RENESAS

-
o
9
ﬂ\.
7
<
O
S
=
QO

Getting Started Document for
X1x MCAL Driver

User’s
Manual

Version.1.0.8

Target Device:
RH850/P1x

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.1.01 Feb 2017

http://www.renesas.com/
http://www.renesas.com/

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and
damages incurred by you or third parties arising from the use of these circuits, software, or information.

Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents,
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information
described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics
disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or
otherwise misappropriation of Renesas Electronics products.

Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended
applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;
home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication
equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or
bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea
repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any
and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the
product is not intended by Renesas Electronics.

When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General
Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges
specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics,
installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas
Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas
Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the
possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics
products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system.
Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or
systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including
without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable
laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale
is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1)
any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons,
chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose
relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and
security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly
or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When
exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and
regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.

Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and
conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your
resale or making Renesas Electronics products available any third party.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

Abbreviations and Acronyms

Abbreviation / Acronym Description

ARXML/arxml AUTOSAR xml

AUTOSAR Automotive Open System Architecture
BSWMDT Basic Software Module Description Template
<MSN> Module Short Name

ECU Electronic Control Unit

GUI Graphical User Interface

MB Mega Bytes

MHz Mega Hertz

RAM Random Access Memory

xml/XML eXtensible Markup Language

<MICRO_VARIANT>

F1x, R1x, P1x, E1x etc.

<MICRO_SUB_VARIANT>

F1L,F1M,F1H, R1L, P1L,P1M, E1L, E1IMS etc.

AUTOSAR_VERSION

3.2.20r4.0.3

DEVICE_NAME Example :701205EAFP
RUCG Renesas Unified Code Generator
.DLL Dynamic Linking Library

Definitions
Terminology Description
xml XML File.
.arxml AUTOSAR XML File.
trxml Translation XML File.

ECU Configuration
Parameter Definition File

The ECU Configuration Parameter Definition is of type XML, which contains the
definition for AUTOSAR software components i.e. definitions for Modules,
Containers and Parameters. The format of the XML File will be compliant with
AUTOSAR ECU specification standards.

ECU Configuration
Description File

The ECU Configuration Description file in XML format, which contains the
configured values for Parameters, Containers and Modules. ECU Configuration
Description XML File format will be compliant with the AUTOSAR ECU
specification standards.

BSWMDT File

The BSWMDT File in XML format, which is the template for the Basic Software
Module Description. BSWMDT File format will be compliant with the AUTOSAR
BSWMDT specification standards.

Translation XML File

Translation XML File is in XML format, which contains translation and
device specific header file path.

Configuration XML File

Configuration XML File is in XML format, which contains command line
options and options for input/output file path.

Table of Contents

Chapter 1 INtrodUCHIONiveee e 11
Chapter 2 Generation TOOl......cccuuiiiiiiiiiii e 13
2.1, Translation XIML Fil@. ... et e e et e e e e e s et e e e e e e e aanne 13
2.1.1. Translation Header Fileocviiiioiiiieiee et 14
2.1.2. Device Specific Header File..........ccuuiiiiiie e 14
2.2, Configuration XML Fil@ ... e e e e s s e e e e e e s s st e eeeeeeeaaannes 14
. T U Y- To 1 PSP TPPPPTTPRTR 15
P S T T 4] o YT U T Vo =SSP PRRRR 16
2.5. Tool Installation REQUITEIMENTSeiiiiiiiiie e 18
2.5.1. Hardware REQUIFEMENTSuiiiiiiiiieiiiiie ettt ettt ettt sabne e e snneee s 18
2.5.2. SOftware REQUIFEIMENES.uuiiiiiiiiiie ittt ettt e e s sneeee s 18
S T T 1011 = 1o o 1 R 18
2.6, TOOI INSTAIALION ..eiiitiiiee ittt sttt e st e e s bbb e e e s nnb b e e e s nnnee e s 18
2.6.1. Pre REQUISITE ...ooiiiiiiiiiiiiie ettt ettt e et e b e e s e s 19
2.6.2. INSTAHALION STEPS ..eeeiiiiiiiieiiiiiee ettt b b e e bbbt e ab e e e s s 19
2.7, TOOI UN-INSTAIALION ...coiiiiiiiiiiiiiie ettt e e e s snne e s 19
2.8, COMMON MESSAUES ..eeiiiiiiiiiririiiiee et e ittt e e et sttt e e e et s s s e e et e e e s e s bbb e et e eeeesaannrrnreeeeeesaannns 19
P T I = ¢ (o g =TS T= o [P PUPPUPUPTTN 19
2.8.2. WaArNiNg MESSAQESccc i i e e e 23
2.8.3. INTOrM@AtION MESSAUESeeiiiuiiiiieitii ettt e e s nneeee s 23
2.9, RBi2.2 MBS SAGES .. tttitiieeeie ittt ettt e e e e et e e e et e e e e e et e e e a e r e e e e e e e a e 24
2.9.1. EITON MESSAUES ..uiiiiiiiiiiiiiie i ettt e e e e ettt a s e e e e e e e et s e e e e e e e e et b a e e e e et eeata b e e e e e e eerraan 24
2.9.2. WarNiNg MESSAQESccc i i e e 24
2.9.3. INTOrMAtION MESSAUESeeiiiueiieieitii ettt st e e s snnneee s 24
2.10. RA.0.3 MEBSSAQES ... ttreitiieeitiiriri et e e et ettt e e e e s s s r e et e e e e e ettt e e e e e et et e e e e e e e e e e e na e 24
0 O O = {0 G Y =TT ST T [PP UPPPPTPTTN 25
2.10.2. WaArNiNG MESSAUEScuveeieiiutiieeeititeeeatte e e sttt e e sttt e e sbbb e e e sbbe et e s aabe e e e s aabbeeesanbaeeesanneeeens 25
2.10.3. INTOrMAtION MESSAGES ...eeeiiiutiiiieiiii ittt ettt ettt e ettt e e e e sabb e e s sanneee s 25
2 5 T 2 1 1Y 0 I SRR 25
Chapter 3 Application Example.......cccoooviiiiiiiii e, 27
T I o] (o =T g ST f U (o] AU [TP PT R OOUPPPPRRTN 27
3.2, MaKEfilE DESCIIPLION .oiiiitiiii ettt e e et e e s bt e e s nb b e e e s snneeee s 27
3.2.1. App_<Msn>_<variant>_Sample.makccccceiiiiiiiiiii 27
3.3. Integrating The <MSN> Driver Component With Other Components..........cccocceeerrineeen. 33
3.4. Building The <SMSN> Driver COMPONENTcuuiiiiiiiiiie ittt e 34
3.4.1. Targets Supported By The Sample Base Makefile...........cccccoeiiiiiiiiiiien 35
Chapter 4 Support For Different Interrupt Categories................... 37
Chapter 5 GNU MAKE Environment........ccooooviiieviiiieeeiiie e 39
5.1. Build Process With GNUMAKE ...ttt e e e abbe e e e e e e e e aaanes 39
5.2. Build Process Without GNUMAKE..........cccciiiiiiiiiiiii 39

Chapter 6 Load BiNariesooeveuuiiiiiiieeeiii e 43

Chapter 7 APPENdiX.......oiiiiiiii e 45
7.1, Translation XIML Fil@. ... ettt e e e e e e s st eeeaeeeeaennne 45
7.2, Confguration XIML FIlE......ccci it e et e e e e e s e e e e e e s e st e e e e e e sasnnbanaeeeeeesannnes 45

List of Figures

Figure 2-1 GeNEration TOOI OVEIVIEWeiiiiiiieeiiiiiee ettt ettt et e et e bt e e s snbre e e e neee 13

List of Tables

Table 2-1 (@) 1[0] g IS3= Ta o I TCYYod €] 1] o SR 15
Table 2-2 Y =T aTe Fo X o] Y =T = 1 L= (=T 24
Table 2-3 Y T aTe Fo X 0] Y =T = 1 L= (=T 25
Table 4-1 CAT1 and CAT2 Naming CONVENLIONccciiieiiieie e e a e aa e 37
Table 4-2 List of ISR Names that need to be configured and published in Os.h (CAT2) or used in
the interrupt vector table (CAT1) for KMSN> DIIVETcccocviieeiiiiieeecciieee e sevee e sniveea e 38

10

Introduction

Chapter 1

Chapter 1

Introduction

The document describes the information Generation Tool and references to
Sections in the Component User Manuals that the user needs to refer to build
the executable.

