

MICROSAR I-PDU Multiplexer

Technical Reference

Version 2.06.00

Authors Safiulla Shakir, Markus Bart, Gunnar Meiss

Status Released

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 2
based on template version 5.2.0

Document Information

History

Author Date Version Remarks

Safiulla Shakir 2011-12-06 1.00.00 Initial CFG5 version derived from
TechnicalReference_ASR_IpduM.pdf

Markus Bart 2012-08-23 2.00.00 ESCAN00058313

AR4-160: Support AUTOSAR 4.0.3

Markus Bart 2013-01-29 2.01.00 ESCAN00063294
AR4-197: Support BIG_ENDIAN Copy
Segments in IpduM

Gunnar Meiss 2013-04-04 2.02.00 ESCAN00064368

AR4-325: Post-Build Loadable

Markus Bart 2014-11-05 2.03.00 AR4-698: Post-Build Selectable (Identity
Manager)

Markus Bart 2014-12-01 2.04.00 FEAT-229: Support 16bit selector in IpduM
[AR4-927]

Markus Bart 2015-08-11 2.05.00 FEAT-1315: IPDUM for CAN-FD
supporting nPdu2Frame-Mapping

Gunnar Meiss 2016-02-25 2.06.00 FEAT-1631: Trigger Transmit API with
SduLength In/Out according to ASR4.2.2

Reference Documents

No. Source Title Version

[1] AUTOSAR AUTOSAR_SWS_IPDUMultiplexer.pdf 2.2.0

[2] AUTOSAR AUTOSAR_TR_BSWModuleList.pdf 1.6.0

[3] Vector TechnicalReference_PostBuildLoadable.pdf 1.0.0

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Caution
This symbol calls your attention to warnings.

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 3
based on template version 5.2.0

Contents

1 Component History .. 6

2 Introduction .. 7

2.1 Architecture Overview .. 8

3 Functional Description .. 10

3.1 Features ... 10

3.2 Initialization .. 11

3.3 States ... 11

3.4 Main Functions ... 11

3.5 Error Handling .. 11

3.5.1 Development Error Reporting .. 11

3.6 nPdu-to-Frame mapping for CAN-FD ... 12

4 Integration .. 13

4.1 Scope of Delivery ... 13

4.1.1 Static Files .. 13

4.1.2 Dynamic Files ... 13

4.2 Critical Sections ... 14

5 API Description .. 15

5.1 Services provided by IPDUM .. 15

5.1.1 IpduM_InitMemory .. 15

5.1.2 IpduM_Init ... 15

5.1.3 IpduM_Transmit .. 16

5.1.4 IpduM_MainFunction ... 17

5.1.5 IpduM_GetVersionInfo ... 17

5.2 Services used by IPDUM.. 18

5.3 Callback Functions ... 19

5.3.1 IpduM_RxIndication .. 19

5.3.2 IpduM_TxConfirmation .. 19

5.3.3 IpduM_TriggerTransmit ... 20

6 Configuration.. 21

6.1 Configuration of Post-Build ... 21

7 AUTOSAR Standard Compliance .. 22

7.1 Deviations .. 22

7.2 Additions/ Extensions ... 22

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 4
based on template version 5.2.0

7.3 Limitations .. 22

8 Glossary and Abbreviations .. 23

8.1 Glossary ... 23

8.2 Abbreviations ... 24

9 Contact.. 25

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 5
based on template version 5.2.0

Illustrations
Figure 2-1 AUTOSAR 4.1 Architecture Overview ... 8
Figure 2-2 AUTOSAR architecture ... 8
Figure 2-3 Interfaces to adjacent modules of the IPDUM ... 9

Tables

Table 1-1 Component history.. 6
Table 3-1 Supported AUTOSAR standard conform features 10
Table 3-2 Not supported AUTOSAR standard conform features 11
Table 3-3 Features provided beyond the AUTOSAR standard 11
Table 4-1 Static files ... 13
Table 4-2 Generated files ... 14
Table 5-1 IpduM_InitMemory .. 15
Table 5-2 IpduM_Init ... 16
Table 5-3 IpduM_Transmit .. 16
Table 5-4 IpduM_MainFunction .. 17
Table 5-5 IpduM_GetVersionInfo .. 17
Table 5-6 Services used by the IPDUM .. 18
Table 5-7 IpduM_RxIndication .. 19
Table 5-8 IpduM_TxConfirmation ... 20
Table 5-9 IpduM_TriggerTransmit ... 20
Table 8-1 Glossary ... 24
Table 8-2 Abbreviations .. 24

