RENESAS

-
7
o)
ﬁ#‘
7
<
)
S
=
QO

AUTOSAR Modules Overview

User’s Manual

Version 1.0.3

Target Device:
RH850/X1x

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.1.01 May 2017

http://www.renesas.com/
http://www.renesas.com/

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and
damages incurred by you or third parties arising from the use of these circuits, software, or information.

Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents,
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information
described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics
disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or
otherwise misappropriation of Renesas Electronics products.

Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended
applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;
home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication
equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or
bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea
repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any
and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the
product is not intended by Renesas Electronics.

When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General
Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges
specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics,
installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas
Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas
Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the
possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics
products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system.
Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or
systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including
without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable
laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale
is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1)
any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons,
chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose
relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and
security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly
or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When
exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and
regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.

Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and
conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your
resale or making Renesas Electronics products available any third party.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Abbreviations and Acronyms

Abbreviation / Acronym

Description

ADC

Analog to Digital Converter

API Application Programming Interface
ATOM ARU-connected Timer Output Module
AUTOSAR AUTomotive Open System ARchitecture
CcC Communication Controller
CMU Clock Management Unit
CORTST Core Test
DEM Diagnostic Event Manager
DET/Det Development Error Tracer
DIO Digital Input Output
ETH Ethernet
FLS FLaSh Driver
FLSTST FLaSh Test
FR FlexRay
FSL Flash Self programming Library
GPT General Purpose Timer
GTM Generic Timer Module
ICU Input Capture Unit
LIN Local Interconnect Network
Lpdu Data Link Protocol Datagram Unit
MCAL MicroController Abstraction Layer
MCU MicroController Unit
Nm Network Management
POC Protocol Operation Control
PWM Pulse Width Modulation
RAMTST Ram Test
Rx Receiver
SPI Serial Peripheral Interface
TIM Timer Input Module
WDG WatchDog driver
uC Micro controller
Definitions
Term Represented by
SI. No. Serial Number

<Autosar Version>

4.0.3 when tested for R4.0.3

Table of Contents

Chapter 1 INTRODUCTION ...ttt ittt e s nnne e e nnne e 11
1.1, DOCUMENT OVEIVIEW .cuuiiiiiiiiiiiieeitieesree ettt e s e st s et e st nr et e sane e e sne e e snne e s nnneesnneeaneeen 12
Chapter 2 REFERENCE DOCUMENTSciiiiiiiieiiiie et 13
Chapter 3 AUTOSAR MODULES.......ooiiiiiiiie et 15
3.1 MCAL MOGUIE ettt ettt e e rn e e sne e e nee e 15
3.1.1. ADC Driver COMPONENTiuiiieiiiiie ettt ettt e e aeee 15
3,111, MOAUIE OVEIVIEW......cviiiiiieee ittt e e 15

3.1.1.2. Module DEPENUENCY....ccvvieeeiiiiiiiiieee e e scetee e e e e e e e e e 16

3.1.1.3. Configuration Parameter Dependency.........cccccvevnireeeniineeenniinnen 16

3.1.1.4. Source Code Dependencyccooeeeeiiiiiiiiieieeee s 16

3115, SHUBDS e 17

3.1.2. PWM Driver COMPONENT.....uuuuuiuiuieiuiuiuiuininrerninrnenrnrnrnrnrnrernrernrnne—————. 17
3.1.2.1. MOQUIE OVEIVIEW......ceeiieiiieiie it ettt 17

3.1.2.2. Module DEPENAENCY.....cccuuiiieiiiiiie ittt 18

3.1.2.3. Configuration Parameter Dependency........cccccoeveeeieieiiieceieceeeeceeennn 18

3.1.2.4. Source Code DEePENUENCYceeiiuriiiiiiiiiiie it 18

3125, STUDS weeeeiiiiecee e 19

3.1.3. PORT Driver COMPONENT.........oiiiiiiiie ittt e e e 19
3.1.3. 1. MOAUIE OVEIVIEW......cvviiieie e ittt e e e et ee e e e e e e e neennee s 19

1C 700 5C 07 |V (o To [] L= L= o 7= o [T ooV A 20

3.1.3.3. Configuration Parameter DEPENdENnCYcccueeevrvieeenniieeenniineens 20

3.1.3.4. Source Code DEePENUENCYcccceeeiieieiiee e eceee e 20

30,35, SHUDS e 20

3.1.4. DIO Driver COMPONENTccoiiiiieeiiiitee ettt ettt et e e sbee e e e b e e e neee 21
3.1.4.1. MOAUIE OVEIVIEW.......eviieiiiiiee ittt 21

3.1.4.2. Module DEPENAENCY.....cccuuiiiiiiiiiie ittt 21

3.1.4.3. Configuration Parameter Dependency........cccccoeveveieiiiieeiciecececeeenn, 21

3.1.4.4. Source Code DEePENUENCYeeeeiiuriiiiiiiiiiie i 21

BLLiA5. STUDS oot 21

3.1.5. FLS Software COMPONENTuuuiuiuiuiuiiiuieieiiieieinrnrersrernrererereene———————— 22
3.1.5. 1. MOAUIE OVEIVIEW.......ueiiiiiee it e et e e e e e e e 22

3.1.5.2. Module DEPENENCYccceeiiiiiiiiiiiiae ettt 22

3.1.5.3. Configuration Parameter DepPendencycccccueeevriveieniiieeeininneenns 22

3.1.5.4. Source Code DEPENUENCYuuieiiieiiiiiiiiiiiiaa e 23

3055, SHUDS oo 23

3.1.6. SPI Driver COMPONENTueiiiiiiiiie ettt ettt et e et e e e e s snbeee e s snneeeas 23
3.1.6.1. MOAUIE OVEIVIEW......uuiiiiiieeiiiiiiieee et 23

3.1.6.2. Module DEPENUENCYccuveiieiiiiiieiiieiee ettt 24

3.1.6.3. Configuration Parameter Dependencyccccccoeeuuiieeeieeininivinnenn. 24

3.1.6.4. Source Code DePENUENCYeueeiiuuriieiiiiiiie it 24

BLL.6.5. STUDS ..eiiiiie e 25

3.1.7. ICU Driver COMPONENT.......eiiiiieiie e ettt e e e e et e e e e e e s e e snneeeeeeaeens 25
3.1.7.1. MOUUIE OVEIVIEW.......oeiiiiiiiiie et 25

3.1.7.2. Module DEPENENCYccceeiiiiiiiiiiiiiae et 26

3.1.7.3. Configuration Parameter Dependencyccccccccvvecvvvreereeersincvvnnnnns 27

3.1.7.4. Source Code DePeNndENCYccuiieeiiiiiuiiiieiaaaaeiiiiiieee e e e eeieeeeeas 27

3.1.8.

3.1.9.

3.1.10.

3.1.11.

3.1.12.

3.1.13.

3.1.14.

3.1.15.

3.1.16.

3175, SHUDS oo 28

MCU Driver COMPONENT.........uuiiiiieeeieiiiiiieeeeeesessrrrrreee e e s s snnraerreeeeeseennsanereeees 28
3.1.8. 1. MOAUIE OVEIVIEW.......ueiiiiieeiiiiitieie ettt 28
3.1.8.2. Module DEPENUENCYcuuviieiiiiiieiiiiiie ettt 28
3.1.8.3. Configuration Parameter Dependencyccccccccevecvvieereeeseiiivvnnnn. 29
3.1.8.4. Source Code DePENUENCYcceiiuuriieiiiiiiieiiiiiee et et 29
3.1.8.5. SHUDS .ot 29

GPT Driver COMPONENTeiiiiiiiiieiiiiee ettt e e nneeees 30
3.1.9.1. MOAUIE OVEIVIEWceeeiiiiiiie ettt 30
3.1.9.2. Module DEPENUENCY....ccvvieeiiiiiiiiiieee e et e e e e e 30
3.1.9.3. Configuration Parameter Dependency.........ccccceeevrvieeeiniieeenniineenn 31
3.1.9.4. Source Code DEPENUENCYcuvvveieeeeeiiiiiiiieiee e e e e e e e e e seranees 31
L1195, STUDS oot 32

WDG Driver COMPONENT........uuuuueeeeeeeereereeeeeeeeresenenrnerrernrrrernrer—————————. 32
3.1.10.1. MOAUIE OVEIVIEWeveiiieieee ittt e e e e e et ee e e e e e st e e e e e e e nnneeeeeeas 32
3.1.10.2. Module DEPENAENCY......ccuueiieiiiiiieiiiiee ettt 32
3.1.10.3. Configuration Parameter Dependency.........ccccoeeeeeieieeiieeececeeeeeeeenn, 33
3.1.10.4. Source Code DEePENUENCYceeiiiiiieiiiiiiieiiiieee et 33
3.L10.5. STUDS oottt 33