Generation Tool is a command line tool that accepts ECU Configuration
Description File(s), BSWMDT File, Translation XML File and Configuration
XML File as input and generates the C source and header files based on the
configuration of the module.

11

Chapter 1

Introduction

12

Generation Tool

Chapter 2

Chapter 2

Generation Tool

Generation Tool is a command line tool that provides scalability and
configurability for the component. It accepts ECU Configuration Description
File(s), BSWMDT File, Translation XML File and Configuration XML File as
input and generates the C Header and C Source files. However,
Configuration XML File is optional.

ECU Configuration Output Folder -O or
Description File(s) E—— -OUTPUT
(.arxml), BSWMDT Generation Tool ‘Folder_Name’
File and Translation —p <

XML File (.trxml)

. v v

Configuration XML
File (.cfgxml)

|
l
| Label to be searched .
| Inc SIc
|
l
d

Translation Header 1 1
File (.h)

| *.h *c
[Mapped Label to be searched J

* [Address to be generated]

Device Specific]

Header File (.h)

Figure 2-1 Generation Tool Overview

2.1.

Translation XML File

Generation Tool accepts ECU Configuration Description File(s) (.arxml),
BSWMDT File (.arxml) and Translation XML File (.trxml) as an input.
Translation XML File is in XML format, which contains translation and device
specific header file path. For the syntax of the contents of Translation XML
File, please refer the Chapter 8 Appendix.

If mapped device specific address label is changed/updated then only
respective mapping in Translation Header File needs to be updated. In this
case, there will not be any impact on Generation Tool for the generation of
address in tool generated output file(s).

13

Chapter 2

Generation Tool

14

2.1.1.

2.1.2.

Remark

2.2.

Translation Header File

This file is look-up table (mapping in the form of definitions) for the device
specific address labels. Based on the configuration in ECU Configuration
Description File, the mapped device specific address labels will be searched
in Device Specific Header File by Generation Tool to generate associated
address in tool generated output file(s). For the Translation Header File path,
the value of ‘<Msn>DeviceName’ parameter from the container
‘<Msn>General’ container should be present as child tag of TRANSLATION-
FILE-PATH in Translation XML File. Both ‘Absolute’ and ‘Relative’ paths are
supported by generation tool however default path is ‘Relative’ path.

E.g.
<TRANSLATION-FILE-PATH>

<Value_Of_MsnDeviceName>..\DF_Timer.h
.\DF_Timer_ISR.h</ Value_Of_MsnDeviceName>

</TRANSLATION-FILE-PATH>

Device Specific Header File

This file contains device specific labels and associated address. Based on the
configuration in ECU Configuration Description File, the mapped device
specific address labels will be used to generate associated address in tool
generated output file(s). For the Device Specific Header File path, the value of
‘<Msn>DeviceName’ parameter from the container ‘<Msn>General’ container
should be present as child tag of DEVICE-FILE-PATH in Translation XML File.
Both ‘Absolute’ and ‘Relative’ paths are supported by generation tool however
default path is ‘Relative’ path.

If multiple Device Specific Header Files need to be provided for the same
device (value of ‘<Msn>DeviceName’ parameter) in Translation XML File, then
each Device Specific Header File path should be separated with ‘space’.

E.g.
<DEVICE-FILE-PATH>

<Value_Of MsnDeviceName>.\DF_Timer.h .\DF_Timer_ISR.h</
Value_Of_MsnDeviceName>

</DEVICE-FILE-PATH>

Generation Tool will searches the mapped labels in Device Specific Header
File by using Translation Header File for the respective address generation in
tool generated output file(s).

Configuration XML File

Configuration XML File is in XML format which contains command line options
and input/output path. For the syntax of the contents of Configuration XML File,
please refer the Chapter 8 Appendix.

Generation Tool

Chapter 2

2.3.

E.g.
<LOG>ON/OFF</LOG>
<HELP>ON/OFF</HELP>

Usage

This section provides the information regarding usage of the Generation Tool.
It also provides the syntax of the command line arguments (input filenames
and options).

Generation Tool executable is invoked as shown below.

RUCG.exe <DLL Path> [<Options>] {<Input Filename>}

Where,

RUCG.exe: RUCG Tool Executable

DLL Path: Module specific DLL file path

Options: [-H/-Help -C/-Config -O/-Output -Osrc -Oinc -L/-Log -D/-Dryrun]

Input Filename(s): {ECU Configuration Description File(s), BSWMDT File and
Translation XML File [optional]}

Notations:
{data} represents compulsory data

<data> represents the actual data that will be specified on command line
during tool usage.

[data] represents optional data.

Table 2-1 Options and Description

Option Description

-H/-Help To display help regarding usage of the tool. Gets the
highest priority when used with other options.

-C/-Config To execute tool with the options provided in the
Configuration XML File. Command line options get the
higher priority than the options provided in Configuration
XML File.

15

Chapter 2

Generation Tool

16

Remark

2.4.

Table 2-1 Options and Description

Option Description

-O/-Output By default, the tool generates output files in the
‘<Component_Name>_Output’ folder in the path where
executable is present. The user can use the -O option
followed by the folder name, to generate the output files in
the specified folder. Either absolute path or relative path
can be provided to specify the folder name.

The C Source and C Header files are generated in the sub
folders ‘src’ and ‘inc’ within the output folder.

-Osrc The user can use the -Osrc option followed by the folder
name, to generate the C Source files in the specified
folder

-Qinc The user can use the -Oinc option followed by the folder
name, to generate the C Header files in the specified
folder.

—-L/-Log To log the output to the <Component_Name>.log file.

-D/-Dryrun To execute tool in validation mode. The tool will not
generate output files even though the input file provided is
error free.

« | f Translation XML File is not provided on the command line then
‘<Component_Name>_X1x.trxml’, which is present in the same location of
The Generation Tool considers <Component_Name> _X1x.dll as ‘default’
Translation XML File.

* | f Configuration XML File is not provided on the command line then
‘<Component_Name>_X1x.cfgxml’, which is present in the same location of
‘<Component_Name>_X1x.dIl' is considered as ‘default’ Configuration
XML File by the Generation Tool.

* T he Generation Tool should not be executed more than five times in parallel

Sample Usage

Sample usage of the generation tool is given below. “<Msn>_X1x.dlII” is taken
as example. Similar usage is applicable for other MCAL Generation Tools,
where <Msn>_X1x.dll is in DLL Path.

RUCG.exe <DLL Path>

<Msn> Driver Generation Tool usage is displayed on the terminal. Generation
Tool accepts Configuration XML File as default and performs the execution,
based on the settings provided in Configuration XML File.

RUCG.exe <DLL Path> -H

Displays <MSN> Driver Generation Tool help information on the terminal,
where <MSN> Driver Generation Tool executable is present.

RUCG.exe <DLL Path> -L -O output Sample.arxml BSWMDT.arxm|

Generation Tool logs the output to the <Msn>.log file. <Msn>_PBcfg.c file is
generated in ‘src’ folder. <Msn>_Cfg.h file is generated in ‘include’ folder.

