
AUTOSAR MCAL R4.0.3
User's Manual

FLS Driver Component Ver.1.0.5

Embedded User's Manual Target Device:

RH850/P1x

All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.

website (http://www.renesas.com).

www.renesas.com Rev.1.02 May 2017

http://www.renesas.com/
http://www.renesas.com/

2

3

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the

circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability

for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving

patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or

technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm,

application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of

Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas

Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration,

modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended

applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale

communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human

life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages

(space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.).

Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any

Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes,

"General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are

within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat

radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident

arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products

have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,

Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of

Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and

malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as

warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please

evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of

each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled

substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in

compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses

occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture,

use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products

or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass

destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles

(UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional

weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or

release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know

that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas

Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and

administered by the governments of the countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the

terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or

violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of

Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or

Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

4

5

Abbreviations and Acronyms

Abbreviation / Acronym Description

 ANSI American National Standards Institute

 ADC Analog to Digital Converter

 API Application Programming Interface

 AUTOSAR AUTomotive Open System ARchitecture

 BSW Basic SoftWare

 BSWMDT Basic Software Module Description Template

 BUS Bidirectional Universal Switch

 CPU Central Processing Unit

 CAN Controller Area Network

 DET/Det Development Error Tracer

 DEM/Dem Diagnostic Event Manager

 DIO Digital Input Output

 DMA Direct Memory Access

 DED Double bit Error Detection

 EEPROM Electrically Erasable Programmable Read Only Memory

 ECU Electronic Control Unit

 ECC Error Correction Code

 FACI Flash Application Command Interface

 FCU Flash Control Unit

 FLS FLaSh Driver

 GPT General Purpose Timer

 GNU GNU’s Not Unix

 HW HardWare

 ID/Id Identifier

 IO InOut

 ICU Input Capture Unit

 I/O Input/Output

 ISR Interrupt Service Routine

 KB Kilo Byte

 LIN Local Interconnect Network

 MB Mega Byte

 MHz Mega Hertz

 MCU Micro Controller Unit

 MCAL Microcontroller Abstraction Layer

 NA Not Applicable

 OS Operating System

 PDF Parameter definition file

 PWM Pulse Width Modulation

 RAM Random Access Memory

6

Abbreviation / Acronym Description

 ROM Read Only Memory

 R/W/RW Read/Write/Read and Write

 RTE Run Time Environment

 SCHM/SchM Scheduler Manager

 SCI Serial Communications Interface

 SPI Serial Peripheral Interface

 SED Single bit Error Detection

 SW SoftWare

 WDT Watch Dog Timer

Definitions

Term Represented by

Sl. No. Serial Number

7

Table of Contents

Chapter 1 Introduction... 11

1.1 Document Overview ... 13

Chapter 2 Reference Documents .. 15

Chapter 3 Integration and Build Process ... 17

3.1. FLS Driver Component Make file .. 17

3.1.1. Folder Structure ... 17

Chapter 4 Forethoughts .. 19

4.1. General ... 19

4.2. Preconditions .. 22

4.3. Data Consistency .. 25

4.4. Deviation List .. 27

4.5. User mode and supervisor mode .. 28

Chapter 5 Architecture Details .. 29

Chapter 6 Registers Details ... 35

Chapter 7 Interaction between the User and FLS Driver Component

 .. 39

7.1. Services Provided by FLS Driver Component to the User ... 39

Chapter 8 FLS Driver Component Header and Source File

Description .. 41

Chapter 9 Generation Tool Guide ... 45

Chapter 10 Application Programming Interface 47

10.1. Imported Types ... 47

10.1.1. Standard Types .. 47

10.1.2. Other Module Types ... 47

10.2. Type Definitions .. 47

10.2.1 Fls_ConfigType .. 47

10.2.2 Fls_AddressType ... 48

10.2.3 Fls_LengthType .. 48

10.3. Function Definitions ... 48

10.3.1. Fls_Init ... 49

10.3.2. Fls_Erase .. 49

10.3.3. Fls_Write ... 50

10.3.4. Fls_Cancel .. 51

8

10.3.5. Fls_GetStatus ... 51

10.3.6. Fls_GetJobResult ... 52

10.3.7. Fls_MainFunction ... 52

10.3.8. Fls_Read ... 53

10.3.9. Fls_Compare... 53

10.3.10. Fls_SetMode ... 54

10.3.11. Fls_GetVersionInfo .. 54

10.3.12. Fls_ReadImmediate ... 55

10.3.13. Fls_BlankCheck ... 55

10.3.14. Fls_Suspend ... 56

10.3.15. Fls_Resume .. 57

10.3.16. Fls_CallSwitchBFlashErrorNotification ... 57

Chapter 11 Development and Production Errors 59

11.1 FLS Driver Component Development Errors ... 59

11.2 FLS Driver Component Production Errors ... 60

Chapter 12 Memory Organization .. 63

Chapter 13 P1M Specific Information .. 65

13.1. Interaction between the User and FLS Driver Component ... 65

13.1.1. Translation header File .. 65

13.1.2. Services Provided by FLS Driver Component to the User 65

13.1.3. Parameter Definition File ... 66

13.1.4. ISR Functions for FLS module .. 66

13.1.5. Data Flash Address Space .. 66

13.2. Sample Application... 66

13.2.1. Sample Application Structure ... 66

13.2.2. Building Sample Application .. 68

13.3. Memory and Throughput ... 70

13.3.1. ROM/RAM Usage .. 70

13.3.2. Stack Depth... 71

13.3.3. Throughput Details .. 71

Chapter 14 Release Details .. 75

9

List of Figures

Figure 1-1 System Overview of FLS Driver Component in AUTOSAR MCAL Layer 11
Figure 1-2 System Overview of AUTOSAR Architecture .. 12
Figure 5-1 FLS Driver Component Architecture .. 29
Figure 5-2 Component Overview of FLS Driver Component ... 30
Figure 12-1 FLS Driver Component Memory Organization ... 63
Figure 13-1 Overview of FLS Driver Sample Application .. 67

List of Tables

Table 4-1 FLS Driver Protected Resources List ... 25
Table 4-2 FLS Driver Component Deviation List .. 27
Table 4-3 User mode and Supervisor mode details ... 28
Table 6-1 Register Details .. 35
Table 8-1 Description of the FLS Driver Component Files ... 42
Table 10-1 Fls_ConfigType .. 47
Table 10-2 Fls_AddressType ... 48
Table 10-3 Fls_LengthType .. 48
Table 10-4 API Provided by FLS Driver Component .. 48
Table 11-1 DET Errors of FLS Driver Component ... 59
Table 11-2 DEM Errors of FLS Driver Component ... 60
Table 13-1 PDF information for P1M .. 66
Table 13-2 Interrupt Functions for FLS Module .. 66
Table 13-3 ROM/RAM Details with DET .. 70
Table 13-4 ROM/RAM Details without DET ... 70
Table 13-5 Stack Depth Table .. 71
Table 13-6 Throughput Details of the APIs .. 71

10

Introduction Chapter 1

11

F
L
S

 D
riv

e
r

D
IO

D

IO
 D

riv
e

r

A
D

C

A
D

C
 D

rive
r

P
W

M

P
 W

M
 D

riv
e

r

IC
U

IC

U
 D

riv
e

r

F
le

x
R

a
y
 D

riv
er

C
A

N

C
A

N
 D

rive
r

L
IN

 o
 r

S
C

I
L
IN

 D
riv

e
r

S
P

I H
a

n
dle

rD
rive

r
r

S
P

I

E
E

P
R

O

M

In
te

rn
a
l E

E
P

R
O

M
 D

riv
e

r

F
L

A
S

H

In
te

rn
a

l F
las

h

D
riv

e
r

E
x
t. B

U
S

E

xternal F
las

h
 D

riv
e

r

R
A

 M
 T

e
s
t

C
o
re

 T
e

s
t

M
C

U

P
o
w

e
r

&
 C

lo
c
k

U
n
it

M
C

U
 D

riv
e

r

W
a
tc

h
d

o
g
 D

riv
er

G
P

T
 D

riv
e

r
G

P
T

W
D

T

Chapter 1 Introduction

The purpose of this document is to describe the information related to FLS

Driver Component for Renesas P1x microcontrollers.

This document shall be used as reference by the users of FLS Driver

Component. The system overview of complete AUTOSAR architecture is

shown in the below Figure:

Microcontroller Drivers Memory Drivers Communication Drivers I/O Drivers

Micro-

Controller

Figure 1-1 System Overview of FLS Driver Component in AUTOSAR MCAL Layer

The FLS Driver Component is part of BSW which is accessible by RTE. This

RTE is a middle ware layer providing communication services for the

application software and thereby it is possible to map the application software

components between different ECUs.

The RTE provides the encapsulation of Hardware channels and basic

services to the Application Software Components. So it is possible to map

the Application Software-Components between different ECUs.

The Basic Software Modules are located below the RTE. The Basic Software

itself is divided into the subgroups: System Services, Memory,

Communication and IO Hardware-Abstraction. The Complex Drivers are also

located below the RTE. Among others, the Operating System (OS), the

Watchdog manager and the Diagnostic services are located in the System

Services subgroup. The Memory subgroup contains modules to provide

access to the non-volatile memories, namely Flash and EEPROM. Here the

flash operation will be handled by flash driver.

On board Device Abstraction provides an interface to physical values for

AUTOSAR software components. It abstracts the physical origin of signals

(their paths to the hardware FLSs) and normalizes the signals with respect to

their physical appearance. The microcontroller driver provides services for

basic microcontroller initialization, power down functionality, reset and

microcontroller specific functions required from the upper layers.

 Chapter 1 Introduction

12

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

FLS Driver

Microcontroller

Figure 1-2 System Overview of AUTOSAR Architecture

The FLS application software components are located at the top and can gain

access to the rest of the ECU and also to other ECUs only through the RTE.

This RTE is a middleware layer providing communication services for the

application software and thereby it is possible to map the application software

components between different ECUs.

This FLS Software Module is located below the RTE. The FLS Component

APIs are directly invoked by the application or RTE. The FLS Component is

responsible for erase/write/read/compare data on the data flash memory.

The FLS component perform the activities like accessing and programming

the on-chip data flash hardware.

The FLS Component layer comprises of API for erase/write data to on-chip

data flash memory of the device. The FLS Component conforms to the

AUTOSAR standard and is implemented mapping to the AUTOSAR FLS

Software Specification.

The functional parameters of FLS software components are statically

configurable to fit as far as possible to the real needs of each ECU.

Introduction Chapter 1

13

1.1 Document Overview

The document has been segmented for easy reference. The table below

provides user with an overview of the contents of each section:

Section Contents

Section1 (Introduction) This section provides an introduction and overview of FLS Driver

Component.

Section 2 (Reference Documents) This section lists the documents referred for developing this document.

Section 3 (Integration and Build

Process)
This section explains the folder structure, Make file structure for FLS

Driver Component. This section also explains about the Make file

descriptions, Integration of FLS Driver Component with other

components, building the FLS Driver Component along with a sample

application.

Section 4 (Forethoughts) This section provides brief information about the FLS Driver Component,

the preconditions that should be known to the user before it is used,

diagnostic channel, limit check feature, sample and hold feature,

conversion time and stabilization time, DMA and ISR operations, data

consistency details, deviation list and user mode and supervisor mode.

Section 5 (Architecture Details) This section describes the layered architectural details of the FLS Driver

Component.

Section 6 (Registers Details) This section describes the register details of FLS Driver Component.

Section 7 (Interaction between

The User And FLS Driver

Component)

This section describes interaction of the FLS Driver Component with the

upper layers.

Section 8 (FLS Driver Component

Header And Source File

Description)

This section provides information about the FLS Driver Component

source files is mentioned. This section also contains the brief note on the

tool generated output file.

Section 9 (Generation Tool Guide) This section provides information on the FLS Driver Component Code

Generation Tool.

Section 10 (Application

Programming Interface)
This section explains all the APIs provided by the FLS Driver

Component.

Section 11 (Development And

Production Errors)
This section lists the DET and DEM errors.

Section 12 (Memory

Organization)
This section provides the typical memory organization, which must be

met for proper functioning of component.

Section 13 (P1M Specific

Information)
This section provides the P1M Specific Information.

Section 14 (Release Details) This section provides release details with version name and base

version.

 Chapter 1 Introduction

14

Reference Documents Chapter 2

15

Chapter 2 Reference Documents

Sl. No. Title Version

1.

AUTOSAR_SWS_FlashDriver.pdf 3.2.0

2. r01uh0436ej0130_rh850p1x.pdf 1.30

3. AUTOSAR_SWS_CompilerAbstraction.pdf 3.2.0

4. AUTOSAR_SWS_MemoryMapping.pdf 1.4.0

5. AUTOSAR_SWS_PlatformTypes.pdf 2.5.0

6. AUTOSAR BUGZILLA (http://www.autosar.org/bugzilla)
Note: AUTOSAR BUGZILLA is a database, which contains concerns raised
against information present in AUTOSAR Specifications.

 -

http://www.autosar.org/bugzilla

 Chapter 2 Reference Documents

16

Integration and Build Process Chapter 3

17

Chapter 3 Integration and Build Process

In this section the folder structure of the FLS Driver Component is explained.

Description of the Make files along with samples is provided in this section.