LIN Driver COMPONENTccciiiiiiiiiiiiee ettt ettt e et e e e e 34
3.1.11.1. MOQUIE OVEIVIEW.oviiiiiiiiieiiieee et 34
3.1.11.2. Module DEPENTENCY......cccceeeiiie e 34
3.1.11.3. Configuration Parameter Dependency.........cccceeevviieeeniineeennineenn 34
3.1.11.4. Source Code DePeNENCYcccoeeiiiiiiii e 34
G 700 R TR (1o £ S 35

L B 1V o o] o ¥ oo 1= o | 36
3.1.12.1. MOQUIE OVEIVIEW.eeiiiiiiiiee ittt ettt 36
3.1.12.2. Module DEPENAENCY......ccuuiiieiiiiiieiiiiee et 36
3.1.12.3. Configuration Parameter Dependency........ccccceeveeeiiiiiiieiceeceeeeeeenn, 36
3.1.12.4. Source Code DEePENUENCYeeeeiiuiiiieiiiiiie it 37
L1125, STUDS oottt 37

RAMTST Driver COMPONENT.......cicuiiieiiiiie ettt 37
3.1.13.1. MOAUIE OVEIVIEW.......ueeiiiieeeiiiiiiieie e e e e eeeee e e e e e e e e e e e neeeeeeeas 37
3.1.13.2. Module DEPENTENCY......cccceeeeeeeie e 38
3.1.13.3. Configuration Parameter Dependency.........ccccueeeevviieeeiniieeeinineenn 38
3.1.13.4. Source Code DEPENUENCYuvureiiieiiiiiiiiieie e et 38
31135, SHUBS oo 38

CORTST Driver COMPONENT........uuuiiiieieeeiiiiieee e et ee e e e e e e e e e e e e s aneeeees 39
3.1.14.1. MOAUIE OVEIVIBW.......ueiiiiieiiiiiitiiie ettt 39
3.1.14.2. Module DEPENAENCY......ccuuiieiiiiiieiiieie e 39
3.1.14.3. Configuration Parameter DEpendencycccccooveeuvvieeeeeereiicirinnen. 40
3.1.14.4. Source Code DePeNndEeNCYccoiiueiiiiiiiiieiiiiiee e 40
L1145, STUDS oottt 40

FLSTST Driver COMPONENTcciiiiiiiiiiiieieaa e ettt e e e et e e e e e e s eneeseeeaee s 40
3.1.15.1. MOAUIE OVEIVIEW.......uviiieieeeiiiiiiieit e e e e s esteee e e e e e e e e e s e nnennnees 40
3.1.15.2. Module DEPENUENCY.....coeiiiiiiiiiiieiaee ettt 41
3.1.15.3. Configuration Parameter DEpendencyccccceevvecvvvveeeeeeresiivnnnenns 41
3.1.15.4. Source Code DEPENUENCYuvureiiieeiiiiiiiieie et 41
L1155, STUDS oot 41

ETH Driver COMPONENT.........uuiiieiieeeieciiiieeee e e e s s st e e ee e e s s snantneeeseeeessennsannneeees 42

3.1.16.1. MOAUIE OVEIVIEBW ..ceuviiitieieee ettt e e e st e e et e s enaaa s 42

3.1.16.2. Module DEPENUENCYcvvveeiiiiiiiieiiee e e e eetieee e e e e e s s e e e e e e sneranees 42
3.1.16.3. Configuration Parameter Dependencycccceeeenvreeennineeesninnens 43
3.1.16.4. Source Code DePENUENCYeeeiiurriieiiiiieieiiiiiee et 43
3.L168.5. STUDS ..eieiei et 43
3.2 RHB50 MaCros Definition:ccoiiiiiiiiiiiee et 43
3.3 ICxxx Registers Setting for TBXXX-Bil......ccccciiiiiiiiiiiiieiiee e 45

Figure 1-1

Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 3-12
Table 3-13
Table 3-14
Table 3-15
Table 3-16
Table 3-17
Table 3-18

10

List of Figures

: System Overview of the AUTOSAR Architecture Layerccccccveeeviiiiivieeeee e cciiineeeenn, 11

List of Tables

: ADC Driver Component COmMMON STUDScoiiuiiiiiiiiiieiiiiiee e 17
: PWM Driver Component COmMmON StUDScuiiiiiiiiiiiiiice e 19
: PORT Driver Component Common StUDS...........cuuviiieeiiiiieecee e 20
: DIO Driver Component Common StUDS..........cccuiiiiiiie e 22
: FLS Software Component Common StUBSccevveieeiiiiiicc e 23
: SPI Driver Component Common StUDS ... 25
. ICU Driver Component COmMmON StUDSuuiiiiiiiiiiiiiiiiiiiiiiie . 28
: MCU Driver Component CommON StUDScoocuiiiiiiiiieiiiie e 29
: GPT Driver Component COmMmMON STUDSccoiiiiiiiiiiiieiiiee e 32
: WDG Driver Component CommOoN STUDS........coocuiiiiiiiiieiiiiee e 33
. LIN Driver Component CommON StUDSccooiiiiiiii e 35
. LIN Driver Component SPeCific STUDSc..eiiiiiiiiiiiie e 35
. FR Driver Component COMMON StUDSuuuuiiimiiiiiiiiieiiiiieineeinieeeinrnnernnnn... 37
. RAMTST Driver Component COmMmON StUDS...........uuuiuiuieiiiiiiiiiiiiieiiiniereenrennn.. 38
. CORTST Driver Component COmMmON StUDS...........uuuiuiuiuimiiiiiiiiieieieiinierninnnn.. 40
. FLSTST Driver Component COmMmMON StUDSuuuiuiiiiiiiiiiiiiiiiiiiiiiieininnnneen. 42
. ETH Driver Component COmMMON StUDSuuuieiuiiiiiiieiiieieinieieinieieinnennn... 43
: Macro to perform write operation, on write enabled Register...........ococceevviiieeiniieeenn 44

INTRODUCTION

Chapter 1

Chapter 1

INTRODUCTION

This document shall be used as reference by the users for module overview,
module dependencies, source code dependencies and configuration
parameter dependencies.

Actuator
Software

ensor
Software

Application
Software
Component

Application
Software

AUTOSAR
Software

Standard
Software
API 2 Standardized - Standardized.”.| | Standardized | " AUTOSAR:.".] |.". AUTOSAR. .
I VFB & RTE Interface - AUTOSAR .- Interface .- - Interface . . .- Interface. ..
Services Communication ECU
ﬁ APl 1 Abstraction
RTE
relevant Standardized Standardized Standardized
Interface Interface Interface
I API 0 Operating I I I I Complex
System 9] Device
e Drivers
o™
API 3 Private T Standardized
Interfaces inside 8o Interface
Basic Software LI
possible o Microcontroller
Abstraction

ECU-Hardware

Figure 1-1 : System Overview of the AUTOSAR Architecture Layer

11

Chapter 1

INTRODUCTION

12

1.1. Document Overview

The document has been segmented for easy reference. The table below
provides user with an overview of the contents of each section:

Section

Contents

Sectionl
(Introduction)

Explains the purpose of this document.

Section2
(Reference Documents)

Lists the documents referred for developing this
document.

Section3
(MCAL Modules)

Provides the list of modules developed in the MCAL
layer. Brief information about the Module overview,
Modules dependency, Configuration parameter
dependency, source code dependency and stubs .

REFERENCE DOCUMENTS Chapter 2

Chapter 2 REFERENCE DOCUMENTS

Sl. No. Title For Autosar Version R4.0.3 Version
1. Specification of ADC Driver (AUTOSAR_SWS_ADCDriver.pdf) 420
2. Specification of PWM Driver (AUTOSAR_SWS_PWMDriver.pdf) 25.0
3. Specification of PORT Driver (AUTOSAR_SWS_PortDriver.pdf) 3.2.0
4. Specification of DIO Driver (AUTOSAR_SWS_DIODriver.pdf) 250
5. Specification of Module Flash Driver (AUTOSAR_SWS_FlashDriver.pdf) 3.2.0
6. Specification of SPI Handler/Driver 3.20
(AUTOSAR_SWS_SPI_HandlerDriver.pdf)
7. Specification of ICU Driver (AUTOSAR_SWS_ICUDriver.pdf) 4.2.0
Specification of MCU Driver (AUTOSAR_SWS_MCUDriver.pdf) 3.2.0
9. Specification of GPT Driver (AUTOSAR_SWS_GPTDriver.pdf) 3.2.0
10. Specification of Watchdog Driver (AUTOSAR_SWS_WatchdogDriver.pdf) 2.5.0
11 Specification of LIN Driver (AUTOSAR_SWS_LINDriver.pdf) 1.5.0
12. Specification of FR Driver (AUTOSAR_SWS_FlexRayDriver.pdf) 25.0
13. Specification of RAMTST Driver (AUTOSAR_SWS_RAMTest Driver.pdf) 1.5.0
14. Specification of CORTST Driver (AUTOSAR_SWS_CoreTest.pdf) 1.2.0
15. Specification of FLSTST Driver (AUTOSAR_SWS_FlashTest.pdf) 1.2.0
16. Specification of ETH Driver (AUTOSAR_SWS_EthernetDriver.pdf) 1.2.0

13

Chapter 2 REFERENCE DOCUMENTS

14

AUTOSAR MODULES Chapter 3

Chapter 3 AUTOSAR MODULES

3.1 MCAL Module

The MicroController Abstraction layer is the lowest software layer of the Basic
Software. It contains internal drivers, which are software modules with direct
access to the pC internal peripherals and memory mapped uC external
devices. Make higher software layers independent of uC.