Generation Tool

Chapter 2

Remark

RUCG.exe <DLL Path> -D Sample.arxml BswMd.arxml

Generation Tool validates an input file and displays error/warning/information
messages if any on the command line. Output files are not generated since —-D
option is provided in the command line.

RUCG.exe <DLL Path> -O output Sample.arxml BswMd.arxml

Output files are generated in folder “output”. <Msn>_PBcfg.c is generated in
‘src’ folder. <Msn>_Cfg.h file is generated in ‘inc’ folder.

RUCG.exe <DLL Path> C:\Input\Sample.arxml C:\Input\BswMd.arxml -O
output

Generation Tool accepts input file (Sample.arxml) from absolute directory path
“C:\Input”. Output files are generated in folder “output”. <Msn>_PBcfg.c is
generated in ‘src’ folder. <Msn>_Cfg.h file is generated in ‘inc’ folder.

RUCG.exe <DLL Path> Sample.arxml BswMd.arxml -O C:\Output

Output files are generated in folder “C:\Output”. <Msn>_PBcfg.c is generated
in ‘src’ folder. <Msn>_Cfg.h file is generated in ‘inc’ folder.

RUCG.exe <DLL Path> Sample.arxml BswMd.arxml Sample.trxml

Generation Tool accepts ECU Configuration Description File (Sample.arxml),
BSWMDT File (BswMd.arxml) and Translation XML File (Sample.trxml) from
the current working directory. Output files are generated in the default folder
“<Msn>_Output”, since —O option is not provided in the command line.
<Msn>_PBcfg.cis generated in ‘src’ folder. <Msn>_Cfg.h file is generated in
‘inc’ folder.

RUCG.exe <DLL Path> -C Sample.cfgxml

Generation Tool accepts ECU Configuration Description File (Sample.arxml),
BSWMDT File (BswMd.arxml) and Configuration XML File (Sample.cfgxml)
from the current working directory. Tool accepts options provided in the
Configuration XML File. If Configuration XML File name is not provided as
input with -C option, Generation Tool errors out.

If Translation XML File is not provided on the command line,
<Msn>_X1x.dll considers <Msn>_X1x.trxml as ‘default’ Translation XML File
from the same directory where the tool is located.

If Configuration XML File is not provided on the command line,
<Msn>_X1x.dll considers <Msn>_X1x.cfgxml as ‘default’ Configuration
XML File from the same directory where the tool is located.

If any filename/directory name related argument on the command line
contain the ‘space’, then the same argument on the command line should
be provided in double quotes “” as followed by standard command line
feature. E.qg. if file name is ‘Sample Description.arxml’, then on the
command line the same name should be provided in double quotes “” as
“Sample Description.arxml”,

The ‘include’ and ‘src’ directories are generated inside the output directory

17

Chapter 2 Generation Tool

provided on the command line or in the default output directory
<Msn>_Output.

+ BSWMDT file should not be updated manually since it is “Static

Configuration” file.

2.5. Tool Installation Requirements

The minimum hardware and software requirements for proper installation of
Module Specific Generation Tool are listed below. This ensures optimal
performance of the Tool.

2.5.1. Hardware Requirements

Processor Pentium/equivalent processor @ 500 MHz or greater
Memory RAM 64MB or greater
Hard Disk Drive 500 MB or greater storage capacity

2.5.2. Software Requirements

Operating System Microsoft Windows Platform

2.5.3. Limitations

Command Line characters are limited to 128 depending upon the operating
system.

2.6. Tool Installation

The installation procedure of Module Specific Generation Tool is provided in
the section below.

18

Generation Tool

Chapter 2

2.6.1.

2.6.2.

2.7.

2.8.

2.8.1.

Pre Requisite

Module Specific Generation Tool executable runs on Windows platforms only.

Installation Steps

Copy the Module Specific Generation Tool executable file to the local hard
disk.

Run the executable with -H option to get help on usage of the tool.
RUCG.exe <DLL Path> -H

This command generates usage of Module Specific Driver Generation Tool on
the command line.

Tool Un-Installation

There is no specific method for un-installing the Module specific Generation
Tool. To un-install, delete the Module specific Generation Tool executable from
the existing directory.

Common Messages

This section contains the list of error/warning/information messages

which is common for AUTOSAR Renesas R3.2.2 and R4.0.3 X1x MCAL Driver
module that will be generated by the Generation Tool.

Error Messages

ERRO000001: File <File_Name>does not exist.

This error occurs, if the input <File_Name> is not found.

ERR000002: Name of the Generation Tool Configuration XML File is not
given along with <-C/-CONFIG> option.

This error occurs, if the name of the Generation Tool Configuration XML File is
not given along with <-C/-CONFIG> option.

19

Chapter 2

Generation Tool

20

ERRO000003: File <File name> is not as per XML standard.

This error will occur, if the input <File name> is not as per XML standard.

ERRO00004: Cannot open the <Log file name> file.

This error will occur, if unable to open the <Log file name> file.

ERRO000005: Name of output directory is not given along with <-O/-
OUTPUT> option.

This error will occur, if the output directory name is not given along with <-O/-
OUTPUT> option.

ERRO000006: Name of output directory is not given in OUTPUT-PATH tag
in <File name>.

This error will occur, if the output directory is not given in OUTPUT-PATH tag in
configuration file.

ERRO000007: The Generation Tool expects inputs.

This error will occur, if the no option is provided in the command line and none
of the option in the configuration file is set.

ERRO000008: The option <option>is not supported by the Generation
Tool. The Generation Tool supports <-O/-OUTPUT, -Osrc, -Oinc,-H/-HELP, -
L/-LOG, -C/-CONFIGFILE and -D/-DRYRUN>“options.

This error will occur, if the invalid <option> is provided to the tool.

ERR000009: Invalid output directory name <output directory name> as
the file with same name exists.

This error will occur, if the <output directory name> already exists.

ERRO000010: Invalid output directory name <output directory name>
Directory name should not contain any of *\?\"\|\: characters.

This error will occur, if the <output directory name> path contains junk
character.

ERRO000011: ECU Configuration Description File is not provided as input
to the Generation Tool.

This error will occur, if the ECU Configuration Description File is not given in
the command line or in configuration file.

ERR000012: The input <File name> is not as per XML standard. Provide
the ECU Configuration Description File as input on the command line.

This error will occur, if the ECU Configuration Description File is not as per
XML standard.

Generation Tool

Chapter 2

ERR000013: <File name> should contain the TRANSLATION-FILE-PATH'
and 'DEVICE-FILE-PATH' tags.

This error will occur, if the translation <File name> doesn’t have
‘TRANSLATION-FILE-PATH’ and 'DEVICE-FILE-PATH' tags.

ERR000014: 'TRANSLATION-FILE-PATH' tag in <File name> is empty.

This error will occur, if the translation <File name> does not have
‘TRANSLATION-FILE-PATH’ tags.

ERRO000015: The 'device_name' tag should be present as child of
'TRANSLATION-FILE-PATH" tag in <File name>.

This error will occur, if the device mentioned in ECU Configuration Description
File is not present in

"TRANSLATION-FILE-PATH’ tag in the <File name>.

ERR000016: ‘DEVICE-FILE-PATH’ tag in <File name> is empty.

This error will occur, if the translation file <File name> does not have
‘DEVICE- FILE-PATH’ tags.

ERR000017: The 'device_name’ tag should be present as child of
‘DEVICE-FILE-PATH' tag in <File name>.

This error will occur, if the device mentioned in ECU Configuration Description
File is not present in

‘DEVICE-FILE-PATH tag.

