VECTOR >

MICROSAR RTE

Technical Reference

Version 4.16.0

Author PES1.3

Status Released

VECTOR D>

Document Information

History

Technical Reference MICROSAR RTE

Author ___Date _Version Rematks

Bernd Sigle
Bernd Sigle
Bernd Sigle

Martin Schlodder
Martin Schlodder
Martin Schlodder
Martin Schlodder
Martin Schlodder

Bernd Sigle

Bernd Sigle
Martin Schlodder

Martin Schlodder
Bernd Sigle

Bernd Sigle

Martin Schlodder
Martin Schlodder
Bernd Sigle

Martin Schlodder
Bernd Sigle

Hannes Futter

Bernd Sigle

2005-11-14 2.0.0

2006-04-20 2.0.1

2006-07-11 2.0.2

2006-11-02
2006-11-15 2.0.4
2006-12-21 2.0.5
2007-01-17 2.0.6
2007-02-14 2.0.7

2.0.3

2007-02-19 2.0.8

2007-04-25 2.0.9

2007-04-27 2.0.10

2007-05-01 2.1.0

2007-07-27 2.1.1

2007-08-03 2.1.2
2007-11-16 2.1.3

2008-02-06 2.1.4

2008-03-11 2.1.5

2008-03-26 2.2.0

© 2017 Vector Informatik GmbH

Document completely reworked and adapted to
AUTOSAR RTE

API description for Rte_IRead / Rte_IWrite added,
description of used OS/COM services added

API description for Rte_Receive / Rte_Send added;
Adaptation to RTE SWS 1.0.0 Final

Separation of RTE and target package
Client/Server communication
Serialized client/server communication
Array data types

Added exclusive areas, removed description of
TargetPackages

Added transmission acknowledgement handling and
minor rework of the document

Added Rte_IStatus
Added IRV and Const/Enum
Completed documentation for Version 2.2

Added Rte_InitMemory, Rte_IWriteRef Runnable.
Added description of runnable activation offset und
updated picture of MICROSAR architecture.

Added description of template update.

Added warning regarding IWrite / IrvIWrite.
Added API descriptions of VFB trace hooks.
Updated data type info for nested types.

Updated descriptions on template merging and task
mapping.

Added description of Rte_Pim, Rte_CData,
Rte_Calprm and Rte_Result.

Added support of string data type.

Updated command line argument description.
Added NvVRAM mapping description.

Added chapter about compiler abstraction and
memory mapping.

Additional command line switches to support direct
generation on xml and dcf files.

Updated description of NV Memory Mapping and
Chapter about limitations added.

Chapter about compiler and memory abstraction
updated.

Support for AUTOSAR Release 3.0 added.

Version 4.16.0 2

based on template version 3.5

VECTOR >

Bernd Sigle

Bernd Sigle

Bernd Sigle

Bernd Sigle
Bernd Sigle

Bernd Sigle

Sascha Sommer
Bernd Sigle

Sascha Sommer
Bernd Sigle

Bernd Sigle

Bernd Sigle

2008-04-16 2.3.0

2008-07-16 2.4.0

2008-08-13 2.5.0

2008-10-23 2.6.0
2009-01-23 2.7.0

2009-03-26 2.8.0

2009-08-11 2.9.0

2009-10-22 2.10.0

2010-04-09 2.11.0

2010-05-25 2.11.1

© 2017 Vector Informatik GmbH

Technical Reference MICROSAR RTE

Added description about A2L file generation and
updated command line options and example calls to
cover also the AUTOSAR XML input files.

Removed limitations for multiple instantiation and
compatibility mode support.

Added description of indirect APIs Rte_Port, Rte_Ports
and Rte_NPorts. Added description of platform
dependent resource calculation.

Added description of memory protection support.

Added description of mode management APIs
Rte_Mode and Rte Switch and updated description of
Rte_Feedback.

Added description of Rte_Invalidate and
Rte_lInvalidate and added new Com APIs.

Added additional runnable trigger events and removed
section for runnables without trigger, which is no
longer supported.

Deviation for [rte_sws 2648] added.

Usage of new document template

Removed limitations for unconnected ports and for
data type generation.

Added description about usage of basic / extended
task

Added description of command line parameter -v
Added a warning for VFB trace hooks that prevent
macro optimizations

Explained that the Activation task attribute has to be
set for basic tasks

Init-Runnables no longer need to have a special suffix
Explained the new periodic trigger implementation
dialog.

Server runnables with CanBelnvokedConcurrently set
to false do not need to be mapped to tasks when the
calling clients cannot interrupt each other

Resource Usage is now listed in a HTML report

Updated version of referenced documents and of
supported AUTOSAR release.

Updated examples with new workspace file extension.
Added new defines for memory mapping.

Added description of user header file Rte_UserTypes.h
Updated component history and interface functions to
the OS. Added pictures of Rte Interfaces and Rte

Include Structure. Updated picture of MICROSAR
architecture. Rework of chapter structure.

Added description of RTE optimization mode

Version 4.16.0 3

based on template version 3.5

VECTOR >

Bernd Sigle

Sascha Sommer

Bernd Sigle

Bernd Sigle

Bernd Sigle

Stephanie Schaaf

Bernd Sigle

Sascha Sommer

Stephanie Schaaf

Bernd Sigle

Sascha Sommer

Bernd Sigle

Bernd Sigle

Bernd Sigle

Bernd Sigle

Stephanie Schaaf

Bernd Sigle

2010-05-26

2010-07-22

2010-09-28

2010-11-23

2011-07-25

2012-01-25

2012-05-18

2012-09-18

2012-08-28

2012-12-11

2013-03-26

2013-06-14

© 2017 Vector Informatik GmbH

2.12.0

2.13.0

2.13.1

2.14.0

2.15.0

2.16.0

217.0

2.18.0

3.90.0

4.0.0

41.0

411

Technical Reference MICROSAR RTE

Added new measurement chapter, added description
of COM Rx Filter, macros for access of invalid value,
initial value, lower and upper limit, added support of
minimum start interval and second array passing
variant. Support of AUTOSAR Release 3.1 (RTE SWS
2.2.0)

Added online calibration support. Removed limitation
of missing transmission error detection

Added more detailed description of extended record
data type compatibility rule

Removed obsolete command line parameters —bo, —bc
and -bn.

Added general support of AUTOSAR Release 3.2.1
(RTE SWS 2.4.0).

Added support of never received status.
Added support of S/R update handling.

Mentioned that —g ¢ and —g i ignore service
components when —m specifies an ECU project.

Explained RTE usage with Non-Trusted BSW

Added hint for FUNC_P2CONST() problems
Explained measurement of COM signals

Enhanced command line interface (support for several

generation modes in one command line call, optional
command line parameter —m)

Split of RTE into OS Application specific files

Byte arrays no longer need to be mapped to signals
groups

Allow configuration of Schedule() calls in non-
preemptive tasks

Corrected description how the Rte IsUpdated API can
be enabled

Added general support of AUTOSAR Release 3.2.2
(RTE SWS 2.5.0).
Added support of non-queued N:1 S/R communication

AUTOSAR 4.0.3 support, DaVinci Configurator 5
support

Updated API descriptions concerning
RTE_E_UNCONNECTED return code

Added description of Rte_UserTypes.h file which is
now also generated with the template mechanism
Added support of Rte_MemSeg.a2l file

Added description of —o sub option for A2L file path
Added Multi-Core support (S/R communication)

Added support of Inter-Runnable Variables with
composite data types

Version 4.16.0 4

based on template version 3.5

VECTOR >

Katharina Benkert
Stephanie Schaaf
Sascha Sommer
Bernd Sigle

Katharina Benkert
Sascha Sommer
Stephanie Schaaf

Stephanie Schaaf
Bernd Sigle

Bernd Sigle

Bernd Sigle
Bernd Sigle

2013-10-30 4.2.0

2014-02-06 4.3.0

2014-06-17 4.4.0

2014-08-13 4.4.1

2014-09-12 4.4.2
2014-08-13 4.5.0

© 2017 Vector Informatik GmbH

Technical Reference MICROSAR RTE

Added support for arrays of dynamic data length
(Rte_Send/Rte_Receive)

Added support for parallel generation for multiple
component types

Multicore support
Added support for SchM Contract Phase Generation
Added support for Nv Block SWCs

Added support of VFB Trace Client Prefixes
Optimized Multicore support without IOCs

Memory Protection support for Multicore systems
Inter-ECU sender/receiver communication, queued
sender/receiver communication and mapped
client/server calls are no longer limited to the BSW
partition

Added support of Development Error Reporting
Added support of registering XCP Events in the XCP
module configuration

Support for unconnected client ports for synchronous
C/S communication

Inter-Ecu C/S communication using SOME/IP
Transformer

Support for PR-Ports

S/R Serialization using SOME/IP Transformer and E2E
Transformer

Support LdCom

Described decimal coding of the version defines and
the return code of SchM_GetVersioninfo

Added chapter about additional copyrights of FOSS
Minor format changes only

Support Postbuild-Selectable for variant data
mappings and variant COM signals

Support E2E Transformer for Inter-Ecu C/S
communication

Support tasks mappings where multiple runnable or
schedulable entities using different cycle times or
activation offsets are mapped to a single Basic Task.
The realization uses OS Schedule Tables

Support Rte_ DRead API
Enhanced support for PR-Ports

Support ServerArgumentimplPolicy = use
ArrayBaseType

Explicit order of ModeDeclarationGroups

Version 4.16.0 5

based on template version 3.5

VECTOR >

Bernd Sigle 2014-12-08 4.6.0
Bernd Sigle 2015-02-20 4.7.0
Bernd Sigle 2015-07-26 4.8.0
Bernd Sigle 2016-01-04 4.9.0

© 2017 Vector Informatik GmbH

Technical Reference MICROSAR RTE

Support of PR Mode Ports
Support of PR Nv Ports

Support of bit field data types (CompuMethods with
category BITFIELD_TEXTTABLE)

Runtime optimized copying of large data

Support for SW-ADDR-METHOD on RAM blocks of
NvRAM SWCs

Support of background triggers

Support of data prototype mappings

Support of bit field text table mappings

Support of union data types

Support of UTF16 data type serialization in the
SOME/IP transformer

Runtime optimization in the generated RTE code by
usage of optimized interrupt locking APIs of the
MICROSAR OS

Support of further E2E profiles for data transformation
with the SOME/IP and E2E transformer

Support of OS counters with tick durations smaller
than 1us
Support of COM based Transformer ComXf

Support of different strategies for writing NV data in Nv
Block SWCs

Support of C/S Interfaces for Nv Block SWCs

SWC Template generation provides user sections for
documentation of runnable entities

Wide character support in paths

Improved counter selection for operating systems with
multiple OS applications

Support of optimized macro implementation for
SchM_Enter and SchM_Exit

Enhanced OS Spinlock support
Enable optimizations in QM partitions

Support of BSW multiple partition distribution

Support of activation reason for runnable entities
(Rte_ActivatingEvent)

Support for initialization of send buffers for implicit S/R
communication

Generation of VFB Trace Hook calls only if hooks are
configured

Support of 64 events per task if supported by the
MICROSAR OS

Support of subelement mapping for Rx-GroupSignals
Support for RteUseComShadowSignalApi
Updated CFGS5 figures

Version 4.16.0 6

based on template version 3.5

VECTOR >

Bernd Sigle 2016-02-23 4.10.0

Bernd Sigle 2016-05-13 4.11.0

Sascha Sommer

Bernd Sigle 2016-07-14 4.12.0

Sascha Sommer 2016-11-21 4.13.0

Bernd Sigle 2017-03-28 4.14.0

Sascha Sommer

Patrick Alschbach 2017-06-08 4.15.0
Katharina Benkert

Sascha Sommer 2017-08-15 4.16.0

Table 1-1 History of the document

© 2017 Vector Informatik GmbH

Technical Reference MICROSAR RTE

AUTOSAR 4.2.2 support

Enhanced SomelpXf support

Support of literal prefix

Migration to new Vector CI

Support of application data types of category map,
curve and axis

Selection of COM signal timeout source (Swc / Signal)

Support of 1:n Inter-ECU S/R with transmission
acknowledgement

Support E2EXT for primitive byte arrays without
serializer

Autonomous error responses for Inter-ECU C/S with
SomelpXf

Described mapping of SWCs to OS Applications.
Support of connections between Nv ports and S/R
ports

Support of Diagnostic Data Transformation (DiagXf)

Support of Data Conversion between integer data
types on network signals and floating point data types
on SWC ports

Support of counters from different partitions that are
assigned to the same core

Updated RTE and SWC include structure

Described CompuScale limitation
Extended multicore documentation

Support of Transformer Error Handling
Updated DET error codes and Service IDs
Minor improvements.

Data conversion for signals of signal groups
Minor improvements.

Metadata support for Inter-ECU client-server
communication

Support for maps and curves that are mapped to array
implementation datatypes

Display format on data types is now used for A2L
generation

Version 4.16.0 7

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

Reference Documents

No. |Title

[1] AUTOSAR_SWS_RTE.pdf 422
[2] AUTOSAR_EXP_VFB.pdf 422
[3] AUTOSAR_SWS_COM.pdf 422
[4] AUTOSAR_SWS_OS.pdf 422
[5] AUTOSAR_SWS NVRAMManager.pdf 4.2.2
[6] AUTOSAR_SWS_ECU_StateManager.pdf 4.2.2
[7] AUTOSAR_SWS_StandardTypes.pdf 4.2.2
[8] AUTOSAR_SWS_PlatformTypes.pdf 4.2.2
[9] AUTOSAR_SWS_CompilerAbstraction.pdf 4.2.2
[10] AUTOSAR_SWS_MemoryMapping.pdf 4.2.2
[11] AUTOSAR_TPS_SoftwareComponentTemplate.pdf 4.2.2
[12] AUTOSAR_TPS_SystemTemplate.pdf 4.2.2
[13] AUTOSAR_TPS_ECUConfiguration.pdf 422
[14] AUTOSAR_TR_Glossary.pdf 4.2.2
[15] AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf 4.2.2
[16] AUTOSAR_SWS_XCP.pdf 422
[17] AUTOSAR_SWS __ DefaultErrorTracer.pdf 4.2.2
[18] AUTOSAR_SWS LargeDataCOM.pdf 4.2.2
[19] AUTOSAR_SWS_SOMEIPTransformer.pdf 4.2.2
[20] AUTOSAR_SWS_ COMBasedTransformer.pdf 4.2.2
[21] AUTOSAR_SWS_E2ETransformer.pdf 4.2.2
[22] Vector DaVinci Configurator Online help

[23] Vector DaVinci Developer Online help

[24] AUTOSAR Calibration User Guide 1.0

Table 1-2 Reference documents

Scope of the Document

This document describes the MICROSAR RTE. It assumes that the reader is familiar with
the AUTOSAR architecture, especially the software component (SWC) design
methodology and the AUTOSAR RTE specification. It also assumes basic knowledge of
some basic software (BSW) modules like AUTOSAR Os, Com, LdCom, Transformer, NvM
and EcuM. The description of those components is not part of this documentation. The
related documents are listed in Table 1-2.

© 2017 Vector Informatik GmbH Version 4.16.0 8
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

Please note

We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

Contents
1 Component HIStOrY ... e 16
2 INtrodUCION..... ..o e 21
2.1 ArchiteCture OVEIVIEWiiii e 22
3 Functional DeSCriptioncooiiiiiiiiiii e 25
3.1 == (U] = S 25
3.1.1 D=3V E= (10 I Y 27
3.1.2 Additions/ EXIENSIONS........cccovviiiiiiiiiiiii 28
3.1.3 LimitationS.....coooe e 28
3.2 INIETALIZATION e e 29
3.3 AUTOSAR ECUS ... 29
3.4 AUTOSAR Software COmMPONENES........coieiiiiiiiiiiiiiii e 29
3.5 Runnable ENtities. 29
3.6 Triggering of Runnable Entities ..., 30
3.6.1 Time Triggered Runnablescccoco i, 30
3.6.2 Data Received Triggered Runnables............ccccooiiiiiiiiiiiinncci, 31
3.6.3 Data Reception Error Triggered Runnables................ccccvviiiiiiiiinnnns 31
3.64 Data Send Completed Triggered Runnables............ccccoeeeeiriiiinnnnnnnn. 31
3.6.5 Mode Switch Triggered Runnables..............cccccuviiiiiiiiiiiiiiiiiiiiiiiininns 31
3.6.6 Mode Switched Acknowledge Triggered Runnables......................... 31
3.6.7 Operation Invocation Triggered Runnablescccooeeeeeeieeeeeeeen. 32
3.6.8 Asynchronous Server Call Return Triggered Runnables 32
3.6.9 Init Triggered RUNN@DIESoooviiiiiiiiiiiiiiiiiiiiiee 32
3.6.10 Background Triggered Runnables............cccoooiiiiiiiiiiiiiiiiieeee 32
3.7 o] (U TN I Y == 1 33
3.7.1 OS Interrupt BIOCKINGccooeeeeeeeeeeeeeeeeeeeee 33
3.7.2 All Interrupt BIOCKING «...vveieeee e 34
3.7.3 OS RESOUICE ..ottt e e e e e e e e e eanea s 34
3.74 Cooperative Runnable Placement............ccccoooooiiiiiiiiiiiieencen, 34
3.8 Error Handling.........oooo i 35
3.8.1 Development Error Reporting.............evueeeeeiiiiiiiiiiiiiiiiiiiiiiiiiieininennenn 35
4 RTE Generation and Integration..................ooooiiii 38
4.1 SCOPE Of DEIIVEIY ... sssnnnnsnnnnnnnnes 38
4.2 RTE Generationcoooiiiiiiiii e 39
421 Command Line OPLioNScccooeeiiieeeeeeeee e 39
4.2.2 RTE Generator Command Line OptioNnS.............ueuviviieiieiiiiiiiiinininnnns 39
423 Generation Path ... 41
© 2017 Vector Informatik GmbH Version 4.16.0 10

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

4.3 MICROSAR RTE generation MOdEScceevvviiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeee 41

4.3.1 RTE Generation Phaseuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieininninnne 41

4.3.2 RTE Contract Phase Generation.............ccccovvvieiiiiiiiiiiiinieeceeeeiinn, 43

4.3.3 Template Code Generation for Application Software Components ... 45

4.3.4 VFB Trace Hook Template Code Generation.............cccccceeeeieeennnnnnns 46

4.4 INCIUAE SHTUCIUNE... .o 47

441 RTE INClude STruCtUre.........uuiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 47

4.4.2 SWC Include StruCture............oiii i 48

443 BSW Include Structure ... 49

4.5 Compiler Abstraction and Memory Mapping.........cccoouuiiiiiiieeeiieiiiiccie e, 50
451 Memory Sections for Calibration Parameters and Per-Instance

/=Y o o oY P 52

4.5.2 Memory Sections for Software Componentscccccoevveevvviviiinnnnnn. 53

453 Compiler Abstraction Symbols for Software Components and RTE.. 54

4.6 Memory Protection SUPPOItuiiiiiii e 55

4.6.1 Partitioning Of SWCS.........uuuiiiiiiiiiiiiiiiiiiiiii e 55

4.6.2 OS ApPlICAtiONS......uiiie i 55

46.3 Partitioning ArchiteCtureuuuuiiiiiiiiiiiiiiiee 56

4.6.4 Conceptual ASPECLESccovieeiiicie e 59

4.6.5 Memory Protection Integration Hintscoioii i, 60

4.7 1Y/ [8]ToTo] g =Y =TUT o] o oy PSSR 61

4.7.1 Partitioning of SWCS.......cooiiiiiiii e 61

4.7.2 BSW in Multicore Systemsccooieeiiiiiiiiiiiii e, 61

4.7.3 Service BSW in Multicore Systems ..., 62

4.7.4 1@ L O 0 == T T PP 63

4.8 BSW Access in Partitioned Systems...........ccoovvviiiiiiiiiiiiiiiiii 63

4.8.1 Inter-ECU Communicationcccooiiiiiiiiiiicie e 63

4.8.2 Client Server CommuniCation..........ccoovveieiiieieeeeeeeeeeeeeeeeeee e, 64

B API DESCIIPLION.. ..o 65

5.1 Data Type Definition..........cooo 65

5.1.1 INValid ValUe.......ccooeeeee e 66

5.1.2 Upper and Lower Limit.........coooiiiiiiiii e 66

51.3 INitial Value........oooviiiiiiiiiiieeeeeeeeee e 66

5.2 AP EITOr STAtUSo e e 67

5.3 Runnable ENtities. 68

5.3.1 <RUNnableENtity> ... 68

5.3.2 Runnable Activation Reasonccccoeuviieiiiiieeiiieee e, 69

5.4 SWOEC EXCIUSIVE AFEASvvueeriiiiiiiiiiiiiiiiiiiiintiieeinesesasseessasssnsssnesssnnssssnnnnnnnnnnnnnes 70

5.4.1 (G = 1 =T RN 70

54.2 L C= = 71

© 2017 Vector Informatik GmbH Version 4.16.0 11

based on template version 3.5

VECTOR >

Technical Reference MICROSAR RTE

5.5 BSW EXCIUSIVE ATBAScccvuiieiiiiii ettt e et e et e e et e e et e e e et e e e eaeans 72
5.5.1 SChM _ENLEr ... 72
5.5.2 SChM _EXit. oo 73
5.6 Sender-Receiver CommuniCationeuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiei. 74
5.6.1 Rt€ REA... ..o 74
5.6.2 L CS T] == T P 75
5.6.3 RE€ WIEE ... e 76
5.6.4 Rte_RECEIVE ... 77
5.6.5 REE_SENd... . e 78
5.6.6 Rte _IREAA... ..o e 79
5.6.7 REE _IWHIE .. 80
5.6.8 Rte_IWHERES ... e 81
5.6.9 Rte ISTatUS ... 82
56.10 Rte_FeedbacK.......cccoooiiiiiiiiieie e 83
5.6.11 Rte_IsUpdated.........coooiiiiiiic e 84
5.7 Data Element Invalidation ... 85
5.7.1 Rte_Invalidateoooiiiiiiic e 85
5.7.2 Rte_lInvalidate........ccooooveiiiii 86
5.8 Mode ManagemMENtouiviiiiiiiiiiiiiiiiiiee e 87
5.8.1 REE_SWITCN ... 87
5.8.2 [C I 1 (0T [88
5.8.3 Enhanced Rte_MOdEooeviiiiiiii e 89
5.8.4 RtE_SWILCNACK uueeiiiiiiiiiiiiiiiiiiei e eennnennne 90
59 Inter-Runnable Variables. ... 91
5.9.1 Rte_I'VREAA.. ... 91
5.9.2 Rt€ IVWIE o 92
5.9.3 Rte_Ir'VIREAA.. ... 93
594 Rte_IPVIWEIE ..o 94
5,10 Per-Instance MEMOIY......coouiiiiiiiie e e e e e eeaaa e e ees 95
5.10.1 (=T 0 95
5.11 Calibration Parametersuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeaeeeeneeeereeeenneenenene 96
511.1 [C I O - | - 96
5.11.2 REE P . e 97
5.12 Client-Server COmMmMUNICAtIONuuuuuuieiiiiiiiiiiiiiiiiiiiieeeeeeeeneeeeeeeeeeeeeeeeennnee 98
5.12.1 [N C I 07 | R 98
5122 RtE_RESUIL......ouuiiiiiiiiiiiiiiii e ——————— 99
513 INAITECL AP ... nnnnnnnnnnnnes 100
5.13.1 N CS I o] 5 (PR 100
TR N o (= T | oo o PN 101
5.13.3 REE PO ... nnnnne 102
5,14 RTE LifECYCIE APloeeiiiiiiiiiiii s nssssnannnnnne 103
© 2017 Vector Informatik GmbH Version 4.16.0

based on template version 3.5

12

VECTOR > Technical Reference MICROSAR RTE

5.14.1 RN C IS) -1 o SR 103

5142 RIE S0P it e 103

5.14.3 Rte_INIMEMOIY.......uiiiiiiiiiiiiiiiiiii e 104

515 SChM LIfECYCIE AP ...t e 105
5.15.1 SCRM NIt 105

T TS T o1V 9= o T 105

5.15.3 SchM_GetVersionInfo...........ooouiiiiiiiiiiic e 106

516 VFB Trace HOOKS........ouuiiiiiieeii s e et 107
5.16.1 Rte_[<client>_]<API>Hook_<cts>_<ap>_Start.........cccccceevviiernniens 107

5.16.2 Rte_[<client>]<API>Hook <cts> <ap> Return........................o.. 108

5.16.3 SchM_J[<client>_]<API>Hook_<Bsw>_<ap>_Start......................... 109

5.16.4 SchM_][<client>_]<API>Hook_ <Bsw>_ <ap>_Return...................... 110

5.16.5 Rte_[<client> JComHook <SignalName> SigTX.........cccceeeeeerrrinnnns 111

5.16.6 Rte_[<client>_]ComHook_<SignalName>_Siglv.................ceerrennns 112

5.16.7 Rte_[<client> JComHook <SignalName>_SigGrouplyv 113

5.16.8 Rte_[<client> JComHook <SignalName> SigRXccccceeue 114

5.16.9 Rte_[<client>_]ComHook<Event>_<SignalName>......................... 115

5.16.10 Rte_[<client> JTask Activate........ccccoooriiiiiiiiiiiiiii e, 116

5.16.11 Rte_[<client>_JTask_Dispatch...........ccccvrmriiiiiiiiiiiiiiiiie e 116

5.16.12 Rte_[<client>_JTask_SetEventccccvmiiiiiiiiiii e 117

5.16.13 Rte_[<client>]Task WaitEvent.............cccoeiiiiiiiiiiii e, 117

5.16.14 Rte_[<client>_JTask_WaitEventRet............ccccooviiiiiiiiiiiiiies 118

5.16.15 Rte_[<client> JRunnable_<cts> <re> Start...........cccccceeeeiiiiiiiinnnn, 118

5.16.16 Rte_[<client> JRunnable_<cts> <re> Returnc....cccvveeeernnnnn. 119

517 RTE Interfaces to BSW ... 120
5171 Interface t0 COM /LDCOM........coovvviiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeee 120

5.17.2 Interface to Transformer...........oooviiii i, 121

5.17.3 Interface to OS ... 122

517.4 Interface 10 NVIMouuiiiiiiiiiiiiiiiiiiiiiiiiiiii e eeeeeeeeeeeeeneennes 123

5.17.5 INterface 10 XCP. ..o 123

517.6 Interface 1o SCHMouiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeenees 124

517.7 Interface 10 DETuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeseeenennenees 124

6 RTE Configuration...............ooooiiiiii e e 125
6.1 Configuration VariantS................uuuueiiiiiiiiiiiiiiii 125
6.2 Task ConfigUuIrationccoooioiiee e 125
6.3 Memory Protection and Multicore Configuration..............ccccccoviiiiiiiiiinnn, 127
6.4 NV Memory Mappingcoooooiiiiiiii 130
6.5 RTE Generator Settings.........coooviiiiiii 131
6.6 Measurement and Calibrationcoevvvviiiiiiiiiiiiiiiiee 132
6.7 Optimization Mode Configurationeeuueiiiiiiiiiiiiiiis 136