The modules developed for MCAL layer are as follows:

ADC
PWM
PORT
DIO

FLS

SPI

ICU
MCU
GPT
WDG

LIN

FR
RAMTST
CORTST
FLSTST
ETH

3.1.1. ADC Driver Component

3.1.1.1. Module Overview

The ADC driver shall initialize and control the internal Analog Digital Converter
unit of the microcontroller. The driver is equipped with a set of basic
functionalities with single value result access mode and streaming access
mode.

A One Shot conversion shall be started by a software trigger or a hardware
event whereas a Continuous conversion shall be started by a software trigger
only. The ADC conversion results shall be returned by an ADC read service.
This service shall return the last converted result from an external result buffer.

The ADC Driver software component shall provide the following main features:

* Single value results access mode supports One-Shot conversion and
Continuous conversion

* Streaming access mode supports linear buffer conversion and circular
buffer conversion

* Various API services for functionalities like initialization, de-
initialization, starting and stopping of ADC channels

¢ Notifications services for ADC channels
15

Chapter 3

AUTOSAR MODULES

16

3.1.1.2.

3.1.1.3.

3.1.1.4.

* Hardware Trigger services for ADC channels
* Channel group priority mechanism

Module Dependency

The dependency of ADC Driver on other modules and the required
implementation is briefed as follows:

DET

In development mode the Development Error Tracer (DET) will be called
whenever this module encounters a development error.

DEM

The Diagnostic Event manager (DEM) will be called whenever this module
encounters a production relevant error.

PORT driver

Port pins used by the ADC Driver shall be configured using the PORT module.
Both analog input pins and external trigger pins have to be considered.

IO Hardware Abstraction Layer

The ADC driver depends on the 10 Hardware Abstraction Layer, which invokes
the APIs and receives the callback notifications. If IO Hardware Abstraction
Layer Module is not available, then the required functionality shall be stubbed.

RTE

The Run time Environment (RTE) module will be called whenever a critical
section protection function is called.

(ON)

The ADC driver uses interrupts and therefore there is a dependency on the OS
which configures the interrupt sources. If OS is not available, then the
configuration of interrupt sources shall be stubbed.

Configuration Parameter Dependency
None

Source Code Dependency

The following are the common dependent used files by the ADC Driver
module:

Det.h,

Dem.h,

MemMap.h,

Platform_Types.h,

Std_Types.h,

SchM_Adc.h

Rte.h

Os.h

rh850_ Types.h

AUTOSAR MODULES

Chapter 3

3.1.1.5.

3.1.2.

3.1.2.1.

Stubs
Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the
path

“X1X\common_platform\generic\stubs\<Autosar Version>\"

The tables below will provide the common stubs to be used for ADC Driver
component

Table 3-1 : ADC Driver Component Common Stubs

Common Stubs Path
Det X1X\common_platform\generic\stubs\<Autosar
Version>\Det
SchM X1X\common_platform\generic\stubs\<Autosar
Version>\SchM
Os X1X\common_platform\generic\stubs\<Autosar

Version>\0Os

Dem X1X\common_platform\generic\stubs\<Autosar
Version>\Dem

PWM Driver Component

Module Overview

The PWM Driver Component provides services for PWM Driver Component
initialization, de-initialization, setting the period and duty cycle for a PWM
channel, reading the internal state of PWM output signal and setting the PWM
output to idle state and disabling or enabling the PWM signal edge
notification. The PWM Driver Component is part of the Microcontroller
Abstraction Layer (MCAL), the lowest layer of Basic Software in the AUTOSAR
environment.

The PWM Driver Component is divided into PWM High Level Driver and PWM
Low Level Driver to minimize the effort and to optimize the reuse of developed
software on different platforms.

The PWM High Level Driver exports the APIs to the upper modules. All the
references to specific microcontroller features and registers are provided in
PWM Low Level Driver.

ATOM submodule of Generic Timer Module is used to generate variable
PWM output.

The channel level notifications are provided for the rising edge, falling edge
and both edges. Any of these natifications will be active only when these are
configured for the corresponding channel and enabled by using PWM Driver
Component APIs.

The PWM Driver component should provide following services based on the
functions performed by the PWM Driver:

¢ Initialization

¢ De-Initialization

17

Chapter 3

AUTOSAR MODULES

18

3.1.2.2.

3.1.2.3.

3.1.2.4.

» Set the channel output to Idle
* Get the channel output state
* Set Duty Cycle

» Set Duty Cycle and Period

* Notification services (at the beginning, at the end and on both edged of
a period)

* Get Version information

Module Dependency

The dependency of PWM Driver on other modules and the required
implementation is briefed as follows:

DET

In development mode the Development Error Tracer (DET) will be called
whenever this module encounters a development error.

DEM

The Diagnostic Event manager (DEM) will be called whenever this module
encounters a production relevant error.

MCU Driver

The Microcontroller Unit Driver (MCU Driver) is primarily responsible for
initializing the GTM CMU clock sources.

PORT driver
Port pins used by the PWM Driver shall be configured using the PORT module.

IO Hardware Abstraction Layer

The PWM driver depends on the IO Hardware Abstraction Layer, which
invokes the APIs and receives the callback notifications. If IO Hardware
Abstraction Layer Module is not available, then the required functionality shall
be stubbed.

(ON)

The PWM driver uses interrupts and therefore there is a dependency on the
OS which configures the interrupt sources. If OS is not available, then the
configuration of interrupt sources shall be stubbed.

RTE

The Run time Environment (RTE) module will be called whenever a critical
section protection function is called.

Configuration Parameter Dependency

The PWM Driver Depends on MCU for the clock source configuration. Hence
the parameter

‘PwmGTMClockRef in the ‘PwmGeneral’ container refers to the path
“/Renesas/EcucDefs_Mcu/Mcu0/McuModuleConfiguration0/McuGTMClockSett
ingsConfig0”

Source Code Dependency

The following are the common dependent used files by the PWM Driver
module:

AUTOSAR MODULES Chapter 3

Det.h,

Dem.h,
MemMap.h,
Platform_Types.h,
Std_Types.h,
SchM_Pwm.h
Rte.h

Os.h

rh850_Types.h

3.1.2.5. Stubs
Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the
path

“X1X\common_platform\generic\stubs\<Autosar Version>\"

The table below will provide the common stubs to be used for PWM Driver
component

Table 3-2 : PWM Driver Component Common Stubs

Common Stubs Path
Det X1X\common_platform\generic\stubs\<Autosar
Version>\Det
SchM X1X\common_platform\generic\stubs\<Autosar
Version>\SchM
Os X1X\common_platform\generic\stubs\<Autosar

Version>\0Os

Dem X1X\common_platform\generic\stubs\<Autosar
Version>\Dem

3.1.3. PORT Driver Component

3.1.3.1. Module Overview

The PORT Driver Component access the hardware features directly. The
upper layers call the functionalities provided by these components.

The PORT Driver Component provides services for:

+ Initialization of every port pins to configured functionality.
* Changing the port pin direction during run time.

+ Refreshing the port pin directions.

* Setting the port pin mode during runtime.

* Reading module version

19

Chapter 3 AUTOSAR MODULES

3.1.3.2. Module Dependency

The dependency of PORT Driver on other modules and the required
implementation is briefed as follows:

DET
In development mode the Development Error Tracer (DET) will be called
whenever this module encounters a development error.
DEM
The Diagnostic Event manager (DEM) will be called whenever this module
encounters a production relevant error.
RTE
The Run time Environment (RTE) module will be called whenever a critical
section protection function is called.

3.1.3.3. Configuration Parameter Dependency

None.

