VECTOR >

MICROSAR PDU Router

Technical Reference

DaVinci Configurator
Version 3.00.01

Authors Erich Schondelmaier, Gunnar Meiss, Sebastian
Waldvogel, Florian R6hm

Status Released

VECTOR D>

Document Information

History

Technical Reference MICROSAR PDU Router

Author _______IDate __[Version _Remarks _

Erich Schondelmaier

Erich Schondelmaier
Erich Schondelmaier

Gunnar Meiss
Erich Schondelmaier
Erich Schondelmaier

Erich Schondelmaier

Erich Schondelmaier

Erich Schondelmaier

Erich Schondelmaier

Sebastian Waldvogel
Sebastian Waldvogel
Florian R6hm
Florian R6hm
Gunnar Meiss

Erich Schondelmaier

© 2017 Vector Informatik GmbH

2012-12-20

2012-07-12
2012-10-15

2012-11-21
2013-02-07
2013-02-15

2013-03-19

2014-04-15

2014-04-15

2014-09-01

2015-02-23

2015-05-11

2015-07-30

2016-01-16

2016-02-25

2016-03-17

1.00.00

2.00.00
2.01.00

2.02.00
2.02.01
2.02.02

2.03.00

2.04.00

2.04.01

2.05.00

2.06.00

2.06.01

2.07.00

2.08.00

2.08.00

2.08.00

Initial version based on PduR Technical
Reference

Adapted to AUTOSAR 4.0.3

TP Gateway
IF Gateway

AR4-285: Support PduRRoutingPathGroups
Adapted Tp- API description

Added some ASR deviations
ESCANO00064126

ESCAN00064364 AR4-325: Post-Build
Loadable

Added Cancel- Receive/ Transmit Support

Added TP routing with variable addresses
(MetaData Handling)

Added Threshold “0” support

Support the StartOfReception API (with the
PdulnfoType),

TxConfirmation and RxIndication according
ASR4.1.2

Added SecOC to the Interface Overview

Extended Tp Gateway Routing behavior
description

Updated Configuration Variant
FEAT-1057: Added documentation about

configuration of range routing paths and
functional requests gateway

FEAT-1057: Improvements of documentation

FEAT-109: Added documentation for PduR
switching feature and N:1 routing paths

FEAT-1485: Added documentation for 1:N
and N:1 transport protocol routing paths

FEAT-1631: Trigger Transmit API
SduLength In/Out according to ASR4.2.2

added limitation:

- The Polling Mode cannot be used for N:1
routings.

- Cancel Transmit for N:1 routing paths is
only supported if a Tx Confirmation is
enabled.

- Removed limitation: N:1 interface routing
paths suppport only for lower layer Canlf.

with

Version 3.00.01 2
based on template version 4.9.2

VECTOR >

Florian Rohm

Erich Schondelmaier,
Florian Rohm

Sebastian Waldvogel
Florian R6hm

Florian Rohm

© 2017 Vector Informatik GmbH

2016-04-01
2016-08-10

2016-11-24
2017-06-22

2017-06-23

Technical Reference MICROSAR PDU Router

2.08.01 Removed empty chapters

3.00.00 Shared/Dedicated Buffer support
Memory mapping extension

3.00.00 Smart Learning (Switching)

3.00.01 ESCANO00095254: Missing DET error
PDUR_E_PDU_INSTANCES_LOST
description in case of N:1 communication
interface routings with upper layer

3.00.01 STORYC-1629: N:1 routing path support for
IpduM Container feature

Version 3.00.01 3

based on template version 4.9.2

VECTOR D>

Technical Reference MICROSAR PDU Router

Reference Documents

No Source _Tée __ _ ____ _____________Version

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

AUTOSAR
AUTOSAR
AUTOSAR
AUTOSAR
AUTOSAR
AUTOSAR
Vector

Vector

AUTOSAR

AUTOSAR_SWS PDURouter.pdf
AUTOSAR _SWS PDUROouter.pdf.
AUTOSAR_SWS_PDURouter.pdf
AUTOSAR_SWS DevelopmentErrorTracer.pdf
AUTOSAR_TR_BSWModuleList.pdf
AUTOSAR_SWS_SAEJ1939TransportLayer.pdf
TechnicalReference_Canlf.pdf
TechnicalReference_<CAN Driver>.pdf
TechnicalReference _CanTp.pdf

4.0.3
4.1.1
41.2
3.2.0
1.6.0
1.5.0
6.02.00

2.00.00

This technical reference describes the general use of the PduR basis software module.

© 2017 Vector Informatik GmbH

Caution

We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your

company is expressly restricted to the configuration you have specified in the

qguestionnaire.

Version 3.00.01
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

Contents
1 Component HIStOrY ... e e 10
2 INtrodUCION..... .o e 1
21 Architecture OVEIVIEWcooiiiiii e 12
3 Functional DeScCription ... 14
3.1 Features ... 14
3.2 Interfaces to adjacent modules of the PDUR............coooiiiiiiiiii e, 15
3.3 L= 1= 1T o 15
3.4 S €= 1 (=TSSP 15
3.5 [o] i o P=T o | 11 o PP 15
3.5.1 Development Error Reporting.........ooovvvveeiiiiiiieeeececeen e 15
3.6 Interface Layer Gateway ... 15
3.6.1 Data ProviSion...........cooi i 15
3.6.1.1 Direct data provisionccceeviieiiiiiiiiiiei e, 15
3.6.1.2 Trigger transmit data provision...........c.cccccveiveeiiiiineeeennnn, 16
3.6.2 FIFO QUEBUEuuiiiiiiiiiiiiiiiiiiititiii it ssbsessnesennnssnnnes 16
3.6.3 Buffer Configurationsuuuiiiiiiiiiiiiiiiiiiiii 16
3.6.3.1 NO BUFfer e, 16
3.6.3.2 Direct Data Provision FIFOcccoovviiiiiiiiieeeenn, 16
3.6.3.3 Trigger Transmit Data Provision FIFO..................ccooee. 16
3.6.3.4 Trigger Transmit Data Provision Single Buffer................ 16
3.6.4 Shared Tx Buffer Pool support...........oovviiiiiiiicce e, 17
3.6.5 TIMING @SPECES ... e 17
3.6.6 Dynamic DLC ROULING.......uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieineeennennnennennnnnnnnne 17
3.6.7 Transport protocol low level routing...........ccovveveieiiiiieiiicee e, 17
3.6.8 Smart Learning (Switching)coooveieeiiii, 19
3.6.8.1 Configurationceevvviiiiiiiiiiii 20
3.6.8.2 EXamMpIe. .o 23
3.6.9 Queue overflow notification callbackcooeeeeeeeiiii, 24
3.6.10 N:1 Routing Paths with Upper Layer and Tx confirmation 26
3.7 Transport Protocol Gateway...............eveiiiiiiiiiiiieccee e 27
3.7.1 MUIEI-ROULING ... eeenseeennnnnnenne 27
3.7.2 TP ThreshOld e 27
3.7.21 ReStrCtioNSooeie e 28
3.7.2.2 Threshold “07uuuiiiiiiiiiiii s 28
3.7.3 Tx Buffer Handling ..., 28
3.7.3.1 Tx Buffer Usage TYPEeS.......cooviiiiiiiiiiiieiiiiiiiieieeee e 29
© 2017 Vector Informatik GmbH Version 3.00.01 5

based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

3.7.3.1.1 Dedicated Tx Buffercccccoovveiviriiiiinnnnnnn. 29
3.7.3.1.2 Shared Tx Buffer.......ccccccvvviviiiiiiiiininnnnnnnn. 29
3.7.31.3 Local Tx Buffer Pool..........ccccoooeevviiiiiinnnnnnn. 30
3.7.3.1.4 Global Tx Buffer Pool..........ccccccccvvvrrirnnnnn. 30
3.7.3.2 Example Configuration................coooviiiiiiiinie e, 30
3.7.3.3 Tx Buffer Length Configurationcccccciviiiiiininnnns 31
3.7.34 Amount of Tx Buffer.........oooooi, 31
3.7.3.5 Tx Buffer Selection Algorithm ... 32
3.74 I O U= U 32
3.75 Error Handling......covveiii e 32
3.7.6 Meta Data Handlinguuuuemiiimiiiiiiiiiiiiiiiiiiiiieeeeee 33
4 INtegrationccooiiiii e 34
4.1 SCOPE Of DEIIVEIY ...ttt sesneensnennnnnnes 34
411 StAtIC FIlES e 34
41.2 DynamicC FileSccouuuiiiei e 34
4.2 CritiCal SECHONS ...ceeiiieii e e e e e e e e e e e eenaees 35
4.3 MEMOIY SECHONSoviiiiii et e e e e e aaaees 35
4.4 TYPE DEfiNItIONS ... 35
B API DESCIIPtIONo e 36
5.1 Services provided DY PDUR..........uuiiiiiiiiiiiiiiiiiiiiiiiii e 36
51.1 o T S [36
5.1.2 PAUR _INItMEMOIY ..ceencee e e 36
5.2 7= Y [t SRR 37
5.2.1 PduR_GetVersionInfocouiiiiiiiiiice e, 37
5.2.2 PduR_GetConfiguration|dueuueiimiiiimiiiiiiiiiiiiiiiiiieiieeennennnn. 37
5.2.3 PAuR_ENableROULING..........uuuuiiiiiiiiiiiiiiiiiiiiiiiiie 37
524 PduR_DisableRouting.........couuuuiiiiiii e 38
5.3 Communication INterface ... 39
5.3.1 PduR_<GenericUp>Transmitcooouuiiiiiiiieeiiiiiieen e 39
5.3.2 PduR_<GenericLo>RxIndication...........cccccceeiiiiiiiiiiiiiiii e, 39
5.3.3 PduR_<GenericLo>TriggerTransmit..................uueueeemiiiiiimmiieiiiiiiinnnn. 40
534 PduR_<GenericLo>TxConfirmationcccccuveveeemimiiiiiiiiiiinnnnnnnns 41
5.4 Transport ProtOCOIcooooiiiiiii e 42
5.4.1 PduR_<GenericUpTp>ChangeParameter.............ccccccvvuvviviniiinnnnnnns 42
542 PduR_<GenericUpTp>CancelReceive.............cccuuuvrermmminnnniniiinnnnnnnnns 42
54.3 PduR_<GenericUpTp>CancelTransmit..............ccccccuvvmiiimiiiineiiinnnnnn. 43
54.4 PduR_<GenericLoTp>StartOfReceptioncccccvvviiiiiiiiiiiiiinnnnns 44
545 PduR_<GenericLoTp>CopyRxDataeuuuummmmmmmmmmriiiiiiiiiinninnnnnns 44
5.4.6 PduR_<GenericLoTp>CopyTXData.............uuuvurmimiiiiiiiiiiiiiiiiiiiiiiininns 45
© 2017 Vector Informatik GmbH Version 3.00.01 6

based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

547 PduR_<GenericLo>TpTxConfirmationcccceeviiiiiniiiiiniiiiinn, 46

548 PduR_<GenericLo>TpRxIndication............cc..ooooiiiiiiiiiiiiiein, 47

549 PduR_<GenericUpTp>Transmit...........ccuuuuiiiiiieenieeiiiiinee e 48

5.5 1= Vo o Ty £ N 49

5.5.1 Complex Device Driver Interaction..........ccccooooevviiiiiiiiiiiiiceeecn, 49

6 CoNFIQUIAtIONiiiiiii e 50

6.1 Use Case Configuration: Communication interface range gateway.................. 50

6.1.1 Step-by-step configuration ... 51

6.1.2 Optional configuration variants / options............ccccccceeeeiii i, 55

6.2 Use Case Configuration: Functional requests gateway routing 57

6.2.1 Step-by-step configuration ... 58

6.3 Use Case Configuration: N:1 routing path..........cccoooooiiiiiii e, 64

7 AUTOSAR Standard ComplianCe................ooovuiiiiiiiiiiiiiicee e 66

71 DEVIAtIONS .t 66

7.2 [T 71 =1 £ o T 3PS 67

7.2.1 GENEIAL ... 67

8 Glossary and Abbreviations ... 68

8.1 (€101 7= | Y PSSR 68

8.2 ADDIEVIAtIoNSee e e 69

L= TR 0o o | - T 71
© 2017 Vector Informatik GmbH Version 3.00.01 7

based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

lllustrations
Figure 2-1 AUTOSAR 4.1 Architecture OVErVIEWccoovvviiiiiiiiiiiiii 12
Figure 2-2 Interfaces to adjacent modules of the PDURcooiiiiiiiiinniiiiiiinn, 13
Figure 3-1 Example routing path configurations: Every ECU transmits to every other
ECU (via N:M routing paths) or ECUO can exclusively broadcast to all
other ECUs. Other ECUs can only reach ECUO................cooviiiiiiiieenniinn, 19
Figure 3-2 Network specific assignment of PAduRRouting path sources and
destinations to @ PAURCONNECLION..........coiiiiiiiiiiei e 20
Figure 3-3 Example Extended CAN ID 1ayoutuviiiiiiiiiimiiiiiiiiiiiiiiiiiiiiiiiiiininnee 21
Figure 3-4 Example switching network topologycceeiiiieiiiiiiiici e, 23
Figure 3-5 Example Standard CAN ID layout..............euvueiiiiiiimiiiiiiiiiiiiiiiiiiiiieiieinnnnens 23
Figure 3-6 Example switching EcuC configuration - PduRConnection 23
Figure 3-7 Example switching EcuC configuration -
PduRSaTaFromMetaDataCalculationStrategyccccoeeviiieiiiiiiiiiennnee, 24
Figure 3-8 Overflow notification callback configurationcccccciiiiiiiiiiiiiiiinnn. 25
Figure 3-9 Configured Tp Buffer with possible Threshold ranges............ccccccceeeee. 28
Figure 3-10 Buffer pool configuration.............cccoooeiiiiiiiiii e, 30
Figure 3-11 Shared DUffer POOLu i 30
Figure 6-1 Meta data routing with Canlf ... 50
Figure 6-2 Canlf / PduR range routing example overview............ccccoeeeeeeiiviiiiiieeneeennn, 51
Figure 6-3 Example functional requests gateway network architecture...................... 57
Figure 6-4 Functional request gateway architecture...............cccccvvvviiiiiiiiiiiiiiiniiiiiin, 57
Figure 6-5 example N:1 routing path configuration.............ccccccceeii i, 64
Figure 6-6 EcuC configuration of (mixed) N:1/ 1:N routing pathscccccceeenn. 65
Tables
Table 1-1 ComMPONENt NISTOMY........uiiiiiiiiiiiiiii e 10
Table 3-1 Supported AUTOSAR standard conform features..............cooovvviviiieennn... 14
Table 3-2 Not supported AUTOSAR standard conform featurescccccceeeeee. 15
Table 3-3 Features provided beyond the AUTOSAR standard.............ccccevvvveennnnn. 15
Table 3-4 Example FIB content after reception of Pdus from source 0x00 and 0x02 19
Table 3-6 How to get the associated gateway routing path.................ccciiii 25
Table 4-1 StAtIC fIlES .. 34
Table 4-2 Generated fileSuuueii i 35
Table 4-3 Type defiNitioNS......ccii i 35
Table 5-1 o T 1o SR 36
Table 5-2 PAUR _INIEMEMIOIY ... 37
Table 5-3 PAuR_GetVersionInfocoooiuiiiiii e 37
Table 5-4 PduR_GetConfiguration|d.................uuuuuieeiiiiiiiiiiiiieiieriieeeeeeeeernneennn. 37
Table 5-5 PAUuR_ENabIEROULINGeviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 38
Table 5-6 PAuR_DiSableROULINGuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeees 38
Table 5-7 PAuR_<GenericUp>TranSmit............euuuueeeimmeieieriiieeiieeiennneerenennneennennnnnnn. 39
Table 5-8 PduR_<GenericLo>RXINAICAtIoN..........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeiieeeeeneennnnnnnnnes 40
Table 5-9 PduR_<GenericLo>TriggerTransmiteeuvveemimiiuiimiiiiiiiieeeineienenenn. 40
Table 5-10 PduR_<GenericLo>TxConfirmationueevueiimmireriiiiiiiiiiieieinennnnnnnnnn. 41
Table 5-11 PduR_<GenericUpTp>ChangeParameterccccccuvvrvivmmiimiiininnnnnnnnnnn. 42
Table 5-12 PduR_<GenericUpTp>CancelReceiVe................uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiinnnnns 43
Table 5-13 PduR_<GenericUpTp>CancelTransmit..................uuuueimiimiimmiiiiiiiiniiiinninn. 43
Table 5-14 PduR_<GenericLoTp>StartOfReception................uuueviveiiiiimiiiiiiiiiiiiiinnnnnns 44
Table 5-15 PduR_<GenericLoTp>CopyRXData.............cuuuuuiiiiimiiiiiiiiiiiiiiiiiiiiiiiieinennnns 45
Table 5-16 PduR_<GenericLoTp>CopyTXDataeuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnnnnans 46
Table 5-17 PduR_<GenericLo>TpTXxConfirmationuueueeriimiimimeiiiiiiiininnennnnnnn. 47

© 2017 Vector Informatik GmbH

Version 3.00.01
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

Table 5-18 PduR_<GenericLo>TpRxIndicationcccoooiiiiiiiiiiii e, 47
Table 5-19 PduR_<GenericUpTp>TranSmit..........ccoveeiiiiiiiieeeeeeeiiieee e 48
Table 6-1 Example range routingsS.........oouuiiiiiii e 51
Table 6-2 Example functional diagnostic request routing...........cccccooeiiiiiiiiiiieen, 58
Table 8-1 GIOSSANY ...ttt 69
Table 8-2 ADDIEVIAtIONS 70
© 2017 Vector Informatik GmbH Version 3.00.01 9

based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

1.00 » MICROSAR 4 Base
2.00 » AUTOSAR 4.0.3
2.01 » TP Gateway
» IF Gateway
2.02 » Routing Path Groups
2.03 » Post-Build Loadable
5.00 » Changed StartOfReception, TpRxIndication and
TpTxConfirmation APIs according to AUTOSAR 4.1.2
» Added TP routing with variable addresses
» Meta-Data support
6.00 » Post-Build Selectable
7.00 » CAN-FD
8.00 » PduR Switching
» N:1 Interface routing path support
9.00 » 1:N/N:1 transport protocol routing path support
Table -1 Component history
© 2017 Vector Informatik GmbH Version 3.00.01 10

based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module PDUR as specified in [1].

