RENESAS

-
o
9
ﬁ\.
7
<
O
S
=
QO

AUTOSAR MCAL R4.0.3
User's Manual

FLS Driver Component Ver.1.0.5

Embedded User's Manual Target Device:
RH850/P1x

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
www.renesas.com Rev.1.02 May 2017

http://www.renesas.com/
http://www.renesas.com/

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the
circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability
for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving

patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or
technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm,

application examples.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas
Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics products.

Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended
applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale
communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human
life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages
(space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.).
Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any
Renesas Electronics product for which the product is not intended by Renesas Electronics.

When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes,
"General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are
within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat
radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident
arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them
against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of
Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as
warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please
evaluate the safety of the final products or systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of
each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled
substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in
compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses
occurring as a result of your noncompliance with applicable laws and regulations.

Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture,
use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products
or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass
destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles
(UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional
weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or
release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know
that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas
Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and
administered by the governments of the countries asserting jurisdiction over the parties or transactions.

Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the
terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or
violation results from your resale or making Renesas Electronics products available any third party.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or
Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Abbreviations and Acronyms

Abbreviation / Acronym

Description

American National Standards Institute

ANSI

ADC Analog to Digital Converter

API Application Programming Interface
AUTOSAR AUTomotive Open System ARchitecture
BSW Basic SoftWare

BSWMDT Basic Software Module Description Template
BUS Bidirectional Universal Switch

CPU Central Processing Unit

CAN Controller Area Network

DET/Det Development Error Tracer

DEM/Dem Diagnostic Event Manager

DIO Digital Input Output

DMA Direct Memory Access

DED Double bit Error Detection

EEPROM Electrically Erasable Programmable Read Only Memory
ECU Electronic Control Unit

ECC Error Correction Code

FACI Flash Application Command Interface
FCU Flash Control Unit

FLS FLaSh Driver

GPT General Purpose Timer

GNU GNU’s Not Unix

HW HardWare

ID/Id Identifier

10 InOut

ICU Input Capture Unit

I/0 Input/Output

ISR Interrupt Service Routine

KB Kilo Byte

LIN Local Interconnect Network

MB Mega Byte

MHz Mega Hertz

MCU Micro Controller Unit

MCAL Microcontroller Abstraction Layer

NA Not Applicable

oS Operating System

PDF Parameter definition file

PWM Pulse Width Modulation

RAM Random Access Memory

Abbreviation / Acronym Description

ROM Read Only Memory

R/W/RW Read/Write/Read and Write

RTE Run Time Environment

SCHM/SchM Scheduler Manager

SCI Serial Communications Interface

SPI Serial Peripheral Interface

SED Single bit Error Detection

SW SoftWare

WDT Watch Dog Timer
Definitions

Term Represented by

Sl. No. Serial Number

Table of Contents

Chapter 1 INtrodUCION.......ui i e 11

11 DOCUMENT OVEIVIEW ...eiiiiiiiiiieiiie ettt ettt sit et e et e s n e e s e e e nne e e snne e s nnn e e nnneeaneeens 13

Chapter 2 Reference DOCUMENTScccuuiiiiiiiiiiiiiieeeer e 15

Chapter 3 Integration and Build Processcccooooviiiiiiiiiiiiinne, 17

3.1. FLS Driver Component Make fil@uuuiiiiie i e e 17

3.1.1. FOIEN SETUCTUTE ..t 17

Chapter 4 Forethoughts ... 19

4.1. (1= L= | PP 19

4.2. PreCONITIONS ...ttt 22

4.3. D= U= B O o g E=T £ (= o oY 25

4.4, DEVIALION LIST iiiiiiiiiie ettt s et e e e e e e s ettt e e e e e e s santnteeeeeeesessntntreeeeeeeeannns 27

4.5, User mode and SUPEIVISOT MOGEcouuiiiiiiiiiieiiiiie ettt ettt ettt e e ee e sabae e e snnneeas 28

Chapter 5 Architecture DetailS..........ccooiiiiiiiiiciiii e 29

Chapter 6 Registers Details...........ccoveviiiiiiiiiiii e, 35

Chapter 7 Interaction between the User and FLS Driver Component

.. 39

7.1. Services Provided by FLS Driver Component to the USerccccccoviiieeiiiiiee i 39
Chapter 8 FLS Driver Component Header and Source File

31T o] £ 10 1 o] o A 41

Chapter 9 Generation Tool GUIAEcouoveiiiiiiiiii e 45

Chapter 10 Application Programming Interface...........ccccoocceveeein, 47

10.1. [g] oXoT g (=0 B V4 o= 1= PO a7

IO T A S =T g Lo F= 1o B I8/ o 1= S PRSPPI a7

10.1.2. Other MOAUIE TYPES .. .uiiiiiiiiiii ettt e e e snneeeas a7

10.2. TYPE DEFINITIONS ottt e st e e s et e e e et e e e e neee a7

10.2.1 FIS_CON I TY PO ittt st e e a7

O o R o Lo [TS Y o T PR PR 48

10.2.3 FIS LNt Ty PO i 48

10.3. FUNCLION DEFINITIONS oot e e e e e e e e e e e e e e e 48

02 70 I o E= T [oV PP PPPPPPRTT 49

O o E= Rl - T = P 49

O JRC T T o E- R VAT g = T ST PPPPPPRTT 50

O o K= -V o [o = PN 51

10.3.5. FIS_GOESTALUS ...ueiiiiiiiieii ittt ettt e e e e e s ettt e e e e e e s anbebbeeeaaeeeeanns 51

10.3.6. FIS_GetIJOBRESUIL....cciiiiiee e 52

10.3.7. FIS_MaiNFUNCHON ..ottt e e e e e e eeree e e e e e e e nns 52

10.3.8. FIS_REAI .ooeieei ittt e e e e e e e e e ee e e e e e eaans 53

10.3.9. FIS _COMPAIE. .. cuiiiiiiiie e e ettt e e s et e e e e e e s s e e e e e e e s s st e e eeaeeeesanntnraeeeaeeaesanns 53

10.3.10. FIS_SEIMOAEuuiiiiiiiie et e s e e e e e e s st e e e e e e s s aanraeeeaaeeeaanns 54

10.3.11. FIS_GetVerSionINfo ..o e e 54

10.3.12. Fls_ReadImMmeEdiatecccuviiiiiie e e e e e e e e s rrrr e e e e e e 55

10.3.13. FIS_BIanKCRECKceiiiiiiiiei et e e 55

0 T 0 S e o T 1= 1= 2 o 56

O T T e Ko L= oYU o 57

10.3.16. Fls_CallSwitchBFlashErrorNotificationcccccvvvvivieiiiiiminiiiiiiiiiiinieinininnnnn. 57
Chapter 11 Development and Production Errorscccoeeeevveeeen, 59
111 FLS Driver Component DevelopmMeENt ErTOrSviiiiiiieiiiiee i 59
11.2 FLS Driver Component Production ErfOrS......oceeiiiiiiiiiiiiiic e 60
Chapter 12 Memory Organizationccccoeuieeiiiiiieeiiin e e 63
Chapter 13 P1M Specific Information...........c.ccoeiiieiiiiieiiiieecie e 65
13.1. Interaction between the User and FLS Driver COMPONENt.......cccvvieiiiiieeiiiiee e 65
13.1.1. Translation header Fil 65

13.1.2. Services Provided by FLS Driver Component to the Usercccccceernnneen. 65

13.1.3. Parameter Definition File ... 66

13.1.4. ISR Functions for FLS MOdUIE........coccuiiiiiiiiic e 66

13.1.5. Data Flash AddreSS SPACEuuuuuuiuiuiuiiiiiiiiiniiiuieinieinrnieiernrrrr———————————— 66

13.2. SaAMPlE APPIICALION .o ———————— 66
13.2.1. Sample Application STFUCTUIE.......uuuiuieiiiiiiieiiieieieiaiereenieeeiaeniraeneeenrararerneaenenrnne 66

13.2.2. Building Sample ApPliCAtioNooiuuiiiiiiie e 68

13.3. Memory and TRrOUGRPUL ... e e 70
13.3.1. ROM/RAM USAQE ...coiiiiiiiiiiiiiiii ettt ettt e e e e e ettt e e e e e e s abebreeeaaaeeaanns 70