Remark The details about the C Source and Header files that are generated by the

FLS Driver Generation Tool are mentioned in the

 “R20UT3711EJ0101-AUTOSAR.pdf”.

3.1. FLS Driver Component Make file

The Make file provided with the FLS Driver Component consists of the GNU

Make compatible script to build the FLS Driver Component in case of any

change in the configuration. This can be used in the upper level Make file (of

the application) to link and build the final application executable.

3.1.1. Folder Structure

The files are organized in the following folders:

Remark Trailing slash ‘\’ at the end indicates a folder

X1X\common_platform\modules\fls\src
 \Fls.c

 \Fls_Internal.c
 \Fls_Ram.c

 \Fls_Version.c
 \Fls_Private_Fcu.c

 \Fls_Irq.c

X1X\common_platform\modules\fls\include
 \Fls.h

 \Fls_Debug.h
 \Fls_Internal.h
 \Fls_Private_Fcu.h
 \Fls_PBTypes.h
 \Fls_Ram.h
 \Fls_Types.h
 \Fls_Version.h
 \Fls_Irq.h
 \Fls_RegWrite.h

X1X\P1x\modules\fls\sample_application\<SubVariant>\make\ghs

\App_FLS_<SubVariant>_Sample.mak

 X1X\P1x\modules\fls\sample_application\<SubVariant>\obj\<compiler>

(Note: For example, compiler can be ghs.)

X1X\common_platform\modules\fls\generator\Fls_X1x.dll

tools/RUCG/RUCG.exe

X1X\P1x\common_family\generator\Global_Application_P1x.trxml

Chapter 3 Integration and Build Process

18

\Sample_Application_P1x.trxml

\P1x_translation.h

X1X\P1x\modules\fls\generator

\R403_FLS_P1x_BSWMDT.arxml

X1X\P1x\modules\fls\user_manual
(User manuals will be available in this folder)

Notes:

1. <Compiler> can be ghs.

2. <Device_name> can be 701304, 701305, 701310, 701311, 701312, 701313,
701314, 701315, 701318, 701319, 701320, 701321, 701322 or 701323.

3. <SubVariant> can be P1M.

4. <AUTOSAR_version> can be 4.0.3.

 Forethoughts Chapter 4

19

Chapter 4 Forethoughts

4.1. General

Following information will aid the user to use the FLS Driver Component
software efficiently:

FLS General

• The FLS Driver Component supports Data Flash access only. Code Flash
access is out of scope. User application shall not program Code Flash in
the application mode. Code Flash shall only be programmed in safe
environment in the boot mode.

• The start-up code is ECU specific. FLS Driver Component does not
implement the start-up code.

• Example code mentioned in this document shall be taken only as a
reference for implementation.

• All development errors will be reported to DET by using the API
Det_ReportError provided by DET.

• All production errors will be reported to DEM by using the API
Dem_ReportErrorStatus provided by DEM.

• The FLS Driver Component developed supports only on-chip ROM and no
external devices are considered. Hence the parameters related to external
devices are ignored by the Generation Tool.

• The FLS Driver Component does not provide functionalities for setting of
protection flags, boot cluster size, swapping of boot block and flashing of
boot block and they are out of scope for FLS Driver Component
implementations.

• Maximum value of ‘FlsMaxReadNormalMode’ parameter specifies the size
of a temporary buffer in RAM which is used when Fls_ReadImmediate and
Fls_Compare APIs are called. The resulting RAM consumption has to be
considered.

• The length of the data that has to be programmed on to the flash should be
in multiples of flash page. The FLS Driver Component does not pad bytes
if the length is not in multiples of flash page. It is the responsibility of the
application to pad bytes such that the length of the data is in multiples of
flash page.

• Erase, Write, Read and Blank check jobs are initiated within the
corresponding APIs itself. Fls_MainFunction API shall act as a checker
function and it shall check whether the job is completed and initiate the next
round of job cycle if the job is not completed.

• The normal write verification using the direct memory read access is
performed when DET is enabled.

• The FLS Driver Component can invoke user configurable call-back
notification functions. However, the implementation of the call back
functions is the responsibility of the upper layer.

• The parameter ‘FlsCallCycle’ shall be used for timeout implementation. The
Erase, Write and BlankCheck timeout count values shall be generated
based on FlsCallCycle and hardware specific atomic operations’ time
(‘FlsEraseTime’, ‘FlsWriteTime’ and ‘FlsBlankCheckTime’). To report
timeout, ‘FlsTimeOutMonitoring’ parameter needs to be configured as
TRUE’. In case if the parameter ‘FlsDevErrorDetect’ is also enabled, time
out DET shall be reported. The ‘FlsCallCycle’ parameter shall be
configured by the user correctly. Incorrect value may lead to reporting of
timeout DET by Fls_MainFunction.

• There are two possible errors that can be detected by ECC are Single-bit
errors (SED) and Double-bit errors (DED). The ECC error notification
feature is incorporated in Read functionality only. So whenever the read is

Chapter 4 Forethoughts

20

initiated this feature will be enabled always and only notifying to the upper
layer happens via configurable notification functions. The configuration of
single bit and double bit error notification function parameters are user
selectable. The error notification functions for both single bit and double bit
ECC error report are configurable with parameters from configuration.
The parameters are:
FlsEccSedNotification: This parameter mapped to Single-bit error (SED)
notification routine provided by some upper layer module.
FlsEccDedNotification: This parameter mapped to Double-bit error (DED)
notification routine provided by some upper layer module. The Double bit
error is reported to DEM in addition to notification functions.

• The file Interrupt_VectorTable.c provided is just a Demo and not all
interrupts will be mapped in this file. So the user has to update the
Interrupt_VectorTable.c as per his configuration.

• The accesses to HW registers is possible only in the low level driver layer.
The user shall never write or read directly from any register, but shall use
the AUTOSAR standard API provided by the MCAL.

• FlsTimeOutCountValue: This parameter specifies the time out count
required for erase, write and blank check operations during interrupt
mode.Incorrect configuration of this parameter shall lead to erroneous
operations of FLS Driver.

• FlsLoopCount: This parameter is used to avoid the risk of endless loops in
FLS driver. The loop count can be minimum 32 to maximum 255.

• The configurations provided for fast mode write operation is ignored by the
Generation Tool and only configurations for normal mode operations and
fast mode read operation are accepted.

• Fls_SetMode API sets the flash driver operation mode (FAST Mode/SLOW
Mode) for read operation. This API allows the user to read more number of
bytes during run time if in case the default mode is configured as
‘MEMIF_MODE_FAST’. Fls_SetMode API is not applicable for
Erase/Write/Blank Check operations, because underlying hardware does
not support it.

FLS Initialization

• Fls_Init API shall enable the flash memory erase/write protection settings if

it is supported by hardware. Before the flash operation protection shall be
disabled and after the completion of job, protection shall be again enabled.

• During activation of flash environment (in Fls_Init), the access to Code flash
is not possible. Hence the user should ensure that all the application and
supporting components code that needs to be executed during flash
operation need to locate in RAM.

• The device supports servicing of interrupts during self-programming.
During activation of flash environment (in Fls_Init), the interrupt vector
address in the flash will not be available. The interrupt vectors can be
relocated to RAM during flash programming. For details please refer
Exception Handling Address Switching Function in the according device
CPU user manual.

FLS Schedule operation

• The FLS Driver Component’s job processing function (Fls_MainFunction)
is a polled function.

• In a single cycle of Fls_MainFunction API, the maximum number of bytes
processed for the fast read command and normal read depends on the
configuration of parameters ‘FlsMaxReadNormalMode’ (if default mode is
MEMIF_MODE_SLOW) and ‘FlsMaxReadFastMode’ (if default mode is
MEMIF_MODE_FAST).

 Forethoughts Chapter 4

21

• In a single cycle of Fls_MainFunction call, FLS driver performs write
operation for 4 bytes, or blank check operation for 4 bytes, or erase
operation for 64 bytes.

FLS Erase Operation

• The Fls_Erase API computes the sectors that need to be erased based on
the provided target address and length. When DET is enabled the error will
be reported if the length of the bytes to be erased is not in multiples of flash
sector size.

FLS Read Operation

• Data Flash Memory Read Cycle Setting Register (EEPRDCYCL) is used
to specify the number of wait cycles to be inserted when reading the data
in the data flash. The initial value of the register is taken by default. If
required user application shall set this register as per P1M device user
manual.

• Blank Check operation is done implicitly when performing Read operation

FLS Blank Check Operation

• The processing of blank check operation is applicable for Data flash only.

FLS Fast Read (Read Immediate) Operation

• The functional behavior of FLS driver when calling Fls_ReadImmediate API
will be the same as calling Fls_Read API except that blank check is
excluded.

• Blank check is time consuming and is not mandatory for reading an already
programmed flash area. Fls_ReadImmediate API can be used to perform
fast read operation without blank check when the user is sure that the area
to be read is already written with content.

Suspend and Resume operation

• Fls_Suspend API is used to suspend an ongoing flash operation in order
to do other flash operations. Only erase and write operations are suspend
able.

• Fls_Resume can only be used to resume a suspended flash operation.
Only erase and write operations are resume able.

• It is not always possible to suspend.
 E.g.: Any operation ► suspend ► suspend – is not possible.

 Write or Erase ► suspend ► Erase operation – is not possible
 Write operation ► suspend ► other Write operation – is not possible

 Any operation ► suspend ► other operation ► suspend–isn’t possible

FLS Timeout Monitoring

• The configuration parameter FlsTimeoutMonitoring in the FlsGeneral
container can be used to enable/disable the timeout supervision for FLS
driver independent of DET settings.

• Only when FlsTimeoutMonitoring is set to TRUE and DET is switched ON,
a DET error FLS_E_TIMEOUT will be reported in case of detection of a
timeout error.

• In order to perform timeout monitoring/supervision on flash operations, the
following configuration parameters should be used properly according to
use-cases.
 In the polling mode of FLS, the parameter FlsCallCycle shall be

configured to specify the cycle time of calls of the FLS main function (in

Chapter 4 Forethoughts

22

seconds). The timeout count values are calculated internally based on
the CPU frequency for the respective flash operations, i.e., erase, write,
blank check, etc.

 In the interrupt mode of FLS, the parameter FlsTimeOutCountValue
shall be configured to directly specify the timeout count value required
for erase, write and blank check operations.

 Fls_MainFunction is crucial for timeout supervision. The call frequency
of Fls_MainFunction shall be handled properly in the upper layer
software to be in line with the FLS module configuration.

Note: since read, read immediate, compare operations are not supported
in FLS interrupt mode, only the parameter FlsCallCycle is used to calculate
timeout count values for them irrespective of interrupt or polling mode. For
write, erase, blank check operations, FlsCallCycle is used in the polling
mode of FLS, while FlsTimeOutCountValue is used in the interrupt mode
of FLS.
In FlsGeneral container the configuration parameter FlsLoopCount is used
to avoid the risk of endless loops in the FLS driver. FlsLoopCount is always
used in the implementation, hence it is not dependent on the parameter
FlsTimeoutMonitoring

4.2. Preconditions

Following preconditions have to be adhered by the user, for proper
functioning of the FLS Driver Component:

FLS General

• The user should ensure that FLS Driver Component API requests are
invoked in the correct and expected sequence and with correct input
arguments.

• Correct frequency configuration is essential for Flash programming quality
and stability. Wrong configuration could lead to loss of data retention or
Flash operation fail. The limits for CPU frequency are device dependent.
Please refer to the respective device user manuals for correct range. If the
CPU frequency is a fractional value, round up the value to the nearest
integer. Do not change power mode (voltage or CPU clock) while FLS is
performing a Data Flash operation. If power mode must change the user
can wait until operations are no longer busy or cancel the ongoing operation
and reinitialize the FLS module with proper CPU frequency value.

• In case of Flash modification operation (Erase/Write) interruption due to
e.g. power failure, reset etc., the electrical conditions of the affected Flash
range (Flash block on erase, Flash write unit on Write) get undefined. It is
impossible to give a statement on the read value after the interruption.
Thus, the resulting read value is not reliable; the electrical margin for the
specified data retention may not be given. In such case, erase and re-
write the affected Flash block(s) to ensure data integrity and retention.

• It is not possible to modify the Code Flash in parallel to a modification of
the Data Flash or vice versa due to shared hardware resources.

• Data Flash blocks are aligned to 64 bytes and Data Flash words are
aligned to 4 bytes. RH850 devices also add alignment restrictions for
types larger than 8 bits. Please refer to device hardware manual for
details.

• Validation of input parameters is done only when the static configuration
parameter FLS_DEV_ERROR_DETECT is enabled. Application should
ensure that the right parameters are passed while invoking the APIs when
FLS_DEV_ERROR_DETECT is disabled.

• A mismatch in the version numbers will result in compilation error. Ensure
that the correct versions of the header and the source files are used.

• The files Fls_Cfg.h, Fls_Cbk.h and Fls_PBcfg.c generated using FLS
Generation Tool have to be linked along with FLS Driver Component

 Forethoughts Chapter 4

23

source files.
• Values for production code Event Ids should be assigned externally by the

configuration of the DEM.
• Calling FLS functions, especially Cancel/Suspend/Resume/MainFunction

APIs by a higher priority ISR must be prevented by upper layer to avoid
possible re-entrancy issue.