Supported AUTOSAR Release*: 4

Supported Configuration Variants: PRE-COMPILE [SELECTABLE]
POST-BUILD-LOADABLE [SELECTABLE]

Vendor ID: PDUR_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: PDUR_MODULE_ID 51 decimal

(according to ref. [5])
* For the precise AUTOSAR Release 4.x please see the release specific documentation.

The main task of the PDU Router module is to abstract from the type of bus
access (Interface layer and TP layer) and from the bus type itself.

Since the PDU Router module has to route Rx and Tx PDUs to and from the upper- and
lower- layers and any software component uses its own handle space, multiple
routing tables are required. The PDU Router uses the input handle as an index to
the related routing table.

© 2017 Vector Informatik GmbH Version 3.00.01 11
based on template version 4.9.2

VECTOR >

2.1 Architecture Overview
Figure 2-1 shows where the PDUR is located in the AUTOSAR architecture.

Technical Reference MICROSAR PDU Router

FIM

J1939DCM

DIOHWAB' CAL (CPL)
CRC

|SENT‘ |

\
J1939TP LINXCP! FRXCP ETHXCP
J1939NM LINTP FRTP UDPNM
J1939RM LINNM FRARTP SOME/IP!
CANXCP LINSM FRNM SD
CANTP LINIF FRSM DOIP XML Security
CANNM FRIF SOAD
CANSM TLS
CANIF TCPIP
ETHSM
ETHIF AVTP
SRP
PTP?

E2E

ADCDRV DIODRV FLSDRV GPTDRV LINDRV PORTDRV CRY (HWY' CANTRCV FRTRCV
CANDRV EEPDRV FLSTST ICUDRV MCUDRV PWMDRV SPIDRV DRVEXT? LINTRCV
CORTST ETHDRV FRDRV IICDRV OCUDRV RAMTST WDGDRV ETHTRCV PSI5 DRV

" Available extensions for AUTOSAR

Vector Standard Software 3rd Party Software *Includes EXTADC., EEPEXT, FLSEXT, and
WDGEXT
Figure 2-1 AUTOSAR 4.1 Architecture Overview
© 2017 Vector Informatik GmbH Version 3.00.01 12

based on template version 4.9.2

VECTOR D>

Technical Reference MICROSAR PDU Router

Figure 2-2 shows the interfaces to adjacent modules of the PDUR. These interfaces are
described in chapter 5.

class Architecture /

g]

CanTp

FrArTp

g]

Dolp

J1939Tp

CanNm

\

IpduM

AN

J1939Rm

FrNm

7

SoAd

\

/

FrTp

J1939Dcm

<UpTp>

/©/

PduR Sj ————-"""‘_‘_4§;>‘_‘_‘_‘_‘_______

BswM

<LoTp>

(:)-—"““‘—~——~_~_

LdCom

=

<Lolf>

Canlf

g]

J

1939Nm

&)

<Uplf>

Linlf

Frif

SecOC

4

\

CddPduRUpperLayerContribution|

CddPduRLow erLayerContributio

Figure 2-2

Interfaces to adjacent modules of the PDUR

Applications do not access the services of the BSW modules directly. They use the service
ports provided by the BSW modules via the RTE. The service ports provided by the PDUR
are listed in chapter 0 and are defined in [1].

© 2017 Vector Informatik GmbH

Version 3.00.01
based on template version 4.9.2

13

VECTOR > Technical Reference MICROSAR PDU Router

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
PDUR.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

» Table 3-1 Supported AUTOSAR standard conform features
» Table 3-2 Not supported AUTOSAR standard conform features

For further information of not supported features see also chapter 0.

Vector Informatik provides further PDUR functionality beyond the AUTOSAR standard. The
corresponding features are listed in the table

» Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

Pre compile and Post build time configuration variant

I-PDU transmission and reception

Cancel-Receive/Transmit support

Change Parameter support

1:1 routing between upper- and lower-layer communication interface modules
1:1 routing between upper- and lower-layer transport protocol modules

1:1 Interface Gateway Routing

1:N Interface Gateway Routing

1:1 Transport protocol Gateway Routing

1:N Transport protocol Gateway Routing (single and multiframe Tp messages)
Complex device driver (CDD) support

Routing Path Groups

Debugging support (optional feature)

Table 3-1 Supported AUTOSAR standard conform features

The following features specified in [1] are not supported:

Not Supported AUTOSAR Standard Conform Features

Link time configuration

1:N fan-out from the same upper layer PDU (IF/ Tp)
Zero cost operation

Minimum Routing (Reduced state)

© 2017 Vector Informatik GmbH Version 3.00.01 14
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

Table 3-2 Not supported AUTOSAR standard conform features

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard ‘

N:1 Interface routing path capability (destinations with polling behaviour are not supported)
PduR Switching: Smart learning of routing path destinations depending on received Pdus
1:N and N:1 transport protocol single- and multiframe routing path capability

Table 3-3 Features provided beyond the AUTOSAR standard

3.2 Interfaces to adjacent modules of the PDUR

The PDU Router provides generic communication interfaces and transport protocol APIs
for any lower and upper layer module.

33 Initialization

Before the PduR can be used it has to be initialized by PduR_Init() which performs the
basic initialization. Initialization is normally driven by the Communication Manager. If this
software component is not available a similar component has to be provided by the
integrator.

3.4 States

The PduR is initially not activated. Basic RAM arrays are initialized with the call of
PduR_InitMemory or with the startup code of your ECU. If PduR _Init() is called with valid
parameters, the PduR is in the state “PduR _IsInitialized” and the communication can start.

3.5 Error Handling

3.5.1 Development Error Reporting

By default, development errors are reported to the DET using the service
Det ReportError () as specified in [4], if development error reporting is enabled (i.e.
pre-compile parameter PDUR_DEV_ERROR_DETECT==STD_ON).

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature
as the service Det ReportError ().

The reported PDUR ID is 51.

3.6 Interface Layer Gateway
3.6.1 Data Provision

3.6.1.1 Direct data provision

For Direct Data Provision routing paths the data will be copied by the PduR to the
destination module in the transmit API call. If a FIFO queue is configured, the data might
be queued and will then be transmitted in the Tx Confirmation context.

© 2017 Vector Informatik GmbH Version 3.00.01 15
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

3.6.1.2 Trigger transmit data provision

For Trigger Transmit Data Provision routing paths the data will be copied by the
destination module in the trigger transmit API call. This is useful if the destination module
always wants to fetch the latest data available (single buffer configuration) or it has specific
timing requirements when it needs to provide the data.

3.6.2 FIFO Queue

A FIFO is used if loss of I-PDU instances is critical. In case of several parallel transmitting
FIFO queues, the order of transmission depends upon the bus access of the lower layer
and not on the relative order of I-PDU reception. One FIFO queue therefore only cares for
a FIFO based sorting of the instances of its own queued I-PDUs.

The queue depth can be configured for each routing path independently.

If the transmission of an |-PDU failed (negative return value of the interface layer transmit
request), the PDU Router removes the |-PDUs instance from the queue and retries the
transmission with the next instance — until the queue is empty or the transmission request
is accepted.

In case of a buffer overrun, all queued I-PDU instances of the affected queue are removed
and the newly received I-PDU is transmitted.

EcuC structural changes with PduR version 9.00.00
The PduRTxBufferDepth has been removed and was replaced by the
PduRDestPduQueueDepth parameter.

3.6.3 Buffer Configurations

3.6.3.1 No Buffer
No buffering will be used if the PduRDestPduQueueDepth is not configured.

3.6.3.2 Direct Data Provision FIFO

A FIFO queue will be used if the data provision is set to direct transmission and the
PduRDestPduQueueDepth is larger than zero.

3.6.3.3 Trigger Transmit Data Provision FIFO

A FIFO will be used if the data provision is set to trigger transmit and the
PduRDestPduQueueDepth is larger than one.

3.6.3.4 Trigger Transmit Data Provision Single Buffer

A single buffer will be used if the data provision is set to trigger transmit and the
PduRDestPduQueueDepth is one.

Last is best semantics apply. Values in the buffer will be overwritten so that a Trigger
Transmit call always gets the latest data from the buffer. It is necessary to specify default
values for the buffer, as the Trigger Transmit APl can be called before any new data was
written to the buffer.

© 2017 Vector Informatik GmbH Version 3.00.01 16
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

3.6.4 Shared Tx Buffer Pool support

The Interface Layer Gateway supports shared Tx Buffer. Tx Buffer can be assigned to
multiple routing paths at once. This is useful for routing paths which are not active at the
same time. Thus, RAM consumption can be reduced.

3.6.5 Timing aspects

The PDU Router triggers the transmission of I-PDU instances to be routed as soon as
possible. If the queue is empty, a reception will directly cause a transmission request to the
interface layer. If the queue is occupied, the I-PDU instance will be added to the queue.
Queued |-PDU instances are transmitted within the Tx confirmation of the preceding
instance. This queuing behavior can cause bursts on the destination channel (especially
CAN) if several queue instances are queued and if the driver layer does not free the
hardware queue.

The PDU Router does not provide a mechanism to implement a rate conversion (e.g.
change the cycle time from the source to the destination channel). A rate conversion can
be implemented (at extra runtime costs) by signal routing paths using the COM signal
gateway.

3.6.6 Dynamic DLC Routing

With PduR version 9.00.00 and later there is no restriction for the dynamic length routing
for gateway routing paths. All lengths between 0 and the configured PDU length can be
routed. The length can be adapted dynamically during runtime.

Caution

n A Pdu with a DLC larger than the configured Pdu length will be truncated to the length
of the smallest available buffer of this routing path.

3.6.7 Transport protocol low level routing

If the TP segments (N-PDUs) on the source and the destination network are identical, it is
possible to route TP I-PDUs using the interface layer gateway (“low-level” routing). If low-
level routing is used, the (former) N-PDU is no longer accessible to the TP layer and
therefore seen as an [-PDU by the PDU Router module.

The advantage of low-level routing is that it is executed in the context of the interface layer
RxIndication and therefore introduces a minimal routing latency.

Low-level routing has, however, several drawbacks which might cause that a high-level TP
routing is more adequate:

» TP protocol conversion is not possible as the frame-layout and the flow-control
handling must be the same on the source and the destination network.

» No forwarding of routed TP I-PDUs to the local DCM is possible as it may be required
for functional requests.

» Eventual loss of TP parameters, such as the STmin timing and the block size, due to
bursts on the destination bus. Bursts are a result of queued I-PDUs which were
transmitted in the TxConfirmation of the previous I-PDU.

© 2017 Vector Informatik GmbH Version 3.00.01 17
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

» A buffer overrun in the FiFo queue causes the queue to be flushed and therefore
corrupts the TP communication. The TP layer gateway can avoid buffer overflows if the
receiving TP connection supports a dynamic block size adaptation.

© 2017 Vector Informatik GmbH Version 3.00.01 18
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

3.6.8 Smart Learning (Switching)

The PduR routing path relations are statically configured and cannot be modified during
runtime. In case ECUs will be attached to different networks during assembly or a huge
amount of possible routing relations will be required, the dynamic learning of routing
relations can be used.

The switching functionality is based on a dynamic RAM table, the forwarding information
base (FIB) inside the PduR. This RAM table stores the location (network) of the different
ECUs and will be used to direct the routings to the correct destination. The identification of
the communication partners is done by a source- and target address which is determined
based on the PDU meta data. The FIB is updated with the related location (called
connection) on reception of every participating PDU.

Source address | Learned destination location/connection

0x00 Connection 2
0x01 <not yet learned>
0x02 Connection 0

Table 3-4 Example FIB content after reception of Pdus from source 0x00 and 0x02

On reception of every PDU a lookup in the FIB is done to check whether the
location/connection of the target address is already known. If the target address
destination (FIB source address) is not yet known, the PDU will be broadcasted to all
destinations of the respective routing path. In case the target address destination was
already learned by the gateway, the PDU will be routed to the learned destination instead
of the broadcasting.

From the technical point of view the switching functionality is an add-on for the static PduR
routing path relations. The standard PduR routing paths are used to describe all required
routing relations which are necessary if no dynamic learning is available. This means that
the routing paths must be configured in a way that the PDUs are broadcasted to all desired
networks which have possible destination ECUs connected. This is typically a 1:N routing
path which performs a broadcasting of the PDU. The switching add-on suppresses the
routing to the individual destinations based on the FIB information. In case the destination
of a single PDU / target address is not yet known, the PDU will be routed to all destinations
of the 1:N routing path. In case the destination is already learned, the routing to all
destinations except the learned one is suppressed.

Gateway ECU Gateway ECU

CANO CAN1 CAN2 CANO CAN1 CAN2

Figure 3-1 Example routing path configurations: Every ECU transmits to every other ECU (via N:M routing paths)
or ECUO can exclusively broadcast to all other ECUs. Other ECUs can only reach ECUO

© 2017 Vector Informatik GmbH Version 3.00.01 19
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

An important concept for the smart learning functionality is the usage of communication
interface range routing paths where multiple PDUs can be routed with a single routing
path. For the examples this means that only three N:M or 1:N/N:1 routing paths have to be
configured between the networks. The range filters of the Rx CAN range Pdus can be
used to define the concrete CAN ID range to be routed via the routing paths. For further
information see chapter 6.1.

The memorization of the source / target address locations/networks is done on the basis of
the actual extracted source / and target addresses which are based on the CAN ID of the
routed range PDUs.

Caution

n The PduR switching feature is only supported for MetaData Pdus. Therefore the
referenced routing paths in a PduR Connection must be MetaData routing paths.
Currently only the Canlf supports the MetaData feature.

The switching functionality is automatically enabled for all PDUs associated to a
PduRDataPlane (See chapter 3.6.8.1).

All entries of the FIB will be set to ‘not yet learned’ during initialization of the PduR. This is
the only way to completely ‘unlearn’ the FIB table. A relearning is possible by receiving
messages with the corresponding source address on some other channel. The PduR will
then update the connection/location of this address.

3.6.8.1 Configuration

The configuration and activation of the switching functionality is done within the EcuC
container /MICROSAR/PduR/PduRRoutingTables/PduRDataPlaneTable. By adding a new
PdurRDataPlane an independent FIB RAM table will be instantiated. Therefore it is possible
to configure multiple different independent smart learning / switching behaviors in a single
gateway.

Within @ pdurRDataPlane the PduRDataPlane/PduRConnection containers are used to assign
the static PduR routing path sources and destinations to a network (location). A
PduRConnection represents a single network.

Gateway ECU

Connection_CANO Connection_CAN1 Connection_CAN1

ECU1 ECU2

CANO CAN1 CAN2

Figure 3-2 Network specific assignment of PduRRouting path sources and destinations to a PduRConnection

© 2017 Vector Informatik GmbH Version 3.00.01 20
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

Reference all related pduRRoutingPath/PduRSrcPdu and PduRRoutingPath/PduRDestPdu Of
a single network to the pdurconnection by the references pdurconnection/PduRSrcPduRef
and PduRConnection/PduRDestPduRef.