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 6
based on template version 5.2.0

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

1.00  Component in conformance with AUTOSAR 3.2.1

2.00  AUTOSAR 4.0.3

2.01  BIG_ENDIAN copy segments

2.02  Support post-build loadable

3.00  Support post-build selectable

 Support deleting container at post-build time

4.00  Extend support for module initialization

6.00  Support 16 bit selector

 Support selector using more than one byte (i.e. crossing byte
boundaries)

6.01  Support nPdu-to-Frame Mapping for CAN-FD

Table 1-1 Component history

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 7
based on template version 5.2.0

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module IPDUM as specified in [1].

Supported AUTOSAR Release*: 4.x

Supported Configuration Variants: PRE-COMPILE [SELECTABLE]

POST-BUILD-LOADABLE [SELECTABLE]

Vendor ID: IPDUM_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: IPDUM_MODULE_ID 52 decimal

(according to ref. [2])

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

Multiplexing is a concept generally used to save CAN identifiers where an I-PDU with a
CAN ID is used to carry different I-PDUs thereby saving the CAN IDs for the I-PDUs it
carries. The IpduM can be used also with Flexray and LIN.

I-PDU multiplexing means using the same PCI of a PDU with more than one unique
layouts of its SDU. The SDU in a multiplexed I-PDU contains a selector field which is used
to determine the layout of the SDU being multiplexed or de-multiplexed.
The AUTOSAR IpduM multiplexes a dynamic part along with or without a static part.
Each dynamic and static part is an independent signal-I-PDU in AUTOSAR BSW module
Com.

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 8
based on template version 5.2.0

2.1 Architecture Overview

The following figure shows where the IPDUM is located in the AUTOSAR architecture.

Figure 2-1 AUTOSAR 4.1 Architecture Overview

Figure 2-2 AUTOSAR architecture

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 9
based on template version 5.2.0

The next figure shows the interfaces to adjacent modules of the IPDUM. These interfaces
are described in chapter 4.2.

Figure 2-3 Interfaces to adjacent modules of the IPDUM

Normally the IpduM only interacts with the PduR. If required the IpduM can interface Com
directly bypassing the PduR while indicating receptions and confirming transmissions.

The IpduM also uses the interfaces to the BSW Scheduler and Det.

 class Architecture

PduR

Det

Com

IpduM

BswMSchM / Rte

opt

[direct com invocation]

Initialization

Transmission

Transmission

Interrupt- and critical section handling

RxIndication, TxConfirmation, TriggerTransmit

ErrorReporting

RxIndication, TxConfirmation, TriggerTransmit

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 10
based on template version 5.2.0

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
IPDUM.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

> Table 3-1 Supported AUTOSAR standard conform features

> Table 3-2 Not supported AUTOSAR standard conform features

> Table 3-3 Features provided beyond the AUTOSAR standard

For further information of not supported features see also chapter 6.

The following features specified in [1] are supported:

Supported Feature

Configuration

> Multiplexing of the static and dynamic parts.

> Event base transmission triggering of the multiplexed I-PDU(s).

> Forwarding confirmations of all transmitted multiplexed I-PDUs to the BSW module
AUTOSAR Com.

> Timeout handling of transmission confirmations.

> De-multiplexing and indicating receptions of the de-multiplexed dynamic parts and
static part to the BSW module AUTOSAR Com.

> Static part configuration support in multiplex I-PDU(s).

> AUTOSAR EcuC format

> Initialization of transmission multiplex I-PDU buffers. This is required by e.g. FrIf in
case the transmission of a multiplex I-PDU is triggered by interface layer BSW module
before the transmission of their mapped dynamic and or static parts is requested.

> Just-in-Time Update of dynamic and / or static parts.

> DET error reporting.

Table 3-1 Supported AUTOSAR standard conform features

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 11
based on template version 5.2.0

The following features specified in [1] are not supported:

Not Supported AUTOSAR Standard Conform Features

> Configuring of transmission confirmations of transmitted multiplexed I-PDUs
AUTOSAR Com.