13.3.2. SEACK DEPIN .ttt 71

13.3.3. Throughput DELAIISeeiiiiiiiiieiiie e 71

Chapter 14 Release DetailScccuueviiiiiiiiiiiiiiiiie e 75

Figure 1-1
Figure 1-2
Figure 5-1
Figure 5-2
Figure 12-1
Figure 13-1

Table 4-1

Table 4-2

Table 4-3

Table 6-1

Table 8-1

Table 10-1
Table 10-2
Table 10-3
Table 10-4
Table 11-1
Table 11-2
Table 13-1
Table 13-2
Table 13-3
Table 13-4
Table 13-5
Table 13-6

List of Figures

System Overview of FLS Driver Component in AUTOSAR MCAL Layer............ 11
System Overview of AUTOSAR ArchiteCtureccccoeeveeeii i, 12
FLS Driver Component ArChitE@CtUIeveveeiiiiiiiiiieee e et e e e e e e e 29
Component Overview of FLS Driver COMPONENt.........cevveeeiiiiiiviiiieeeeeesiiiieeeeenns 30
FLS Driver Component Memory Organizationccoveccvvreeeeeeessiiiiinnnnneeeesnnnnns 63
Overview of FLS Driver Sample AppliCationcccuveeeeeei i 67

List of Tables

FLS Driver Protected ReSOUICES LiSt.........coicviiiiiieeeiiiiiiiieeee e 25
FLS Driver Component DeViation LiSt...........ccooiiiiiiiiiiei e 27
User mode and Supervisor mode detailSccceeiiiieiiiiiiiiii e 28
REQISTEr DELAIISeeiiiiiiiee it 35
Description of the FLS Driver Component FileS........cccccccvvviviiiiiiiiiiiiiiieeeeeeeee, 42
L SR o 11T I 1Y/ o L= 47
L S N [0 [(=T I3/ o = 48
L S =T o 11 I8/ 1 48
API Provided by FLS Driver COMPONENL..........cccvvvviiiiiiiiiiieeeieieeeeeeeeeeeeeeeeeeeeeeeee 48
DET Errors of FLS Driver COMPONENTcuuviiiiiiieeeiiieee ettt e e svreee e 59
DEM Errors of FLS Driver COMPONENT..........eiiiiiiiiieiiiiee ettt sineee e 60
PDF information fOr PLMcooii oot 66
Interrupt Functions for FLS MOdUIE............cuviiiiiiiiiiiii e 66
ROM/RAM Details With DETcoeiiiiiiieee e e e e 70
ROM/RAM Details WithOUE DETccciiviiiiiiiiiee et e e esiieee ettt e siree e nineee e 70
Stack Depth Table ... 71
Throughput Details of the APIS ... 71

10

Introduction Chapter 1

Chapter 1 Introduction

The purpose of this document is to describe the information related to FLS
Driver Component for Renesas P1x microcontrollers.

This document shall be used as reference by the users of FLS Driver
Component. The system overview of complete AUTOSAR architecture is
shown in the below Figure:

Microcontroller Drivers Memory Drivers Communication Drivers 1/0 Drivers
1 — 1 e 1 e— e I e e
=1l 2
]
5 HEHIE ; .
o 2 = S 2 2 = — o T
T gsl1al|g z s 2 ||m (||| Q 2 all =I&l2]||n
3 2 c o o= m = > Py c b)
o o o ® S NN Bl [l 5 Z & = o
> Q >) 2|9 < o o o =4
= ol =] |& (1118 1l3 o l|12|] g o BN ERRE
] = 2 s || 2 2
= IR A= E SRR el a([a]|e]|®
2 3 g 8 ®
2]
]
E— e —— —_ — s — — — —_— 1
> Micro- m m
ol £ls22 5| controller] Z|| Sl =& ellgz]l 2 all 2| &8|l ¢
) 3.0 > > o Y
3 SIEsEe el == 2 || = <l 2| of] ©
~ & T (o) =

Figure 1-1 System Overview of FLS Driver Component in AUTOSAR MCAL Layer

The FLS Driver Component is part of BSW which is accessible by RTE. This
RTE is a middle ware layer providing communication services for the
application software and thereby it is possible to map the application software
components between different ECUs.

The RTE provides the encapsulation of Hardware channels and basic
services to the Application Software Components. So it is possible to map
the Application Software-Components between different ECUs.

The Basic Software Modules are located below the RTE. The Basic Software
itself is divided into the subgroups: System Services, Memory,
Communication and 10 Hardware-Abstraction. The Complex Drivers are also
located below the RTE. Among others, the Operating System (OS), the
Watchdog manager and the Diagnostic services are located in the System
Services subgroup. The Memory subgroup contains modules to provide
access to the non-volatile memories, namely Flash and EEPROM. Here the
flash operation will be handled by flash driver.

On board Device Abstraction provides an interface to physical values for
AUTOSAR software components. It abstracts the physical origin of signals
(their paths to the hardware FLSs) and normalizes the signals with respect to
their physical appearance. The microcontroller driver provides services for
basic microcontroller initialization, power down functionality, reset and
microcontroller specific functions required from the upper layers.

Chapter 1

Introduction

12

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

FLS Driver

Microcontroller

Figure 1-2 System Overview of AUTOSAR Architecture

The FLS application software components are located at the top and can gain
access to the rest of the ECU and also to other ECUs only through the RTE.
This RTE is a middleware layer providing communication services for the
application software and thereby it is possible to map the application software
components between different ECUs.

This FLS Software Module is located below the RTE. The FLS Component
APIs are directly invoked by the application or RTE. The FLS Component is
responsible for erase/write/read/compare data on the data flash memory.

The FLS component perform the activities like accessing and programming
the on-chip data flash hardware.

The FLS Component layer comprises of API for erase/write data to on-chip
data flash memory of the device. The FLS Component conforms to the
AUTOSAR standard and is implemented mapping to the AUTOSAR FLS
Software Specification.

The functional parameters of FLS software components are statically
configurable to fit as far as possible to the real needs of each ECU.

Introduction

Chapter 1

1.1

Document Overview

The document has been segmented for easy reference. The table below
provides user with an overview of the contents of each section:

Section

Contents

Sectionl (Introduction)

This section provides an introduction and overview of FLS Driver
Component.

Section 2 (Reference Documents)

This section lists the documents referred for developing this document.

Section 3 (Integration and Build
Process)

This section explains the folder structure, Make file structure for FLS
Driver Component. This section also explains about the Make file
descriptions, Integration of FLS Driver Component with other
components, building the FLS Driver Component along with a sample
application.

Section 4 (Forethoughts)

This section provides brief information about the FLS Driver Component,
the preconditions that should be known to the user before it is used,
diagnostic channel, limit check feature, sample and hold feature,
conversion time and stabilization time, DMA and ISR operations, data
consistency details, deviation list and user mode and supervisor mode.

Section 5 (Architecture Details)

This section describes the layered architectural details of the FLS Driver
Component.

Section 6 (Registers Details)

This section describes the register details of FLS Driver Component.

Section 7 (Interaction between
The User And FLS Driver
Component)

This section describes interaction of the FLS Driver Component with the
upper layers.

Section 8 (FLS Driver Component
Header And Source File
Description)

This section provides information about the FLS Driver Component
source files is mentioned. This section also contains the brief note on the
tool generated output file.

Section 9 (Generation Tool Guide)

This section provides information on the FLS Driver Component Code
Generation Tool.

Section 10 (Application
Programming Interface)

This section explains all the APIs provided by the FLS Driver
Component.

Section 11 (Development And
Production Errors)

This section lists the DET and DEM errors.

Section 12 (Memory
Organization)

This section provides the typical memory organization, which must be
met for proper functioning of component.

Section 13 (P1M Specific
Information)

This section provides the P1M Specific Information.

Section 14 (Release Details)

This section provides release details with version name and base
version.

13

Chapter 1

Introduction

14

Reference Documents Chapter 2
Chapter 2 Reference Documents
SI. No. Title Version
1. IAUTOSAR_SWS_FlashDriver.pdf 3.2.0
2 r01uh0436ej0130_rh850p1x.pdf 1.30
3 IAUTOSAR_SWS_CompilerAbstraction.pdf 3.20
4. IAUTOSAR_SWS_MemoryMapping.pdf 1.4.0
5 IAUTOSAR_SWS_PlatformTypes.pdf 250
6. IAUTOSAR BUGZILLA (http://www.autosar.org/bugzilla))
Note: AUTOSAR BUGZILLA is a database, which contains concerns raised
against information present in AUTOSAR Specifications.

15

http://www.autosar.org/bugzilla

Chapter 2

Reference Documents

16

Integration and Build Process Chapter 3

Chapter 3

Remark

3.1.