ERRO000018: Cannot create directory <output directory name>.

This error will occur, if unable to create output directory <output directory
name>.

ERRO000019: Cannot open <File name>.

This error will occur, if unable to open <File name>.

ERRO000020: The macro label <macro label>should be unique in
<translation file name> translation C Header File.

This error will occur, if macro label is not unique in translation C Header File.

ERRO000021: The macro definition for <macro label> macro is not found
in <translation file name> translation C Header File. The macro label
format should be <label format>.

This error will occur, if macro definition is not found in translation C Header
File.

21

Chapter 2

Generation Tool

22

ERR000022: The macro value for <macro label> macro is empty in
<translation file name> translation C Header File.

This error will occur, if macro label value is empty in translation C Header File.

ERR000023: The macro definition for <macro value> macro is not found
in input device specific C Header File(s).

This error will occur, if macro definition is not found in input device specific C
Header File(s).

ERR000024: The macro value for <macro value> macro is empty in input
device specific C Header File(s).

This error will occur, if macro value is empty in input device specific C Header
File(s).

ERR000025: Path <Configured Reference Path>provided for Bsw Module
is incorrect.

This error will occur, if the reference provided for Bsw Module Component is
incorrect.

ERR000026: BSWMDT content is not present in the input file(s) for
‘<Module Name>’ module.

This error will occur, if the module specific BSWMDT content is not present in
the input files.

ERR000027: <MSN> BSWMDT File of either AUTOSAR R3.2 or R4.0
should be given as input.

This error will occur, if the both R3.2 and R4.0 BSWMDT file given to the input
to the generation tool.

ERR000028: 'MODULE-DESCRIPTION-REF' element should be present in
the description file of '<Module Name>' module.

This error will occur, if the MODULE-DESCRIPTION-REF element is not
present module specific description file.

ERR000029: AUTOSAR version of BSWMDT File and Module Description
File is different.

This error will occur, if the AUTOSAR version of the BSWMDT File and module
description file is different.

ERR000031: <’<Drive name>’ :\> Drive does not exist.
This error will occur when output drive does not exist.

ERRO000032: File extension is not as per AUTOSAR ECU Configuration
Description File naming convention for ‘<File path>’ file.

Generation Tool

Chapter 2

2.8.2.

2.8.3.

This error will occur if supporting file extensions are not as per AUTOSAR
ECU Configuration Description File naming standard.

Warning Messages

None.

Information Messages

INFO00001: Tool Version:

This is to display Tool Version for each execution of the tool.

INFO00002: Command line arguments:

This is to display the command line arguments for each execution of the tool.

INFOO0003: The valid inputs are provided below.

This information will occur, if the command line option is not given.

INFOO0004: Opened file <filename> at <time>.

This information will occur, during opening the file.

INFOO0005: Error(s) and Warning(s) detected.

This information will display the number of errors and warnings.

INFOO0006: Execution completed successfully.

This information will occur, if the execution completed successfully.

INFOO0007: Execution completed successfully with warnings.

This information will occur, if the execution completed successfully with
warnings.

INFOO0008: Execution terminated due to command line errors.

This information will occur, if the execution terminated due to command line
errors.

INFOO0009: Execution terminated due to error in the input file.

This information will occur, if the execution terminated due to error in the input
file.

INFO00010:; Execution terminated due to error, during the structure
generation in the output file.

This information will occur, if the execution terminated during structure
generation in output file.

23

Chapter 2

Generation Tool

24

2.9.

2.9.1.

2.9.2.

2.9.3.

2.10.

R3.2.2 Messages

This section contains the list of error/warning/information messages, which is
specific to AUTOSAR Renesas R3.2.2 X1x MCAL Driver module that will be
generated by the Generation Tool.

Error Messages

ERRO000030: The 'parameter tag name' tag should be configured in
BSWMDT File.

This error will occur, if any of the configuration parameter(s) mentioned below
is (are) not configured in BSWMDT File.

The list of mandatory parameters with respect to container is listed below:

Table 2-2 Mandatory Parameters

Container Parameters

Bswlmplementation SW-MAJOR-VERSION

SW-MINOR-VERSION

SW-PATCH-VERSION

AR-MAJOR-VERSION

AR-MINOR-VERSION

AR-PATCH-VERSION

VendorApilnfix

BswModuleDescription Moduleld

Note: VendorApilnfix parameter is mandatory for only some modules.

Warning Messages

None.

Information Messages

None.

R4.0.3 Messages

This section contains the list of error/warning/information messages, which is
specific to AUTOSAR Renesas R4.0.3 X1x MCAL Driver module that will be
generated by the Generation Tool.

Generation Tool

Chapter 2

2.10.1.

Error Messages

ERRO000030: The 'parameter tag name' tag should be configured in
BSWMDT File.

This error will occur, if any of the configuration parameter(s) mentioned below
is (are) not configured in BSWMDT File.

The list of mandatory parameters with respect to container is listed below:

Table 2-3 Mandatory Parameters

Container Parameters
Bswimplementation SwVersion
Vendorld

ArReleaseVersion

VendorApilnfix

BswModuleDescription Moduleld

Note: VendorApilnfix parameter is mandatory for only some modules.

2.10.2. Warning Messages

2.10.3.

2.11.

None.

Information Messages

None.

BSWMDT File

The BSWMDT File is the template for the Basic Software Module Description.
Module specific Generation Tool uses “Common Published Information” from
module specific BSWMDT file. BSWMDT file should not be updated manually
since it is “Static Configuration” file.

The required elements from BSWMDT File by module specific Generation
Tool are as follows:

BSW-MODULE-DESCRIPTION
* MODULE-ID

25

Chapter 2 Generation Tool

BSW-IMPLEMENTATION
* SW-VERSION

VENDOR-ID
AR-RELEASE-VERSION
VENDOR-API-INFIX

In case of multiple driver support implementation, VENDOR-API-INFIX is
mandatory. In case of single driver support implementation, VENDOR-
API- INFIX is not used.

26

Application Example

Chapter 3

Chapter 3

3.1.

3.2.

3.2.1.

Application Example

Folder Structure

Refer Section “Integration and Build Process” in the respective component
User Manuals.

Makefile Description

Makefile is available in the folder “X1X\< MICRO_VARIANT
>\modules\<msn>\sample_application\< MICRO_SUB_VARIANT
>\make\<compiler>".

The Makefiles with the guidelines provided in AUTOSAR BSW Makefile
Interface Specification, which enables easy integration with other components
and the application.

The files is:

* App_<Msn>_<MICRO_SUB_VARIANT>_<DEVICE_NAME>Sample.mak
(Contains the device specific instructions).

App_<Msn>_<variant>_Sample.mak

HHHHHHHH R H R R R R R R

Makefile to compile and build the Sample application with the AUTOSAR
<MSN> #

Driver Component (For Test purposes only)
Compatible with GNU Make 3.81 for Win32.
HH B R R R R R R R R R R R

HHHR R R R R
Definitions of global environment variables

HHHR R R R R
#Get name of the current application

CURRENT_APPL = App_<Msn>

Get the project directory into variable "PROJECT_ROOT"
27

Chapter 3 Application Example

PROJECT_ROOT = $(shell ca)\..\.\..\.\..\..