© 2017 Vector Informatik GmbH Version 4.16.0 13

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

6.8 VFB Tracing Configuration ... 137
6.9 Exclusive Area Implementation ... 138
6.10 Periodic Trigger Implementation..............coooooiiie i 139
6.11 R To 0 [(e L OF= 1 [oTU] F=1 1o] o F T 141
7 Glossary and Abbreviations ... 142
71 Gl OSSAIY ..ot e e e et e e e e aaaaaaana 142
7.2 P2 o T =3V T= 1 (0] o 1= 142
8 Additional Copyrights ... 144
L T 0+ Y 01 7= 1o (TR 145
© 2017 Vector Informatik GmbH Version 4.16.0 14

based on template version 3.5

VECTOR >

lllustrations

Figure 2-1
Figure 2-2
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13
Figure 6-14
Figure 6-15

Tables

Table 1-1
Table 1-2
Table 1-1
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9
Table 7-1
Table 7-2
Table 8-1

© 2017 Vector Informatik GmbH

Technical Reference MICROSAR RTE

AUTOSAR archit@CtUIe.......cooeeeiieeeeiicce e 22
Interfaces to adjacent modules of the RTEcccooooiiiiiiiiiiii i, 24
RTE INCIUE STrUCKUIEvviiiiiiiiieiiiiiiiieitiii i eaeeeeeeeeennes 47
SWC INClude SErUCLUIE ... 48
BSW INCIUE STrUCUIEevviiiiiiiiiiiiiiiiiitiitiitiieii e eeeneeneeennes 49
Trusted RTE Partitioning exampleccccoooviiiiiiiiii e 56
Non-trusted RTE Partitioning example.................euvmiiiiiiiiiiiiiiiiiiiiiiins 57
Mapping of Runnables t0 TaskScccovvieeiiiiiiiiie e, 126
Assignment of a Task to an OS Application............c..ccooviiiiiiiiin e, 128
OS Application Configurationoceeviiiiiiiiiiiic e 129
Mapping of Per-Instance Memory to NV Memory Blocks 130
RTE Generator Settings..........oovvviiiiiii e 131
Measurement and Calibration Generation Parameterscccccvvuee. 132
SWC Calibration Support Parametersccccevvvviiiiiiiieeeiieceee e, 134
CalibrationBufferSize Parameter.............ccccoeiiiiiiiiiiiiii e, 135
A2L Include Structure ... 135
Optimization Mode Configuration...................eeeuiiiiiiiiiiiiiiiiens 136
VFB Tracing Configuration............cccccoiiiiiiii 137
Exclusive Area Implementation Configuration.............ccccoeeeiiiiiiiiiiniinnnnnn. 138
Periodic Trigger Implementation Configurationccccoooiiiiiiiinnnnnn. 139
[Y (=T o To) R 140
Configuration of platform settingscoooeeiiiiii 141
History of the dOCUMENTuuiiiiiiiiiii e 7
R (=14 a et N o (o o1U [4 1=T 0 | T 8
(070] 0 0] oo T aT=Y o1 0113 (o] /8 20
Supported AUTOSAR standard conform features...........cccoceeeviiiieieninnnnn.n. 27
Not supported AUTOSAR standard conform features..............cccccceeeee. 28
Features provided beyond the AUTOSAR standard.............cccccevvvivninnnnnnns 28
SEIVICE IDS ... 36
Errors reported t0 DETcoooiiiecie e 37
Content Of DEIIVEIY ... e 38
DVCfgCmd Command Line OPtioNSeuviriiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieinnenenns 39
RTE Generator Command Line OptionSccooveivvviiiiiiiiiiiieeeceeeiceee e 41
Generated Files of RTE Generation Phase...........ccccccvvviiiiiiiiiiiiiiiiiiiinnnn. 42
Generated Files of RTE Contract Phase...........ccccccoiiiiiiiiiiiiiiiiiiiiiiiiiiinns 43
Generated Files of RTE Template Code Generation..............cccceeeeeinnnnn.n. 45
Generated Files of VFB Trace Hook Code Generationcccccvvvnnne. 46
Compiler abstraction and memory mapping..............eeeeeeeeemmeemmmemmmennnnnnnnn. 51
Compiler abstraction and memory mapping for non-cacheable variables . 51
GIOSSANY ...ttt 142
ABDIreVIatioNSo e 143
Free and Open Source Software LiICENSESuuuvrrvriimmiimreiiienininennnnnns 144

Version 4.16.0
based on template version 3.5

15

VECTOR D>

Technical Reference MICROSAR RTE

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version | New Features

23

24

25

2.6

2.7

2.8

29
210

© 2017 Vector Informatik GmbH

>
>

>

\ A 4

vvyywvyy

vy

vV v vvvVvy VvYvyy

v

v

Complex hierarchical data types like arrays of records
Optimization: Depending on the configuration the Rte_Read API is
generated as macro if possible

String data type (Encoding 1SO-8859-1)

SWC local calibration parameters (Rte_CData)

Optimization: Depending on the configuration the Rte_Write APl is
generated as macro if possible

Generation of unmapped client runnables enabled
Asynchronous C/S communication (Rte_Result)

Support of AUTOSAR 3.0 Revision 0001

Access to calibration element prototypes of calibration components
(Rte_Calprm)

Access to Per-Instance Memory (Rte_Pim)

SWC implementation template generation (command line option -g 1)
and Contract Phase generation (command line option -g c) fora
complete ECU

Intra-ECU timeout handling for synchronous C/S communication

Parallel access of synchronous and asynchronous server calls to an
operation of one server port

Generation of an ASAM MCD 2MC / ASAP2 compatible A2L file
fragment for calibration parameters and Per-Instance Memory
Multiple instantiation of software components

Compatibility mode

Object code software components

Indirect APIs (Rte_Ports, Rte_NPorts and Rte_Port)

Port API Option 'EnableTakeAddress'

Platform dependent resource calculation.

Memory protection (OS with scalability class SC3/SC4)

Mode management including mode switch triggered runnable entities
and mode dependent execution of runnable entities. (Rte_Switch,
Rte_Mode and Rte_Feedback for mode switch acknowledge)

Data element invalidation (Rte_Invalidate and Rte_lInvalidate)

Data reception error triggered runnable entities for invalidated and
outdated data elements

Multiple cyclic triggers per runnable entity

Multiple OperationinvokedEvent triggers for the same runnable entity
with compatible operations

Extended A2L file generation for calibration parameters and Per-

Version 4.16.0 16
based on template version 3.5

VECTOR D>

Technical Reference MICROSAR RTE

Component Version | New Features

211

212

213

214

2.15

2.16

217

2.18

© 2017 Vector Informatik GmbH

>
>
>
>
>
>

v

vvyywyy v

vy

vVvVvvyvVvYyy

v

Instance Memory for user defined attributes (A2L-ANNOTATION)

Signal Fan-In

Unconnected provide ports
Generation of unreferenced data types
Evaluation of COM return codes

Basic task support (automatically selection)

Several optimizations (e.g. unneeded interrupt locks and Schedule()
call removed)

Enhanced error reporting with help messages (-v command line
option)

Support of acknowledgement only mode for transmission and mode
switch notification

Usage of compiler library functions (e.g. memcpy) removed
Template file update mechanism also introduced for Rte_ MemMap.h
and Rte_Compiler_Cfg.h

Unconnected require ports

Basic task support (manual selection)

Init-Runnables no longer have name restrictions

Automatic periodic trigger generation can be disabled e.g. useful for
Schedule Table support

HTML Report including resource usage

Explicit selection of task role (Application / BSW Scheduler / Non Rte)
Runnables with CanBelnvokedConcurrently set to false no longer
require a mapping, if they are not called concurrently.

Support composite data types where not all primitive members require
an invalid value

Support inclusion of user header file 'Rte_UserTypes.h'

Optimized runnable scheduling to reduce latency times

Allow implementation template generation for service components,
complex device drivers and EcuAbstraction components

Optimization mode (minimize RAM consumption / minimize execution
time)
MinimumStartinterval attribute (runnable de-bouncing)

Measurement support for S/R communication, Interrunnable variables
and mode communication. Extended A2L File generation and support
of new ASAM MCD 2MC / ASAP2 standard. Measurement with
XcpEvents

Com Filter (NewDiffersOld, Always)
Invalid value accessible from application
Support of second array passing variant

Online calibration support
Support transmission error detection

Support of extended record data type compatibility for S/R
communication with different record layout on sender and receiver side

Enhanced implicit communication support

Version 4.16.0 17
based on template version 3.5

VECTOR D>

Technical Reference MICROSAR RTE

Component Version | New Features

219

2.20

2.21

2.22

3.90
4.0

41

411

4.2

4.3

© 2017 Vector Informatik GmbH

>
>
>

v vyyVvyy

vV vvyyVvyy

VVYVYy VV VV VVVVV V VVvyYVYyVvVYVvVY

vvyVvyvyy

Support of AUTOSAR 3.2 Revision 0001
Support never received status

Support S/R update handling (Rte_IsUpdated based on AUTOSAR
4.0)

Enhanced measurement support (Inter-Ecu S/R communication)
Selective file generation (only if file content is modified)

Support for Non-Trusted BSW

Enhanced command line interface (support for several generation
modes in one call, optional command line parameter —m)

Split of generated RTE into OS Application specific files

Byte arrays no longer need to be mapped to signal groups

Allow configuration of Schedule() calls in non-preemptive tasks
Generation of MISRA justification comments

Support of SystemSignals and SystemSignalGroups using the same
name

Support of hexadecimal coded enumeration values

Support of AUTOSAR 3.2 Revision 0002

Support S/R update handling according AUTOSAR 3.2.2
Support N:1 S/R communication

Support unconnected calibration R-Ports

Enhanced initial value handling

Support of AUTOSAR 4.0 Revision 0003

Support of pointer implementation data types

Support of ‘On Transition’ triggered runnable entities

Support of data type symbol attribute

Support of component type symbol attribute

Template generation mechanism added for Rte_UserTypes.h

Support of Rte_MemSeg.a2l
Enhanced command line interface (path for A2L files selectable)

Multi-Core support (S/R communication)
Support of Inter-Runnable Variables with composite data types

Support for arrays of dynamic data length (Rte_Send/Rte_Receive)
Support for parallel generation for multiple component types
Multi-Core support:

» C/S communication

» Mode communication without ModeDisablings and ModeTriggers
» Inter-ECU S/R communication

Support mapping of individual Operationinvoked triggers

Support of SchM Contract Phase Generation

Support of Nv Block SWCs

Support of VFB Trace Client Prefixes

Enhanced Memory Protection support

» Memory Protection support for Multi-Core systems

» Inter-ECU sender/receiver communication is no longer limited to the

Version 4.16.0 18
based on template version 3.5

VECTOR D>

Technical Reference MICROSAR RTE

Component Version | New Features

4.4

4.5

4.6

4.7

4.8

© 2017 Vector Informatik GmbH

vvvyvVvyy v vyyVvyy

v

vy

VvV VVYVYY

vVvvvVvvVvVYVY

v

vvvyyvVvyy

BSW partition
» Mapped client/server calls are no longer limited to the BSW partition

» Queued sender/receiver communication is no longer limited to the
BSW partition

Optimized Multi-Core support without IOCs

Support of Development Error Reporting

Support of registering XCP Events in the XCP module configuration

Support for unconnected client ports for synchronous C/S

communication

Inter-Ecu C/S communication using SOME/IP Transformer

Support for PR-Ports

S/R Serialization using SOME/IP Transformer and E2E Transformer

Support LdCom

Improved support for 3rd Party OS interoperability especially regarding

OS Counter handling

Support Postbuild-Selectable for variant data mappings and variant

COM signals

Support E2E Transformer for Inter-Ecu C/S communication

Support tasks mappings where multiple runnable or schedulable
entities using different cycle times or activation offsets are mapped to a
single Basic Task. The realization uses OS Schedule Tables

Support Rte_ DRead API

Enhanced support for PR-Ports

Support ServerArgumentimplPolicy = use ArrayBaseType
Support for Mode Declaration Groups with Explicit Order

Support of PR Mode Ports
Support of PR Nv Ports

Support of bit field data types (CompuMethods with category
BITFIELD_TEXTTABLE)

Runtime optimized copying of large data
Support for SW-ADDR-METHOD on RAM blocks of NvVRAM SWCs

Support of background triggers

Support of data prototype mappings

Support of bit field text table mappings

Support of union data types

Support of UTF16 data type serialization in the SOME/IP transformer

Runtime optimization in the generated RTE code by usage of
optimized interrupt locking APIs of the MICROSAR OS

Support of further E2E profiles for data transformation with the
SOME/IP and E2E transformer

Support of OS counters with tick durations smaller than 1us

Support of COM based Transformer ComXf

Support of different strategies for writing NV data in Nv Block SWCs
Support of C/S Interfaces for Nv Block SWCs

SWC Template generation provides user sections for documentation of

Version 4.16.0 19
based on template version 3.5

VECTOR D>

Technical Reference MICROSAR RTE

Component Version | New Features

4.9

4.10

4.1

412

4.13

4.14
4.15
4.16

Table 1-1 Component history

© 2017 Vector Informatik GmbH

>

v

v

vvyywyy

VVYV VVVVYV VVVV VVYVY VVYVYYVY

Vv Vv vVvVvyyvwy Y

v

runnable entities
Wide character support in paths

Improved counter selection for operating systems with multiple OS
applications

Support of optimized macro implementation for SchM_Enter and
SchM_Exit

Enhanced OS Spinlock support
Enable optimizations in QM partitions

Support of BSW multiple partition distribution

Support of activation reason for runnable entities
(Rte_ActivatingEvent)

Support for initialization of send buffers for implicit S/R communication
Generation of VFB Trace Hook calls only if hooks are configured
Support of 64 events per task if supported by the MICROSAR OS
Support of subelement mapping for Rx-GroupSignals

Support for RteUseComShadowSignalApi

AUTOSAR 4.2.2 support

Enhanced SomelpXf support

Support of literal prefix

Support of VFB Trace Hooks for APIs of unconnected Ports
Support for NvMAutomaticBlockLength parameter

Support of E2E profiles 1 and 2 for SomelpXf and E2EXf
Support of E2E profiles 4, 5 and 6 for ComXf and E2EXf

Support of application data types of category map, curve and axis
Selection of COM signal timeout source (Swc / Signal)

Support of 1:n Inter-ECU S/R with transmission acknowledgement
Support E2EXT for primitive byte arrays without serializer
Autonomous error responses for Inter-ECU C/S with SomelpXf

Support of connections between Nv ports and S/R ports
Support of Diagnostic Data Transformation (DiagXf)

Support of Data Conversion between integer data types on network
signals and floating point data types on SWC ports

Support of counters from different partitions that are assigned to the
same core

Added support for SpinlockLockMethod RES_SCHEDULER
Several improvements and bugfixes

Support of Transformer Error Handling for S/R communication
Support of Data conversion for signals of signal groups

Support of metadata for Inter-ECU C/S communication

Support for maps and curves that are mapped to array implementation
datatypes

Display format on data types is now used for A2L generation

Version 4.16.0 20
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

2 Introduction

The MICROSAR RTE generator supports RTE and contract phase generation.
Additionally, application template code can be generated for software components and for
VFB trace hooks.

This document describes the MICROSAR RTE generation process, the RTE configuration
with DaVinci Configurator and the RTE API.

Chapter 3 gives an introduction to the MICROSAR RTE. This brief introduction to the
AUTOSAR RTE can and will not replace an in-depth study of the overall AUTOSAR
methodology and in particular the AUTOSAR RTE specification, which provides detailed
information on the concepts of the RTE.

In addition chapter 3 describes deviations, extensions and limitations of the MICROSAR
RTE compared to the AUTOSAR standard.

The RTE generation process including the command line parameters of the MICROSAR
RTE generator is described in chapter 4. This chapter also gives hints for integration of the
generated RTE code into an ECU project. In addition it describes the memory mapping
and compiler abstraction related to the RTE and finally, chapter 4.6 describes the memory
protection support of the RTE including hints for integration with the OS.

The RTE API description in chapter 5 covers the API functionality implemented in the
MICROSAR RTE.

The description of the RTE configuration in chapter 6 covers the task mapping, memory
mapping and the code generation settings in DaVinci Configurator. A more detailed
description of the configuration tool including the configuration of AUTOSAR software
components and compositions and their integration in an ECU project can be found in the
online help of the DaVinci Configurator [22].

Supported AUTOSAR Release*: 4
Supported Configuration Variants: pre-compile
Vendor ID: RTE_VENDOR_ID 30 decimal
(= Vector-Informatik,
according to HIS)
Module ID: RTE_MODULE_ID 2 decimal
AR Version: RTE_AR_RELEASE_MAJOR_VERSION AUTOSAR Release
RTE_AR_RELEASE_MINOR_VERSION version
RTE_AR_RELEASE_REVISION_VERSION decimal coded
SW Version: RTE_SW_MAJOR_VERSION MICROSAR RTE
RTE_SW_MINOR_VERSION version
RTE_SW_PATCH_VERSION decimal coded

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

© 2017 Vector Informatik GmbH Version 4.16.0 21
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

2.1 Architecture Overview

The RTE is the realization of the interfaces of the AUTOSAR Virtual Function Bus (VFB)
for a particular ECU. The RTE provides both standardized communication interfaces for
AUTOSAR software components realized by generated RTE APIs and it also provides a
runtime environment for the component code — the runnable entities. The RTE triggers the
execution of runnable entities and provides the infrastructure services that enable
communication between AUTOSAR SWCs. It is acting as a broker for accessing basic
software modules including the OS and communication services.

The following figure shows where the MICROSAR RTE is located in the AUTOSAR
architecture.

E2EPW Application
SCHM RTE
SYS DIAG o Muss
Qs BSWM DCM EA COM LDCOM IPDUM NM PDUR vDIOHWAB CAL (CPL)
COMM DEM FEE COMXF SOMEIPXF | E2EXF SECOC vSENT CRC
CSM FIM MEMIF E2E
CRY (SW) J1939DCM NVM CAN LIN ETH V2G
DET vDRM
T J1939TP vLINXCP FRXCP ETHXCP vCANCCCDM
C
S J1939NM VvLINTP FRTP UDPNM vCANCCGBT
J1939RM LINNM FRARTP sD vDNS
I AMD
CANXCP LINSM FRNM DOIP vEXI
WDGIF
vDBG CANTP LINIF FRSM SOAD vHTTP
WDGM
DLT CANNM FRTSYN vETM vSCC %o_mplex
river
vRTM CANSM FRIF vTLS vXMLSecurity
CANTSYN TCPIP
CANIF ETHSM AVB
ETHTSYN vRTP
vETHFW vAVTP
ETHIF vSRP
Xxce vPTP?
MCAL
ADCDRV EEPDRV FLSTST vIICDRY PORTDRY SPIDRV CANTRCV LINTRCV
CANDRV ETHDRV FRDRV LINDRV PWMDRV WDGDRV DRVEXT! vSBC
CORTST ETHSWTDRYV GPTDRV MCUDRV RAMTST ETHTRCV vPSI5
DIODRV FLSDRV ICUDRV OCUDRV vCRY (HW) FRTRCV
Vector Standard Software IR SR " Includes EXTADC, EEPEXT, FLSEXT, ETHSWTDRVEXT, ETHDRVEXT

and WDGEXT
2 Functionality represented in ETHTSYN and STBM

Figure 2-1 AUTOSAR architecture

RTE functionality overview:
Execution of runnable entities of SWCs on different trigger conditions

» Communication mechanisms between SWCs (Sender/Receiver and Client/Server)

» Mode Management

» Inter-Runnable communication and exclusive area handling

© 2017 Vector Informatik GmbH Version 4.16.0 22

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

Per-Instance Memory and calibration parameter handling
Multiple instantiation of SWCs
OS task body and COM / LDCOM callback generation

Automatic configuration of parts of the OS, NvM and COM / LDCOM dependent of the
needs of the RTE

» Assignment of SWCs to different memory partitions/cores

vV v. v Vv

SchM functionality overview:
» Execution of cyclic triggered schedulable entities (BSW main functions)
» Exclusive area handling for BSW modules

» OS task body generation

© 2017 Vector Informatik GmbH Version 4.16.0 23
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

composite structure Component /

Interfaces to SWCs and BSW Moduls

«EmbeddedInterface»
RTE::S/R (explicit)

Rte_Write_<p>_<o>([IN Rte_Instance <instance>]IN <data>)() :Std_ReturnType
Rte_Read_<p>_<o>([IN Rte_Instance <instance>,] OUT <data>)() :Std_ReturnType
Rte_Send_<p>_<o>([IN Rte_Instance <instance>,] IN <data> [,IN uint16 <length>])() :Std_ReturnType
Rte_Receive_<p>_<o>([IN Rte_Instance <instance>,] OUT <data> [,OUT uint16 <length>])() :Std_ReturnType
Rte_Feedback_<p>_<o>([IN Rte_Instance <instance>])() :Std_RetumnType
Rte_Invalidate_<p>_<o>([IN Rte_Instance <instance>])() :Std_RetumnType
Rte_IsUpdated_<p>_<o>([IN Rte_Instance <instance>])() :boolean

«Embedded|nterface»

RTE::Mode Handling
Rte_Switch_<p>_<o>([IN Rte_Instance <instance>]IN <mode>)() :Std_RetunType
Rte_Mode_<p>_<o>([IN Rte_lInstance <instance>])() :Std_RetumType
Rte_Mode_<p>_<o>([IN Rte_lInstance <instance>] OUT previous, OUT next)() :<currentmode>
Rte_SwitchAck_<p>_<o>([IN Rte_Instance <instance>])() :<currentmode>

oo+

s

«EmbeddedInterface»
RIE::C/S
+ Rte_Call_<p>_<o>([IN Rte_Instance <instance>]<data_1> ... <data_n>)() :Std_ReturnType
+ Rte_Result_<p>_<o>([IN Rte_lnstance <instance>,] <data_1> ... <data_n>)() :Std_RetumType

«Embeddedinterface»
RTE::S/R (implicit)
+ Rte_IWrite_<re>_<p>_<0>([IN Rte_Instance <instance>]IN <data>)() :void
+ Rte_IWriteRef_<re>_<p>_<o>([IN Rte_Instance <instance>])() :<retumn ref>
+ Rte_IRead_<re>_<p>_<o>([IN Rte_Instance <instance>])() :<return>
+
+

=

«EmbeddedInterface»
RTE:Indirect API
+ Rte_Port_<p>([IN Rte_Instance <instance>])() :Rte_PortHandle_<i>_<R/P>
+ Rte_Ports_<pi>_<R/P>(IN Rte_Instance <instance>])(:Rte_PortHandle_<i>_<R/P>
+ Rte_NPorts <pi>_<R/P>([IN Rte_Instance <instance>])() :uint8

Ay

Rte_IStatus_<re>_<p>_<o>([IN Rte_Instance <instance>])() :Std_ReturnType
Rte_lInvalidate_<re>_<p>_<o>([IN Rte_Instance <instance>])()
«EmbeddedInterface»

I
I
RTE::Inter-Runnable Variable |
+ Rte_IrvWrite_<v([IN Rte_Instance <instance>]IN <data>)() :void :
+ Rte_IrvRead_<v>([IN Rte_Instance <instance>])() :<return>
+ Rte_Irviwrite_<re>_<v([IN Rte_Instance <instance>]IN <data>)(:void

1

+_Rte_IrviRead_<re>_<v>([IN Rte_Instance <instance>])() :<return> |
I

AN

I

I

SRR

«provide optionally»

«Embeddedinterface»

«provide optionally» RTE::Calibration Parameter

+ Rte_CData_<c>([IN Rte_Instance <instance>])() :<parameter>
+ Rte_Prm_<p>_<c>([IN Rte_Instance <instance>])() :<parameter>

Ay

_______________________4'>

<

I
«provide optionall

«EmbeddedInterface» I
RTE::Exclusive Area

|
! '
«provide gptionally»
| |
1 1

e

«EmbeddedInterface»
RTE::Per-Instance Memory.

1
vide optionally»
|

+ Rte_Enter_<ea>([IN Rte_lnstance <instance>])(:void “p

+ Rte_Exit_<ea>([IN Rte_Instance <instance>])() :void

I
I Rte_Pim_<p>([IN Rte_Instance <instance>])() :<pim>

[

«EmbeddedInterface»

I
«provide optionally»
SchM ive Area !