Integration and Build Process

In this section the folder structure of the FLS Driver Component is explained.
Description of the Make files along with samples is provided in this section.

The details about the C Source and Header files that are generated by the
FLS Driver Generation Tool are mentioned in the
“R20UT3711EJ0101-AUTOSAR.pdf”.

FLS Driver Component Make file

The Make file provided with the FLS Driver Component consists of the GNU
Make compatible script to build the FLS Driver Component in case of any
change in the configuration. This can be used in the upper level Make file (of
the application) to link and build the final application executable.

3.1.1.Folder Structure

The files are organized in the following folders:

Remark Trailing slash ‘\’ at the end indicates a folder

X1X\common_platform\modules\fls\src
\Fls.c
\FIs_Internal.c
\FIs_Ram.c
\FIs_Version.c
\FIs_Private_Fcu.c
\Fls_Irg.c

X1X\common_platform\modules\fls\include
\Fls.h
\FIs_Debug.h
\FIs_Internal.h
\FIs_Private_Fcu.h
\FIs_PBTypes.h
\FIs_Ram.h
\FIs_Types.h
\FIs_Version.h
\FIs_Irg.h
\FIs_RegWrite.h

X1X\P1x\modules\fls\sample_application\<SubVariant>\make\ghs
\App_FLS_<SubVariant>_Sample.mak

X1X\P1x\modules\fls\sample_application\<SubVariant>\obj\<compiler>
(Note: For example, compiler can be ghs.)
X1X\common_platform\modules\fls\generator\Fls_X1x.dll

tools/RUCG/RUCG.exe

X1X\P1x\common_family\generator\Global_Application_P1x.trxml
17

Chapter 3

Integration and Build Process

18

Notes:

\Sample_Application_P1x.trxml

\P1x_translation.h

X1X\P1x\modules\fls\generator
\R403_FLS P1x BSWMDT.arxml

X1X\P1x\modules\fls\user_manual
(User manuals will be available in this folder)
<Compiler> can be ghs.

<Device_name> can be 701304, 701305, 701310, 701311, 701312, 701313,
701314, 701315, 701318, 701319, 701320, 701321, 701322 or 701323.

<SubVariant> can be P1M.

<AUTOSAR_version> can be 4.0.3.

Forethoughts Chapter 4

Chapter 4 Forethoughts

4.1. General

Following information will aid the user to use the FLS Driver Component
software efficiently:

FLS General

* The FLS Driver Component supports Data Flash access only. Code Flash
access is out of scope. User application shall not program Code Flash in
the application mode. Code Flash shall only be programmed in safe
environment in the boot mode.

* The start-up code is ECU specific. FLS Driver Component does not
implement the start-up code.

+ Example code mentioned in this document shall be taken only as a
reference for implementation.

* All development errors will be reported to DET by using the API
Det_ReportError provided by DET.

* All production errors will be reported to DEM by using the API
Dem_ReportErrorStatus provided by DEM.

* The FLS Driver Component developed supports only on-chip ROM and no
external devices are considered. Hence the parameters related to external
devices are ignored by the Generation Tool.

* The FLS Driver Component does not provide functionalities for setting of
protection flags, boot cluster size, swapping of boot block and flashing of
boot block and they are out of scope for FLS Driver Component
implementations.

* Maximum value of ‘FIsMaxReadNormalMode’ parameter specifies the size
of a temporary buffer in RAM which is used when Fls_Readlmmediate and
Fls_Compare APIs are called. The resulting RAM consumption has to be
considered.

* The length of the data that has to be programmed on to the flash should be
in multiples of flash page. The FLS Driver Component does not pad bytes
if the length is not in multiples of flash page. It is the responsibility of the
application to pad bytes such that the length of the data is in multiples of
flash page.

 FErase, Write, Read and Blank check jobs are initiated within the
corresponding APlIs itself. FIs_MainFunction API shall act as a checker
function and it shall check whether the job is completed and initiate the next
round of job cycle if the job is not completed.

* The normal write verification using the direct memory read access is
performed when DET is enabled.

« The FLS Driver Component can invoke user configurable call-back
notification functions. However, the implementation of the call back
functions is the responsibility of the upper layer.

* The parameter ‘FIsCallCycle’ shall be used for timeout implementation. The
Erase, Write and BlankCheck timeout count values shall be generated
based on FIsCallCycle and hardware specific atomic operations’ time
(‘FIsEraseTime’, ‘FIsWriteTime’ and ‘FlsBlankCheckTime’). To report
timeout, ‘FIsTimeOutMonitoring’ parameter needs to be configured as
TRUE'. In case if the parameter ‘FlsDevErrorDetect’ is also enabled, time
out DET shall be reported. The ‘FIsCallCycle’ parameter shall be
configured by the user correctly. Incorrect value may lead to reporting of
timeout DET by FIs_MainFunction.

* There are two possible errors that can be detected by ECC are Single-bit
errors (SED) and Double-bit errors (DED). The ECC error notification
feature is incorporated in Read functionality only. So whenever the read is

19

Chapter 4

Forethoughts

20

initiated this feature will be enabled always and only notifying to the upper
layer happens via configurable notification functions. The configuration of
single bit and double bit error notification function parameters are user
selectable. The error notification functions for both single bit and double bit
ECC error report are configurable with parameters from configuration.
The parameters are:

FlsEccSedNotification: This parameter mapped to Single-bit error (SED)
notification routine provided by some upper layer module.
FIsEccDedNotification: This parameter mapped to Double-bit error (DED)
notification routine provided by some upper layer module. The Double bit
error is reported to DEM in addition to notification functions.

The file Interrupt_VectorTable.c provided is just a Demo and not all
interrupts will be mapped in this file. So the user has to update the
Interrupt_VectorTable.c as per his configuration.

The accesses to HW registers is possible only in the low level driver layer.
The user shall never write or read directly from any register, but shall use
the AUTOSAR standard API provided by the MCAL.
FIsTimeOutCountValue: This parameter specifies the time out count
required for erase, write and blank check operations during interrupt
mode.Incorrect configuration of this parameter shall lead to erroneous
operations of FLS Driver.

FlsLoopCount: This parameter is used to avoid the risk of endless loops in
FLS driver. The loop count can be minimum 32 to maximum 255.

The configurations provided for fast mode write operation is ignored by the
Generation Tool and only configurations for normal mode operations and
fast mode read operation are accepted.

Fls_SetMode API sets the flash driver operation mode (FAST Mode/SLOW
Mode) for read operation. This API allows the user to read more number of
bytes during run time if in case the default mode is configured as
‘MEMIF_MODE_FAST’. FIs_SetMode APl is not applicable for
Erase/Write/Blank Check operations, because underlying hardware does
not support it.

FLS Initialization

FIs_Init API shall enable the flash memory erase/write protection settings if
it is supported by hardware. Before the flash operation protection shall be
disabled and after the completion of job, protection shall be again enabled.
During activation of flash environment (in Fls_Init), the access to Code flash
is not possible. Hence the user should ensure that all the application and
supporting components code that needs to be executed during flash
operation need to locate in RAM.

The device supports servicing of interrupts during self-programming.
During activation of flash environment (in Fls_Init), the interrupt vector
address in the flash will not be available. The interrupt vectors can be
relocated to RAM during flash programming. For details please refer
Exception Handling Address Switching Function in the according device
CPU user manual.

FLS Schedule operation

The FLS Driver Component’s job processing function (Fls_MainFunction)
is a polled function.

In a single cycle of FIs_MainFunction API, the maximum number of bytes
processed for the fast read command and normal read depends on the
configuration of parameters ‘FlsMaxReadNormalMode’ (if default mode is
MEMIF_MODE_SLOW) and ‘FlsMaxReadFastMode’ (if default mode is
MEMIF_MODE_FAST).

Forethoughts Chapter 4

* In a single cycle of FIs_MainFunction call, FLS driver performs write
operation for 4 bytes, or blank check operation for 4 bytes, or erase
operation for 64 bytes.

FLS Erase Operation

* The FIs_Erase API computes the sectors that need to be erased based on
the provided target address and length. When DET is enabled the error will
be reported if the length of the bytes to be erased is not in multiples of flash
sector size.

FLS Read Operation

» Data Flash Memory Read Cycle Setting Register (EEPRDCYCL) is used
to specify the number of wait cycles to be inserted when reading the data
in the data flash. The initial value of the register is taken by default. If
required user application shall set this register as per P1M device user
manual.

