeupSource)

Parameter

WakeupSource ID of the asynchronous wake-up source

Return code

void none

Functional Description

This function starts the check wakeup timeout mechanism and marks that the wakeup source has an
unapproved CheckWakeup call if applicable on given wakeup source (check wakeup timeout > 0).

Caution
This service shall only be called by EcuM_CheckWakeup(). The call is generated
automatically if at least one wake-up source has a configured check wakeup timeout.

Particularities and Limitations

▪ This service is synchronous.

▪ This service is reentrant for the same WakeupSource.

▪ This service is always available.

Call Context

▪ Expected to be called in interrupt context.

Table 5-16 EcuM_StartCheckWakeup

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 75
based on template version 4.8.3

5.2.16 EcuM_EndCheckWakeup

Prototype

void EcuM_EndCheckWakeup (EcuM_WakeupSourceType WakeupSource)

Parameter

WakeupSource ID of the asynchronous wake-up source

Return code

void none

Functional Description

This function stops the check wakeup timeout mechanism and removes the wakeup source from the list of
unapproved CheckWakeup calls.

Particularities and Limitations

▪ This service is synchronous.

▪ This service is reentrant for the same WakeupSource.

▪ This service is always available.

Call Context

▪ Expected to be called in interrupt context.

Table 5-17 EcuM_EndCheckWakeup

5.2.17 EcuM_GetVersionInfo

Prototype

void EcuM_GetVersionInfo (Std_VersionInfoType *versioninfo)

Parameter

versioninfo pointer to store the version information

Return code

void none

Functional Description

Returns the version information of the ECU State Manager.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

▪ The availability of this service depends on ECUM_VERSION_INFO_API.

Call Context

▪ Function could be called from task level

Table 5-18 EcuM_GetVersionInfo

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 76
based on template version 4.8.3

5.2.18 EcuM_RequestRUN

Prototype

Std_ReturnType EcuM_RequestRUN (EcuM_UserType user)

Parameter

user User ID which requests the RUN state

Return code

E_OK Request accepted

E_NOT_OK Request not accepted

Functional Description

Places a RUN request for this user, Users represents normally an application. The tracking of the requests
are specific for each user.

Note
RUN request will be ignored after an API call to EcuM_KillAllRUNRequest().

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from application context.

Table 5-19 EcuM_RequestRUN

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 77
based on template version 4.8.3

5.2.19 EcuM_ReleaseRUN

Prototype

Std_ReturnType EcuM_ReleaseRUN (EcuM_UserType user)

Parameter

user User ID which requests the RUN state

Return code

E_OK Request accepted

E_NOT_OK Request not accepted

Functional Description

Releases the RUN request previously done with a call to EcuM_RequestRUN().

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from application context.

Table 5-20 EcuM_ReleaseRUN

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 78
based on template version 4.8.3

5.2.20 EcuM_RequestPOST_RUN

Prototype

Std_ReturnType EcuM_RequestPOST_RUN (EcuM_UserType user)

Parameter

user User ID which requests the RUN state

Return code

E_OK Request accepted

E_NOT_OK Request not accepted

Functional Description

Places a POST_RUN request for this user, Users represents normally an application. The tracking of the
requests are specific for each user.

Note
POST_RUN request will be ignored after an API call to
EcuM_KillAllPostRUNRequest().

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from application context.

Table 5-21 EcuM_RequestPOST_RUN

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 79
based on template version 4.8.3

5.2.21 EcuM_ReleasePOST_RUN

Prototype

Std_ReturnType EcuM_ReleasePOST_RUN (EcuM_UserType user)

Parameter

user User ID which requests the RUN state

Return code

E_OK Request accepted

E_NOT_OK Request not accepted

Functional Description

Releases the POST_RUN request previously done with a call to EcuM_RequestPOST_RUN().

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from application context.

Table 5-22 EcuM_ReleasePOST_RUN

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 80
based on template version 4.8.3

5.3 Services Provided by EcuM flex

In the following the services are described which are only relevant for EcuM flex:

5.3.1 EcuM_SelectShutdownCause

Prototype

Std_ReturnType EcuM_SelectShutdownCause (EcuM_ShutdownCauseType
 shutdownCause)

Parameter

shutdownCause current shutdown cause

Return code

E_OK success

E_NOT_OK error

Functional Description

Selects a new Shutdown cause for an intended shutdown.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is reentrant.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-23 EcuM_SelectShutdownCause

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 81
based on template version 4.8.3

5.3.2 EcuM_GetShutdownCause

Prototype

Std_ReturnType EcuM_GetShutdownCause (EcuM_ShutdownCauseType
 *shutdownCause)

Parameter

shutdownCause current shutdown cause

Return code

E_OK success

E_NOT_OK error

Functional Description

Get the currently set shutdown cause.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is reentrant.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-24 EcuM_GetShutdownCause

5.3.3 EcuM_GoHalt

Prototype

Std_ReturnType EcuM_GoHalt (void)

Parameter

void none

Return code

E_OK success

E_NOT_OK error

Functional Description

This API is called in some modes for saving power. In this mode no more code is executed after entering
that state.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

▪ The selected shutdown target must set to ECUM_STATE_SLEEP

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-25 EcuM_GoHalt

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 82
based on template version 4.8.3

5.3.4 EcuM_GoPoll

Prototype

Std_ReturnType EcuM_GoPoll (void)

Parameter

void none

Return code

E_OK success

E_NOT_OK error

Functional Description

This API is called in some modes for saving power. In this mode code is executed, so the EcuM poll for
wake-up events. Only those Wake-up Sources with configured parameter EcuMWakeupSourcePolling are
polled during that sleep mode. Other active sources can set wake-up events via interrupts.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

▪ The selected shutdown target must set to ECUM_STATE_SLEEP

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-26 EcuM_GoPoll

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 83
based on template version 4.8.3

5.3.5 EcuM_GoDown

Prototype

Std_ReturnType EcuM_GoDown (uint16 caller)

Parameter

void none

Return code

Std_ReturnType none

Functional Description

This routine is called to initiate a shutdown or a reset. The routine checks if the caller is one of the allowed
callers (if defensive behavior is configured) and then the EcuM calls ShutdownOS() and thereafter the API
EcuM_Shutdown() is called by the shutdown hook.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

▪ The selected shutdown target must set to ECUM_STATE_OFF or ECUM_STATE_RESET

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-27 EcuM_GoDown

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 84
based on template version 4.8.3

5.3.6 EcuM_GoToSelectedShutdownTarget

Prototype

Std_ReturnType EcuM_GoToSelectedShutdownTarget(void)

Parameter

void none

Return code

E_OK

E_NOT_OK

Functional Description

This API can be called e.g. from the BswM without knowledge about the currently
configured shutdown target. The EcuM decides if EcuM_GoHalt(), EcuM_GoPoll() or
EcuM_GoDown() has to be called.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-28 EcuM_GoToSelectedShutdownTarget

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 85
based on template version 4.8.3

5.3.7 EcuM_SetRelWakeupAlarm

Prototype

Std_ReturnType EcuM_SetRelWakeupAlarm (EcuM_UserType user, uint32 time)

Parameter

user

time

The user that wants to set up the wake up alarm

Relative time for the wake-up alarm in seconds

Return code

E_OK

E_NOT_OK

E_EARLIER_ACTIVE

Alarm was successfully started

No Alarm was started because of an invalid user parameter

An earlier alarm was already started

Functional Description

This API can be used to set a relative wake up alarm during runtime of the ECU. For further information
about this see chapter 3.14.

Caution
All wake up alarms are cleared if the ECU wakes up from a sleep phase, even if the
reason for this wake up was not time triggered. The wake up alarms must be rearmed
before the next sleep phase is entered.