COMMON_SAMPLE_CORE_PATH =
$(PROJECT_ROOT)\$(MICRO_FAMILY)\common_platform
\modules\<Msn>\sample_application

Get the current working directory into variable "SAMPLE_ROOT_PATH"
SAMPLE_ROOT_PATH =
$(PROJECT_ROOT)\$(MICRO_FAMILY)\$(MICRO_VARIANT)\modules
<Msn>\sample_application\$(MICRO_SUB_VARIANT)

Get the current working directory into variable "STUBS"

STUBS_PATH =

$(PROJECT_ROOT)\$(MICRO_FAMILY)
\common_platform\generic

\stubs\$(AUTOSAR_VERSION)

Get current configuration path

<MSN> CONFIG_PATH=
$(SAMPLE_ROOT_PATH)\$(AUTOSAR_VERSION)

Get TRXML path

TRXML_CONFIG_PATH= $(PROJECT_ROOT)
\$(MICRO_FAMILY)\$(MICRO_VARIANT)
\common_family\generator

Get BSWMDT path

<MSN> BSWMDT_CONFIG_PATH = $(PROJECT_ROOQOT)
\$(MICRO_FAMILY)
\$(MICRO_VARIANT)
\modules\<Msn>
\generator

Get current configuration file path

<MSN>_CONFIG_FILE = $(MSN_CONFIG_PATH) \config
\App_<MSN>_$(MICRO_SUB_VARIANT)_
$(DEVICE_NAME)_Sample.arxml

Path to TRXML Configuration File, which is required for this module

TRXML_CONFIG_FILE =
"$(TRXML_CONFIG_PATH)\Sample_Application_$(MICRO
_VARIANT).trxm|""

Path to ECUM Configuration File, which is required for this module
ECUM_CONFIG_PATH = $(STUBS_PATH)\EcuM

ECUM_CONFIG_FILE = "$(ECUM_CONFIG_PATH)\xmI\EcuM_Msn.arxml"

28

Application Example

Chapter 3

Path to TRXML Configuration File, which is required for Test Application
TRXML_CONFIG_FILE =
"$(TRXML_CONFIG_PATH)\Sample_Application_$(MICRO_VARIANT).trxml"

Path to BSWMDT Configuration File, which is required for MSN Sample
Application

MSN_BSWMDT_CONFIG_FILE =

"$(MSN_BSWMDT_CONFIG_PATH)\R403_$(MODULE_NAME)_$(MICRO_V
ARIANT)_BSWMDT.arxml

Version check for inter modules required
MSN_VERSION_CHECK_REQ = yes

Database to be linked together with the current application
Define 'no’ to isolate database from the application
<MSN>_DBASE_REQ = yes

Get the name of the SRECORD file

CURRENT_APPL_SRECORD =
$(CURRENT_APPL)_$(MICRO_SUB_VARIANT)_Sample

Name of the database if generated separately
<MSN>_DB = <Msn>_PBcfg

HH R R R R R T R R R R R R
Final executable

HH R R R R R R R R R R A R R
EXE = $(CURRENT_APPL) MICRO_

<SUB_VARIANT>_Sample.$(EXE_FILE_SUFFIX)
LIBRARIES_TO_BUILD =

OBJECTS_LINK_ONLY =
OBJECT_OUTPUT_PATH = $(SAMPLE_ROOT_PATH)\obj\ghs

GENERATED_SOURCE_FILES =

CC_FILES_TO BUILD =
CPP_FILES_TO BUILD =
ASM_FILES_TO_BUILD =

CC_INCLUDE_PATH =
CPP_INCLUDE_PATH =

ASM_INCLUDE_PATH =
29

Chapter 3

Application Example

30

PREPROCESSOR_DEFINES =

LIBRARIES_LINK_ONLY =
DIRECTORIES_TO_CREATE =
DEPEND_GCC_OPTS =

MAKE_CLEAN_RULES =
MAKE_GENERATE_RULES =
MAKE_COMPILE_RULES =
MAKE_DEBUG_RULES =
MAKE_CONFIG_RULES =
MAKE_ADD_RULES =

MAKE_DEBUG_RULES =
MAKE_ CONFIG_RULES =
MAKE_ADD_RULES =

MAKE_DEBUG_RULES += debug_base_make

STD_LIBRARY =

LNKFILE =
$(PROJECT_ROOT)\$(MICRO_FAMILY)\$(MICRO_VARIANT)\modules\<msn
>\sample_application\$(MICRO_SUB_VARIANT)\make\ghs\$(CURRENT_APP
L)_$(MICRO_SUB_VARIANT) $(DEVICE_NAME)_ Sample.ld

LNKFILE_DB =
$(PROJECT_ROOT)\$(MICRO_FAMILY)\$(MICRO_VARIANT)\modules\<sms
n>\sample_application\$(MICRO_SUB_VARIANT)\make\ghs\$(CURRENT_A
PPL)_$(MICRO_SUB_VARIANT)_$(DEVICE_NAME)_Sample_db.Id

.PHONY: MAKE_CLEAN_RULES MAKE_GENERATE_RULES
MAKE_COMPILE_RULES\
MAKE_DEBUG_RULES MAKE_CONFIG_RULES MAKE_ADD_RULES

T B T B T T BT R P B T T
Modules to be included in the project
T B T B T T BT R P B T T

T B T B T T BT R P B T T
Sample Application

#

include
$(COMMON_SAMPLE_CORE_PATH)\make\$(CURRENT_APPL)_Common_S
ample_Defs.mak

include
$(COMMON_SAMPLE_CORE_PATH)\make\$(CURRENT_APPL) Common_S

Application Example

Chapter 3

ample_rules.mak

SAMPLE_CORE_PATH = $(SAMPLE_ROOT_PATH)

include
$(SAMPLE_CORE_PATH)\make\$(CURRENT_APPL
_$(MICRO_SUB_VARIANT)_Sample_defs.mak
include
$(SAMPLE_CORE_PATH)\make\$(CURRENT_APPL
_$(MICRO_SUB_VARIANT)_Sample_rules.mak

BRARHHHHHHHHH R AR AR R R A AR

B
B R R R R R R AR R R R A AR

DET Module Core Path

#

#DET_CORE_PATH = $(STUBS_PATH)\Det

#include $(DET_CORE_PATH)\make\det_defs.mak

#include $(DET_CORE_PATH)\make\det_rules.mak

HHHHHHHHHH R R R R R R R AR

B R R R R R R R R R

OS Module Core Path
#

OS_CORE_PATH = $(STUBS_PATH)\os

include $(OS_CORE_PATH)\make\os_defs.mak

include $(OS_CORE_PATH)\make\ os_rules.mak

BT R R AR R

I R R
ECUM Module Core Path

#

ECUM_CORE_PATH = $(STUBS_PATH)\EcuM

include $(ECUM_CORE_PATH)\make\ecum_defs.mak

include $(ECUM_CORE_PATH)\make\ecum_rules.mak

HHHHHE R

HH R R R R R R R R R R R
Scheduler Manager Module Core Path
#

Ifeq ($(AUTOSAR_VERSION), 3.2.2)
SCHM_CORE_PATH = $(STUBS_PATH)\SchM
include $(SCHM_CORE_PATH)\make\schm_defs.mak
else

RTE_CORE_PATH = $(STUBS_PATH)\SchM

include $(RTE_CORE_PATH)\make\rte_defs.mak
endif

31

Chapter 3

Application Example

32

HHHHHHHHHH A A

<MSN> Driver Component
#

<MSN> CORE_PATH =
$(PROJECT_ROOT \$(MICRO_FAMILY)\ common_platform

\modules\<msn>
include $(<MSN>_CORE_PATH)\make\renesas_<msn>_defs.mak
include $(<MSN>_CORE_PATH)\make\renesas _<msn>_check.mak

include $(<MSN>_CORE_PATH)\make\renesas_<msn>_rules.mak

B HHH AR HH R HH R HH R

B R R R R R R AR R R R A AR

Command to generate standalone database

$(MSN_DB).$(S_RECORD_SUFFIX):$(MSN_DB).$(OBJ_FILE_SUFFIX)
$(LNKFILE_DB)

@echo *kkkkkkkkkkkkkkkkhkkkhkkhkhkkhkhkkhkkhkkhkkhkkkhkkkhkkkhkkkkkhkkkkkhkkkhkkkkhkkhkkkhkkkhkkkkkhkkkkkkkk
@echo Building the standalone database ...