• Interrupt mode supports Erase, Write, and Blank Check operations only.
• Cancel and suspend/resume operations are not allowed in case of two

instances of FLS Driver Component as the effect is not evaluated.
• All functions are not re-entrant. So, re-entrant calls of any not re-entrant

function must be avoided.
• User have the responsibility to enable or disable the critical protection

using the parameter FlsCriticalSectionProtection. By enabling parameter
FlsCriticalSectionProtection, Microcontroller HW registers which suffer
from concurrent access by multiple tasks are protected.

• To use the FLS driver, the FCU firmware shall be stored and executed
from in FCURAM. And the software that reads the FCU firmware area
shall be placed in internal RAM.

• Due to these preconditions, the following four private functions used in
Fls_Init() shall be placed in internal RAM at link time using linker derivative
in order to perform FLS driver initialization properly.

Fls_FcuCopytoRam() - size 118 Bytes,
Fls_FcuSwitchBFlash() - size 46 Bytes,
Fls_FcuClearCache() - size 76 Bytes,
Fls_FcuGetFWParam() - size 46 Bytes.

For the integration, the FLS driver code comes under the memory sections
FLS_START_SEC_PRIVATERAM_CODE /
FLS_STOP_SEC_PRIVATERAM_CODE shall be placed in internal RAM
for the execution.
Please refer to the FLS sample application linker script for more details.

• As the atomic time-out monitoring in POLLING mode depends
FlsCallCycle parameter, which is the schedule time of Fls_MainFunction
call, the user should take care the configuration of that parameter as per
the intended cycle time of Fls_MainFunction. i.e: If there are any scenarios
where Fls_MainFunction may be called with different cycle time in the
same application, the user shall configure FlsCallCycle with the least cycle
time, otherwise it may hit early time-out error.

FLS Initialization

• Fls_Init function temporarily disables Code Flash. During this time, since
the Code Flash is not available, the FLS code shall be executed from
internal RAM. Please ensure that: (1) User application code execution is
done from other locations than Code Flash (e.g. internal RAM). (2) No
access to Code Flash is allowed, e.g. by jump to interrupt/exception
functions, direct Code Flash read/execution from the CPU, DMA accesses
to Code Flash.

• The FLS Driver Component needs to be initialized by calling Fls_Init
before calling any other Fls functions.

• Fls_Init shall do verification of ECC control registers, so as to ensure ECC
1-bit error detection and correction, ECC 2-bit error detection are enabled
for data flash before initialization of FCU. If the user configurable ECC
check for FACI is enabled and if the verification of FACI ECC register fails,
DEM error FLS_E_ECC_FAILED shall be reported.

• Fls_Init function temporarily disables Code Flash in order to copy the FCU
firmware and initialize FCU properly. Afterwards, Code Flash will be re-
enabled. When failure occurs during re-enabling Code Flash, a call-back
function is invoked to notify the upper layer software. This call-back
function Fls_CallSwitchBFlashErrorNotification() is declared in "Fls.h" as

Chapter 4 Forethoughts

24

user interface, and shall be implemented in the upper layer software.
Countermeasures (e.g. hardware reset) against such failure shall be
considered in the call-back function implementation. And this function
Fls_CallSwitchBFlashErrorNotification() must be properly mapped in RAM
and executed out of RAM in case of failure.

FLS Schedule operation

• The Fls_MainFunction should be invoked regularly by the Basic
Scheduler. Though not specified by AUTOSAR, calling
Fls_MainFunction by polling mechanism is also possible. Ensure that the
FLS Driver Component is initialized before enabling the invocation of this
scheduled function to avoid reporting of a DET error when enabled.

FLS Write Operation

• Due to RV40 Flash technology, hardware will implicitly reject the write
operation if the target Flash cells are not blank (a kind of "overwriting
guard"). Writing to non-blank Flash cells will result in write error.

• Writing the same area more than once is prohibited. To write again the
flash memory area where data has already been written to, user shall
erase the corresponding area in advance.

FLS Read Operation

• Data Flash on RH850 devices is made with differential cells for storage.
This means that reading erased but non-programmed Data Flash areas
directly (bypassing FLS) will produce undefined data with a tendency to the
previously written data, and it will most probably cause ECC error
exceptions. To avoid this exceptions, use FLS read APIs.

• Fls_ReadImmediate API should not be used to read blank cells. User
application shall handle the errors associated with blank cell read using
Fls_ReadImmediate API.

FLS Blank Check Operation

• A blank check pass does not confirm that it is possible to write to this word
(4 Bytes). Also partly written/erased words may have a blank check pass
but write is not allowed under this condition. A blank check fail does not
confirm a stable read value. Even though parts of a word are at least partly
written, random read data are still possible, so are ECC error indications
for single error corrections and double error detection.

• Due to the above shown limitations the information which can be given by
Fls_BlankCheck, either passing or failing, is limited. It cannot be used to
determine the current state of a flash cell in a meaning full way without
additional information obtained by other means. The blank check should
only be used to confirm or check some flow status but should not be used
to determine if a flash cell can be read or written. FLS055 from AUTOSAR
Specification of Flash Driver are not fulfilled here because blank check itself
is not able to identify erasure state of flash cell which is ready for write
operation. Please refer to application note document "RV40F DataFlash
Usage" for more details about blank check and usage hints

FLS Cancel Operation

• If a cancel request is accepted, during an on-going write or erase
operation and a previous operation is already suspended, then both
operations will be cancelled.

 Forethoughts Chapter 4

25

FLS Suspend operation

• Suspend operation shall not be performed in between atomic operations
of the job. i.e., in between 64 bytes of erase and 4 bytes of write,
suspension is not possible. The job can be suspended only after
completion of one atomic operation.

• When an erase job is suspended, calling a write job at the same address
of that of erase job and then resuming the previously suspended erase job
shall report DET indicating failure of erase verification.

4.3. Data Consistency

To support FLS the reentrancy and interrupt services, the FLS Software
component will ensure the data consistency while accessing their own RAM
storage or hardware registers
The FLS module will use below macro for respective higher and lower
version.

#define FLS_ENTER_CRITICAL_SECTION (Exclusive_Area)

SchM_Enter_Fls_##Exclusive_Area ()

#define FLS_EXIT_CRITICAL_SECTION (Exclusive_Area)

SchM_Exit_Fls_##Exclusive_Area ()

The following exclusive areas along with scheduler services are used to

provide data integrity and register protection for shared resources:

 FLS_DRIVERSTATE_DATA_PROTECTION

 FLS_REGISTER_PROTECTION

 FLS_CODE_FLASH_DISABLED

Note: The data buffer provided by the application will not be validated

for data consistency. It would be the responsibility of the application to

ensure consistency of the flash data during flash read and write

operations.

Table 4-1 FLS Driver Protected Resources List

API Name Exclusive Area Type Protected

Resources

Fls_Init FLS_REGISTER_PROTECTION

HW Registers:
FRAMMCR
FCURAME
FPCKAR

FLS_CODE_FLASH_DISABLED

Firmware storage
area switching is
protected

Fls_Erase FLS_REGISTER_PROTECTION

HW Registers:
FSADDR
FEADDR
IMR

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected

Chapter 4 Forethoughts

26

API Name Exclusive Area Type Protected

Resources

Fls_Write FLS_REGISTER_PROTECTION

HW Registers:
FSADDR
FEADDR
IMR

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected

Fls_MainFunction FLS_REGISTER_PROTECTION

HW Registers:

DFERSTC

DFERSTR

DFERRINT

IMR

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected

Fls_Resume FLS_REGISTER_PROTECTION

HW Registers:

DFERSTC

DFERSTR

DFERRINT

IMR

Fls_Read FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected

Fls_Compare FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected during

compare operation

Fls_Cancel FLS_REGISTER_PROTECTION

HW Registers:

IMR

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected during

cancel operation

Fls_BlankCheck FLS_REGISTER_PROTECTION

HW registers:

IMR

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected during

blank check

operation

Fls_ReadImmediate FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected during

read immediate

operation

FLS_FLENDNM_ISR FLS_REGISTER_PROTECTION

IMR

 Note: The highest measured duration of a critical section is 128.537 micro seconds,

measured for Fls_Init API.

 Forethoughts Chapter 4

27

4.4. Deviation List

 Table 4-2 FLS Driver Component Deviation List

Sl. No.

 Description
AUTOSAR

Bugzilla

1. The fast mode parameter ‘FlsMaxWriteFastMode’ of the
container ‘FlsConfigSet is unused.

-

2. The parameters ‘FlsAcLoadOnJobStart’ and
‘FlsUseInterrupts’ of the container ‘FlsGeneral’ is unused.

-

3. The flash access routines are not placed into a separate

C-module like 'Fls_ac.c'.
-

4. FLS140 and FLS141 are not fulfilled, because the FLS

module does not load the flash access code for erase/write
operation to the location in RAM on job start.

-

5. The parameters ‘FlsProtection’, FlsAcWrite’ and ‘FlsAcErase’
of the container ‘FlsConfigSet’ are unused.

-

6. The parameters ‘FlsAcLocationErase’, ‘FlsAcLocationWrite’,
‘FlsAcSizeErase’ and ‘FlsAcSizeWrite’ of the container
‘FlsPublishedInformation’ are unused.

-

7. The component will support only the on-chip flash memory.
External flash is not in the scope of this implementation.

-

8. FLS272, FLS359, FLS360 and FLS361 from AUTOSAR

Specification of Flash Driver are not fulfilled here

because timeout monitoring can be configured independent

of DET setting. However only when both timeout monitoring

and DET are enabled, FLS_E_TIMEOUT will be reported in

case of detected timeout error.

-

9. The timeout monitoring can be configured independent of

DET setting in FLS. FLS272, FLS359, FLS360, FLS361 can

only be fulfilled, when both timeout monitoring and DET are

enabled, i.e., FLS_E_TIMEOUT will be reported for the

respective flash operations in case of detected timeout error.

-

10. FLS201_Conf from AUTOSAR Specification of Flash Driver

is not fulfilled here because FlsSectorList is limited to one

sector with fixed sector size. User shall not configure multiple

sectors. Since data flash is a monolithic on-chip NV memory

with homogeneous block size, it is not required to have

multiple sectors with the same sector sizes. Important is that

FLS driver shall support possible usage of "user pool" (private

data flash area that cannot be accessed by FLS driver). This

can be done by proper configuration of

FlsSectorStartaddress and FlsNumberOfSectors.

-

Chapter 4 Forethoughts

28

4.5. User mode and supervisor mode

The below table specifies the APIs which can run in user mode, supervisor

mode or both modes

 Table 4-3 User mode and Supervisor mode details

Sl. No API Name User
Mode

Supervisor
Mode

Known limitation in User mode

1

Fls_Init

- x The Fls_Init is failing in User mode.

This is because inside Fls_Init

function STSR instruction (to store

contents of system register) is called

for storing contents of ICCTRL

(instruction cache control) to system

register. Since the ICCTRL have the

access permission in only

supervisor mode, Fls_Init fails in

user mode.

2 Fls_Read x x -

3 Fls_SetMode x x -

4 Fls_Write x x -

5 Fls_Cancel x x -

6 Fls_GetStatus x x -

7 Fls_GetJobResult x x -

8 Fls_Erase x x -

9 Fls_Compare x x -

10 Fls_GetVersionInfo x x -

11 Fls_MainFunction x x -

12 Fls_BlankCheck x x -

13 Fls_ReadImmediate x x -

14 Fls_Suspend x x -

15 Fls_Resume x x -

 Note: Implementation of critical section is not dependent on MCAL. Hence critical

section is not considered to the entries for user mode in the above table.

 Architecture Details Chapter 5

29

 Chapter 5 Architecture Details

The FLS Software architecture is shown in the following figure. The FLS user
shall directly use the APIs to configure and execute the FLS conversions:

Application Layer

AUTOSAR RTE

System Services

 On board Device Abstraction

FLS Driver

Microcontroller

Figure 5-1 FLS Driver Component Architecture

The basic architecture of the FLS Driver Component is illustrated in the

following Figure:

 Chapter 5 Architecture Details

30

Application Layer

Figure 5-2 Component Overview of FLS Driver Component

The internal architecture of FLS Driver Component is shown in the above figure.

The FLS Driver Component Software Component provides services for the

following processes:

The FLS Driver Component is divided into the following sub modules based on

the functionality required:

• Initialization
• Erasing the flash memory
• Writing to the flash memory
• Reading the flash memory
• Fast Read to the application memory without performing blank check
• Validating contents of flash memory
• Cancellation of Request
• Reading result and status information
• Module version information
• Blank check of flash memory
• Job Processing
• Fls_Suspend suspends the on-going job.
• Fls_Resume performs the resume of previous suspended job.

Fls_SetMode

Fls_Rea

dImmed

iate

Fls_MainFun

ction
Fls_Bla

nkChec

k

Fls_Erase Fls_Init

Fls_GetVersion

Info

Fls_Res

ume
Fls_Sus

pend

Fls_Read Fls_Compare Fls_GetJobResult

Fls_GetStatus Fls_Cancel

Fls_Write

Suspend

on-

going

flash job

Returns

version

informat

ion

Resumes

previously

suspended

job

Fls_Process

Read ()

Fls_Fcu

Init ()

Compare

bytes in

buffer with

flash

memory

Fls_Initi

ateBlan

kCheckJ

ob ()

Returns

the status/r

esult

Performs the

job processing

of erase,

write, read and

compare jobs.