«Embeddedinterface»
RTE::Error Handling
+ Rte_HasOverlayedEror(Std_ReturnType) :boolean
Rte_ApplicationError(Std_ReturnType) :Std_RetumType
+ Rte_lsInfrastructureEror(Std_ReturnType) :boolean

Ay

B

+ SchM_Enter_<ea>([IN Rte_Instance <instance>])() :void
+ SchM_Exit_<ea>([IN Rte_Instance <instance>])() :void

«provide optionally»
1 1

i

«provide optionally» «provide optionally»

vlap(ionally»

—————ftT -

|
I
'
i
I
|
I
|
I
|
I
I
|
I
|
I
I
|
T
|
I
I
I
|

S

I

I

I

I

I

! 1
: «provide
T

I

I

I

I

|

I

I
' «provide olplionally»
«use optionally» \
I

v

«use optionally»

1
1 «use optionally»
1

Interfaces to Os Interfacesto Com

v v
«EmbeddedInterface»
Provided Interfaces::
Memory Initialization

+ Rte_InitMemory() :void

«EmbeddedInterface»
Used Inter| 0]

ActivateTaskTaskType) :StatusType
CancelAlarm(AlarmType) :StatusType
ChainTaskTaskType) :StatusType
ClearEvent(EventMaskType) :StatusType
DisableAllInterrupts() :void

EnableAllInterrupts() :void

GetEvent(TaskType, EventMaskType*) :StatusType
GetResource(ResourceType) :StatusType
GetTaskD(TaskType*) :StatusType
locRead_<iocid>(OUT <data>)() :Std_ReturnType
locReadGroup_<iocid>(OUT <data0>,..., OUT <data_n>)() :Std_RetumType
locReceive_<iocid>(OUT <data>)() :Std_ReturnType
locSend_<iocid>[_<sid>](IN <data>)() :Std_ReturnType

«EmbeddedInterface»

RTE::COM Callback
Rte_COMCbk_<SignalName>() :void
Rte_COMCbKRXTOut_<SignalName>() :void
Rte_COMCbKTAck_<SignalName>() :void
Rte_COMCbKTXTOut_<SignalName>() :void
Rte_COMCbKTErr_<SignalName>() :void
Rte_COMCbKinv_<SignalName>() :void

o E o+

|
T
1
1
1
1
1
1
1
1
1
1
1
1
1
: «plmvide optionally»
v

I
I
|
I
n;
I
I
I
I
|
I
|
I
I
|
I
|
I
I
|
I
|
I
I
I

«EmbeddedInterface»
Used Inter|

:Com Interfaces to Xcp

v

ReleaseResource(ResourceType) :StatusType
ResumeOSinterrupts() :void

Schedule() :StatusType

SetEvent(TaskType, EventMaskType) :StatusType

SuspendOSinterrupts() :void
TerminateTask() :StatusType
WaitEvent(EventMaskType) :StatusType

R E R hhh F R R E ok FE b+

locWrite_<iocid>[_<sid>](IN <data>)() :Std_ReturnType
locWriteGroup_<iocid>[_<sid>](IN <data0>,..., IN <data_n>)() :Std_ReturnType

SetRelAlarm(AlamType, TickType, TickType) :StatusType

I

Com_SendDynSignal(Com_SignalldType, const void*, uint16) :uint8
Com_SendSignal(Com_SignalldType, const void*) :uint8
Com_UpdateShadowSignal(Com_SignalldType, const void*) :void
Com_ i S pldType) :uint8
Com_ReceiveDynSignal(Com_SignalldType, void*, uint16*) :uint8
Com_ReceiveSignal(Com_SignalldType, void*) :uint8
Com_ReceiveShadowSignal(Com_SignalldType, void*) :uint8
Com_| i i om_Si | IdType) :uint8
Com_InvalidateSignal(Com_SignalldType) :uint8

roup(Com

Com_InvalidateSignalGroup(Com_SignalGroupldType) :uint8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
v Interfaces to EcuM

v

«EmbeddedInterface»
RTE:Lifecycle

«Embeddedinterface»
chM:Lifecycle

+ Rte_Start() :Std_ReturnType +
+ Rte_Stop() :Std_RetumType +

SchM_Init([IN SchM_ConfigType ConfigPtr])() :void
SchM_Deinit() :void
+ SchM_GetVersioninfo(Std_VersioninfoType*) :void

«EmbeddedInterface»
Used Inter

+ Xcp_Event(uint8) :void

v

Interfaces to NvM

«EmbeddedInterface»
RTE::NvM Callback

+ Rte_GetMiror__<d>(void*) :Std_ReturnType
+ Rte_SetMirror__<d>(const void*) :Std_ReturnType

Figure 2-2

© 2017 Vector Informatik GmbH

Interfaces to adjacent modules of the RTE

Version 4.16.0
based on template version 3.5

24

VECTOR > Technical Reference MICROSAR RTE

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
RTE.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

» Table 3-1 Supported AUTOSAR standard conform features
» Table 3-2 Not supported AUTOSAR standard conform features

Vector Informatik provides further RTE functionality beyond the AUTOSAR standard. The
corresponding features are listed in the table

» Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

Explicit S/R communication (last-is-best) [API: Rte_Read, Rte_Write]
Explicit S/R communication (queued polling) [API: Rte_Receive, Rte_Send]
Variable length arrays

Explicit S/R communication (queued blocking) [API: Rte_Receive]
Implicit S/R communication [APIl:Rte_IRead, Rte_|Write, Rte_IWriteRef]
Timeout handling (DataReceiveErrorEvent) [API: Rte_|Status]

Data element invalidation [API: Rte_Invalidate, Rte_linvalidate]
Intra-Ecu S/R communication

Inter-Ecu S/R communication

1:N S/R communication (including network signal Fan-Out)

N:1 S/R communication (non-queued, pure network signal Fan-In or pure Intra-Ecu)
C/S communication (synchronous, direct calls) [API: Rte_Call]

C/S communication (synchronous, scheduled calls) [API: Rte_Call]

C/S communication (asynchronous calls) [API: Rte_Call]

C/S communication (asynchronous) [API: Rte_Result]

Intra-Ecu C/S communication

Inter-Ecu C/S communication using SOME/IP Transformer

N:1 C/S communication

Explicit exclusive areas [API: Rte_Enter, Rte_Exit]

Implicit exclusive areas

Explicit Inter-Runnable Variables [API: Rte_IrvRead, Rte_IrvWrite]
Implicit Inter-Runnable Variables [API: Rte_lirvRead, Rte_lIrvWrite]

© 2017 Vector Informatik GmbH Version 4.16.0 25
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

Supported AUTOSAR Standard Conform Features ‘

Transmission ack. status (polling and blocking) [API: Rte_Feedback]

Runnable category 1a, 1b und 2

RTE Lifecycle-API [API: Rte_Start, Rte_Stop]

Nv Block Software Components

Runnable to task mapping

Data element to signal mapping

Task body generation

VFB-Tracing

Multiple trace clients

ECU-C import / export

Automatic OS configuration according the needs of the RTE (basic and extended task support)
Automatic COM / LDCOM configuration according the needs of the RTE
Primitive data types

Composite data types

Data reception triggered runnables entities (DataReceivedEvent)

Cyclic triggered runnable entities (TimingEvent)

Data transmission triggered runnable entities (DataSendCompletionEvent)
Data reception error triggered runnables entities (DataReceiveErrorEvent)
Mode switch acknowledge triggered runnable entities (ModeSwitchedAckEvent)
Mode switch triggered runnable entities (ModeSwitchEvent)

Background triggered runnable and scheduleable entities (BackgroundEvent)
Contract phase header generation

Port access to services (Port defined argument values)

Port access to ECU-Abstraction

Compatibility mode

Per-Instance Memory [API: Rte_Pim]

Multiple instantiation on ECU-level

Indirect API [API: Rte_Port, Rte_NPorts, Rte Ports]

SWC internal calibration parameters [API: Rte _CData]

Shared calibration parameters (CalprmComponentType) [API: Rte_Prm]

Mode machine handling [API: Rte_Mode/Rte_Switch]

Mode switch ack. status (polling and blocking) [API: Rte_SwitchAck]

Multi-Core support (S/R communication, C/S communication, Mode communication (partially))
Memory protection

Unconnected ports

COM-Filter (NewDiffersOld, Always)

Measurement (S/R-Communication, Mode-Communication, Inter-Runnable Variables)
Runnable de-bouncing (Minimum Start Interval)

© 2017 Vector Informatik GmbH Version 4.16.0 26
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

Supported AUTOSAR Standard Conform Features

Online calibration support

Never received status

S/R update handling [API: Rte_IsUpdated]

Contract Phase Header generation for BSW-Scheduler

PR-Ports

Optimized S/R communication [API: Rte_DRead]

Variant Handling support (Postbuild selectable for variant data mappings and COM signals)
Data prototype mapping

Subelement mapping for Rx GroupSignals

Bit field texttable mapping

Activation reason for runnable entities (no support for multicore and memory protection)
RteUseComShadowsSignalApi

Service BSW multiple partition distribution

S/R and C/S Serialization using SOME/IP Transformer

LdCom Support

ComXf Support

E2E Transformer Support

Transformer Error Handling for S/R

Initialization of send buffers for implicit S/R communication

Data conversion (limited to S/R communication with integer network signal(s) mapped to floating
point data types on SWC ports, compu methods of type LINEAR or IDENTICAL and data type
policy LEGACY or OVERRIDE)

Table 3-1 Supported AUTOSAR standard conform features

3.1.1 Deviations
The following features specified in [1] are not supported:

Not Supported AUTOSAR Standard Conform Features

COM-Filter (only partially supported)

Measurement (Client-Server arguments)

external Trigger (via port) [API: Rte_Trigger]

Inter-Runnable Trigger (SWC internal) [API: Rte_IrTrigger]

Tx-Ack for implicit communication [API: Rte_IFeedback]

BSW-Scheduler Mode Handling [APIl: SchM_Mode, SchM_Switch, SchM_SwitchAck]
external Trigger between BSW modules [API: SchM_Trigger]

BSW-Scheduler Trigger [API: SchM_ActMainFunction]

BSW-Scheduler Calibration Parameter Access [APl: SchM_CData]
BSW-Scheduler queued S/R communication [APl: SchM_Send, SchM_Receive]
BSW-Scheduler C/S communication [API: SchM_Call, SchM_Result]

© 2017 Vector Informatik GmbH Version 4.16.0 27
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

Not Supported AUTOSAR Standard Conform Features
BSW-Scheduler Per-Instance Memory Access [API: SchM_Pim]
Enhanced Rte Lifecycle API [API: Rte_StartTiming]

Post Build Variant Sets

Debugging and Logging Support

Variant Handling support (Pre-Compile variability, Postbuild variability for Connectors and
ComponentPrototypes)

Multi-Core support (Mode communication with ModeSwitchTriggers or ModeDisablings,
Rte_ComSendSignalProxylmmediate, RtelocInteractionReturnValue=RTE_COM)

Activation reason in multicore and memory protection systems
Restarting of partitions

Re-scaling of ports / Data conversion (only partially supported)
Pre-Build data set generation phase

Post-Build data set generation phase

Initialization of PerlnstanceMemories

Asynchronous Mode Handling

MC data support

Generated BSWMD

Range checks

RTE memory section initialization strategies

Configuration of coherency groups for implicit communication
Immediate Buffer update for implicit communication

External configuration switch strictConfigurationCheck
ScaleLinear and ScaleLinearTexttable CompuMethods with more than one CompuScale

Table 3-2 Not supported AUTOSAR standard conform features

3.1.2 Additions/ Extensions
The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

Rte_InitMemory API function. See Chapter 5.14.3 for details.
Init-Runnables. See Chapter 3.6.9 for details.

VFB Trace Hooks for SchM APIs. See Chapter 5.16.3 and 5.16.4 for details.
Measurement support for mode communication. See Chapter 6.6 for details.
Measurement with XCP Events. See Chapter 6.6 for details.

Table 3-3 Features provided beyond the AUTOSAR standard

3.1.3 Limitations
There are no known limitations.

© 2017 Vector Informatik GmbH Version 4.16.0 28
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

3.2 Initialization

The RTE is initialized by calling Rte Start. Initialization is done by the ECU State
Manager (EcuM).

The Basis Software Scheduler (SchM) is initialized by calling SchM Init. Initialization is
done by the ECU State Manager (EcuM).

3.3 AUTOSAR ECUs

Besides the basic software modules each AUTOSAR ECU has a single instance of the
RTE to manage the application software of the ECU. The application software is
modularized and assigned to one or more AUTOSAR software components (SWC).

3.4 AUTOSAR Software Components

AUTOSAR software components (SWC) are described by their ports for communication
with other SWCs and their internal behavior in form of runnable entities realizing the
smallest schedulable code fragments in an ECU.

The following communication paradigms are supported for port communication:
» Sender-Receiver (S/R): queued and last-is-best, implicit and explicit

» Client-Server (C/S): synchronous and asynchronous

» Mode communication

» Calibration parameter communication

S/R and C/S communication may occur Intra-ECU or between different ECUs (Inter-ECU).
Mode communication and calibration parameters can only be accessed ECU internally.

In addition to Inter-SWC communication over ports, the description of the internal behavior
of SWCs contains also means for Intra-SWC communication and synchronization of
runnable entities.

» Inter-Runnable Variables
» Per-Instance Memory

» Exclusive Areas

» Calibration Parameters

The description of the internal behavior of SWCs finally contains all information needed for
the handling of runnable entities, especially the events upon which they are triggered.

35 Runnable Entities

All application code is organized into runnable entities, which are triggered by the RTE
depending on certain conditions. They are mapped to OS tasks and may access the
communication and data consistency mechanisms provided by the SWC they belong to.

© 2017 Vector Informatik GmbH Version 4.16.0 29
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

The trigger conditions for runnable entities are described below, together with the
signature of the runnable entities that results from these trigger conditions. A detailed
description of the signature of runnable entities may be found in section 5.3 Runnable
Entities.

3.6 Triggering of Runnable Entities

AUTOSAR has introduced the concept of RTEEvents to trigger the execution of runnable
entities. The following RTEEvents are supported by the MICROSAR RTE:

TimingEvent

DataReceivedEvent
DataReceiveErrorEvent
DataSendCompletedEvent
OperationinvokedEvent
AsynchronousServerCallReturnsEvent
ModeSwitchEvent
ModeSwitchedAckEvent

InitEvent

vV Vv v vV vV v v v v

BackgroundEvent

The RTEEvents can lead to two different kinds of triggering:
» Activation of runnable entity

» Wakeup of waitpoint

Activation of runnable entity starts a runnable entity at its entry point while
wakeup of waitpoint resumes runnable processing at a waitpoint. The second is not
possible for all RTEEvents and needs an RTE API to setup this waitpoint inside the
runnable entity code.

Depending on the existence of a waitpoint, runnable entities are categorized into category
1 or category 2 runnables. A runnable becomes a category 2 runnable if at least one
waitpoint exists.

3.6.1 Time Triggered Runnables

AUTOSAR defines the TimingEvent for periodic triggering of runnable entities. The
TimingEvent can only trigger a runnable entity at its entry point. Consequently there
exists no API to set up a waitpoint for a TimingEvent. The signature of a time triggered
runnable is:

void <RunnableName> ([IN Rte Instance instance]
[, IN Rte ActivatingEvent <RunnableEntity> activation])

© 2017 Vector Informatik GmbH Version 4.16.0 30
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

3.6.2 Data Received Triggered Runnables

AUTOSAR defines the DataReceivedEvent to trigger a runnable entity on data
reception (queued or last-is-best) or to continue reception of queued data in a blocking
Rte Receive call. Both intra ECU and inter ECU communication is supported. Data
reception triggered runnables have the following signature:

void <RunnableName> ([IN Rte Instance instance]
[, IN Rte ActivatingEvent <RunnableEntity> activation])

3.6.3 Data Reception Error Triggered Runnables

AUTOSAR defines the DataReceiveErrorEvent to trigger a runnable entity on data
reception error. A reception error could be a timeout (aliveTimeout) or an invalidated
data element. The DataReceiveErrorEvent can only trigger a runnable entity at its
entry point. Consequently there exists no APl to set up a waitpoint for a
DataReceiveErrorEvent. The signature of a data reception error triggered runnable is:

void <RunnableName> ([IN Rte Instance instance]
[, IN Rte ActivatingEvent <RunnableEntity> activation])

3.6.4 Data Send Completed Triggered Runnables

AUTOSAR defines the DataSendCompletedEvent to signal a successful or an
erroneous transmission of explicit S/R communication. The DataSendCompletedEvent
can either trigger the execution of a runnable entity or continue a runnable, which waits at
a waitpoint for the transmission status or the mode switch in a blocking Rte Feedback
call. Both intra ECU and inter ECU communication is supported. Data send completed
triggered runnables have the following signature:

void <RunnableName>([IN Rte Instance instance]
[, IN Rte ActivatingEvent <RunnableEntity> activation])

3.6.5 Mode Switch Triggered Runnables

AUTOSAR defines the ModeSwitchEvent to trigger a runnable entity on either entering
or exiting of a specific mode of a mode declaration group. The ModeSwitchEvent can
only trigger a runnable entity at its entry point. Consequently there exists no API to set up
a waitpoint for a ModeSwitchEvent. The signature of a mode switch triggered runnable
is:

void <RunnableName>([IN Rte Instance instance]
[, IN Rte ActivatingEvent <RunnableEntity> activation])

3.6.6 Mode Switched Acknowledge Triggered Runnables

AUTOSAR defines the ModeSwitchedAckEvent to signal a successful mode transition.
The ModeSwitchedAckEvent can either trigger the execution of a runnable entity or
continue a runnable, which waits at a waitpoint for the mode transition status. Only intra
ECU communication is supported. Runnables triggered by a mode switch acknowledge
have the following signature:

void <RunnableName> ([IN Rte Instance instance]
[, IN Rte ActivatingEvent <RunnableEntity> activation])

© 2017 Vector Informatik GmbH Version 4.16.0 31
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

3.6.7 Operation Invocation Triggered Runnables

The OperationInvokedEvent is defined by AUTOSAR to always trigger the execution
of a runnable entity. The signature of server runnables depends on the parameters defined
at the C/S port. Its general appearance is as follows:

{void|std ReturnType} <Runnable>([IN Rte Instance inst] {,paramlist}¥*)

The return value depends on application errors being assigned to the operation that the
runnable represents. The parameter list contains input in/output and output parameters.
Input parameters for primitive data type are passed by value. Input parameters for
composite data types and all in/foutput and output parameters independent whether they
are primitive or composite types are passed by reference. The string data type is handled
like a composite type.

3.6.8 Asynchronous Server Call Return Triggered Runnables

The AsynchronousServerCallReturnsEvent signals the end of an asynchronous
server execution and triggers either a runnable entity to collect the result by using
Rte Result or resumes the waitpoint of a blocking Rte Result call.

The runnables have the following signature:

void <RunnableName>([IN Rte Instance instance]
[, IN Rte ActivatingEvent <RunnableEntity> activation])

3.6.9 Init Triggered Runnables
Initialization runnables are called once during startup and have the following signature:

void <RunnableName> ([IN Rte Instance instance])

3.6.10 Background Triggered Runnables

Background triggered runnables have to be mapped to tasks with lowest priority. The
runnables are called by the RTE in an endless loop — in the background — when no other
runnable runs. The signature of a background triggered runnable is:

void <RunnableName> ([IN Rte Instance instance]
[, IN Rte ActivatingEvent <RunnableEntity> activation])

© 2017 Vector Informatik GmbH Version 4.16.0 32
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

3.7 Exclusive Areas

An exclusive area (EA) can be used to protect either only a part of runnable code (explicit
EA access) or the complete runnable code (implicit EA access). AUTOSAR specifies four
implementation methods which are configured during ECU configuration of the RTE. See
also Chapter 6.9.

» OS Interrupt Blocking

» All Interrupt Blocking

» OS Resource

» Cooperative Runnable Placement

All of them have to ensure that the current runnable is not preempted while executing the
code inside the exclusive area.

The MICROSAR RTE analyzes the accesses to the different RTE exclusive areas and
eliminates redundant ones if that is possible e.g. if runnable entities accessing the same
EA they cannot preempt each other and can therefore be dropped.

Info

ﬂ For SchM exclusive areas the automatic optimization is currently not supported.
Optimization must be done manually by setting the implementation method to NONE.
In addition the implementation of the Exclusive Area APIs for the SchM can be set to
CUSTOM. In that case the RTE generator doesn’t generate the SchM Enter and
SchM Exit APIs. Instead of the APIs have to be implemented manually by the
customer.

Caution

n If the user selects implementation method NONE or CUSTOMER it is in the responsibility
of the user that the code between the SchM Enter and SchM Exit still provides
exclusive access to the protected area.

3.7.1 OS Interrupt Blocking

When an exclusive area uses the implementation method 0S_INTERRUPT BLOCKING, it
is protected by caling the OS APIs SuspendOSInterrupts() and
ResumeOSInterrupts (). The OS does not allow the invocation of event and resource
handling functions while interrupts are suspended. This precludes calls to any RTE API
that is based wupon an explicitty modeled waitpoint (blocking Rte Receive,
Rte Feedback, Rte SwitchAck or Rte Result API) as well as synchronous server
calls (which sometimes use waitpoints that are not explicitly modeled or other rescheduling
points). Additionally, all APls that might trigger a runnable entity on the same ECU or
cause a blocking queue access to be released are forbidden, as well as exclusive areas
implemented as OS Resource.

© 2017 Vector Informatik GmbH Version 4.16.0 33
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

3.7.2 All Interrupt Blocking

When an exclusive area uses the implementation method ALL INTERRUPT BLOCKING, it
is protected by caling the OS APIs SuspendAllInterrupts() and
ResumeAllInterrupts (). The OS does not allow the invocation of event and resource
handling functions while interrupts are suspended. This precludes calls to any RTE API
that is based upon an explicitty modeled waitpoint (blocking Rte Receive,
Rte Feedback, Rte SwitchAck or Rte Result API) as well as synchronous server
calls (which sometimes use waitpoints that are not explicitly modeled or other rescheduling
points). Additionally, all APIs that might trigger a runnable entity on the same ECU or
cause a blocking queue access to be released are forbidden, as well as exclusive areas
implemented as OS Resource.

3.7.3 OS Resource

An exclusive area using implementation method OS RESOURCE is protected by OS
resources entered and released via GetResource () / ReleaseResource () calls, which
raise the task priority so that no other task using the same resource may run. The OS does
not allow the invocation of WaitEvent () while an OS resource is occupied. This again
precludes calls to any RTE API that is based upon an explicitly modeled waitpoint and
synchronous server calls.

3.7.4 Cooperative Runnable Placement

For exclusive areas with implementation method COOPERATIVE RUNNABLE PLACEMENT,
the RTE generator only applies a check whether any of the tasks accessing the exclusive
area are able to preempt any other task of that group. This again precludes calls to any
RTE API that is based upon an explicitly modeled waitpoint and synchronous server calls.

© 2017 Vector Informatik GmbH Version 4.16.0 34
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

3.8 Error Handling

3.8.1 Development Error Reporting

By default, development errors are reported to the DET using the service
Det ReportError () as specified in [21], if development error reporting is enabled in the
RteGeneration parameters (i.e. by setting the parameters DevErrorDetect and / or
DevErrorDetectUninit) .

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature
as the service Det ReportError (). The reported RTE ID is 2.

The reported service IDs identify the services which are described in chapter 5. The
following table presents the service IDs and the related services:

0x00 SchM_Init

0x01 SchM_Deinit

0x03 SchM_Enter

0x04 SchM_Exit

0x13 Rte_Send

0x14 Rte_Write

0x15 Rte_Switch

0x16 Rte_Invalidate

0x17 Rte Feedback

0x18 Rte_SwitchAck

0x19 Rte_Read

Ox1A Rte_DRead

0x1B Rte_Receive

0x1C Rte_Call

0x1D Rte_Result

Ox1F Rte_CData

0x20 Rte_Prm

0x28 Rte_IrvRead

0x29 Rte_IrvWrite

0x2A Rte_Enter

0x2B Rte_ Exit

0x2C Rte_Mode

0x30 Rte_IsUpdated

0x70 Rte_Start

0x71 Rte_Stop

0x90 Rte_ COMCbkTAck_<sn>

0x91 Rte_ COMCbKTErr_<sn>

0x92 Rte_ COMCDbkInv_<sn>
© 2017 Vector Informatik GmbH Version 4.16.0 35

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

0x93 Rte_ COMCbkRxTOut_<sn>

0x94 Rte_ COMCbkTxTOut_<sn>

0x95 Rte_ COMCbk_<sg>

0x96 Rte_ COMCbkTAck_<sg>

0x97 Rte_ COMCbKTErr_<sg>

0x98 Rte_ COMCbklInv_<sg>

0x99 Rte_ COMCbkRxTOut_<sg>

0x9A Rte_ COMCbkTxTOut_<sg>

0x9B Rte_SetMirror_ <d>

0x9C Rte_GetMirror_ <d>

0x9D Rte_NvMNotifyJobFinished__<d>
Ox9E Rte_NvMNotifylnitBlock__<d>
O0x9F Rte_ COMCbk_<sn>

0xAO0 Rte_LdComCbkRxIndication_<sn>
OxA6 Rte_LdComCbkTriggerTransmit_<sn>
OxA7 Rte_LdComCbkTxConfirmation_<sn>
0xFO Rte_Task

OxF1 Rte_IncDisableFlags

OxF2 Rte_DecDisableFlags

Table 3-4 Service IDs

© 2017 Vector Informatik GmbH Version 4.16.0 36
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

The errors reported to DET are described in the following table:

Error Code

RTE_E_DET_ILLEGAL_NESTED_EX The same exclusive area was called nested or exclusive

CLUSIVE_AREA areas were not exited in the reverse order they were
entered

RTE_E_DET_UNINIT Rte/SchM is not initialized

RTE_E_DET_MODEARGUMENT Rte_Switch was called with an invalid mode parameter

RTE_E_DET_TRIGGERDISABLECOU Counter of mode disabling triggers is in an invalid state
NTER

RTE_E DET _MODESTATE Mode machine is in an invalid state

RTE_E_DET_MULTICORE_STARTUP Initialization of the master core before all slave cores
were initialized

RTE_E_DET_ILLEGAL_SIGNAL_ID RTE callback was called for a signal that is not active in
the current variant.

RTE_E_DET_ILLEGAL_VARIANT_CR SchM_lnit called with wrong variant
ITERION_VALUE

RTE_E DET BLOCKSIZECHECK Nv Block size mismatch between RTE and NvM

Table 3-5 Errors reported to DET

The error RTE_E DET_UNINIT will only be reported if the parameter
DevErrorDetectUninit is enabled. The reporting of all other errors can be enabled by
setting the parameter DevErrorDetect.

Caution
“ If DevErrorDetect is enabled in multicore systems, the DET module needs to
provide a multicore reentrant Det ReportError method.

© 2017 Vector Informatik GmbH Version 4.16.0 37
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

4 RTE Generation and Integration

This chapter gives necessary information about the content of the delivery, the RTE
generation process including a description about the different RTE generation modes and
finally information how to integrate the MICROSAR RTE into an application environment of
an ECU.

4.1 Scope of Delivery

The delivery of the RTE contains no static RTE code files. The RTE module is completely
generated by the MICROSAR RTE Generator. After the installation, the delivery has the
following content:

Files ________ Descripton

DVCfgRteGen.exe Command line MICROSAR RTE generator
(including several DLLs and XML files)

MicrosarRteGen.exe MICROSAR RTE File generator

Rte.jar DaVinci Configurator 5 adaptation modules
Settings_Rte.xml

Rte_Bswmd.arxml BSWMD file for MICROSAR RTE
TechnicalReference_Asr_Rte.pdf This documentation

ReleaseNotes MICROSAR_RTE.htm Release Notes

Table 4-1 Content of Delivery

Info
The RTE Configuration Tool DaVinci Developer is not part of MICROSAR RTE / BSW
installation package. It has to be installed separately.

© 2017 Vector Informatik GmbH Version 4.16.0 38
based on template version 3.5

VECTOR D>

4.2 RTE Generation

Technical Reference MICROSAR RTE

The MICROSAR RTE generator can be called either from the command line application
DVCfgCmd.exe or directly from within the DaVinci Configurator.

4.2.1 Command Line Options

N I

--project <file>
—-—-generate

--modulesToGenerate

--genArg="<module>:

--help

-p <file> Specifies the absolute path to the DPA project file.
-9 Generate the given project specified in <file>.
-m <module> = Specifies the module definition references, which

should be generated by the -g switch. Separate
multiple modules by a',".

E.g. /MICROSAR/Rte, /MICROSAR/Nm

<params>" Passes the specified parameters <params> to the

generator of the specified module <module>. For
details of the possible parameters of the RTE module
see Table 4-3.

-h Displays the general help information of
DVCfgCmd.exe

Table 4-2 DVCfgCmd Command Line Options

4.2.2 RTE Generator Command Line Options

Option ________ Description

-m <obj>

-g [rlclilh]

© 2017 Vector Informatik GmbH

Selects the DaVinci model object, where <obj> is either
<ECUProjectName> or <ComponentTypeName>.

Note: If -g 1 or —g c are selected, which accepts both,
<ComponentTypeName> or <ECUProjectName> and the
configuration contains such objects with the same name, the
component type object takes preference over the ECU project.

When the workspace contains only a single ECUProject or a single
ComponentType, the -m parameter can be omitted.

With the -m parameter also multiple component types can be selected,
delimited with semicolons.

Selects generation of the RTE with the following sub options:
r Selects RTE generation for the ECU project specified via option -

m <ECUProjectName>. This is the default option. Therefore —g is
equalto -g r.

Version 4.16.0 39
based on template version 3.5

VECTOR >

-0 <path>

-0 r=<path>
-0 c=<path>
-0 i=<path>
-0 h=<path>
-0 s=<path>
-0 a=<path>

-f <file>

© 2017 Vector Informatik GmbH

Technical Reference MICROSAR RTE

c Selects RTE contract phase header generation for a single
component type or BSW module if -m
<ComponentTypeName/BswModuleName> or for multiple
component types and BSW modules if -m
<ComponentTypelName/BswModulelName>;
<ComponentType2Name/BswModule2Name> or for all non-
service component types and BSW modules of an ECU project if
-m <ECUProjectName>.

i Selects implementation template generation for a single
component type if -m <ComponentTypeName> or for multiple
component types if —m
<ComponentTypelName>; <ComponentType2Name> or for all
non- service component types of an ECU project if -m
<ECUProjectName>.