$(DBLINKER) $(LNKFILE_DB) \
"$(OBJECT_OUTPUT_PATH)\$(ICU_DB).$(OBJ_FILE_SUFFIX)"\
-map="$(OBJECT_OUTPUT_PATH)\$(ICU_DB).$(MAP_FILE_SUFFIX)"\
-0 "$(OBJECT_OUTPUT_PATH)\$(MSN_DB).$(EXE_FILE_SUFFIX)"
@echo Generating Motorola S-Record file...

$(CONVERTER) $(SFLAGS)

"$(OBJECT_OUTPUT_PATH)\$(ICU_DB).$(EXE_FILE_SUFFIX)"\

-0 "$(OBJECT_OUTPUT_PATH)\$(ICU_DB).$(S_RECORD_SUFFIX)"
@echo Done ...

B R T R T R R T T R R R
BRI

$(<MSN>_DB).$(S_RECORD_SUFFIX):$(<MSN>_DB).$(OBJ_FILE_SUFFIX
) $(LNKFILE_DB)

@echo = = = = [

@echo Building the standalone database ...

$(DBLINKER) $(LNKFILE_DB) \
"$(OBJECT_OUTPUT_PATH)\$(<MSN>_DB).$(OBJ_FILE_SUFFIX)" \
-map="$(OBJECT_OUTPUT_PATH)\$(<MSN>_DB).$(MAP_FILE_SUFFIX)" \
-0 "$(OBJECT_OUTPUT_PATH)\$(<MSN>_DB).$(EXE_FILE_SUFFIX)"
@echo Generating Motorola S-Record file...

$(CONVERTER) $(SFLAGS)
"$(OBJECT_OUTPUT_PATH)\$(<MSN>_DB).$(EXE_FILE_SUFFIX)" \

-0 "$(OBJECT_OUTPUT_PATH)\$(<MSN>_DB).$(S_RECORD_SUFFIX)"

@echo Done ...

mailto:@echo
mailto:@echo
mailto:@echo
mailto:@echo
mailto:@echo

Application Example

Chapter 3

3.3.

BRHHHHHH R AR R AR AR R R

End of the Base Make script
HH B T R

Integrating The <MSN> Driver Component with
Other Components

This section explains the procedure to integrate the <MSN>Driver Component
with other BSW components and the application.

Depending on the various configurations, the following modules are required to
be integrated with the <MSN>Driver Component:

* <MSN>Interface (Folder ‘Sample_Application’ where the sample
application for <MSN> exists. The variable ‘<MSN> CORE_PATH’
and the corresponding module Makefile names must be suitably
changed in the base Makefile)

» Development Error Tracer (Folder ‘Det’ where the DET module files exist.
The variable ‘DET_CORE_PATH’ and the corresponding module
Makefile names must be suitably changed in the base Makefile)

* Scheduler Manager (Folder ‘SchM’ where the SCHM module exists.
The variable ‘RTE_CORE_PATH’ and the corresponding module
Makefile names must be suitably changed in the base Makefile)

* MCU Interface (Folder ‘Mcu’ in the give example. The variables
‘MCU_CONFIG_PATH’ and ‘MCU_CONFIG_FILE’ must be suitably
changed in the module Makefile
(Software_Source_Code\ssc\mak\renesas_ <MSN>_rules.mak) and
the base Makefile).

All the above folders are given only as examples and they have to be
replaced with actual component folders. It is assumed that every component
has the corresponding module Makefiles.

Apart from the above BSW components, few other folders are provided as
mentioned below:

* AUTOSAR Type definition Files (Folder ‘common\include’, where the
header files containing standard definitions that are common to all
components are placed. The variable ‘STUB_CORE_PATH’ and the
corresponding module Makefile names must be suitably changed in the
base Makefile)

* RHB850 specific Files (Folder ‘X1X\common_platform\generic\include’, where
the header files that are common to all components but specific to Renesas
V850 microcontroller are placed. The variable
GENERIC_PLATFORM_PATH’ and the corresponding module Makefile
names must be suitably changed in the base Makefile)

Compiler specific Files (Folder ‘compiler’, where the header files that are
common to all components but specific to GreenHills Compiler are placed.
The variable ‘COMPILER_PATH’ and the corresponding module Makefile

33

Chapter 3

Application Example

34

3.4.

names must be suitably changed in the base Makefile).

Building the <MSN> Driver Component

This section explains the procedure to build the <MSN>Driver Component for
any given configuration.

The <MSN> Driver Configuration Description file (.arxml) has to be given as
input to the <MSN> Driver Generation Tool. The tool generates output files
namely <Msn>_Lcfg.c, <Msn>_PBcfg.c, <Msn>_Cbk.h and <Msn>_Cfg.h.

Following variables must be defined in the base Makefile described in
Section 5.2.1 (Makefile Description)

« PROJECT_ROOT: Root directory where the projects for all components
exist.

* SPECIFIC_APPL_ROOT_PATH: Directory where the <MSN> sample
application exists.

+ OBJECT_OUTPUT_PATH: Directory where the module specific output
files are generated.

« STARTUP_<family>_ CORE_PATH: Core path for the variant specific
startup files exist.

« STUB_CORE_PATH: Core path for the stub files exist.
* COMPILER_PATH: Directory where the compiler files exist.
 DEVICE_FILE_PATH: Directory where the device files exists.

* MSN_CORE_PATH: Core path for the <MSN> Driver Component
folder.

* MSN_TOOL_PATH: Directory where the module specific tool exe exist.

* CC_INCLUDE_PATH: Path variable where all the header files can be
found by the compiler.

* CC_FILES_TO_BUILD: Variable that contains the list of source files, to
be compiled and linked.

*+ <MSN>_clean_generated_files: This target can be used to clean the
configuration source and header files generated by the <MSN> Driver
Generation Tool.

* debug_<MSN>_makefile: This target can be used to print the debug
information such as paths used by <MSN> Driver Component.

* generate_<MSN>_config: This target can be used to invoke the <MSN>
Driver Generation Tool, which in turn takes the ECU Configuration
Description files (App_<MSN>_<DEVICE_NAME>_Sample.arxml) as
an input and generates the configuration source and header files.

Following variables must be defined in the Module Makefile described in
Section 5.2.1 (Makefile Description):

* PROJECT_ROOT: Root directory where the projects for all components
exist.

* MSN_CONFIG_PATH: Configuration path for description file of the
<MSN> Driver Component.

Application Example

Chapter 3

3.4.1.

3.4.1.1.

3.4.1.2.

3.4.1.3.

3.4.1.4.

* MSN_CONFIG_FILE: Name of the <MSN> Driver Component description
file.

* STUB_CONFIG_PATH: Configuration path for description file of the stub.

* MCU_CONFIG_FILE: Name of the MCU Driver Component description
file.

* TRXML_CONFIG_PATH: TRXML Configuration file path used for the
<MSN> Driver Component.

* TRXML_CONFIG_FILE: TRXML Configuration file used for the <MSN>
Driver Component.

+ BSWMDT_CONFIG_PATH: Path for <MSN> BSWMDT file.
+ BSWMDT_CONFIG_FILE: Name of the <MSN> BSWMDT file.
« GENERIC_STUB_PATH: Directory where the generic stub exist.

* GENERIC_PLATFORM_PATH: Directory where the generic platform
files exist.

+ CC_INCLUDE_PATH: Path variable where all the header files can be
found by the compiler.

« CC_FILES_TO_BUILD: Variable that contains the list of source files, to
be compiled and linked.