Fls_Proces

sCancel ()

Perfor

ms fast

read

operati

on.

Fls_Initiate

WriteJob ()

Fls_Init

iateEra

seJob ()

Sets

Flash

Driver’s

Operatio

n Mode

FLS Driver Layer

Microcontroller

 Architecture Details Chapter 5

31

Initialization

The initialization sub-module provides the service for initialization of the flash

driver and initializes the global variables used by the FLS Component. FCU

initialization API initializes FCU Global Variable Structure and prepares the

environment. After that firmware code is copied to the RAM and FACI frequency

is set. The function also resets the FCU and initialize the hardware registers to

default values.

The API related to this sub-module is Fls_Init.

Flash Memory Erasing Module

This sub-module provides the service for erasing the blocks of the flash memory.

The request will be processed by the job processing function Fls_MainFunction.

The First round of erase operation is initiated from within the API itself.

Fls_MainFunction is then called to erase the remaining requested data flash

memory blocks. The job is processed till the requested numbers of blocks are

erased in the flash memory. Blank Check shall be done to ensure that the blocks

are completely erased.

The API related to this sub-module is Fls_Erase.

Flash Memory Reading Module

This sub-module provides the service for reading the contents of the flash

memory. The request will be processed by the job processing function

Fls_MainFunction.

In this job processing function, blank check for the specified words shall be

performed first. If the cell is blank, then the application buffer shall be filled with

the value specified by the parameter ‘FlsErasedValue’. If the cell is not blank,

then reading of the specified words from the Flash memory shall be performed.

This sub-module reads the specified number of words from consecutive Flash

addresses starting at the specified address and writes it into a buffer. Read

operation shall be initiated within the sub-module itself. Single cycle of

Fls_MainFunction shall read the maximum number of bytes configured

depending on the parameters ‘FlsMaxReadNormalMode’ (if default mode is

MEMIF_MODE_SLOW) and ‘FlsMaxReadFastMode’ (if default mode is

MEMIF_MODE_FAST). The job is processed till the requested bytes of length

are copied into the application buffer.

The API related to this sub-module is Fls_Read.

Flash Memory Writing Module

This sub-module provides the service for writing to the flash memory.

The request shall be processed by the job processing function

Fls_MainFunction. The First round of write operation is initiated from within the

API itself. In this job processing function, the writing of specified number of data

bytes from buffer to flash memory shall be performed. The function writes the

specified number of words from buffer to consecutive Flash addresses starting

at the specified address. Single cycle of Fls_MainFunction shall write 4 bytes of

Chapter 5 Architecture Details

32

data from target buffer to flash addresses. The job is processed till the requested

number of bytes is written to the flash memory

The API related to this sub-module is Fls_Write.

Flash Memory Contents Validating Module

This sub-module provides the service for comparing the contents of the flash

memory with the application buffer.

The request shall be processed by the job processing function

Fls_MainFunction.

This sub-module shall read the defined number of words in flash and store it in

the temporary buffer. Then actual data in application buffer shall be compared

with data in temporary buffer. Here data shall be compared in terms of bytes.

Single cycle of Fls_MainFunction shall read the data from the flash memory

depending on configuration of parameter ‘FlsMaxReadNormalMode’ for data

flash. The job is processed till the requested number of bytes are read and

compared with the application buffer.

The API related to this sub-module is Fls_Compare.

Request Set Mode Module

This sub-module sets the flash driver operation mode.

The API related to this sub-module is Fls_SetMode.

Request Cancellation Module

This sub-module provides the service for cancelling an on-going memory

request.

After aborting the current on-going memory operations this sub- module

prepares internal variables to accept the next Read/Write/Erase/ Compare

command. The cancel request will be synchronous and a new job can be

requested immediately after the return from this function. A suspended job is

also cancelled.

The API related to this sub-module is Fls_Cancel.

Result Reading and Status Information Providing Module

This sub-module provides the services for getting the current status of the

module or results of the initiated job request or the response to previously

issued command and return the current status of the current job execution.

The APIs related to this sub-module are Fls_GetStatus, Fls_GetJobResult.

Software Component Version Info Module

This module provides API for reading Module Id, Vendor Id and vendor specific

version numbers.

The API related to this sub-module is Fls_GetVersionInfo.

 Architecture Details Chapter 5

33

Job Processing Module

The command requests are always processed by the main function that is

invoked cyclically by the scheduler. This function will perform the status check

while processing the flash operations requests. This API derives the internal

driver status. Completion of the flash operation needs to be checked in order

to continue the reprogramming flow. A Time-out feature is available with the

help of time-out counter operation in this API.

The API related to this sub-module is Fls_MainFunction.

Flash Memory Blank Check Module

This sub-module provides the service for performing blank check of the flash

memory words. The request shall be processed by the job processing function

Fls_MainFunction. This function is invoked to perform the blank check of the

single word. The job is processed till the requested numbers of words are

performed with the blank check in the flash memory.

The API related to this sub-module is Fls_BlankCheck.

Flash Memory Fast Read Module

This sub-module provides the service for reading the contents of the flash

memory. The request shall be processed by the job processing function

Fls_MainFunction. This function reads the specified number of words from

consecutive Flash addresses starting at the specified address and writes it into

a buffer. Single cycle of Fls_MainFunction, shall read the data from the data flash

memory. The data from flash memory (source address) is read to the data buffer

(Target address) of application without performing blank check before read. The

job is processed till the requested bytes of length are copied into the application

buffer.

The API related to this sub-module is Fls_ReadImmediate.

Job Suspend Module

This sub-module provides the service of suspending the on-going job. The driver

goes into idle state after the job is suspended. Fls_Suspend is asynchronous

API. Fls_Suspend shall reject any unacceptable request of suspension such as

issuing suspend request for operations other than erase and write and if no on-

going job is present.

The API related to this sub-module is Fls_Suspend.

Job Resume Module

This sub-module provides the service for performing the resume of the previous

suspended job. Fls_Resume is synchronous API. Fls_Resume acknowledges

the resume request and it returns immediately.

The API related to this sub-module is Fls_Resume.

Chapter 5 Architecture Details

34

Registers Details Chapter 6

35

 Chapter 6 Registers Details

This section describes the register details of FLS Driver Component.

Table 6-1 Register Details

API Name
Registers
Used

Register
Access
8/16/32
bits

Register
Access
R/W/RW

Config
Parame
ter

Macro/Variable

Fls_Init FSADDR 32 RW - LulStartAddr

FLS_FCU_ADDR_REG_RESET

FEADDR 32 RW - LulEndAddr

FLS_FCU_ADDR_REG_RESET

FSTATR 32 R - LulRegValue

LulReturnValue

FENTRYR 16 RW - LddMode

FLS_FCU_REGBIT_FENTRY_KEY

LusModeRegVal

FASTAT 8 RW - FLS_FCU_REGBIT_FASTAT_CMDL
K

FCURAME 16 RW - FLS_FCU_REGBIT_FCURAME_FC
RME

FLS_FCU_REGBIT_FCURAME_KEY

FLS_FCU_REGBIT_FCURAME_RE
SET

FLS_FCU_REGBIT_FCURAME_FRA
MTRAN

FPCKAR 16 RW - FLS_FCU_REGBIT_FPCKAR_KEY

LusFaciFreq

FRTEINT 8 RW - FLS_FACI_FRTEINT_RESET_VAL

FCUFAREA 8 RW - LucModeVal

ICCTRL 32 RW - FLS_FCU_SYSTEM_REGISTER_IC
CTRL

CDBCR 32 RW - FLS_FCU_SYSTEM_REGISTER_CD
BCR

DFECCCTL 16 RW - FLS_DFECCCTL_RESET_VAL

DFERRINT 8 RW - FLS_ DFERRINT _RESET_VAL

DFTSTCTL 16 RW - FLS_ DFTSTCTL _RESET_VAL

FHVE3 32 RW - FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

FHVE15 32 RW - FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

Chapter 6 Registers Details

36

API Name
Registers

Used

Registe
r

Access
8/16/32

bits

Register
Access
R/W/RW

Config
Parameter

Macro/Variable

Fls_Erase,
Fls_MainFunction,
Fls_Resume

FSADDR 32 RW - LulCurrentStartAddr

FLS_FCU_ADDR_REG_RESET

LulStartAddr

FEADDR 32 RW - LulCurrentEndAddr

FLS_FCU_ADDR_REG_RESET

LulEndAddr

FSTATR 32 R - LulRegValue LulReturnValue

FENTRYR 16 RW - LddMode

FLS_FCU_REGBIT_FENTRY_KEY

LusModeRegVal

ICFLENDNM 16 RW - LusRegvalue

IMRn 16 RW - pFlEndImrAddress,

usFlEndImrMask

FHVE3 32 RW - FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

FHVE15 32 RW - FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

Fls_Write,
Fls_MainFunction,
Fls_Resume

FSADDR 32 RW - LulCurrentStartAddr

FLS_FCU_ADDR_REG_RESET

FEADDR 32 RW - LulCurrentStartAddr +
FLS_FCU_WRITE_SIZE) -
FLS_FCU_ONE

FLS_FCU_ADDR_REG_RESET

FSTATR 32 R - LulRegValue

LulReturnValue

FENTRYR 16 RW - LddMode

FLS_FCU_REGBIT_FENTRY_KEY

LusModeRegVal

ICFLENDNM 16 RW - LusRegvalue

IMRn 16 RW - pFlEndImrAddress,

usFlEndImrMask

FHVE3 32 RW - FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

FHVE15 32 RW - FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

Fls_Cancel FENTRYR 16 RW - LddMode

FLS_FCU_REGBIT_FENTRY_KEY

LusModeRegVal

FASTAT 8 RW - FLS_FCU_REGBIT_FASTAT_CMDLK

FSTATR 32 R - LulReturnValue

ICFLENDNM 16 RW - LusRegvalue

IMRn 16 RW - pFlEndImrAddress,

usFlEndImrMask

Registers Details Chapter 6

37

API Name
Registers

Used

Registe
r

Access
8/16/32

bits

Register
Access
R/W/RW

Config
Parame

ter

Macro/Variable

Fls_Read,

Fls_MainFunction,
Fls_Resume

FSADDR 32 RW - LulStartAddr

FLS_FCU_ADDR_REG_RESET

FEADDR 32 RW - LulEndAddr

FLS_FCU_ADDR_REG_RESET

DFERSTC 8 W - FLS_FCU_REGBIT_DFERSTC_ER
RCLR

DFERRINT 8 RW - LucRegValue

FLS_FCU_REGVAL_DFERRINT_N
OINT

DFERSTR 8 R - LulErrorRegValue

FSTATR 32 R - LulReturnValue

LulRegValue

ICFLENDNM 16 RW - LusRegvalue

FBCSTAT 8 R - LulRegValue

FENTRYR 16 RW - LddMode

FLS_FCU_REGBIT_FENTRY_KEY

LusModeRegVal

Fls_ReadImmedia
te,
Fls_MainFunction

DFERSTC 8 W - FLS_FCU_REGBIT_DFERSTC_ER
RCLR

DFERRINT 8 RW - LucDFERRInt

FLS_FCU_REGVAL_DFERRINT_N
OINT

DFERSTR 8 R - LulDFERStatus

Fls_Compare,

Fls_MainFunction

DFERSTC 8 W - FLS_FCU_REGBIT_DFERSTC_ER
RCLR

DFERRINT 8 RW - LucRegValue

FLS_FCU_REGVAL_DFERRINT_N
OINT

DFERSTR 8 R - LulErrorRegValue

ICFLENDNM 16 RW - LusRegvalue

Fls_BlankCheck,
Fls_MainFunction

Fls_Resume

FSADDR 32 RW - LulStartAddr

FEADDR 32 RW - LulEndAddr

FSTATR 32 R - LulReturnValue

LulRegValue

FBCSTAT 8 R - LulRegValue

FENTRYR 16 RW - LddMode

FLS_FCU_REGBIT_FENTRY_KEY

LusModeRegVal

ICFLENDNM 16 RW - LusRegvalue

IMRn 16 RW - pFlEndImrAddress,

usFlEndImrMask

FHVE3 32 RW - FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

FHVE15 32 RW - FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

Chapter 6 Registers Details

38

API Name
Registers

Used

Register
Access
8/16/32

bits

Register
Access
R/W/RW

Config
Parameter

Macro/Variable

Fls_GetStatus - - - - -

Fls_GetJobResult - - - - -

Fls_Suspend - - - - -

Fls_GetVersionInfo - - - - -

Interaction between the User and FLS Driver Component Chapter 7

39

 Chapter 7 Interaction between the User and FLS
Driver Component

The details of the services supported by the FLS Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

7.1. Services Provided by FLS Driver Component to the
User

The FLS Driver Component provides the following functions to upper layers:

• Writing contents to data flash memory
• Erase flash memory sectors
• Read flash contents to the application memory
• Fast Read to the application memory without performing blank check
• Validate flash contents comparing with the application memory
• Cancel the on-going erase, write, read or compare requests.
• Read the result of the last job
• Blank check of flash memory
• Read the status of the FLS Driver Component.
• Fls_Suspend suspends the on-going job.
• Fls_Resume performs the resume of previous suspended job.