Table 3-2 Not supported AUTOSAR standard conform features

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

> nPdu-to-Frame mapping for CAN-FD

Table 3-3 Features provided beyond the AUTOSAR standard

3.2 Initialization

The IpduM is initialized by calling the API IpduM_Init(). This is done by the AUTOSAR

BSW module EcuM. If this is not the case, an adequate and suitable solution has to be
provided.

The API initializes all the transmission multiplex I-PDU(s) buffer(s) and all runtime relevant
module variables. The successful execution of the API initializes the IpduM.

Caution

No IpduM function should pre-empt IpduM_Init(). The function should be called

on task level and should not to be interrupted by other administrative function calls.

3.3 States

The IpduM has the states: uninitialized and initialized. By calling IpduM_Init(), the state is
changed from uninitialized to initialized.

3.4 Main Functions

IpduM provides all functions described in [1]. The function IpduM_MainFunction()

should be called cyclically by the Basic Software Scheduler or a similar component. The

IpduM_MainFunction() primarily takes care of the timeout handling of the multiplexed

I-PDU transmission confirmations.

3.5 Error Handling

3.5.1 Development Error Reporting

By default, development errors are reported to the DET using the service

Det_ReportError() as specified in [1], if development error reporting is enabled (i.e.

pre-compile parameter IPDUM_DEV_ERROR_DETECT==STD_ON). The DET reporting can

be enabled during pre-compile time.

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 12
based on template version 5.2.0

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature

as the service Det_ReportError().

The reported IPDUM ID is 52.

The reported services IDs identify the IPDUM services as specified by [1]. For the service
IDs and their related service names see section 8.3 of [1].

The errors reported to DET are described in section 7.6 of [1].

3.6 nPdu-to-Frame mapping for CAN-FD

This feature was backported from AUTOSAR 4.2.1. It can be used to collect multiple PDUs
and transfer them in one CAN-FD frame, for saving bandwidth or tunneling several classic
CAN busses over one CAN-FD bus. The IpduM module handles packing and unpacking of
those frames similar to the multiplexing feature.

Several “contained” PDUs can be put into a single “container” PDU in arbitrary order and
unpacked in the same order on the receiver side. Transmission is triggered by one of
these conditions:

> Contained PDU send timeout runs out.

> Container PDU send timeout runs out.

> Size threshold of container PDU is reached.

> Contained PDU is configured for immediate transmission.

> Container PDU is configured for immediate transmission.

On the receiver side, the contained PDUs are retrieved from the container PDU again and
RxIndications are created for every single contained PDU in the same order they were put
into the container PDU. For even greater flexibility, a container PDU on the receiver side
can be configured to accept any contained PDU instead of just the ones that are
configured.

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 13
based on template version 5.2.0

4 Integration

This chapter provides information necessary for the integration of the MICROSAR IPDUM
into an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the IPDUM contains the files which are described in the chapters 4.1.1 and
4.1.2:

4.1.1 Static Files

File Name Source
Code
Delivery

Object
Code
Delivery

Description

IpduM.c  This is the source file of the IPDUM

IpduM.h   This is the header file of IPDUM

IpduM_Cbk.h   This is the callback header file of IPDUM

Table 4-1 Static files

4.1.2 Dynamic Files

The dynamic files are generated by the configuration tool DaVinci Configurator.

File Name Description

IpduM_Cfg.h This file contains:

> global constant macros

> global function macros

> global data types and structures

> global data prototypes

> global function prototypes

of CONFIG-CLASS PRE-COMPILE data.

IpduM_Lcfg.h This file contains:

> global constant macros

> global function macros

> global data types and structures

> global data prototypes

> global function prototypes

of CONFIG-CLASS LINK data.

IpduM_Lcfg.c This file contains:

> local constant macros

> local function macros

> local data types and structures

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 14
based on template version 5.2.0

File Name Description

> local data prototypes

> local data

> global data

of CONFIG-CLASS LINK and PRE-COMPILE data.

IpduM_PBcfg.h This file contains:

> global constant macros

> global function macros

> global data types and structures

> global data prototypes

> global function prototypes

of CONFIG-CLASS POST-BUILD data.