Note
Each user can only set one wake-up alarm.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from task level

Table 5-29 EcuM_SetRelWakeupAlarm

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 86
based on template version 4.8.3

5.3.8 EcuM_SetAbsWakeupAlarm

Prototype

Std_ReturnType EcuM_SetAbsWakeupAlarm (EcuM_UserType user, uint32 time)

Parameter

user

time

The user that wants to set up the wake-up alarm

Absolute time for the wake-up alarm in seconds

Return code

E_OK

E_NOT_OK

E_EARLIER_ACTIVE

E_PAST

Alarm was successfully started

No Alarm was started because of an invalid user parameter

An earlier alarm was already started

The time has already passed

Functional Description

This API can be used to set an absolute wake up alarm during runtime of the ECU. For further information
about this see chapter 3.14.

Caution
All wake up alarms are cleared if the ECU wakes up from a sleep phase, even if the
reason for this wake up was not time triggered. The wake up alarms must be rearmed
before the next sleep phase is entered.

Note
Each user can only set one wake-up alarm.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from task level

Table 5-30 EcuM_SetAbsWakeupAlarm

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 87
based on template version 4.8.3

5.3.9 EcuM_AbortWakeupAlarm

Prototype

Std_ReturnType EcuM_AbortWakeupAlarm (EcuM_UserType user)

Parameter

user The user that wants to abort the wake-up alarm

Return code

E_OK

E_NOT_OK

E_NOT_ACTIVE

Alarm was successfully aborted

The parameter ‘user’ was not valid

No alarm was active for this user

Functional Description

This API can be used to abort a wake-up alarm which was set via the APIs EcuM_SetRelWakeupAlarm or
EcuM_SetAbsWakeupAlarm.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from task level

Table 5-31 EcuM_AbortWakeupAlarm

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 88
based on template version 4.8.3

5.3.10 EcuM_GetWakeupTime

Prototype

Std_ReturnType EcuM_GetWakeupTime (uint32 *time)

Parameter

time Absolute time of the next configured wake-up alarm in seconds

Return code

E_OK

E_NOT_OK

Time was successfully returned

A null pointer was passed as parameter ‘time’

Functional Description

Returns the time of the next active wake-up alarm which was set via the APIs EcuM_SetAbsWakeupAlarm
or EcuM_SetRelWakeupAlarm.

Note
If the returned value equals ‘0xFFFFFFFF’, no wake-up alarm is currently active

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from task level

Table 5-32 EcuM_GetWakeupTime

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 89
based on template version 4.8.3

5.3.11 EcuM_SetClock

Prototype

Std_ReturnType EcuM_SetClock (EcuM_UserType user, uint32 time)

Parameter

user

time

The user that wants to set up the clock

The absolute time value designated for the new time in seconds

Return code

E_OK

E_NOT_ALLOWED
Time was successfully modified

The user was not allowed to modify the time

Functional Description

This API can be used to modify the current time. Only special users are allowed to modify this time, e.g. for
test purposes.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from task level

Table 5-33 EcuM_SetClock

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 90
based on template version 4.8.3

5.3.12 EcuM_GetCurrentTime

Prototype

Std_ReturnType EcuM_GetCurrentTime (uint32 *time)

Parameter

time Current system time in seconds

Return code

E_OK

E_NOT_OK
Time was successfully returned

A null pointer was passed as parameter ‘time’

Functional Description

This API can be used to get the current system time.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from task level

Table 5-34 EcuM_GetCurrentTime

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 91
based on template version 4.8.3

5.3.13 EcuM_SetState

Prototype

void EcuM_SetState(EcuM_StateType state);

Parameter

state State indicated by BswM

Return code

void none

Functional Description

Requests a specific state which will be mapped to the corresponding RTE mode. This mode will be used

to trigger a RTE mode switch.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from task level

Table 5-35 EcuM_SetState

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 92
based on template version 4.8.3

5.4 Services Provided by EcuM fixed

In the following the services are described which are only relevant for EcuM fixed:

5.4.1 EcuM_GetState

Prototype

Std_ReturnType EcuM_GetState (EcuM_StateType* state)

Parameter

state Current EcuM State

Return code

E_OK The parameter state was a not NULL_PTR

E_NOT_OK The parameter state was a NULL_PTR

Functional Description

This API returns the current EcuM State. The possible EcuM States for the fixed EcuM can be seen in
chapter 3.3 States of EcuM fixed.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is reentrant.

Call Context

▪ Function could be called from task level

Table 5-36 EcuM_GetState

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 93
based on template version 4.8.3

5.4.2 EcuM_KillAllRUNRequests

Prototype

void EcuM_ KillAllRUNRequests (void)

Parameter

void none

Return code

void none

Functional Description

Deletes all RUN requests and ensures that no new RUN request is accepted. Additionally the EcuM self-
run request period will be aborted.

Note
The benefit of this function over an ECU reset is that the shutdown sequence is

executed, which e.g. takes care of writing back NV memory contents.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from application context.

Table 5-37 EcuM_ KillAllRUNRequests

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 94
based on template version 4.8.3

5.4.3 EcuM_KillAllPostRUNRequests

Prototype

void EcuM_ KillAllPostRUNRequests (void)

Parameter

void none

Return code

void none

Functional Description

Deletes all POST_RUN requests and ensures that no new POST_RUN request is accepted.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from application context.

Table 5-38 EcuM_ KillAllPostRUNRequests

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 95
based on template version 4.8.3

5.5 Services Used by EcuM

In the following table services provided by other components, which are used by the EcuM
are listed. Also refer to chapter 2.1.

For details about prototype and functionality refer to the documentation of the providing
component.

Component API EcuM
flex

EcuM
fixed

BswM BswM_EcuM_CurrentWakeup()  

BswM_Init()  

BswM_Deinit()  

BswM_EcuM_RequestedState() 

BswM_EcuM_CurrentState()  

ComM ComM_EcuM_WakeUpIndication()  

ComM_EcuM_PNCWakeUpIndication()  

ComM_GetStatus()  

ComM_GetState() 

ComM_CommunicationAllowed() 

ComM_DeInit() 

Det Det_ReportError()  

Dem Dem_ReportErrorStatus()  

Dem_Init() 

Dem_Shutdown() 

Gpt Gpt_EnableNotification() 

Gpt_EnableWakeup() 

Gpt_SetMode() 

Gpt_StartTimer() 

Mcu Mcu_SetMode()  

Mcu_GetResetReason()  

NvM NvM_WriteAll() 

NvM_CancelWriteAll() 

NvM_KillWriteAll() 

OS ShutdownOS()  

StartOS()  

GetResource()  

ReleaseResource()  

EnableAllInterrupts()  

DisableAllInterrupts()  

RTE Rte_Start() 

Rte_Stop() 

Rte_Switch_currentMode_currentMode() 

Rte_Feedback_currentMode_currentMode() 

SchM SchM_Init()  

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 96
based on template version 4.8.3

Component API EcuM
flex

EcuM
fixed

SchM_Deinit()  

SchM_Enter_EcuM_ECUM_EXCLUSIVE_AREA_0()  

SchM_Exit_EcuM_ECUM_EXCLUSIVE_AREA_0()  

SchM_Enter_EcuM_ECUM_EXCLUSIVE_AREA_1()  

SchM_Exit_EcuM_ECUM_EXCLUSIVE_AREA_1()  

SchM_Enter_EcuM_ECUM_EXCLUSIVE_AREA_2()  

SchM_Exit_EcuM_ECUM_EXCLUSIVE_AREA_2()  

Table 5-39 Services used by the EcuM

5.6 Callback Functions

This chapter describes the callback functions that are implemented by the EcuM and can
be invoked by other modules. The prototypes of the callback functions are provided in the
header file EcuM_Cbk.h by the EcuM.

5.6.1 EcuM_SetWakeupEvent

Prototype

void EcuM_SetWakeupEvent (EcuM_WakeupSourceType WakeupSource)

Parameter

WakeupSource the source of the wake-up event.

Return code

void none

Functional Description

Marks a wake-up event as pending if validation is required. If no validation is required then
EcuM_ValidateSetWakeupEvent will be called within this function.

Particularities and Limitations

▪ None

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-40 EcuM_SetWakeupEvent

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 97
based on template version 4.8.3

5.6.2 EcuM_ValidateWakeupEvent

Prototype

void EcuM_ValidateWakeupEvent (EcuM_WakeupSourceType WakeupSource)

Parameter

WakeupSource the wake-up source which should be validated

Return code

void none

Functional Description

After wake-up, the ECU State Manager will stop the process during the WAKE-UP VALIDATION state to
wait for validation of the wake-up event. The validation is carried out with a call of this API service.