The behavior of the switching logic itself is configured in the
PduRDataPlane/PduRSwitchingStrategy/PduRSaTaSwitchingStrategy container. The
currently available strategy is based on source- and target addresses as described above.

Within the pdursaTaswitchingstrategy different strategies are supported to determine the
source- and target address of the PDUs:

» PduRLinearTaToSaCalculationStrategy

The target address is the CAN ID (contained in the Pdu meta data). The source
address is calculated by masking the target address and adding a linear offset.

For PDUs referenced by pdurRAddOffsetSrcPduRef:
source address = (target address + offset) & mask

For PDUs referenced by PdurRSubtractOffsetSrcPduRef:
source address = (target address - offset) & mask

» PduRSaTaFromMetaDataCalculationStrategy

The source and target address is directly read from the CAN ID contained in the meta
data. The bit access will occur on the logical CAN ID extracted from the meta data.

The source address bit position is defined by the pdursastartBitPosition and
PduRSaEndBitPosition parameters. The target address bit position is defined by the
PduRTaStartBitPosition and PduRTaEndBitPosition parameters.

Example bit position configuration of the CAN ID layout shown in Figure 3-3:

PduRSaStartBitPosition: 0

PduRSaEndBitPosition: 9
PduRTaStartBitPosition: 10
PduRTaEndBitPosition: 19

Message ID (29 bit)

<Reserved> Target Address Source Address
9bit 10bit 10bit

Figure 3-3 Example Extended CAN ID layout

© 2017 Vector Informatik GmbH Version 3.00.01 21
based on template version 4.9.2

VECTOR >

EcuC structural changes with PduR version 9.00.00

PduRConnection

In the previous versions the PdurRConnection/PduRSrcPduRef and
PduRConnection/PduRDestPduRef parameters were used to separate between
request and response routing paths. A separation between request and response
routing paths does not exist anymore. Instead the references are now just used for
network to PduRSrcPdu / PduRDestPdu mapping.

An automated migration of the pduRConnection references is not possible. Please
add missing references manually.

PduRLinearMappingStrategy

In the previous versions the mapping between request and response PDUs was

configured in the
PduRDataPlane/PduRDataPlaneMappingStrategy/PduRLinearMappingStrategy

container. This container will be automatically migrated to the new location
PduRDataPlane/PduRSwitchingStrategy/PduRSaTaSwitchingStrategy/PduRSaTa

CalculationStrategy/PduRLinearTaToSaCalculationStrategy. As described
above the separation between request and response routing paths by the
PduRConnection/PduRSrcPduRef and PduRConnection/PduRDestPduRef does not
exist anymore. Rather the new references
PduRLinearTaToSaCalculationStrategy/PduRAddOffsetSrcPduRef and
PduRLinearTaToSaCalculationStrategy/PduRSubtractOffsetSrcPduRef were
introduced. PduRAddOf fsetSrcPduRef must reference all pdurRsrcpPdus where the
offset shall be added to the target address to determine the related source address.
PDUs where the offset shall be subtracted must be referenced with the
PduRSubtractOffsetSrcPduRef references.

The addoffset- and subtractOffsetSrcPduRef references are automatically
migrated. Former pdurSrcpdu referenced by PduRConnection/PduRDestPduRef are
migrated to PduRAddOffsetSrcPduRef. Former pdursrcpdu referenced by
PduRConnection/PduRSrcPduRef are migrated to PduRSubtractOffsetSrcPduRef.

© 2017 Vector Informatik GmbH Version 3.00.01

based on template version 4.9.2

Technical Reference MICROSAR PDU Router

22

VECTOR > Technical Reference MICROSAR PDU Router

3.6.8.2 Example

Network topology is as shown in Figure 3-4. The CAN ID layout is as shown in Figure 3-5.
Strategy pPdurRSaTaFromMetaDataCalculationStrategy used (see chapter 3.6.8.1). Routing
path configuration as shown in Figure 3-1 (every ECU can broadcast to the other ECUSs).

Gateway ECU

ECUO

Routing logic E C U 1

address = 0x4 address = 0x2

ECU2

address = 0x3

CAN 0 CAN 1 I

CAN 2

Figure 3-4 Example switching network topology

Message ID (11 bit)

<Reserved> Source Address

Target Address
3bit

4bit

4bit

Figure 3-5 Example Standard CAN ID layout

« & PduR » & PduRRoutingTables » & PduRDatsPlaneTable » §F PduRDataPlanes » @ PduRDataPlane » ' PduRConnections » @ PduRConnection_CANO

A AR ~]
@, <Filter> * | Short Name: PduRCennection_CANO -
> e EcuM P N 1 P
> e Nm
> be Os
4 | PduR Dest Pdu Ref
> @ PduRBswModules
» @ PduRGeneral * cast/RP_Switching_Req 1 _PduRDestPdu_CANO

4 & PduRRoutingTables — X
&P PduRRoutingPathGroups
4 PduRDataPlaneTable
a ¢ PduRDataPlanes
4 @ PduRDataPlane

cast/RP_Switching_Req 2 PduRDestPdu_CANO

4 P PduRConnections
& PduRConnection_CAND Src Pdu Ref

PduRConnection_CAMN1

© PduRConnection_CAN2
4 @ PduRSwitchingStrategy 52
4 @ PduRSaTaSwitchingStrategy
4 @ PduRSaTaCalculationStrategy
& PduRSaTaFromMetaDataCalculationStrategf
4 & PduRRoutingTable

— 9r PduR/PduRRoutingTables/PduRRoutingTable/RP_Switching_Req 0_Broadcast/RP_Switching_Req 0 PduRSrcPdu_CAND

4 g PduRRoutingPaths
4 & RP_Switching Req 0 Broadcast
4 ¢ PduRDestPdus
© RP_Switching_Req 0_PduRDestPdu_CANL
RP_Switching_Req_0_PduRDestPdu_CAN2
& RP_Switching_Req_0_PduRSrcPdu_CANO
4 & RP_Switching_Req_1_Broadcast
a P PduRDestPdus
© RP_Switching_Req 1 PduRDestPdu_CAND <@
RP_Switching_Req_1_PduRDestPdu_CAM2
&) RP_Switching_Req 1_PduRSrcPdu_CAN1
4 & RP_Switching_Req_2_Broadcast
a §P PduRDestPdus
& RP_Switching_Req_2_PduRDestPdu_CAMNO 4—
& RP_Switching_Req_2_PduRDestPdu_CANL
&) RP_Switching_Req 2_PduRSrcPdu_CAN2 -
» & PduRTxBufferTable -

mn

A

Figure 3-6 Example switching EcuC configuration - PduRConnection

© 2017 Vector Informatik GmbH Version 3.00.01
based on template version 4.9.2

23

VECTOR > Technical Reference MICROSAR PDU Router

« & PduRDataPlane » & PduRSwitchingStrategy P & PduRSaTaSwitchingStrategy » & PduRSaTaCalculationStrategy ») PduRSaTaFremMetaDataCalculationStrategy

a ¥ | Short Name: PduRSaTaFromMetaDataCalculationStrater =

4 B PdR “ | SaEnd Bit Position: 3 dec) -
> §P PduRBswModules "

> i PduRGeneral 5a Start Bit Position: dec [T

4 &1 PduRRoutingTables
& PduRRoutingPathGroups
4 @0 PduRDataPlancTable Ta Start Bit Position:
4 § PduRDataPlanes
4 © PduRDataPlane
> @ PduRConnections
4 @ PduRSwitchingStrategy
4 @ PduRSaTaSwitchingStrategy
4 @ PduRSaTaCalculationStrategy
&) PduRSaTaFromMetaDataCalculationStrategy
> & PduRRoutingTable -
> & PduRTxBufferTable -

0
Ta End Bit Position: 7 dec| w
4

dec| -

n

Figure 3-7 Example switching EcuC configuration - PduRSaTaFromMetaDataCalculationStrategy

Example communication sequence and FIB contents:

1. ECUO transmits the range Pdu with CAN ID 0x034.

This means ECUO uses its address as source
address (0x4), and addresses ECU2 with the target

address 0x3. The PDU will be broadcasted to gigi :EZ:VZ::::Z;’:
CAN1 and CAN2 and the location of ECOO0 address y -
0x04 Connection_CANO

is updated in the FIB.

2. ECU2 responds to the initial PDU of ECUO with a

PDU with CAN ID 0x043. The PDU will only be
routed to CANO because the location of the target
address (0x4) was already learned by the first PDU
of ECUO. Additionally the location of ECU2 is ,
updated in the FIB. 0x04 Connection_CANO

3. Finally ECU1 transmits a PDU with CAN ID 0x032.

The PDU will only be routed to CAN2 because the
location of the target address (0x3) was already

0x02 <not yet learned>
0x03 Connection_CAN2

0x02 Connection_CAN1

IEeg[T1ed. The FIB gets updated with the location of 0x03 Connection. CAN2
) 0x04 Connection_CANO

3.6.9 Queue overflow notification callback

The PDU Router supports a Queue overflow notification callback. In case of a
communication interface routing with unfavorable FIFO configuration or if the destination
bus is not available (e.g. bus off) a buffer overflow can occur. In this case the FIFO is
flushed.

Additionally a callback could be configured to capture this event and perform error
handling. See Figure 3-8.

© 2017 Vector Informatik GmbH Version 3.00.01 24
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

H Enable Feature overflow notification callback

> PduR_QueueOverflowNotification activates / deactivates a PduR
communication interface TxBuffer overflow notification.

> Set an individual error notification module name by using
PduR_ErrorNotificationModuleName parameter. This parameter is optional
and can be left empty. ‘Error Notification’ is used as default value.

| Error Notification Module Name: ErrorNotification 'I
W PduR Meta Data Support: >~
4 o Pdu
& PduRBswModules Pdu Callback: *
4 | iPduRfenen) £ | Queue Overflow Notification: W - |

If the feature is enabled two additional source files are generated to the Gendata folder.
A <ErrorNotification>_Cbk.h file and a _<ErrorNotification>_Cbk.c template file. The
template contains the error notification function which must be implemented.

> Implement the error notification function and remove the template
underscore.

Figure 3-8 Overflow notification callback configuration

During runtime the error notification is called by the PDU Router in case of a FIFO
overflow. The lower layer interface handle is passed to the notification callback.

How to get the associated gateway routing path

> Open the Find view and enter the destination PDU name with the
associated handle. Syntax: value == destination PDU name

> Right click on the PDU Router destination container in the result view and
open the reference using the “Show referenced item in” dialog.

e ruu Qusus vep.

Dest Pdu Ref: Tx_fGw_Guid00018_Pdu01800_f7beaddd [l *

4 © PduRRoutingPath_PduRScPdu_Rx IfGw_Guid00017_Pdu01800_adcbd
4 P PduRDestPdus
© PduRDestPdu_Tx_IfGw_Guid00018_Pdw01800_f7beas99 GATEWAY ROUTING -
© PduRSrcPdu_Re HfGw_Guid00017_Pdul1800_sdcbdbad3
> B PduRRoutingPath_PAuRSrcP du_R lFGw_Guid0001s_PAulIo00RPGa0 - Dest Tx Buffer Refi TxBuffer_Tx fGw_Guid00018_Pdu01800 71 [..] ~
m ' TpThreshold: " -

48 Validation ¥ Element Usage | #3 Find 52

value == Tx_IfGw_Guid00018_Pdu01800_f7bea993
Titems found

ment

3) /ActiveEcuC/Canlt/CanlflnitCi/Tx 1fGw_Guid00018 Pdu01800_oCANODL_Tx 32bd61bel0:CanlfTxPduRef]
EcuC/PduR Tabl Table/P i _PduRSrcP du_Re_FGw_Guid00017_Pdu01800 e To Bl BRatfides T Wiy Guic00018_Pu01800_{7bea030/PduRDestPdu_Tx lfGw_Guid00018_Pdud1800_fTbead9(d

_PduRSrcPdu_Rx_[FGw_Guidd0017_Payo1a{ £ Show in * v Guid00018 Pdu01800 f7bead99/PduRDestPdu_Tx_Gw_Guid00018_Pdu01800_f7bead9o[d
&) Show referenced itemin » |[F] PDUs (Form)
[Basic Editor (Tree)

4 /ActiveEcuC/PduR Tabl T

4 Show properties

Table 3-5 How to get the associated gateway routing path

© 2017 Vector Informatik GmbH Version 3.00.01 25

based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

Caution
n The error notification function is called in the interrupt context! Please keep the error
handling short.

3.6.10 N:1 Routing Paths with Upper Layer and Tx confirmation

n Caution
If a N:1 communication interface routing path includes an upper layer source with
enabled Tx confirmation, the destination will be locked when a Pdu is routed from the
upper layer to the destination until the upper layer receives the corresponding Tx
confirmation. While this lock is active no other Pdu can be routed on this routing path
(neither gateway nor API forwarding routings). All corresponding transmit requests will
not be executed and a DET error will be reported if enabled.

This behavior can be avoided if no Tx Confirmation is configured for the upper layer
source.

© 2017 Vector Informatik GmbH Version 3.00.01 26
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

3.7 Transport Protocol Gateway
The TP layer gateway allows high-level routing of TP |-PDUs.

In order to reduce runtime and memory consumption, the gateway supports the so called
routing on-the-fly (for 1:1, 1:N and N:1 single and multiframe routing paths). Depending on
the “Threshold” configuration of each routing path, the gateway starts with the
transmission on the destination network before the reception has completed on the source
network.

Since AUTOSAR 4 the PduR copies the data within the PduR_<LoTp>_CopyRxData() call.
So the PduR module always knows how much buffer is still available and provides the
complete size to the Tp module. The PduR is not limited to linear buffer boundaries like in
AUTOSAR 3, so the PduR data rate is very efficient.

The Tp module will never get more buffer within one PduR_<LoTp>_CopyRxData() call
than the PduR provides to the Tp module. Therefore the Tp modules should not try to copy
more data than the provided buffer length.

3.7.1 Multi-Routing

The PduR supports N:1 and 1:N routing paths for both single- and multiframes. Each of
these routing paths will only occupy a single Tx Buffer at runtime (if no FIFO behavior is
required). For details on the queuing behavior refer to chapter 3.7.4.

Note
ﬂ 1:N gateway routing paths which involve an upper layer destination must be configured
as a store and forward routing path.

3.7.2 TP Threshold
The Threshold value is used to...

» ... define the fill level of the buffer where the transmission is triggered on the
destination bus.

» ... exclude buffers from the selection during runtime. This could be helpful to ensure
that small buffers which are configured for single frames are not taken into account for
long multi messages. If the Threshold is larger than the buffer size it is ensured that
the PduR will not use this buffer to perform the routing.

Note

ﬂ Small buffers can also be excluded from the selection at runtime using the
dedicated/shared Tx Buffer pool support. All suitable buffers can be assigned to the
respective routing paths. Only these assigned buffers will be used at runtime. The
assigned buffers can also be shared between multiple other routing paths.

See chapter 3.7.3 for details.

© 2017 Vector Informatik GmbH Version 3.00.01 27
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

3.7.21 Restrictions

The setting of the TP Threshold is restricted for CanTp, LinTp and FrArTp routing paths.
Threshold values in the shaded sections of Figure 3-9 are not allowed to be configured for
these kind of gateway routings.

Each PduR_<LoTp>_ CopyRxData() call requires that a complete consecutive frame (CF)
will be copied to the buffer. If not enough buffer is available the Tp tries again to get more
buffer. But the PduR still cannot dequeue data because the threshold is not reached. In
this situation there will never be enough buffer space and the routing will be aborted with a
timeout.

The DaVinci Configurator validates this and provides appropriate Solving-Actions to set a
suitable Threshold. The recommended values are adapted to the boundaries.

If just the largest buffer of Figure 3-9 should be used for a routing the Threshold must be
set to Section 2. If the routing should have both buffer options the Threshold level must be
set somewhere in Section 1.

Section 1 Section 2
[f '1
MetaDatalFF CFs CF size- 1

AL |

O3 Possible Threshold value
O Prohibited Threshold value

Figure 3-9 Configured Tp Buffer with possible Threshold ranges

3.7.2.2 Threshold “0”

Since ASR 4.1.2 the PduR module supports a Threshold of “0”. This means that the
transmission will be triggered immediately. The first frame of some Transport Protocol
modules (J1939Tp and FrTp) does not contain data but it is required that the transmission
will be triggered nevertheless. For further details refer for example the J1939Tp
specification [6].

3.7.3 Tx Buffer Handling

Diagnostic communication usually does not take place within all ECUs at the same time.
Therefore a TP routing path typically has no dedicated assigned buffer. In order to reduce
the amount of RAM required for queues, the Tx buffers are assigned dynamically to active
TP routing paths and can be reused in different routing paths automatically.