The optional -f <file> parameter specifies the file name to use
for the implementation template file. If the —-f <file> parameter
is not given, or —-m contains an ECU project name, the filename
defaults to <ComponentTypeName>. c.

Already existing implementation files are updated and a backup is
created.

h Selects VFB trace hook template generation for the ECU project
specified via option -m <ECUProjectName>.
The optional -£ <file> parameter specifies the file name to use
for the VFB trace hook template file. If the -f <file> parameter
is not given, the filename defaults to
VEFBTraceHook <ECUProjectName>.c
Already existing implementation files are updated and a backup is
created.

This parameter can be used more than one time to generate several
modes in one step.

Output path for the generated files.

If more than one generation mode is active, a special path can be
specified for each generation mode by assigning the path to the
character that is used as sub option for the —g parameter.
Furthermore the path for the application header files in the RTE
generation mode can be selected via option —o s=<path>. By default
they are generated into the subdirectory “Components”.

The path for A2L files can be specified with the option —o a=<path>.
These files are generated into the RTE directory by default.

Note: The <path> configured with —o parameter overwrites the path
which is specified in the dpa project file.

Optional parameter to specify the output file name for options -g i
and -g h.

Note: For option —g i the output file name can only be specified if -m
specifies a component type. The output file name cannot be specified

Version 4.16.0 40
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

when —m specifies multiple component types.

-v Enables verbose mode which includes help information for error,
warning and info messages.

-h Displays the general help information.

Table 4-3 RTE Generator Command Line Options

4.2.3 Generation Path

The RTE output files are generated into the path which is either specified within the dpa
project file or which is specified in the —o command line option. If several generation
modes are activated in parallel, for each phase a special path can be specified with the -o
command line option.

In RTE generation phase (command line option —g or —g r), the component type specific
application header files are generated into the subdirectory Components. This
subdirectory can be changed in the RTE generation phase with the option -o
“s=<path>". In addition the directory for the A2L files, which are generated into the RTE
directory by default, can be specified with the option —o “a=<path>".

4.3 MICROSAR RTE generation modes

The sections give an overview of the files generated by the MICROSAR RTE generator in
the different RTE generation modes and some examples how the command line call looks
like.

4.3.1 RTE Generation Phase
The following files are generated by the RTE generation: (Option —g or -g r)

File __ Descripton _

Rte_<ComponentType>.h Application header file, which has to be included into the SWC
code. This header file is the only file to be included in the
component code. It is generated to the Components subdirectory
by default.

Rte_<ComponentType>_Type.h Application type header file. This header file contains SWC specific
type definitions. It is generated to the Components subdirectory
by default.

SchM_<BswModule>.h Module interlink header file, which has to be included into the BSW
module code.

SchM_<BswModule>_Type.h Module interlink types header file. This header file contains BSW
module specific type definitions.

<ComponentType>_MemMap.h Template contains SWC specific part of the memory mapping. It is
generated to the Components subdirectory by default.

Rte.c Generated RTE
Rte_<OsApplication>.c OsApplication specific part of the generated RTE (only generated
when OsApplications are configured)
Rte_PBCfg.c The RTE post build data set configuration file contains the data
structures for the postbuild RTE initialization.
Rte.h RTE internal declarations
© 2017 Vector Informatik GmbH Version 4.16.0 41

based on template version 3.5

VECTOR >

Rte_Main.h
Rte_Cfg.h
Rte_Cbk.h
Rte_Hook.h
Rte_Type.h

Rte_DataHandleType.h

Rte_PBCfg.h

Rte_UserTypes.h

Rte_MemMap.h
Rte_Compiler_Cfg.h
usrostyp.h

Rte.oil
Rte_Needs.ecuc.arxml

Rte.a2l

Rte_MemSeg.a2l

Rte rules.mak,
Rte defs.mak,
Rte_check.mak,
Rte_cfg.mak

Rte.html

Technical Reference MICROSAR RTE

Header file for RTE lifecycle API
Configuration file for the RTE

Contains prototypes for COM callbacks
Contains relevant information for VFB tracing

Contains the application defined data type definitions and RTE
internal data types

The RTE data handle types header file contains the data handle
type declarations required for the component data structures.

The RTE post build data set configuration header contains the
declarations for the data structures that are used for the postbuild
RTE initialization.

Template which is generated if either user defined data types are
required for Per-Instance memory or if a data type is used by the
RTE but generation is skipped with the typeEmitter attribute.

Template contains RTE specific part of the memory mapping
Template contains RTE specific part of the compiler abstraction

Template which is only generated if memory protection support is
enabled. In that case this file is included by the MICROSAR OS.

OS configuration for the RTE

Contains the RTE requirements on BSW module configuration for
Os, Com, LdCom, Xcp and NvM.

A2L file containing CHARACTERISTIC and MEASUREMENT
objects for the generated RTE

A2L file containing MEMORY_SEGMENT objects for the
generated RTE

Make files according to the AUTOSAR make environment proposal
are generated into the mak subdirectory.

Contains information about RAM / CONST consumption of the
generated RTE as well as a listing of all triggers and their OS
events and alarms.

Table 4-4 Generated Files of RTE Generation Phase

Example:

DVCfgCmd -p "InteriorLight.dpa" -m /MICROSAR/Rte -g

© 2017 Vector Informatik GmbH Version 4.16.0 42

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

4.3.2 RTE Contract Phase Generation
The following files are generated by the RTE contract phase generation: (Option —g c¢)

File ____Descripton

Rte_<ComponentType>.h Application header file, which must be included into the SWC
code. This header file is the only file to be included in the
component code.

Rte_<ComponentType>_Type.h Application type header file. This header file contains SWC specific
type definitions.

<ComponentType>_MemMap.h Template contains SWC specific part of the memory mapping.

Rte.h RTE internal declarations

Rte_Type.h Contains the application defined data type definitions and RTE
internal data types

Rte_DataHandleType.h The RTE data handle types header file contains the data handle
type declarations required for the component data structures.

Rte_UserTypes.h Template which is generated if either user defined data types are

required for Per-Instance memory or if a data type is used by the
RTE but generation is skipped with the typeEmitter attribute.

Rte_MemMap.h Template contains RTE specific part of the memory mapping

Rte_Compiler_Cfg.h Template contains RTE specific part of the compiler abstraction

SchM_<BswModule>.h Module interlink header file, which has to be included into the BSW
module code.

SchM_<BswModule>_Type.h Module interlink types header file. This header file contains BSW
module specific type definitions.

Table 4-5 Generated Files of RTE Contract Phase

Example:

DVCfgCmd -p "InteriorLight.dpa"
-m /MICROSAR/Rte
-g
-—-genArg="Rte: -g ¢ —m SenderComponent”

The generated header files are located in a component type specific subdirectory. The
application header file must be included in each source file of a SWC implementation,
where the RTE API for that specific SWC type is used.

The application header file created in the RTE contract phase can be used to compile
object code components, which can be linked to an RTE generated in the RTE generation
phase. The application header files are generated in RTE compatibility mode.

© 2017 Vector Informatik GmbH Version 4.16.0 43
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

Caution

n During the RTE generation phase an optimized header file is generated. This optimized
header file should be used when compiling the source code SWCs during the ECU
build process.
The usage of object code SWCs, which are compiled with the application header files
of the contract phase, require an “Implementation Code Type” for SWCs set to “object
code” in order to tell the RTE generator in the RTE generation phase NOT to create
optimized RTE API accesses but compatible ones.

© 2017 Vector Informatik GmbH Version 4.16.0 44
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

4.3.3 Template Code Generation for Application Software Components
The following file is generated by the implementation template generation: (Option -g i)

File _ Descripton

<FileName>.c An implementation template is generated if the —g i option is
selected. The —-f option specifies the name of the generated c file.
If no name is selected the default name <ComponentTypeName>. c
is used.

Table 4-6 Generated Files of RTE Template Code Generation

Example:

DVCfgCmd -p "InteriorLight.dpa"
-m /MICROSAR/Rte
—-g
-—-genArg="Rte: -g 1 -m SenderComponent -f Componentl.c”

The generated template files contain all empty bodies of the runnable entities for the
selected component type. It also contains the include directive for the application header
file. In addition, the available RTE API calls are included in comments.

Caution

n When the destination file of the SWC template code generation is already available,
code that is placed within the user code sections marked by “DO NOT CHANGE”-
comments is transferred unchanged to the updated template file.

Additionally, a numbered backup of the original file is made before the new file is
written.

The preservation of runnable code is done by checking for the runnable symbol. This
implies that after a change of the name of a runnable the runnable implementation is
preserved, while a change of the symbol results in a new empty function for the
runnable.

Code that was removed during an update is kept in the “removed code” section at the
bottom of the implementation file and in the numbered backups.

The template update is particularly useful when e.g. access to some interfaces has
been added or removed from a runnable, because then the information of available
APls is updated by the generation process without destroying the implementation.

© 2017 Vector Informatik GmbH Version 4.16.0 45
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

4.3.4 VFB Trace Hook Template Code Generation
The following file is generated by the VFB trace hook template generation: (Option —g h)

File __ Descripton

<FileName>.c An implementation template of the VFB trace hooks is generated if
the —g h option is selected. The —f option specifies the name of
the generated c file. If no name is selected the default name
VEBTraceHook < ECUProjectName >.c is used.

Table 4-7 Generated Files of VFB Trace Hook Code Generation

Example:

DVCfgCmd -p "InteriorLight.dpa"
-m /MICROSAR/Rte
-g
-—genArg="Rte: -g h —-f VFBTraceHook myEcu.c”

Caution

“ When the destination file of the VFB trace hook template generation is already
available, code that is placed within the user code sections marked by “DO NOT
CHANGE” comments is transferred unchanged to the updated template file.
Additionally, a numbered backup of the original file is made before the new file is
written.

The preservation of trace hook code is done by checking for the trace hook name.
When the name of a hook changes, e.g. because the name of a data element
changed, then the code of the previous trace hook is removed.

Code that was removed during an update is kept in the “removed code” section at the
bottom of the implementation file and in the numbered backups.

The template update is particularly useful when some trace hooks have been added or
removed due to changed interfaces or OS usage.

© 2017 Vector Informatik GmbH Version 4.16.0 46
based on template version 3.5

VECTOR D>

4.4 Include Structure
441 RTE Include Structure

Technical Reference MICROSAR RTE

class RTE Include Structure /

Legend
D Generated RTE C File
D Generated RTE Header Files
D Header Files of other Modules

«include»

¥V
N

<Swc>_MemMap.h

I
«include»

«include»

Rte_MemMap.h

N
N

Rte_Compiler_Cfg.h

- Rte_Cbkh Xcp.h
«include»
~
7 T .
N ! A \ ﬂ «incluge»
N / | \ / SO AN
N | /
| Osh
AN
loc.h Il
|
I
|
AN ,
|
I
I
/ / | \/\ b ~ SchM_<Bsw>_Type.h I
/ | AN «include»
| . ARNY ~o I|
| «include» N ~
7 N ~<
[NN S~ ; 1
V2 .
)I «mclug\e» \\\ \\\<<include>> :
Z1 \ «includey 7\\ |
T~ \ > S !
I = T«include» \ «mcluds»\ |
| T~ A\ ~
«include» T~a S N\
I -~
' - ST T T Rte_Hookh
- «include»
«include» -
I -
| _-7 ,
1 - \ | , !
| - \ \
I - 7 |
|- L .
7 «includex cinclude»
«include» | / |
- | s |
-7 | 7 1
————————————— Rte_Mainhf-—=——=———=—=——=——————= Rte_Cfg.h
«include» «include»
=
- -7
-
-7 AN
_ ~«include» / | N
- "
N - 4 . «include»
- «include» N
«include» | N
Rte_PBCfg.h / |
7/
7/ N Deth
4
‘ Std_Types.h|
/ AN
/ N
’ .
«include» «include»
/ \
/, N
_ _ J Compiler_Cfg.h <= — —— —— Compiler.h Platform_Types.h
e «include»
«include»

Figure 4-1 RTE Include Structure

© 2017 Vector Informatik GmbH

Version 4.16.0 47

based on template version 3.5

VECTOR D>

442 SWCInclude Str

ucture

Technical Reference MICROSAR RTE

The following figure shows the include structure of a SWC with respect to the RTE
dependency. All other header files which might be included by the SWC are not shown.

class Swec Include Structure/

Legend
[] user swc implementation File(s)
|:| Generated RTE Header Files
I:' Header Files of other Modules

-
e
-
7
-
-~
<Syc>_MemMalp.h
|
|
|
|
|
|
«include»
|
|
|
|
|
N
N
«include»
N
N

N\
<Swc>.c

I 1.x
|
|
|

'
«inc!ude»

«include» «incl.ude»
P !
- |
7
|
|
Rtg_<Swc>_Type.h
~ ~
~
~ ~
|
|
|
|
|
«incI}Jde»
|
|
|
|
N\ -
P -
|~
Rte_Type.h
/ \
/
«include» «include»
\
A \
N e
b AN
MemMap.h

Rte.h

«include»

Rte_UserTypes.h

Figure 4-2 SWC Include Structure

© 2017 Vector Informatik GmbH

Version 4.16.0
based on template version 3.5

48

VECTOR D>

443 BSW Include Structure

Technical Reference MICROSAR RTE

The following figure shows the include structure of a BSW module with respect to the
SchM dependency. All other header files which might be included by the BSW module are

not shown.

class Bsw Include Structure/

Legend
[] Bsw Module File(s)
|:| Generated RTE Header Files
|:| Header Files of other Modules

<Bsw>.c

I l“*
|
|

«incI ude»
|
|
|

JchM_<Bsw>(h

/
/ N\
/ \
VZ \
7/ N\
«include» N
s/ «include»
v N\
Y \
v N\
/ \
AN
Os.h SchM_<Bsw>_Type.h

|

|

|

|

I
«include»

|

|

- |

e

- < I
/«include» k
________ «include». _ _ _ _ _ _ _ _ Rte_Type.h

Figure 4-3 BSW Include Structure
© 2017 Vector Informatik GmbH Version 4.16.0 49

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

4.5 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions — the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following two tables contain the memory section names and the compiler abstraction
definitions defined for the RTE and illustrate their assignment among each other.

Compiler Abstraction
Definitions

RTE_<SWC>_APPL_VAR

RTE_<SWC>_APPL_DATA

<Swc>_VAR_ZERO_INIT

RTE_APPL_VAR

RTE_VAR_INIT
RTE_VAR_<Pim>

RTE_<SWC>_APPL_CODE

RTE_APPL_DATA

<Swc>_VAR_INIT
RTE_CONST
RTE_CONST_<Cal>

RTE_APPL_CODE

Memory Mapping

RTE_VAR_NOINIT
<Swc> VAR_NOINIT

RTE_<NvRamBlock>

RTE_VAR_<Cal>
<Swc> CONST

RTE_CODE
<Swc> CODE

Sections

®m RTE_VAR_ZERO_INIT

RTE_START SEC_VAR ZERO_INIT_8BIT
RTE_STOP_SEC_VAR_ZERO_INIT_8BIT

RTE_START_SEC_VAR_ZERO_INIT_UNSPECIFIED
RTE_STOP_SEC_VAR_ZERO_INIT_UNSPECIFIED

RTE_START_SEC_VAR <OsAppl> ZERO_INIT_UNSPECIFIED®
RTE_STOP_SEC_VAR_<OsAppl> ZERO_INIT_UNSPECIFIED'

<Swc>_START_SEC_VAR_ZERO_INIT_UNSPECIFIED -
<Swc>_STOP_SEC_VAR_ZERO_INIT_UNSPECIFIED

RTE_START_SEC_VAR_INIT_UNSPECIFIED -
RTE_STOP_SEC_VAR_INIT_UNSPECIFIED

RTE_START_SEC_VAR_<OsAppl>_INIT_UNSPECIFIED' -
RTE_STOP_SEC_VAR_<OsAppl>_INIT_UNSPECIFIED'

<Swc>_START_SEC_VAR_INIT_UNSPECIFIED -
<Swc>_STOP_SEC_VAR_INIT_UNSPECIFIED

RTE_START_SEC_VAR_NOINIT_UNSPECIFIED -
RTE_STOP_SEC_VAR_NOINIT_UNSPECIFIED

RTE_START_SEC_VAR_<OsAppl>_NOINIT_UNSPECIFIED' -
RTE_STOP_SEC_VAR_<OsAppl> NOINIT_UNSPECIFIED'

<Swc> START_SEC_VAR_NOINIT_UNSPECIFIED .
<Swc>_STOP_SEC_VAR_NOINIT_UNSPECIFIED

RTE_START_SEC_VAR_<Pim> UNSPECIFIED
RTE_STOP_SEC_VAR_<Pim>_UNSPECIFIED

RTE_START_SEC_<NvRamBlock> -
RTE_STOP_SEC_<NvRamBlock>

RTE_START_SEC_VAR_<Cal> UNSPECIFIED -
RTE_STOP_SEC_VAR_<Cal> UNSPECIFIED

RTE_START_SEC_CONST_UNSPECIFIED -
RTE_STOP_SEC_CONST_UNSPECIFIED

<Swc>_START_SEC_CONST_UNSPECIFIED -
<Swc>_STOP_SEC_CONST_UNSPECIFIED

! This memory mapping sections are only used if memory protection support is enabled

© 2017 Vector Informatik GmbH Version 4.16.0 50
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

RTE_START_SEC_CONST_<Cal> UNSPECIFIED -
RTE_STOP_SEC_CONST <Cal> UNSPECIFIED

RTE_START_SEC_CODE -
RTE_STOP_SEC_CODE

<Swc>_START_SEC_CODE -
<Swc>_STOP_SEC_CODE

RTE_START_SEC_APPL_CODE -
RTE_STOP_SEC_APPL_CODE

Table 4-8 Compiler abstraction and memory mapping

Compiler Abstraction
Definitions

RTE_VAR_INIT_NOCACHE

Memory Mapping
Sections

RTE_VAR_NOINIT_NOCACHE

B RTE_VAR_ZERO_INIT_NOCACHE

RTE_START_SEC_VAR_NOCACHE_ZERO_INIT_8BIT
RTE_STOP_SEC_VAR_NOCACHE_ZERO_INIT 8BIT

RTE_START_SEC_VAR_GLOBALSHARED_NOCACHE_ZERO_INIT_8BIT
RTE_STOP_SEC_VAR_GLOBALSHARED_NOCACHE_ZERO_INIT_8BIT

RTE_START_SEC_VAR_NOCACHE_ZERO_INIT_UNSPECIFIED -
RTE_STOP_SEC_VAR_NOCACHE_ZERO_INIT_UNSPECIFIED

RTE_START_SEC_VAR_<OsAppl>_ NOCACHE_ZERO_INIT_UNSPECIFIED -
RTE_STOP_SEC_VAR_<OsAppl> NOCACHE_ZERO_INIT_UNSPECIFIED

RTE_START_SEC_VAR_NOCACHE_INIT_UNSPECIFIED -
RTE_STOP_SEC_VAR_NOCACHE_INIT_UNSPECIFIED

RTE_START_SEC_VAR_<OsAppl> NOCACHE_INIT_UNSPECIFIED -
RTE_STOP_SEC_VAR_<OsAppl> NOCACHE_INIT_UNSPECIFIED

RTE_START_SEC_VAR_NOCACHE_NOINIT_UNSPECIFIED m
RTE_STOP_SEC_VAR_NOCACHE_NOINIT_UNSPECIFIED

RTE_START _SEC_VAR_<OsAppl> NOCACHE_NOINIT_UNSPECIFIED -
RTE_STOP_SEC_VAR_<OsAppl> NOCACHE_NOINIT_UNSPECIFIED

Table 4-9 Compiler abstraction and memory mapping for non-cacheable variables

The memory mapping sections and compiler abstraction defines specified in Table 4-9 are
only used for variables which are shared between different cores on multicore systems.
These variables must be linked into non-cacheable memory.

The RTE specific parts of Compiler Cfg.h and MemMap.h depend on the configuration
of the RTE. Therefore the MICROSAR RTE generates templates for the following files:

» Rte_Compiler_Cfg.h
» Rte_MemMap.h

© 2017 Vector Informatik GmbH Version 4.16.0 51
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

They can be included into the common files and should be adjusted by the integrator like
the common files too.

45.1 Memory Sections for Calibration Parameters and Per-Instance Memory

The variable part of the memory abstraction defines for calibration parameters <Ccal> and
Per-Instance Memory <Pim> depends on the configuration. The following table shows the
attributes, which have to be defined in DaVinci Developer in order to assign a calibration
parameter or a Per-Instance Memory to one of the configured groups. The groups
represented by the enumeration values of the attributes can be configured in the attribute
definition dialog in DaVinci Developer without any naming restrictions. Only the name of
the attribute itself is predefined as described in the table below.

Object Type Attribute Name Attribute Type

Calibration Parameter PAR_GROUP_CAL Enumeration
Calibration Element Prototype PAR_GROUP_EL Enumeration
Per-Instance Memory PAR_GROUP_PIM Enumeration
NvBlockDataPrototype PAR_GROUP_NVRAM Enumeration

Details of configuration and usage of User-defined attributes can be found in the DaVinci
Online Help [23].

Example for Calibration Parameters:

If the attribute PAR GROUP_CAL contains e.g. the enumeration values CalGroupA and
CalGroupB and calibration parameters are assigned to those groups, the RTE generator
will create the following memory mapping defines:

RTE START SEC CONST CalGroupA UNSPECIFIED
RTE STOP SEC_CONST CalGroupA UNSPECIFIED
RTE START SEC CONST CalGroupB UNSPECIFIED
RTE STOP SEC_CONST CalGroupB UNSPECIFIED

In addition the following memory mapping defines are generated, if the calibration method
Initialized RAM is enabled (see also Chapter 6.6):

RTE_START SEC_ VAR CalGroupA UNSPECIFIED
RTE_STOP_SEC_ VAR CalGroupA UNSPECIFIED
RTE_START SEC VAR CalGroupB UNSPECIFIED
RTE_STOP_SEC_VAR CalGroupB UNSPECIFIED

© 2017 Vector Informatik GmbH Version 4.16.0 52
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

Example for Per-Instance Memory:

If the attribute PAR GROUP_ PIM contains e.g. the enumeration values PimGroupA and
PimGroupB and Per-Instance Memory is assigned to those group, the RTE generator will
create the following memory mapping defines:

RTE START SEC VAR PimGroupA UNSPECIFIED
RTE STOP_SEC_ VAR PimGroupA UNSPECIFIED
RTE_START SEC VAR PimGroupB UNSPECIFIED
RTE _STOP_SEC VAR PimGroupB UNSPECIFIED

4.5.2 Memory Sections for Software Components

The MICROSAR RTE generator generates specific memory mapping defines for each
SWC type which allows to locate SWC specific code, constants and variables in different
memory segments.

The variable part <swc> is the camel case software component type name. The RTE
implementation template code generator (command line option —g i) uses the SWC
specific sections to locate the runnable entities in the appropriate memory section.

The SWC type specific parts of MemMap . h depend on the configuration. The MICROSAR
RTE generator creates a template for each SWC according the following naming rule:

» <Swc> MemMap.h

© 2017 Vector Informatik GmbH Version 4.16.0 53
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

45.3 Compiler Abstraction Symbols for Software Components and RTE
The RTE generator uses SWC specific defines for the compiler abstraction.

The following define is used in RTE generated SW-C implementation templates in the
runnable entity function definitions.

<Swc> CODE

In addition, the following compiler abstraction defines are available for the SWC developer.
They can be used to declare SWC specific function code, constants and variables.

<Swc> CODE

<Swc> CONST
<Swc> VAR NOINIT
<Swc> VAR INIT
<Swc> VAR ZERO INIT

If the user code contains variable definitions, which are passed to the RTE API by
reference in order to be modified by the RTE (e.g. buffers for reading data elements) the
RTE uses the following define to specify the distance to the buffer.

RTE APPL VAR (RTE specific)

If the user code contains variable or constant definitions, which are passed to the RTE API
as pure input parameter (e.g. buffers for sending data elements) the RTE uses the
following define to specify the distance to the variable or constant.

RTE <SWC> APPL DATA (SWC specific)
RTE APPL DATA (RTE specific)

All these SWC and RTE specific defines for the compiler abstraction might be adapted by
the integrator. The configured distances have to fit with the distances of the buffers and the
code of the application.

Caution

The template files <Swc> MemMap.h, Rte MemMap.h and Rte Compiler Cfg.h
have to be adapted by the integrator depending on the used compiler and hardware
platform especially if memory protection is enabled.

When the files are already available during RTE generation, the code that is placed
within the user code sections marked by “DO NOT CHANGE”-comments is transferred
unchanged to the updated template files. The behavior is the same as for template
generation of other files like SWC template generation.

© 2017 Vector Informatik GmbH Version 4.16.0 54
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

4.6 Memory Protection Support

The MICROSAR RTE supports memory protection as an extension to the AUTOSAR RTE
specification. Therefore the memory protection support of the Operating System provides
the base functionality. The support is currently limited to the Vector MICROSAR OS
because the RTE requires read access to the data from all partitions what is not required
by AUTOSAR. Moreover when trusted functions are used, the RTE uses wrapper functions
that are only generated by MICROSAR OS. These wrapper functions can be implemented
manually by following the Chapter ,Providing Trusted Functions® of the AUTOSAR SWS
OS (Version 4.0-4.3).

4.6.1 Partitioning of SWCs

The partitioning of SWCs to memory areas can be done in DaVinci CFG. The partitioning
is based on assignment of tasks to OS applications, which is part of the OS configuration
process.

There exists the restriction that all Runnable Entities of a single SWC have to be assigned
to the same OS application. This restriction and the assignment of tasks to OS
applications indirectly assign SWCs to OS applications. This is the basis for grouping
SWCs to different memory partitions. Additional information about memory protection
configuration can be found in Chapter 6.3.

4.6.2 OS Applications

The operating system supports different scalability classes (SC). Only in SC3 and SC4 the
memory protection mechanism is available. Therefore the configuration of the required
scalability class is the first step to enable memory partitioning. The second step is the
assignment of SWCs to partitions (OS applications) which is done by assigning tasks to
OS applications as described above.

The OS supports two types of OS applications:
» Non-Trusted
» Trusted

Non-Trusted OS applications run with enabled memory protection, trusted OS applications
with disabled memory protection.

Caution
n Enable the error hook and the protection hook in the OS in order to get informed about
MPU violations and misusage of the OS.

Both types are supported by the MICROSAR RTE and can be selected in the OS
application configuration dialog or directly in the OS configuration tool.

Caution
n If no assignment of tasks to OS applications exist memory protection is disabled.

© 2017 Vector Informatik GmbH Version 4.16.0 55
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

4.6.3 Partitioning Architecture

When memory protection is used, one or more SWCs can be assigned to an OS
application but it is not allowed to split up a SWC between two or more OS applications.
That means that all runnables of a SWC have to be assigned to tasks, which belong to the
same OS application. It is the responsibility of the RTE to transfer the data of S/R and the
arguments of C/S port interfaces over the protection boundaries.