Particularities and Limitations

▪ Only ComM channels can validate Wake-up Events during ECUM_STATE_RUN.

Call Context

▪ Function could be called from interrupt level or from task level

Table 5-41 EcuM_ValidateWakeupEvent

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 98
based on template version 4.8.3

5.6.3 EcuM_AlarmCheckWakeup

Prototype

void EcuM_AlarmCheckWakeup(void)

Parameter

void none

Return code

void none

Functional Description

This API is used to update the system clock. The API is called by the EcuM callout EcuM_CheckWakeup or
directly by the GPT after one second has elapsed.

If during sleep the wake-up alarm which was set via the APIs EcuM_SetAbsWakeupAlarm or
EcuM_SetRelWakeupAlarm has expired, this API call will lead to a wake-up event.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from interrupt level

Table 5-42 EcuM_AlarmCheckWakeup

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 99
based on template version 4.8.3

5.6.4 Callback Functions by EcuM fixed

5.6.4.1 EcuM_CB_NfyNvMJobEnd

Prototype

void EcuM_CB_NfyNvMJobEnd (uint8 ServiceID, NvM_RequestResultType JobResult)

Parameter

ServiceID Unique service ID of NVRAM manger service.

JobResult [parameter is ignored by EcuM fixed]

Return code

void none

Functional Description

Used to notify about the end of NVRAM jobs initiated by ECUM.

Particularities and Limitations

▪ Service ID: see table 'Service IDs'

▪ This function is synchronous.

▪ This function is non-reentrant.

Call Context

▪ Function could be called from interrupt level

Table 5-43 EcuM_AlarmCheckWakeup

5.7 Configurable Interfaces

5.7.1 Notifications

The EcuM does not provide notifications.

5.7.2 Callout Functions

At its configurable interfaces the EcuM defines callout functions. The declarations of the
callout functions are provided by the BSW module, i.e. the EcuM. It is the integrator's task
to provide the corresponding function definitions. The definitions of the callouts can be
adjusted to the system's needs. The EcuM callout function declarations are described in
the following tables:

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 100
based on template version 4.8.3

5.7.2.1 EcuM_ErrorHook

Prototype

void EcuM_ErrorHook (Std_ReturnType reason)

Parameter

reason The reason for the current call of the ErrorHook.

Return code

void none

Functional Description

The ECU State Manager calls the Errorhook if the following error code occur:

▪ ECUM_E_HOOK_RAM_CHECK_FAILED

In that case it is not possible to continue processing. The integrator has to take the decision how the ECU
shall react in that situation.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Expected to be called in application context.

Table 5-44 EcuM_ErrorHook

5.7.2.2 EcuM_OnGoOffOne

Prototype

void EcuM_OnGoOffOne (void)

Parameter

void none

Return code

void none

Functional Description

Allows the execution of additional activities in GO OFF I state.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

▪ Called right after entering ECUM_STATE_GO_OFF_ONE.

Table 5-45 EcuM_OnGoOffOne

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 101
based on template version 4.8.3

5.7.2.3 EcuM_OnGoOffTwo

Prototype

void EcuM_OnGoOffTwo (void)

Parameter

void none

Return code

void none

Functional Description

Allows the execution of additional activities in GO OFF II state.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

▪ Called right after entering ECUM_STATE_GO_OFF_TWO.

Table 5-46 EcuM_OnGoOffTwo

5.7.2.4 EcuM_AL_SwitchOff

Prototype

void EcuM_AL_SwitchOff (void)

Parameter

void none

Return code

void none

Functional Description

This callout shall take the code for shutting off the power supply of the ECU.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in EcuM_Shutdown(), task context

Table 5-47 EcuM_AL_SwitchOff

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 102
based on template version 4.8.3

5.7.2.5 EcuM_AL_Reset

Prototype

void EcuM_AL_Reset (EcuM_ResetType Reset)

Parameter

Reset The parameter Reset describes the ResetType (refer to 5.1) that is currently
configured via EcuM_SelectShutdownTarget () (refer to 5.2.5).

Return code

void none

Functional Description

This callout shall take the decision what kind of reset to be performed depending on the given Reset mode.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Expected to be called in application context.

Table 5-48 EcuM_AL_Reset

5.7.2.6 EcuM_AL_DriverInitZero

Prototype

void EcuM_AL_DriverInitZero (void)

Parameter

void none

Return code

void none

Functional Description

This callout is invoked early in the PreOS Sequence during EcuM_Init().

Particularities and Limitations

▪ This function is filled by the configuration tool. It can be extended by the integrator by using the
Userblocks.

Call Context

▪ Invoked in EcuM_Init(), task context

Table 5-49 EcuM_AL_DriverInitZero

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 103
based on template version 4.8.3

5.7.2.7 EcuM_AL_DriverInitOne

Prototype

void EcuM_AL_DriverInitOne (void)

Parameter

void none

Return code

void none

Functional Description

This callout is invoked late in the PreOS Sequence during EcuM_Init().

Particularities and Limitations

▪ This function is filled by the configuration tool. It can be extended by the integrator by using the
Userblocks.

Note
PostBuild data can be accessed via the global pointer EcuM_GlobalPBConfig_Ptr,

example: EcuM_GlobalPBConfig_Ptr->CfgPtr_Com_Init.

Note
Variant data can be accessed via the global pointer EcuM_GlobalPCConfig_Ptr,

example: EcuM_GlobalPCConfig_Ptr->CfgPtr_ComM_Init.

Call Context

▪ Invoked in EcuM_Init(), task context

Table 5-50 EcuM_AL_DriverInitOne

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 104
based on template version 4.8.3

5.7.2.8 EcuM_AL_DriverRestart

Prototype

void EcuM_AL_DriverRestart (void)

Parameter

void none

Return code

void none

Functional Description

This callout shall provide driver initialization and other hardware related startup activities after a wake-up
event from SLEEP state. This callout should be a combination of EcuM_DriverInitZero and
EcuM_DriverInitOne.

Particularities and Limitations

▪ This function is filled by the configuration tool. It can be extended by the integrator by using the
Userblocks.

Note
PostBuild data can be accessed via the global pointer EcuM_GlobalPBConfig_Ptr,

example: EcuM_GlobalPBConfig_Ptr->CfgPtr_Com_Init.

Note
Variant data can be accessed via the global pointer EcuM_GlobalPCConfig_Ptr,

example: EcuM_GlobalPCConfig_Ptr->CfgPtr_ComM_Init.

Call Context

▪ Invoked directly after the wake-up phase

Table 5-51 EcuM_AL_DriverRestart

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 105
based on template version 4.8.3

5.7.2.9 EcuM_AL_SetProgrammableInterrupts

Prototype

void EcuM_AL_SetProgrammableInterrupts (void)

Parameter

void none

Return code

void none

Functional Description

On ECUs with programmable interrupt priorities, these priorities must be set before the OS is started.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in EcuM_Init(), task context

Table 5-52 EcuM_AL_SetProgrammableInterrupts

5.7.2.10 EcuM_McuSetMode

Prototype

void EcuM_McuSetMode (Mcu_ModeType McuMode)

Parameter

McuMode Mode for the upcoming sleep mode

Return code

void none

Functional Description

Switches the Mcu to a power saving mode during a sleep phase.

Particularities and Limitations

▪ This function is filled by the configuration tool. It can be adapted by the integrator.

Call Context

▪ Expected to be called by EcuM_GoHalt() or EcuM_GoPoll()

Table 5-53 EcuM_McuSetMode

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 106
based on template version 4.8.3

5.7.2.11 EcuM_WaitForSlaveCores

Prototype

void EcuM_WaitForSlaveCores (void)

Parameter

void none

Return code

void none

Functional Description

Is only called if EcuMSlaveCoreHandling is active. During the master core is waiting for the slave cores to
be ready for the upcoming sleep this callout is called cyclically.