© 2017 Vector Informatik GmbH Version 3.00.01 28
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

If a buffer is assigned to a routing path during runtime, this buffer is exclusively reserved
for this routing. If all available buffers are occupied, no further routing is possible and the
PduR signalizes the state “BUFREQ_E_NOT_OK” towards the TP module. It will then
create an appropriate flow-control frame depending on its capabilities.

The PduR supports a ring buffer mechanism. Due to the AUTOSAR 4 architecture long TP
messages can now be routed through a small PduRTxBuffer, especially if the source
and destination bus have the same data rate.

The PduRTxBuffer will be released during initialization of the PduR module and after a
routing has terminated either successfully or with an error. They can then be allocated by
other PduRDestPdus again.

The PduR supports multiple Tx Buffer assignment strategies to support different usecases.

3.7.3.1 Tx Buffer Usage Types
A PduRTxBuffer can either be referenced by zero, one or multiple PduRDestPdus.

Note
ﬂ If a PduRDestPdu references at least one PduRTxBuffer, it has only access to this pool
of buffers and cannot use the global Tx Buffer pool of unassigned PduRTxBuffers.

3.7.3.1.1 Dedicated Tx Buffer

If a PduRTxBuffer is referenced by only one PduRDestPdu, it is called a dedicated Tx
Buffer. The buffer can only be used by this PduRDestPdu.

Dedicated Tx Buffers accelerate the buffer search algorithm as the amount of available
PduRTxBuffer is more limited compared to a global Tx Buffer Pool use case.

Dedicated Tx Buffer can be used to ensure the availability of suitable Tx Buffers and
optimize the buffer for certain bus architectures.

Expert Knowledge
Routing of a functional request is a typical use case for a dedicated buffer. For a short
diagnostic request it is required to avoid searching for a buffer in the global Tx buffer
pool. If a dedicated buffer is assigned to the PduRDestPdu, this buffer will be used
during runtime.

Note
ﬂ Dedicated Tx Buffers raise the RAM consumption. Every Tx Buffer allocates its needed
memory in RAM. This memory will not be shared with any other routing path.

3.7.3.1.2 Shared Tx Buffer

If a PAduRTxBuffer is referenced by multiple PduRDestPdus, it is a shared Tx buffer
which can be used by all corresponding PduRDestPdus.

If the Tx buffer is currently used by a PduRDestPdu, it can't be used by any other
PduRDestPdu until the processing of the active routing path is finished.

© 2017 Vector Informatik GmbH Version 3.00.01 29
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

- Expert Knowledge
A buffer pool configuration avoids that a non-suitable buffer is used for a routing during
runtime.

It is also possible to share Tx Buffers between communication interface and transport
protocol routings. Keep in mind that an allocated buffer is locked until the routing is
finished.

3.7.3.1.3 Local Tx Buffer Pool

If one PduRDestPdu references more than one PduRTxBuffer, it is called a local Tx
Buffer Pool. These can either be dedicated PduRTxBuffer or they can be shared with
other PduRDestPdus. A mix of dedicated and shared PduRTxBuf fers is supported.

The corresponding routing path can only request the referenced PduRTxBuf fers.

3.7.3.1.4 Global Tx Buffer Pool

A PduRTxBuffer which is not referenced by any PduRDestPdu is part of the global Tx
Buffer pool. It can be used by any PduRDestPdu which has not referenced any
PduRTxBuffer.

3.7.3.2 Example Configuration

In the example shown in Figure 3-10 the buffer 3 belongs to the global Tx Buffer Pool and
Buffer 1 and 2 are dedicated Tx Buffers of Routing 1 (local Tx Buffer Pool). Routing 2 does
not have a buffer reference. This routing will use buffer 3 from the global Tx Buffer Pool.

ROUtlng p @® Configured Tx Buffer Reference

Figure 3-10 Buffer pool configuration

Figure 3-11 shows a shared buffer pool configuration. Buffer 1 and 2 are shared between
Routing 1 and 2.

Routing 1

Routing 2

@ Configured Tx Buffer Reference

Figure 3-11 Shared buffer pool

© 2017 Vector Informatik GmbH Version 3.00.01 30
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

Caution
n If Routing 1 uses Buffer 1 and Buffer 2, Routing 2 will not get a buffer until Buffers are
released. Use shared buffer pool configurations carefully.

3.7.3.3 Tx Buffer Length Configuration

The length of each buffer element is configured individually and therefore allows fine
adaptations according to the use case. First of all, the length of the configured buffer
depends on the Threshold of the configured routing paths. If the gateway assigns a buffer
element to a routing path it is required that the buffer has at least the size of the Threshold.

Increase the PduRTxBuffer length to adapt a high bus load on the reception side to a lower
bandwidth on the transmit side.

Due to the ring-buffer mechanism it is not required that a buffer element with the size of
the largest expected TP |-PDU is configured. A buffer smaller than the routed I-PDU can
result in wait-frames or a buffer-overflow if the destination connection is slower than the
source connection. A buffer overflow can be avoided if the receiving TP connection allows
dynamic adaptation of the block size (BS) (e.g. CanTp connection with BS greater 0). If a
BS of 0 is used by some of the source TP connections, the configured buffer length should
be dimensioned in a way that buffer overflows are avoided.

Note

ﬂ It might make sense to configure a small Tp buffer (e.g. 7 bytes) to allow single
frame routings without occupying a larger and therefore more “expensive” buffer
for this task. This is applicable for both local and global Tx Buffer Pool
configuration. Dedicated assigned TxBuffer can be used to avoid this problem.

Note

ﬂ If Meta Data Support is enabled please consider that the MetaDatal. ength must be
copied to the Tp Buffer additionally. The MetaDatalLength should be taken into account
during the Tp buffer configuration.

3.7.3.4 Amount of Tx Buffer
The Tp gateway requires at least one buffer element to allow the routing of Tp I-PDUs.

The number of buffer elements that have to be configured depends on the number of TP |-
PDUs that shall be routed at the same time.

For each 1:N and N:1 routing path only one buffer element is occupied at runtime. More
than one buffer element will be occupied if a FIFO behavior is desired.

As the buffer elements are not assigned to a routing path statically, the number of
configured buffer elements can be smaller than the number of routing paths.

© 2017 Vector Informatik GmbH Version 3.00.01 31
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

3.7.3.5 Tx Buffer Selection Algorithm
The PduR uses the following rules to choose one of the configured Tx buffers:

» If the size of the incoming I-PDU is smaller than the configured TP Threshold the
smallest available buffer is used that can hold the entire I-PDU.

» If the size of the incoming I-PDU is larger than the configured TP Threshold it uses the
smallest Tx buffer which can hold the entire I-PDU. If such a buffer is not availabe it
will use the largest available buffer which has a size larger than the TpThreshold.

» If all buffer are occupied, the buffer request is rejected and the TP |-PDU is not routed.

3.7.4 TP Queue

Every destination PDU can be configured to use a queue to buffer the TP I-PDUs. The
amount of [-PDUs which will be buffered can be configured with the Dest PDU Queue
Depth parameter.

The Queue supports FIFO behavior. This means that the first started source TP
connection is transmitted to the destination first.

TP Queues are supported for the following routing paths:
» 1:1 routing path

» 1:N routing path (Queue Depth must be equal for all destinations)

» N:1 routing path (Queue Depth must be equal for all DestPdus which reference the
one common destination global PDU)

Multiple 1-PDUs from different source connections can be received at once on N:1 routing
paths, as long as the TP Queue is not full. For routing paths with only one possible source
Tp connection (1:1, 1:N), only one I-PDU can be received at once. If the transmission on
the destination side is delayed, multiple I-PDU instances which were received on the
source Tp connection are stored in the queue.

The default value for the Dest Pdu Queue Depth is 2. This corresponds to the back-to-
back routing behavior. After one TP I-PDU was received successfully it is transmitted to the
destination and another instance of the I-PDU can be received on the same TP
connection. Basically every queue with a depth greater than one can store multiple TP |-
PDUs.

A TP queue does not reserve the actual memory location for the Pdu. This is done
dynamically at runtime. TP buffer will be assigned to the queue, if it requests to store a
new |-PDU. In case there are no suitable TP buffer available, the StartOfReception call will
be rejected.

3.7.5 Error Handling

If one of the source or destination TP components that are involved in a TP data transfer
stops its transmission or reception due to an error (e.g. a timeout has occurred), the
corresponding TP-routing relation and buffer-element will be released. The next buffer
request on the not yet aborted Tp connection will return "BUFREQ_E_NOT_OK" and will
release the Tp connection.

© 2017 Vector Informatik GmbH Version 3.00.01 32
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

Info

ﬂ There is no AUTOSAR mechanism which notifies the other TP component side of an
error during the reception or transmission.

3.7.6 Meta Data Handling

Since ASR 4.1.2 the StartOfReception() APl was extended by the “PdulnfoPtr”. This
parameter can be used to transmit Meta Data.

In case of a gateway routing the payload provided in the “PdulnfoPtr” will be ignored by the
PduR. Just Meta Data are buffered and transmitted via the <LL>_Transmit function. In
case of forwarding to an upper layer module (e.g. DCM or CDD) the payload and Meta
Data will be forwarded and the upper layer must extract the Meta Data according the
configured Meta Data length.

Caution

n The length of the “PdulnfoPtr” does not contain the “MetaDatalLength” information. The
length parameter represents the I-PDU total length. Each module must copy the
MetaData from the "PdulnfoPtr” according the configured “MetaDatalLength”. Do not
use the length of the “PdulnfoPtr’ to copy “MetaData” from the “PdulnfoPtr”.

Caution

n The lower layer module must provide the complete payload in the CopyRxData()
function

© 2017 Vector Informatik GmbH Version 3.00.01 33
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

4 Integration

This chapter gives necessary information for the integration of the MICROSAR PDUR into
an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the PDUR contains the files which are described in the chapters 4.1.1 and
4.1.2:

411 Static Files

File Source Code | Description

Name |Delivery

PduR.c u This is the source file of the PDUR
PduR.h = This is the header file of PDUR

Table 4-1 Static files

4.1.2 Dynamic Files
The dynamic files are generated by the configuration tool DaVinci Configurator.

File Name Description

PduR_Cfg.h This file contains:

» global constant macros

» global function macros

> global data types and structures

> global data prototypes

» global function prototypes

of CONFIG-CLASS PRE-COMPILE data.
PduR_Lcfg.h This file contains:

» global constant macros

» global function macros

> global data types and structures

> global data prototypes

» global function prototypes

of CONFIG-CLASS LINK data.

PduR_Lcfg.c This file contains:
» local constant macros
» local function macros
» local data types and structures
» local data prototypes
» local data
» global data
of CONFIG-CLASS LINK and PRE-COMPILE data.

PduR_PBcfg.h This file contains:

© 2017 Vector Informatik GmbH Version 3.00.01 34
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

File Name Description
» global constant macros
» global function macros
» global data types and structures
> global data prototypes
» global function prototypes
of CONFIG-CLASS POST-BUILD data.

PduR_PBcfg.c This file contains:
» local constant macros
» local function macros
» local data types and structures
» local data prototypes
> local data
» global data
of CONFIG-CLASS POST-BUILD data.
PduR_Types.h This file contains types and defines for the PduR.
PduR_<Up>.h This is the interface header of the PduR to an Upper Layer Module.
PduR_<Lo>.h This is the interface header of the PduR to a Lower Layer Module

Table 4-2 Generated files

4.2 Critical Sections

The critical section PDUR_EXCLUSIVE_AREA_0 has to lock global interrupts to protect
common critical sections.

4.3 Memory Sections

With PDUR_START_SEC BUFFER_VAR_NOINIT_8BIT and
PDUR_STOP_SEC BUFFER_VAR_NOINIT_8BIT large Tx buffer can be mapped into an
own memory section.

4.4 Type Definitions
The types defined by the PDUR are described in this chapter.

Type Name C-Type Description __________ Value Range

PduR_RoutingPathGroupldType uint16 Identification of the routing path unsigned int
group. Routing path groups are
defined in the

PDU router configuration.

Table 4-3 Type definitions

© 2017 Vector Informatik GmbH Version 3.00.01 35
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

5 API Description

5.1 Services provided by PDUR
5.1.1 PduR_lInit

Prototype
void PduR Init (const PduR PBConfigType* ConfigPtr)

Parameter

ConfigPtr > NULL_PTR in the PDUR_CONFIGURATION_VARIANT_PRECOMPILE

> Pointer to the PduR configuration data in the
PDUR_CONFIGURATION_VARIANT_POSTBUILD_LOADABLE and
PDUR_CONFIGURATION_VARIANT_POSTBUILD_SELECTABLE

Return code
void none

Functional Description

This function initializes the PDU Router and performs configuration consistency checks. If the initialization
is performed successfully the PDU Router is in the state PduR_IslInitialized else not PAuR_Islnitialized.

Particularities and Limitations

The function is used by the Ecu State Manager

“ Caution
PduR _Init shall not pre-empt any PDU Router function.
Call Context

The function must be called on task level. To avoid problems calling the PDU Router module uninitialized it
is important that the PDU Router module is initialized before interfaced modules.

Table 5-1 PduR_Init

5.1.2 PduR_InitMemory

Prototype
void PduR_InitMemory (void)

Parameter

void none

Return code

void none

Functional Description

The function initializes variables, which cannot be initialized with the startup code.

Particularities and Limitations

The function is called by the application.
Call Context

© 2017 Vector Informatik GmbH Version 3.00.01 3
based on template version 4.9.2

o))

VECTOR > Technical Reference MICROSAR PDU Router

The function must be called on task level.

Table 5-2 PduR_InitMemory

5.2 Services
5.2.1 PduR_GetVersioninfo

Prototype
void PduR GetVersionInfo (Std VersionInfoType* versioninfo)

Parameter

versioninfo Pointer to where to store the version information of the PDU Router.

Return code

void none

Functional Description
Returns the version information of the PDU Router.

Particularities and Limitations

The function is called by the application.
Call Context

The function can be called on interrupt and task level.

Table 5-3 PduR_GetVersioninfo

5.2.2 PduR_GetConfigurationld

Prototype
uint32 PduR GetConfigurationld (void)

Parameter

void none

Return code
uint32 uint32

Functional Description
Provides the unique identifier of the PDU Router configuration.

Particularities and Limitations

The function is called by the application.
Call Context

The function can be called on interrupt and task level.

Table 5-4 PduR_GetConfigurationld

5.2.3 PduR_EnableRouting

Prototype
void PduR_EnableRouting (PduR RoutingPathGroupIdType id)

© 2017 Vector Informatik GmbH Version 3.00.01 3
based on template version 4.9.2

~

VECTOR > Technical Reference MICROSAR PDU Router

Parameter

id Identification of the routing path group. Routing path groups are defined in the
PDU router configuration.

Return code

void none

Functional Description

This function enables a routing path group. If the routing path group does not exist or is already enabled,
the function returns with no action.

Particularities and Limitations

The function is called by the BSW Mode Manager.
Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_EnableRouting or PduR_DisableRouting calls for the same id.

Table 5-5 PduR_EnableRouting

5.2.4 PduR_DisableRouting

Prototype
void PduR DisableRouting (PduR RoutingPathGroupIdType id)

Parameter

id Identification of the routing path group. Routing path groups are defined in the
PDU router configuration.

Return code

void none

Functional Description

This function disables a routing path group. If the routing path group does not exist or is already disabled,
the function returns with no action.

Particularities and Limitations

The function is called by the BSW Mode Manager.
Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_EnableRouting or PduR_DisableRouting calls for the same id.

Table 5-6 PduR_DisableRouting

© 2017 Vector Informatik GmbH Version 3.00.01 3
based on template version 4.9.2

©

VECTOR > Technical Reference MICROSAR PDU Router

5.3 Communication Interface
5.3.1 PduR_<GenericUp>Transmit

Prototype

Std _ReturnType PduR _<GenericUp>Transmit (PduldType id, PdulnfoType*
info)

id ID of the <GenericUp> I-PDU to be transmitted
info Payload information of the I-PDU (pointer to data and data length)
Std_ReturnType Std_ReturnType

IIZ;SFII(The request was accepted by the PDU Router and by the destination

E_NOT_OK PduR_Init() has not been called

or the id is not valid

or the id is not forwarded in this identity

or the info is not valid

or the request was not accepted by the destination layer.

Functional Description

The function serves to request the transmission of a Communication Interface I-PDU. The PDU Router
evaluates the upper layer I-PDU handle and performs appropriate handle and port conversion. The call is
routed to a lower communication interface module using the appropriate I-PDU handle of the destination
layer.