3.1.3.4. Source Code Dependency

The following are the common dependent used files by the PORT Driver
module:

Det.h,

Dem.h,
MemMap.h,
Platform_Types.h,
Std_Types.h,
SchM_Port.h
Rte.h and

3.1.3.5. Stubs
Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the
path

“X1X\common_platform\generic\stubs\<Autosar Version>"
The table below will provide the common stubs to be used for PORT Driver
component

Table 3-3 : PORT Driver Component Common Stubs

Common Stubs Path
Det X1X\common_platform\generic\stubs\<Autosar
Version>\Det
SchM X1X\common_platform\generic\stubs\<Autosar
Version>\SchM
Dem X1X\common_platform\generic\stubs\<Autosar

Version>\Dem

20

AUTOSAR MODULES

Chapter 3

3.1.4.

3.1.4.1.

3.1.4.2.

3.1.4.3.

3.1.4.4.

3.1.4.5.

DIO Driver Component

Module Overview

The DIO Driver Component access the hardware features directly. The upper
layers call the functionalities provided by these components.

The DIO Driver Component provides services for:
* Reading from / writing to DIO Channel

* Reading from / writing to DIO Ports

* Reading from / writing to DIO Channel Groups

* Reading module version.

Module Dependency

The dependency of DIO Driver on other modules and the required
implementation is briefed as follows:

DET

In development mode the Development Error Tracer (DET) will be called
whenever this module encounters a development error.

DEM

The Diagnostic Event manager (DEM) will be called whenever this module
encounters a production relevant error.

PORT driver

Port pins used by the DIO Driver shall be configured using the PORT module.

Configuration Parameter Dependency

None

Source Code Dependency

The following are the common dependent used files by the DIO Driver module:
Det.h,

Dem.h,

MemMap.h,

Platform_Types.h and

Std_Types.h

Stubs

The DIO driver uses Stubs which is categorized as common stubs and
available in the path

“X1X\common_platform\generic\stubs\<Autosar Version>"

The table below provides the common stubs to be used for DIO Driver
component:

21

Chapter 3

AUTOSAR MODULES

22

3.1.5.

3.15.1.

3.1.5.2.

3.1.5.3.

Table 3-4 : DIO Driver Component Common Stubs
Common Stubs Path
Det X1X\common_platform\generic\stubs\<Autosar

Version>\Det

Dem X1X\common_platform\generic\stubs\<Autosar
Version>\Dem

FLS Software Component

Module Overview

The FLS software component provides services for reading, writing, comparing
and erasing flash memory.

The FLS Component conforms to the AUTOSAR standard and is implemented
mapping to the AUTOSAR FLS Software Specification.

The FLS Driver Software Component provides services for:
* Initialization

* FErasing the flash memory

* Reading from the flash memory

e Writing to the flash memory

* Validating contents of flash memory

e Cancellation of Request

* Job result and status information

* Background job processing

* Module version information

* Job Processing

Module Dependency

The dependency of FLS software component on other modules and the
required implementation is briefed as follows:

DET
In development mode the Development Error Tracer (DET) will be called
whenever this module encounters a development error.

DEM

The Diagnostic Event manager (DEM) will be called whenever this module
encounters a production relevant error.

RTE

The Run time Environment (RTE) module will be called whenever a critical
section protection function is called.

Configuration Parameter Dependency

The FLS Driver Depends on the MCU Driver for clock value. Hence the
parameter ‘FIsCpuFrequency’ in the ‘FIsDataFlash’ container refers to the
path
/AUTOSAR/EcucDefs_Mcu/McuO/McuModuleConfigurationO/McuClockSett

AUTOSAR MODULES

Chapter 3

3.1.5.4.

3.1.5.5.

3.1.6.

3.1.6.1.

ingConfig0/McuPLLCIkSetting0

Source Code Dependency

The following are the common dependent used files by the FLS Software
Component module:

Det.h,

Dem.h,
MemMap.h,
Platform_Types.h,
Std_Types.h,
SchM_Fls.h,

Rte.h

rh850_Types.h

Stubs
Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the
path

“X1X\common_platform\generic\stubs\<Autosar Version>"

The tables below will provide the common stubs to be used for FLS Software
component.

Table 3-5 : FLS Software Component Common Stubs
Common Stubs Path

Det X1X\common_platform\generic\stubs\<Autosar
Version>\Det

Dem X1X\common_platform\generic\stubs\<Autosar
Version>\Dem

SchM X1X\common_platform\generic\stubs\<Autosar
Version>\SchM

SPI Driver Component

Module Overview

The SPI driver is split as High Level Driver and Low Level Driver. The High
Level Driver exports the AUTOSAR API towards upper modules and it will be
designed to allow the compilation for different platforms without or only slight
modifications, i.e. that no reference to specific microcontroller features or
registers will appear in the High Level Driver. All these references are moved
inside a uC specific Low Level Driver. The Low Level Driver interface extends
the High Level Driver types and methods in order to adapt it to the specific
target microcontroller.

The SPI Driver Component provides services for:
« Initialization and De-initialization
» Buffer Management
23

Chapter 3

AUTOSAR MODULES

24

3.1.6.2.

3.1.6.3.

3.1.6.4.

+ Communication

* Status information

* Module version information
* Memory mapping

* Compiler abstraction

Module Dependency

The dependency of SPI Driver on other modules and the required
implementation is briefed as follows:

DET

In development mode, the Development Error Tracer (DET) will be called
whenever this module encounters a development error.

PORT

The CSIG HW Units uses port lines as external chip selects. In this case, the
chip select is realized using microcontroller pins and hence the SPI module
has a relationship with PORT module for initializing appropriate mode and
direction of the port lines.

The basic SPI functionality for both CSIG and CSIH has to be configured as an
alternate functionality by the PORT module.

IO Hardware Abstraction Layer

The 10 Hardware Abstraction Layer invokes APIs of the SPI module and
receives the callback notifications.

Memory Hardware Abstraction Layer

The Memory Hardware Abstraction Layer invokes APIs of the SPI module in
case driver for any external memory devices (for example, external EEPROM)
are implemented through the SPI module.

Onboard Device Abstraction Layer
The Onboard Device Abstraction Layer invokes APIs of the SPI module in
case driver for any external devices (for example, external watchdog) are
implemented through the SPI module.

RTE

The functions related to critical section protection area of the SPI module are
invoked by the Run time Environment (RTE) module.

DEM
The SPI module uses the DEM module for getting the reference for all
production errors.

Configuration Parameter Dependency

The SPI Driver Depends on the MCU Driver for clock value. Hence the
parameter ‘SpiClockFrequencyRef’ in the ‘SpiExternalDevice’ container
refers to the path
/Renesas/EcucDefs_Mcu/Mcu/McuModuleConfiguration0/McuClockSettingC
onfigd0/McuClockReferencePoint0O/McuClockReferencePointFrequency

Source Code Dependency

The following are the common dependent used files by the SPI Driver module:

AUTOSAR MODULES Chapter 3

Det.h,

Dem.h,
MemMap.h,
Platform_Types.h,
Std_Types.h,
SchM_Spi.h

Rte.h

Os.h

rh850_Types.h

3.1.6.5. Stubs
Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the
path

“X1X\common_platform\generic\stubs\<Autosar Version>"

The tables below will provide the common stubs to be used for SPI Driver

component
Table 3-6 . SPI Driver Component Common Stubs
Common Stubs Path

Det X1X\common_platform\generic\stubs\<Autosar
Version>\Det

Dem X1X\common_platform\generic\stubs\<Autosar
Version>\Dem

SchM X1X\common_platform\generic\stubs\<Autosar
Version>\SchM

Os X1X\common_platform\generic\stubs\<Autosar
Version>\0s

3.1.7. ICU Driver Component

3.1.7.1. Module Overview
The ICU Driver Component provides following services:
» Signal Edge detection and notification
« Services for Driver initialization and de-initialization
* Signal time measurement like Active Time, Period Time and Duty cycle
* Signal Edge time stamping and Edge counting
* Support Post-build configurations

The ICU Driver Component is part of the Microcontroller Abstraction Layer
(MCAL), the lowest layer of Basic Software in the AUTOSAR environment.
Different applications require different number of ICU channels in different
modes. Therefore, the timer operation modes and external interrupts have
to be selected depending on ICU measurement mode. For P1x-C
microcontroller generation, following concepts are considered:

25

Chapter 3

AUTOSAR MODULES

26

3.1.7.2.