 Caution:

• If other software components in BSW are accessing data flash or FACI
registers, then the synchronization between FLS and other software
components shall be handled by user application to ensure data
consistency.

• Please pay attention that many FLS APIs are non-reentrant. This means it

is not allowed to call a non-reentrant API function from a different program
context (e.g. interrupt service routines, other threads) while another or the
same non-reentrant API function is already running.
In particular, when calling Fls_MainFunction, user application shall avoid
collision with other non-reentrant FLS APIs.

Chapter 7 Interaction between the User and FLS Driver Component

40

 FLS Driver Component Header and Source File Description Chapter 8

41

Chapter 8 FLS Driver Component Header and Source
File Description

This section explains the FLS Driver Component’s C Source and C Header files.

These files have to be included in the project application while integrating with

other modules.

The C header file generated by FLS Driver Code Generation Tool:

• Fls_Cbk.h
• Fls_Cfg.h

 The C source file generated by FLS Driver Code Generation Tool:

• Fls_PBcfg.c

The FLS Driver Component C header files:
• Fls.h
• Fls_Debug.h
• Fls_Internal.h
• Fls_Types.h
• Fls_PBTypes.h
• Fls_Version.h
• Fls_Ram.h
• Fls_Private_Fcu.h
• Fls_Irq.h
• Fls_RegWrite.h

The FLS Driver Component source files:
• Fls.c
• Fls_Internal.c
• Fls_Ram.c
• Fls_Private_Fcu.c
• Fls_Version.c
• Fls_Irq.c

The Stub C header files:
• Compiler.h
• Compiler_Cfg.h
• MemMap.h
• Platform_Types.h
• rh850_Types.h
• Dem.h
• Dem_Cfg.h
• Det.h
• MemIf.h
• MemIf_Types.h
• Os.h
• Rte.h
• Std_Types.h
• SchM_Fls.h

The description of the FLS Driver Component files is provided in the table

below:

Chapter 8 FLS Driver Component Header and Source File Description

42

 Table 8-1 Description of the FLS Driver Component Files

File Details

Fls_Cfg.h This file is generated by the Renesas Unified Code Generator Tool for

various FLS Driver Component pre-compile time parameters. The macros

and the parameters generated will vary with respect to the configuration in

the input ECU Configuration description file. This file also contains the

handles for Fls Pin configuration set.

Fls_Cbk.h This file contains declarations of notification functions to be used by the

application. The notification function name can be configured.

Fls_PBcfg.c This file contains post-build configuration data. The structures

related to FLS Initialization are provided in this file. Data structures

will vary with respect to parameters configured.

Fls.h This file provides extern declarations for all the FLS Driver Component APIs.

This file provides service Ids of APIs, DET Error codes and type definitions

for FLS Software initialization structure. This header file shall be included in

other modules to use the features of FLS Driver Component.

Fls_Debug.h This file provides Provision of global variables for debugging purpose.

Fls_Internal.h This file contains the declarations of the internally used functions.

Fls_Types.h This file contains the common macro definitions and the data types

required internally by the FLS software component.

Fls_Ram.h This file contains the extern declarations for the global variables that are
defined in Fls_Ram.c file and the version information of the file.

Fls_Version.h This file contains the macros of AUTOSAR version numbers of all modules

that are interfaced to FLS.

Fls_Irq.h This file contains the external declaration for the interrupt functions used

by FLS Driver Module.

Fls_Private_Fcu.h

This file contains API Declarations of Flash Control Unit specific functions

Fls_RegWrite.h This file is to have macro definitions for the registers write and verification.

Fls.c This file contains the implementation of all APIs.

Fls_Ram.c This file contains the global variables used by FLS Driver Component.

Fls_Private_Fcu.c This file contains FCU related API implementations

Fls_Internal.c This file contains the definition of the internal functions that access the

hardware registers.

Fls_Version.c This file contains the code for checking version of all modules that are
interfaced to FLS.

Fls_Irq.c This file contains the implementation of all the interrupt functions used by
FLS Driver Module.

Compiler.h Provides compiler specific (non-ANSI) keywords. All mappings of keywords,

which are not standardized, and/or compiler specific are placed and

organized in this compiler specific header.

Compiler_Cfg.h This file contains the memory and pointer classes.

MemMap.h This file allows to map variables, constants and code of modules to

individual memory sections. Memory mapping can be modified as per ECU

specific needs.

 FLS Driver Component Header and Source File Description Chapter 8

43

File Details

Platform_Types.h This file provides provision for defining platform and compiler dependent
types.

Fls_PBTypes.h This file contains the type definitions of post build parameters. It also

contains the macros used by the FLS Driver Component.

rh850_Types.h This file provides macros to perform supervisor mode (SV) write enabled

Register ICxxx and IMR register writing using OR/AND/Direct operation.

Dem.h This file is a stub for DEM Component.

Dem_Cfg.h This is a stub file used for defining dem event parameters used in the

configuration.

Det.h This file is a stub for DET Component.

MemIf.h This file is a stub for MEMIF Module.

MemIf_Types.h This file is a stub for MemIf component.

Os.h This file is a stub for Os Component.

Rte.h This file is a stub for Rte Component.

Std_Types.h This file is a stub file which contains the standard type definitions.

SchM_Fls.h This file is a stub file which is used to get the support of critical section

protection.

Chapter 8 FLS Driver Component Header and Source File Description

44

Generation Tool Guide Chapter 9

45

Chapter 9 Generation Tool Guide

For information on the FLS Driver Code Generation Tool, please refer

“R20UT3711EJ0101-AUTOSAR.pdf” document.

Chapter 9 Generation Tool Guide

46

 Application Programming Interface Chapter 10

47

Chapter 10 Application Programming Interface

This section explains the Data types and APIs provided by the FLS Driver

Component to the Upper layers.

10.1. Imported Types

This section explains the Data types imported by the FLS Driver Component

and lists its dependency on other modules.

10.1.1. Standard Types
In this section all types included from the Std_Types.h are listed:

• Std_ReturnType
• Std_VersionInfoType

10.1.2. Other Module Types
In this section all types included from the Dem.h and MemIf_Types.h are listed.

• Dem_EventIdType
• Dem_EventStatusType
• Memif_JobResultType
• Memif_StatusType
• MemIf_ModeType

10.2. Type Definitions

This section explains the type definitions of FLS Driver Component according

to AUTOSAR Specification

10.2.1 Fls_ConfigType

 Table 10-1 Fls_ConfigType

Name: Fls_ConfigType

Type: Structure

Type Name Explanation

unit32 ulStartOfDbToc Database start value

void* pJobEndNotificationPointer Pointer to job end
callback notification

void* pJobErrorNotificationPointer Pointer to job error
callback notification

void* pEccSEDNotificationPointer Pointer to ECC SED
callback notification

void* pEccDEDNotificationPointer Pointer to ECC DED
callback notification

uint32 ulFlsSlowModeMaxReadBytes Maximum number of
Read bytes in Normal
Mode

uint32 ulFlsFastModeMaxReadBytes Maximum number of
Read bytes in fast
Mode

Chapter 10 Application Programming Interface

48

uint16* pFlEndImrAddress Address for error
IMR registers

uint16 usFlEndImrMask Mask for IMR
register

Element:

volatile Fls_FACIRegType pFACIRegPtr Base Address for
FACI Registers

volatile Fls_ECCRegType pECCRegPtr Base Address for
ECC Registers

MemIfModeType ddDefaultMode Default Mode value

Description:
Structure to hold the flash driver configuration set. The contents of the initialisation data
structure are specific to the flash memory hardware

10.2.2 Fls_AddressType

 Table 10-2 Fls_AddressType

Name: Fls_AddressType

Type: uint

 Range:

Range:

8/16/32 bits
Size depends on target platform and flash
device.

 Description: Used as address offset from the configured flash base address to access a certain
flash memory area.

10.2.3 Fls_LengthType

 Table 10-3 Fls_LengthType

Name: Fls_LengthType

Type: uint

 Range:

Same as Fls_AddressType

Shall be the same type as
Fls_AddressType because of arithmetic
operations. Size depends on target
platform and flash device.

 Description: Specifies the number of bytes to read/write/erase/compare.

10.3. Function Definitions

 Table 10-4 API Provided by FLS Driver Component

Sl. No API’s name

1. Fls_Init

2. Fls_Erase

3. Fls_Write

4. Fls_Cancel

5. Fls_GetStatus

6. Fls_GetJobResult

 Application Programming Interface Chapter 10

49

Sl. No API’s name

7. Fls_Read

8. Fls_Compare

9. Fls_SetMode

10. Fls_GetVersionInfo

11. Fls_MainFunction

12. Fls_BlankCheck

13. Fls_ReadImmediate

14. Fls_Suspend

15. Fls_Resume

10.3.1. Fls_Init

Name: Fls_Init

 Prototype:

Prototype:

FUNC(void, FLS_PUBLIC_CODE) Fls_Init(P2CONST(Fls_ConfigType,

AUTOMATIC, FLS_APPL_CONST) ConfigPtr)

Service ID: 0x00

Sync/Async: Synchronous

Reentrancy: Non-Reentrant

Parameters In:

Type Parameter Value/Range

Fls_ConfigType ConfigPtr NA

 Parameters InOut: None NA NA

Parameters out: None NA NA

Return Value:
Type Possible Return Values

void NA

Description: This service performs initialization of the FLS Driver component.

 Configuration

Dependency:
None

Preconditions: None

10.3.2. Fls_Erase

Name: Fls_Erase

 Prototype:

Prototype:

FUNC(Std_ReturnType, FLS_PUBLIC_CODE) Fls_Erase (Fls_AddressType

TargetAddress, Fls_LengthType Length)

Service ID: 0x01

Sync/Async: Asynchronous

Reentrancy: Non-Reentrant

Parameters In:

Type Parameter Value/Range

Chapter 10 Application Programming Interface

50

Parameters In: Fls_AddressType TargetAddress Target address in flash memory. This
address offset will be added to the flash
memory base address.
Min.: 0
Max.: FLS_SIZE - 1

Fls_LengthType Length Number of bytes to erase

Min.: 1

Max.: FLS_SIZE - TargetAddress

 Parameters InOut: None NA NA

Parameters out: None NA NA

Return Value:
Type Possible Return Values

Std_ReturnType E_OK: If Erase command has been accepted.

E_NOT_OK: If Erase command has not been accepted.

Description: This API will erase the one or more complete flash sectors.

Configuration

Dependency:
None

Preconditions: None

10.3.3. Fls_Write

Name: Fls_Write

Prototype:

FUNC(Std_ReturnType, FLS_PUBLIC_CODE) Fls_Write(Fls_AddressType

TargetAddress,P2CONST(uint8, AUTOMATIC, FLS_APPL_CONST)

SourceAddressPtr, Fls_LengthType Length)

Service ID: 0x02

Sync/Async: Asynchronous

Reentrancy: Non-Reentrant

Parameters In:

Type Parameter Value/Range

Fls_AddressType TargetAddress Target address in flash memory. This address
offset will be added to the flash memory base
address.

Min.: 0

Max.: FLS_SIZE - 1

 uint8 SourceAddressPtr Pointer to source data buffer

Fls_LengthType Length Number of bytes to write

Min.: 1

Max.: FLS_SIZE - TargetAddress

Parameters InOut: None NA NA

Parameters out: None NA NA

Return Value:
Type Possible Return Values

Std_ReturnType E_OK: write command has been accepted

E_NOT_OK: write command has not been accepted

Description: Writes one or more complete flash pages

Configuration

Dependency:
None

 Application Programming Interface Chapter 10

51

Preconditions: None

10.3.4. Fls_Cancel

Name: Fls_Cancel

Prototype:

Prototype:

FUNC(void, FLS_PUBLIC_CODE) Fls_Cancel(void)

Service ID: 0x03

Sync/Async: synchronous

Reentrancy: Non-Reentrant

Parameters In:

Type Parameter Value/Range

None NA NA

Parameters InOut: None NA NA

Parameters out: None NA NA

Return Value:
Type Possible Return Values

None NA

Description: Cancel an ongoing flash read, write, erase or compare job.

Configuration

Dependency:
None

Preconditions: None

10.3.5. Fls_GetStatus

Name: Fls_GetStatus

 Prototype:

Prototype:

FUNC(MemIf_StatusType, FLS_PUBLIC_CODE) Fls_GetStatus(void)

Service ID: 0x04

Sync/Async: synchronous

Reentrancy: Reentrant

Parameters In:

Type Parameter Value/Range

None NA NA

Parameters InOut: None NA NA

Parameters out: None NA NA

Return Value:
Type Possible Return Values

MemIf_StatusType Type definition for MEMIF status types

MEMIF_UNINIT,

MEMIF_IDLE,

MEMIF_BUSY,

MEMIF_BUSY_INTERNAL.