Particularities and Limitations

The function is called by an upper layer.
Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericUp>Transmit calls for the same upper layer id.

Table 5-7 PduR_<GenericUp>Transmit

5.3.2 PduR_<GenericLo>RxIndication

Prototype

void PduR <GenericLo>RxIndication (PduldType id, const PdulnfoType*
info)

id Handle ID of the received <GenericLo> I-PDU.
info Payload information of the received I-PDU (pointer to data and data length).

Return code

void none

© 2017 Vector Informatik GmbH Version 3.00.01 3
based on template version 4.9.2

©

VECTOR > Technical Reference MICROSAR PDU Router

Functional Description

The function is called by a lower communication interface to indicate the complete reception of a lower
communication interface I-PDU. The PDU Router evaluates the lower communication interface I-PDU
handle and performs appropriate handle and port conversion. The call is routed to an upper communication
interface module using the appropriate I-PDU handle of the destination layer.

Particularities and Limitations

The function is called by a lower communication interface module.
Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLo>RxIndication calls for the same a lower communication interface id.

Table 5-8 PduR_<GenericLo>RxIndication

5.3.3 PduR_<GenericLo>TriggerTransmit

Prototype
void PduR <GenericLo>TriggerTransmit (PduldType id, PdulnfoType* info)

id Handle ID of the <GenericLo> I-PDU that will be transmitted.
info Contains a pointer to a buffer (SduDataPtr) to where the SDU data shall be

copied, and the available buffer size in SduLengh. On return, the service will
indicate the length of the copied SDU data in SduLength.

Return code

Std_ReturnType E_OK: The SDU has been copied and the SduLength indicates the number of
copied bytes.
E_NOT_OK: No data has been copied, because PduR is not initialized or
TxPduld is not valid or PdulnfoPtr is NULL PTR or SduDataPtr is NULL_PTR
or SduLength is too small.

Functional Description

The function is called by a lower layer communication interface to request the TX I-PDU data before
transmission. The PDU Router evaluates the lower layer communication interface 1-PDU handle and
performs appropriate handle and port conversion. The call is routed to an upper IF module using the
appropriate 1-PDU handles of the destination layer.

Particularities and Limitations
The function is called by a lower layer communication interface

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLo>TriggerTransmit calls for the same id.

Table 5-9 PduR_<GenericLo>TriggerTransmit

© 2017 Vector Informatik GmbH Version 3.00.01 4
based on template version 4.9.2

o

VECTOR > Technical Reference MICROSAR PDU Router

5.3.4 PduR_<GenericLo>TxConfirmation

Prototype

void PduR <GenericLo>TxConfirmation (PduldType id)

Parameter

id Handle ID of the transmitted lower layer communication interface I-PDU.

Return code

void none

Functional Description

The function is called by a lower communication interface to confirm the complete transmission of a lower
communication interface I-PDU. The PDU Router evaluates the lower communication interface I-PDU
handle and performs appropriate handle and port conversion. The call is routed to an upper layer
communication interface module using the appropriate I1-PDU handle of the destination layer.

Particularities and Limitations
The function is called by a lower communication interface module.

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLo>TxConfirmation calls for the same lower layer communication interface id.

Table 5-10 PduR_<GenericLo>TxConfirmation

© 2017 Vector Informatik GmbH Version 3.00.01 41
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

5.4 Transport Protocol

This chapter describes the interfaces provided to Upper Layers (e.g. Dcm, ApplTp and
Cdds). Replace the tag <UpTp> by the MSN of the Upper Layer.

5.4.1 PduR_<GenericUpTp>ChangeParameter

Prototype

Std ReturnType PduR <GenericUpTp>ChangeParameter (PduldType id,
TPParameterType parameter, uintlé value)

id ID of the <UpTp> I-PDU where the parameter has to be changed
parameter The TP parameter that shall be changed.
value The new value for the TP parameter.

Return code

Std_ReturnType Std_ReturnType
E_OK: The parameter was changed successfully.
E_NOT_OK: The parameter change was rejected.

Functional Description

The function serves to change a specific transport protocol parameter (e.g. block-size).

The PDU Router evaluates the <UpTp> I-PDU handle and performs appropriate handle and port
conversion. The call is routed to a lower TP module using the appropriate I-PDU handle of the destination
layer.

Particularities and Limitations
The function is called by <UpTp>.
Call Context

This function can be called on interrupt and task level and has not to be interrupted by other
PduR_<UpTp>ChangeParameter calls for the same id.

Table 5-11 PduR_<GenericUpTp>ChangeParameter

5.4.2 PduR_<GenericUpTp>CancelReceive

Prototype
Std ReturnType PduR _<GenericUpTp>CancelReceive (PduldType id)

Parameter
id ID of the RX <GenericUp> I-PDU to be cancelled

Return code

Std_ReturnType Std_ReturnType
E_OK: Cancellation was executed successfully by the destination module.
E_NOT_OK: Cancellation was rejected by the destination module.

© 2017 Vector Informatik GmbH Version 3.00.01 4
based on template version 4.9.2

N

VECTOR > Technical Reference MICROSAR PDU Router

Functional Description

The function serves to cancel the reception of a TP layer I-PDU.

The PDU Router evaluates the upper layer transport protocol I-PDU handle and performs appropriate
handle and port conversion. The call is routed to a lower TP module using the appropriate I-PDU handle of
the destination layer.

Particularities and Limitations

The function is called by an upper layer transport protocol module.
Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericUpTp>CancelReceive calls for the same upper layer id.

Table 5-12 PduR_<GenericUpTp>CancelReceive

5.4.3 PduR_<GenericUpTp>CancelTransmit

Prototype
Std ReturnType PduR <GenericUpTp>CancelTransmit (PduldType id)

id ID of the TX upper layer I-PDU of the routing that must be cancelled in the
lower layer

Return code

Std_ReturnType Std_ReturnType

E_OK The cancellation request was accepted by the PDU Router and by the
TP layer.

E_NOT_OK PduR_Init() has not been called

or the id is not valid

or the id is not forwarded in this identity

or the request was not accepted by the TP layer.

Functional Description

The function serves to cancel the transmission of a TP layer |-PDU.

The PDU Router evaluates the upper layer transport protocol I-PDU handle and performs appropriate
handle and port conversion. The call is routed to a lower TP module using the appropriate |-PDU handle of
the destination layer.

Particularities and Limitations
The function is called by an upper layer transport protocol module

Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericUpTp>CancelTransmit calls for the same upper layer id.

Table 5-13 PduR_<GenericUpTp>CancelTransmit

© 2017 Vector Informatik GmbH Version 3.00.01 4
based on template version 4.9.2

w

VECTOR > Technical Reference MICROSAR PDU Router

5.4.4 PduR_<GenericLoTp>StartOfReception

Prototype

BufReq ReturnType PduR <GenericLoTp>StartOfReception (PduldType id,
PduInfoType info, PdulengthType TpSdulength, PdulengthType*
bufferSizePtr)

id ID of the <GenericLo> I-PDU that will be received.

info Pointer to the buffer (SduDataPtr) contains MetaData if this feature is enabled.
TpSduLength Length of the entire <GenericLo> TP SDU which will be received

bufferSizePtr Pointer to the receive buffer in the receiving module.

This parameter will be used to compute Block Size (BS) in the transport
protocol module.

Return code

BufReqg_ReturnType BufReq_ReturnType BUFREQ_OK Connection has been accepted.
bufferSizePtr indicates the available receive buffer.

BUFREQ_E_NOT_OK PduR_Init() has not been called
or the id is not valid

or the id is not forwarded in this identity

or the info is not valid

or the request was not accepted by the upper layer.

or no buffer is available

Functional Description

This function will be called by the lower layer at the start of receiving an I-PDU. The I-PDU might be
fragmented into multiple N-PDUs (FF with one or more following CFs) or might consist of a single N-PDU
(SF).

Particularities and Limitations

The function is called by lower layer transport protocol module.
Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLoTp>StartOfReception calls for the same lower layer transport protocol id.

Table 5-14 PduR_<GenericLoTp>StartOfReception

5.45 PduR_<GenericLoTp>CopyRxData

Prototype

BufReq ReturnType PduR <GenericLoTp>CopyRxData (PduldType id,
PduInfoType* info, PdulengthType* bufferSizePtr)

id ID of the lower layer transport protocol I-PDU that will be received.
info Pointer to the buffer (SduDataPtr) and its length (SduLength) containing the

data to be copied by PDU Router module in case of gateway or upper layer
module in case of reception.

bufferSizePtr Available receive buffer after data has been copied.

N

© 2017 Vector Informatik GmbH Version 3.00.01 4
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

Return code

BufReq_ReturnType BufReq_ReturnType
BUFREQ_OK Buffer request accomplished successful.
BUFREQ_E_NOT_OK PduR_Init() has not been called
or the id is not valid
or the id is not forwarded in this identity
or the info is not valid
or the request was not accepted by the upper layer.
or the request length to copy is greater than the remaining buffer size

BUFREQ_E_OVFL The upper TP module is not able to receive the number of
bytes. The request was not accepted by the upper layer.

Functional Description

This function is called by the lower layer transport protocol if data has to be copied to the receiving module.
Parallel routing of several I-PDU is possible.

Particularities and Limitations

The function is called by lower layer transport protocol
Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLoTp>CopyRxData calls for the same lower layer transport protocol id.

Table 5-15 PduR_<GenericLoTp>CopyRxData

5.4.6 PduR_<GenericLoTp>CopyTxData

Prototype

BufReq ReturnType PduR <GenericLoTp>CopyTxData (PduldType id,
PduInfoType* info, RetryInfoType* retry, PdulengthType*
availableDataPtr)

id ID of the lower layer I-PDU that will be transmitted.
info Pointer to the destination buffer and the number of bytes to copy.

In case of gateway the PDU Router module will copy otherwise the source
upper layer module will copy the data. If not enough transmit data is available,
no data is copied. The transport protocol module will retry.

A size of copy size of “0” can be used to indicate state changes in the retry

parameter.
retry retry not supported yet, is always a NULL_PTR.
availableDataPtr Indicates the remaining number of bytes that are available in the PDU Router
Tx buffer.
© 2017 Vector Informatik GmbH Version 3.00.01 45

based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

Return code

BufReq_ReturnType BufReq_ReturnType
BUFREQ_OK The data has been copied to the transmit buffer successful.
BUFREQ_E_NOT_OK PduR_Init() has not been called
or the id is not valid
or the id is not forwarded in this identity
or the info is not valid

or the request was not accepted by the upper layer and no data has been
copied.
BUFREQ_E_BUSY The request cannot be processed because the TX data is

not available and no data has been copied. The TP layer might retry later the
Copy process.

Functional Description

This function is called by a lower layer transport protocol module to query the transmit data of an I-PDU
segment.

Particularities and Limitations

The function is called by a lower layer transport protocol module.
Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLoTp>CopyTxData calls for the same a lower layer transport protocol module id.

Table 5-16 PduR_<GenericLoTp>CopyTxData

5.4.7 PduR_<GenericLo>TpTxConfirmation

Prototype

void PduR _<GenericLo>TpTxConfirmation (PduldType id, Std ReturnType
result)

id ID of the <GenericLo> I-PDU that will be transmitted.
result Result of the TP transmission
E OK The TP transmission has been completed successfully.

E_NOT_OK PduR_lInit() has not been called
or the transmission was aborted
or the id is not valid
or the id is not forwarded
or the request was not accepted by the destination upper layer.

Return code

void none

© 2017 Vector Informatik GmbH Version 3.00.01 4
based on template version 4.9.2

[«

VECTOR > Technical Reference MICROSAR PDU Router

Functional Description

The function is called by a lower layer transport protocol module to confirm a successful transmission of a
lower layer transport protocol module TX SDU or to report an error that occurred during transmission. The
PDU Router evaluates the lower layer transport protocol module I-PDU handle and performs appropriate
handle and port conversion. The call is routed to an upper TP module using the appropriate [-PDU handle
of the destination layer.

Particularities and Limitations
The function is called by a lower layer transport protocol module.
Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLo>TpTxConfirmation calls for the same the lower layer transport protocol module id.

Table 5-17 PduR_<GenericLo>TpTxConfirmation

5.4.8 PduR_<GenericLo>TpRxIndication

Prototype

void PduR_<GenericLo>TpRxIndication (PduldType id, Std ReturnType
result)

id ID of the <GenericLo> I-PDU that will be received.
result Result of the TP reception
E_OK The TP reception has been completed successfully.

E_NOT_OK PduR_Init() has not been called
or the reception was aborted
or the id is not valid
or the id is not forwarded
or the request was not accepted by the destination upper layer.

Return code

void none

Functional Description

The function is called by the lower layer transport protocol module to indicate the complete reception of a
lower layer transport protocol module SDU or to report an error that occurred during reception. The PDU
Router evaluates the lower layer transport protocol module I1-PDU handle and performs appropriate handle
and port conversion. The call is routed to an upper TP module using the appropriate I1-PDU handle of the
destination layer.

Particularities and Limitations
The function is called by a lower layer transport protocol module.
Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericLo>TpRxIndication calls for the same lower layer transport protocol module.

Table 5-18 PduR_<GenericLo>TpRxIndication

© 2017 Vector Informatik GmbH Version 3.00.01 4
based on template version 4.9.2

~

VECTOR > Technical Reference MICROSAR PDU Router

5.4.9 PduR_<GenericUpTp>Transmit

Prototype

Std ReturnType PduR <GenericUpTp>Transmit (PduldType id, PdulInfoType*
info)

id ID of the upper layer I-PDU that have to be transmitted
info Payload information of the I-PDU (pointer to data and data length)
Std_ReturnType Std_ReturnType

IEaslfa)rll(The request was accepted by the PDU Router and by the destination

E_NOT_OK PduR_Init() has not been called

or the id is not valid

or the id is not forwarded in this identity

or the info is not valid

or the request was not accepted by the TP layer.

Functional Description

The function serves to request the transmission of a TP layer |-PDU.

The PDU Router evaluates the incoming I-PDU ID and performs appropriate ID and port conversion. The
call is routed to the TP layer using the appropriate I-PDU handle of the destination layer.

Particularities and Limitations

The function is called by an upper layer transport protocol module.
Call Context

The function can be called on interrupt and task level and has not to be interrupted by other
PduR_<GenericUpTp>Transmit calls for the same an upper layer transport protocol module id.

Table 5-19 PduR_<GenericUpTp>Transmit

© 2017 Vector Informatik GmbH Version 3.00.01 48
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

55 Service Ports

5.5.1 Complex Device Driver Interaction

Besides the AUTOSAR modules, Complex Device Drivers (CDD) are also possible as
upper layer and lower transport protocol or communication interface modules for the
PduR. When a callout function of the PduR is invoked from a lower or upper layer module
for a PDU that is transmitted or received by a CDD, the PduR invokes the corresponding
target function of the CDD. If all PDUs transmitted or received by a CDD are referenced by
communication interface modules, the CDD requires a communication interface API. If all
PDUs transmitted or received by a CDD are referenced by transport protocol modules, the
CDD requires a transport protocol API.

A CDD can either require a communication interface API or it can require a transport
protocol API but not both. The API functions provided by the PduR for the CDD interaction
contain the CDD’s name.

© 2017 Vector Informatik GmbH Version 3.00.01 49
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

6 Configuration

6.1 Use Case Configuration: Communication interface range gateway

The PduR routing paths configuration is typically focused on the routing of dedicated Pdus
and their bus-specific representation (e.g. the concrete CAN ID, DLC, ...). For some
network and communication architectures it might be helpful to avoid the dedicated
configuration of all possible and required PduR routing paths. Especially if a huge amount
of Pdus shall be routed between networks, the PduR routing paths configuration gets
extensive, error-prone and requires a lot of hardware resources (ROM / RAM).

To overcome this situation, so called range-routings could be used. For the routing of a full
Pdu range between two networks just single PduR routing path needs to be configured.

Technically, the range-routing is based on the usage of MetaData information appended to
the Pdu data field. During Pdu reception the related bus interface module stores all
required Pdu meta information (the CAN ID) in the MetaData part of the Pdu data field.
The PduR itself performs the routing of the full Pdu data field, including the MetaData.
During transmission the related bus interface module uses the MetaData information for
dynamic adaptation (the CAN ID) of the transmitted bus Pdu. The range of the routed
Pdus is defined by the bus interface specific Rx Pdu range. In case of Canlf, the CAN ID
Rx filter is used to define the range. Figure 6-1 visualizes the range-routing technique.