In context of this callout the slave cores can be initiated to enter sleep.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Expected to be called by EcuM_GoHalt() or EcuM_GoPoll()

Table 5-54 EcuM_WaitForSlaveCores

5.7.2.12 EcuM_StartOS

Prototype

void EcuM_StartOS (AppModeType appMode)

Parameter

appMode Default OS application Mode

Return code

void none

Functional Description

This callout is called at the end of EcuM_Init() to start the OS.

Note
In case of a MultiCore ECU all slave cores are started from the Master Core via the OS
API StartCore() before the OS is started with a call to StartOS().

Particularities and Limitations

▪ This function is filled by the configuration tool. It can be adapted by the integrator.

Call Context

▪ Expected to be called by EcuM_Init()

Table 5-55 EcuM_StartOS

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 107
based on template version 4.8.3

5.7.2.13 EcuM_ShutdownOS

Prototype

void EcuM_ShutdownOS (Std_ReturnType ErrCode)

Parameter

ErrCode E_OK

Return code

void none

Functional Description

This callout is called at the end of EcuM_GoDown() to shut down the OS via
ShutdownOS(E_OK).

Note
In case of a MultiCore ECU this callout should lead to a call of
ShutdownAllCores(E_OK), inside this OS API all cores are synchronized and stopped.

Particularities and Limitations

▪ This function is filled by the configuration tool. It can be adapted by the integrator.

Call Context

▪ Expected to be called by EcuM_GoDown()

Table 5-56 EcuM_ShutdownOS

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 108
based on template version 4.8.3

5.7.2.14 EcuM_GenerateRamHash

Prototype

void EcuM_GenerateRamHash (void)

Parameter

void none

Return code

void none

Functional Description

This callout is intended to provide a RAM integrity test. The goal of this test is to ensure that after a long
SLEEP duration, RAM contents are still consistent. The RAM check itself must be provided by the
integrator.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

▪ Invoked just before setting the ECU into a sleep mode where the ECU is halted

Table 5-57 EcuM_GenerateRamHash

5.7.2.15 EcuM_CheckRamHash

Prototype

uint8 EcuM_CheckRamHash (void)

Parameter

void none

Return code

0 Integrity test failed

1…255 Integrity test passed

Functional Description

This callout is intended to provide a RAM integrity check previously done with EcuM_GenerateRamHash().

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

▪ Directly called after the wake-up of the ECU.

Table 5-58 EcuM_CheckRamHash

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 109
based on template version 4.8.3

5.7.2.16 EcuM_SleepActivity

Prototype

void EcuM_SleepActivity (void)

Parameter

void none

Return code

void none

Functional Description

The ECU State Manager invokes this callout periodically during the Poll Sequence if the MCU is not halted.

The EcuM polls periodically all sources that need polling and are active during the configured Sleep mode.
After all sources are polled EcuM_SleepActivity is called once.

Caution
The EcuM_SleepActivity is called in a blocking loop at maximum frequency. If a
lower period is preferred, the integrator has to implement this behavior.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Expected to be called in task context.

Table 5-59 EcuM_SleepActivity

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 110
based on template version 4.8.3

5.7.2.17 EcuM_EnableWakeupSources

Prototype

void EcuM_EnableWakeupSources (EcuM_WakeupSourceType wakeupSource)

Parameter

wakeupSource Every bit set in the parameter indicates a wake-up source which should be
enabled in the current sleep mode.

Return code

void none

Functional Description

This callout will be invoked when the EcuM enters a sleep state. The EcuM calls this callout for every bit
that is set as an active source for the current Sleep mode.

The integrator has to take care to implement the necessary activities to enable the corresponding wake-up
sources.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

▪ Invoked just before setting the ECU into a sleep mode

Table 5-60 EcuM_EnableWakeupSources

5.7.2.18 EcuM_DisableWakeupSources

Prototype

void EcuM_DisableWakeupSources (EcuM_WakeupSourceType wakeupSource)

Parameter

wakeupSource Every bit set in the parameter indicates a wake-up source which should be
enabled in the current sleep mode.

Return code

void none

Functional Description

This callout will be invoked when the EcuM leaves a sleep state. The EcuM disables all wake-up sources
that have occurred during the recent sleep phase. The not occurred sources remain active till the EcuM
transits to ECUM_STATE_RUN after the successful validation of a wake-up source.

The integrator has to take care to implement the necessary activities to disable the corresponding wake-up
sources.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

▪ Called just before RUN state is entered after a sleep OR

▪ Called just before WAKEUP_VALIDATION state is entered

Table 5-61 EcuM_DisableWakeupSources

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 111
based on template version 4.8.3

5.7.2.19 EcuM_StartWakeupSources

Prototype

void EcuM_StartWakeupSources (EcuM_WakeupSourceType wakeupSource)

Parameter

wakeupSource Every bit set in the parameter indicates a wake-up source which is enabled in
the current sleep mode.

Return code

void none

Functional Description

The callout shall start the given wake-up source(s) so that they are ready to perform wake-up validation.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Expected to be called in task context.

Table 5-62 EcuM_StartWakeupSources

5.7.2.20 EcuM_StopWakeupSources

Prototype

void EcuM_StopWakeupSources (EcuM_WakeupSourceType wakeupSource)

Parameter

wakeupSource Every bit set in the parameter indicates a wake-up source which should be
stopped after unsuccessful wake-up validation.

Return code

void none

Functional Description

This callout shall stop the given wake-up source(s) after unsuccessful wake-up validation.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Expected to be called in task context.

Table 5-63 EcuM_StopWakeupSources

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 112
based on template version 4.8.3

5.7.2.21 EcuM_CheckWakeup

Prototype

void EcuM_CheckWakeup (EcuM_WakeupSourceType wakeupSource)

Parameter

wakeupSource ID of the wake-up source to be checked

Return code

void none

Functional Description

This callout shall be called by the ISR of a wake-up source to set up the PLL and check wake-up sources
that may be connected to the same interrupt.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Expected to be called in interrupt context.

Table 5-64 EcuM_CheckWakeup

5.7.2.22 EcuM_CheckValidation

Prototype

void EcuM_CheckValidation (EcuM_WakeupSourceType wakeupSource)

Parameter

wakeupSource Wake-up IDs of pending wake-up events.

Return code

void none

Functional Description

This callout is called by the EcuM when wake-up validation of a wake-up event is necessary. The pending
wake-up event(s) are passed by the parameter in order to allow the necessary reaction depending on the
wake-up source.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

▪ Called in WAKE-UP VALIDATION state

Table 5-65 EcuM_CheckValidation

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 113
based on template version 4.8.3

5.7.2.23 EcuM_DeterminePbConfiguration

Prototype

EcuM_ConfigRefType EcuM_DeterminePbConfiguration (void)

Parameter

void none

Return code

EcuM_ConfigRefType Pointer to the Post-Build structure

Functional Description

In the case of Post-Build Loadable or Selectable the EcuM gets the global configuration pointer via this
callout.

Note
In case of a MultiCore ECU this callout is only called on the core which starts up first.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Expected to be called in application context.

Table 5-66 EcuM_DeterminePbConfiguration

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 114
based on template version 4.8.3

5.7.2.24 EcuM_BswErrorHook

Prototype

void EcuM_BswErrorHook (uint16 BswModuleId, uint8 ErrorId)

Parameter

BswModuleId The reporting BSW module

ErrorId The Id of the reported error

Return code

void none

Functional Description

This API can be called by Basic Software Modules to notify corrupted Postbuild configuration data.

Specified ErrorIds are:

▪ ECUM_BSWERROR_NULLPTR

▪ ECUM_BSWERROR_COMPATIBILITYVERSION

▪ ECUM_BSWERROR_MAGICNUMBER

Particularities and Limitations

▪ The handling of an occurred error has to be specified by the integrator.

Call Context

▪ Invoked in task context.