Description: Return the FLS module state synchronously

Configuration

Dependency:
None

Preconditions: None

Chapter 10 Application Programming Interface

52

10.3.6. Fls_GetJobResult

Name: Fls_GetJobResult

Prototype:

Prototype:

FUNC(MemIf_JobResultType, FLS_PUBLIC_CODE) Fls_GetJobResult(void)

Service ID: 0x05

Sync/Async: synchronous

Reentrancy: Reentrant

Parameters In:

Type Parameter Value/Range

None NA NA

Parameters InOut: None NA NA

Parameters out: None NA NA

Return Value:
Type Possible Return Values

MemIf_JobResultType Type definition for MEMIF job result types
 MEMIF_JOB_OK,

 MEMIF_JOB_FAILED,

 MEMIF_JOB_PENDING,

 MEMIF_JOB_CANCELED,

 MEMIF_BLOCK_INCONSISTENT,

 MEMIF_BLOCK_INVALID
Description: Return the result of the last job synchronously

Configuration

Dependency:
None

Preconditions: None

10.3.7. Fls_MainFunction

Name: Fls_MainFunction

 Prototype:

Prototype:

FUNC(void, FLS_PUBLIC_CODE) Fls_MainFunction(void)

Service ID: 0x06

Timing: FIXED_CYCLIC

Sync/Async: NA

Reentrancy: NA

Parameters In:

Type Parameter Value/Range

None NA NA

Parameters InOut: None NA NA

Parameters out: None NA NA

Return Value:
Type Possible Return Values

None NA

Description: Performs the processing of jobs.

Configuration

Dependency:
None

Preconditions: None

 Application Programming Interface Chapter 10

53

10.3.8. Fls_Read

Name: Fls_Read

Prototype:

FUNC(Std_ReturnType, FLS_PUBLIC_CODE) Fls_Read(Fls_AddressType

SourceAddress, P2VAR(uint8, AUTOMATIC, FLS_APPL_CONST)

TargetAddressPtr, Fls_LengthType Length)

Service ID: 0x07

Sync/Async: Asynchronous

Reentrancy: Non-Reentrant

Parameters In:

Type Parameter Value/Range

Fls_AddressType SourceAddress Source address in flash memory. This
address offset will be added to the flash
memory base address.

Min.: 0

Max.: FLS_SIZE - 1

Fls_LengthType Length Number of bytes to read

Min.: 1

Max.: FLS_SIZE - TargetAddress

Parameters InOut: None NA NA

Parameters out: uint8 TargetAddressPtr Pointer to target data buffer

Return Value:
Type Possible Return Values

Std_ReturnType E_OK: read command has been accepted

E_NOT_OK: read command has not been accepted

Description: Read from flash memory

Configuration

Dependency:
None

Preconditions: None

10.3.9. Fls_Compare

Name: Fls_Compare

Prototype:

FUNC(Std_ReturnType, FLS_PUBLIC_CODE) Fls_Compare (Fls_AddressType

SourceAddress, P2CONST(uint8, AUTOMATIC, FLS_APPL_CONST)

TargetAddressPtr, Fls_LengthType Length)

Service ID: 0x08

Sync/Async: Asynchronous

Reentrancy: Non-Reentrant

Parameters In:

Type Parameter Value/Range

Fls_AddressType SourceAddress Source address in flash memory. This
address offset will be added to the flash
memory base address.

Min.: 0

Max.: FLS_SIZE - 1

Fls_LengthType Length Number of bytes to compare

Min.: 1

Max.: FLS_SIZE - SourceAddress

uint8 TargetAddressPtr Pointer to target data buffer

Chapter 10 Application Programming Interface

54

Parameters InOut: None NA NA

Parameters out: None NA NA

Return Value:
Type Possible Return Values

Std_ReturnType E_OK: compare command has been accepted

E_NOT_OK: compare command has not been accepted

Description: Compares the contents of an area of flash memory with that of an application data
buffer.

Configuration

Dependency:
None

Preconditions: None

10.3.10. Fls_SetMode

Name: Fls_SetMode
 Prototype:

Prototype:

FUNC(void, FLS_PUBLIC_CODE) Fls_SetMode(MemIf_ModeType LenMode)

Service ID: 0x09

Sync/Async: Synchronous

Reentrancy: Non-Reentrant

Parameters In:

Type Parameter Value/Range

MemIf_ModeType Mode MEMIF_MODE_SLOW: Slow read access / normal
SPI access.

MEMIF_MODE_FAST: Fast read access / SPI burst
access.

Parameters InOut: None NA NA

Parameters out: None NA NA

Return Value:
Type Possible Return Values

None NA

Description: Sets the flash driver’s operation mode.

Configuration

Dependency:
None

Preconditions: None

10.3.11. Fls_GetVersionInfo

Name: Fls_GetVersionInfo

 Prototype:

Prototype:

FUNC(void, FLS_PUBLIC_CODE) Fls_GetVersionInfo

(P2VAR(Std_VersionInfoType, AUTOMATIC, FLS_APPL_DATA) versioninfo)

Service ID: 0x10

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters In:

Type Parameter Value/Range

None NA NA

Parameters InOut: None NA NA

 Application Programming Interface Chapter 10

55

Parameters out: Std_VersionInfoType VersioninfoPtr Pointer to where to store the version
information of this module.

Return Value:
Type Possible Return Values

None NA

Description: Returns the version information of this module.

Configuration

Dependency:
None

Preconditions: None

10.3.12. Fls_ReadImmediate

Name: Fls_ReadImmediate

 Prototype:

FUNC(Std_ReturnType, FLS_PUBLIC_CODE) Fls_ReadImmediate

(Fls_AddressType SourceAddress, P2VAR(uint8, AUTOMATIC,

FLS_APPL_CONST) TargetAddressPtr, Fls_LengthType Length)

Service ID: 0x11

Sync/Async: Asynchronous

Reentrancy: Non-Reentrant

Parameters In:

Type Parameter Value/Range

Fls_AddressType SourceAddress Source address in flash memory. This address
offset will be added to the flash memory base
address.

Min.: 0

Max.: FLS_SIZE - 1

Fls_LengthType Length Number of bytes to read

Min.: 1

Max.: FLS_SIZE - TargetAddress

Parameters InOut: None NA NA

Parameters out: uint8 TargetAddressPtr Pointer to target data buffer

Return Value:
Type Possible Return Values

Std_ReturnType E_OK: read command has been accepted

E_NOT_OK: read command has not been accepted

Description: Performs the reading of the flash memory. The data from flash memory (source address)
is read to the data buffer (Target address) of application without performing blank check
before read.

Configuration

Dependency:
None

Preconditions: None

10.3.13. Fls_BlankCheck

Name: Fls_BlankCheck

 Prototype:

Prototype:

FUNC(Std_ReturnType, FLS_PUBLIC_CODE) Fls_BlankCheck

(Fls_AddressType TargetAddress, Fls_LengthType Length)

Service ID: 0x12

Chapter 10 Application Programming Interface

56

Sync/Async: Asynchronous

Reentrancy: Non-Reentrant

Parameters In:

Type Parameter Value/Range

Fls_AddressType TargetAddress Target address in flash memory. This address
offset will be added to the flash memory base
address.

Min.: 0

Max.: FLS_SIZE - 1

Fls_LengthType Length Number of bytes to be blank checked

Min.: 1

Max.: FLS_SIZE - TargetAddress

Parameters InOut: None NA NA

Parameters out: None NA NA

Return Value:
Type Possible Return Values

Std_ReturnType E_OK: Blank check command has been accepted

E_NOT_OK: Blank check command has not been accepted

Description: Performs the blank check of flash Memory

Configuration

Dependency:
None

Preconditions: None

10.3.14. Fls_Suspend

Name: Fls_Suspend

 Prototype:

Prototype:

FUNC(Std_ReturnType , FLS_PUBLIC_CODE) Fls_Suspend(void)

Service ID: 0x13

Sync/Async: Asynchronous

Reentrancy: Non Re-entrant

Parameters In:

Type Parameter Value/Range

None NA NA

Parameters InOut: None NA NA

Parameters out: None NA NA

Return Value:
Type Possible Return Values

Std_ReturnType E_OK: Suspend job has been accepted

E_NOT_OK: Suspend job has not been accepted

Description: Performs the suspension of the ongoing job

Configuration

Dependency:
None

Preconditions: None

 Application Programming Interface Chapter 10

57

10.3.15. Fls_Resume

Name: Fls_Resume

 Prototype:

Prototype:

FUNC(void, FLS_PUBLIC_CODE) Fls_Resume(void)

Service ID: 0x14

Sync/Async: Synchronous

Reentrancy: Non-Reentrant

Parameters In:

Type Parameter Value/Range

None NA NA

Parameters InOut: None NA NA

Parameters out: None NA NA

Return Value:
Type Possible Return Values

None NA

Description: Resumes the suspended job

Configuration

Dependency:
None

Preconditions: None

10.3.16. Fls_CallSwitchBFlashErrorNotification

Name: Fls_CallSwitchBFlashErrorNotification

 Prototype:

Prototype:

void Fls_CallSwitchBFlashErrorNotification(void)

Service ID: NA

Sync/Async: Synchronous

Reentrancy: NA

Parameters In:

Type Parameter Value/Range

None NA NA

Parameters InOut: None NA NA

Parameters out: None NA NA

Return Value:
Type Possible Return Values

None NA

Description: This callback function is invoked when failure occurs while re-enabling of Code Flash
during FCU initialization procedure.

Configuration

Dependency:
None

Preconditions: None

Chapter 10 Application Programming Interface

58

 Development and Production Errors Chapter 11

59

Chapter 11 Development and Production Errors

In this section the development errors that are reported by the FLS Driver

Component are tabulated. The development errors will be reported only when

the pre compiler option FlsDevErrorDetect is enabled in the configuration. The

production code errors are not supported by FLS Driver Component.

11.1 FLS Driver Component Development Errors

The following table contains the DET errors that are reported by FLS Driver

Component. These errors are reported to Development Error Tracer Module

when the FLS Driver Component APIs are invoked with wrong input

parameters or without initialization of the driver.

 Table 11-1 DET Errors of FLS Driver Component

Sl. No. 1

Error Code FLS_E_UNINIT

Related API(s) Fls_Erase, Fls_Write, Fls_Read, Fls_Compare, Fls_Cancel,

Fls_GetStatus, Fls_GetJobResult, Fls_MainFunction, Fls_Init,

Fls_ReadImmediate, Fls_BlankCheck, Fls_Suspend,

Fls_Resume, Fls_SetMode

Source of Error When the API service is invoked before initialization.

Sl. No. 2

Error Code FLS_E_PARAM_ADDRESS

Related API(s) Fls_Erase, Fls_Write, Fls_Read, Fls_Compare, Fls_ReadImmediate,
Fls_BlankCheck

Source of Error When the API service is invoked with a wrong address.

Sl. No. 3

Error Code FLS_E_PARAM_LENGTH

Related API(s) Fls_Erase, Fls_Write, Fls_Read, Fls_Compare, Fls_ReadImmediate,
Fls_BlankCheck

Source of Error When the API service is invoked with a wrong length.

Sl. No. 4

Error Code FLS_E_PARAM_DATA

Related API(s) Fls_Write, Fls_Read, Fls_Compare, Fls_ReadImmediate

Source of Error When the API service is invoked with a NULL buffer address.

Sl. No. 5

Error Code FLS_E_BUSY

Related API(s) Fls_Init, Fls_Erase, Fls_Write, Fls_Read, Fls_Compare,

Fls_SetMode , Fls_ReadImmediate, Fls_BlankCheck

Source of Error When the API service is invoked when the driver is still busy.

 Sl. No. 6

Error Code FLS_E_VERIFY_ERASE_FAILED
Related API(s) Fls_MainFunction

 Source of Error When the erase verification fails.

Chapter 11 Development and Production Errors

60

Sl. No. 7

Error Code FLS_E_VERIFY_WRITE_FAILED

Related API(s) Fls_MainFunction

Source of Error When the write verification fails.

Sl. No. 8

Error Code FLS_E_PARAM_CONFIG

Related API(s) Fls_Init, Fls_SetMode

Source of Error API initialization service invoked with wrong parameter.

Sl. No. 9

Error Code FLS_E_TIMEOUT

Related API(s) Fls_MainFunction

Source of Error API service invoked when time out supervision of a write, erase or blank

check job failed

Sl. No. 10

Error Code FLS_E_INVALID_DATABASE

Related API(s) Fls_Init

Source of Error API service Fls_Init called without/with a wrong database is reported

using following error code

Sl. No. 11

Error Code FLS_E_PARAM_POINTER

Related API(s) Fls_GetVersionInfo
Source of Error API service Fls_GetVersionInfo invoked with a null pointer

11.2 FLS Driver Component Production Errors
The following table contains the DEM errors that are reported by FLS Driver
Component. These are the hardware errors reported during runtime.

 Table 11-2 DEM Errors of FLS Driver Component

Sl. No. 1

Error Code FLS_E_ERASE_FAILED

Related API(s) Fls_Erase

Source of Error When the Erase API service is invoked and the erase job fails, error will be

reported to DEM module. The Dem module shall provide the interface

Dem_ReportErrorStatus to the BSW modules, to report BSW events which

are processed.

Sl. No. 2

Error Code FLS_E_WRITE_FAILED

Related API(s) Fls_Write

Source of Error When the Write API service is invoked and the erase job fails, error will be
reported to DEM module. The Dem module shall provide the interface
Dem_ReportErrorStatus to the BSW modules, to report BSW events which are
processed.

Sl. No. 3

Error Code FLS_E_READ_FAILED

 Development and Production Errors Chapter 11

61

Related API(s) Fls_Read

Source of Error When the Read API service is invoked and the internal reading of the data

flash memory fails, error will be reported to DEM module. The Dem module

shall provide the interface Dem_ReportErrorStatus to the BSW modules, to

report BSW events which are processed.