* Blank Check operation is done implicitly when performing Read operation

FLS Blank Check Operation

* The processing of blank check operation is applicable for Data flash only.

FLS Fast Read (Read Immediate) Operation

* The functional behavior of FLS driver when calling FIs_Readlmmediate API
will be the same as calling Fls_Read API except that blank check is
excluded.

» Blank check is time consuming and is not mandatory for reading an already
programmed flash area. FIs_Readlmmediate API can be used to perform
fast read operation without blank check when the user is sure that the area
to be read is already written with content.

Suspend and Resume operation

* Fls_Suspend API is used to suspend an ongoing flash operation in order
to do other flash operations. Only erase and write operations are suspend
able.

* FIs_Resume can only be used to resume a suspended flash operation.
Only erase and write operations are resume able.

* Itis not always possible to suspend.

E.g.: Any operation » suspend » suspend — is not possible.
Write or Erase » suspend P Erase operation — is not possible
Write operation » suspend P other Write operation — is not possible
Any operation » suspend P other operation » suspend—isn’t possible

FLS Timeout Monitoring

* The configuration parameter FlsTimeoutMonitoring in the FIsGeneral
container can be used to enable/disable the timeout supervision for FLS
driver independent of DET settings.

* Only when FIsTimeoutMonitoring is set to TRUE and DET is switched ON,
a DET error FLS_E_TIMEOUT will be reported in case of detection of a
timeout error.

* Inorder to perform timeout monitoring/supervision on flash operations, the
following configuration parameters should be used properly according to
use-cases.

» In the polling mode of FLS, the parameter FIsCallCycle shall be
configured to specify the cycle time of calls of the FLS main function (in

21

Chapter 4

Forethoughts

22

seconds). The timeout count values are calculated internally based on
the CPU frequency for the respective flash operations, i.e., erase, write,
blank check, etc.

» In the interrupt mode of FLS, the parameter FIsTimeOutCountValue
shall be configured to directly specify the timeout count value required
for erase, write and blank check operations.

» Fls_MainFunction is crucial for timeout supervision. The call frequency
of Fls_MainFunction shall be handled properly in the upper layer
software to be in line with the FLS module configuration.

Note: since read, read immediate, compare operations are not supported
in FLS interrupt mode, only the parameter FIsCallCycle is used to calculate
timeout count values for them irrespective of interrupt or polling mode. For
write, erase, blank check operations, FIsCallCycle is used in the polling
mode of FLS, while FIsTimeOutCountValue is used in the interrupt mode
of FLS.

In FlsGeneral container the configuration parameter FIsLoopCount is used

to avoid the risk of endless loops in the FLS driver. FlIsLoopCount is always

used in the implementation, hence it is not dependent on the parameter

FIsTimeoutMonitoring

Preconditions

Following preconditions have to be adhered by the user, for proper
functioning of the FLS Driver Component:

FLS General

The user should ensure that FLS Driver Component API requests are
invoked in the correct and expected sequence and with correct input
arguments.

Correct frequency configuration is essential for Flash programming quality
and stability. Wrong configuration could lead to loss of data retention or
Flash operation fail. The limits for CPU frequency are device dependent.
Please refer to the respective device user manuals for correct range. If the
CPU frequency is a fractional value, round up the value to the nearest
integer. Do not change power mode (voltage or CPU clock) while FLS is
performing a Data Flash operation. If power mode must change the user
can wait until operations are no longer busy or cancel the ongoing operation
and reinitialize the FLS module with proper CPU frequency value.

In case of Flash modification operation (Erase/Write) interruption due to
e.g. power failure, reset etc., the electrical conditions of the affected Flash
range (Flash block on erase, Flash write unit on Write) get undefined. It is
impossible to give a statement on the read value after the interruption.
Thus, the resulting read value is not reliable; the electrical margin for the
specified data retention may not be given. In such case, erase and re-
write the affected Flash block(s) to ensure data integrity and retention.

It is not possible to modify the Code Flash in parallel to a modification of
the Data Flash or vice versa due to shared hardware resources.

Data Flash blocks are aligned to 64 bytes and Data Flash words are
aligned to 4 bytes. RH850 devices also add alignment restrictions for
types larger than 8 bits. Please refer to device hardware manual for
details.

Validation of input parameters is done only when the static configuration
parameter FLS DEV_ERROR_DETECT is enabled. Application should
ensure that the right parameters are passed while invoking the APIs when
FLS_DEV_ERROR_DETECT is disabled.

A mismatch in the version numbers will result in compilation error. Ensure
that the correct versions of the header and the source files are used.

The files Fls_Cfg.h, Fls_Cbk.h and Fls_PBcfg.c generated using FLS
Generation Tool have to be linked along with FLS Driver Component

Forethoughts Chapter 4

source files.

* Values for production code Event Ids should be assigned externally by the
configuration of the DEM.

* Calling FLS functions, especially Cancel/Suspend/Resume/MainFunction
APIs by a higher priority ISR must be prevented by upper layer to avoid
possible re-entrancy issue.

* Interrupt mode supports Erase, Write, and Blank Check operations only.

* Cancel and suspend/resume operations are not allowed in case of two
instances of FLS Driver Component as the effect is not evaluated.

» All functions are not re-entrant. So, re-entrant calls of any not re-entrant
function must be avoided.

* User have the responsibility to enable or disable the critical protection
using the parameter FIsCriticalSectionProtection. By enabling parameter
FlsCriticalSectionProtection, Microcontroller HW registers which suffer
from concurrent access by multiple tasks are protected.

* To use the FLS driver, the FCU firmware shall be stored and executed
from in FCURAM. And the software that reads the FCU firmware area
shall be placed in internal RAM.

* Due to these preconditions, the following four private functions used in
FIs_Init() shall be placed in internal RAM at link time using linker derivative
in order to perform FLS driver initialization properly.

Fls_FcuCopytoRam() - size 118 Bytes,
Fls_FcuSwitchBFlash() - size 46 Bytes,
Fls_FcuClearCache() - size 76 Bytes,
Fls_FcuGetFWParam() - size 46 Bytes.
For the integration, the FLS driver code comes under the memory sections
FLS_START_SEC_PRIVATERAM_CODE /

FLS _STOP_SEC_PRIVATERAM_CODE shall be placed in internal RAM
for the execution.
Please refer to the FLS sample application linker script for more details.

* As the atomic time-out monitoring in POLLING mode depends
FlsCallCycle parameter, which is the schedule time of Fls_MainFunction
call, the user should take care the configuration of that parameter as per
the intended cycle time of FIs_MainFunction. i.e: If there are any scenarios
where Fls_MainFunction may be called with different cycle time in the
same application, the user shall configure FlsCallCycle with the least cycle
time, otherwise it may hit early time-out error.

FLS Initialization

* Fls_Init function temporarily disables Code Flash. During this time, since
the Code Flash is not available, the FLS code shall be executed from
internal RAM. Please ensure that: (1) User application code execution is
done from other locations than Code Flash (e.g. internal RAM). (2) No
access to Code Flash is allowed, e.g. by jump to interrupt/exception
functions, direct Code Flash read/execution from the CPU, DMA accesses
to Code Flash.

* The FLS Driver Component needs to be initialized by calling Fls_Init
before calling any other Fls functions.

* FlIs_Init shall do verification of ECC control registers, so as to ensure ECC
1-bit error detection and correction, ECC 2-bit error detection are enabled
for data flash before initialization of FCU. If the user configurable ECC
check for FACI is enabled and if the verification of FACI ECC register fails,
DEM error FLS_E_ECC_FAILED shall be reported.

* Fls_Init function temporarily disables Code Flash in order to copy the FCU
firmware and initialize FCU properly. Afterwards, Code Flash will be re-
enabled. When failure occurs during re-enabling Code Flash, a call-back
function is invoked to notify the upper layer software. This call-back
function Fls_CallSwitchBFlashErrorNotification() is declared in "FIs.h" as

23

Chapter 4

Forethoughts

24

user interface, and shall be implemented in the upper layer software.
Countermeasures (e.g. hardware reset) against such failure shall be
considered in the call-back function implementation. And this function
Fls_CallSwitchBFlashErrorNotification() must be properly mapped in RAM
and executed out of RAM in case of failure.

FLS Schedule operation

The Fls_MainFunction should be invoked regularly by the Basic
Scheduler. Though not specified by AUTOSAR, calling
Fls_MainFunction by polling mechanism is also possible. Ensure that the
FLS Driver Component is initialized before enabling the invocation of this
scheduled function to avoid reporting of a DET error when enabled.