Caution
Client-Server invocations implemented as direct function calls should be used inside
one OS application only.

The MICROSAR RTE itself and the BSW can either run in a trusted OS application or in a
non-trusted OS application. Both architectures are described below.

4.6.3.1 Trusted RTE and BSW

trusted application trusted application Non-trusted

application

MICROSAR RTE

Basic Software

trusted/non-trusted
application

ECU-Hardware

Figure 4-4 Trusted RTE Partitioning example

This architecture overview assumes that the RTE and the BSW modules that are used by
the RTE run in one or more trusted OS applications. Application software components
(SWC) above the RTE can either be trusted or non-trusted. When this architecture is used,

© 2017 Vector Informatik GmbH Version 4.16.0 56
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

the RTE uses trusted functions so that non-trusted SWCs can access the BSW and SWCs
in other OS applications. In this architecture, Rte Start () has to be called from a
trusted task and the Com module needs to run in trusted context, too. The RTE will use the
same OS application as the BSW Scheduler tasks.

An architecture where the BSW modules and the RTE are assigned to a non-trusted OS
application is described in the next chapter.

46.3.2 Non-Trusted RTE and BSW

non-trusted trusted application Non-trusted

application application

MICROSAR RTE

Basic Software

trusted/non-trusted
application

ECU-Hardware

Figure 4-5 Non-trusted RTE Partitioning example

This architecture overview assumes that the BSW modules below the RTE, as well as the
RTE itself run in a single non-trusted OS application. The SWCs above the RTE can either
be assigned to the same non-trusted OS application as the BSW or they can be assigned
to one or more other non-trusted or trusted OS applications. Every OS application has its
own buffers which are only written by runnables that run in the same OS application. The
RTE does not use trusted functions in this architecture. Therefore it is possible to create a
system where all SWCs and the BSW are assigned to non-trusted OS applications and all
runnables/tasks always run with enabled memory protection.

© 2017 Vector Informatik GmbH Version 4.16.0 57
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

The non-trusted RTE architecture is automatically chosen when the RTE configuration
fulfills the following criterions:

>

>

>

The tasks that contain the BSW modules are known by the RTE. This can be achieved
by configuring them as BSW Scheduler tasks (See chapter 6.2).

All BSW Scheduler tasks are assigned to the same non-trusted OS application (further
referred to as BSW OS Application). It is assumed that this is also the OS application
that initializes the RTE by calling Rte_Start. The application tasks can either be
assigned to the BSW OS Application or to other non-trusted or trusted OS
applications.

There are no mode connections with mode disabling dependencies or mode triggers
between different OS Applications.

There are no direct client/server calls across OS applications

No special limitations apply to SWCs that are assigned to the same OS application as the
BSW. Moreover, the following RTE features can also be used by SWCs in other OS
applications:

>

vV v. v Vv

direct or buffered inter-runnable variables
per-instance memories

SWC local calibration parameters

access to calibration software components

queued and nonqueued intra-ECU sender/receiver communication (when there is only
a single sender partition)

inter-ECU sender/receiver communication (see also chapter 4.8.1)
direct client/server calls to runnables within the same OS application

mapped client/server calls to runnables in the same and different OS applications (see
also chapter 4.8.2)

reading modes with the Rte_Mode API

explicit and implicit exclusive areas

© 2017 Vector Informatik GmbH Version 4.16.0 58

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

4.6.4 Conceptual Aspects

For intra OS application communication no additional RTE interaction is required. Special
memory protection handling is required only if communication between different OS
applications exists. In that case, the RTE has to provide means to transfer data over the
protection boundaries. The only possibility is the usage of trusted function calls inside the
generated RTE code. Those trusted function calls are expensive concerning code usage
and runtime. Therefore the usage of trusted function calls should be minimized if possible.

The MICROSAR RTE generator uses trusted function calls only if necessary. In some
cases the usage of trusted function calls can be avoided by assigning the RTE buffers to
the appropriate OS application. The Vector MICROSAR OS only provides write access
protection but doesn’t support read access protection. This behavior is the basis to avoid
trusted function calls, because the writing OS application can be seen as the owner of the
memory buffer. Only a simple assignment of the buffer to the appropriate OS application is
necessary. This also makes it possible to completely avoid trusted function calls when the
“‘Non-trusted RTE" architecture (chapter 4.6.3.2) is chosen.

Only if the memory assignment cannot be used, the RTE needs trusted functions to cross
the protection boundaries.

For that purpose, the RTE generator uses the OS application of the BSW Scheduler tasks
as its own OS application, which always needs to be trusted. The trusted functions called
by the RTE are assigned to that trusted OS application. In addition to the communication
between SWCs of different OS applications, there also exists communication between the
COM BSW module and the RTE. Especially the notifications of the COM are done in an
undefined call context. The MICROSAR RTE assumes that the calls of the COM callbacks
are done from the OS application that contains the BSW Scheduler tasks.

© 2017 Vector Informatik GmbH Version 4.16.0 59
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

4.6.5 Memory Protection Integration Hints

4.6.5.1 Enabling of Memory Protection support

Please make sure that memory protection is enabled by assigning tasks to OS
applications and by selecting scalability class SC3 or SC4 in the OS configuration.

4.6.5.2 Memory mapping in Linker Command File

If memory protection is enabled, the RTE generator creates additional OS application
specific memory sections for variables: In addition, the user has to split up his Per-
Instance Memory (PIM) sections to the different OS applications. These additional memory
sections have to be mapped in the linker command file to the appropriate memory
segments. See OS and compiler / linker manual for details.

The individual memory sections are listed in chapter 4.5.

The standard RTE memory section defines need to be mapped to the same segments as
the BSW.

OS Application specific parts of the RTE implementation are generated to separate
Rte <OsApplicationName>.c files.

4.6.5.3 OS Configuration extension

In addition to the RTE extensions in the OS configuration which are done automatically by
the RTE generator, the following steps have to be done by the Integrator.

All OS objects, used by BSW modules e.g. ISRs, BSW-Tasks, OS resources, alarms etc.
have to be assigned to an OS application. COM callbacks have to run in the same OS
application as the RTE/BSW Scheduler tasks. Dependent on the implementation of the
COM Stack, the tasks or ISRs, which call the COM callbacks must therefore be assigned
to the right OS application.

In the OS configuration of an SC3 or SC4 OS, the tasks must explicitly allow access by
other OS applications. Due to possible calls of ActivateTask or SetEvent inside RTE
implemented COM callbacks, the accessing BSW OS applications for all application tasks,
which are affected by these calls need to be configured. This is automatically done when
the RTE configuration contains all BSW Scheduler tasks. Otherwise, the configuration
needs to be extended by the integrator.

If the RTE configuration contains not all BSW Scheduler tasks, also the OS application
that sets up the tasks and alarms by calling Rte Start needs to be configured for the
task and alarm objects in the OS configuration.

This configuration extension has to be done in the OS configuration tool.

© 2017 Vector Informatik GmbH Version 4.16.0 60
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

4.7 Multicore support

Similar to the mapping of SWCs to partitions with different memory access rights, the
MICROSAR RTE also supports the mapping of SWCs to partitions on different cores for
parallel execution.

4.7.1 Partitioning of SWCs

The mapping of SWCs to cores happens with the help of OS Applications like in the
memory protection use case. The user has to assign runnables to tasks and tasks to OS
Applications in order to map SWCs to partitions. The OS Applications can then be
assigned to one of the cores of the ECU. SWCs can only be assigned to a single OS
Application. This means that all runnables of a SWC need to be mapped to tasks within
the same OS Application. If a SWC contains only server runnables that are not mapped to
a task, the SWC can be mapped with the help of an ECUC partition. See chapter 6.3.

When two SWCs on different cores communicate with each other, the RTE will
automatically apply data consistency mechanisms.

4.7.2 BSW in Multicore Systems

The MICROSAR RTE assumes that all BSW modules with direct RTE interaction (e.g.
COM and NVM) are located in a single BSW OS Application on a single BSW core. The
only exceptions are BSW modules like OS and ECUM that need to be available on all
cores and service BSW like the WdgM with special multicore support. See chapter 4.7.3
for details. The BSW OS Application is the OS Application that contains the tasks with the
schedulable entities. The RTE assumes that all COM and NVM callbacks are called from
this BSW OS Application.

All RTE Lifecycle APIls (Rte_Start(), Rte Stop(), Rte_ InitMemory(),
SchM Init (), SchM Deinit ())have to be called on all cores.

Cyclic triggered runnables will start to run as soon as Rte Start () is called on the BSW
core.

It is recommended to use only a single BSW OS Application per core. The RTE will then
configure the access rights so that Rte Start () can be called from the core specific
BSW OS application.

Caution

n The RTE will start the scheduling of cyclic triggered runnable entities as soon as
Rte Start () is called on the BSW Core. Therefore, Rte Start () onthe BSW core
should only be invoked when the Rte Start () calls on all other cores finished
execution. This is checked with a DET check. Moreover, initialization runnables on the
other cores need to be blocked from execution until the RTE on the BSW core is
finished. This can for example be done by calling Rte Start () from a nonpreemptive
task and by polling a variable on the BSW code that signals the termination of
Rte Start () on the master core.

© 2017 Vector Informatik GmbH Version 4.16.0 61
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

4.7.3 Service BSW in Multicore Systems

The MICROSAR RTE supports BSW multiple partition distribution. This requires service
BSW modules which provide partition specific service SWC descriptions. The BSW main
function in such a distributed system can have multiple triggers and each trigger can be
mapped to a different task on a different core.

The following example shows a possible configuration for the BSW module WdgM:

Service SWC: WdgMCore0

» Runnable Entity: WdgM_Mainfunction

» Periodical Trigger: TriggerCore0 e.g. 5ms

» mapped to TaskCoreO in PartitionBSWCore0 on Core 0
» Service SWC implicitly mapped to Core 0

» Runnable Entity: WdgM_CheckPointReached
» Operationinvocation Trigger
» unmapped

Service SWC: WdgMCore1

» Runnable Entity: WdgM_Mainfunction

» Periodical Trigger: TriggerCore1 e.g. 1ms

» mapped to TaskCore1 in PartitionBSWCore1 on Core 1
» Service SWC implicitly mapped to Core 1

» Runnable Entity: WdgM_CheckPointReached
» Operationlnvocation Trigger
» unmapped

Service SWC: WdgMCore1ASIL

» Service SWC explicitly mapped to PartitionCore1ASIL
because of the missing task mapping for WdgM_Mainfunction

» Runnable Entity: WdgM_CheckPointReached
» Operationinvocation Trigger
» unmapped

Application SWCs can call the partition local C/S operation CheckPointReached. If the
server runnables are not mapped like in the example above, the RTE can implement the
Rte Call API by a direct function call. The BSW function WdgM CheckPointReached
needs to be implemented multicore reentrant and therefore requires specific multicore
support.

Also the WwdgM Mainfunction needs to be implemented multicore reentrant because it is
called periodically by the RTE from different cores.

Caution
n Service BSW modules distributed on different cores requires specific multicore support
of the BSW module.

© 2017 Vector Informatik GmbH Version 4.16.0 62
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

4.7.4 10C Usage

In multicore systems, the OS provides Inter OS-Application Communicator (IOC) Objects
for the communication between the individual cores. However, on many systems the
memory of the different cores can also be accessed without IOCs. This is the case when
the RTE variables that are used for communication are mapped to non-cacheable RAM
and when they can either be accessed atomically or when the accesses are protected with
a spinlock. Moreover in case of memory protection, this is only possible when a variable is
only written by a single partition and when the variable can be read by the other partitions.

The MICROSAR RTE Generator tries to avoid I0Cs so that it can use the same variables
for intra and inter partition communication. Moreover spinlocks are only used for variables
that cannot be accessed atomically.

If the RTE variables cannot be mapped to globally readable, shared, non-cacheable RAM
the usage of I0OCs can be enforced with the EnforceIoc parameter in the
RteGeneration parameters.

Caution
n RTE variables that are mapped to NOCACHE memory sections need to be mapped to
non-cacheable RAM. See also chapter 4.5.

4.8 BSW Access in Partitioned systems

When the SWCs are assigned to different OS Applications, only the SWCs that are
assigned to the BSW OS Application can access the BSW directly. SWCs that are
assigned to other cores or partitions do not always have the required access rights. The
same is true for runnable entities that are directly called by the BSW through client/server
interfaces. The RTE can transparently provide proxy code for such BSW accesses but the
user needs to map the SendSignal proxy and the server runnables to tasks in which they
can be executed.

481 Inter-ECU Communication

IOCs or additional global RTE variables are automatically inserted by the RTE generator
when data needs to be sent from a partition without BSW to another ECU. This is required
because the COM APIs cannot be called directly in this case.

Instead, the RTE provides a schedulable entity Rte ComSendSignalProxyPeriodic,
which periodically calls the COM APIs when a partition without BSW transmitted data.

The schedulable entity Rte ComSendSignalProxyPeriodic should be mapped to the
same task as Com MainFunctionTx with a lower position in task so that it can update
the signals before they are transmitted by COM. Rte ComSendSignalProxyPeriodic
will be scheduled with the same cycle time as Com MainFunctionTx. For this, the RTE
generator reads the period from the COM configuration.

For the reception of signals no special handling is required. The RTE will automatically
forward the received data to the appropriate partition in the COM notifications.

© 2017 Vector Informatik GmbH Version 4.16.0 63
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

4.8.2 Client Server Communication
Also client server calls between SWCs in different partitions are possible.

In order to execute the server runnable in another partition, the server runnable needs to
be mapped to a task. The RTE will then make the server arguments available in the
partition of the server runnable, execute the server runnable in the context of its task and
return the results to the calling partition.

Direct client server calls to servers on other cores are not possible because this would
enforce that the server is executed in the context of the client core. This would lead to data
consistency problems for RTE APIs that only provide buffer pointers like Rte Pim (). The
RTE cannot use |IOCs for these APIs because the actual buffer update is done by the
application code.

You can instruct the RTE to generate a context switch. You can decide this over the task
mapping of a function trigger.

If you consider RTE calls which originate from the same partition as the server runnable, a
context switch into the task of the server runnable may not be required. Here, doing a task
switch would mean an additional overhead which can be avoided.

Therefore it is also possible to configure an additional server port prototype for clients
which are local to the server partition. The triggers from both server ports can then trigger
the same server runnable. However, only the trigger from the port that is connected
to foreign partitions needs to be mapped onto a task. As a consequence, the RTE can
implement calls from partition local clients as efficient direct function calls.

Please take into account, that this is only allowed when the server runnable is not invoked
concurrently or marked as “can be invoked concurrently”. In addition, you can use
Exclusive Areas to protect the runnable against concurrent access problems.

© 2017 Vector Informatik GmbH Version 4.16.0 64
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5 API Description

The RTE API functions used inside the runnable entities are accessible by including the
SWC application header file Rte <ComponentType>.h.

Info

ﬂ The following API descriptions contain the direction qualifier IN, OUT and INOUT. They
are intended as direction information only and shall not be used inside the application
code.

Depending on the configuration, some APIs are efficiently implemented as function-like
macros. This implementation introduces restrictions on how the APIs can be used in the
software-component. E.qg. it is not possible to take the address of a macro in C.

The macro implementation may also lead to unwanted compiler optimizations regarding
concurrent accesses of variables. If a variable is accessed multiple times (e.g. by calling
the Rte_Read API in a loop), the compiler may not be aware that the value of the variable
may change at any time and optimize away the subsequent accesses.

Info

ﬂ If it is not possible for the implementation of a software-component to use a function-
like macro of a port API, the Port APl Option enableTakeAddress can be used to
force the generation of a “C” function.

For an interfaces overview please see Figure 2-2.

5.1 Data Type Definition

The MICROSAR RTE has special handling for the implementation data types, which are
defined in Std Types.h and Platform Types.h (see [7] and [8] for details). The RTE
generator assumes that these data types are available and therefore skips the generation
of type definitions.

In addition implementation data types where the typeEmitter attribute is set to a value
different to RTE or where the value is not empty the RTE generator also skips generation
of the type definition. In this case the user has to adopt the generated template file
Rte UserTypes.h which should contain the type definitions for the skipt implementation
data types because the RTE itself needs the type definition.

All other primitive or composite application and implementation data types are generated
by the RTE generator. This includes the data types which are assigned to a SWC by a
definition of an IncludedDataTypeSet.

Floating point data types with double precision may not be used for data elements with
external connectivity, because the MICROSAR COM layer lacks support for 64 bit data
types.

© 2017 Vector Informatik GmbH Version 4.16.0 65
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.1.1 Invalid Value

The MICROSAR RTE provides access to the invalid value of a primitive data type. It can
be accessed with the following macro:

InvalidvValue <literalPrefix><DataType>

Caution

n Because the macro does not contain the Rte prefix, care must be taken not to define
data types conflicting with any other symbols defined by the RTE or the application
code. The optional literalPrefix can be used to resolve conflicts.

5.1.2 Upper and Lower Limit

The range of the primitive application data types is specified by an upper and a lower limit.
These limits are accessible from the application by using the following macro if the limits
are specified:

<literalPrefix><DataType> LowerLimit

<literalPrefix><DataType> UpperLimit

Caution

n Because the macro does not contain the Rte prefix, care must be taken not to define
data types conflicting with any other symbols defined by the RTE or the application
code. The optional literalPrefix can be used to resolve conflicts.

5.1.3 Initial Value

Like the limits also the initial value of an un-queued data element of an S/R port prototype
is accessible from the application:

Rte InitValue <PortPrototype> <DataElementPrototype>

Caution

n The initial value of an Inter-Ecu S/R communication might be changed by the post-build
capabilities of the communication stack. Please note that the macro of the RTE still
provides the original initial value defined at pre-compile time. Please don’t use the
macro if the initial value will be changed in the communication stack at post-build time.

© 2017 Vector Informatik GmbH Version 4.16.0 66
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.2 API Error Status

Most of the RTE APIs provide an error status in the API return code. For easier evaluation
the MICROSAR RTE provides the following status access macros:

Rte IsInfrastructureError (status)
Rte HasOverlayedError (status)

Rte ApplicationError (status)

The macros can be used inside the runnable entities for evaluation of the RTE API return
code. The boolean return code of the Rte IsInfrastructure and
Rte HasOverlayedError macros indicate if either the immediate infrastructure error
flag (bit 7) or the overlay error flag (bit 6) is set.

The Rte ApplicationError macro returns the application errors without overlayed
errors.

© 2017 Vector Informatik GmbH Version 4.16.0 67
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.3 Runnable Entities

Runnable entities are configured in DaVinci and must be implemented by the user. DaVinci
features the generation of a template file containing the empty bodies of all runnable
entities that are configured for a specific component type.

5.3.1 <RunnableEntity>

Prototype

void <RunnableEntity> ([IN Rte Instance instance] [,
IN Rte ActivatingEvent <RunnableEntity> activation])

{Std ReturnType|void} <ServerRunnable> ([IN Rte Instance instance] {,
IN type [*]inputparam}* {, OUT type *outputparam}*)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

activation The activation parameter can be used to get the actual activation
reason of the runnable entity if the runnable has multiple possible
trigger conditions (e.g. different cyclic triggers or a cyclic trigger and a
data reception trigger).

Note: This is an optional parameter depending on the configuration of
an activation reason at the runnable entity. It is only reasonable if
more than one runnable trigger (RTE Event) is configured.

[*linputparam, *outputparam Parameters are only present for server runnables, i.e. runnable
entities triggered by an OperationinvokedEvent. Input (IN) parameters
are passed by value (primitive types) or reference (composite and
string types), output (OUT) parameters are always passed by
reference.

Return code

RTE_E_OK Server runnables return RTE_E_OK for successful operation
execution if an application error is referenced by the operation
prototype. Application errors are defined at the client/server port
interface.

RTE_E_<interf>_<error> Server runnables may return an application error (in the range of 1 to
63) if the operation execution was not successful. Application errors
are defined at the client/server port interface and are referenced by
the operation prototype.

If configured in DaVinci.

Functional Description

The user function <RunnableEntity> () is the specific implementation of a runnable entity of a
software component and has to be provided by the user. It is called from the MICROSAR RTE.

The first prototype form with no return value and the optional instance parameter is valid for the following
trigger conditions:

» TimingEvent: Triggered on expiration of a configured timer.

© 2017 Vector Informatik GmbH Version 4.16.0 68
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

DataReceivedEvent: Triggered on reception of a data element.

DataReceiveErrorEvent: Triggered on reception error of a data element.

DataSendCompletionEvent: Triggered on successful transmission of a data element.

ModeSwitchEvent: Triggered on entering or exiting of a mode of a mode declaration group.

ModeSwitchedAckEvent: Triggered on completion of a mode switch of a mode declaration group.

AsynchronousServerCallReturnsEvent: Triggered on finishing of an asynchronous server call. The

Rte Result () API shall be used to get the out parameters of the server call.

InitEvent: Triggered on startup of the RTE.

» BackgroundEvent: Triggered by the RTE in an endless loop — in the background — when no other
runnable runs.

The optional activation parameter is valid for all above described trigger conditions with the exception of

the InitEvent.

The second prototype form is valid for server runnables:

» OperationinvokedEvent: Triggered on invocation of the operation in a C/S port interface (server
runnable). A return value is only present if application errors are referenced by the implemented
operation. The parameter list is directly derived from the configured operation prototype with the
addition of the optional instance parameter.

The configuration of the trigger conditions can be done in the runnable entities tab of the component type
configuration.

Call Context

The call context of server runnables depends on the task mapping. Server runnables mapped to a task
are executed in the context of this task, unmapped server runnables are executed in the context of the
task that invoked the operation. All other runnables are invoked by the RTE in the context of the task the
runnables are mapped to.

vvvyyVvyyvyy

v

Caution
n The relative priority of the assigned OS tasks is responsible for the call sequence
of Init-Runnables. The RTE ensures that the Init-Runnable is called before any
other runnable mapped to the same task, but does not enforce that all Init-
Runnables have been executed before any other runnable is called. To make sure
that all Init-Runnables are executed before any other runnable is called, all Init-
Runnables should be mapped to the task with the highest priority.

5.3.2 Runnable Activation Reason
If the activation reason is configured the actual reason can be evaluated with the following
generated define

Rte ActivatingEvent <RunnabaleEntity> <Reason>

where <RunnabaleEntity> is the symbol attribute of the Runnable and <rReason> is the
symbolic name of activation reason. The return type of the macro depends on the highest
configured bit position for all trigger conditions of a runnable entity. It is uint8, uint16 or
unit32.

Caution
n Currently it is not supported to define a runnable activation reason over partition
boundaries in multicore and memory protection systems.

© 2017 Vector Informatik GmbH Version 4.16.0 69
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.4 SWC Exclusive Areas
5.4.1 Rte_Enter

Prototype

void Rte Enter <ExclusiveArea> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

This API exists when at least one runnable has configured explicit access
(canEnterExclusiveArea) to an exclusive area of a component.

Functional Description

The function Rte Enter <ea> () implements explicit access to the exclusive area. The exclusive
area is defined in the context of a component type and may be accessed by all runnables of that
component, either implicitly or explicitly via this API.

This function is the counterpart of Rte Exit <ea>().Each callto Rte Enter <ea>() mustbe
matched by a call to Rte _Exit <ea>() in the same runnable entity. One exclusive area must not

be entered more than once at a time, but different exclusive areas may be nested, as long as they
are left in reverse order of entering them.

For restrictions on using exclusive areas with different implementations, see section 3.6.10.
Call Context

This function can be used inside runnable entities.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

70

VECTOR > Technical Reference MICROSAR RTE

5.4.2 Rte_Exit

Prototype

void Rte Exit <ExclusiveArea> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

This API exists when at least one runnable has configured explicit access
(canEnterExclusiveArea) to an exclusive area of a component.

Functional Description

The function Rte Exit <ea>() implements releasing of an explicit entered exclusive area. The
exclusive area is defined in the context of a component type and may be accessed by all runnables
of that component, either implicitly or explicitly via this API.

This function is the counterpart of Rte Enter <ea>().Each callto Rte Enter <ea>() must
be matched by a call to Rte Exit <ea> () in the same runnable entity. One exclusive area must
not be entered more than once at a time, but different exclusive areas may be nested, as long as
they are left in reverse order of entering them.

For restrictions on using exclusive areas with different implementations, see section 3.6.10.
Call Context

This function can be used inside runnable entities.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

71

VECTOR > Technical Reference MICROSAR RTE

55 BSW Exclusive Areas
5.5.1 SchM_Enter

Prototype
void SchM Enter <Bsw> <ExclusiveArea> (void)

Parameter

Return code

This API exists when at least one schedulable entity has configured access
(canEnterExclusiveArea) to an exclusive area in the internal behavior of the BSW module
description.

Functional Description

The function SchM Enter <bsw> <ea> () implements access to the exclusive area. The
exclusive area is defined in the context of a BSW module and may be accessed by all schedulable
entities of that module via this API.

This function is the counterpart of SchM Exit <bsw> <ea> (). Each call to

SchM Enter <bsw> <ea> () mustbe matched by a call to SchM Exit <bsw> <ea> () inthe
same schedulable entity. One exclusive area must not be entered more than once at a time, but
different exclusive areas may be nested, as long as they are left in reverse order of entering them.

For restrictions on using exclusive areas with different implementation methods, see section 3.6.10.
Call Context

This function can be used inside a schedulable entity in Task or Interrupt context.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

72

VECTOR > Technical Reference MICROSAR RTE

5.5.2 SchM_Exit

Prototype
void SchM Exit <Bsw> <ExclusiveArea> (void)

Parameter

Return code

Existence

This API exists when at least one schedulable entity has configured access
(canEnterExclusiveArea) to an exclusive area in the internal behavior of the BSW module
description.

Functional Description

The function SchM Exit <bsw> <ea> () implements releasing of the exclusive area. The
exclusive area is defined in the context of a BSW module and may be accessed by all schedulable
entities of that module via this API.

This function is the counterpart of SchM Enter <bsw> <ea> (). Each call to

SchM Enter <bsw> <ea> () must be matched by a call to SchM Exit <bsw> <ea>() inthe
same schedulable entity. One exclusive area must not be entered more than once at a time, but
different exclusive areas may be nested, as long as they are left in reverse order of entering them.

For restrictions on using exclusive areas with different implementation methods, see section 3.6.10.
Call Context

This function can be used inside a schedulable entity in Task or Interrupt context.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

73

VECTOR > Technical Reference MICROSAR RTE

5.6 Sender-Receiver Communication
5.6.1 Rte Read

Prototype

Std ReturnType Rte Read <p> <d> ([IN Rte Instance instance,] OUT <DataType> *data
[, OUT Rte TransformerError transformerError])

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation
attribute.

*data The output <data> is passed by reference. The <DataType> is
the type, specified at the data element prototype in the SWC
description.

transformerError Optional OUT parameter if transformerErrorHandling is
enabled.

Return code

RTE_E_OK Data read successfully.

RTE_E_UNCONNECTED Indicates that the receiver port is not connected.

RTE_E_INVALID An invalidated signal has been received by the RTE.

RTE_E_MAX_AGE_EXCEEDED Indicates a timeout, detected by the COM module in case of
inter ECU communication, if an aliveTimeout is specified.