. Store Rx Use stored CAN ID
B CAN ID in from meta data for
Payload (Z\\NIDBI MetaData CAN D [y [neta data CANID & JinsmiSSiO”

- _——’I 4——’

Rx ID mask
filter

Routed CAN ID is identical

Figure 6-1 Meta data routing with Canlf

ﬂ Limitations
There are some limitations when using the described range-routing technique:
> Available for CAN only
» No CAN ID conversion possible
» No length conversion possible
» No dynamic PDU lengths possible

© 2017 Vector Informatik GmbH Version 3.00.01 50
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

6.1.1 Step-by-step configuration

E Configuration Example
All following step-by-step instructions are based on this range-routing example:

CANID [CANID |DLC |Source network/ |Destination network(s) / channel(s)
code

channel
0x700 0x708 8 CANO CAN1, CAN2
0x708 0x708 8 CAN1 CANO
0x708 0x708 8 CAN2 CANO

Table 6-1 Example range routings

The CAN ID range is defined by the condition

<received CAN-ID> & <mask> == <code> & <mask>

The following step-by-step configurations steps will result in the following Canlf / PduR
range routing architecture shown in Figure 6-2.

1:N routing path PduR

= |= =) |=

=
NI

Canlf

Rx range Rx range
ID 0x700 ID 0x708

mask 0x708 ' ' mask 0x708

CANO Rx CAN1Tx CAN2 Tx CAN1Rx CAN2 Rx CANO Tx

Figure 6-2 Canlf / PduR range routing example overview

ﬂ Derived model elements / Validation and solving actions

During project setup the EcuC configuration will be automatically derived from the
provided input files. Therefore some of the following manual configuration steps are
redundant. In this case, please extend or adapt the existing configuration containers
and parameters to the described step-by-step configuration.

Parameters and containers which will be created and configured by background-
validations are not described explicitly. Please finalize all manual configuration steps
before solving the open validations results. Use the provided solving actions.

A Validation 3 | & Find|

15 messages in 8 categories

D | Message
=187 PDUR10000 PduRBswModules missing, (L message)

=& POURLOND The container PduRBswhodules referencing the Bswhodule CanTp is missing. The BwModule CanTp is
involved in a PduR routing path by the global Pdu reference PduRDestPduRef(value=TxSdu_FuncReq_CANL).

& Create PduRBswhodules referencing fActiveEcuC/CanTp

e /A ctiveEcuC/PduR

& /ActiveEcuC/PduR/Canlf

© 2017 Vector Informatik GmbH Version 3.00.01
based on template version 4.9.2

51

VECTOR > Technical Reference MICROSAR PDU Router

Create global Pdus

» Create global Pdus for every required range routing source and destination channel.
Global Pdu container: /MICROSAR/EcuC/EcucPduCollection/Pdu

» Create and configure a MetaData length. 2 bytes are required for standard CAN [Ds,
4 bytes are required for extended CAN identifiers.
MetaData length: /MICROSAR/EcuC/EcucPduCollection/Pdu/MetaDatalength

» Configure the Pdu length to the Pdu payload length.
Pdu length: /MICROSAR/EcuC/EcucPduCollection/Pdu/Pdulength
For the example configuration this results in the following global Pdu configuration:

& B EcuC @ EcucPduCollection » § Pdus b RxRangePdu CAND, RxRangePdu CANL, RxRangePdu CAN2 AY~
o - qp L Pdus = | Meta Data Length | Pdu Length [Byte]
a b EcuC - RxRangePdu_CANO 2 8
» B EcucGeneral RxRangePdu_CANL 2 8
‘ ‘f ;“;:i:“”e‘t'”” ReRangePdu_CAN2 2 8
© ReRangePdu_CAND TxRangePdu CAND to CAMNI 2 8
© RxRangePdu CANL = TxRangePdu CANO_to CAMN2 2 8
© RxRangePdu_CAN2 TxRangePdu CAMN1 to CAMNO 2 8
@ TxRangePdu_CANO_to_CAML TxRangePdu CAMN2 to CAMNO 2 8
© TxRangePdu_CAND_to_CAM2
© TxRangePdu_CANI_to_CANO
© TxRangePdu_CAN2_to CAND - Il m 3
© 2017 Vector Informatik GmbH Version 3.00.01 52

based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

H Create Canlif Rx Pdus
» Create a Canlf Rx Pdu for every required range routing source channel.
Canlf Rx Pdu container: /MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg
» Configure the Rx CAN ID range by the CAN ID code and the CAN ID mask

/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanId
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanIdMask
The CAN ID range is defined by the filter condition

<received CAN-ID> & <mask> == <code> & <mask>

» Configure the CAN ID type (standard or extended) and the DLC with the parameters
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanIdType
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduDlc

» Reference the related channel specific Rx global Pdu created in the previous steps
with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduRef

» Reference the related CAN channel hardware receive object (HRH) used for
reception of the range Pdus with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduHrhIdRef

> Assign the PduR as upper layer user with the parameter /MICROSAR/CanTf/
CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduUserRxIndicationUL

For the example configuration this results in the following Canlf Rx Pdu configuration:

& CanlfRxPduCfgs ' CanlfRxRangePdu CANO, CanlfRxRangePdu CANI, CanlfRxRangePdu CAN2 oY -

R CanlfRxPduCfgs | RePduCanld | RxPdu Canld Maske | Rx Pdu Canld Type o | Rx Pdu Dlc | Rx Pdu Dic Check | Rx Pdu Ref 7| Rx Pdu Hrh1d Ref g | R Pdu User Rx Indication UL|
CanlfRxRangePdu_CAMD | 0x700 0x708 STANDARD_CAN 8 ¥ * RxRangePdu_CAMO CN_Rx CANO PDUR
CanlfRxRangePdu_CAM1 | 0x708 0708 STANDARD_CAN 8 ¥ * RuRangePdu_ CAML CMN_Rx_CANL FDUR
gnIfoRanqudu CAN2 | 0x708 0x708 STANDARD_CAN 8 v * RxRangePdu_CAM2 CN_Rx_CAN2 PDUR

m 3

Create Canlf Tx Pdus

» Create a Canlf Tx Pdu for every required range routing destination channel.
Canlf Tx Pdu container: /MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg

» Configure the Tx CAN ID used for prioritization of this dynamic Tx Pdu against other
static Pdus with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduCanId
Use the highest priority CAN ID of the routing range for this prioritization ID.

» Configure the CAN DLC with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduDlc

» Reference the related global Pdu created in the previous steps with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduRef
» Reference the related channel specific Canlf Tx buffer object used for transmission

of the range Pdus with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduBufferRef

For the example configuration this results in the following Canlf Tx Pdu configuration:
» & CanlffxPduCfgs b CanlfTxRangePdu CAMO to CAMI, CanlfTxRangePdu CANO to CAM2, CanlfTxRangePdu CAMI to CAND, CanlfTxRangePdu

CanlfTxPduCfgs 7| TePduCanld | TxPduDlc [Byte] | TxPdu Ref ; Tx Pdu Buffer Ref 7
Canlf TxRangePdu_CAND_to CAN1 0700 8 TxRangePdu_CAMN0_to_CAN1 CanlfBufferCfg_Tx_CANL
Canlf TxRangePdu_CAND_to CANZ 0700 8 TxRangePdu_CAMN0_to_CAN2 CanlfBufferCfg_Tx_CAN2
CanlfTxRangePdu_CAN1 to CAND 0700 8 TxRangePdu_CAN1_to_CAND CanlfBufferCfg_Tx_CANO
CanlfTxRangePdu_CANZ_to CANO 0700 8 TxRangePdu_CAM2_to_CANO CanlfBufferCfg_Tx_CANO

© 2017 Vector Informatik GmbH Version 3.00.01 53
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

H Create PduR routing paths
Finally create the PduR routing paths connecting the Canlf Rx and Tx range Pdus. A
single PduR routing path for every channel specific range routing is required.
» Create a PduR routing path:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath

» Reference the related channel specific Rx global Pdu at the routing path source:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/Pd
uRSrcPdu/PduRSrcPduRef

» Reference the related channel specific Tx global Pdu at the routing path destination:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/Pd
uRDestPdu/PduRDestPduRef

For the example configuration this results in the following PduR routing path

configuration:
RoutingPath RoutingPath Source RoutingPath Destination(s)
Global Pdu Global Pdu(s)
RP_RangeRouting_ RxRangePdu_CANO TxRangePdu_CANO_to_CAN1,
CANO_to CAN1 2 TxRangePdu_CANO_to CAN2

RP_RangeRouting_ RxRangePdu_CAN1 TxRangePdu_CAN1_to CANO
CAN1_to_CANO

RP_RangeRouting RxRangePdu_CAN2 TxRangePdu_CAN2_to CANO
CAN2_to_CANO

& ¢ PduR © @ PduRRoutingTables » © PduRRoutingTable » ¢ PduRRoutingPaths b [RP_RangeRouting CANO_ta_CAN1 2 » & Src_
@, <Filter> * | Short Name: Sre_RxRangePdu_CAND
a b PduR L N 1 dec
» &P PduRBswModules o i o
PduRGeneral
4 @ PduRRoutingTables
&9 PduRRoutingPathGroups a
4 © PduRRoutingTeble ISr(Pdu Ref: RxRangePdu_CAND I
4 & PduRRoutingPaths
4 @ RP_RangeRouting_CAND_to_CAN1_2
4 § PduRDestPdus
Dest_TxRangePdu_CANL
Dest_TxRangePdu_CAN2
Src_RxRangePdu_CANO
4 @ RP_RangeRouting_CANL_to_CANO
4 & PduRDestPdus
Dest_TxRangePdu_CAN1_to_CAND
Src_RxRangePdu_CANL
4 @ RP_RangeRouting CAN2_to CANO
» & PduRDestPdus L4
Src_RxRangePdu_CAN2

RECEIVE

Canlf

m

L4 9' PduR & PduRRoutingTables P PduRRoutingTable » ﬁ PduRRoutingPaths RP_RangeRouting_CAN0_to_CAN1_2 » @ PduRDestPdus

Q <Filter= - Y
<Filter> Cl PduRDestPdus | Dest Pdu Ref of Dest Tx BufferRef o
4 b PduR “| & Dest TsRangePdu_CANL | TxRangePdu_CAND_to_CANL | PAuRTxBuffer CANL
> @ PduRBswhodules ® Dest TsRangePdu_CAN2 | T«RangePdu_CANO_to_CAN2 | PduRTxBuffer CAN2
PduRGeneral

4 @ PduRRoutingTables
&7 PduRRoutingPathGroups B
4 PduRRoutingTable
4 §F PduRRoutingPaths
4 @ RP_RangeRouting_CAND_to_CAM1_2
4 & PduRDestPdus 2
Dest_TxRangePdu_CAMNL
@ Dest_TxRangePdu_CAN2
D Src_RxRangePdu_CAND
» @ RP_RangeRouting_CANI1_to_CAMNO
» i RP_RangeRouting CAN2_te_CAMO

For further details regarding the PduR communication interface gateway, please refer
to chapter 3.6.

© 2017 Vector Informatik GmbH Version 3.00.01 54
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

6.1.2 Optional configuration variants / options

ﬂ [Optional] Configure PduR FIFO routing

In case the sequence of successive routed range Pdus shall be retained, a
FIFO queue must be configured within the PduR.

» Create PduR Tx buffer (FIFO) for every range routing destination channel:
/MICROSAR/PduR/PduRRoutingTables/PduRTxBufferTable/PduRTxBuffer

» Configure the Tx buffer length to the length of the routed global Pdu
(including the MetaData length):
/MICROSAR/PduR/PduRRoutingTables/PduRTxBufferTable/PduRTxBuffer/Pdu
RPduMaxLength

» Configure the Tx buffer depth to the maximum expected amount of queued
Pdus (see also chapter 3.6.2):

/MICROSAR/PduR/PduRRoutingTables/PduRTxBufferTable/PduRTxBuffer/Pdu
RTxBufferDepth

« B PduR » @ PduRRoutingTables » & PduRTxBufferTable » (P PduRTxBuffers » & PduRTxBuffer CANL

a ¥ | Short Mame: PduRTxBuffer_CAMN1
——
4 §J PduRTxBuffers “ | Pt Max Length: 0 o
0 PduRTxBuffer CANL -
© PAuRTxBuffer CANL_to_CANQ || T Buffer Depth: 32 ec

& PduRTxBuffer_CANZ
© PduRTxBuffer CAMZ_to_CAND _

» Reference the created Tx buffers at the related PduR range routing paths:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/P
duRDestPdu/PduRDestTxBufferRef

4« ‘f’-‘ PduR » @ PduRRoutingTables » & PduRRoutingTable » ﬁ PduRRoutingPaths » & RP_RangeRouting CAMND_to CAN1 2 » ﬁ

Q ~* | Short Name: Dest_TxRangePdu_CAN1
4 @ PduRRoutingPaths | Dest Pdu Data Provision: PDUR_DIRECT -
4 @ RP_RangeRouting_CAMNO_te_CAMN1_2
4 @ PduRDestPdus TRANSMIT
i) Dest_TxRangePdu_CANI1 1 dec
© Dest_TxRangePdu_CAN2
@ Src_ReRangePdu_CANO Canlif
» @ RP_RangeRouting CANL to CANO Dest Pelu Ref: TiRangePdu_CAND_to_CANL

> & RP_RangeRouting_CANZ_to_CAMND

: & PduRTpBufferTable GATEWAY ROUTING
4 @ PduRTxBufferTable
a4 g PduRTxBuffers -

& PduRTxBuffer_CAML =|| Tp Thresheld: dec

& PduRTxBuffer_CAML_to_CAND

I Drest Tx Buffer Ref: PduRTxBuffer_CANL I

Transmission Confirmation: @~
& PduRTxBuffer_CAMN2
0 PduRTxBuffer_CAM2_to_CAND N
© 2017 Vector Informatik GmbH Version 3.00.01 55

based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

H [Optional] CAN priority inversion
» Enable the Canlf feature ,Cancellation of PDUs and requeueing” in order to
avoid inner priority inversion:
/MICROSAR/Canlf/CanIfCtrlDrvCfg/CanIfCtrlDrvIxCancellation

& b Canlf b P CanfCtriDrvCfgs » & CanlfCtrDrvCfg » CanlfCiriCfgs

a ¥ | Short Name: CanlfCtrIDrvCfg
4 !3” Canlf il ICUntruHer Driver Tx Cancellation: -
4 g CanFCtriDrvCfgs
4|0 CanlCtrlDrvCfg Ctrl Drv Init Hoh Config Ref: CanlflnitHohCfg

4) CanlfCtriCfgs
& CT_PduRCANO0_0e706bbc
& CT_PduRCANO1_0e706bbc
& CT_PduRCANOZ 0e706bbc

Ctrl Drv Mame Ref: CanGeneral

» Enable the CAN driver feature ,Multiplexed Transmission“ in order to avoid
external priority inversion:
/MICROSAR/<CAN Platform>/Can/CanGeneral/CanMultiplexedTransmission
€ B Can » @ CanGeneral » CanMainFunctionRWPeriods
a, - #*

a4 b Can
- 0 CanConfigSet
> @ CanGeneral

i IMuItipIaxed Transmission: i

If this feature is enabed, multiple hardware objects are used for
transmission of a single logical Tx object.

Hint: These features are not supported by all CAN controllers. Please refer to
[7] and [8].

ﬂ [Optional] Alternative Canlf Rx range configuration method

Depending on the required CAN ID range, the range can also be configured using an
upper- and lower layer ID using the following container / parameters:
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanIdRange

/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanlfRxPduCanIdRange/CanIfR
xPduCanIdRangeLowerCanId

/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanIdRange/CanIfR
xPduCanIdRangeUpperCanId

« W Conlf » @ CanlnitCig b @ CanfRxPduCfgs » & CanlfixRangePdu » I CanlfRxPduCanldRange

a ~ | Short Mame: CanlfRxPduCanldRange
4 g Cont “ | Rx Pdu Can Id Range Lower Can Id: 0700 hiex
. &P CanlfCtriDrvCfgs
P CanlfTrevDreCgs Rx Pdu Can Id Range Upper Can Id: Ox7FF hiew

& CanlfDispatchCfg
4 @ CanHInitCfg
. @ CanlfBufferCfgs
. @ CanlflnitHohCfgs
4 @ CanlfRxPduCfgs
4 @ CanlfRxRangePdu
& CanlfRxPduCanldRange

mn

In case of this alternative range configuration method, the previously used range
configuration parameters must not be used:
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanId
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanIdMask

For further details about the Canlf and CAN driver modules, please refer to [7] and [8].

© 2017 Vector Informatik GmbH Version 3.00.01 56
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

6.2 Use Case Configuration: Functional requests gateway routing

Gateway ECUs typically include diagnostic services, handling physical and functional
addressed requests used by external diagnostic tools during the development,
manufacturing and service.