FLS Write Operation

Due to RV40 Flash technology, hardware will implicitly reject the write
operation if the target Flash cells are not blank (a kind of "overwriting
guard"). Writing to non-blank Flash cells will result in write error.

Writing the same area more than once is prohibited. To write again the
flash memory area where data has already been written to, user shall
erase the corresponding area in advance.

FLS Read Operation

Data Flash on RH850 devices is made with differential cells for storage.
This means that reading erased but non-programmed Data Flash areas
directly (bypassing FLS) will produce undefined data with a tendency to the
previously written data, and it will most probably cause ECC error
exceptions. To avoid this exceptions, use FLS read APIs.
FIs_Readlmmediate APl should not be used to read blank cells. User
application shall handle the errors associated with blank cell read using
Fls_Readlmmediate API.

FLS Blank Check Operation

A blank check pass does not confirm that it is possible to write to this word
(4 Bytes). Also partly written/erased words may have a blank check pass
but write is not allowed under this condition. A blank check fail does not
confirm a stable read value. Even though parts of a word are at least partly
written, random read data are still possible, so are ECC error indications
for single error corrections and double error detection.

Due to the above shown limitations the information which can be given by
FIs_BlankCheck, either passing or failing, is limited. It cannot be used to
determine the current state of a flash cell in a meaning full way without
additional information obtained by other means. The blank check should
only be used to confirm or check some flow status but should not be used
to determine if a flash cell can be read or written. FLS055 from AUTOSAR
Specification of Flash Driver are not fulfilled here because blank check itself
is not able to identify erasure state of flash cell which is ready for write
operation. Please refer to application note document "RV40F DataFlash
Usage" for more details about blank check and usage hints

FLS Cancel Operation

If a cancel request is accepted, during an on-going write or erase
operation and a previous operation is already suspended, then both
operations will be cancelled.

Forethoughts

Chapter

4

FLS Suspend operation

Suspend operation shall not be performed in between atomic operations
of the job. i.e., in between 64 bytes of erase and 4 bytes of write,
suspension is not possible. The job can be suspended only after
completion of one atomic operation.

When an erase job is suspended, calling a write job at the same address
of that of erase job and then resuming the previously suspended erase job

shall report DET indicating failure of erase verification.

4.3. Data Consistency
To support FLS the reentrancy and interrupt services, the FLS Software
component will ensure the data consistency while accessing their own RAM
storage or hardware registers
The FLS module will use below macro for respective higher and lower
version.
#define FLS_ENTER_CRITICAL_SECTION (Exclusive_Area)
SchM_Enter_FIs_##Exclusive_Area ()
#define FLS_EXIT_CRITICAL_SECTION (Exclusive_Area)
SchM_EXxit_FlIs_##Exclusive_Area ()
The following exclusive areas along with scheduler services are used to
provide data integrity and register protection for shared resources:
e FLS DRIVERSTATE_DATA_PROTECTION
e FLS REGISTER_PROTECTION
e FLS CODE_FLASH_DISABLED
Note: The data buffer provided by the application will not be validated
for data consistency. It would be the responsibility of the application to
ensure consistency of the flash data during flash read and write
operations.
Table 4-1 FLS Driver Protected Resources List
APl Name Exclusive Area Type Protected
Resources
HW Registers:
Fls_Init FLS_REGISTER_PROTECTION FRAMMCR
FCURAME
FPCKAR
Firmware storage
FLS_CODE_FLASH_DISABLED area switching is
protected
HW Registers:
Fls_Erase FLS_REGISTER_PROTECTION FSADDR
FEADDR
IMR
Driver state data is
FLS_DRIVERSTATE_DATA_PROTECTION | protected

25

Chapter 4

Forethoughts

APl Name

Exclusive Area Type

Protected
Resources

Fls_Write

FLS_REGISTER_PROTECTION

HW Registers:
FSADDR
FEADDR

IMR

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is
protected

Fls_MainFunction

FLS_REGISTER_PROTECTION

HW Registers:
DFERSTC
DFERSTR
DFERRINT
IMR

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is
protected

Fls_Resume

FLS_REGISTER_PROTECTION

HW Registers:
DFERSTC
DFERSTR
DFERRINT
IMR

Fls_Read

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is
protected

Fls_Compare

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is
protected during
compare operation

Fls_Cancel

FLS_REGISTER_PROTECTION

HW Registers:
IMR

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is
protected during
cancel operation

Fls_BlankCheck

FLS_REGISTER_PROTECTION

HW regqisters:
IMR

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is
protected during
blank check
operation

Fls_Readlmmediate

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is
protected during
read immediate
operation

FLS_FLENDNM_ISR

FLS_REGISTER_PROTECTION

IMR

Note: The highest measured duration of a critical section is 128.537 micro seconds,
measured for Fls_Init API.

26

Forethoughts

Chapter 4

4.4. Deviation List

Table 4-2

FLS Driver Component Deviation List

Sl. No.

Description

AUTOSAR
Bugzilla

The fast mode parameter ‘FlIsMaxWriteFastMode’ of the
container ‘FlsConfigSet is unused.

The parameters ‘FlIsAcLoadOnJobStart’ and
‘FlsUselnterrupts’ of the container ‘FlsGeneral’ is unused.

The flash access routines are not placed into a separate
C-module like 'Fls_ac.c'.

FLS140 and FLS141 are not fulfilled, because the FLS
module does not load the flash access code for erase/write
operation to the location in RAM on job start.

The parameters ‘FlsProtection’, FlsAcWrite’ and ‘FlsAcErase’
of the container ‘FIsConfigSet’ are unused.

The parameters ‘FlsAcLocationErase’, ‘FIsAcLocationWrite’,
‘FlsAcSizeErase’ and ‘FIsAcSizeWrite’ of the container
‘FlsPublishedInformation’ are unused.

The component will support only the on-chip flash memory.
External flash is not in the scope of this implementation.

FLS272, FLS359, FLS360 and FLS361 from AUTOSAR
Specification of Flash Driver are not fulfiled here
because timeout monitoring can be configured independent
of DET setting. However only when both timeout monitoring
and DET are enabled, FLS_E_TIMEOUT will be reported in
case of detected timeout error.

The timeout monitoring can be configured independent of
DET setting in FLS. FLS272, FLS359, FLS360, FLS361 can
only be fulfilled, when both timeout monitoring and DET are
enabled, i.e., FLS_E_TIMEOUT will be reported for the
respective flash operations in case of detected timeout error.

10.

FLS201_Conf from AUTOSAR Specification of Flash Driver
is not fulfilled here because FlsSectorList is limited to one
sector with fixed sector size. User shall not configure multiple
sectors. Since data flash is a monolithic on-chip NV memory
with homogeneous block size, it is not required to have
multiple sectors with the same sector sizes. Important is that
FLS driver shall support possible usage of "user pool" (private
data flash area that cannot be accessed by FLS driver). This
can be done by proper configuration of
FIsSectorStartaddress and FIsNumberOfSectors.

27

Chapter 4 Forethoughts

4.5. User mode and supervisor mode

The below table specifies the APIs which can run in user mode, supervisor
mode or both modes

Table 4-3 User mode and Supervisor mode details
SI. No [APl Name User Supervisor| Known limitation in User mode
Mode Mode
1 - X The FlIs_lInit is failing in User mode.
This is because inside Fls_Init
function STSR instruction (to store
contents of system register) is called
for storing contents of ICCTRL
Fls_Init (instruction cache control) to system
register. Since the ICCTRL have the
access permission in only
supervisor mode, Fls_Init fails in
user mode.
2 FIs_Read X X -
3 Fls_SetMode X X -
4 Fls_Write X X -
5 Fls_Cancel X X -
6 Fls_GetStatus X X -
7 Fls_GetJobResult X X -
8 Fls_Erase X X -
9 FIs_Compare X X -
10 Fls_GetVersioninfo X X -
11 Fls_MainFunction X X -
12 FIs_BlankCheck X X R
13 FIs_Readlmmediate X X -
14 Fls_Suspend X X -
15 FIls Resume X X -

Note: Implementation of critical section is not dependent on MCAL. Hence critical
section is not considered to the entries for user mode in the above table.