RTE_E_NEVER _RECEIVED No data received since system start.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

This API exists, if the runnable entity of a SWC has configured direct (explicit) access in the role
dataReceivePointByArgument for the data element in the DaVinci configuration and the referenced data
element prototype is configured without queued communication (isQueued=false).

Functional Description

The function Rte Read <p> <d> () supplies the current value of the data element. This API can be used
for explicit read of S/R data with i sQueued=false. After startup Rte Read provides the initial value.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0 74
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.6.2 Rte DRead

Prototype

<DataType> Rte DRead <p> <d> ([IN Rte Instance instance][, OUT Rte TransformerError
transformerError])

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation
attribute.

transformerError Optional OUT parameter if transformerErrorHandling is
enabled.

Return code

<DataType> The return value contains the current value of the data element.
The <DataType> is the (primitive) type, specified at the data
element prototype in the SWC description.

This API exists, if the runnable entity of a SWC has configured direct (explicit) access in the role
dataReceivePointByValue for the data element in the DaVinci configuration and the referenced data
element prototype is configured without queued communication (isQueued=false).

Functional Description

The function Rte DRead <p> <d>() supplies the current value of the data element. This API can be used
for explicit read of S/R data with i sQueued=false. After startup or if the receiver port is unconnected,
Rte DRead provides the initial value. The API is only available for primitive data types.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0 75
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.6.3 Rte_Write

Prototype

Std_ReturnType Rte Write <p> <d> ([IN Rte Instance instance,] IN <DataType> data
[, OUT Rte TransformerError transformerError])

Std ReturnType Rte Write <p> <d> ([IN Rte Instance instance,] IN <DataType> *data
[, OUT Rte TransformerError transformerError])

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation
attribute.

data The input data <data> for primitive data types without string
types is passed by value. The <DataType> is the type, specified
at the data element prototype in the SWC description.

*data The input data <data> for string types and composite data types
is passed by reference. The <DataType> is the type, specified
at the data element prototype in the SWC description.

transformerError Optional OUT parameter if transformerErrorHandling is
enabled.

Return code

RTE_E_OK Data passed to communication services successfully.
RTE_E_COM_STOPPED An infrastructure communication error was detected by the RTE.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

This API exists, if the runnable entity of a SWC has configured direct (explicit) access to the data element in
the DaVinci configuration and the referenced data element prototype is configured without queued
communication (isQueued=false).

Functional Description

The function Rte Write <p> <d>() can be used for explicit transmission of S/R data with
isQueued=false.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0 76
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.6.4 Rte_Receive

Prototype

Std ReturnType Rte Receive <p> <d> ([IN Rte Instance instance,] OUT <DataType> *data
[, OUT uintl6 *length] [, OUT Rte TransformerError transformerError])

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation
attribute.

*data The output <data> is passed by reference. The <DataType> is
the type, specified at the data element prototype in the SWC
description.

*length In case of an array with variable number of elements, the
dynamic length <length> is returned.

transformerError Optional OUT parameter if transformerErrorHandling is
enabled.

Return code

RTE_E_OK Data read successfully.

RTE_E_UNCONNECTED Indicates that the receiver port is not connected.

RTE_E_NO_DATA A non-blocking call returned no data due to an empty receive
queue. No other error occurred.

RTE_E_TIMEOUT Returned by a blocking call after the timeout has expired. No

data returned and no other error occurred. The argument buffer
is not changed.

RTE_E_LOST_DATA Indicates that some incoming data has been lost due to an
overflow of the receive queue. This is not an error of the data
returned in the out parameter.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

This API exists, if the runnable entity of a SWC has configured polling or waiting access to the data element
in the DaVinci configuration and the referenced data element prototype is configured with queued
communication (i sQueued=true).

Functional Description

The function Rte Receive <p> <d>() supplies the oldest value stored in the reception queue of the data
element. This API can be used for explicit read of S/R data with i sQueued=true.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0 77
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.6.5 Rte_Send

Prototype

Std ReturnType Rte Send <p> <d> ([IN Rte Instance instance,] IN <DataType> data
[, OUT Rte TransformerError transformerError])

Std ReturnType Rte Send <p> <d> ([IN Rte Instance instance,] IN <DataType> *data
[, IN uintl6 length] [, OUT Rte TransformerError transformerError])

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation
attribute.

data The input data <data> for primitive data types without string
types is passed by value. The <DataType> is the type, specified
at the data element prototype in the SWC description.

*data The input data <data> for string types and composite data types
is passed by reference. The <DataType> is the type, specified
at the data element prototype in the SWC description.

length In case of an array with variable number of elements, the input
data <length> specifies the dynamic array length.

transformerError Optional OUT parameter if transformerErrorHandling is
enabled.

Return code

RTE_E_OK Data passed to communication services successfully.
RTE_E_COM_STOPPED An infrastructure communication error was detected by the RTE.
RTE_E_LIMIT The submitted data has been discarded because the receiver

queue is full. Relevant only to intra ECU communication.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

This API exists, if the runnable entity of a SWC has configured access to the data element in the DaVinci
configuration and the referenced data element prototype is configured with queued communication
(isQueued=true).

Functional Description

The function Rte Send <p> <d> () can be used for explicit transmission of S/R data with
isQueued=true.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0 78
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.6.6 Rte_ IRead

Prototype

<DataType> Rte IRead <r> <p> <d> ([IN Rte Instance instance])

<DataType> *Rte IRead <r> <p> <d> ([IN Rte Instance instance])

Parameter

Instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<DataType> The return value contains the buffered data for primitive data types.
<DataType> is the type, specified at the data element prototype in the
SWC description

<DataType> * The return value contains a reference to the buffered data for string

types and composite data types. <DataType> is the type, specified at
the data element prototype in the SWC description

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration.

Functional Description

The function Rte IRead <r> <p> <d>() supplies the value of the data element, stored in a
buffer before starting of the runnable entity. This API can be used for buffered (implicit) read of S/R
data with isQueued=false. After startup Rte IRead provides the initial value.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

79

VECTOR > Technical Reference MICROSAR RTE

5.6.7 Rte_IWrite

Prototype

void Rte IWrite <r> <p> <d> ([IN Rte Instance instance,] IN <DataType> data)

void Rte IWrite <r> <p> <d> ([IN Rte Instance instance,] IN <DataType> *data)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

data The input data <data> for primitive data types without string types is
passed by value. The <DataType> is the type, specified at the data
element prototype in the SWC description.

*data The input data <data> for string types and composite data types is
passed by reference. The <DataType> is the type, specified at the
data element prototype in the SWC description.

Return code

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration.

Functional Description

The function Rte IWrite <r> <p> <d>() can be used for buffered transmission of S/R data
with i sQueued=false. Note, that the actual transmission is performed and therefore visible for
other runnable entities after the runnable entity has been terminated.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

Caution

“ When implicit write access to a data element has been configured for a runnable, the
runnable has to update the data element at least once during its execution time using
the Rte IwWrite API or writing to the location returned by the Rte IWriteRef AP
Otherwise, the content of the data element is undefined upon return from the runnable.
Only when the parameter RtelnitializelmplicitBuffers is set to true, the RTE will send
the last sent data again when Rte IWrite or Rte IWriteRef are not called in the

runnable.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

80

VECTOR > Technical Reference MICROSAR RTE

5.6.8 Rte_ IWriteRef

Prototype
<DataType> *Rte IWriteRef <r> <p> <d> ([IN Rte Instance instance])

Parameter

Instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<DataType> * The return value contains a reference to the buffered data.
<DataType> is the type, specified at the data element prototype in the
SWC description

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration.

Functional Description

The function Rte IWriteRef <r> <p> <d>() can be used for buffered transmission of S/R
data with i sQueued=false. Note, that the actual transmission is performed and therefore visible
for other runnable entities after the runnable entity has been terminated.

The returned reference can be used by the runnable entity to directly update the corresponding
data elements. This is especially useful for data elements of composite types.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

Caution

“ When implicit write access to a data element has been configured for a runnable, the
runnable has to update the data element at least once during its execution time using
the Rte IWrite API or writing to the location returned by the Rte IwWriteRef API.
Otherwise, the content of the data element is undefined upon return from the runnable.

© 2017 Vector Informatik GmbH Version 4.16.0 81
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.6.9 Rte_ [Status

Prototype

Std ReturnType Rte IStatus <r> <p> <d> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

RTE_E_OK Data read successfully.
RTE_E_UNCONNECTED Indicates that the receiver port is not connected.
RTE_E_INVALID An invalidated signal has been received by the RTE.

RTE_E_MAX_AGE_EXCEEDED Indicates a timeout, detected by the COM module in case of inter ECU
communication, if an aliveTimeout is specified.

RTE_E_NEVER _RECEIVED No data received since system start.

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration and if either

> data element outdated notification (a1iveTimeout > 0)or
» data element invalidation is activated for this data element or
» the attribute handleNeverReceived is configured.

Functional Description

The function Rte IStatus <r> <p> <d>() returns the status of the data element which can be read
with Rte IRead.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC). Usage in
other runnables of the same SWC is forbidden!

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

82

VECTOR > Technical Reference MICROSAR RTE

5.6.10 Rte Feedback

Prototype
Std ReturnType Rte Feedback <p> <d> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

RTE_E_NO_DATA No data transmitted, when the feedback APl was attempted (non-
blocking call only).

RTE_E_UNCONNECTED Indicates that the sender port is not connected.

RTE_E_TIMEOUT A timeout notification was received from COM before any error
notification (Inter-ECU only).

RTE_E_COM_STOPPED The last transmission was rejected when either Rte_Send / Rte_ Write
API was called and the COM was stopped or an error notification from
COM was received before any timeout notification (Inter-ECU only).

RTE_E_TRANSMIT_ACK A “transmission acknowledgement” has been received.

This API exists, if the runnable entity of a SWC has configured explicit access to the data element
in the DaVinci configuration of a runnable entity and in addition the transmission acknowledgement
is enabled at the communication specification. Furthermore, polling or waiting acknowledgment
mode has to be specified for the same data element. If a timeout is specified, timeout monitoring
for waiting acknowledgment access is enabled.

Functional Description

The function Rte Feedback <p> <d>() can be used to read the transmission status for explicit
S/R communication. It indicated the status of data, transmitted by Rte Write () and
Rte Send() calls. Depending on the configuration, the API can be either blocking or non-blocking.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

83

VECTOR > Technical Reference MICROSAR RTE

5.6.11 Rte_IsUpdated

Prototype

boolean Rte IsUpdated <p> <d> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code
TRUE Data element has been updated since last read.

FALSE Data element has not been updated since last read.

This API exists, if the runnable entity of a SWC has configured explicit access to the data element
in the DaVinci configuration of a runnable entity and in addition the EnableUpdate attribute is
enabled at the communication specification.

Functional Description

The function Rte IsUpdated <p> <d> () returns if the data element has been updated since
the last read or not.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

84

VECTOR > Technical Reference MICROSAR RTE

5.7 Data Element Invalidation
5.7.1 Rte_Invalidate

Prototype

Std ReturnType Rte Invalidate <p> <d> ([IN Rte Instance instance]
[, OUT Rte TransformerError transformerError])

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation
attribute.

transformerError Optional OUT parameter if transformerErrorHandling is
enabled.

Return code

RTE_E_OK No error occurred.

RTE_E_COM_STOPPED The RTE could not perform the operation because the COM
service is currently not available (inter ECU communication
only).

This API exists, if the runnable entity of a SWC has configured explicit and non-queued access to the data
element in the DaVinci configuration of a runnable entity and in addition the data element invalidation is
enabled at the communication specification (CanInvalidate=true).

Functional Description

The function Rte Invalidate <p> <d>() can be used to set the transmission data invalid for explicit
non-queued S/R communication.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0 85
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.7.2 Rte_llnvalidate

Prototype

void Rte IInvalidate <r> <p> <d> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration of a runnable entity and in addition the data element
invalidation is enabled at the communication specification (CanInvalidate=true).

Functional Description

The function Rte IInvalidate <r> <p> <d>() can be used to set the transmission data
invalid for implicit (buffered) S/R communication.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

86

VECTOR > Technical Reference MICROSAR RTE

5.8 Mode Management
5.8.1 Rte_Switch

Prototype

Std ReturnType Rte Switch <p> <m> ([IN Rte Instance instance,]
IN Rte ModeType <ModeDeclarationGroup> mode)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

mode The next mode. Itis of type Rte ModeType <m>, where <m> is the
name of the mode declaration group.

Return code

RTE_E_OK Mode switch trigger passed to the RTE successfully.
RTE_E_LIMIT The submitted mode switch has been discarded because the mode
queue is full.

This API exists, if the runnable entity of a SWC has configured access to the mode declaration
group prototype in the DaVinci configuration.

Functional Description

The function Rte Switch <p> <m>() can be used to trigger a mode switch of the specified
mode declaration group prototype.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

87

VECTOR > Technical Reference MICROSAR RTE

5.8.2 Rte_Mode

Prototype

Rte ModeType <ModeDeclarationGroup> Rte Mode <p> <m> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

RTE_TRANSITION_<mg> This return code is returned if the mode machine is in a mode
transition.

RTE_MODE_<mg> <m> This value is returned if the mode machine is not in a transition.
<m> indicates the currently active mode.

This API exists, if the runnable entity of a SWC has configured access to the mode declaration
group prototype in the DaVinci configuration and the enhanced Mode API is not active.

Functional Description

The function Rte Mode <p> <m> () provides the current mode of a mode declaration group
prototype.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

88

VECTOR > Technical Reference MICROSAR RTE

5.8.3 Enhanced Rte_Mode

Prototype

Rte ModeType <ModeDeclarationGroup> Rte Mode <p> <m> ([IN Rte Instance instance],
OUT Rte ModeType <ModeDeclarationGroup> previousMode,
OUT Rte ModeType <ModeDeclarationGroup> nextMode)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

previousMode The previous mode is returned if the mode machine is in a transition.
nextMode The next mode is returned if the mode machine is in a transition.

Return code

RTE_TRANSITION_<mg> This return code is returned if the mode machine is in a mode
transition.

RTE_MODE_<mg>_<m> This value is returned if the mode machine is not in a transition.
<m> indicates the currently active mode.

This API exists, if the runnable entity of a SWC has configured access to the mode declaration
group prototype in the DaVinci configuration and the enhanced Mode APl is active.

Functional Description

The function Rte Mode <p> <m> () provides the current mode of a mode declaration group
prototype. In addition it provodes the previous mode and the next mode if the mode machine is in
transition.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

89

VECTOR > Technical Reference MICROSAR RTE

5.8.4 Rte_ SwitchAck

Prototype

Std ReturnType Rte SwitchAck <p> <m> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

RTE_E_NO_DATA No mode switch triggered, when the switch ack APl was attempted
(non-blocking call only).

RTE_E_TIMEOUT No mode switch processed within the specified timeout time, when the
switch ack API was attempted (blocking call only).

RTE_E_TRANSMIT_ACK The mode switch acknowledgement has been received.
RTE_E_UNCONNECTED Indicates that the mode provide port is not connected.

This API exists, if the runnable entity of a SWC has configured access to the mode declaration
group prototype in the DaVinci configuration of a runnable entity and in addition the mode switch
acknowledgement is enabled at the mode switch communication specification. Furthermore, polling
or waiting acknowledgment mode has to be specified for the same mode declaration group
prototype. If a timeout is specified, timeout monitoring for waiting acknowledgment access is
enabled.

Functional Description

The function Rte SwitchAck <p> <m> () can be used to read the mode switch status of a
specific mode declaration group prototype. It indicated the status of a mode switch, triggered by an
Rte Switch call. Depending on the configuration, the API can be either blocking or non-blocking.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

90

VECTOR > Technical Reference MICROSAR RTE

5.9 Inter-Runnable Variables
5.9.1 Rte_IrvRead

Prototype
<DataType> Rte IrvRead <r> <v> ([IN Rte Instance instance])
void Rte IrvRead <r> <v> ([IN Rte Instance instance,] OUT <DataType> *data)

Parameter

Instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

*data The output <data> is passed by reference for composite data types.
The <DataType> is the type of the Inter-Runnable Variable specified in
the SWC description.

Return code

<DataType> The return value contains the current content of the Inter-Runnable
Variable of primitive data types. The <DataType> is the type of the
Inter-Runnable Variable specified in the SWC description.

This API exists, if the runnable entity of a SWC has configured direct (explicit) read access to the
Inter-Runnable Variable in the SWC configuration.

Functional Description

The function Rte IrvRead <r> <v>() supplies the current value of the Inter-Runnable Variable.
This API is used to read direct (explicit) Inter-Runnable Variables. After startup Rte IrvRead
provides the configured initial value.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

91

VECTOR > Technical Reference MICROSAR RTE

5.9.2 Rte_IrvWrite

Prototype

void Rte IrviWrite <r> <v> ([IN Rte Instance instance,] IN <DataType> data)

void Rte IrviWrite <r> <v> ([IN Rte Instance instance,] IN <DataType> *data)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

data The input data <data> is passed by value for primitive data types. The
<DataType> is the type of the Inter-Runnable Variable specified in the
SWC description.

“data The input data <data> for composite data types is passed by

reference. The <DataType> is the type of the Inter-Runnable Variable
specified in the SWC description.

Return code

This API exists, if the runnable entity of a SWC has configured direct (explicit) write access to the
Inter-Runnable Variable in the SWC configuration.

Functional Description

The function Rte IrvIWrite <r> <v>() can be used for updating direct (explicit) access Inter-
Runnable Variables. The update is performed immediately.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

92

VECTOR > Technical Reference MICROSAR RTE

5.9.3 Rte_lIrviRead

Prototype
<DataType> Rte IrvIRead <r> <v> ([IN Rte Instance instance])
<DataType> *Rte IrvIRead <r> <v> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<DataType> The return value contains the buffered content of the Inter-Runnable
Variable for primitive data types. The <DataType> is the type of the
Inter-Runnable Variable specified in the SWC description.

<DataType> * The return value contains a reference to the buffered content of the
Inter-Runnable Variable for composite data types. The <DataType> is
the type of the Inter-Runnable Variable specified in the SWC
description.

This API exists, if the runnable entity of a SWC has configured buffered (implicit) read access to the
Inter-Runnable Variable in the SWC configuration.

Functional Description

The function Rte IrvIRead <r> <v> () supplies the value of the Inter-Runnable Variable,
stored in a buffer before the runnable entity is started. This APl is used to read the buffered
(implicit) Inter-Runnable Variable. After startup Rte IrvIRead provides the configured initial
value.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

93

VECTOR > Technical Reference MICROSAR RTE

5.9.4 Rte_IrviWrite

Prototype

void Rte IrvIWrite <r> <v> ([IN Rte Instance instance,] IN <DataType> data)

void Rte IrvIWrite <r> <v> ([IN Rte Instance instance,] IN <DataType> *data)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

data The input data <data> is passed by value for primitive data types. The
<DataType> is the type of the Inter-Runnable Variable specified in the
SWC description.

*data The input data <data> is passed by reference for composite data

types. The <DataType> is the type of the Inter-Runnable Variable
specified in the SWC description.

Return code

This API exists, if the runnable entity of a SWC has configured buffered (implicit) write access to
the Inter-Runnable Variable in the SWC configuration.

Functional Description

The function Rte IrvIWrite <r> <v>() can be used for updating buffered (implicit) Inter-
Runnable Variables. Note, that the actual update is performed and therefore visible for other
runnable entities after the runnable entity has been terminated.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

Caution
“ When buffered (implicit) write access to an Inter-Runnable Variable has been

configured for a runnable, the runnable has to update the Inter-Runnable variable at
least once during its execution time using the Rte IrvIwWrite APl Otherwise, the
content of the Inter-Runnable Variable may become undefined upon return from the

runnable.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

94

VECTOR > Technical Reference MICROSAR RTE

5.10 Per-Instance Memory
5.10.1 Rte_Pim

Prototype
<C-type> *Rte Pim <n> ([IN Rte Instance instance])

<DataType> *Rte Pim <n> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<C-Type> * If the configured data type of the Per-Instance Memory is specified by
any C type string, a reference to the PIM of the C-type is returned.

<DataType> * If the configured DataType of the Per-Instance Memory is an
AUTOSAR DataType, a reference to the PIM of this AUTOSAR type is
returned. If the data type is known and completely described, the RTE
generator knows the size of the PIM variable and is able to generate
the PIM variables in a specific optimized order.

This API exists for each specified Per-Instance Memory specified for an AUTOSAR application
SWC.

Functional Description

The function Rte_Pim <n> () can be used to access Per-Instance Memory. Note: If several
runnable entities have concurrent access to the same Per-Instance Memory, the user has to
protect the accesses by using implicit or explicit exclusive areas.

Call Context

This function can be used inside all runnable entities of the AUTOSAR software component (SWC)
specifying the Per-Instance Memory.

Caution
“ When the Per—Instance Memory uses no AUTOSAR data type and is also not based
on a standard data type like e.g. uint8 the RTE generator cannot create the type

definition for this type.
In this case the user has to provide a user header file Rte UserTypes.h which

should contain the type definitions for the Per-Instance Memory allowing the RTE

generator to allocate the Per-Instance memory.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

95

VECTOR > Technical Reference MICROSAR RTE

5.11 Calibration Parameters
5.11.1 Rte_CData

Prototype
<DataType> Rte CData <cp> ([IN Rte Instance instance])

<DataType> *Rte CData <cp> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<DataType> For primitive data types the return value contains the content of the
calibration parameter. The return value is of type <DataType>, which
is the type of the calibration element prototype.

<DataType> * For composite data types and string types the return value contains
the reference to the calibration parameter. The return value is of type
<DataType>, which is the type of the calibration element prototype.

This API exists for each calibration element prototype specified for an AUTOSAR application SWC.

Functional Description

The function Rte CData <cp> () can be used to access SWC local calibration parameters.
Depending on the configuration the Rte_CData API returns a SWC type specific (shared) or SWC
instance specific (perInstance) calibration parameter.

Call Context

This function can be used inside all runnable entities of the AUTOSAR software component (SWC)
specifying the calibration parameters.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

96

VECTOR > Technical Reference MICROSAR RTE

5.11.2 Rte Prm

Prototype
<DataType> Rte Prm <p> <cp> ([IN Rte Instance instance])
<DataType> *Rte Prm <p> <cp> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<DataType> For primitive data types the return value contains the content of the
calibration parameter. The return value is of type <DataType>, which
is the type of the calibration element prototype.

<DataType> * For composite data types and string types the return value contains
the reference to the calibration parameter. The return value is of type
<DataType>, which is the type of the calibration element prototype.

This API exists for each calibration element prototype specified for a calibration software
component.

Functional Description

The function Rte Prm <p> <cp>() can be used to access the instance specific calibration
element prototypes of a calibration component.

Call Context

This function can be used inside all runnable entities of the AUTOSAR software component (SWC)
specifying access to calibration element prototypes of calibration components via calibration ports.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

97

VECTOR > Technical Reference MICROSAR RTE

5.12 Client-Server Communication
5.12.1 Rte_Call

Prototype

Std ReturnType Rte Call <p> <o> ([IN Rte Instance instance,]
{IN type [*]inputparam, }* {OUT type *outputparam,}* {INOUT type *inoutputparam, }*)

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation

attribute.
[*]linputparam, *outputparam, The number and type of parameters is determined by the
*inoutputparam, operation prototype. Input (IN) parameters are passed by value

(primitive types) or reference (composite and string types),
output (OUT) and input-output (INOUT) parameters are always
passed by reference.

Return code

RTE_E_OK Operation executed successfully.

RTE_E_UNCONNECTED Indicates that the client port is not connected.

RTE_E_LIMIT The operation is invoked while a previous invocation has not yet
terminated. Relevant only for asynchronous calls.

RTE_E_COM_STOPPED An infrastructure communication error was detected by the RTE.

Relevant only to external communication.

RTE_E_TIMEOUT Returned by a synchronous call after the timeout has expired
and no other error occurred. The arguments are not changed.

RTE_E_<interf>_<error> Server runnables may return an application error if the operation
execution was not successful. Application errors are defined at
the client/server port interface and are references by the
operation prototype.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

This API exists, if the runnable entity of a SWC has configured access to the operation prototype in the
DaVinci configuration.

Functional Description

The function Rte _Call <p> <o> () invokes the server operation <o> with the specified parameters. If
Rte Call returns with an error, the INOUT and OUT parameters are unchanged.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0 98
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.12.2 Rte_ Result

Prototype

Std ReturnType Rte Result <p> <o> ([IN Rte Instance instance,]
{OUT type *outputparam, }* {INOUT type *inoutputparam,}*)

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation
attribute.

*outputparam, *inoutputparam The number and type of parameters is determined by the
operation prototype. The output (OUT) and input-output
(INOUT) parameters are always passed by reference.

Return code

RTE_E_OK Operation executed successfully.

RTE_E_UNCONNECTED Indicates that the client port is not connected.

RTE_E_NO_DATA The result of the asynchronous operation invocation is not
available. Relevant only for non-blocking call.

RTE_E_COM_STOPPED An infrastructure communication error was detected by the RTE.

Relevant only to external communication.

RTE_E_TIMEOUT The result of the asynchronous operation invocation is not
available in the specified time. Relevant only for blocking call.

RTE_E_<interf>_<error> Server runnables may return an application error if the operation
execution was not successful. Application errors are defined at
the client/server port interface and are references by the
operation prototype.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

This API exists, if the runnable entity of a SWC has configured polling or waiting access to an asynchronous
invoked operation of a C/S port interface.

Functional Description

The function Rte Result <p> <o>() provides the result of asynchronous C/S calls. In case of a polling
call, the API returns the OUT parameters if the result is already available while for asynchronous calls the
API waits until the server runnable has finished the execution or a timeout occurs.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0 99
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.13 Indirect API
5.13.1 Rte_ Ports

Prototype

Rte PortHandle <i> <R/P> Rte_Ports_<i>_<P/R> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

Rte_PortHandle_<i>_<R/P> The API returns a pointer to the first port data structure of the port
data structure array.

This API exists, if the indirect API is configured at the Component Type.

Functional Description

The function Rte Ports <i> <R/P> returns an array containing the port data structures of all
require ports indicated by the API extension <R> or provide ports indicated by <P> of the port
interface specified by <i> in order to allow indirect access of the port APIs via the port handle (e.g.
iteration over all ports of the same interface).

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

100

VECTOR > Technical Reference MICROSAR RTE

5.13.2 Rte_NPorts

Prototype

uint8 Rte NPorts <i> <P/R> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

uints The API returns the size of the port data structure array provided by
Rte Ports.

This API exists, if the indirect API is configured at the component type.

Functional Description

The function Rte NPorts <i> <R/P> returns the number of array entries (port data structures)
of all require ports indicated by the API extension <R> or provide ports indicated by <P> of the port
interface specified by <i>.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

101

VECTOR > Technical Reference MICROSAR RTE

5.13.3 Rte_Port

Prototype
Rte PortHandle <i> <R/P> Rte_Port <p> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code
Rte_PortHandle_<i> <R/P> | The API returns a pointer to a port data structure.
Existence

This API exists, if the indirect API is configured at the component type.