* Using TIMO/TIM1 channels for Edge Counting Measurement mode
* Using TIMO/TIM1 channels for Time Stamping Measurement mode
* Using TIMO/TIM1 channels for Signal Measurement mode

* Using TIMO/TIM1 and External Interrupts channels for Edge Detection
mode

The ICU channel can be configured to either a timer channel or an external
interrupt based on the required measurement mode. The configuration for
Edge Detection measurement mode will be made only for an external interrupt
channel and TIMO/TIM1 channels. The remaining three measurement modes
viz. Edge Counting, Time Stamping and Signal Measurement should be
configured only for the TIMO/TIM1 channels. The configuration of Timer in
different operating modes will be taken care by the software itself.

The ICU Driver component can be divided into following sections based on the
functions performed by the ICU Driver:

* Initialization

* De-lInitialization

* Wakeup Services

* Notification Services

* Signal Measurement Services

+ Signal Activation and State Information Services

¢ Version Information

Module Dependency

The dependency of ICU Driver on other modules and the required
implementation is briefed as follows:

MCU Driver

The Microcontroller Unit Driver (MCU Driver) is primarily responsible for
initializing the GTM CMU clock sources.

oS

The ICU driver uses interrupts and therefore there is a dependency on the OS
which configures the interrupt sources. If OS is not available, then the
configuration of interrupt sources shall be stubbed.

PORT Module

The configuration of port pins used for the ICU as inputs is done by the PORT
driver. Hence the PORT driver has to be initialized prior to the use of ICU
functions. If the PORT Driver is not available, then the configuration of port
pins used for the ICU shall be stubbed.

In order to use the external interrupt functionality, port filter of respective

AUTOSAR MODULES

Chapter 3

3.1.7.3.

3.1.7.4.

external interrupt needs to be enabled in PORT component. ICU can override
edge detection settings and PORT can do as well. The registers FCLAXCTLX
are used by ICU and PORT at the same time and the order of calling APlIs is

important.

EcuM Module

The ICU driver shall do the reporting of wakeup interrupts to the EcuM. If the
EcuM is not available, and then the required functionality shall be stubbed.

DET Module

If the Development Error Tracer is not available, stubs need to be used to the
interfaces for those modules.

IO Hardware Abstraction Layer Module

The ICU driver depends on the I/O Hardware Abstraction Layer which invokes
the APIs and receives the call-back notifications. If I/O Hardware Abstraction
Layer Module is not available, then the required functionality shall be stubbed.

RTE Module

The ICU driver shall perform data protection using SchM APIs. If the SchM is
not available, then the required functionality shall be stubbed.

Configuration Parameter Dependency

The ICU Driver Depends on EcuM. Hence the parameter
‘lcuChannelWakeuplinfo’in the ‘lcuWakeup’ container of each channel refers
to the path
‘/Renesas/EcucDefs_Icu/EcuMO/EcuMConfiguration0/EcuMCommonConfig
urationO/EcuMWakeupSource_1".

The ICU Driver Depends on MCU for the clock source configuration. Hence the
parameter

‘lcuGTMClockRef’ in the ‘lcuGeneral’ container refers to the path
“/Renesas/EcucDefs_Msn/Mcu0/McuModuleConfiguration0/McuGTMClockSetti
ngsConfig0”

Source Code Dependency
The following are the common dependent used files by the ICU Driver module:
Det.h,

MemMap.h,
Platform_Types.h,
Std_Types.h,

SchM_Icu.h,

Rte.h,

EcuM.h

EcuM_Cfg.h

EcuM_Cbk.h

Os.h

rh850_Types.h

27

Chapter 3 AUTOSAR MODULES

3.1.7.5. Stubs
Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the
path

“X1X\common_platform\generic\stubs\<Autosar Version>"

The table below will provide the common stubs to be used for ICU Driver

component.
Table 3-7 : ICU Driver Component Common Stubs
Common Stubs Path

Det X1X\common_platform\generic\stubs\<Autosar
Version>\Det

EcuM X1X\common_platform\generic\stubs\<Autosar
Version>\EcuM

Os X1X\common_platform\generic\stubs\<Autosar
Version>\0s

3.1.8. MCU Driver Component

3.1.8.1. Module Overview

The MCU Driver accesses the hardware features directly. The upper layers call
the functionalities provided by the Driver. MCU component has functionalities
related PLL Initialization, Clock Initialization & Distribution, RAM sections, Pre-
Scaler Initializations, MCU Reduced Power Modes Activation and MCU Reset
Activation & Reason.

The MCU Driver component is divided into the following sub modules based
on the functionality required:

* Initialization

* Clock Initialization

* PLL Clock Distribution

* MCU Reduced Power Modes Activation
* RAM sections Initialization

* MCU Reset Activation & Reason

¢« Module Version Info

3.1.8.2. Module Dependency
DET

In development mode the Development Error Tracer (DET) will be called
whenever this module encounters a development error.

DEM
Production errors will be reported to the Diagnostic Event Manager (DEM).
EcuM

The reference for the type of reset will be provided by the Mcu driver to the
ECU State manager module.

28

AUTOSAR MODULES Chapter 3

(O]

The MCU driver uses interrupts and therefore there is a dependency on the
OS which configures the interrupt sources. If OS is not available, then the
configuration of interrupt sources shall be stubbed.

RTE Module

The MCU driver shall perform data protection using SchM APIs. If the SchM
is not available, then the required functionality shall be stubbed.

3.1.8.3. Configuration Parameter Dependency

None

3.1.8.4. Source Code Dependency

The following are the common dependent used files by the MCU Driver
module:

Det.h,

Dem.h
MemMap.h,
Platform_Types.h,
Std_Types.h,
Rte.h,
SchM_Mcu.h

Os.h

rh850_Types.h

3.1.8.5. Stubs

Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the
path

“X1X\common_platform\generic\stubs\<Autosar Version>"

The table below will provide the common stubs to be used for MCU Driver
component.

Table 3-8 : MCU Driver Component Common Stubs

Common Stubs Path

Det X1X\common_platform\generic\stubs\<Autosar
Version>\Det

Dem X1X\common_platform\generic\stubs\<Autosar
Version>\Dem

SchM \X1X\common_platform\generic\stubs\<Autosar
Version>\SchM

Os X1X\common_platform\generic\stubs\<Autosar

Version>\0s

29

Chapter 3

AUTOSAR MODULES

30

3.1.9.

3.1.9.1.

3.1.9.2.

GPT Driver Component

Module Overview

The GPT Driver Component provides services for GPT Driver Component
Initialization, De-initialization, Setting starting and stopping a timer, getting
elapsed and remaining time, setting GPT mode (one shot, continuous) and
Disabling or Enabling the GPT notification. The GPT Driver Component is part
of the Microcontroller Abstraction Layer (MCAL), the lowest layer of Basic
Software in the AUTOSAR environment.

The GPT Driver Component is divided into GPT High Level Driver and GPT
Low Level Driver to minimize the effort and to optimize the reuse of developed
software on different platforms.

The GPT High Level Driver exports the APIs to the upper modules. All the
references to specific microcontroller features and registers are provided in
GPT Low Level Driver.

The GPT channel can be configured to either as continuous mode or one-shot
mode. In continuous mode, the timers keep operating even after the target
value is reached and it has multiple natifications (if enabled).

The ATOM sub modules in GTM consist of ATOMO, ATOM1 and ATOM2 are
used in GPT Driver Component to generate timeout periods.

The GPT Driver component should provide following services based on the
functions performed by the GPT Driver:

» Initialization: Provides the service to initialize the timer control registers
and interrupt registers

» De-Initialization: Provides the service to reinitialize the timer registers
and to stop the channels that are running

» Reading of timer values: Provides services for reading the elapsed time
after the timer is started or Service for reading the remaining time
before the next timeout

» Start/Stop timer: Provides the service to start/stop the requested
timer channel

» Set mode for GPT(continuous, one shot): Provides services for the
user to select the mode

« Notification services: Provides services for the user to enable or
disable the notification for every timeout

* Wakeup Services: Provides services for the user to enable or
disable the wakeup notification.

« Get version information: Provides the service for the user to read
module version
Module Dependency

The dependency of GPT Driver on other modules and the required
implementation is briefed as follows:

DET

In development mode the Development Error Tracer will be called whenever
this module encounters a development error.

AUTOSAR MODULES

Chapter 3

3.1.9.3.

3.1.9.4.

DEM

The Diagnostic Event manager (DEM) will be called whenever this module
encounters a production relevant error.

MCU Driver

The Microcontroller Unit Driver (MCU Driver) is primarily responsible for
initializing the GTM CMU clock sources.

EcuM

The GPT driver shall do the reporting of wakeup interrupts to the EcuM. If the
EcuM is not available, then the required functionality shall be stubbed.

RTE

The Run time Environment (RTE) module will be called whenever a critical
section protection function is called.