28

Architecture Details

Chapter 5

Chapter 5

Architecture Details

The FLS Software architecture is shown in the following figure. The FLS user
shall directly use the APIs to configure and execute the FLS conversions:

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

FLS Driver

Microcontroller

Figure 5-1 FLS Driver Component Architecture

The basic architecture of the FLS Driver Component is illustrated in the

following Figure:

29

Chapter 5 Architecture Details
Application Layer
Fls_SetMode Fls_GetVersion Fls_Read Fls_Compare Fls_GetJobResult Fls_Write
Info Fls_GetStatus Fis_Cancel
Fls_Res .
Fls_Sus — Fls_nit Fis_Bla) FIs_Rea Fls_Erase
\ 4 ume Fls_MainFun
pend nkChec ction dimmed
Sets -
k iate
Flash
Driver’s A 4 v A A 4
Operatio Returns Fls P bOOWaI"e v v Fls_Initiate
: s_Process ytes in i
n Mode version Read () buffor with Returns FIs_Proces WriteJob ()
informat flash the status/r sCancel ()
ion memory esult
4 \ 4 \ 4
v Resumes Fls_Initi v Perfor Fls_Init
Suspend oreviously Fls_Fcu ateBlan Performs the ms fast iateEra
on- suspended Init () kCheck] job processing read seJob ()
going job ob () of erase, operati
write, read and on.
compare jobs.
FLS Driver Layer
v v v v v v v
Microcontroller
Figure 5-2 Component Overview of FLS Driver Component

30

The internal architecture of FLS Driver Component is shown in the above figure.
The FLS Driver Component Software Component provides services for the
following processes:

The FLS Driver Component is divided into the following sub modules based on
the functionality required:

Initialization

Erasing the flash memory

Writing to the flash memory

Reading the flash memory

Fast Read to the application memory without performing blank check
Validating contents of flash memory

Cancellation of Request

Reading result and status information

Module version information

Blank check of flash memory

Job Processing

Fls_Suspend suspends the on-going job.

Fls_Resume performs the resume of previous suspended job.

Architecture Details

Chapter 5

Initialization

The initialization sub-module provides the service for initialization of the flash
driver and initializes the global variables used by the FLS Component. FCU
initialization API initializes FCU Global Variable Structure and prepares the
environment. After that firmware code is copied to the RAM and FACI frequency
is set. The function also resets the FCU and initialize the hardware registers to
default values.

The API related to this sub-module is Fls_|Init.

Flash Memory Erasing Module

This sub-module provides the service for erasing the blocks of the flash memory.

The request will be processed by the job processing function Fls_MainFunction.
The First round of erase operation is initiated from within the API itself.
Fls_MainFunction is then called to erase the remaining requested data flash
memory blocks. The job is processed till the requested numbers of blocks are
erased in the flash memory. Blank Check shall be done to ensure that the blocks
are completely erased.

The API related to this sub-module is FIs_Erase.

Flash Memory Reading Module

This sub-module provides the service for reading the contents of the flash
memory. The request will be processed by the job processing function
Fls_MainFunction.

In this job processing function, blank check for the specified words shall be
performed first. If the cell is blank, then the application buffer shall be filled with
the value specified by the parameter ‘FIsErasedValue’. If the cell is not blank,
then reading of the specified words from the Flash memory shall be performed.
This sub-module reads the specified number of words from consecutive Flash
addresses starting at the specified address and writes it into a buffer. Read
operation shall be initiated within the sub-module itself. Single cycle of
Fls_MainFunction shall read the maximum number of bytes configured
depending on the parameters ‘FlsMaxReadNormalMode’ (if default mode is
MEMIF_MODE_SLOW) and ‘FlIsMaxReadFastMode’ (if default mode is
MEMIF_MODE_FAST). The job is processed till the requested bytes of length
are copied into the application buffer.

The API related to this sub-module is FIs_Read.

Flash Memory Writing Module

This sub-module provides the service for writing to the flash memory.

The request shall be processed by the job processing function
FIs_MainFunction. The First round of write operation is initiated from within the
API itself. In this job processing function, the writing of specified number of data
bytes from buffer to flash memory shall be performed. The function writes the
specified number of words from buffer to consecutive Flash addresses starting
at the specified address. Single cycle of Fls_MainFunction shall write 4 bytes of

31

Chapter 5

Architecture Details

32

data from target buffer to flash addresses. The job is processed till the requested
number of bytes is written to the flash memory
The API related to this sub-module is Fls_Write.

Flash Memory Contents Validating Module

This sub-module provides the service for comparing the contents of the flash
memory with the application buffer.

The request shall be processed by the job processing function
Fls_MainFunction.

This sub-module shall read the defined nhumber of words in flash and store it in
the temporary buffer. Then actual data in application buffer shall be compared
with data in temporary buffer. Here data shall be compared in terms of bytes.
Single cycle of FIs_MainFunction shall read the data from the flash memory
depending on configuration of parameter ‘FlsMaxReadNormalMode’ for data
flash. The job is processed till the requested number of bytes are read and
compared with the application buffer.

The API related to this sub-module is FIs_Compare.
Request Set Mode Module

This sub-module sets the flash driver operation mode.
The API related to this sub-module is FIs_SetMode.

Request Cancellation Module

This sub-module provides the service for cancelling an on-going memory
request.

After aborting the current on-going memory operations this sub- module
prepares internal variables to accept the next Read/Write/Erase/ Compare
command. The cancel request will be synchronous and a new job can be
requested immediately after the return from this function. A suspended job is
also cancelled.

The API related to this sub-module is FIs_Cancel.

Result Reading and Status Information Providing Module

This sub-module provides the services for getting the current status of the
module or results of the initiated job request or the response to previously
issued command and return the current status of the current job execution.

The APIs related to this sub-module are Fls_GetStatus, Fls_GetJobResult.

Software Component Version Info Module

This module provides API for reading Module Id, Vendor Id and vendor specific
version numbers.

The API related to this sub-module is FIs_GetVersioninfo.

Architecture Details

Chapter 5

Job Processing Module

The command requests are always processed by the main function that is
invoked cyclically by the scheduler. This function will perform the status check
while processing the flash operations requests. This API derives the internal
driver status. Completion of the flash operation needs to be checked in order
to continue the reprogramming flow. A Time-out feature is available with the
help of time-out counter operation in this API.

The API related to this sub-module is Fls_MainFunction.
Flash Memory Blank Check Module

This sub-module provides the service for performing blank check of the flash
memory words. The request shall be processed by the job processing function
Fls_MainFunction. This function is invoked to perform the blank check of the
single word. The job is processed till the requested numbers of words are
performed with the blank check in the flash memory.

The API related to this sub-module is FIs_BlankCheck.
Flash Memory Fast Read Module

This sub-module provides the service for reading the contents of the flash
memory. The request shall be processed by the job processing function
Fls_MainFunction. This function reads the specified number of words from
consecutive Flash addresses starting at the specified address and writes it into
a buffer. Single cycle of FIs_MainFunction, shall read the data from the data flash
memory. The data from flash memory (source address) is read to the data buffer
(Target address) of application without performing blank check before read. The
job is processed till the requested bytes of length are copied into the application
buffer.

The API related to this sub-module is Fls_Readlmmediate.
Job Suspend Module

This sub-module provides the service of suspending the on-going job. The driver
goes into idle state after the job is suspended. FIs_Suspend is asynchronous
API. FIs_Suspend shall reject any unacceptable request of suspension such as
issuing suspend request for operations other than erase and write and if no on-
going job is present.

The API related to this sub-module is FIs_Suspend.
Job Resume Module

This sub-module provides the service for performing the resume of the previous
suspended job. FIs_Resume is synchronous API. FIs_Resume acknowledges
the resume request and it returns immediately.

The API related to this sub-module is Fls_Resume.