+ <MSN>_DB: Name of the Post-build configuration file.
The above-mentioned variables are to be used to build the base Makefile.

A sample base Makefile (App_<MSN>_<MICRO_SUB_VARIANT>
_Device_Sample.mak) has been provided with the product for reference.
This file can be modified to suit the developer’s needs.

The targets that are supported in the base Makefile enable the user in build
and cleanup activities during/after the build process. They are listed below:

Targets Supported By the Sample Base Makefile

debug_base_make

Invoking the Make utility and passing “debug_base_make” as a parameter
prints all the variables that are used in the base Makefile. This can be used to
print various paths and file names to see if they are correct.

clean_objs

Invoking the Make utility and passing “clean_objs” as a parameter deletes all
the object files from the output folder
(“X1X\<MICRO_VARIANT>\modules\<cmsn>\Sample_application\<
MICRO_SUB_VARIANT >\obj” in this case).

clean

Invoking the Make utility and passing “clean” as a parameter deletes tool
generated files in the configuration output folders
(“X1X\<MICRO_VARIANT>\modules\<msn>\sample_application\<
MICRO_SUB_VARIANT>\src” and

“X1X\<MICRO_VARIANT>\modules\<msn>\Sample_application\<
MICRO_SUB_VARIANT>\include”in this case)

clean_all

35

Chapter 3

Application Example

36

3.4.1.5.

3.4.1.6.

Invoking the Make utility and passing “clean_all” as a parameter deletes all
files such as object file, list files and map files from the output folder
(“X1X\< MICRO_VARIANT >
\modules\<msn>\sample_application\< MICRO_SUB_VARIANT
>\obj” in this case).

generate_<msn>_config

Invoking the Make utility and passing “generate_ <MSN>_config” as a

parameter invokes the <MSN> Driver Generation Tool. The tool takes the

ECU Configuration Description File(s) (“X1X\< MICRO_VARIANT

>\modules\<msn>\Sample_application\<sMICRO_SUB_VARIANT>
\AUTOSAR_VERSION

config\<MSN>_Sample_ <MICRO_SUB_VARIANT>\.arxml|” as input and
generates the output files in folders

“X1X\< MICRO_VARIANT >\modules\<msn>\Sample_application\<
MICRO_SUB_VARIANT>\ AUTOSAR_VERSION \src” and

“X1X\< MICRO_VARIANT >1\modules\<smsn>\Sample_application\<
MICRO_SUB_VARIANT>\ AUTOSAR_VERSION \include”).

App_<MSN>_< MICRO_SUB_VARIANT >_Sample.out

Invoking the Make utility and passing “Sample.out” as a parameter invokes the
compiler and linker sequentially. Then it generates the executable
“App_<MSN> < MICRO_SUB_VARIANT > Sample.out”.

<Msn>_PBcfg.s37

Invoking the Make utility and passing “<Msn>_PBcfg.s37” as a parameter
invokes the compiler and linker sequentially and generates the Motorola
S-Record file

“<Msn>_PBcfg.s37” in the output folder.

This scenario typically arises when post-build parameters are modified and
only the database needs to be flashed into the device without disturbing the
other ROM contents.

Support For Different Interrupt Categories Chapter 4

Chapter 4 Support for Different Interrupt Categories

Notes

The <MSN> Driver supports CAT1 and CAT2 interrupt categories:

CAT1

In CAT1 type of interrupt ISR does not use an operating system service. In
practice, the OS does not handle these interrupts, and the interrupt handler is
implemented in the driver code, with the only restriction that OS services
cannot be called. Typically, these are the fastest highest priority interrupts.

CAT2

In CAT2, type of interrupt wherein the ISR is handled by the system and
OS calls can be called from the handler.

For CAT1 and CAT2, the selection of interrupt category is for each interrupt in
the module. Individual MCAL module does not contain any option for interrupt
category configuration. The user has to configure the ISR category in OS and
to use the right MCAL specified name and MCAL expects
"ISR(INTERRUPT_NAME)" keyword defined in OS in case of CAT2.

1. The understanding is Os module does not publish short name handles for
CAT1 Oslsr container. However, the OS should define it in the interrupt
vector table.

2. The understanding is that Os module should publish short name handles
for CAT2 Oslsr container according to ecuc_sws_2108 requirement by
adding the Os_" prefix to the configured interrupt name.

Reference between the <MSN> module and OS:

<Msn> module's <Module>_Irg.c/h files include "Os.h" header file to obtain the
interrupt category information configured in the OS. Therefore, following pre-
processor definitions are expected to be published in Os.h file by the OS in
case of CAT2 or to be used in the interrupt vector table in case of CAT1.

Table 4-1 CAT1 and CAT2 Naming Convention

Interrupt Category Naming Convention
CAT1 <MCAL_INTERRUPT_NAME>_ ISR
CAT2 <MCAL_INTERRUPT_NAME>_CAT2_ISR

CAT2 (In case the handles of Os_<MCAL_INTERRUPT_NAME>_CAT2_ISR
the Oslsr container are
generated without ‘Os_’ prefix
by Os generation tool)

37

Chapter 4 Support For Different Interrupt Categories
MCAL in Stand Alone:
In case if the MCAL modules are to be used stand-alone without having
standard Autosar Os module, the user has to prepare an Os.h stub file with the
published handles only for those interrupt names which are to be used as
CAT2.
Table 4-2 List of ISR Names that need to be configured and published in Os.h
(CAT2) or used in the interrupt vector table (CAT1) for <MSN> Driver
CAT2(In case the handles of the
Sl. Oslsr container are generated
No. CATL CAT2 without ‘Os_’ prefix by Os

generation tool)

<MSN>n_SGm_ISR

<MSN>n_SGm_CAT2_ISR

Os_<MSN>n_SGm_CAT2_ISR

<MSN> DMA_CHxy ISR

<MSN> DMA_CHxy CAT2_ISR

Os_<MSN>_DMA_CHxy CAT2_IS
R

38

Where

‘n’ indicate HW Unit number

‘m’ indicate SG Unit number

‘xy’ indicate DMA channel Id number

GNU MAKE Environment Chapter 5

Chapter 5

5.1.

5.2.

GNU MAKE Environment

Every component is delivered with the necessary Make scripts that are
required to integrate the component with the application. The scripts are
compatible with GNU Make version 3.81.

All the delivered Makefiles have to be included in the project level base
Makefile in order to build the component together with the application. Refer
section “Integration and Build Process” of the respective component User
Manuals for more information on the Makefile variables and their usage.

Build Process with GNUMAKE

When the batch file of certain application is built, the GNU Make utility will be
searched by batch file. The GNU Make utility should be present in the default
path specified by GNUMAKE\PATH variable. By making use of the GNU Make
utility, the batch file will be compiled.

Build Process without GNUMAKE

If GNU Make utility is not present at the default path or present in some other
directory, the following procedure is followed to set the Environmental
variable GNUMAKE\PATH.

1. Rightclick on “My Computer” select properties, user will find System
Properties.

Open
Explore
Search...
Manage

Map Mebwork Drive. ..
Disconnect Mebwork Drive. ..

Create Shortouk
Delete
Renarme

Properties

39

Chapter 5 GNU MAKE Environment

2. In System Properties select “Advanced” option, user will find
“Environmental Variables” at the bottom side of window.

System Properties

General Computer Mame Hardware
Advanced Automatic pdates Remote

Y'ou must be logged on az an Administrator o make most of theze changes.