Sl. No. 4

Error Code FLS_E_COMPARE_FAILED

Related API(s) Fls_Compare

Source of Error When the Compare API service is invoked and when the comparison

between the data in the application buffer and the data flash memory fails,

error will be reported to DEM module. The Dem module shall provide the

interface Dem_ReportErrorStatus to the BSW modules, to report BSW

events which are processed.

Sl. No. 5

Error Code FLS_E_READ_FAILED_DED

Related API(s) Fls_Read, Fls_ReadImmediate, Fls_Compare

Source of Error When the Read/ReadImmediate/Compare API service is invoked, if any

double bit error is detected, error will be reported to DEM module. The Dem

module shall provide the interface Dem_ReportErrorStatus to the BSW

modules, to report BSW events which are processed.

Sl. No. 6

Error Code FLS_E_REG_WRITE_VERIFY

 Related API(s) Fls_Init,Fls_Erase, Fls_Write, Fls_Read, Fls_Compare, Fls_Cancel,
Fls_ReadImmediate, Fls_BlankCheck, Fls_Suspend, Fls_Resume

Source of Error If any write operation on the protection register fails, error shall be reported
to DEM module. The Dem module shall provide the interface
Dem_ReportErrorStatus to the BSW modules, to report BSW events which
are processed.

Sl. No. 7

Error Code FLS_E_ECC_FAILED

 Related API(s) Fls_Init

Source of Error During initialization, FLS module shall read FRTEINT register and check if

any ECC error has occurred. If any errors are there, DEM shall be reported.
The Dem module shall provide the interface Dem_ReportErrorStatus to the
BSW modules, to report BSW events which are processed.

Sl. No. 8

Error Code FLS_E_HW_FAILURE

Related API(s) Fls_Init, Fls_Erase, Fls_Write, Fls_Cancel, Fls_BlankCheck, Fls_Resume

Source of Error If any failure has occurred due to mode switch or forced stop or clear status
command processing failure, DEM shall be reported. The Dem module shall
provide the interface Dem_ReportErrorStatus to the BSW modules, to report
BSW events which are processed.

Sl. No. 9

Error Code FLS_E_INT_INCONSISTENT

Related API(s) FLS_FLENDNM_ISR

Chapter 11 Development and Production Errors

62

Source of Error If any failure has occurred due to interrupt inconsistency has been identified
from the unknown source, DEM shall be reported. The Dem module shall
provide the interface Dem_ReportErrorStatus to the BSW modules, to report
BSW events which are processed.

 Memory Organization Chapter 12

63

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be met for

proper functioning of FLS Driver Component software.

Figure 12-1 FLS Driver Component Memory Organization

FLS Driver code related
to APIs are placed in this
memory.

Segment Name:
FLS_PUBLIC_CODE_ROM

Segment Name:

FLS_SAMPLE_CODE_ROM

Segment Name:

FLS_PRIVATE_CODE_RAM

 Segment Name:
 NO_INIT_RAM_UNSPECIFIED

Segment Name:
NO_INIT_RAM_32BIT

R
A
M
E
K
L
F
E
L
K
F
L
E
K
A
F
L
K
S
E
L
F
K
E
L
1
B
I
T
R
A
M
_
1
B
I
T
R
A
M
_
1
B
I
T

R
A
M
_
1

 X1

 X2

X3

ROM Section

FLS Driver Component

Object Files

RAM Section

Y1

Y2

 Y3

 Y5

X4

Segment Name:

FLS_FAST_CODE_ROM

Segment Name:
FLS_CFG_DATA_UNSPECIFIED

Segment Name:
NO_INIT_RAM_1BIT

Segment Name:
RAM_1BIT

R
A
M
E
K
L
F
E
L
K
F
L
E
K
A
F
L
K
S
E
L
F
K
E
L
1
B
I
T
R
A
M
_
1
B
I
T
R
A
M
_
1
B
I
T

R
A
M
_
1
B
I
T

 Y4

Chapter 12 Memory Organization

64

ROM Sections:

FLS_PUBLIC_CODE_ROM (X1): This section consists of FLS Driver

Component public APIs that can be located in code memory.

FLS_SAMPLE_CODE_ROM (X2): This section consists of FLS sample

application that can be located in code memory.

FLS_FAST_CODE_ROM (X3): Interrupt functions of FLS Driver Component

code that can be located in code memory.

FLS_CFG_DATA_UNSPECIFIED(X4): The const section in the file

Fls_PBcfg.c is placed in this memory.

RAM Sections:

FLS_PRIVATE_CODE_RAM (Y1): This section in RAM is copied from ROM

section (X1) by the GHS start-up routines.

RAM_1BIT (Y2): This section consists of the global RAM variables of 1-bit size

that are initialized by start-up code and used internally by FLS software

component and other software components. The specific sections of respective

software components will be merged into this RAM section accordingly.

NO_INIT_RAM_32BIT (Y3): This section consists of the global RAM variables

of 32-bit size that are used internally by FLS software component and other

software components. The specific sections of respective software components

will be merged into this RAM section accordingly.

NO_INIT_RAM_1BIT (Y4): This section consists of the global RAM variables of

1-bit size that are used internally by FLS software component and other

software components. The specific sections of respective software components

will be merged into this RAM section accordingly.

NO_INIT_RAM_UNSPECIFIED (Y5): This section consists of the global RAM

variables that are used internally by FLS software component and other

software components. The specific sections of respective software components

will be merged into this RAM section accordingly.

 P1M Specific Information Chapter 13

65

Chapter 13 P1M Specific Information

P1M supports following devices:

 R7F701304

 R7F701305

 R7F701310

 R7F701311

 R7F701312

 R7F701313

 R7F701314

 R7F701315

 R7F701318

 R7F701319

 R7F701320

 R7F701321

 R7F701322

 R7F701323

13.1. Interaction between the User and FLS Driver

Component

The details of the services supported by the FLS Driver Component to the

upper layer users and the mapping of the channels to the hardware units is

provided in the following sections:

13.1.1. Translation header File

 P1x_translation.h supports following devices:

 R7F701304

 R7F701305

 R7F701310

 R7F701311

 R7F701312

 R7F701313

 R7F701314

 R7F701315

 R7F701318

 R7F701319

 R7F701320

 R7F701321

 R7F701322

 R7F701323

13.1.2. Services Provided by FLS Driver Component to the User

The FLS Driver Component provides the following functions to upper layers:
• Erase memory sectors
• Read flash contents to the application memory

Chapter 13 P1M Specific Information

66

• Fast read immediate to the application memory without blank check.
• Validate flash contents comparing with the application memory
• Cancel the on-going erase, write, read or compare requests.
• Read the result of the last job
• Blank check of flash memory sector.
• Read the status of the FLS Driver Component.
• Suspend the erase and write operation.
• Resume the erase and write operation.

13.1.3. Parameter Definition File

 Table 13-1 PDF information for P1M

PDF files Devices

supported

R403_FLS_P1M_04_05_10_to_15.arxml
701304, 701305, 701310, 701311,

701312, 701313, 701314, 701315

R403_FLS_P1M_18_to_23.arxml
701318, 701319, 701320, 701321,

701322, 701323

13.1.4. ISR Functions for FLS module

The table below provides the list of handler addresses corresponding to the

hardware unit ISR(s) in FLS Driver Component. The user should configure the

ISR functions mentioned below:

 Table 13-2 Interrupt Functions for FLS Module

Interrupt Source Name of the ISR Function

FLENDNM_ISR

FLS_FLENDNM_ISR

FLS_FLENDNM_CAT2_ISR

 Note: The functions with “INTERRUPT “as pilot tag, provides an indication to the compiler that

the function following this tag is an interrupt function type. The tag name can vary according to
 the compiler. User should take care of the tag name with respect to compiler used.

13.1.5. Data Flash Address Space

The Data Flash address space of the RH850/P1x is as below:

Data Flash Address:

512-KB device: FF20 0000H to FF20 7FFFH

1-MB device: FF20 0000H to FF20 7FFFH

2-MB device: FF20 0000H to FF20 FFFFH

13.2. Sample Application

13.2.1. Sample Application Structure

The Sample Application is provided as reference to the user to understand the

method in which the FLS APIs can be invoked from the application. The Sample

Application is provided for three use-cases.

 P1M Specific Information Chapter 13

67

Figure 13-1 Overview of FLS Driver Sample Application

The Sample Application of the P1M is available in the path

X1X\P1x\modules\fls\sample_application

X1X\P1x\modules\fls\definition\<AUTOSAR_version>\<SubVariant>\
 \R403_FLS_P1M_04_05_10_to_15.arxml

 \R403_FLS_P1M_18_to_23.arxml

X1X\P1x\modules\fls\sample_application\<SubVariant>\
 <AUTOSAR_version>\

\src\Fls_PBcfg.c

\include\Fls_Cfg.h

\include\Fls_Cbk.h

 \config\App_FLS_P1M_701304_Sample.arxml

 \config\App_FLS_P1M_701305_Sample.arxml

 \config\App_FLS_P1M_701310_Sample.arxml

 \config\App_FLS_P1M_701311_Sample.arxml

 \config\App_FLS_P1M_701312_Sample.arxml

 \config\App_FLS_P1M_701313_Sample.arxml

 \config\App_FLS_P1M_701314_Sample.arxml

 \config\App_FLS_P1M_701315_Sample.arxml

 \config\App_FLS_P1M_701318_Sample.arxml

 \config\App_FLS_P1M_701319_Sample.arxml

 \config\App_FLS_P1M_701320_Sample.arxml

 \config\App_FLS_P1M_701321_Sample.arxml

 \config\App_FLS_P1M_701322_Sample.arxml

Chapter 13 P1M Specific Information

68

 \config\App_FLS_P1M_701323_Sample.arxml

In the Sample Application all the FLS APIs are invoked in the following

sequence:

• The API Fls_GetVersionInfo is invoked to get the version Information of FLS

component with a variable of Std_VersionInfoType type, after the call of this

API the passed parameter will get updated with the FLS Driver Component

version details.

• The API Fls_Init is invoked with config pointer. This API performs the

initialization of the FLS Driver Component. This API initializes all the elements

(Global Variables) of Global structure.

• The API Fls_Erase is invoked to erase one or more complete Flash Sectors.

• The API Fls_Write is invoked to write the one or more complete flash pages to

the flash device from the application data buffer

• The API Fls_Read is invoked to read the requested length of flash memory and

stores it in the application data buffer.

• The API Fls_Compare is invoked to compare the contents of an area of flash

memory with that of an application data buffer.

• The API Fls_Cancel is invoked to cancel an on-going flash operations like read,

write, erase or compare job.

• The API Fls_Getstatus returns the FLS module state synchronously.

• The API Fls_GetJobResult returns the result of the last job synchronously.

• The API Fls_Setmode, this API sets the flash driver operation mode.

• The API Fls_Mainfunction is invoked performs processing of the flash Read,
Erase, write or compare jobs. It’s a scheduled function. The Fls_Mainfunction
accepts only read, write, erase or compare job at a time.

• The API Fls_ReadImmediate is invoked for reading of the flash memory. The

data from flash memory (source address) is read to the data buffer (Target
address) of application without performing blank check before read.

• The API Fls_BlankCheck is invoked to verify whether the memory is properly
erased before doing a write operation.

Remark The API Fls_MainFunction needs to be called in a certain time interval

configured using the parameter "FlsCallCycle". Hence, the sample application

invokes the API ‘Fls_MainFunction’ periodically in a loop with sufficient software

delay. Calling Fls_MainFunction in the interrupt mode of FLS will not perform

the substantial Flash operations; it will be executed as dummy function, except

that the timeout supervision will be performed within the Fls_MainFunction call

if timeout monitoring is enabled.

13.2.2. Building Sample Application

13.2.2.1. Configuration Example

This section contains the typical configuration which is used for measuring

RAM/ROM consumption, stack depth and throughput details.
Configuration Details:
App_FLS_<SubVariant>_<Device_Name>_Sample.arxml

 P1M Specific Information Chapter 13

69

13.2.2.2. Debugging the Sample Application

Remark GNU Make utility version 3.81 or above must be installed and available in the

path as defined by the environment user variable “GNUMAKE” to complete the

build process using the delivered sample files.

Open a Command window and change the current working directory to “make”

directory present as mentioned in below path:

“external/X1X/P1x/common_family/make/<compiler>”

Now execute batch file SampleApp.bat with following parameters:

SampleApp.bat fls <AUTOSAR_version> <Device_Name>

After this, the tool output files will be generated with the configuration as

mentioned is available in the path:

“X1X\P1x\modules\fls\sample_application\<SubVariant>\<AUTOSAR_version>
\config”

• After this, all the object files, map file and the executable file

App_FLS_P1M_Sample.out will be available in the output folder

(“X1X\P1x\modules\fls\sample_application\<SubVariant>\obj\<compiler>” in
this case).

• The executable can be loaded into the debugger and the sample application

can be executed.

Remark Executable files with ‘*.out’ extension can be downloaded into the target

hardware with the help of Green Hills debugger.