Functionally addressed request messages are a kind of broadcast requests which shall be
processed by all (or a dedicated set of) ECUs. Typically this includes the gateway ECU
itself as well. In case the ECUs are distributed on multiple CAN networks, the gateway
ECU needs to handle the broadcasting of the request messages to the connected sub-
network as well as the handling of the functional requests by the gateway-own diagnostic
handler.

Gateway ECU

ECU A
Diagnostic

Tool

ECUB

Diagnostic
handler

functional requests

CAN 2

Figure 6-3 Example functional requests gateway network architecture

To realize the gateway behavior as visualized in Figure 6-3, a PduR 1:N transport protocol
gateway could be configured, as shown in Figure 6-4.

Service handler

Pdu R I 1:N routing path

]
CanTp|] |

Bisicalieqlest Functional request handler
handler

Dcm

con |

Physical request / Functional request
response message message

Figure 6-4 Functional request gateway architecture

Routing of physically addressed diagnostic messages is not focus of this chapter.
Please refer to chapter 6.1 introducing range-routing paths which could be used for
efficient and simple routing of physically addressed diagnostic messages.

= Handling of physically addressed diagnostic messages

© 2017 Vector Informatik GmbH Version 3.00.01 57
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

6.2.1 Step-by-step configuration

E Configuration Example
All following step-by-step instructions are based on the following functional diagnostic
routing example:

Functional diagnostic |DLC |Source network/ |Destination network(s) /
request ID channel channel(s)
0x7DF CANO CAN1, CAN2

Table 6-2 Example functional diagnostic request routing

ﬂ Derived model elements / Validation and solving actions

During project setup the EcuC configuration will be automatically derived from the
provided input files. Therefore some of the following manual configuration steps are
redundant. In this case, please extend or adapt the existing configuration containers
and parameters to the described step-by-step configuration.

Parameters and containers which will be created and configured by background-
validations are not described explicitly. Please finalize all manual configuration steps
before solving the open validations results. Use the provided solving actions.

£ Validation &3 | 3% Find
15 messages in & categories
D Message

=€ PDURL0000 PduRBswModules missing. (1 message)

=5 PDURL0000 The container PduRBswModules referencing the BswModule CanTp is missing. The BswModule CanTp is
N involved in a PduR routing path by the global Pdu reference PduRDestPduRef(value=TxSdu_FuncReq CAN1).

& Create PduRBswModules referencing /ActiveEcuC/CanTp
e fActiveEcuC/PduR
& /ActiveEcuC/PduR/Canlf

Create global Pdus / Sdus

» Create two global Pdus for the received functional request. The first global Pdu
interconnects the Canlf and CanTp receive paths. The second global Pdu (Sdu)
interconnects the CanTp, PduR and the related diagnostic handler (e.g. Dcm).
Global Pdu container: /MICROSAR/EcuC/EcucPduCollection/Pdu
This step is optional if the own functional request routing path was automatically
derived based on input files during project setup.

» Create a pair of global Pdus (Pdu and Sdu) for every destination channel where the
functional requests shall be routed to.

» Configure the Pdu length to the CAN frame length of the functional request
message. The length of the Sdu (interconnection between CanTp, PduR and the
related diagnostic handler) shall be the length of transport protocol payload.

Pdu length: /MICROSAR/EcuC/EcucPduCollection/Pdu/Pdulength

For the example configuration this results in the following global Pdu configuration:

(4 9“ EcuC » & EcucPduCollection P ﬁ Pdus » BxPdu FuncReq CANOD, TxPdu FuncReg CANL, TxPdu FuncReq CAN2 RxSdu Fu

a h qp Pdus ; Pdu Length [Byte] - Meta Data Length o
a b EeuC E RxPdy_FuncReq CAND |8
> @ EcucGeneral RuSdy FuncReq CAND |7
0 ;”;:d”':c'"m'”” TaPdu FuncReq CANL |8

rl us
TxPdu FuncReg CAN2
© RiPdu_FuncReq CAND TxPdu FuncReg CAN2 8
© RSdu_FuncReq_CAND TuSdu_FuncReg CAMI 7
@ TxPdu_FuncReq CANL TuSdu_FuncReg CAMNZ 7
© 2017 Vector Informatik GmbH Version 3.00.01 58

based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

H Create Canlf Rx Pdus
The following steps are optional if the own functional request routing path was
automatically derived based on input files during project setup.

» Create a Canlf Rx Pdu for the functional diagnostic request message.
Canlf Rx Pdu container: /MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg

» Configure the static Rx CAN ID of the functional request message
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanId

» Configure the CAN ID type (standard or extended) and the DLC with the parameters
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduCanIdType
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduDlc

» Reference the related functional request Rx global Pdu created in the previous
steps with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduRef

» Reference the related CAN channel hardware receive object (HRH) used for
reception of the functional request message with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduHrhIdRef

» Assign the CanTp as upper layer user with the parameter /MICROSAR/CanTf/
CanIfInitCfg/CanIfRxPduCfg/CanIfRxPduUserRxIndicationUL

For the example configuration this results in the following Canlf Rx Pdu configuration:

|§'-' Canlf » @ CanlflnitCfg » & CanlfRxPduCfgs » CanlfRxPdu FuncReq CANO

ks CanlfRxPduCfgs RxPdu CanId | RxPdu Can Id Type | Rx Pdu Dic [Byte] ;| Rx Pdu Dlc Check | Rx Pdu Ref | RxPdu Hrh Id Ref ;| R Pdu User RxIndication UL 5>
CanlfRxPdu_FuncReq CANO ‘ 0x7DF STANDARD_CAN 8 V¥ RxPdu_FuncReq CAND CN_Rx CANO CAN_TP
!

H Create Canlif Tx Pdus
» Create a Canlf Tx Pdu for every destination channel where the functional requests
shall be routed to:

Canlf Tx Pdu container: /MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg

» Configure the static Tx CAN ID of the functional request message with the
parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduCanId

» Configure the CAN DLC with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduDlc

» Reference the related functional request Tx global Pdu created in the previous steps
with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduRef

» Reference the related channel specific Canlf Tx buffer object used for transmission
of the functional request message with the parameter
/MICROSAR/CanIf/CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduBufferRef

» Assign the CanTp as upper layer user with the parameter /MICROSAR/CanTf/
CanIfInitCfg/CanIfTxPduCfg/CanIfTxPduUserTxConfirmationUL

For the example configuration this results in the following Canlf Tx Pdu configuration:

!5'—' Canlf » & CanlfnitCfg » & CanlfTxPduCfgs » CanlfTxPdu FuncReq CAMI, CanlfTxPdu FuncReq CAN2

B CanlfTxPduCfgs | TxPdu Canld ¢ | Tx Pdu Can Id Type | Tx Pdu Dlc [Byte] ;| Tx Pdu Buffer Ref | Tx Pdu Ref ; Tx Pu User Tx Confirmation UL o
CanlfTxPdu_FuncReq CAN1 | 0x7DF STAMDARD_CAN 8 CanlfBufferCfg_Tx_CAM1 TuPdu_FuncReq CAN1 CAN_TP
C

anlfT«Pdu_FuncReg CAN2 | 0x7DF STAMDARD_CAN 8 CanlfBufferCfg_Tx_CAN2 TuPdu_FuncReq CAN2 CAN_TP

© 2017 Vector Informatik GmbH Version 3.00.01 59
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

Create CanTp Rx channel
The following steps are optional if the own functional request routing path was
automatically derived based on input files during project setup.
» Create a CanTp Rx channel for the functional request
CanTp Rx channel container: /MICROSAR/CanTp/CanTpConfig/CanTpChannel

» Create a CanTp Rx N-Sdu container below the previously created Rx channel:
/MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpRxNSdu

» Reference the related global Pdu (Sdu, interconnecting the CanTp, PduR and
diagnostic handler) created in the previous steps with the parameter
/MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpRxNSdu/CanTpRxNSduRef

» Configure the Rx Sdu as functional communication type with the parameter
/MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpRxNSdu/CanTpRxTaType

& M CanTp » @ CanTpConfig b @ CanTpChannels » & CanTpChannel FuncReq CANO b & CanTpRxNSdu_FuncReq CAMO + CanTpRxMPd

@ ~ | Short Name: CanTpRxNSdu_FuncReq CANO -
4 bde CanTp “ | Block Size: " dec| -
4 @ CanTpConfig o - -
4 g CanTpChannels Data Length [Byte]:

4 @ CanTpChannel_FuncReq CAMD N_Ar [msk: = dec| -

» 0 CanTpRxNS5du_FuncReq CANO "
4 © CanTpChannel_FuncReq_CANL N_Br [ms]: 100 il
» @ CanTpTxNSdu_FuncReq_CANL N_Cr [msl: H |

4 @ CanTpChannel_FuncReq CAM2

4 © CanTpTxNSdu_FuncReq CAN2 Rx Addressing Format: CANTP_STANDARD vr‘-
@ CanTpTxMPdu_FuncReq_CANI_001 Rx NSdu Id: 0 dec[Fee

© CanTpGeneral
§ R uscu Ref: RxSdu_FuncReq CAND | [

= | RxPadding Activation: CANTP_ON

R Wt Mac dec|

. "CANTP_FUNCﬁaN}\IE e

~ | STmin [ms]: dec] =

» Reference the related global Pdu (interconnecting the Canlf and CanTp) created in

the previous steps with the parameter /MICROSAR/CanTp/CanTpConfig/
CanTpChannel/CanTpRxNSdu/CanTpRxNPdu/CanTpRxNPduRef

& M CanTp » @ CanTpConfig » §P CanTpChannels ¥ B CanTpChannel_FuncReq CANO b & CanTpRxNSdu_FuncReq CAND ¥

a ~ | Short Name: CanTpRaNPdu_FuncReq_CAND -
4 b CanTp “ | R NPduId: 0 dec[Far
4 @ CanTpConfig
4 ¢ CanTpChannels | R P Re: RiPdu_FuncReq_CANO | [

4 D CanTpChannel_FuncReq_CAND
4 @ CanTpRxNSdu_FuncReq CANO
© CanTpRxNPdu_FuncReq CANO

For further information regarding the CanTp timing configuration parameters please
refer to [9].

© 2017 Vector Informatik GmbH Version 3.00.01 60
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

Create CanTp Tx channels

» Create a CanTp Tx channel for every destination channel where the functional
requests shall be routed to.
CanTp Tx channel container: /MICROSAR/CanTp/CanTpConfig/CanTpChannel
» Set the channel mode of the created Tx channel to half-duplex mode:
/MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpChannelMode

& Mo CanTp » @ CanTpConfig » & CanTpChannels » @ CanTpChannel_FuncReq_CAMD + CanTpRxMSdu Func

@ - Short Name: CanTpChannel_FuncReq_CANO -
> I Can | Channdl Mode: CANTP_MODE_HALF_DUPLEX -~
> Igde Canlf
4 %‘ CanTp

4 @ CanTpConfig
a P CanTpChannels
> | i CanTpChannel FuncReq CANO
> B CanTpChannel_FuncReq CAN1
- @ CanTpChannel_FuncReq_CAN2
» Create a CanTp Tx N-Sdu container below the previously created Tx channel:
/MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpTxNSdu

» Reference the related global Pdu (Sdu, interconnecting the CanTp, PduR and
diagnostic handler) created in the previous steps with the parameter
/MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpTxNSdu/CanTpTxNSduRef

» Configure the Tx Sdu as functional communication type with the parameter
/MICROSAR/CanTp/CanTpConfig/CanTpChannel/CanTpTxNSdu/CanTpTxTaType

€ &b CanTp » @ CanTpConfig » §P CanTpChannels » & CanTpChannel FuncReq CAM1 » B CanTpTxMSdu_FuncReq CAN1 + CanTpTxh

a ¥ | Short Name: CanTpTxNSdu_FuncReq_CANL -

4 e CanTp “ | Data Length [Byte]: " dec| w
4 @ CanTpConfig .

4 P CanTpChannels N_As [ms]: 100 oc ¥ o

> @ CanTpChannel_FuncReq_CANO
4 @ CanTpChannel_FuncReq_CAM1
4 @ CanTpTxNSdu FuncReq CANL N_Cs [ms]: 100
& CanTpTxMNPdu_FuncReq CAN1

4 @ CanTpChannel_FuncReq_CANZ
4 @ CanTpTxNSdu_FuncReq_CAN2 Tx Addressing Format: [CANTP_STANDARD vr'

M_Bs [ms]: dec| =

dec[Fr

Transmit Cancellation: [~

& CanTpTxNPdu_FuncReq_CAN1_001 Ty NSdu Id: 0 dec ¥
@ CanTpGeneral
. B Dem = frnisdu Re: TxSdu_FuncReq_CANL |
a &3
» I Det TxPadding Activation: CANTP_ON [
» U_F‘ EcuC
» & Os JrcTa Type: CANTP_FUNCTIONAL -~

» Reference the related global Pdu (interconnecting the Canlf and CanTp) created in
the previous steps with the parameter /MICROSAR/CanTp/CanTpConfig
/CanTpChannel/CanTpTxNSdu/CanTpTxNPdu/CanTpTxNPduRe f

& W CanTp » @ CanTpConfig » & CanTpChannels b @ CanTpChannel_FuncReq CANI » & CanTpTxNSdu_FuncReq CANL » & CanTpTxNP(

Q ~ | Short Name: CanTpTxNPdu_FuncReq_CANL -
o -] . #*
o b CanTo X T NPdu Confirmation Pdu Id: a dec [P
4 @ CanTpConfig
a §§ CanTpChannels ITK MPdu Ref: TxPdu_FuncReq_CANL I [.]

» B CanTpChannel_FuncReq CANO
4 @ CanTpChannel_FuncReq CAN1
a @ CanTpTxNSdu_FuncReq_CAMNI1
) CanTpTxNPdu_FuncReq_CANL
4 @ CanTpChannel_FuncReq_CAN2
4 @ CanTpTxMNSdu_FuncReq_CAN2
& CanTpTxMPdu_FuncReq_CANL_001

For further information regarding the CanTp timing configuration parameters please
refer to [9].

© 2017 Vector Informatik GmbH Version 3.00.01 61

based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

H Create a PduR TP buffer
The following steps are optional if sufficient TP buffers are already configured.

» Create a new PduR TP buffer which will be used for the TP gateway routing of the
functional request messages.
/MICROSAR/PduR/PduRRoutingTables/PduRTpBufferTable/PduRTpBuffer

» Configure the size of TP buffer to the TP payload length of the functional requests.
In case of CanTp the buffer size must be at least 7 bytes.

€ Mo pduR © PduRRoutingTables » & PduRTpBufferTable » §F PduRTpBuffers » & PduRTpBuffer_FuncReq

Q) Short Name: PduRTpBuffer_FuncReq -

Tp Buffer Length [Byte]: I 7 vI

Please refer to chapter 3.7.3 for further details regarding the TP buffer configuration.

H Create / Extend PduR routing path

Finally create a PduR 1:N routing path. This 1:N routing path shall route the received
functional diagnostic requests to the gateway-own diagnostic application and all
connected destination channels.

In case the functional request routing path for the gateway-own diagnostic application
was derived automatically the first steps describing the creation of a routing path can
be skipped. Proceed with the configuration of the additional routing destinations.

» Create the PduR routing path:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath

» Reference the related functional request Rx global Pdu (Sdu, interconnecting the
CanTp, PduR and diagnostic handler) at the routing path source:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/Pd
uRSrcPdu/PduRSrcPduRef

and the routing path destination:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/Pd
uRDestPdu/PduRDestPduRef

This step is optional if the own functional request routing path was automatically
derived based on input files during project setup.

» Add a new routing destination to the previously created routing path for every
destination channel the functional requests shall be routed to
PduR routing path destination: /MICROSAR/PduR/
PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/PduRDestPdu
and reference the related functional request Tx global Pdu (Sdu) at the new routing

path destination:
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/Pd
uRDestPdu/PduRDestPduRef

» Configure the TP threshold value of the created gateway routing path to the value 1.