Table 5-67 EcuM_BswErrorHook

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 115
based on template version 4.8.3

5.7.3 Callout Functions by EcuM flex

5.7.3.1 EcuM_GptStartClock

Prototype

void EcuM_GptStartClock (Gpt_ChannelType GptChannel, Gpt_ModeType Mode,
Gpt_ValueType Value)

Parameter

GptChannel

Mode

Value

The configured Gpt channel which serves as time base for alarm clock

The Gpt normal mode

The value to start the Gpt timer for second based notification / wake up

Return code

Void none

Functional Description

This callout prepares the Gpt for calling the callback EcuM_AlarmCheckWakeup every second to increment
the system time.

Note
This callout is only active if the EcuM alarm clock is enabled

Particularities and Limitations

▪ This function is filled by the configuration tool. It can be adapted by the integrator.

Call Context

▪ Expected to be called by EcuM_StartupTwo().

Table 5-68 EcuM_GptStartClock

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 116
based on template version 4.8.3

5.7.3.2 EcuM_GptSetSleep

Prototype

void EcuM_GptSetSleep (Gpt_ChannelType GptChannel, Gpt_ModeType Mode)

Parameter

GptChannel

Mode

The configured Gpt channel which serves as time base for alarm clock

The Gpt sleep mode

Return code

Void none

Functional Description

This callout sets the Gpt to sleep mode and enables the wake up functionality of the Gpt.

Note
This callout is only active if the EcuM alarm clock is enabled

Particularities and Limitations

▪ This function is filled by the configuration tool. It can be adapted by the integrator.

Call Context

▪ Expected to be called by EcuM_GoHalt() or EcuM_GoPoll()

Table 5-69 EcuM_GptSetSleep

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 117
based on template version 4.8.3

5.7.3.3 EcuM_GptSetNormal

Prototype

void EcuM_GptSetNormal (Gpt_ChannelType GptChannel, Gpt_ModeType Mode)

Parameter

GptChannel

Value

The configured Gpt channel which serves as time base for alarm clock

The Gpt normal mode

Return code

Void none

Functional Description

This callout sets the Gpt back to normal mode after the ECU has woken up from a sleep mode.

Note
This callout is only active if the EcuM alarm clock is enabled

Particularities and Limitations

▪ This function is filled by the configuration tool. It can be adapted by the integrator.

Call Context

▪ Expected to be called by EcuM_GoHalt() or EcuM_GoPoll()

Table 5-70 EcuM_GptSetNormal

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 118
based on template version 4.8.3

5.7.3.4 EcuM_AL_DriverInitBswM_<ID>

Prototype

void EcuM_AL_DriverInitBswM_<ID> (const EcuM_ConfigType *ConfigPtr)

Parameter

ConfigPtr Pointer to global module configuration structure.

Return code

void none

Functional Description

This callout can be invoked by the BswM to initialize the stack of the ECU.

Note
The ID and the count of this callout depends on the configuration. The integrator can
configure multiple driver init lists of this type.

Particularities and Limitations

▪ This function is filled by the configuration tool. It can be extended by the integrator by using the
Userblocks.

Call Context

▪ Invoked in BswM_Init(), task context

Table 5-71 EcuM_AL_DriverInitBswM

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 119
based on template version 4.8.3

5.7.4 Callout Functions by EcuM fixed

5.7.4.1 EcuM_AL_DriverInitTwo

Prototype

void EcuM_AL_DriverInitTwo (void)

Parameter

void none

Return code

void none

Functional Description

This callout is invoked during EcuM_StartupTwo(), prior the Rte is started.

Particularities and Limitations

▪ This function is filled by the configuration tool. It can be extended by the integrator by using the
Userblocks.

Note
PostBuild data can be accessed via the global pointer EcuM_GlobalPBConfig_Ptr,

example: EcuM_GlobalPBConfig_Ptr->CfgPtr_Com_Init.

Note
Variant data can be accessed via the global pointer EcuM_GlobalPCConfig_Ptr,

example: EcuM_GlobalPCConfig_Ptr->CfgPtr_ComM_Init.

Call Context

▪ Invoked in EcuM_StartupTwo(), task context

Table 5-72 EcuM_AL_DriverInitTwo

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 120
based on template version 4.8.3

5.7.4.2 EcuM_AL_DriverInitThree

Prototype

void EcuM_AL_DriverInitThree (void)

Parameter

void none

Return code

void none

Functional Description

This callout is invoked during EcuM_StartupTwo(), after the Rte is started.

Particularities and Limitations

▪ This function is filled by the configuration tool. It can be extended by the integrator by using the
Userblocks.

Note
PostBuild data can be accessed via the global pointer EcuM_GlobalPBConfig_Ptr,

example: EcuM_GlobalPBConfig_Ptr->CfgPtr_Com_Init.

Note
Variant data can be accessed via the global pointer EcuM_GlobalPCConfig_Ptr,

example: EcuM_GlobalPCConfig_Ptr->CfgPtr_ComM_Init.

Call Context

▪ Invoked in EcuM_StartupTwo(), task context

Table 5-73 EcuM_AL_DriverInitThree

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 121
based on template version 4.8.3

5.7.4.3 EcuM_OnEnterRun

Prototype

void EcuM_OnEnterRun (void)

Parameter

void none

Return code

void none

Functional Description

Allows the execution of activities before entering RUN state.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

▪ Called just before entering RUN state.

Table 5-74 EcuM_OnEnterRun

5.7.4.4 EcuM_OnExitRun

Prototype

void EcuM_OnExitRun (void)

Parameter

void none

Return code

void none

Functional Description

Allows the execution of activities before leaving RUN state.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

▪ Called just before leaving RUN state.

Table 5-75 EcuM_OnExitRun

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 122
based on template version 4.8.3

5.7.4.5 EcuM_OnGoSleep

Prototype

void EcuM_OnGoSleep (void)

Parameter

void none

Return code

void none

Functional Description

Allows the execution of additional activities while module is in GO SLEEP state.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

▪ Called after entering GO SLEEP state.

Table 5-76 EcuM_OnGoSleep

5.7.4.6 EcuM_OnPrepShutdown

Prototype

void EcuM_OnPrepShutdown (void)

Parameter

void none

Return code

void none

Functional Description

Allows the execution of additional activities in PREP SHUTDOWN state.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

▪ Called just after entering PREP SHUTDOWN state.

Table 5-77 EcuM_OnPrepShutdown

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 123
based on template version 4.8.3

5.7.4.7 EcuM_OnExitPostRun

Prototype

void EcuM_OnExitPostRun (void)

Parameter

void none

Return code

void none

Functional Description

Allows the execution of activities while leaving POST RUN state.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

▪ Called while leaving POST RUN state.

Table 5-78 EcuM_OnExitPostRun

5.7.4.8 EcuM_OnFailedNvmWriteAllJobReaction

Prototype

void EcuM_OnFailedNvmWriteAllJobReaction (void)

Parameter

void none

Return code

void none

Functional Description

The ECU State Manager will call this function in case that a Nvm_WriteAll() job was not finished in time.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

Table 5-79 EcuM_OnFailedNvmWriteAllJobReaction

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 124
based on template version 4.8.3

5.7.4.9 EcuM_OnWakeupReaction

Prototype

void EcuM_OnWakeupReaction (void)

Parameter

void none

Return code

void none

Functional Description

Allows the execution of additional activities in WAKEUP_REACTION state.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

▪ Called in ECUM_STATE_WAKEUP_REACTION state.

Table 5-80 EcuM_OnFailedNvmWriteAllJobReaction

5.7.4.10 EcuM_OnRTEStartup

Prototype

void EcuM_OnRTEStartup (void)

Parameter

void none

Return code

void none

Functional Description

Allows the execution of activities before starting the RTE.

Particularities and Limitations

▪ This function has to be filled with code by the integrator.

Call Context

▪ Invoked in task context

▪ Called before Rte_Start() is executed. Module state: STARTUP

Table 5-81 EcuM_OnRTEStartup

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 125
based on template version 4.8.3

5.8 Service Ports

5.8.1 Client Server Interface

A client server interface is related to a Provide Port at the server side and a Require Port
at client side.