33

Chapter 5

Architecture Details

34

Registers Details

Chapter 6

Chapter 6 Registers Details
This section describes the register details of FLS Driver Component.
Table 6-1 Register Details
Register Register Config
Registers Access Access Macro/Variable
APl Name Used 8/16/32 | RMW/Rw | Farame
bits ter
Fls_Init FSADDR 32 RW - LulStartAddr

FLS_FCU_ADDR_REG_RESET

FEADDR 32 RwW - LulEndAddr
FLS FCU ADDR REG RESET

FSTATR 32 R - LulRegValue
LulReturnValue

FENTRYR 16 RwW - LddMode
FLS_FCU_REGBIT_FENTRY_KEY
LusModeRegVal

FASTAT 8 RW - FLS_FCU_REGBIT_FASTAT CMDL
K

FCURAME 16 RwW - FLS_FCU_REGBIT_FCURAME_FC
RME
FLS_FCU_REGBIT_FCURAME_KEY
FLS FCU_REGBIT_FCURAME_RE
SET
FLS_FCU_REGBIT_FCURAME_FRA
MTRAN

FPCKAR 16 RwW - FLS_FCU_REGBIT_FPCKAR_KEY
LusFaciFreq

FRTEINT 8 RwW - FLS_FACI_FRTEINT_RESET_VAL

FCUFAREA | 8 RW - LucModeVal

ICCTRL 32 RwW - FLS_FCU_SYSTEM_REGISTER_IC
CTRL

CDBCR 32 RwW - FLS_FCU_SYSTEM_REGISTER_CD
BCR

DFECCCTL 16 RW - FLS_DFECCCTL_RESET_VAL

DFERRINT 8 RW - FLS_ DFERRINT _RESET_VAL

DFTSTCTL | 16 RW - FLS_ DFTSTCTL _RESET_VAL

FHVE3 32 RwW - FLS_FLASH_PROTECTION_OFF
FLS_FLASH_PROTECTION_ON

FHVE15 32 RW - FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

35

Chapter 6

Registers Details

Registe | Register
. r Access] Macro/Variable
API Name Reg;tgrs Access | R/IW/RW szrgnmf:a%er
8/16/32
bits
Fls_Erase, FSADDR 32 RW - LulCurrentStartAddr
Fls_MainFunction, FLS_FCU_ADDR_REG_RESET
Fls_Resume LulStartAddr
FEADDR 32 RW - LulCurrentEndAddr
FLS_FCU_ADDR_REG_RESET
LulEndAddr
FSTATR 32 R - LulRegValue LulReturnValue
FENTRYR 16 RW - LddMode
FLS FCU_REGBIT_FENTRY_KEY
LusModeRegVal
ICFLENDNM | 16 RW - LusRegvalue
IMRN 16 RW - pFIEndimrAddress,
usFIEndImrMask
FHVES 32 RW - FLS_FLASH_PROTECTION_OFF
FLS_FLASH_PROTECTION_ON
FHVE15 32 RW - FLS_FLASH_PROTECTION_OFF
FLS_FLASH_PROTECTION_ON
Fls_Write, FSADDR 32 RW - LulCurrentStartAddr
Fls_MainFunction, FLS FCU_ADDR_REG_RESET
FIls_Resume
FEADDR 32 RW - LulCurrentStartAddr +
FLS_FCU_WRITE_SIZE) -
FLS FCU_ONE
FLS FCU ADDR REG RESET
FSTATR 32 R - LulRegValue
LulReturnValue
FENTRYR 16 RW - LddMode
FLS_FCU_REGBIT_FENTRY_KEY
LusModeRegVal
ICFLENDNM | 16 RW - LusRegvalue
IMRNn 16 RW - pFIEndimrAddress,
usFIEndimrMask
FHVE3 32 RW - FLS_FLASH_PROTECTION_OFF
FLS_FLASH_PROTECTION_ON
FHVE15 32 RW - FLS_FLASH_PROTECTION_OFF
FLS_FLASH_PROTECTION_ON
FIs_Cancel FENTRYR 16 RW - LddMode
FLS FCU_REGBIT_FENTRY_KEY
LusModeRegVal
FASTAT 8 RW - FLS_FCU_REGBIT_FASTAT_CMDLK
FSTATR 32 R - LulReturnValue
ICFLENDNM | 16 RW - LusRegvalue
IMRNn 16 RW - pFIEndimrAddress,

usFIEndImrMask

36

Registers Details

Chapter 6

Registe | Register
. r Access Config Macro/Variable
API Name Reg;setgrs Access | R/IW/RW | Parame
8/16/32 ter
bits
Fls_Read, FSADDR 32 RW - LulStartAddr
Fls_MainFunction, FLS_FCU_ADDR_REG_RESET
Fls_Resume FEADDR 32 RW - LulEndAddr
FLS_FCU_ADDR_REG_RESET
DFERSTC 8 w - FLS_FCU_REGBIT_DFERSTC_ER
RCLR
DFERRINT 8 RW - LucRegValue
FLS_FCU_REGVAL_DFERRINT_N
OINT
DFERSTR 8 R - LulErrorRegValue
FSTATR 32 R - LulReturnValue
LulRegValue
ICFLENDNM 16 RW - LusRegvalue
FBCSTAT 8 R - LulRegValue
FENTRYR 16 RW - LddMode
FLS_FCU_REGBIT_FENTRY_KEY
LusModeRegVal
Fls_Readlmmedia | DFERSTC 8 w - FLS_FCU_REGBIT_DFERSTC_ER
te, RCLR
Fls_MainFunction | DFERRINT 8 RW - LucDFERRINt
FLS_FCU_REGVAL_DFERRINT_N
OINT
DFERSTR R - LulDFERStatus
Fls_Compare, DFERSTC w - FLS_FCU_REGBIT_DFERSTC_ER
Fls_MainFunction RCLR
DFERRINT 8 RW - LucRegValue
FLS_FCU_REGVAL_DFERRINT_N
OINT
DFERSTR 8 R - LulErrorRegValue
ICFLENDNM 16 RW - LusRegvalue
Fls_BlankCheck, FSADDR 32 RW - LulStartAddr
Fls_MainFunction
Fls_Resume FEADDR 32 RW - LulEndAddr
FSTATR 32 R - LulReturnValue
LulRegValue
FBCSTAT 8 R - LulRegValue
FENTRYR 16 RW - LddMode
FLS_FCU_REGBIT_FENTRY_KEY
LusModeRegVal
ICFLENDNM 16 RW - LusRegvalue
IMRN 16 RW - pFIEndimrAddress,
usFIEndimrMask
FHVE3 32 RW - FLS_FLASH_PROTECTION_OFF
FLS_FLASH_PROTECTION_ON
FHVE15 32 RW - FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

37

Chapter 6 Registers Details
Register | Register
API Name Registers | Access Access Config Macro/Variable
Used 8/16/32 R/W/RW | Parameter
bits

Fls_GetStatus

Fls_GetJobResult

Fls_Suspend

Fls_GetVersioninfo

38

Interaction between the User and FLS Driver Component Chapter 7

Chapter 7

7.1

Interaction between the User and FLS
Driver Component

The details of the services supported by the FLS Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

Services Provided by FLS Driver Component to the
User

The FLS Driver Component provides the following functions to upper layers:

* Writing contents to data flash memory

* Erase flash memory sectors

* Read flash contents to the application memory

* Fast Read to the application memory without performing blank check
» Validate flash contents comparing with the application memory
+ Cancel the on-going erase, write, read or compare requests.

* Read the result of the last job

* Blank check of flash memory

* Read the status of the FLS Driver Component.

* FIs_Suspend suspends the on-going job.

* FIs_Resume performs the resume of previous suspended job.

Caution:

» If other software components in BSW are accessing data flash or FACI
registers, then the synchronization between FLS and other software
components shall be handled by user application to ensure data
consistency.

* Please pay attention that many FLS APIs are non-reentrant. This means it
is not allowed to call a non-reentrant API function from a different program
context (e.g. interrupt service routines, other threads) while another or the
same non-reentrant API function is already running.

In particular, when calling Fls_MainFunction, user application shall avoid
collision with other non-reentrant FLS APIs.

39

Chapter 7

Interaction between the User and FLS Driver Component

40

FLS Driver Component Header and Source File Description Chapter 8

Chapter 8 FLS Driver Component Header and Source
File Description

This section explains the FLS Driver Component’s C Source and C Header files.
These files have to be included in the project application while integrating with
other modules.

The C header file generated by FLS Driver Code Generation Tool:

* Fls_Cbk.h
* FlIs_Cfg.h

The C source file generated by FLS Driver Code Generation Tool:

* FIs_PBcfg.c

The FLS Driver Component C header files:
* Fls.h

* FIs_Debug.h

* FlIs_Internal.h

* FIs_Types.h

* FIs_PBTypes.h

* FIs_Version.h

* FIs_Ram.h
* FIs_Private_Fcu.h
* FlIs_Irg.h

* FIs_RegWrite.h

The FLS Driver Component source files:
* Fls.c

* FlIs_Internal.c

* FIs_Ram.c

* FIs_Private_Fcu.c

* FIs_Version.c

* FlIs_Irg.c

The Stub C header files:

+ Compiler.h
+ Compiler_Cfg.h
« MemMap.h

* Platform_Types.h
* rh850_Types.h
« Dem.h

« Dem_Cfg.h

* Deth

« Memlf.h

« Memlf_Types.h
* Os.h

* Rte.h

e Std_Types.h

* SchM_Fls.h

The description of the FLS Driver Component files is provided in the table
below:

41

Chapter 8

FLS Driver Component Header and Source File Description

42

Table 8-1

Description of the FLS Driver Component Files

File

Details

Fls_Cfg.h

This file is generated by the Renesas Unified Code Generator Tool for
various FLS Driver Component pre-compile time parameters. The macros
and the parameters generated will vary with respect to the configuration in
the input ECU Configuration description file. This file also contains the
handles for Fls Pin configuration set.