IpduM_PBcfg.c This file contains:

> local constant macros

> local function macros

> local data types and structures

> local data prototypes

> local data

> global data

of CONFIG-CLASS POST-BUILD data.

Table 4-2 Generated files

4.2 Critical Sections

The critical section IPDUM_EXCLUSIVE_AREA_0 has to lock global interrupts to protect
common critical sections.

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 15
based on template version 5.2.0

5 API Description

For an interfaces overview please see Figure 2-3.

5.1 Services provided by IPDUM

5.1.1 IpduM_InitMemory

Prototype

void IpduM_InitMemory (void)

Parameter

void none

Return code

void none

Functional Description

The function initializes variables, which cannot be initialized with the startup code.

Particularities and Limitations

> IpduM_Init() is not called yet.
> The function is called by the Application.

Expected Caller Context

> The function must be called on task level.

Table 5-1 IpduM_InitMemory

5.1.2 IpduM_Init

Prototype

void IpduM_Init (const IpduM_ConfigType* config)

Parameter

config > NULL_PTR in the IPDUM_CONFIGURATION_VARIANT_PRECOMPILE

> Pointer to the IpduM configuration data in the
IPDUM_CONFIGURATION_VARIANT_POSTBUILD_LOADABLE

Return code

void none

Functional Description

This function initializes the IpduM and performs configuration consistency checks. If the initialization is
performed successfully the IpduM is initialized.

Particularities and Limitations

> IpduM_InitMemory() has been executed, if the startup code does not initialize variables. The
IpduM is in the state uninitialized.

> No IpduM function shall not pre-empt IpduM_Init()

Expected Caller Context

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 16
based on template version 5.2.0

> The function is used by the Ecu State Manager.

Table 5-2 IpduM_Init

5.1.3 IpduM_Transmit

Prototype

StdReturnType IpduM_Transmit (PduIdType PdumTxPduId, const PduInfoType*

PduInfoPtr)

Parameter

PdumTxPduId ID of transmit request (static or dynamic part). Identifies the payload.

PduInfoPtr Payload information of the I-PDU (pointer to data and data length).

Return code

StdReturnType E_OK: The request was accepted by the IpduM and by the destination layer.

E_NOT_OK: The request was rejected because:
the IpduM is not initialized
or the provided PduInfoPtr is NULL
or the SduDataPtr of the PduInfoPtr is NULL
or the PdumTxPduId is not in the expected range
or the destination layer did not accept the transmission request.

Functional Description

The function serves to request the transmission of a static or dynamic part.

Particularities and Limitations

> The IpduM_Init() has been executed successfully.
> The function is non-reentrant for the same PdumTxPduId.

Expected Caller Context

> The function is called by the PduR.
> The function is called in an interrupt context and at the task level

Table 5-3 IpduM_Transmit

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 17
based on template version 5.2.0

5.1.4 IpduM_MainFunction

Prototype

void IpduM_MainFunction (void)

Parameter

void none

Return code

void none

Functional Description

This function shall perform the processing of the IpduM processing which is not directly initiated by calls
from the PduR.

A call to IpduM_MainFunction returns simply if IpduM was not previously initialized with a call to IpduM_Init.

Particularities and Limitations

> The IpduM_Init() has been executed successfully.
> The function is called cyclically by the BSW scheduler

Expected Caller Context

> The function is called on task level

Table 5-4 IpduM_MainFunction

5.1.5 IpduM_GetVersionInfo

Prototype

void IpduM_GetVersionInfo (Std_VersionInfoType* versioninfo)

Parameter

versioninfo Pointer to the structure to write the version info to.

Return code

void none

Functional Description

Returns the version information of the IpduM.

Particularities and Limitations

> none

Expected Caller Context

> The function can be called on interrupt and task level.
> The function is called by the Application.

Table 5-5 IpduM_GetVersionInfo

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 18
based on template version 5.2.0

5.2 Services used by IPDUM

In the following table services provided by other components, which are used by the
IPDUM are listed. For details about prototype and functionality refer to the documentation
of the providing component.