5.8.1.1 Provide Ports on EcuM Side

At the Provide Ports of the EcuM the API functions described in 5.2 are available as
Runnable Entities. The Runnable Entities are invoked via Operations. The mapping from a
SWC client call to an Operation is performed by the RTE. In this mapping the RTE adds
Port Defined Argument Values to the client call of the SWC, if configured.

The following sub-chapters present the Provide Ports defined for the EcuM and the
Operations defined for the Provide Ports, the API functions related to the Operations to be
added by the RTE.

5.8.1.1.1 ShutdownTarget Port

Operation API Function

SelectShutdownTarget EcuM_SelectShutdownTarget()

GetLastShutdownTarget EcuM_GetLastShutdownTarget()

GetShutdownTarget EcuM_GetShutdownTarget()

SelectShutdownCause EcuM_SelectShutdownCause()

GetShutdownCause EcuM_GetShutdownCause()

Table 5-82 Shutdown Target Port

5.8.1.1.2 BootTarget Port

Operation API Function

SelectBootTarget EcuM_SelectBootTarget()

GetBootTarget EcuM_GetBootTarget()

Table 5-83 BootTarget Port

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 126
based on template version 4.8.3

5.8.1.1.3 AlarmClock Port

Operation API Function

SelectRelWakeupAlarm EcuM_SelectRelWakeupAlarm()

SelectAbsWakeupAlarm EcuM_SelectAbsWakeupAlarm()

AbortWakeupAlarm EcuM_AbortWakeupAlarm()

GetCurrentTime EcuM_GetCurrentTime()

GetWakeupTime EcuM_GetWakeupTime()

SetClock EcuM_SetClock()

Table 5-84 AlarmClock Port

Caution
The AlarmClock Port is only available in case of EcuM flex.

5.8.1.1.4 StateRequest Port

Operation API Function Port Defined Argument Value

RequestRUN EcuM_RequestRUN() EcuM_UserType UserId

ReleaseRUN EcuM_ReleaseRUN() EcuM_UserType UserId

RequestPOST_RUN EcuM_RequestPOST_RUN() EcuM_UserType UserId

ReleasePOST_RUN EcuM_ReleasePOST_RUN() EcuM_UserType UserId

GetState EcuM_GetStateWrapper() EcuM_UserType UserId

Table 5-85 StateRequest Port

Info
The GetState operation above is mapped to an additional API function
EcuM_GetStateWrapper() which has to be introduced to be compliant with ASR3

Microsar EcuM. This API is not described in chapter 5.2 because the functionality is the
same as EcuM_GetState().

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 127
based on template version 4.8.3

5.8.1.2 Require Ports on EcuM Side

The EcuM calls operations at its Require Ports. These Operations have to be provided by
the SWCs by means of Runnable Entities. These Runnable Entities implement the
callback functions expected by the EcuM.

The following sub-chapters present the Require Port defined for the EcuM, the Operations
that are called from the EcuM and the related Notifications.

1.1.1.1.1 currentMode Port

Operation RTE Interface Mode Declaration Group

currentMode Rte_Switch_currentMode_currentMode STARTUP

RUN

POST_RUN

SLEEP

WAKE_SLEEP

SHUTDOWN

Table 5-86 currentMode Port

Caution
The Ports CurrentMode and StateRequest are only available in case of EcuM fixed.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 128
based on template version 4.8.3

6 AUTOSAR Standard Compliance

6.1 Deviations

6.1.1 Deviation in the Naming of API Parameters

6.1.1.1 ResetSleepMode

The parameter “mode” has been changed to “resetSleepMode” for the following APIs:

> EcuM_GetLastShutdownTarget()

> EcuM_GetShutdownTarget()

> EcuM_SelectShutdownTarget()

6.1.1.2 TargetState

The parameter “target” has been changed to “targetState” for the following API:

> EcuM_SelectShutdownTarget()

6.1.1.3 ShutdownTarget

The parameter “shutdownTarget” has been changed to “target” for the following API:

> EcuM_GetShutdownTarget()

> EcuM_GetLastShutdownTarget()

6.1.1.4 Target (ShutdownTarget)

The parameter “target” has been changed to “shutdownCause” for the following API:

> EcuM_SelectShutdownCause()

6.1.1.5 Target (BootTarget)

The parameter “target” has been changed to “BootTarget” for the following API:

> EcuM_SelectBootTarget()

> EcuM_GetBootTarget()

6.1.1.6 Sources

The parameter “sources” has been changed to “WakeupSource” for the following API:

> EcuM_ClearWakeupEvent()

> EcuM_SetWakeupEvent()

> EcuM_ValidateWakeupEvent()

6.1.2 Starting of the Validation Timer

The validation timer is not started by calling EcuM_SetWakeupEvent(), instead it is started
with the next MainFunctionCycle.

6.1.3 Multiplicity of Parameters

6.1.3.1 EcuMResetReasonRef

The parameter has been changed to optional so that not every wake-up source must have
configured an Mcu reset reason.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 129
based on template version 4.8.3

6.1.3.2 EcuMSleepMode

The parameter has been changed to optional to allow code optimization on ECUs without
the possibility to switch ECUM_STATE_OFF.

6.1.3.3 EcuMConfigConsistencyHash

The parameter has been changed to optional because it is only necessary in the case of
variant post build.

6.1.3.4 Removed parameter ConfigPtr from DriverInit Lists

Removed the parameter ConfigPtr from the prototypes of the following Callouts:

> EcuM_AL_DriverInitOne()

> EcuM_AL_DriverInitTwo()

> EcuM_AL_DriverInitThree()

6.2 Additions/ Extensions

6.2.1 Additional Configuration Parameters

To fulfill the jobs of the EcuM some more parameters beyond the AUTOSAR specification
are needed. The description of these parameters can be found in the BSWMD file which is
part of the delivery.

The following containers are added:

> EcuMDriverInitListBswM

The following parameters are added:

> EcuMAdditionalInitCode
> EcuMGoDownRequestID
> EcuMAdditionalIncludes
> EcuMUserConfigurationFile
> EcuMCheckWakeupTimeout
> EcuMDeferredBswMNotification
> EcuMGptChannelRef
> EcuMSlaveCoreHandling
> EcuMGenModeSwitchPort
> EcuMIncludeDem
> EcuMModeSwitchRteAck
> EcuMGenModeSwitchPort
> EcuMNvmCancelWriteAllTimeout
> EcuMEnableFixBehavior
> EcuMBswCoreId
> EcuMPNCEcuMComMPNCRef

6.2.2 Buffering of Wake ups if the BswM is Not Initialized

In early phases of the ECU, wake-up events can occur and should not be missed. The
EcuM detects these Wake-up Events and if the BswM is not initialized the Event will be
buffered and reported to the BswM as soon as the BswM is initialized by the EcuM.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 130
based on template version 4.8.3

6.2.3 Buffering of Wake ups if the ComM is Not Initialized

In early phases of the ECU, wake-up events can occur and should not be missed. The
EcuM checks if the ComM is active by the routine ComM_GetStatus(), if the ComM is not
active in this phase the Wake-up Event is also buffered. In the EcuM_MainFunction the
EcuM checks if the ComM is still uninitialized and the Wake-up Event is reported as soon
as possible to the ComM.

6.2.4 Additional API EcuM_ClearValidatedWakeupEvent

The EcuM implements an API to clear only the validated wakeup events. A call of the
regular API EcuM_ClearWakeupEvent leads to a clear of all events, pending wakeup
events will be lost in this case.

It is necessary to clear the validated wakeup events to enter a sleep mode or shutdown
the Ecu.

6.2.5 Support of Asynchronous Transceiver Handling

To support asynchronous transceiver handling a check-wakeup validation timeout was
introduced for wake-up sources which cannot be checked in the context of
EcuM_CheckWakeup.

6.2.6 Deferred notification of the BswM about wake-up events

To prevent that the notification via BswM_EcuM_CurrentWakeup() is executed in context
of an interrupt (via EcuM_SetWakeupEvent or EcuM_ValidateWakeupEvent), the
notification can be deferred to the next cycle of the EcuM_MainFunction. If the notification
is executed deferred or not can be configured via the parameter
EcuMDeferredBswMNotification.