Please refer to chapter 3.7.2 for further details of the TP threshold configuration.
/MICROSAR/PduR/PduRRoutingTables/PduRRoutingTable/PduRRoutingPath/Pd
uRDestPdu/PduRTpThreshold

© 2017 Vector Informatik GmbH Version 3.00.01 62
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

For the example configuration this results in the following PduR routing path
configuration:

RoutingPath RoutingPath Source RoutingPath Destination(s) Global

Global Pdu Pdu(s)

RP_FuncReq_CAN RxSdu_FuncReq_CANO RxSdu_FuncReq_CANO

0 to CAN1 2 (gateway-own diagnostic application),
- B TxSdu_FuncReq_CANH1,

TxSdu_FuncReq_CAN2

€ B pduR ¢ PduRRoutingTables » PduRRoutingTable » §F PduRRoutingPaths P RP_FuncReq_CAMNO_to_CAN1 2 P Src_FuncReq CAND

|Q, <Filter> - ‘ Short Name: |Src_FuncReq_(ANl] | -
4 9‘ PduR E Source Pdu Handle Id: |0 decr*'
» &P PduRBswModules
PduRGeneral Src Pdu Direction: |RECHVE v| -
4 PduRRoutingTables Src Pdu PduRBswMeodules Ref: CanTp L. ™
& PduRRoutingPathGroups
4 PduRReutingTable Src Pdu Ref: RxSdu_FuncReq_CANO I [.] =

4 ¥ PduRRoutingPaths
4 RP_FuncReq_CANO_to_CAN1_2
4) PduRDestPdus
Dest_FuncReq CANL
Dest_FuncReq_CAMZ
Dest_Own_FuncReq_CAND
| @ Src_FuncReq CAND|

Q‘PduR] PduRRoutingTables P PduRRoutingTable » ﬁ PduRRoutingPaths » RP_FuncReq_CAMO_to_CAMN1 2 P ﬁ PduRDestPdus * Dest FuncReq CAMNI, De

4= PduRDestPdus ; Dest Pdu Ref ?| Tp Threshold o Dest Pdu PduRBswiModules Ref ?| Dest Pdu Direction | Dest Pdu Routing Type o

& Dest Own_FuncRegq CANO FxSdu_FuncReq CAND @ fDcm RECEIVE APLFORWARDING

® Dest FuncReq CAN2 Tx5du_FuncReq_CANZ 1 CanTp TRANSMIT GA ROUTING
Dest_FuncReq CANL TxSdu_FuncReq_ CANL 1 CanTp TRANSMIT GATEWAY_ROUTING

For further details about the Canlf and CanTp modules, please refer to [7] and [9].

© 2017 Vector Informatik GmbH Version 3.00.01 63
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

6.3 Use Case Configuration: N:1 routing path

N:1 routing paths are not specified by AUTOSAR. The multiplicity of a PduRSrcPdu
container is defined to one. Therefore N single 1:1/1:M routing paths (mixture of 1:M/N:1
routing paths is supported) referencing the same global Pdu in one of their PduRDestPdu
container must be configured. Every PduRSrcPdu container must reference their own
global PDU, duplicates are not allowed. Whereas more than one PduRDestPdu container
may reference the same global PDU to support the N:1 routing feature. An example
configuration is shown in Figure 6-5. Both configured routing paths are 1:2 routing paths,
but both routing paths refer to the same global PDU in one of their two PduRDestPdu
container. That makes them also a 2:1 routing path. The data flow is shown in Figure 6-6.
The names refer to the example configuration in Figure 6-5.

n Cancel Transmit for N:1 routing paths is only supported if a Tx Confirmation is enabled.

[Basic Editor 2

& B PduR » § PduRRoutingTables » & PduRRoutingTable » &P PduRRoutingPaths b &) RP_Switching_Req 1 » P PduRDestPdus » & RP_Switching Req 1 |

a T | Short Name: <multiple> -
4 ¥ EcuC “ | Dest Pdu Data Provision: [PDUR_DIRECT i
. i) EcucGeneral
4 @ EcucPduCollection TRANSMIT -
4 ﬁ Pdus 0 e
© RxRangePdu_CAM1_RxReq
& RxRangePdu_CAMN2_RxReq Canlf
© TxRangePdu CAND 0 < Dest Pdu Ref: TxRangePdu_CANO_D]~

© TxRangePdu_CAN1_ 0
© TxRangePdu_CAN2_0 AIAY_ROUTING e
. e EcuM
3 L_"-' MNrm
, e Os Tp Thresheld:
4 h"u PduR
. & PduRBswModules
- @ PduRGeneral
4 & PduRRoutingTables
& PduRRoutingPathGroups
4 & PduRRoutingTable
4 g PduRRoutingPaths
4 &1 RP_Switching_Req_1
4§ PduRDestPdus
& RP_Switching_Req 1 PduRDestPdu_CANO
& RP_Switching_Req_1_PduRDestPdu_CAN2
& RP_Switching_Req 1_PduRSrcPdu_CANL
4 & RP_Switching_Req_2
4§ PduRDestPdus
& RP_Switching_Req_2 PduRDestPdu_CAND
& RP_Switching_Req_2_PduRDestPdu_CAN1
& RP_Switching_Req_2_PduRSrcPdu_CAM2
- &) PduRTpBufferTable

. i@ PduRTxBufferTable i
A mn y

Dest Tx Buffer Ref:

Transmission C

Figure 6-5 example N:1 routing path configuration

© 2017 Vector Informatik GmbH Version 3.00.01 64
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

Figure 6-6 EcuC configuration of (mixed) N:1/ 1:N routing paths

© 2017 Vector Informatik GmbH Version 3.00.01 65
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

7 AUTOSAR Standard Compliance

7.1 Deviations

» The APl PduR_<User:LoTp>StartOfReception is implemented according to
SWS_PduR_00507 ASR 4.1.2 [3]

» The PduR does not provide the return value “BUFREQ_E_BUSY?” for the function
PduR_<User:LoTp>StartOfReception like specified in Requirement PDURS07 in [1].

» The parameter list contains a PdulnfoType

» The API PduR_<User:LoTp>RxIndication is implemented according to
SWS_PduR_00375 ASR 4.1.2 [3]

» Result type changed to Std_ReturnType
» The APl PduR_<User:LoTp>TxConfirmation is implemented according to

SWS_PduR 00381 ASR 4.1.2 [3]
» Result type changed to Std_ReturnType

» The PduR does not provide the return value “BUFREQ_E_BUSY” for the function
PduR_<User:LoTp>CopyRxData like specified in Requirement PDUR512 in [1]. The API
is implemented according to SWS_PduR_00512 ASR 4.1.1 [2]

» If the PAduR_<Lo>StartOfReception is called with an I-PDU ID that is already in process,
the PDU Router does not forward the call to the upper module

» In case a transport protocol module reports PduR_<LoTp>TxConfirmation with result
other than NTFRSLT_OK the PDUR does not forward the result in the
<Up>_TpTxConfirmation to the source upper layer module due to optimization reason.

» The PduR does not support the retry parameter in the PduR_<LoTp>CopyTxData like
specified in Requirement PDUR518 in [1]

» State Management: PDUR_REDUCED is not used

» PduR does not return any value if a routing path group is disabled

» PduR does not clear the buffers if a routing path group is disabled

» The header files does not contain software and specification version number

» If the routing path group id does not exist, then the PDUR call the DET instate of return
with no action. [PDURO0716]

© 2017 Vector Informatik GmbH Version 3.00.01 66
based on template version 4.9.2

VECTOR > Technical Reference MICROSAR PDU Router

7.2 Limitations

Since 8-bit micro controllers are out of scope in AUTOSAR, PDUR has been optimized for
the usage on 16- and 32-bit controllers. Therefore the target system must be able to
provide atomic read and write accesses to 16-bit variables.

7.2.1 General

» Link-time configuration support

» Multiple Configuration support

» 1:N fan-out from the same upper layer PDU
» N:1 fan-in to the same upper layer PDU

© 2017 Vector Informatik GmbH Version 3.00.01

67
based on template version 4.9.2

VECTOR >

Technical Reference MICROSAR PDU Router

8 Glossary and Abbreviations

8.1 Glossary

BSWMD

Buffer

Callback function

Cfgb
Channel

Component

Confirmation

Critical section

Electronic Control
Unit

Event

Gateway

Indication

Interrupt

Interrupt service

© 2017 Vector Informatik GmbH

The BSWMD is a formal notation of all information belonging to a certain
BSW artifact (BSW module or BSW cluster) in addition to the
implementation of that artifact.

A buffer in a memory area located in the RAM. It is an memory area
reserved by the application for data storage.

This is a function provided by an application. E.g. the CAN Driver calls a
callback function to allow the application to control some action, to make
decisions at runtime and to influence the work of the driver.

DaVinci Configurator

A channel defines the assignment (1:1) between a physical
communication interface and a physical layer on which different modules
are connected to (either CAN or LIN). 1 channel consists of 1..X
network(s).

CAN Diriver, Network Management ... are software COMPONENTS in
contrast to the expression module, which describes an ECU.

A service primitive defined in the ISO/OSI Reference Model (1ISO 7498).
With the service primitive 'confirmation’ a service provider informs a
service user about the result of a preceding service request of the service
user. Notification by the CAN Driver on asynchronous successful
transmission of a CAN message.

A critical section is a sequence of instructions where mutual exclusion
must be ensured. Such a section is called 'critical' because shared data is
modified within it.

Also known as ECU. Small embedded computer system consisting of at
least one CPU and corresponding periphery which is placed in one
housing.

An exclusive signal which is assigned to a certain extended task. An
event can be used to send binary information to an extended task. The
meaning of events is defined by the application. Any task can set an
event for an extended task. The event can only be cleared by the task
which is assigned to the event.

A gateway is designed to enable communication between different bus
systems, e.g. from CAN to LIN.

A service primitive defined in the ISO/OSI Reference Model (ISO 7498).
With the service primitive 'indication' a service provider informs a service
user about the occurrence of either an internal event or a service request
issued by another service user. Notification of application in case of
events in the Vector software components, e.g. an asynchronous
reception of a CAN message.

Processor-specific event which can interrupt the execution of a current
program section.

The function used for direct processing of an interrupt.

Version 3.00.01 68
based on template version 4.9.2

VECTOR D>

routine
Network

Overrun

Post-build

Schedule table

Signal

Transport Protocol

Use case

Table 8-1 Glossary

8.2 Abbreviations

Technical Reference MICROSAR PDU Router

A network defines the assignment (1:N) between a logical communication
grouping and a physical layer on which different modules are connected
to (either CAN or LIN). One network consists of one channel, Y networks
consists of 1..Z channel(s). We say network if we talk about more than
one bus.

Overwriting data in a memory with limited capacity, e.g. queued message
object.

This type of configuration is possible after building the software module or
the ECU software. The software may either receive parameters of its
configuration during the download of the complete ECU software resulting
from the linkage of the code, or it may receive its configuration file that
can be downloaded to the ECU separately, avoiding a re-compilation and
re-build of the ECU software modules. In order to make the post-build
time re-configuration possible, the re-configurable parameters shall be
stored at a known memory location of ECU storage area.

Table containing the sequence of LIN message identifiers to be
transmitted together with the message delay.

A signal is responsible for the logical transmission and reception of
information depending on the restrictions of the physical layer. The
definition of the signal contents is part of the database given by the
vehicle manufacturer. Signals describe the significance of the individual
data segments within a message. Typically bits, bytes or words are used
for data segments but individual bit combinations are also possible. In the
CAN data base, each data segment is assigned a symbolic name, a
value range, a conversion formula and a physical unit, as well as a list of
receiving nodes.

Some information that must be transferred over the CAN/LIN bus does
not fit into individual message frames because the data length exceeds
the maximum of 8 bytes. In this case, the sender must divide up the data
into a number of messages. Additional information is necessary for the
receiver to put the data together again.

A model of the usage by the user of a system in order to realize a single
functional feature of the system.

API
AUTOSAR
BSW
BSWMD
CAN

CDD
COM

© 2017 Vector Informatik GmbH

Application Programming Interface
Automotive Open System Architecture
Basis Software

Basic Software Module Description

Controller Area Network protocol originally defined for use as a
communication network for control applications in vehicles.

Complex Device Driver
Communication

Version 3.00.01 69
based on template version 4.9.2

VECTOR >

DCM
DEM
DET
DLC
EAD
ECU
ECUC
FIFO
HIS

ID
ISR
LIN
MICROSAR

MSN
PDU
PDUR
RAM
ROM
RTE
SDU
SRS
SWC
SWs
TP

Table 8-2 Abbreviations

© 2017 Vector Informatik GmbH

Technical Reference MICROSAR PDU Router

Diagnostic Communication Manager
Diagnostic Event Manager

Development Error Tracer

Data Length Code, Number of data bytes of a CAN message
Embedded Architecture Designer
Electronic Control Unit

ECU Configuration

First In First Out

Hersteller Initiative Software

Identifier (e.g. Identifier of a CAN message)
Interrupt Service Routine

Local Interconnect Network

Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

Module shortname
Protocol Data Unit

PDU Router

Random Access Memory
Read-Only Memory
Runtime Environment
Segmented Data Unit
Software Requirement Specification
Software Component
Software Specification
Transport Protocol

Version 3.00.01
based on template version 4.9.2

70

VECTOR > Technical Reference MICROSAR PDU Router

9 Contact

Visit our website for more information on

News

Products
Demo software
Support

Training data

vV v v v v Vv

Addresses

www.vector.com

© 2017 Vector Informatik GmbH Version 3.00.01 71
based on template version 4.9.2

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.2 Interfaces to adjacent modules of the PDUR
	3.3 Initialization
	3.4 States
	3.5 Error Handling
	3.5.1 Development Error Reporting

	3.6 Interface Layer Gateway
	3.6.1 Data Provision
	3.6.1.1 Direct data provision
	3.6.1.2 Trigger transmit data provision

	3.6.2 FIFO Queue
	3.6.3 Buffer Configurations
	3.6.3.1 No Buffer
	3.6.3.2 Direct Data Provision FIFO
	3.6.3.3 Trigger Transmit Data Provision FIFO
	3.6.3.4 Trigger Transmit Data Provision Single Buffer

	3.6.4 Shared Tx Buffer Pool support
	3.6.5 Timing aspects
	3.6.6 Dynamic DLC Routing
	3.6.7 Transport protocol low level routing
	3.6.8 Smart Learning (Switching)
	3.6.8.1 Configuration
	3.6.8.2 Example

	3.6.9 Queue overflow notification callback
	3.6.10 N:1 Routing Paths with Upper Layer and Tx confirmation

	3.7 Transport Protocol Gateway
	3.7.1 Multi-Routing
	3.7.2 TP Threshold
	3.7.2.1 Restrictions
	3.7.2.2 Threshold “0”

	3.7.3 Tx Buffer Handling
	3.7.3.1 Tx Buffer Usage Types
	3.7.3.1.1 Dedicated Tx Buffer
	3.7.3.1.2 Shared Tx Buffer
	3.7.3.1.3 Local Tx Buffer Pool
	3.7.3.1.4 Global Tx Buffer Pool

	3.7.3.2 Example Configuration
	3.7.3.3 Tx Buffer Length Configuration
	3.7.3.4 Amount of Tx Buffer
	3.7.3.5 Tx Buffer Selection Algorithm

	3.7.4 TP Queue
	3.7.5 Error Handling
	3.7.6 Meta Data Handling

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Critical Sections
	4.3 Memory Sections
	4.4 Type Definitions

	5 API Description
	5.1 Services provided by PDUR
	5.1.1 PduR_Init
	5.1.2 PduR_InitMemory

	5.2 Services
	5.2.1 PduR_GetVersionInfo
	5.2.2 PduR_GetConfigurationId
	5.2.3 PduR_EnableRouting
	5.2.4 PduR_DisableRouting

	5.3 Communication Interface
	5.3.1 PduR_<GenericUp>Transmit
	5.3.2 PduR_<GenericLo>RxIndication
	5.3.3 PduR_<GenericLo>TriggerTransmit
	5.3.4 PduR_<GenericLo>TxConfirmation

	5.4 Transport Protocol
	5.4.1 PduR_<GenericUpTp>ChangeParameter
	5.4.2 PduR_<GenericUpTp>CancelReceive
	5.4.3 PduR_<GenericUpTp>CancelTransmit
	5.4.4 PduR_<GenericLoTp>StartOfReception
	5.4.5 PduR_<GenericLoTp>CopyRxData
	5.4.6 PduR_<GenericLoTp>CopyTxData
	5.4.7 PduR_<GenericLo>TpTxConfirmation
	5.4.8 PduR_<GenericLo>TpRxIndication
	5.4.9 PduR_<GenericUpTp>Transmit

	5.5 Service Ports
	5.5.1 Complex Device Driver Interaction

	6 Configuration
	6.1 Use Case Configuration: Communication interface range gateway
	6.1.1 Step-by-step configuration
	6.1.2 Optional configuration variants / options

	6.2 Use Case Configuration: Functional requests gateway routing
	6.2.1 Step-by-step configuration

	6.3 Use Case Configuration: N:1 routing path

	7 AUTOSAR Standard Compliance
	7.1 Deviations
	7.2 Limitations
	7.2.1 General

	8 Glossary and Abbreviations
	8.1 Glossary
	8.2 Abbreviations

	9 Contact