Component API

Det Det_ReportError

PduR PduR_IpduMTransmit

PduR PduR_IpduMTxConfirmation

PduR PduR_IpduMRxIndication

PduR PduR_IpduMTriggerTransmit

Com Com_RxIndication

Com Com_TxConfirmation

Com Com_TriggerTransmit

BSW Scheduler SchM_Enter_IpduM

BSW Scheduler SchM_Exit_IpduM

Table 5-6 Services used by the IPDUM

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 19
based on template version 5.2.0

5.3 Callback Functions

This chapter describes the callback functions that are implemented by the IPDUM and can
be invoked by other modules. The prototypes of the callback functions are provided in the

header file IpduM_Cbk.h by the IPDUM.

5.3.1 IpduM_RxIndication

Prototype

void IpduM_RxIndication (PduIdType RxPduId, const PduInfoType*

PduInfoPtr)

Parameter

RxPduId

ID of received multiplexed I-PDU. Identifies the payload.

PduInfoPtr Contains the length (SduLength) of the received I-PDU and a pointer to a
buffer (SduDataPtr) containing the I-PDU.

Return code

void none

Functional Description

This service indicates the complete reception of an IpduM I-PDUs. It de-multiplexes the received
multiplexed I-PDU.

Particularities and Limitations

> The IpduM_Init() has been executed successfully
> The function is non-reentrant for the same PdumRxPduId.

Expected Caller Context

> The function is called by the PduR. The function is called in an interrupt context or at the task
level

Table 5-7 IpduM_RxIndication

5.3.2 IpduM_TxConfirmation

Prototype

void IpduM_TxConfirmation (PduIdType TxPduId)

Parameter

TxPduId ID of transmitted multiplexed IPDU.

Return code

void none

Functional Description

This service confirms the transmissions of the dynamic and static parts contained in the multiplexed IPDU
whose transmission is confirmed.

Particularities and Limitations

> The IpduM_Init() has been executed successfully
> The function is non-reentrant for the same PdumTxPduId.

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 20
based on template version 5.2.0

Expected Caller Context

> The function is called by the PduR. The function is called in an interrupt context or at the task
level

Table 5-8 IpduM_TxConfirmation

5.3.3 IpduM_TriggerTransmit

Prototype

Std_ReturnType IpduM_TriggerTransmit (PduIdType TxPduId, PduInfoType*

PduInfoPtr)

Parameter

TxPduId ID of transmission multiplexed IPDU.

PduInfoPtr Contains a pointer to a buffer (SduDataPtr) to where the SDU data shall be
copied, and the available buffer size in SduLengh. On return, the service will
indicate the length of the copied SDU data in SduLength.

Return code

Std_ReturnType E_OK: SDU has been copied and SduLength indicates the number of copied
bytes.

E_NOT_OK: No data has been copied, because IpduM is not initialized or
TxPduId is not valid or PduInfoPtr is NULL_PTR or SduDataPtr is NULL_PTR
or SduLength is to small or the SDU data could not be updated because the
just in time update via a trigger transmit call of the upper layer was not
successful for multiplexed messages.

Functional Description

This service copies the transmission multiplexed IPDU to the provided buffer.

Particularities and Limitations

> The IpduM_Init() has been executed successfully
> The function is non-reentrant for the same TxPduId

Expected Caller Context

> The function is called by the PduR module. The function is called in an interrupt context or at
the task level

Table 5-9 IpduM_TriggerTransmit

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 21
based on template version 5.2.0

6 Configuration

The IPDUM in the EcuC can be configured through the Vector configuration and
generation tool CFG5.

6.1 Configuration of Post-Build

The configuration of post-build loadable is described in [3].

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 22
based on template version 5.2.0

7 AUTOSAR Standard Compliance

7.1 Deviations

No deviations.

7.2 Additions/ Extensions

No additions/ extensions.

7.3 Limitations

See Table 3-2 Not supported AUTOSAR standard conform features.

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 23
based on template version 5.2.0

8 Glossary and Abbreviations

8.1 Glossary

Term Description

BSWMD The BSWMD is a formal notation of all information belonging to a certain
BSW artifact (BSW module or BSW cluster) in addition to the
implementation of that artifact.

Buffer A buffer in a memory area normally in the RAM. It is an area that the
application has reserved for data storage.