Functional Description

The function Rte Port <p> returns the port data structure of the port specified by <p>. It allows
indirect APl access via the port handle.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0 102
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.14 RTE Lifecycle API

The lifecycle API functions are declared in the RTE lifecycle header file Rte Main.h

5.14.1 Rte_Start

Prototype

Std ReturnType Rte Start (void)

Parameter

Return code
RTE_E_OK RTE initialized successfully.
RTE_E_LIMIT An internal limit has been exceeded.

Functional Description

The RTE lifecycle API function Rte Start allocates and initializes system resources and
communication resources used by the RTE.

Call Context

This function has to be called by the ECU state manager after basic software modules have been
initialized especially OS and COM. It has to be called on every core that is used by the RTE. The
call on the core that contains the BSW will start the triggering of all cyclic runnables. Therefore
Rte_Start on the other cores has to be executed first.

5.14.2 Rte_Stop

Prototype

Std ReturnType Rte Stop (void)

Parameter

Return code
RTE_E_OK RTE initialized successfully.
RTE_E_LIMIT A resource could not be released.

Functional Description

The RTE lifecycle API function Rte Stop releases system resources and communication
resources used by the RTE and shutdowns the RTE. After Rte Stop is called no runnable entity
must be processed. The API only stops cyclic functionality. It does not terminate any tasks,
therefore runnables may still be running after Rte_Stop was called.

Call Context

This function has to be called by the ECU state manager on every core that is used by the RTE.
The call on the core that contains the BSW will stop the triggering of the cyclic runnables.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

103

VECTOR > Technical Reference MICROSAR RTE

5.14.3 Rte_InitMemory

Prototype

void Rte InitMemory (void)

Parameter

Return code

Functional Description

The API function Rte_InitMemory is a MICROSAR RTE specific extension and should be used
to initialize RTE internal state variables if the compiler does not support initialized variables.

Call Context

This function has to be called before the ECU state manager calls the initialization functions of
other BSW modules especially the AUTOSAR COM module. It has to be called on all cores that
are used by the RTE.

Caution
Rte_InitMemory API is a Vector extension to the AUTOSAR standard and may not be
supported by other RTE generators.

© 2017 Vector Informatik GmbH Version 4.16.0 104
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.15 SchM Lifecycle API

The lifecycle API functions are declared in the RTE lifecycle header file Rte Main.h

5.15.1 SchM_lInit

Prototype

void SchM Init ([IN SchM ConfigType ConfigPtr])

Parameter

ConfigPtr Pointer to the Rte_Config_<VariantName> data structure that shall be
used for the RTE initialization of the active variant in case of a
postbuild selectable configuration. The parameter is omitted in case
the project contains no postbuild selectable variance.

Return code

Functional Description

This function initializes the BSW Scheduler and resets the timers for all cyclic triggered schedulable
entities (main functions). Note that all main functions calls are activated upon return from this
function.

Call Context

This function has to be called by the ECU state manager from task context. The OS has to be
initialized before as well as those BSW modules for which the SchM provides triggering of
schedulable entities (main functions). The API has to be called on all cores that are used by the
RTE.

5.15.2 SchM_Deinit

Prototype

void SchM Deinit (void)

Parameter

Return code

Functional Description
This function finalizes the BSW Scheduler and stops the timer which triggers the main functions.
Call Context

This function has to be called by the ECU state manager from task context. It has to be called on
all cores that are used by the RTE.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

105

VECTOR > Technical Reference MICROSAR RTE

5.15.3 SchM_GetVersioninfo

Prototype

void SchM GetVersionInfo (Std VersionInfoType *versioninfo)

Parameter
versioninfo Pointer to where to store the version information of this module.

Return code

This API exists if RteSchMVersionInfoApi is enabled.

Functional Description

SchM_GetVersionInfo () returns version information, vendor ID and AUTOSAR module ID of
the component.

The versions are decimal-coded.
Call Context

The function can be called on interrupt and task level.

© 2017 Vector Informatik GmbH Version 4.16.0 106
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.16 VFB Trace Hooks

The RTE’s “VFB tracing” mechanism allows to trace interactions of the AUTOSAR
software components with the VFB. The choice of events resides with the user and can
range from none to all. The “VFB tracing” functionality is designed to support multiple
clients for each event. If one or multiple clients are specified for an event, the trace
function without client prefix will be generated followed by the trace functions with client

prefixes in alphabetically ascending order.
5.16.1 Rte_[<client>_]<API>Hook_<cts> <ap>_Start

Prototype

void Rte [<client>]<API>Hook <cts> <ap> Start ([IN const Rte CDS <cts>* inst,]
params)

Rte_ CDS_<cts>* inst The instance specific pointer of type Rte_ CDS_<cts> is used to
distinguish between the different instances in case of multiple
instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

params The parameters are the same as the parameters of the <API>. See
the corresponding API description for details.

Return code

This VFB trace hook exists if the global and the hook specific configuration switches are enabled.
Functional Description

This VFB trace hook is called inside the RTE APIs directly after invocation of the API. The user has

to provide this hook function if it is enabled in the configuration. The placeholder <API> represents
one of the following APlIs:

Enter, Exit, Write, Read, Send, Receive, Invalidate, SwitchAck, Switch, Call, Result, IrvWrite,
IrvRead

The <AccessPoint> is defined as follows:

» Enter, Exit: <ExclusiveArea>

» Write, Read, Send, Receive, Feedback, Invalidate:
<PortPrototype>_<DataElementPrototype>

» Switch, SwitchAck: <PortPrototype> <ModeDeclarationGroupPrototype>

> Call, Result: <PortPrototype>_<OperationPrototype>

» IrvWrite, IrvRead: <InterRunnableVariable>

Call Context

This function is called inside the RTE API. The call context is the context of the API itself. Since
APIs can only be called in runnable context, the context of the trace hooks is also the runnable
entity of an AUTOSAR software component (SWC).

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

107

VECTOR > Technical Reference MICROSAR RTE

5.16.2 Rte [<client>]<API>Hook <cts> <ap> Return

Prototype

void Rte [<client>]<API>Hook <cts> <ap> Return ([IN const Rte CDS <cts> *inst,]
params)

Rte_CDS_<cts>* inst The instance specific pointer of type Rte_CDS_<cts> is used to
distinguish between the different instances in case of multiple
instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

params The parameters are the same as the parameters of the API. See the
corresponding API description for details.

Return code

This VFB trace hook exists if the global and the hook specific configuration switches are enabled.

Functional Description

This VFB trace hook is called inside the RTE APlIs directly before leaving the API. The user has to
provide this hook function if it is enabled in the configuration. The placeholder <API> represents
one of the following APlIs:

Enter, Exit, Write, Read, Send, Receive, Invalidate, Feedback, Switch, SwitchAck, Call, Result,
IrvWrite, IrvRead

The <AccessPoint> is defined as follows:

» Enter, Exit: <ExclusiveArea>

» Write, Read, Send, Receive, Feedback, Invalidate:
<PortPrototype>_<DataElementPrototype>

» Switch, SwitchAck: <PortPrototype>_<ModeDeclarationGroupPrototype>

» Call, Result: <PortPrototype>_<OperationPrototype>

> IrvWrite, IrvRead: <InterRunnableVariable>

Call Context

This function is called inside the RTE API. The call context is the context of the API itself. Since
APIs can only be called in runnable context, the context of the trace hooks is also the runnable
entity of an AUTOSAR software component (SWC).

Caution

“ The RTE generator tries to prevent overhead by sometimes implementing the Rte_Call
API as macro that does a direct runnable invocation. If VFB trace hooks are enabled
for such an Rte_Call API or for the called server runnable, these optimizations are no
longer possible.
Also macro optimizations for Rte_Read, Rte_DRead, Rte_Write, Rte_IrvRead and
Rte_IrvWrite APls are disabled when VFB tracing for that APIs is enabled.

© 2017 Vector Informatik GmbH Version 4.16.0 108
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

Caution
“ The RTE does not call VFB trace hooks for the following APIs because they are
intended to be implemented as macros.

» Implicit S/R APIs: Rte_IWrite, Rte_IWriteRef, Rte_IRead, Rte_[Status,
Rte_llnvalidate

» Implicit Inter-Runnable Variables: Rte_IrvIWrite, Rte_IrvIRead

» Per-instance Memory and calibration parameter APIs: Rte_Pim, Rte_CData,
Rte_Prm

> Indirect APIs: Rte_Ports, Rte_Port, Rte_NPorts
» RTE Life-Cycle APIs: Rte_Start, Rte_Stop

5.16.3 SchM_[<client>_]<API>Hook_<Bsw>_ <ap>_ Start

Prototype

void SchM [<client>]<API>Hook <bsw> <ap> Start (params)

Parameter

params The parameters are the same as the parameters of the <API>. See
the corresponding API description for details.

Return code

This VFB trace hook exists if the global and the hook specific configuration switches are enabled.
Functional Description

This VFB trace hook is called inside the RTE APIs directly after invocation of the API. The user has
to provide this hook function if it is enabled in the configuration. The placeholder <API> represents
one of the following APls:

Enter, Exit
The <AccessPoint> is defined as follows:
» Enter, Exit: <ExclusiveArea>

Call Context

This function is called inside the RTE API. The call context is the context of the API itself. Since
APIs can be called from a BSW function, the context of the trace hooks depends on the context of
the BSW function.

Caution
The SchM Hook APIs are a Vector extension to the AUTOSAR standard and may not
be supported by other RTE generators.

© 2017 Vector Informatik GmbH Version 4.16.0 109
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.16.4 SchM_[<client>_]<API>Hook_ <Bsw> <ap>_ Return

Prototype
void SchM [<client>]<API>Hook <bsw> <ap> Return (params)

Parameter

params The parameters are the same as the parameters of the <API>. See
the corresponding API description for details.

Return code

This VFB trace hook exists if the global and the hook specific configuration switches are enabled.
Functional Description

This VFB trace hook is called inside the RTE APlIs directly before leaving the API. The user has to
provide this hook function if it is enabled in the configuration. The placeholder <API> represents
one of the following APlIs:

Enter, Exit
The <AccessPoint> is defined as follows:
» Enter, Exit: <ExclusiveArea>

Call Context

This function is called inside the RTE API. The call context is the context of the API itself. Since
APIs can be called from a BSW function, the context of the trace hooks depends on the context of
the BSW function.

Caution

be supported by other RTE generators.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

The SchM Hook APIs are a Vector extension to the AUTOSAR standard and may not

110

VECTOR > Technical Reference MICROSAR RTE

5.16.5 Rte [<client>_ JComHook_<SignalName>_SigTx

Prototype

void Rte [<client>]ComHook <SignalName> SigTx (<DataType> *data)

Parameter

<DataType>* data Pointer to data to be transmitted via the COM API.

Note: <DataType> is the application specific data type of Rte Send,
Rte Writeor Rte IWrite.

Return code

This VFB trace hook exists, if at least one data element prototype of a port prototype has to be
transmitted over a network (Inter-Ecu) and the global and the hook specific configuration switches
are enabled.

Functional Description

This hook is called just before the RTE invokes Com_SendSignal or
Com_UpdateShadowSignal.

Call Context

This function is called inside the RTE APIs Rte_Send and Rte_Write. The call context is the
context of the APl itself. Since APIs can only be called in runnable context, the context of the trace
hooks is also the runnable entity of an AUTOSAR software component.

If buffered communication (Rte IWrite)is used, the call context is the task of the mapped
runnable.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

M

VECTOR > Technical Reference MICROSAR RTE

5.16.6 Rte [<client> JComHook_<SignalName>_Siglv

Prototype

void Rte [<client>]ComHook <SignalName> SigIv (void)

Parameter

Return code

This VFB trace hook exists, if at least one data element prototype of a port prototype has to be
transmitted over a network (Inter-Ecu) and the global and the hook specific configuration switches
are enabled. In addition the canInvalidate attribute at the UnqueuedSenderComSpec of the
data element prototype must be enabled.

Functional Description
This hook is called just before the RTE invokes Com InvalidateSignal.
Call Context

This function is called inside the RTE APIs Rte_Invalidate. The call context is the context of the
API itself. Since APIs can only be called in runnable context, the context of the trace hooks is also
the runnable entity of an AUTOSAR software component.

If buffered communication (Rte_IInvalidate)is used, the call context is the task of the mapped
runnable.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

112

VECTOR > Technical Reference MICROSAR RTE

5.16.7 Rte_[<client>_JComHook_<SignalName>_SigGrouplv

Prototype

void Rte [<client>]ComHook <SignalGroupName> SigGroupIv (void)

Parameter

Return code

This VFB trace hook exists, if at least one data element prototype of a port prototype is composite
and has to be transmitted over a network (Inter-Ecu) and the global and the hook specific
configuration switches are enabled. In addition the canInvalidate attribute at the
UnqueuedSenderComSpec of the data element prototype must be enabled.

Functional Description
This hook is called just before the RTE invokes Com InvalidateSignalGroup.
Call Context

This function is called inside the RTE APIs Rte_Invalidate. The call context is the context of the
API itself. Since APIs can only be called in runnable context, the context of the trace hooks is also
the runnable entity of an AUTOSAR software component.

If buffered communication (Rte_IInvalidate)is used, the call context is the task of the mapped
runnable.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

113

VECTOR > Technical Reference MICROSAR RTE

5.16.8 Rte [<client>_ JComHook_<SignalName>_SigRx

Prototype

void Rte [<client>]ComHook <SignalName> SigRx (<DataType> *data)

Parameter

<DataType>* data Pointer to the data received via the COM API.

Note: <DataType> is the application specific data type of
Rte Receive, Rte Read, Rte DRead Or Rte IRead.

Return code

This VFB trace hook exists, if at least one data element prototype of a port prototype has to be
received from a network and the global and hook specific configuration switches are enabled.

Functional Description

This VFB Trace Hook is called after the RTE invokes Com ReceiveSignal or
Com_ReceiveShadowSignal.

Call Context

This function is called inside the RTE APl Rte_Read or Rte DRead. The call context is the
context of the API itself. Since this APl can only be called in runnable context, the context of the
trace hooks is also the runnable entity of an AUTOSAR software component.

If buffered communication (Rte IRead) is used, the call context is the task of the mapped
runnable.

If queued communication is configured (Rte Receive), the call of the Com API is called inside the
COM callback after reception. In this case, the context of the trace hook is the context of the COM
callback.

Note: This could be the task context or the interrupt context!

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

114

VECTOR > Technical Reference MICROSAR RTE

5.16.9 Rte_[<client>_JComHook<Event>_<SignalName>

Prototype

void Rte [<client>]ComHook<Event> <SignalName> (void)

Parameter

Return code

This VFB trace hook is called inside the <Event> specific COM callback, directly after the
invocation by COM and if the global and the hook specific configuration switches are enabled.

Functional Description

This trace hook indicates the start of a COM callback. <Event> depends on the type of the
callback.

» empty string: Rte_ COMCbk_<SignalName>

> TxTOut Rte_ COMCbkTxTOut_<SignalName>
» RxTOut Rte_ COMCbkRxTOut_<SignalName>
> TAck Rte_ COMCbkTAck_<SignalName>

> TErr Rte_ COMCbKTErr_<SignalName>

> Inv Rte_ COMCDbkInv_<SignalName>

Call Context

This function is called inside the context of the COM callback.
Note: This could be the task context or the interrupt context!

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

115

VECTOR > Technical Reference MICROSAR RTE

5.16.10 Rte_[<client>_JTask_Activate

Prototype
void Rte [<client>]Task Activate (TaskType task)

Parameter

task The same parameter is also used to call the OS APl ActivateTask

Return code

This VFB trace hook is called by the RTE immediately before the invocation of the OS API
ActivateTask and if the global and the hook specific configuration switches are enabled.

Functional Description
This trace hook indicates the call of ActivateTask of the OS.
Call Context

This function is called inside Rte Start and in the context RTE API functions which trigger the
execution of a runnable entity where the runnable is mapped to a basic task. For API functions, the
call context is the runnable context.

5.16.11 Rte_[<client>]Task_Dispatch

Prototype

void Rte [<client>]Task Dispatch (TaskType task)

task The parameter indicates the task to which was started (dispatched) by
the OS

Return code

This VFB trace hook exists for each configured RTE task and is called directly after the start if the
global and the hook specific configuration switches are enabled.

Functional Description
This trace hook indicates the call activation of a task by the OS.
Call Context

The call context is the task.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

116

VECTOR > Technical Reference MICROSAR RTE

5.16.12 Rte_[<client>_]Task_SetEvent

Prototype

void Rte [<client>]Task SetEvent (TaskType task, EventMaskType event)

task The same parameter is also used to call the OS API SetEvent
event The same parameter is also used to call the OS API SetEvent

Return code

This VFB trace hook is called by the RTE immediately before the invocation of the OS API
SetEvent and if the global and the hook specific configuration switches are enabled.

Functional Description
This trace hook indicates the call of SetEvent.
Call Context

This function is called inside RTE API functions and in COM callbacks. For API functions, the call
context is the runnable context.

Note: For COM callbacks the context could be the task context or the interrupt context!

5.16.13 Rte_[<client>_]Task_WaitEvent

Prototype

void Rte [<client>]Task WaitEvent (TaskType task, EventMaskType event)

task The same parameter is also used to call the OS APl waitEvent
event The same parameter is also used to call the OS APl WwaitEvent

Return code

This VFB trace hook is called by the RTE immediately before the invocation of the OS API
WaitEvent and if the global and the hook specific configuration switches are enabled.

Functional Description
This trace hook indicates the call of WaitEvent.
Call Context

This function is called inside RTE API functions and in generated task bodies.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

17

VECTOR > Technical Reference MICROSAR RTE

5.16.14 Rte_[<client> JTask_WaitEventRet

Prototype

void Rte [<client>]Task WaitEventRet (TaskType task, EventMaskType event)

task The same parameter is also used to call the OS APl WaitEvent
event The same parameter is also used to call the OS APl WwaitEvent

Return code

This VFB trace hook is called by the RTE immediately after returning from the OS API WaitEvent
and if the global and the hook specific configuration switches are enabled.

Functional Description

This trace hook indicates leaving the call of waitEvent.
Call Context

This function is called inside RTE API functions and in generated task bodies.

5.16.15 Rte_[<client>_JRunnable_<cts> <re> Start

Prototype

void Rte [<client>]JRunnable <cts> <re> Start ([IN const Rte CDS <cts> *inst])

Rte_CDS_<cts>* inst The instance specific pointer of type Rte_ CDS_<cts> is used to
distinguish between the different instances in case of multiple
instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

This VFB trace hook is called for all mapped runnable entities if the global and the hook specific
configuration switches are enabled.

Functional Description

This trace hook indicates invocation of the runnable entity. It is called just before the call of the
runnable entity and allows for example measurement of the execution time of a runnable together
with the counterpart Rte [<client> JRunnable <cts> <re> Return.

Call Context

This function is called inside RTE generated task bodies.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

118

VECTOR > Technical Reference MICROSAR RTE

5.16.16 Rte_[<client>_JRunnable_<cts> <re> Return

Prototype

void Rte [<client>]Runnable <cts> <re> Return ([IN const Rte CDS <cts> *inst])

Rte_CDS_<cts>* inst The instance specific pointer of type Rte_CDS_<cts> is used to
distinguish between the different instances in case of multiple
instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

This VFB trace hook is called for all mapped runnable entities if the global and the hook specific
configuration switches are enabled.

Functional Description

This trace hook indicates invocation of the runnable entity. It is called just after the call of the
runnable entity and allows for example measurement of the execution time of a runnable together
with the counterpart Rte [<client> JRunnable <cts> <re> Start.

Call Context

This function is called inside RTE generated task bodies.

© 2017 Vector Informatik GmbH Version 4.16.0
based on template version 3.5

119

VECTOR > Technical Reference MICROSAR RTE

5.17 RTE Interfaces to BSW

The RTE has standardized Interfaces to the following basic software modules

» COM/LDCOM

» Transformer (COMXF, SOMEIPXF, E2EXF)

» NVM

» DET

» OS

» XCP

» SCHM

The actual used API’s of these BSW modules depend on the configuration of the RTE.

5.17.1 Interface to COM /LDCOM

Used COM API
Com_SendSignal

Com_SendDynSignal
Com_SendSignalGroup
Com_SendSignalGroupArray
Com_UpdateShadowSignal
Com_ReceiveSignal
Com_ReceiveDynSignal
Com_ReceiveSignalGroup
Com_ReceiveSignalGroupArray
Com_ReceiveShadowSignal
Com_InvalidateSignal
Com_InvalidateSignalGroup

Used LDCOM API

LdCom_IfTransmit (early versions of MICROSAR LDCOM)
LdCom_Transmit

The RTE generator provides COM / LDCOM callback functions for signal notifications. The
generated callbacks, which are called inside the COM layer, have to be configured in the
COM / LDCOM configuration accordingly. The necessary callbacks are defined in the
Rte Cbk.h header file.

Caution

“ The RTE generator assumes that the context of COM / LDCOM callbacks is either a
task context or an interrupt context of category 2.

It is explicitly NOT allowed that the call context of a COM / LDCOM callback is an
interrupt of category 1.

© 2017 Vector Informatik GmbH Version 4.16.0 120
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

In order to access the COM / LDCOM APl the generated RTE includes the
Com.h/LdCom.h header file if necessary.

During export of the ECU configuration description the necessary COM / LDCOM
callbacks are exported into the COM / LDCOM section of the ECU configuration
description.

5.17.2 Interface to Transformer

Used Transformer API
ComXf_<transformerld>
ComXf_Inv_<transformerld>
SomelpXf_<transformerld>
SomelpXf_Inv_<transformerld>
E2EXf_<transformerld>

E2EXf Inv_<transformerld>

Caution

“ The RTE generator does not support configurable transformer chains. Only the
SomelpXf and the ComXf are supported as first transformer in the chain. The E2EXf as
second transformer is optional dependent on the configuration.

© 2017 Vector Informatik GmbH Version 4.16.0 121
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.17.3 Interface to OS

In general, the RTE may use all available OS API functions to provide the RTE
functionality to the software components. The following table contains a list of used OS
APIs of the current RTE implementation.

Used OS API

SetRelAlarm
CancelAlarm
StartScheduleTableRel
NextScheduleTable
StopScheduleTable
SetEvent

GetEvent
ClearEvent
WaitEvent
GetTaskID
GetCorelD
ActivateTask
Schedule
TerminateTask
ChainTask
GetResource
ReleaseResource
GetSpinlock
ReleaseSpinlock
DisableAllinterrupts
EnableAllinterrupts
SuspendAllinterrupts
ResumeAllinterrupts
SuspendOSinterrupts
ResumeOSinterrupts
CallTrustedFunction (MICROSAR OS specific)
locWrite

locRead
locWriteGroup
locReadGroup
locSend

locReceive

In order to access the OS API the generated RTE includes the 0s . h header file.

© 2017 Vector Informatik GmbH Version 4.16.0 122
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

The OS configuration needed by the RTE is stored in the file Rte Needs.ecuc.arxml
which is created during the RTE Generation Phase.

For legacy systems the OS configuration is also stored in Rte.oil. This file is an
incomplete OIL file and contains only the RTE relevant configuration. It should be included
in an OIL file used for the OS configuration of the whole ECU.

Caution
The generated files Rte Needs.ecuc.arxml and Rte.oil file must not be
changed!

5.17.4 Interface to NVM

The RTE generator provides NvM callback functions for synchronous copying of the mirror
buffers to and from the NvM. The generated callbacks, which are called inside the
NvM MainFunction, have to be configured in the NvM configuration accordingly. The
necessary callbacks are defined in the Rte Cbk.h header file.

Caution
The RTE generator assumes that the call context of NvM callbacks is the task which
calls the NvM MainFunction.

During export of the ECU configuration description the necessary NVM callbacks are
exported into the NVM section of the ECU configuration description.

5.17.5 Interface to XCP

In addition to the usage of the Com and the OS module as described by AUTOSAR, the
MICROSAR RTE generator optionally can also take advantage of the MICROSAR XCP
module.

This makes it possible to configure the RTE to trigger XCP Events when certain
measurement points are reached.

This for example also allows the measurement of buffers for implicit sender/receiver
communication when a runnable entity is terminated.

Measurement is described in detail in chapter 6.6 Measurement and Calibration.

When measurement with XCP Events is enabled, the RTE therefore includes the header
Xcp.h and calls the Xcp_Event API to trigger the events.

Used Xcp API
Xcp_Event
© 2017 Vector Informatik GmbH Version 4.16.0 123

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

5.17.6 Interface to SCHM

In multicore and memory protection systems, the schedulable entity
Rte ComSendSignalProxyPeriodic is provided by the RTE and is used to access the
COM from OS Applications without BSW. This schedulable entity needs to be called
periodically by the SCHM.

See chapter 4.8.1 for details.

Provided Schedulable Entity
Rte_ComSendSignalProxyPeriodic

5.17.7 Interface to DET

The RTE generator reports development errors to the DET, if development error detection
is enabled.

See chapter 3.8.1 for details.

Used DET API
Det_ReportError

© 2017 Vector Informatik GmbH Version 4.16.0 124
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

6 RTE Configuration

The RTE specific configuration in DaVinci Configurator encompasses the following parts:
assignment of runnables to OS tasks

assignment of OS tasks to OS applications (memory protection/multicore support)
assignment of Per-Instance Memory to NV memory blocks

selection of the exclusive area implementation method

configuration of the periodic triggers

configuration of measurement and calibration

selection of the optimization mode

selection of required VFB tracing callback functions

configuration of the built-in call to the RTE generator

vV VvV vV VvV vV v v Vv v

platform dependent resource calculation

6.1 Configuration Variants
The RTE supports the configuration variants
» VARIANT-PRE-COMPILE

» VARIANT-POST-BUILD-SELECTABLE

The configuration classes of the RTE parameters depend on the supported configuration
variants. For their definitions please see the Rte bswmd.arxml file.

6.2 Task Configuration

Runnable Entities triggered by any kind of RTE Event e.g. TimingEvent have to be
mapped to tasks. Only server runnables (triggered by an OperationInvokedEvent) that
either have their CanBeInvokedConcurrently flag enabled or that are called from
tasks that cannot interrupt each other do not need to be mapped. For optimization
purposes they can be called directly and are then executed in the context of the calling
runnable (client).

The task configuration within DaVinci Configurator also contains some attributes which are
part of the OS configuration. The parameters are required to control RTE generation.

The creation of tasks is done in OS Configuration Editor in the in the DaVinci Configurator.
The Task Mapping Assistant has to be used to assign the triggered functions (runnables
and schedulable entities) to the tasks.