Performance

Wisual effects, processar scheduling, memany ugage, and wirtual memorny

Settings

I1zer Profiles

Dezktop settings related to your logon

Settings

Startup and Recovery

System startup, system Failure, and debugaing information

Settings

[Ervironment Y ariables H Error Reporting]

[ak H Cancel]

3. Click on “Environmental Variables”, user will find “Environment Variables”
window in that, select “New”.

Environment Variahles

ser variables For prashanthm

Variable Yalue
TEMP C:\Documents and Settingsiprashantbm. ..
TMP C:\Documents and Settingsiprashantbm. ..

mew | [Edt | [Delete

Syskem variables

‘ariable Walue ”~
ComSpec CWINDOM S\ svstemn32iomd exe

FP_MO HOST ... NO D
GHS_LMHOST \kcinblrpncs 1

MUMBER_OF_P... 2

05 Windows_MT B4

(0] 4] [Cancel

40

GNU MAKE Environment Chapter 5

4. After step 3, user can find “New User Variable” window with “Variable
name” and “Variable path” options which needs to be set, Variable name
will be set as GNUMAKE and Variable path is the path of the directory
where GNU Make utility is present and click ok.

Mew User Variable EJ@

Variable name: GNUMAKE

Variable walue: C:\Program Files (x36}\GnuWin32\bin

| OF, |[Cancel]

5. After step 4, in “System Properties” window click “Apply” and then “Ok”.

Remark GNU Make utility version 3.81 must be separately downloaded and installed to
use the Makefiles delivered along with the component. More information on the
utility can be found at http://www.gnu.org/

41

http://www.gnu.org/

Chapter 5

GNU MAKE Environment

42

Load Binaries Chapter 6

Chapter 6 Load Binaries

Once the Executable or S-Record is generated using the project level base
Makefile, it needs to be downloaded into the target using a Flash programmer.

The user has to read the instructions provided in the Flash programmer’s User
Manual thoroughly before using it.

43

Chapter 6

Load Binaries

44

Appendix

Chapter 7

Chapter 7

7.1.

1.2.

Appendix

Translation XML File

Translation XML File content format shall be given as mentioned below:

<?xml version="1.0" encoding="UTF-8"?>

<!--

The tag PATH-DETAILS should not be renamed since it is top level element.
-->

<PATH-DETAILS>

<I--

TRANSLATION-FILE-PATH should contain the path of the translation
header file.

The tag TRANSLATION-FILE-PATH should not be renamed. Only respective
value should be updated for the translation header file.

-->

<TRANSLATION-FILE-PATH>
<value_of_<MSN>DeviceName>Path</value_of <MSN>DeviceName>

</TRANSLATION-FILE-PATH>

<I--

The tags present in DEVICE-FILE-PATH tag should contain the path of
the device specific C Header File.

The tags present in DEVICE-FILE-PATH should be equal to the value
for parameter <MSN>DeviceName present in <MSN>General container.

The tag DEVICE-FILE-PATH should not be renamed.

If multiple device header files need to provide for same device then each file
name should be separated with space.

-->
<DEVICE-FILE-PATH>
<value_of <MSN>DeviceName>Path</value_of <MSN>DeviceName>
</DEVICE-FILE-PATH>
</PATH-DETAILS>

Configuration XML File

Configuration XML File content format to be given as mentioned below:

<?
xml version="1.0" encoding="UTF-8"?>
<l

45

Chapter 7 Appendix

None of the tag from this XML should be renamed or deleted.
-->
<XML>
<l-- Supported Command Line options -->
<OPTION>
<!-- Only ON or OFF should be provided. -->
<HELP>ON/OFF</HELP>

<!-- Only ON or OFF should be provided. -->
<LOG>ON/OFF</LOG>

<l-- Only ON or OFF should be provided. -->
<DRYRUN>ON/OFF</DRYRUN>

<!-- Only ON or OFF should be provided.
<OUTPUT>OFF</OUTPUT>

v

<!-- Name of output directory -->
<OUTPUT-PATH>Path</OUTPUT-PATH>
</OPTION>

<!-- To provide input files. If multiple input files need to be provided then
each file should be separated with ",". -->
<INPUT-FILE>Path</INPUT-FILE>
</XML>

46

Revision History

Sl.No.

Description

Version

Date

Initial Version

1.0.0

31-Jan-2013

Following changes are made:

1. -Osrc and -Oinc options are added at section 4.3. Usage.

2. Error message ERRO00008 is updated at section 4.8.1. Error
Messages.

3. Fix is renamed to X1x in all relevant places.

1.0.1

16-Oct-2013

Following changes are made:

1. Chapter 5 is updated for paths.

2. F1x and F1L names are removed.
3. Makefile location is updated.

4. Name of executable is updated.

1.0.2

24-Jan-2014

Following changes are made:
1. Page Number alignment is corrected.
2. R- Number is added for document.

1.03

08-April-2014

Following changes are made:
1. Copyright year information is corrected.
2. R- Number is added for document.

1.04

17-July-2014

Following changes are made:
1. Document is updated as per template.

1.05

09-Aug-2014

Following changes are made:

1. New Error message ERR000031 added.

2. Warning message WRNO000O1 message updated to error
message ERR000032.

3. Updated chapter4 for RUCG and DLL usage.

1.0.6

23-Mar-2016

Following changes are made:

1. Chapter 2 and 3 removed to make the document independent of
any specific tool.

2. Autosar version 3.2.2 version check removed from section 3.2.1.

1.0.7

29-Jun-2016

Following changes are made:
1. Added R-number.
2. Updated Notice and copyright information.

1.0.8

17-Feb-2017

47

Getting Started Document for X1x MCAL Driver User's Manual
Version.1.0.8

Publication Date: Rev.1.01, February 17, 2017

Published by: Renesas Electronics Corporation

LENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany

Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HAL Il Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2006-2017 Renesas Electronics Corporation. All rights reserved.

Colophon 4.1

http://www.renesas.com/
http://www.renesas.com/

Getting Started Document for X1x MCAL Driver

User’s Manual

RENESAS

Renesas Electronics Corporation R20UT3753EJ0101

	Chapter 1 Introduction
	Chapter 2 Generation Tool
	2.1. Translation XML File
	2.1.1. Translation Header File
	2.1.2. Device Specific Header File

	2.2. Configuration XML File
	2.3. Usage
	2.4. Sample Usage
	2.5. Tool Installation Requirements
	2.5.1. Hardware Requirements
	2.5.2. Software Requirements
	2.5.3. Limitations

	2.6. Tool Installation
	2.6.1. Pre Requisite
	2.6.2. Installation Steps

	2.7. Tool Un-Installation
	2.8. Common Messages
	2.8.1. Error Messages
	2.8.2. Warning Messages
	2.8.3. Information Messages

	2.9. R3.2.2 Messages
	2.9.1. Error Messages
	2.9.2. Warning Messages
	2.9.3. Information Messages

	2.10. R4.0.3 Messages
	2.10.1. Error Messages
	2.10.2. Warning Messages
	2.10.3. Information Messages

	2.11. BSWMDT File

	Chapter 3 Application Example
	3.1. Folder Structure
	3.2. Makefile Description
	3.2.1. App_<Msn>_<variant>_Sample.mak

	3.3. Integrating The <MSN> Driver Component with Other Components
	3.4. Building the <MSN> Driver Component
	3.4.1. Targets Supported By the Sample Base Makefile
	3.4.1.1. debug_base_make
	3.4.1.2. clean_objs
	3.4.1.3. clean
	3.4.1.4. clean_all
	3.4.1.5. generate_<msn>_config
	3.4.1.6. <Msn>_PBcfg.s37

	Chapter 4 Support for Different Interrupt Categories
	Chapter 5 GNU MAKE Environment
	5.1. Build Process with GNUMAKE
	5.2. Build Process without GNUMAKE

	Chapter 6 Load Binaries
	Chapter 7 Appendix
	7.1. Translation XML File
	7.2. Configuration XML File