6.2.7 Additional Callback EcuM_AlarmCheckWakeup

This callback is called by the Gpt every second to increment the EcuM clock which is
provided by the alarm clock feature.

6.2.8 Additional API EcuM_GoToSelectedShutdownTarget

This API can be called e.g. from the BswM without knowledge about the currently
configured shutdown target. The EcuM decides if EcuM_GoHalt(), EcuM_GoPoll() or
EcuM_GoDown() has to be called.

6.2.9 Additional Callout EcuM_WaitForSlaveCores

This callout is only active in case of MultiCore and if the parameter
EcuMSlaveCoreHandling is set true. In this case, the EcuM Master Core calls cyclically
this callout. It can be used to initiate that the sleep is also entered on the slave core.

6.2.10 Support of EcuM fixed

The EcuM supports the EcuM with fixed state machine. The EcuM fixed can be configured
without EcuM flex or combined.

6.2.10.1 Shutdown Target ECUM_STATE_RESET

The shutdown target ECUM_STATE_RESET is available and the callout EcuM_AL_Reset
is available, independent of EcuM_Flex configuration. The ResetMode parameter will be
passed to EcuM_AL_Reset but EcuM does not check if the parameter is valid, because
this is a EcuM flex parameter.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 131
based on template version 4.8.3

6.2.10.2 Synchronization of EcuM and RTE modes

Some transitions in the EcuM state machine lead to RTE mode switch notifications via the
API Rte_Switch_currentMode_currentMode().

If the acknowledge mechanism of the EcuM is configured active, EcuM remains in its state
until the RTE has acknowledged the current mode switch.

6.3 Limitations

6.3.1 Inter Module Checks

The EcuM does not check the AUTOSAR version of included external modules.

6.3.2 Recording of Shutdown Causes

The EcuM does not support the facility to record recent shutdown causes. Therefore the
following two APIs are not supported:

> EcuM_GetMostRecentShutdown()

> EcuM_GetNextRecentShutdown()

6.3.3 Not Supported Configuration Parameters and Containers

Some of the specified configuration parameters are not supported. These parameters are
marked with the addition “Not used” in the corresponding parameter description. The
description is located within the module’s BSWMD file which is part of the delivery.
The following containers (including the parameters) are not supported in this release:

> EcuMShutdownTarget
> EcuMTTII

The following parameters are not supported in this release:
> EcuMSleepModeSuspend
> EcuMAlarmClockTimeOut
> EcuMFlexEcucPartitionRef
> EcuMResetLoopDetection
> EcuMIncludeDem
> EcuMIncludeDet
> EcuMNvramReadallTimeout
> EcuMIncludeNvM
> EcuMTTIIEnabled
> EcuMTTIIWakeupSourceRef

6.3.4 Wake-up Events after Reset Reason Translation are not Validated

During the initialization the EcuM get the reason for the current startup via the Mcu reset
reason translation. For this translated events the wake-up validation is not performed.

6.3.5 EcuM Fixed Limitations

▪ NvM_ReadAll() is not started by the EcuM. This can be done by the integrator e.g.
in DriverInitListTwo().

▪ EcuM_AL_Reset is available, independent of EcuM_Flex configuration. ResetMode
parameter will be passed to EcuM_AL_Reset, but EcuM checks not if the parameter
is valid.

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 132
based on template version 4.8.3

▪ TTII is not supported. As a consequence, the callout EcuM_OnWakeupReaction
has no parameter and no return value.

▪ EcuM_WakeupReactionType is not supported.

▪ EcuM_GetStatusOfWakeupSource is not supported.

▪ The following APIs are not available if EcuM flex and EcuM fixed are both
configured:

> EcuM_GoHalt

> EcuM_GoPoll

> EcuM_GoDown

> EcuM_GoToSelectedShutdownTarget

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 133
based on template version 4.8.3

7 Glossary and Abbreviations

7.1 Glossary

Term Description

Configuration Tool Tool for generation like DaVinci Configurator Pro

MSN Module Short Name, the AUTOSAR short name of the module, e.g. Can,
CanIf, EcuM, etc.

Table 7-1 Glossary

7.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

BSWMD Basic Software Module Description

BswM Basis Software Mode Manager

CAN Controller Area Network

ComM Communication Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

ECU Electronic Control Unit

EcuC ECU configuration description

HIS Hersteller Initiative Software

Gpt General Purpose Timer

ICU Input Capture Unit

ISR Interrupt Service Routine

MCU Microcontroller Unit

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

MSN Module Short Name

PLL Phase Locked Loop

RTE Runtime Environment

SchM Scheduling Manager

SRS Software Requirement Specification

SWC Software Component

SWS Software Specification

Table 7-2 Abbreviations

Technical Reference MICROSAR EcuM Flex

© 2017 Vector Informatik GmbH Version 6.00.01 134
based on template version 4.8.3

8 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.2 States of EcuM flex
	3.3 States of EcuM fixed
	3.4 The State Diagram of the EcuM flex
	3.5 The State Diagram of the EcuM with fixed state machine
	3.6 Initialization
	3.6.1 EcuM_Init
	3.6.2 EcuM_StartupTwo
	3.6.2.1 EcuM_StartupTwo in case of EcuM flex
	3.6.2.2 EcuM_StartupTwo in case of EcuM fixed

	3.6.3 Initialization Order
	3.6.4 Additional Code in the Initialization Callouts
	3.6.5 Inclusion of Additional Header Files
	3.6.6 Configuration Set Selection

	3.7 Initialization of a MultiCore ECU
	3.8 Shutdown Targets
	3.8.1 Using the API EcuM_SelectShutdownTarget()
	3.8.2 Default Shutdown Target
	3.8.3 Reset Modes
	3.8.4 Sleep Modes

	3.9 Wake-up Sources
	3.9.1 Validation Timeout
	3.9.2 Check-Wakeup Validation Timeout
	3.9.3 ComM Channel Reference
	3.9.4 Polling of Wake-up Sources
	3.9.5 MCU Reset Reason

	3.10 Main Functions
	3.10.1 Wake-up Validation Protocol
	3.10.2 Wake-up Validation Protocol for asynchronous Can transceiver

	3.11 Error Handling
	3.11.1 Development Error Reporting
	3.11.2 Production Code Error Reporting
	3.11.3 EcuM_ErrorHook

	3.12 Callout Execution Sequences
	3.12.1 Callouts from Startup to Run
	3.12.2 Callouts from Run to Sleep (Halt) and back to Run
	3.12.3 Callouts from Run to Reset
	3.12.4 Callouts from Run to Off

	3.13 EcuM Flex Users and Defensive Behavior
	3.14 Alarm Clock
	3.14.1 Configuring the Gpt to provide the Time base
	3.14.2 Configuring the EcuM for using the Alarm Clock
	3.14.3 Setting of the EcuM Clock
	3.14.4 Setting of a Time Triggered Wake Up Alarm

	3.15 MultiCore Ecu
	3.15.1 Initialization of a MultiCore ECU
	3.15.1.1 Initialization on the Master Core
	3.15.1.2 Initialization on the Slave Core
	3.15.1.2.1 Driver initialization on the Slave Core

	3.15.2 Sleep handling of slave cores
	3.15.3 Blocking of the BSW Scheduler during Sleep
	3.15.4 Shutdown of the MultiCore ECU
	3.15.5 Reconfiguration of the BSW Core ID

	3.16 Mode Handling for EcuM Flex
	3.16.1 Mode Handling
	3.16.2 Run Request Protocol

	3.17 Generated Template Files
	3.18 Wake-up Event Handling and Wake-up Validation
	3.18.1 Wake-up after a Physical Sleep Mode
	3.18.1.1 Use Case Description
	3.18.1.2 Execution Flow
	3.18.1.3 Callout Implementation Examples

	3.18.2 Wake-up Validation of Communication Channels (ECUM in RUN State)
	3.18.2.1 Use Case Description
	3.18.2.2 Execution Flow
	3.18.2.3 Callout Implementation Examples
	3.18.2.3.1 EcuM_CheckWakeup
	3.18.2.3.2 EcuM_CheckValidation
	3.18.2.3.3 EcuM_StartWakeupSources and EcuM_StopWakeupSources in the case of a MICROSAR CanSM
	3.18.2.3.4 EcuM_StartWakeupSources and EcuM_StopWakeupSources in the case of a non MICROSAR CanSM