0s

The GPT driver uses interrupts and therefore there is a dependency on the OS
which configures the interrupt sources. If OS is not available, then the
configuration of interrupt sources shall be stubbed.

Configuration Parameter Dependency

The GPT Driver Depends on EcuM. Hence the parameter

‘GptWakeupSourceRef’ in the ‘GptWakeupConfiguration’ container of each channel

refers to the path

“/Renesas/EcucDefs_Gpt/EcuM0/EcuMConfiguration0/EcuMCommonConfiguration

O/EcuMWakeupSource_1".

The GPT Driver Depends on the MCU Driver for clock source configuration. Hence
the parameter GptGTMClockRef in the container GptDriverConfiguration refers to

the path

“/Renesas/EcucDefs_Msn/Mcu0/McuModuleConfigurationO/McuGTMClockSettings

Config0”.

Source Code Dependency

The following are the common dependent used files by the GPT Driver
module:

Det.h,

Dem.h,
MemMap.h,
Platform_Types.h,
Std_Types.h,
SchM_Gpt.h,
Rte.h,

Os.h

EcuM.h
EcuM_Cbk.h

rh850_ Types.h
31

Chapter 3 AUTOSAR MODULES

3.1.9.5. Stubs
Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the
path

“X1X\common_platform\generic\stubs\<Autosar Version>”
The table below will provide the common stubs to be used for GPT Driver
component.

Table 3-9 : GPT Driver Component Common Stubs

Common Stubs Path

Det X1X\common_platform\generic\stubs\<Autosar
Version>\Det

Dem X1X\common_platform\generic\stubs\<Autosar
Version>\Dem

EcuM X1X\common_platform\generic\stubs\<Autosar
Version>\EcuM

Os X1X\common_platform\generic\stubs\<Autosar
Version>\0s

3.1.10. WDG Driver Component

3.1.10.1. Module Overview

Watchdog Driver module provides the services for initializing, changing the
operation mode and triggering the watchdog.

The Watchdog Driver accesses the microcontroller hardware directly and
Interface communicates with the application.

The Watchdog Driver component is composed of following modules:
* Watchdog Driver Initialization module

* Watchdog Driver SetMode module

* Watchdog Driver Trigger module

* Watchdog Driver Version info module

3.1.10.2. Module Dependency
DET

In development mode the Development Error Tracer (DET) will be called
whenever this module encounters a development error.

DEM
Production errors will be reported to the Diagnostic Event Manager (DEM).
RTE

The Run time Environment (RTE) module will be called whenever a critical
section protection function is called.

MCU Driver

The count which indicates the number of times the watchdog should be
triggered for a trigger condition’s timeout value depends on WDTATCLKI,

32

AUTOSAR MODULES

Chapter 3

3.1.10.3.

3.1.10.4.

3.1.10.5.

hence MCU reference path will be provided in the parameter definition file.
0s

The WDG driver uses interrupts and therefore there is a dependency on the
OS which configures the interrupt sources. If OS is not available, then the
configuration of interrupt sources shall be stubbed.

Configuration Parameter Dependency

The Watchdog Driver Depends on the MCU Driver for clock value. Hence
the parameter ‘WdgClockRef in the ‘WdgGeneral’ container refers to the
path

“/Renesas/EcucDefs_Msn/Mcu0/McuModuleConfiguration0O/McuGTMClock
SettingsConfig0”
Source Code Dependency

The following are the common dependent used files by the WDG Driver
module:

Det.h,

Dem.h
Wdglf_Types.h
MemMap.h,
Platform_Types.h,
Rte.h
Std_Types.h

Os.h

rh850_Types.h

Stubs
Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the
path

“X1X\common_platform\generic\stubs\<Autosar Version>"

The table below will provide the common stubs to be used for WDG Driver
component.

Table 3-10 : WDG Driver Component Common Stubs
Common Stubs Path

Det X1X\common_platform\generic\stubs\<Autosar
Version>\Det

Dem X1X\common_platform\generic\stubs\<Autosar
Version>\Dem

Wdglf X1X\common_platform\generic\stubs\<Autosar
Version>\Wdglf

Os X1X\common_platform\generic\stubs\<Autosar

Version>\0Os

33

Chapter 3 AUTOSAR MODULES

3.1.11. LIN Driver Component

3.1.11.1. Module Overview

The LIN driver is part of the microcontroller abstraction layer (MCAL),
performs the hardware access and offers hardware independent API to the
upper layer. Several LIN Controllers is controlled by the LIN Driver as long as
they belong to the same LIN Hardware Unit.

The LIN Driver software component shall provide the following main features:

The LIN Driver Component fulfills requirements of upper layer
communication components with respect to Initialization, Transmit and
Receive confirmation and Wakeup notification to ECU State Manager.

3.1.11.2. Module Dependency

The dependency of LIN Driver on other modules and the required
implementation is briefed as follows:
DET

In development mode the Development Error Tracer (DET) will be called
whenever this module encounters a development error.

DEM

The Diagnostic Event manager (DEM) will be called whenever LIN module
encounters a production relevant error.

MCU Driver

LIN driver depend on MCU Driver for the setting of channel clock.

ECU State Manager

If controller wake-up event is detected LIN Driver Component provides the
call out natification functionality to the EcuM.

oS

The LIN driver uses interrupts and hence there is a dependency on the OS,
which configures the interrupt sources. If OS is not available, then the
configuration of interrupt sources shall be stubbed.

3.1.11.3. Configuration Parameter Dependency

The LIN Driver Depends on the MCU Driver for clock value. Hence the
parameter ‘LinClockRef in the ‘LinChannel’ container refers to the path
“/Renesas/EcucDefs_Mcu/Mcu/McuModuleConfiguration0/McuClockSettin
gConfig0/McuClockReferencePoint0”

3.1.11.4. Source Code Dependency
The following are the common dependent used files by the LIN Driver
module:
Det.h,
Dem.h,

EcuM.h,

34

AUTOSAR MODULES

Chapter 3

EcuM_Cfg.h,
EcuM_Cbk.h,
Dem.h
MemMap.h,
Platform_Types.h,
Std_Types.h,
Rte.h

SchM_Lin.h

rh850_Types.h

3.1.11.5. Stubs

Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the

path

“X1X\common_platform\generic\stubs\<Autosar Version>"

The tables below will provide the common and port specific stubs to be used

for LIN Driver component

Table 3-11

: LIN Driver Component Common Stubs

Common Stubs

Path

Det

\X1X\common_platform\generic\stubs\<Autosar
Version>\Det

EcuM

\X1X\common_platform\generic\stubs\<Autosar
Version>\EcuM

SchM

\X1X\common_platform\generic\stubs\<Autosar
Version>\SchM

Dem

\X1X\common_platform\generic\stubs\<Autosar
Version>\Dem

Os

\X1X\common_platform\generic\stubs\<Autosar
Version>\0Os

Table 3-12

: LIN Driver Component Specific Stubs

Lin Specific Stubs

Path

Mcu

\X1X\common_platform\generic\stubs\<Autosar
Version>\Mcu

SchM

\X1X\common_platform\generic\stubs\<Autosar
Version>\SchM

EcuM

X1X\common_platform\generic\stubs\<Autosar
Version>\EcuM

Dem

X1X\common_platform\generic\stubs\<Autosar
Version>\Dem

35

Chapter 3

AUTOSAR MODULES

36

3.1.12.

3.1.12.1.

3.1.12.2.

3.1.12.3.

FR Driver Component

Module Overview

The FR driver provides services for FlexRay communication.
The FR driver component provides the following functionalities:

* Toinitialize the FlexRay communication controllers
» To start, halt or abort the communication

* To configure the channel for sending the wakeup pattern and to transmit
the wakeup pattern on the configured FlexRay channel

* To get the current POC status of CC

* To get the synchronization state of CC and to adjust the global time of
a FlexRay CC to an external clock source

+ To transmit the frames on the FlexRay channels

* To receive the frames transmitted on the FlexRay channels

* To get the current cycle and macrotick offset value of CC

* To set the value for absolute timer interrupt and to stop the absolute timer

* To enable/disable the absolute timer interrupt. To reset the interrupt
condition of absolute timer interrupt and to get the status of absolute
timer interrupt

* To get the Channel status, Clock Correction, Number of startup frames,
Clock Correction, Sync frame list and wakeup Rx status of CC

* To get the Nm Vector Information received on CC
* Tosend CCtoALLSLOTS and ALLOW_COLDSTART modes

* To reconfigure or disable an Lpdu in run time.

Module Dependency

The dependency of FR Driver on other modules and the required
implementation is briefed as follows:

DET

In development mode the Development Error Tracer (DET) will be called
whenever this module encounters a development error.

DEM

The Diagnostic Event manager (DEM) will be called whenever FR module
encounters a production relevant error.