If any configuration changes (only post-build) are made to the ECU

Configuration Description files

“X1X\P1x\modules\fls\sample_application\<SubVariant>\<AUTOSAR_version>\
config\ App_FLS_P1M_<Device_name>_Sample.arxml”

App_FLS_P1M_<Device_name>_Sample.arxml” the database alone can be

generated by using the following commands.

 make –f App_FLS_<SubVariant>_Sample.mak generate_fls_config

 make –f App_FLS_<SubVariant>_Sample.mak

 App_FLS_<SubVariant>_Sample.s37

• After this, a flash able Motorola S-Record file App_FLS_

App_FLS_<SubVariant>_Sample.s37_Sample.s37 is available in the

output folder.

Note: 1. <compiler> for example can be “ghs”.

2. <Device_Name> indicates the device to be compiled, which can be 701304,
701305, 701310, 701311, 701312, 701313, 701314, 701315, 701318,
701319, 701320, 701321, 701322 or 701323.

3. <SubVariant> can be P1M.

 4. <AUTOSAR_version> can be 4.0.3.

Chapter 13 P1M Specific Information

70

13.3. Memory and Throughput

13.3.1. ROM/RAM Usage

The details of memory usage for the typical configuration, with DET enabled as

provided in Section 13.2.2.1 Configuration Example are provided in this

section.

 Table 13-3 ROM/RAM Details with DET

 Table 13-4 ROM/RAM Details without DET

Sl. No. ROM/RAM Segment Name Size in bytes
for 701318

1. ROM FLS_PUBLIC_CODE_ROM

 FLS_PRIVATE_CODE_ROM

 FLS_FAST_CODE_ROM

 FLS_CFG_DATA_UNSPECIFIED

 ROM.FLS_PRIVATE_CODE_RAM

1834

5468

 170

 48

362

2. RAM FLS_PRIVATE_CODE_RAM

 NO_INIT_RAM_UNSPECIFIED

 NO_INIT_RAM_32BIT

 RAM_1BIT

 NO_INIT_RAM_1BIT

362

100

516

4

4

Sl. No. ROM/RAM Segment Name Size in bytes
for 701318

1. ROM FLS_PUBLIC_CODE_ROM

 FLS_PRIVATE_CODE_ROM

 FLS_FAST_CODE_ROM

 FLS_CFG_DATA_UNSPECIFIED

 ROM.FLS_PRIVATE_CODE_RAM

1350

4352

 144

 48

334

2. RAM FLS_PRIVATE_CODE_RAM

 NO_INIT_RAM_UNSPECIFIED

 NO_INIT_RAM_32BIT

 RAM_1BIT

 NO_INIT_RAM_1BIT

334

100

516

4

3

 P1M Specific Information Chapter 13

71

13.3.2. Stack Depth

The worst-case stack depth for FLS Driver Component is for the typical

configuration provided in Section 13.2.2.1 Configuration Example.

 Table 13-5 Stack Depth Table

Sl. No

Device Name

Stack Depth (in Bytes)

1.

R7F701318

 36

13.3.3. Throughput Details

The throughput details of the APIs for the configuration mentioned in the

Section 13.2.2.1Configuration Example are listed here. The clock frequency

used to measure the throughput is 160MHz for all APIs.

 Table 13-6 Throughput Details of the APIs

Sl. No.

API Name
Throughput in

µ seconds for

701318

with Interrupt

OFF

Throughput

in µ

seconds for

701318 with

Interrupt ON

Remarks

1. Fls_Init 415.112 416.650 -

2. Fls_Erase 3.812 4.687* -

3. Fls_Write 3.862 4.675 -

4. Fls_Cancel 0.237 0.287 -

5. Fls_GetStatus 0.125 0.125 -

6. Fls_GetJobResult 0.137 0.137 -

7. Fls_Read 1.225 1.562 -

8. Fls_Compare 0.962 0.862 -

9. Fls_GetVersionInfo 0.15 0.125 -

10. Fls_BlankCheck 2.862 3.737* -

11. Fls_SetMode 0.312 0.287

12. Fls_ReadImmediate 1.437 1.4 -

13. Erase Operation

5320.237 5220.937

This is the time

taken for the

complete erase

operation of 256

bytes data length.

Chapter 13 P1M Specific Information

72

Sl. No.

API Name
Throughput in

µ seconds for

701318

with Interrupt

OFF

Throughput

in µ

seconds for

701318 with

Interrupt ON

Remarks

14. Write Operation

6525.620 6543.675

This is the time

taken for the

complete write

operation of 256

bytes data

length.

15. Blank Check Operation

176.35 178.887

This is the time

taken for

performing blank

check operation

of 256 bytes data

length.

16. Read Immediate Operation

45.375 48.375

This is the time

taken for the

complete fast

read operation of

256 bytes data

length without

performing blank

check before

read.

17. Read Operation

1498.237 1501.475

This is the time

taken for the

complete read

operation of 256

bytes data

length.
18. Compare Operation

236.712 239.55

This is the time

taken for the

complete

compare

operation of 256

bytes data length.

19.

 FLENDNM_ISR operation

NA 4.812

This is the time

taken for the

complete Erase

of 1 block data

length.

NA 4.962

This is the time

taken for the

complete Write of

1 word data

length

20. Fls_Suspend

NA 0.225

Suspend and

Resume

throughput are

taken for

interrupt mode as

per the

requirement

 P1M Specific Information Chapter 13

73

Sl. No.

API Name
Throughput in

µ seconds for

701318

with Interrupt

OFF

Throughput

in µ

seconds for

701318 with

Interrupt ON

Remarks

21. Fls_Resume

NA 4.3

Suspend and

Resume

throughput are

taken for

interrupt mode as

per the

requirement

22.

 23.

Fls_MainFunction - for single
Read Operation 1498.237 NA

This is the time
taken for the
complete read
operation of 256
bytes data length.

Fls_MainFunction - for single
Erase Atomic Operation

5.137 NA

This is the time

taken for Fls

scheduler to

complete the

single erase

atomic operation

24. Fls_MainFunction - for single
Write Atomic Operation

3.137 NA This is the time

taken for Fls

scheduler to

complete the

single write

atomic operation

NOTE: The Throughput time for a Single Fls_Erase and Fls_BlankCheck operation is more
with Interrupt ON than with Interrupt OFF.
This is because in Interrupt ON, Throughput time includes the normal operation time along
with the Interrupt ISR execution time since the interrupt is generated immediately after the
command processing is complete and is serviced accordingly.

Chapter 13 P1M Specific Information

74

Release Details Chapter 14

75

Chapter 14 Release Details

FLS Driver Software

Version: 1.0.5

Chapter 14 Release Details

76

77

Revision History

Sl.No. Description Version Date

1. Initial Version

1.0.0 15-Feb-2016

2.

Following changes are made:

1. Chapter 2 ‘Reference Documents’ updated to correct the device

manual name and version and corrected version of

'AUTOSAR_SWS_MemoryMapping.pdf' and

'AUTOSAR_SWS_CompilerAbstraction.pdf'.

2. Updated Chapter 4 ‘ForeThoughts’ to add the precaution about

accessing hardware register in section 4.1 ‘General’.

3. Updated Chapter 6 ‘Register Details’ to add ICFLENDNM register

wherever applicable and removed register details of Fls_SetFHVE

function.

4. Updated Chapter 5 ‘Architecture Details’, to correct the description of

Fls_Suspend API.

5. Chapter 12 ‘Memory Organization’ has been updated to remove the

sections FLS_BUFFER_CODE_RAM,

FLS_USER_BUFFER_CODE_RAM and

FLS_CFG_DBTOC_UNSPECIFIED and added NOINIT_RAM_32BIT

and FLS_CFG_DATA_UNSPECIFIED.

6. Updated Chapter 13.3 ‘Memory and Throughput’.

7. Updated Chapter 14 ‘Release Details’ to correct the driver version.

1.0.1 24-Mar-2016

3. Following changes are made:

1. Added precondition items about critical protection and transient

hardware faults in chapter 4.2 ‘Precondition’.

2. Updated Chapter 14 ‘Release Details’.

3. Added a ‘Note’ below the table 'Supervisor mode and User mode

details'.

4. Updated Chapter 13.3 ‘Memory and Throughput’.

5. In chapter 8, heading changed to "The Stub C header files:" and

missing stub files are added.

6. Table 4-1 is added to list protected resources in FLS driver

7. Section 13.2 reference to .one and .html files are removed

8. Note added in section 13.2.1 ISR function.

9. Description added for the FLS Driver Component Files.

10. Updated Chapter 6 ‘Register Details’ to add IMR register details.

11. Merged parameter definition files in sections 13.1.3 and 13.2.1

12. Added new header file ‘Fls_RegWrite.h’ in section 3.1.1 and section
8.

13. Updated R-Number

14. Chapter 12 is updated for the modification of Memory sections

1.0.2 16-Jul-2016

4. Following changes are made:

1. Updated section 4 ‘Forethoughts’

2. Updated the table 11-1 ‘Development and Production Errors’ to add
Fls_SetMode API under DET ‘FLS_E_PARAM_CONFIG’

3. Updated Chapter 13.3 ‘Memory and Throughput’

4. Updated chapter 12 Memory Organization

5. Updated section 13.1.2 Services Provided by FLS Driver Component
to the User

1.0.3 21-Oct-2016

78

Sl.No. Description Version Date

5. Following changes are made:

1. Updated Table for Abbreviations and Acronyms to remove unused
Abbreviations/ Acronyms.

2. Updated Chapter 2 Reference Documents.

3. Updated section 4.1 ‘General’ to add information about Read, Read
Immediate, Suspend and Resume operations.

4. Updated section 4.2 ‘Preconditions’ to add information about
BlankCheck operation.

5. Updated Chapter 3 and Chapter 9 to rename the FLS Driver
Generation Tool reference document.

6. Updated Section 13.3.1 with ROM/RAM usage values.

7. Updated Section 13.3.3 ‘Throughput Details’ to add Note under
Table 13-6 Throughput Details of the APIs and updated the
Throughput details.

8. Updated section 12 ‘Memory Organization’ to remove unused
memory segments and their descriptions.

9. Updated Chapter 14 for FLS Driver Software version.

10. Updated notice, address and copyright information’s.

11. Version of R-number is updated at the end of document.

12. Updated Section 7.1 to add Cautions.

13. Updated Section 10.3 with the details of Fls_Resume API.

1.0.4

17-Feb-2017

6. Following changes are made:

1. Updated section 4.2 and section 10.3 with details of newly added
notification function Fls_CallSwitchBFlashErrorNotification.

2. Updated section 13.3 ‘Memory and Throughput’.
3. Updated Chapter 14 for FLS Driver Software version.
4. Version of R-number is updated at the end of document.
5. Updated section name from FLS_START_SEC_PRIVATE_CODE

and FLS_STOP_SEC_PRIVATE_CODE to

FLS_START_SEC_PRIVATERAM_CODE and
FLS_STOP_SEC_PRIVATERAM_CODE respectively in section 4.2.

1.0.5 04-May-2017

79

AUTOSAR MCAL R4.0.3 User's Manual
FLS Driver Component Ver.1.0.5
Embedded User's Manual

Publication Date: Rev.1.02, May 04, 2017

Published by: Renesas Electronics Corporation

SALES OFFICES http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2006-2017 Renesas Electronics Corporation. All rights reserved.

Colophon 4.1

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3

User's Manual

R20UT3710EJ0102

	Chapter 1 Introduction
	1.1 Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration and Build Process
	3.1. FLS Driver Component Make file
	3.1.1. Folder Structure

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. Data Consistency
	4.4. Deviation List
	4.5. User mode and supervisor mode

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction between the User and FLS Driver Component
	7.1. Services Provided by FLS Driver Component to the User

	Chapter 8 FLS Driver Component Header and Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1. Imported Types
	10.1.1. Standard Types
	10.1.2. Other Module Types

	10.2. Type Definitions
	10.2.1 Fls_ConfigType
	10.2.2 Fls_AddressType
	10.2.3 Fls_LengthType

	10.3. Function Definitions
	10.3.1. Fls_Init
	10.3.2. Fls_Erase
	10.3.3. Fls_Write
	10.3.4. Fls_Cancel
	10.3.5. Fls_GetStatus
	10.3.6. Fls_GetJobResult
	10.3.7. Fls_MainFunction
	10.3.8. Fls_Read
	10.3.9. Fls_Compare
	10.3.10. Fls_SetMode
	10.3.11. Fls_GetVersionInfo
	10.3.12. Fls_ReadImmediate
	10.3.13. Fls_BlankCheck
	10.3.14. Fls_Suspend
	10.3.15. Fls_Resume
	10.3.16. Fls_CallSwitchBFlashErrorNotification

	Chapter 11 Development and Production Errors
	11.1 FLS Driver Component Development Errors
	11.2 FLS Driver Component Production Errors

	Chapter 12 Memory Organization
	Chapter 13 P1M Specific Information
	13.1. Interaction between the User and FLS Driver Component
	13.1.1. Translation header File
	13.1.2. Services Provided by FLS Driver Component to the User
	13.1.3. Parameter Definition File
	13.1.4. ISR Functions for FLS module
	13.1.5. Data Flash Address Space

	13.2. Sample Application
	13.2.1. Sample Application Structure
	13.2.2. Building Sample Application
	13.2.2.1. Configuration Example
	13.2.2.2. Debugging the Sample Application

	13.3. Memory and Throughput
	13.3.1. ROM/RAM Usage
	13.3.2. Stack Depth
	13.3.3. Throughput Details

	Chapter 14 Release Details