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Critical Sections
	4.3 Include Structure
	4.4 Dependencies on other BSW Modules
	4.4.1 BswM
	4.4.1.1 BswM and EcuM fixed

	4.4.2 AUTOSAR OS
	4.4.3 MCU
	4.4.4 DEM
	4.4.5 DET
	4.4.6 ComM
	4.4.6.1 ComM and EcuM fixed

	4.4.7 SchM
	4.4.8 Gpt
	4.4.9 NvM

	5 API Description
	5.1 Type Definitions
	5.2 Services Provided by EcuM
	5.2.1 EcuM_MainFunction
	5.2.2 EcuM_Init
	5.2.3 EcuM_StartupTwo
	5.2.4 EcuM_Shutdown
	5.2.5 EcuM_SelectShutdownTarget
	5.2.6 EcuM_GetShutdownTarget
	5.2.7 EcuM_GetLastShutdownTarget
	5.2.8 EcuM_GetPendingWakeupEvents
	5.2.9 EcuM_ClearWakeupEvent
	5.2.10 EcuM_ClearValidatedWakeupEvent
	5.2.11 EcuM_GetValidatedWakeupEvents
	5.2.12 EcuM_GetExpiredWakeupEvents
	5.2.13 EcuM_GetBootTarget
	5.2.14 EcuM_SelectBootTarget
	5.2.15 EcuM_StartCheckWakeup
	5.2.16 EcuM_EndCheckWakeup
	5.2.17 EcuM_GetVersionInfo
	5.2.18 EcuM_RequestRUN
	5.2.19 EcuM_ReleaseRUN
	5.2.20 EcuM_RequestPOST_RUN
	5.2.21 EcuM_ReleasePOST_RUN

	5.3 Services Provided by EcuM flex
	5.3.1 EcuM_SelectShutdownCause
	5.3.2 EcuM_GetShutdownCause
	5.3.3 EcuM_GoHalt
	5.3.4 EcuM_GoPoll
	5.3.5 EcuM_GoDown
	5.3.6 EcuM_GoToSelectedShutdownTarget
	5.3.7 EcuM_SetRelWakeupAlarm
	5.3.8 EcuM_SetAbsWakeupAlarm
	5.3.9 EcuM_AbortWakeupAlarm
	5.3.10 EcuM_GetWakeupTime
	5.3.11 EcuM_SetClock
	5.3.12 EcuM_GetCurrentTime
	5.3.13 EcuM_SetState

	5.4 Services Provided by EcuM fixed
	5.4.1 EcuM_GetState
	5.4.2 EcuM_KillAllRUNRequests
	5.4.3 EcuM_KillAllPostRUNRequests

	5.5 Services Used by EcuM
	5.6 Callback Functions
	5.6.1 EcuM_SetWakeupEvent
	5.6.2 EcuM_ValidateWakeupEvent
	5.6.3 EcuM_AlarmCheckWakeup
	5.6.4 Callback Functions by EcuM fixed
	5.6.4.1 EcuM_CB_NfyNvMJobEnd

	5.7 Configurable Interfaces
	5.7.1 Notifications
	5.7.2 Callout Functions
	5.7.2.1 EcuM_ErrorHook
	5.7.2.2 EcuM_OnGoOffOne
	5.7.2.3 EcuM_OnGoOffTwo
	5.7.2.4 EcuM_AL_SwitchOff
	5.7.2.5 EcuM_AL_Reset
	5.7.2.6 EcuM_AL_DriverInitZero
	5.7.2.7 EcuM_AL_DriverInitOne
	5.7.2.8 EcuM_AL_DriverRestart
	5.7.2.9 EcuM_AL_SetProgrammableInterrupts
	5.7.2.10 EcuM_McuSetMode
	5.7.2.11 EcuM_WaitForSlaveCores
	5.7.2.12 EcuM_StartOS
	5.7.2.13 EcuM_ShutdownOS
	5.7.2.14 EcuM_GenerateRamHash
	5.7.2.15 EcuM_CheckRamHash
	5.7.2.16 EcuM_SleepActivity
	5.7.2.17 EcuM_EnableWakeupSources
	5.7.2.18 EcuM_DisableWakeupSources
	5.7.2.19 EcuM_StartWakeupSources
	5.7.2.20 EcuM_StopWakeupSources
	5.7.2.21 EcuM_CheckWakeup
	5.7.2.22 EcuM_CheckValidation
	5.7.2.23 EcuM_DeterminePbConfiguration
	5.7.2.24 EcuM_BswErrorHook

	5.7.3 Callout Functions by EcuM flex
	5.7.3.1 EcuM_GptStartClock
	5.7.3.2 EcuM_GptSetSleep
	5.7.3.3 EcuM_GptSetNormal
	5.7.3.4 EcuM_AL_DriverInitBswM_<ID>

	5.7.4 Callout Functions by EcuM fixed
	5.7.4.1 EcuM_AL_DriverInitTwo
	5.7.4.2 EcuM_AL_DriverInitThree
	5.7.4.3 EcuM_OnEnterRun
	5.7.4.4 EcuM_OnExitRun
	5.7.4.5 EcuM_OnGoSleep
	5.7.4.6 EcuM_OnPrepShutdown
	5.7.4.7 EcuM_OnExitPostRun
	5.7.4.8 EcuM_OnFailedNvmWriteAllJobReaction
	5.7.4.9 EcuM_OnWakeupReaction
	5.7.4.10 EcuM_OnRTEStartup

	5.8 Service Ports
	5.8.1 Client Server Interface
	5.8.1.1 Provide Ports on EcuM Side
	5.8.1.1.1 ShutdownTarget Port
	5.8.1.1.2 BootTarget Port
	5.8.1.1.3 AlarmClock Port
	5.8.1.1.4 StateRequest Port

	5.8.1.2 Require Ports on EcuM Side
	1.1.1.1.1 currentMode Port

	6 AUTOSAR Standard Compliance
	6.1 Deviations
	6.1.1 Deviation in the Naming of API Parameters
	6.1.1.1 ResetSleepMode
	6.1.1.2 TargetState
	6.1.1.3 ShutdownTarget
	6.1.1.4 Target (ShutdownTarget)
	6.1.1.5 Target (BootTarget)
	6.1.1.6 Sources

	6.1.2 Starting of the Validation Timer
	6.1.3 Multiplicity of Parameters
	6.1.3.1 EcuMResetReasonRef
	6.1.3.2 EcuMSleepMode
	6.1.3.3 EcuMConfigConsistencyHash
	6.1.3.4 Removed parameter ConfigPtr from DriverInit Lists

	6.2 Additions/ Extensions
	6.2.1 Additional Configuration Parameters
	6.2.2 Buffering of Wake ups if the BswM is Not Initialized
	6.2.3 Buffering of Wake ups if the ComM is Not Initialized
	6.2.4 Additional API EcuM_ClearValidatedWakeupEvent
	6.2.5 Support of Asynchronous Transceiver Handling
	6.2.6 Deferred notification of the BswM about wake-up events
	6.2.7 Additional Callback EcuM_AlarmCheckWakeup
	6.2.8 Additional API EcuM_GoToSelectedShutdownTarget
	6.2.9 Additional Callout EcuM_WaitForSlaveCores
	6.2.10 Support of EcuM fixed
	6.2.10.1 Shutdown Target ECUM_STATE_RESET
	6.2.10.2 Synchronization of EcuM and RTE modes

	6.3 Limitations
	6.3.1 Inter Module Checks
	6.3.2 Recording of Shutdown Causes
	6.3.3 Not Supported Configuration Parameters and Containers
	6.3.4 Wake-up Events after Reset Reason Translation are not Validated
	6.3.5 EcuM Fixed Limitations

	7 Glossary and Abbreviations
	7.1 Glossary
	7.2 Abbreviations

	8 Contact