0s

The FR driver uses interrupts and hence there is a dependency on the OS,
which configures the interrupt sources. If OS is not available, then the
configuration of interrupt sources shall be stubbed.

Configuration Parameter Dependency

None

AUTOSAR MODULES

Chapter 3

3.1.12.4.

3.1.12.5.

3.1.13.

3.1.13.1.

Source Code Dependency
The following are the common dependent used files by the FR Driver
module:

Det.h,

Dem.h

MemMap.h,
Platform_Types.h,
Std_Types.h,

Rte.h

SchM_Fr_59 Renesas.h
rh850_Types.h

Stubs
Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the
path

“X1X\common_platform\generic\stubs\<Autosar Version>"

The tables below will provide the common stubs to be used for FR Driver
component

Table 3-13 : FR Driver Component Common Stubs
Common Stubs Path
Det \X1X\common_platform\generic\stubs\<Autosar
Version>\Det
SchM \X1X\common_platform\generic\stubs\<Autosar
Version>\SchM
Dem \X1X\common_platform\generic\stubs\<Autosar

Version>\Dem

Os \X1X\common_platform\generic\stubs\<Autosar
Version>\Os

RAMTST Driver Component

Module Overview

The RAMTST driver is part of the microcontroller abstraction layer (MCAL),
performs the hardware access and offers hardware independent API to the
upper layer. RAMTST driver provides the feature to test the physical health
of RAM cells with different algorithms. If any fault is detected, notifications
are provided to upper layers to take necessary actions as well as Error
Corrections which are possible are done. It is not intended to test the contents
of the RAM. RAM used for registers is also tested.

A RAM Test may be called synchronously by the test environment (called
“foreground test”) or may be called in a cyclic manner by an OS task or other
cyclic calling method (called “background test”). The test environment may
select test parameters, start and stop the test, and get status reports.

37

Chapter 3

AUTOSAR MODULES

38

3.1.13.2.

3.1.13.3.

3.1.13.4.

3.1.13.5.

Module Dependency

The dependency of RAMTST Driver on other modules and the
required implementation is briefed as follows:
DET

In development mode the Development Error Tracer (DET) will be called
whenever this module encounters a development error.

DEM

The Diagnostic Event manager (DEM) will be called whenever RAMTST module
encounters a production relevant error.

RTE Module
The RAMTST driver shall perform data protection using SchM APIs.

Configuration Parameter Dependency

None.

Source Code Dependency

The following are the common dependent used files by the RAMTST
Driver module:

Det.h,

Dem.h

Dem_Cfg.h

MemMap.h,

Platform_Types.h,

Std_Types.h and

SchM_RamTst.h

Stubs

Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the
path

“X1X\common_platform\generic\stubs\<Autosar Version>"

The tables below will provide the common stubs to be used for RAMTST
Driver component

Table 3-14 : RAMTST Driver Component Common Stubs
Common Stubs Path
Det \X1X\common_platform\generic\stubs\<Autosar
Version>\Det
SchM \X1X\common_platform\generic\stubs\<Autosar
Version>\SchM
Dem \X1X\common_platform\generic\stubs\<Autosar

Version>\Dem

AUTOSAR MODULES

Chapter 3

3.1.14.

3.1.14.1.

3.1.14.2.

CORTST Driver Component

Module Overview

The CORTST module provides services for configuring, starting, polling,
terminating and notifying the application about Core Test results. It also
provides services for returning test results in a predefined way. Furthermore it
provides several tests to verify dedicated core functionality like e.g. general
purpose registers or Arithmetical and Logical Unit (ALU).

It is up to the user of Core Test Driver API to choose suitable test combination
and a scheduled execution order to fulfill the safety requirements of the
system. The behavior of those services is asynchronous or synchronous.

The functional parameters of CORTST software components are statically
configurable to fit as far as possible to the real needs of each ECU.

The CORTST Driver Component is divided into the following sub
modules based on the functionality required:
«Initialization and De-Initialization
* Abort the core test operation
*Getting the execution status of the CORTST driver
*Getting Fore ground and Back ground Test result and Test Signature
value
*Foreground Test and Background tests

*Module version information

Module Dependency

The dependency of CORTST Driver on other modules and the
required implementation is briefed as follows:
DET

In development mode the Development Error Tracer (DET) will be called
whenever this module encounters a development error.

DEM

The Diagnostic Event manager (DEM) will be called whenever CORTST
module encounters a production relevant error.

RTE

The Run time Environment (RTE) module will be called whenever a critical
section protection function is called.

(O]

The CORTST driver uses interrupts and hence there is a dependency on the
OS, which configures the interrupt sources. If OS is not available, then the
configuration of interrupt sources shall be stubbed.

39

Chapter 3

AUTOSAR MODULES

40

3.1.14.3.

3.1.14.4.

3.1.14.5.

3.1.15.

3.1.15.1.

Configuration Parameter Dependency

None

Source Code Dependency

The following are the common dependent used files by the CORTST
Driver module:

Det.h,

Dem.h

Os.h

MemMap.h,
Platform_Types.h,
Std_Types.h,
Rte.h
SchM_CorTst.h

rh850_Types.h

Stubs
Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the
path

“X1X\common_platform\generic\stubs\<Autosar Version>"

The tables below will provide the common stubs to be used for CORTST
Driver component

Table 3-15 . CORTST Driver Component Common Stubs
Common Stubs Path
Det \X1X\common_platform\generic\stubs\<Autosar
Version>\Det
SchM \X1X\common_platform\generic\stubs\<Autosar
Version>\SchM
Dem \X1X\common_platform\generic\stubs\<Autosar

Version>\Dem

Os \X1X\common_platform\generic\stubs\<Autosar
Version>\0Os

FLSTST Driver Component

Module Overview
The FLSTST Driver Component provides the following services:

* FLSTST Driver Component initialization

« De-initialization

AUTOSAR MODULES

Chapter 3

3.1.15.2.

3.1.15.3.

3.1.15.4.

3.1.15.5.

» Reading the internal state of FLSTST Output signal
* Setting the FLSTST Output to Idle state
* Disabling/Enabling the FLSTST signal edge notification

Module Dependency

The dependency of FLSTST Driver on other modules and the
required implementation is briefed as follows:

DET

In development mode the Development Error Tracer (DET) will be called
whenever this module encounters a development error.

DEM

The Diagnostic Event manager (DEM) will be called whenever FLSTST module
encounters a production relevant error.

RTE

The Run time Environment (RTE) module will be called whenever a critical
section protection function is called.

Configuration Parameter Dependency

None

Source Code Dependency

The following are the common dependent used files by the FLSTST
Driver module:

Det.h,

Dem.h

MemMap.h,

Platform_Types.h,

Std_Types.h,

Rte.h

SchM_FlIsTst.h

rh850_Types.h

Stubs
Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the
path

“X1X\common_platform\generic\stubs\<Autosar Version>"

The tables below will provide the common stubs to be used for FLSTST
Driver component

41

Chapter 3

AUTOSAR MODULES

42

Table 3-16 : FLSTST Driver Component Common Stubs

Common Stubs

Path

Det

\X1X\common_platform\generic\stubs\<Autosar
Version>\Det

SchMm \X1X\common_platform\generic\stubs\<Autosar
Version>\SchM
Dem \X1X\common_platform\generic\stubs\<Autosar

Version>\Dem

3.1.16. ETH Driver Component

3.1.16.1. Module Overview

The ETH Driver component can be divided into following sub components
based on the functions performed by the ETH Driver:

Driver Initialization

Controller Initialization

Setting and getting the Controller Mode
Getting the MAC Address of the Ethernet Controller
Writing MII Interface register

Reading MII Interface register

Getting the Counter State

Provide Transmit Buffer Access
Transmit Functionality

Receive Functionality

Transmit confirmation

Frame reception interrupt handling
Frame Transmission Interrupt handling
Module version information

Address Filtering

Magic Packet detection

3.1.16.2. Module Dependency

The dependency of ETH Driver on other modules and the required
implementation is briefed as follows:

DET

In development mode the Development Error Tracer (DET) will be called
whenever this module encounters a development error.

RTE

The Run time Environment (RTE) module will be called whenever a critical

AUTOSAR MODULES

Chapter 3

3.1.16.3.

3.1.16.4.

3.1.16.5.

3.2

section protection function is called.

Configuration Parameter Dependency

None

Source Code Dependency

The following are the common dependent used files by the ETH Driver
module:

Det.h,

MemMap.h,

Platform_Types.h,

Std_Types.h,

Rte.h

SchM_Eth.h

Os.h
rh850_Types.h
Stubs

Stubs are categorized as common stub.