Fls_Cbk.h

This file contains declarations of notification functions to be used by the
application. The notification function name can be configured.

FIs_PBcfg.c

This file contains post-build configuration data. The structures
related to FLS Initialization are provided in this file. Data structures
will vary with respect to parameters configured.

Fls.h

This file provides extern declarations for all the FLS Driver Component APIs.
This file provides service Ids of APIs, DET Error codes and type definitions
for FLS Software initialization structure. This header file shall be included in
other modules to use the features of FLS Driver Component.

Fis_Debug.h

This file provides Provision of global variables for debugging purpose.

Fls_Internal.h

This file contains the declarations of the internally used functions.

FIs_Types.h This file contains the common macro definitions and the data types
required internally by the FLS software component.
Fls_Ram.h This file contains the extern declarations for the global variables that are

defined in FIs_Ram.c file and the version information of the file.

Fls_Version.h

This file contains the macros of AUTOSAR version numbers of all modules
that are interfaced to FLS.

Fls_Irg.h

This file contains the external declaration for the interrupt functions used
by FLS Driver Module.

Fls_Private_Fcu.h

This file contains API Declarations of Flash Control Unit specific functions

Fls_RegWrite.h

This file is to have macro definitions for the registers write and verification.

Fls.c

This file contains the implementation of all APIs.

Fls_ Ram.c

This file contains the global variables used by FLS Driver Component.

Fls_Private_Fcu.c

This file contains FCU related APl implementations

Fls_Internal.c

This file contains the definition of the internal functions that access the
hardware registers.

Fls_Version.c

This file contains the code for checking version of all modules that are
interfaced to FLS.

Fls_Irg.c This file contains the implementation of all the interrupt functions used by
FLS Driver Module.
Compiler.h Provides compiler specific (non-ANSI) keywords. All mappings of keywords,

which are not standardized, and/or compiler specific are placed and
organized in this compiler specific header.

Compiler_Cfg.h

This file contains the memory and pointer classes.

MemMap.h

This file allows to map variables, constants and code of modules to
individual memory sections. Memory mapping can be modified as per ECU
specific needs.

FLS Driver Component Header and Source File Description

Chapter 8

File

Details

Platform_Types.h

This file provides provision for defining platform and compiler dependent
types.

Fls_PBTypes.h

This file contains the type definitions of post build parameters. It also
contains the macros used by the FLS Driver Component.

rh850_Types.h

This file provides macros to perform supervisor mode (SV) write enabled
Register ICxxx and IMR register writing using OR/AND/Direct operation.

Dem.h This file is a stub for DEM Component.

Dem_Cfg.h This is a stub file used for defining dem event parameters used in the
configuration.

Det.h This file is a stub for DET Component.

Memlf.h This file is a stub for MEMIF Module.

Memlf_Types.h This file is a stub for MemIf component.

Os.h This file is a stub for Os Component.

Rte.h This file is a stub for Rte Component.

Std_Types.h This file is a stub file which contains the standard type definitions.

SchM_Fls.h This file is a stub file which is used to get the support of critical section

protection.

43

Chapter 8

FLS Driver Component Header and Source File Description

44

Generation Tool Guide

Chapter 9

Chapter 9

Generation Tool Guide

For information on the FLS Driver Code Generation Tool, please refer
“R20UT3711EJ0101-AUTOSAR.pdf” document.

45

Chapter 9 Generation Tool Guide

46

Application Programming Interface Chapter 10

Chapter 10 Application Programming Interface

This section explains the Data types and APIs provided by the FLS Driver
Component to the Upper layers.

10.1. Imported Types

This section explains the Data types imported by the FLS Driver Component
and lists its dependency on other modules.

10.1.1. Standard Types

In this section all types included from the Std_Types.h are listed:
* Std_ReturnType
* Std_VersioninfoType

10.1.2. Other Module Types
In this section all types included from the Dem.h and MemlIf_Types.h are listed.

 Dem_EventldType

* Dem_EventStatusType
* Memif_JobResultType
* Memif_StatusType

* Memlf_ModeType

10.2. Type Definitions

This section explains the type definitions of FLS Driver Component according
to AUTOSAR Specification

10.2.1 FlIs_ConfigType

Table 10-1 Fls_ConfigType
Name: Fls_ConfigType
Type: Structure
Type Name Explanation
unit32 ulStartOfDbToc Database start value
void* pJobEndNotificationPointer Pointer to job end
callback notification
void* pJobErrorNotificationPointer Pointer to job error
callback notification
void* pEccSEDNotificationPointer Pointer to ECC SED
callback notification
void* pEccDEDNOotificationPointer Pointer to ECC DED
callback notification
uint32 ulFIsSlowModeMaxReadBytes | Maximum number of
Read bytes in Normal
Mode
uint32 ulFIsFastModeMaxReadBytes | Maximum number of
Read bytes in fast
Mode

47

Chapter 10 Application Programming Interface
uintl6* pFIEndimrAddress Address for error
IMR registers
uint1l6 usFIEndimrMask Mask for IMR
register
volatile FIs_FACIRegType | pFACIRegPtr Base Address for
FACI Registers
_ volatile FIs_ECCRegType | pECCRegPtr Base Address for
Element: ECC Registers
MemlfModeType ddDefaultMode Default Mode value
I Structure to hold the flash driver configuration set. The contents of the initialisation data
Description: structure are specific to the flash memory hardware

10.2.2 Fls_AddressType

Table 10-2

Fls_AddressType

Name: Fls_AddressType

Type: uint

Range: Size depends on target platform and flash
8/16/32 bits device.

Description: Used as address offset from the configured flash base address to access a certain

flash memory area.

10.2.3 FlIs_LengthType

Table 10-3 Fls_LengthType
Name: Fls_LengthType
Type: uint
Range: Shall be the same type as
FIs_AddressType because of arithmetic
Same as Fls_AddressType operations. Size depends on target
- platform and flash device.
Description: Specifies the number of bytes to read/write/erase/compare.

10.3. Function Definitions

Table 10-4 API Provided by FLS Driver Component

SI. No

API’s name

Fls_Init

Fls_Erase

Fls_Write

Fls_Cancel

Fls_GetStatus

oM WM E

Fls_GetJobResult

48

Application Programming Interface

Chapter 10

Sl. No API’s name
7. Fls_Read
8. Fls_Compare
9. Fls_SetMode
10. Fls_GetVersioninfo
11. Fls_MainFunction
12. Fls_BlankCheck
13. Fls_Readimmediate
14. Fls_Suspend
15. Fls_Resume
10.3.1. FIs_Init
Name: Fls_Init
_ FUNC(void, FLS_PUBLIC_CODE) Fls_Init(P2CONST(FIs_ConfigType,
Prototype: AUTOMATIC, FLS_APPL_CONST) ConfigPtr)
Service ID: 0x00
Sync/Async: Synchronous
Reentrancy: Non-Reentrant
Type Parameter Value/Range
Parameters In: - -
Fls_ConfigType ConfigPtr NA
Parameters InOut: | None NA NA
Parameters out: None NA NA
Type Possible Return Values
Return Value:
void NA
Description: This service performs initialization of the FLS Driver component.
Configuration None
Dependency:
Preconditions: None
10.3.2. FIs_Erase
Name: Fls_Erase
FUNC(Std_ReturnType, FLS_PUBLIC_CODE) FIs_Erase (Fls_AddressType
TargetAddress, FiIs_LengthType Length)
Prototype:
Service ID: 0x01
Sync/Async: Asynchronous
Reentrancy: Non-Reentrant
Type Parameter Value/Range

49

Chapter 10

Application Programming Interface

Parameters In:

TargetAddress [Target address in flash memory. This
address offset will be added to the flash
memory base address.

Min.: O

Max.: FLS_SIZE - 1

Fls_AddressType

Fls_LengthType Length Number of bytes to erase
Min.: 1
Max.: FLS_SIZE - TargetAddress
Parameters InOut: | None NA NA
Parameters out: None NA NA

Return Value:

Type Possible Return Values

Std_ReturnType E_OK: If Erase comman