CFG5 Configurator 5 (configuration and generation tool)

Component CAN Driver, Network Management ... are software COMPONENTS in
contrast to the expression module, which describes an ECU.

Confirmation A service primitive defined in the ISO/OSI Reference Model (ISO 7498).
With the service primitive 'confirmation' a service provider informs a
service user about the result of a preceding service request of the service
user. Notification by the CAN Driver on asynchronous successful
transmission of a CAN message.

Electronic Control
Unit

Also known as ECU. Small embedded computer system consisting of at
least one CPU and corresponding periphery which is placed in one
housing.

Event An exclusive signal which is assigned to a certain extended task. An
event can be used to send binary information to an extended task. The
meaning of events is defined by the application. Any task can set an
event for an extended task. The event can only be cleared by the task
which is assigned to the event.

Interrupt Processor-specific event which can interrupt the execution of a current
program section.

Post-build This type of configuration is possible after building the software module or
the ECU software. The software may either receive parameters of its
configuration during the download of the complete ECU software resulting
from the linkage of the code, or it may receive its configuration file that
can be downloaded to the ECU separately, avoiding a re-compilation and
re-build of the ECU software modules. In order to make the post-build
time re-configuration possible, the re-configurable parameters shall be
stored at a known memory location of ECU storage area.

Scheduler The algorithm which decides whether a task switch is to be affected and
which triggers all necessary internal activities of the operating system is
named scheduler. The scheduler decides whether a task switch is
possible according to the implemented scheduling policy. The scheduler
can be considered as a resource which can be occupied and released by
tasks. Thus a task can reserve the scheduler to avoid task switch until the
scheduler is released.

Signal A signal is responsible for the logical transmission and reception of
information depending on the restrictions of the physical layer. The
definition of the signal contents is part of the database given by the
vehicle manufacturer. Signals describe the significance of the individual
data segments within a message. Typically bits, bytes or words are used

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 24
based on template version 5.2.0

for data segments but individual bit combinations are also possible. In the
CAN data base, each data segment is assigned a symbolic name, a
value range, a conversion formula and a physical unit, as well as a list of
receiving nodes.

Table 8-1 Glossary

8.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

CAN Controller Area Network protocol originally defined for use as a
communication network for control applications in vehicles.

Com AUTOSAR BSW module Com

COM Communication

DEM AUTOSAR BSW module Diagnostic Event Manager

DET AUTOSAR BSW module Development Error Tracer

ECU Electronic Control Unit

EcuM AUTOSAR BSW module ECU Manager

HIS Hersteller Initiative Software

ID Identifier (e.g. Identifier of a CAN message)

I-PDU Interactive layer Protocol Data Unit

IpduM AUTOSAR BSW module I-PDU Multiplexer

IPDUM I-PDU Multiplexer

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR flavor)

PCI Protocol Control Information

PDU Protocol Data Unit

PduR AUTOSAR BSW module Pdu-Router

RAM Random Access Memory

ROM Read-Only Memory

SDU Service Data Unit

SWS Software Specification

Table 8-2 Abbreviations

Technical Reference MICROSAR I-PDU Multiplexer

© 2016 Vector Informatik GmbH Version 2.06.00 25
based on template version 5.2.0

9 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.2 Initialization
	3.3 States
	3.4 Main Functions
	3.5 Error Handling
	3.5.1 Development Error Reporting

	3.6 nPdu-to-Frame mapping for CAN-FD

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Critical Sections

	5 API Description
	5.1 Services provided by IPDUM
	5.1.1 IpduM_InitMemory
	5.1.2 IpduM_Init
	5.1.3 IpduM_Transmit
	5.1.4 IpduM_MainFunction
	5.1.5 IpduM_GetVersionInfo

	5.2 Services used by IPDUM
	5.3 Callback Functions
	5.3.1 IpduM_RxIndication
	5.3.2 IpduM_TxConfirmation
	5.3.3 IpduM_TriggerTransmit

	6 Configuration
	6.1 Configuration of Post-Build

	7 AUTOSAR Standard Compliance
	7.1 Deviations
	7.2 Additions/ Extensions
	7.3 Limitations

	8 Glossary and Abbreviations
	8.1 Glossary
	8.2 Abbreviations

	9 Contact