The common stubs are common for all the X1X family and are available in the
path

“X1X\common_platform\generic\stubs\<Autosar Version>"

The table below will provide the common stubs to be used for ETH Driver
component.

Table 3-17 : ETH Driver Component Common Stubs
Common Stubs Path
Det \X1X\common_platform\generic\stubs\<Autosar
Version>\Det
SchM \X1X\common_platform\generic\stubs\<Autosar
Version>\SchM
Os X1X\common_platform\generic\stubs\<Autosar

Version>\0Os

RH850 Macros Definition:

The driver supports both Supervisor mode and User mode.

To provide the provision to the user, to adapt the Driver to operate either in
Supervisor/User Mode the IMRX/ICxxx register is moved to OS Module.

The macros provided in Table 3-17, available in rh850_types.h, should be
used as mentioned below to switch modes.

. To operate the driver in User Mode: User must modify these macros.

43

Chapter 3 AUTOSAR MODULES

. To operate the driver in Supervisor Mode: No modification is required.
Table 3-18 : Macro to perform write operation, on write enabled
Register
Macro Name Description Input
Parameter

RH850_SV_MODE_ICR_O This Macro performs supervisor SIZE :

R mode (SV) write enabled Register Register
ICxxx register writing which Access Size
involves an OR operation. ADDR :

Register
address

VAL : Value
to be written to
the register

RH850_SV_MODE_ICR_A This Macro performs supervisor SIZE :

ND mode(SV) write enabled Register
Register ICxxx register writing Access Size
which involves an AND ADDR :
operation. Register

address
VAL : Value
to be written
to the
register

RH850 SV_MODE_ICR_ W This Macro performs SIZE :

RITE_ONLY supervisor mode(SV) write Register
enabled Register ICxxx Access Size
register direct writing ADDR::
operation. Register

address
VAL : Value
to be written
to the
register

RH850 SV _MODE_IMR_O This Macro performs SIZE .

R supervisor mode(SV) write Register
enabled Register IMR register Access
writing which involves an OR Size
operation ADDR :

Register
address
VAL :
Value to be
written to
the register

44

AUTOSAR MODULES Chapter 3

RH850_SV_MODE_IMR_A This Macro performs SIZE :

ND supervisor mode(SV) write Register
enabled Register IMR register Access
writing which involves an AND Size
operation ADDR :
Register
address
VAL :
Value to be
written to
the register
RH850_SV_MODE_IMR_W This Macro performs SIZE :
RITE_ONLY supervisor mode (SV) write Register
enabled Register IMR register Access
direct writing operation. Size
ADDR :
Register
address
VAL :
Value to be
written to
the register

3.3 ICxxx Registers Setting for TBxxx-Bit

o The ICxxx register's TBxxx-Bit is used to select the way to determine the
interrupt vector.
0: Direct jumping to an address determined from the level of priority
1: Reference to a table.

e MCAL Driver does not set TBxxx bit. Hence user has to take care of
setting TBxxx-Bit before initializing MCAL driver.

45

Chapter 3

AUTOSAR MODULES

46

Revision History

SI.No.

Description

Version

Date

Initial Version

1.0.0

31-Jan-2013

Following changes are made:

1.
2.
3.
4

5.

Removed CAN and FEE driver components.

Updated GPT, ICU and PWM for GTM.

Updated Chapter 2 “REFERENCE DOCUMENTS”.

Added FR, RAMTST, CORTST, FLSTST and ETH Driver
components in Chapter 3 “AUTOSAR MODULES”
Removed all the information related to Autosar version 3.2.2

1.0.1

26-Apr-2016

The following changes are made:

1.

2.
3.

4.

Updated section Configuration Parameter Dependency for
GPT, ICU and PWM.

Added Dem for ADC, PWM, PORT, DIO, SPI, GPT.
Removed details regarding Dem from the section 3.1.16,
ETH.

Updated R number

1.0.2

29-Nov-2016

The following changes are made:

1.
2.

Updated R number of the document
Notice and copyright information are updated.

1.0.3

05-May-2017

47

AUTOSAR Modules Overview User’s Manual
Version 1.0.3

Publication Date: Rev.1.01, May 05, 2017

Published by: Renesas Electronics Corporation

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3

Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany

Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HAL Il Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2006-2017 Renesas Electronics Corporation. All rights reserved.

Colophon 4.1

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR Modules Overview

User’s Manual

RENESAS

R . R20UT3827EJ0101
Renesas Electronics Corporation

	Chapter 1 INTRODUCTION
	1.1. Document Overview

	Chapter 2 REFERENCE DOCUMENTS
	Chapter 3 AUTOSAR MODULES
	3.1 MCAL Module
	3.1.1. ADC Driver Component
	3.1.1.1. Module Overview
	3.1.1.2. Module Dependency
	3.1.1.3. Configuration Parameter Dependency
	3.1.1.4. Source Code Dependency
	3.1.1.5. Stubs

	3.1.2. PWM Driver Component
	3.1.2.1. Module Overview
	3.1.2.2. Module Dependency
	3.1.2.3. Configuration Parameter Dependency
	3.1.2.4. Source Code Dependency
	3.1.2.5. Stubs

	3.1.3. PORT Driver Component
	3.1.3.1. Module Overview
	3.1.3.2. Module Dependency
	3.1.3.3. Configuration Parameter Dependency
	3.1.3.4. Source Code Dependency
	3.1.3.5. Stubs

	3.1.4. DIO Driver Component
	3.1.4.1. Module Overview
	3.1.4.2. Module Dependency
	3.1.4.3. Configuration Parameter Dependency
	3.1.4.4. Source Code Dependency
	3.1.4.5. Stubs

	3.1.5. FLS Software Component
	3.1.5.1. Module Overview
	3.1.5.2. Module Dependency
	3.1.5.3. Configuration Parameter Dependency
	3.1.5.4. Source Code Dependency
	3.1.5.5. Stubs

	3.1.6. SPI Driver Component
	3.1.6.1. Module Overview
	3.1.6.2. Module Dependency
	3.1.6.3. Configuration Parameter Dependency
	3.1.6.4. Source Code Dependency
	3.1.6.5. Stubs

	3.1.7. ICU Driver Component
	3.1.7.1. Module Overview
	3.1.7.2. Module Dependency
	3.1.7.3. Configuration Parameter Dependency
	3.1.7.4. Source Code Dependency
	3.1.7.5. Stubs

	3.1.8. MCU Driver Component
	3.1.8.1. Module Overview
	3.1.8.2. Module Dependency
	3.1.8.3. Configuration Parameter Dependency
	3.1.8.4. Source Code Dependency
	3.1.8.5. Stubs

	3.1.9. GPT Driver Component
	3.1.9.1. Module Overview
	3.1.9.2. Module Dependency
	3.1.9.3. Configuration Parameter Dependency
	3.1.9.4. Source Code Dependency
	3.1.9.5. Stubs

	3.1.10. WDG Driver Component
	3.1.10.1. Module Overview
	3.1.10.2. Module Dependency
	3.1.10.3. Configuration Parameter Dependency
	3.1.10.4. Source Code Dependency
	3.1.10.5. Stubs

	3.1.11. LIN Driver Component
	3.1.11.1. Module Overview
	3.1.11.2. Module Dependency
	3.1.11.3. Configuration Parameter Dependency
	3.1.11.4. Source Code Dependency
	3.1.11.5. Stubs

	3.1.12. FR Driver Component
	3.1.12.1. Module Overview
	3.1.12.2. Module Dependency
	3.1.12.3. Configuration Parameter Dependency
	3.1.12.4. Source Code Dependency
	3.1.12.5. Stubs

	3.1.13. RAMTST Driver Component
	3.1.13.1. Module Overview
	3.1.13.2. Module Dependency
	3.1.13.3. Configuration Parameter Dependency
	3.1.13.4. Source Code Dependency
	3.1.13.5. Stubs

	3.1.14. CORTST Driver Component
	3.1.14.1. Module Overview
	3.1.14.2. Module Dependency
	3.1.14.3. Configuration Parameter Dependency
	3.1.14.4. Source Code Dependency
	3.1.14.5. Stubs

	3.1.15. FLSTST Driver Component
	3.1.15.1. Module Overview
	3.1.15.2. Module Dependency
	3.1.15.3. Configuration Parameter Dependency
	3.1.15.4. Source Code Dependency
	3.1.15.5. Stubs

	3.1.16. ETH Driver Component
	3.1.16.1. Module Overview
	3.1.16.2. Module Dependency
	3.1.16.3. Configuration Parameter Dependency
	3.1.16.4. Source Code Dependency
	3.1.16.5. Stubs

	3.2 RH850 Macros Definition:
	3.3 ICxxx Registers Setting for TBxxx-Bit