© 2017 Vector Informatik GmbH Version 4.16.0 125
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

&2 DaVinci Configurator Pro.MD.WF.RTE - DoorUnit.dpa - C:\Config

=10 x|
File Edit Mavigate View Project Help
NEH27¢c | S REIFERRA|f - -
: Configuration Editors| = B || [Ef! 05 Configuration &3 1 = B
= E1 B3 all » * Tasks » ® SensorTask » £ Mapped Functions [pre] = I§
@, <Fiter> e IC‘“ <Filter » w | Use the Task Mapping Assistant to map runnable entities or schedulable entities or to grder the entities within the task.
‘Communication ¥
e ER=IT # | Triggered Function | Function Trigger | owner | Activation Offset [ms] | Position
Runtime System & -1 0s Applications fe | SA Door Left S Periodical 0.02 Compo 0 0
] El- 7 Tasks . —
[£3] Runtime Svstem General]
= [P TaskTestsuiteInit
[ECU Software Components M SensorTask a 1
Module Internal Behavior “f Mapped Functions 0 3
E; 05 Confi 5 5 Interrupt Service Routines
s Lonnguration
enhauraten - @ Events
}a® Add Component Connection 22 Alarms
= #-Es* Counters
§ Add Data Mapoiny -[E schedule Tables
E@ B Resources
Eﬁl Add Task Mapping % Spin Locks
-2 10C Communication
| |
[F2 BasicEditor 4 | 1 of 4 elements selected. Sorting by <Triggered Function >
7 Properties 5% | =@ Generation Result| = B || A8 validation 22 I % i 4:5 = B
SensorTask_0_Timerd 0 messages in 0 categories
[
Description L RE=EEE |
Definition
Status
| PreCompile

Figure 6-1 Mapping of Runnables to Tasks

The MICROSAR RTE supports the generation of both BASTIC and EXTENDED tasks. The

Task Type can either be selected or the selection is done automatically if AUTO is
configured.

A basic task can be used when all runnables of the task are triggered by one or more
identical triggers.

A typical example for this might be several cyclic triggered runnables that share the same
activation offset and cycle time.

There is also the possibility to select Task Typ BASIC if all runnables of a task are

triggered cyclically but have different cycle times or different activation offsets. The RTE
realizes the basic task with the help of OS Schedule Tables.

Moreover another prerequisite for basic task usage is that the mapped runnables do not
use APIs that require a waitpoint, like a blocking Rte Feedback ().

If the above described conditions are not fulfilled an extended task has to be used. The
extended task can wait for different runnable trigger conditions e.g. data reception trigger,
cyclic triggers or mode switch trigger.

© 2017 Vector Informatik GmbH Version 4.16.0 126
based on template version 3.5

http://dict.leo.org/ende/index_de.html#/search=prerequisite&searchLoc=0&resultOrder=basic&multiwordShowSingle=on

VECTOR > Technical Reference MICROSAR RTE

Caution

n When RTE events that trigger a runnable are fired multiple times before the actual
runnable invocation happens and when the runnable is mapped to an extended task,
the runnable is invoked only once.
However, if the runnable is mapped to a basic task, the same circumstances will cause
multiple task activations and runnable invocations. Therefore, for basic tasks, the task
attribute Activation in the OS configuration has to be set to the maximum number of
queued task activations. If Activation is too small, additional task activations may result
in runtime OS errors. To avoid the runtime error the number of possible Task Activation
should be increased.

6.3 Memory Protection and Multicore Configuration

For memory protection or multicore support the tasks have to be assigned to OS
applications. The following figures show the configuration of OS applications and the
assignment of OS tasks. For multicore support also the Core ID has to be configured for
the OS application. When a runnable/trigger of a SWC is mapped to a task, the SWC is
automatically assigned to the same OS application as the task. In case the SWC contains
only runnables that are not mapped to a task, the SWC can be assigned to an ECUC
partition with the parameter
EcuC/EcucPartitionCollection/EcucPartition/EcucPartitionSoftwareComponentinstanceRef.
For every OS application, an ECUC partition can be created. It then needs to be
referenced by the OS application with the Os/OsApplication/OsAppEcucPartitionRef
parameter. Besides the assignment of SWCs to OS applications, the ECUC partition
provides a parameter to configure the safety level of the partition (QM or ASIL_A to
ASIL_D). The RTE generator uses this parameter to enable additional task priority based
optimizations for QM partitions.

© 2017 Vector Informatik GmbH Version 4.16.0 127
based on template version 3.5

VECTOR D>

DaVinci Configurator Pro.MD.WF.RTE - MemoryProtectedEcu.dpa - C:\Config

Technical Reference MICROSAR RTE

- 0] x|
File Edit MNavigate View Project Help
Modovec el BEEARG-= -~
< configuration Editors| = O ||[E 05 Configuration EX] = 0

[Basic Editor

¥ ’E ES anl » [o0s Applications » [] OsAppl2 © Tasks, Interrupt Service Routines, Alarms, Counters, Schedule Tables [pre] '|5
ICL <Filter > - IO‘ Filter= -
Communication ¥ Name: |Oshppl2 7
=-E2 Al E |
Memory ¥ ED 05 Applications Restart Task: l L~
_ 2 -1 osappl1
Runtime System ES H Bl Appl2 Hook Routines
Runtime System General 1 osappl3
Trusted [*+v
[[B ECU Software Components O rte ™ r
) - Tasks
Module Internal Behavior ||| i 4 Interrupt Service Routines o Tasks
[E os Confiquration #-@ Events
-4 Alarms 4
Euf" Add Component Connection #-P4* Counters 52
b addDataMapping ||| [E Schedule Tables
E@ Add Memory Mapping I:l" Snén: ks
..... pin Loc
E&i AddTaskMapping ~ |[|| = i 2 10C Communication

[+ ISRs

Alarms

Schedule Tables

Counters

Additional Parameters

,§' Properties &2 l ifa Validation | 5% Generation Result

App Task Ref
]
Description
Definition
Status

References to all tasks belonging to this application.

PreCompile

Figure 6-2 Assignment of a Task to an OS Application

Caution

© 2017 Vector Informatik GmbH

Version 4.16.0

Make sure that the operating system is configured with scalability class SC3 or SC4.

128

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

DaVinci Configurator Pro.MD.WF.RTE - MemoryProtectedEcu.dpa - C:\Config

_[olx
File Edit MNavigate Wiew Project Help
PEHY e RfFERAKR G- -
4 configuration Editors| = B ||[E oS Configuration £3 l = 0
“ || |[E] &= an » O osApplications » [OsAppl2 + Tasks, Interrupt Service Routines, Alarms, Counters, Schedule Tables [pre] ~ Ia
IR <Fer> T | [s - ootz .
Communication ¥ Name: sAppl
SEa
Memory ¥ =-E1 0% Applications Restart Task: I ul v
LLOEiCSS i =3 B Cereett Hook Routines
(iR O=Appl2
Runtime System General 1 osaAppl3
- Trusted [*~
Tﬁ ECU Software Components O rte i r
il | Behavi - Tasks
il Module Internal Behavier |1} ... % Interrupt Service Routines Tasks
[o5 confiquration #-@ Events
[]---Q Alarms ISRs
En]a Add Component Connection [].,,?’- Counters
b add Data Mapping (||| [& Schedule Tables Alarms
E@ Add Memory Mapping I:l" Réml
E&* dd Task A | . Spin Locks Schedule Tables
AddTask Mapping ~ ||}] . =Y 10C Communication
Counters
Additional Parameters
[Basic Editor
[Properties &1] /8 validation | 5% Generation Result = 0
0OsAppl2 (/MICROSAR/PPC_551x/0s/OsApplication)
P An AUTOSAR OS must be capable of supporting a collection of OS objects (tasks, interrupts, alarms, hooks etc.) that form a cohesive functional unit. This collection of objects is
Description e an 05-Application.
Definition
e All objects which belong to the same OS-Application have access to each other, Access means to allow to use these objects within API services,
Access by other applications can be granted separately.
PreCompile

Figure 6-3 OS Application Configuration

© 2017 Vector Informatik GmbH Version 4.16.0

129
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

6.4 NV Memory Mapping

Each instance of a Per-Instance Memory, which has configured Needs memory mapping
can be mapped to an NV memory block of the NvM.

The Per-Instance Memory (PIM) is used as mirror buffer for the NV memory block. During
startup, the EcuM calls NvM Readall, which initializes the configured PIM with the value
of the assigned NV memory block. During shutdown, NvM WriteAll stores the current
value of the PIM buffer in the corresponding NV memory block.

The RTE configurator provides support for manual mapping of already existing NV

memory blocks or automatically generation of NV memory blocks and mapping for all
PIMs.

The RTE has no direct Interface to the NvM in the source code. There exists only an

Interface on configuration level. The RTE configurator has to configure the following parts
of the NvM configuration.

» Address of PIM representing the RAM mirror of the NV memory block.
» Optionally the address of calibration parameter for default values.

» Optionally the size of the PIM in bytes if available during configuration time.

The following figure shows the Memory Mapping in DaVinci Configurator where
assignment of Per-Instance Memory to NV memory blocks can be configured.

%2 paVinci Configurator Pro.MD.WF.RTE - TestECU.dpa - C:\Config =101 x|
File Edit Mavigate View Project Help
DNEH|9¢ ¥eRBEU|TBER|Aa-=-
-?-Cunﬁguraﬁun Ediburs] = O | 3 Runtime System General Im Basic Editor 3 |
Y || |E8 « ® cp_componentt_€T_Component1 ECU_Composition * g RteNvRamAlocations » & MAP_Rte_CP_Component1_PerInstanceMemory_SInti6 ¥ - el -IE
@, <Fter> e [& <Fiter> ~ | Short Name: [MaP_Rte_cP_Componentl_PerinstanceMemor =
‘Communication ¥
h ¥ Os ;I #vm Block Ref: i [CP_ComponentiSwdy_PerInstanceMemory 5[] | =
¥ L
Memory ¥ B4 rie [Rie_CP_Component]_PerlnstanceMemory_SIn - =
Runtime System Py []"ﬂ RteBswModulelnstances — — — — .
@ RtelmplidtCommunications bal: IRteiniLC'mDC'\'\EI"17‘.c|| rationParameter_SI
[runtime System General [+ g RtelnitializationBehaviors Sw Ny Block Descriptor Ref: [Ll
[[B ECU Software Components - RieCsInteractions M e e B — — =
et T A £ RtePostBuildvariantConfigurations Sw My Ram Mapping Ref: [Swchiv_PerTnstanceMemory_SInt16 ul -
(zz] Modue Interna’ Behavior E]"ﬂ RteSwComponentinstances
@ 05 Configuration = U CP_Componentl_CT_Compenent1_ECU_Composition
i ﬂ RteEventToTaskMappings
E'f Add Component Connection & RteExdusiveArealmplementations
§f4 Add Data Mapping @ RtsExternalTriggerConfigs
E@ add Memory Mappin ﬂ RteInternalTriggerConfigs
= ﬂ RiteMNvRamAllocations
b4 Add Task Mappin { @ MAP_Rte_CP_Component1_PerInstanceMemory_SInt16
) MAP_Rte_CP_Componentl_PerInstanceMemory_UInt16
) MAP_Rt=_CP_Componentl_PerlnstanceMmemory Array$
) MAP_Rt=_CP_Componentl Pim_CString_UInt32_Def
& MAP_Rt=_CP_Componentl Pim_Record
- MAP_Rts_CP_Componentl_Pim_Recordiested
(@ CP_Component2 CT_Component2 ECU_Composition
[@ NvM_P_EcuSwComposition
[+ ﬁ RteSwComponentTypes
~ @ RteBswGeneral
[Basic Editor -~ RteGeneration =
f Properties % | @ Generation Resu\t| |
Hvm Block Ref
Description Reference to the used NvM block for storage of the MVRAMMapping information,
Definition
Status
=
| PreCompile |
Figure 6-4 Mapping of Per-Instance Memory to NV Memory Blocks
© 2017 Vector Informatik GmbH Version 4.16.0 130

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

6.5 RTE Generator Settings

The following figure shows how the MICROSAR RTE Generator has to be enabled for
code generation within the DaVinci Configurator.

%2 DaVinci Configurator Pro.MD.WF.RTE - MemoryProtectedEcu.dpa - C:\Config - IDIﬂ
File Edit Mavigate View Project Help
NEHd2rYESBLUAEEAM G- -
-;— Configuration Editors| = B || Project Settings 53 l = 0
= E € =B Code Generation Settings, External Generation Steps [pre] - |§
<Filter > -
IQ e IQ <Filter = - IQ <Filter = -
S ¥
Communication e 5% Code Generation .
Memory ¥ 7 settings B
Runtime System a [‘% External Generation Steps ;
I_;| '& Custom Workflow B
Runtime System General Eﬁl Custom Workflow Steps ic
I3 Ecu Software Components E]E SWC Templates and Contract Headers @
B] 4 Settings ?
Module Internal Behavior Modules o
[E os Configuration ﬁ Additional Definitions &
E‘“ ECUC File References
Eu]“ Add Component Connection = Yariants
EN‘ Add Data Mapping ; Project Settings
. il) Scril
Em Add Memory Mapping {5 Workflow Scripts
Eﬂ Add Task Mapping
[Basic Editor
[Properties 2 l /18 validation | 5 Generation Result = 0
Properties are not available,
| PreCompile |

Figure 6-5 RTE Generator Settings

© 2017 Vector Informatik GmbH Version 4.16.0 131
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

6.6 Measurement and Calibration

The MICROSAR RTE generator supports the generation of an ASAM MCD-2MC
compatible description of the generated RTE that can be used for measurement and
calibration purposes. When measurement or calibration is enabled the RTE generator
generates a file Rte.a21 that contains measurement objects for sender/receiver ports,
per-instance memories and inter-runnable variables. Calibration parameters are
represented as characteristic objects.

4% paVinci Configurator Pro.MD.WF.RTE - DoorUnit.dpa - C:\Config =]

File Edit Mavigate WView Project Help

D d2e | el FREAIMG-= -

¥ Configuration Editors| = & ||[[3 Runtime System General £% 1 = B8
= = € 53 rre ¥~ Measurement and Calibration [ere] = |6
R <Fiter - -
Ia [& <Fiter> ~ | 3L Version: [16.0 =
e g N o® o5 Activate Measurement *e
Runtime System £ 2 Hook Routines Support: .
D Debugging -

3 runtime System General

Timing Measurement
ﬂ System Timer
fiul APT Optimization

@i Platform Specific Setti
[0 Confiauration et orm Spec ngs Initalized RAM

Single Pointered j -
I8 ECU Software Components

Module Internal Behavior

Calibration Buffer Size [Byte]: ™ ggz;\e Pointered -

fot? Add Component Connection ¥ Measurement and Calibration

b VFB Tracing

¥ Add Data Mapping

5 sTBM
D
E&‘ Add Task Mapping
[Basic Editor
4 Properties 2 | 5% Generation Result = O ||48 validation 53 1 [ﬁ i i‘p = 0
Calibration Support 0 messages in 0 categories

— The RTE generator shall have the option to switch off support for calibration D Message ‘
Description ¢, generated RTE code, This option shall influence complete RTE code at
Definition once.

Status

| PreCompile |

Figure 6-6 Measurement and Calibration Generation Parameters

The switch A2L Version controls the ASAM MCD-2MC standard to which the Rte.a21 file
is compliant. Version 1.6.0 is recommended as it supports a symbol link attribute that can
be used by the measurement and calibration tools to automatically obtain the address of a
characteristic or measurement object in the compiled and linked RTE code.

What measurements and characteristics are listed in the Rte.a21 file depends on the
measurement and calibration settings of the individual port interfaces, per-instance
memories, inter-runnable variables and calibration parameters and if the variable can be
measured in general. For example, measurement is not possible for queued
communication as described in the RTE specification. When “Calibration Access” is set to
“NotAccessible”, an object will not be listed in the Rte.a21 file.

Within the Rte.a21 file, the measurement objects are grouped by SWCs. When inter-
ECU sender/receiver communication shall be measured, the groups will also contain links
to measurement objects with the name of the COM signal handle. These measurement
objects have to be provided by the COM.

© 2017 Vector Informatik GmbH Version 4.16.0 132
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

Furthermore, the generated Rte.a21 is only a partial A2L file. It is meant to be included in
the MODULE block of a skeleton A2L file with the ASAM MCD-2MC /include command.

This makes it possible to specify additional measurement objects, for example from the
COM, and IF_DATA blocks directly in the surrounding A2L file.

In order to also allow the measurement of implicit buffers for inter-ECU communication, the
MICROSAR RTE generator supports measurement with the help of XCP Events. This is
controlled by the flag “Use XCPEvents”. When XCP Events are enabled, the RTE
generator triggers an XCP Event that measures the implicit buffer after a runnable with
implicit inter-ECU communication is terminated and before the data is sent. “Use
XCPEvents” also enables the generation of one XCP Event at the end of every task that
can be used to trigger the measurement of other objects.

The RTE generator automatically adds the XCP Events to the configuration of the XCP
module. The Event IDs are then automatically calculated by the XCP module.

The definitions for the Events are generated by the XCP module into the file
XCP events.a2l. This file can be included in the DAQ section of the IF_DATA XCP
section in the skeleton A2L file.

The MICROSAR RTE supports three different online calibration methods, which can be
selected globally for the whole ECU. They differ in their kind how the APIs Rte CData and
Rte Prm access the calibration parameter. By default the online calibration is switched off.
The following configuration values can be selected:

» None

» Single Pointered
» Double Pointered
» Initialized RAM

In addition to the ECU global selection of the method the online calibration have to be
activated for each component individually by setting the Calibration Support switch.

© 2017 Vector Informatik GmbH Version 4.16.0 133
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

42 DaVinci Configurator Pro.MD.WF.RTE - DoorUnit.dpa - C:\Config o [4]
File Edit Mavigate Wiew Project Help

JEd|90 | ¥eRBE I TBERA M- -

4 Configuration Editors| = O || [[S ECU Software Components ES] = O

= E] = an» Application Components » SA_Door_Left P PortPrototypes, Application Connectors, Service Connectors [pre] '|6
Communication ame: |SH_Doo|'_Lef-t

E-E2 an
#-F ECu Composition
EIE Application Components
- sA_Door_Right
E| SA_Door_Left
[#-0- Port Prototypes
Eﬁ“ Application Connectors

wow d
G

| SA_Door_Left
i

Runtime System

Runtime System General
EE ECU Software Components
Module Internal Behavior

Connected Components

* ECU Composition

@ 05 Configuration

Enla Add Component Connection

6-'“ Service Connectors
- 4 Task Mapping

There are 0 unconnected port prototypes.
See here for an overview of the component's adjacent assembly connectors.
Connected Service Components

= | | | I S T Ex ive Area ion
Add Data Mapping - i
E Add Data Mappin: [Data Mapping ® ComM Doorlnit
E@ """ 1§l Memory Mapping There are 0 unconnected service port prototypes.
E&l Add Task Mapping [}5 Service Components See here for an overview of the component's adjacent service connectors,
[:I--g@ Port Interface Mapping Sets Mapped Tasks
® SensorTask
See here for an overview of the component's task mappings.
Mapped Communication Channels
Mone of the component's data elements are mapped to any communication channels.
E‘?} Sasic Editor See here for an overview of the component's data mappings.
“f Properties &% | 58 Generation Result = 5 ||AB valdation 52 l % i <f(> = 0
Calibration Support Enabled 0 messages in 0 categories
P Enables calibration support for the spedified jin] Message |
Description ParameterSwComponentType or AtomicSwComponentType.
Definition
Status
| PreCompile

Figure 6-7 SWC Calibration Support Parameters

For each component with activated Calibration Support memory segments are generated
into the file Rte MemSeg.a21l. This file can be included in the MOD_PAR section in the
skeleton A2L file. This makes it possible to specify additional memory segments in the
surrounding A2L file.

If the method Initialized RAM is selected, segments for the Flash data section and the
RAM data section of each calibration parameter are generated. The Flash sections are
mapped to the corresponding RAM sections.

If the Single Pointered or Double Pointered method is enabled, only memory segments for
the Flash data sections are listed in the Rte MemSeg.a2l. In addition a segment for a
RAM buffer is generated, when the Single Pointered method is used and a
CalibrationBufferSize is set. This parameter specifies the size of the RAM buffer in
byte. If it is set to 0, no RAM buffer will be created.

© 2017 Vector Informatik GmbH Version 4.16.0

based on template version 3.5

134

VECTOR > Technical Reference MICROSAR RTE

&2 pavinci Configurator Pro.MD.WF.RTE - DoorUnit.dpa - C:\Config

=10l x|
File Edit Navigate WView Project Help

NEH 20 | el A EBEAa-= -

-;— Configuration Edi... l = 0O ||[S Ecu Software Components [Runtime System General &3 = 0
~ =1 « B2 e + ¥ Measurement and Calibration [ore] = |6
<Filter = - . *
2 [@ <Fiter> ~ AZL Version: [16.0 =
‘Communication ¥ =18 05 Activate Measurement [T*w
Runtime System & 2 Hook Routines Support: -
i N Use XCP Events: -
Deb
Runtime System General E _uggmg
- & Timing Measurement Calibration Support: IDoubIe Pointered e -
ECU Software Components
= i 5""*“‘.“!“”_ Ealibration Buffer Size fByisli s | 100 dec| =
Module Internal Behavior i AFT Optimization
/il Platform Specific Settings
05 Configurati
@ onngurauon E—]@ RTE
Fol Add Component Connection ‘- Measurement and Calibration
-] bfw VFB Tracing
Add Uats Mapping (||| G T
E Add Data Mappin o sTBM
EJQ Add Task Mapping
[Basic Editor
5 Properties 52 | 58 Generation Result = B | |48 validation 52 l % i <.===g> = 8
Calibration Buffer Size 0 messages in 0 categories
P This parameter specifies the size of the RAM buffer for the jin} | Message |
Description _jiprtion, if single-pointered or double-pointered online
Definition calibration is used.
If set to 0, the RTE generator won't generate a RAM buffer,
=
| PreCompile

Figure 6-8 CalibrationBufferSize Parameter

The following figure shows a possible include structure of an A2L file. In addition to the

fragment A2L files that are generated by the RTE generator other parts (e.g. generated by
the BSW) can be included in the skeleton A2L file.

RTE Configuration

Rte.a2l
(DaVinci
Configurator) Rte MemSeg.a2|

XCP_events.a2l

Additional.a2|

Figure 6-9 A2L Include Structure

For more details about the creation of a complete A2L file see [24].

© 2017 Vector Informatik GmbH Version 4.16.0

135
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

6.7 Optimization Mode Configuration

A general requirement to the RTE generator is production of optimized RTE code. If
possible the MICROSAR RTE Generator optimizes in different optimization directions at
the same time. Nevertheless, sometimes it isn’t possible to do that. In that case the default
optimization direction is “Minimum RAM Consumption”. The user can change this behavior
by manually selection of the optimization mode.

» Minimum RAM Consumption (MEMORY)

» Minimum Execution Time (RUNTIME)

The following figure shows the Optimization Mode Configuration in DaVinci Configurator.

[[H ECU Software Components [Runtime System General 3 l = 0
E] € B2 rTE + Measurement and Calibration, VFE Tradng [pre] - Ia
IC'% <Filter = -
Dptimization Mode: HIMinimize RAM Consumption
E-# 05
--ff;’ Hook Routines Code Vendor Id: |30 dec ¥
i D Debugging ”
H - . \! - -
i Timing Measurement Com Timeout Source: IS'\ VC
ﬂ System Timer Dev Error Detect: r*'
API Optimization "
[Dev Error Detect Uninit: -
4 Platform Specific Settings) O
El@ RTE Enforce Ioc: HE -
" Measurement and Calibration .. o joce: [compaTiBILITY_MODE ~[*~
bt VFB Tracing
..... I STEM Initialize Implicit Buffers: -
#
loc Interaction Return Value: IRTE_IOC 5
Tool Chain Significant 1 dec -
Characters:
Value Range Check Enabled: I-*'
Vit vib Trace Function
oqn Use '+ to add parameters
4
Figure 6-10 Optimization Mode Configuration
© 2017 Vector Informatik GmbH Version 4.16.0 136

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

6.8 VFB Tracing Configuration

The VFB Tracing feature of the MICROSAR RTE may be enabled in the DaVinci
Configrator as shown in the following picture.

412 DaVinci Configurator Pro.MD.WF.RTE - DoorUnit.dpa - C:\Config 10l =|

File Edit Mavigate Wiew Project Help

DEH 92 | el fRBEA|R -2 -

E : - Configuration Editors| = O Runtime System General &2 l = 0
|| |E] € B2 rE » tfi VFB Tracing [pre] .|§
@, <Filter> e IO <Filter= -
o e Use the Import VFB Trace Functions Assistant to import trace functions.
‘Communication ¥ Eliﬁ o5
- ;

:) *
Runtime System & Hook Routines Enable VFB Tradng: [*-
D Debugging

Timing Measurement

Runtime System General VFB Trace Functions

E'ﬁ ECU Software Components
Module Internal Behavior

ﬂ System Timer
API Optimization P Rte_Runnable_SA_Door_Left_SA_Door_Left_Return
@ Platform Specific Settings 2 Rte_Runnable_SA_Door_Left_SA_Door_|Left_Start

=2 rre

Eur: Add Component Connection 4= Measurement and Calibration
Add Lomponent Lonnecton H

-ffin VIFB Tracing
b addData Mapping (||| . I STEM

kD

E&i Add Task Mapping VFB Trace Client Prefix

aF Use '+ to add parameters
£

[E 0s confiquration

[Basic Editor

F Properties % | %8 Generation Result = B ||AB validation 22 l % i <f{> = 0
0 messages in 0 categories
Properties are not available, his] Message |
PreCompile

Figure 6-11 VFB Tracing Configuration

You may open an already generated Rte Hook.h header file from within this dialog. This
header file contains the complete list of all available trace hook functions, which can be
activated independently. You can select and copy the names and insert these names into
the trace function list of this dialog manually or you can import a complete list from a file. If
you want to enable all trace functions you can import the trace functions from an already
generated Rte Hook.h. The VFB Trace Client Prefix defines an additional prefix for all
VFB trace functions to be generated. With this approach it is for example possible to
enable additionally trace functions for debugging (Dbg) and diagnostic log and trace (Dlt)
at the same time.

Info

ﬂ All enabled trace functions have to be provided by the user. Section 4.3.4 describes
how a template for VFB trace hooks can be generated initially or updated after
configuration changes.

© 2017 Vector Informatik GmbH Version 4.16.0 137
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

6.9 Exclusive Area Implementation

The implementation method for exclusive areas can be set in the DaVinci Configurator as
shown in the following picture.

aVinci Configurator Pro.MD.WF.RTE - MemoryProtectedEcu.dpa - C:\Config = IEllll
File Edit Mavigate View Project Help
NEHd9yc Vel rBREAR G -2 -
+ Configuration Editors = B ||[EEcu software Components £3 l = 0
= E = Al » = Application Components » (52 CP_Component3_OsAppl2 » T E ive Area jon P EA CanEnter [rre] '|§
[@ <Fiter> e | <Filter> -
L ¥
Communication e =-E an | Name §| Implementation 05 Resource v|
Memory v -0 ECU Composition = EA CanEnter 05 Resource]
Runtime System S E--]E Application Components = EA Runsln All Interrupt Blocking
E CP_MI2_Component2_OsAppl1
Runtime System General]E CP_MI1_Component2_OsAppll
& ECU Software Components #-hE CP_Component4_OsAppl3
2] Modul | Behavi E-@ CP_Component3_OsAppl2
Module Internal Behavior -0~ Port Prototypes
@ 05 Configuration EIF Application Connectors
6-'“ Service Connectors
Eu]“ Add Component Connection £ Task Mapping
} Add Data Mapping £ % [Exclusive Area Impl -
E[:,] Add Memory Mapping =_E' EA_Canénter
‘ =5 EA_RunsIn
ffil Add TaskMappina (||| ¢ 0 . i Data Mapping
[31 Memory Mapping
[]-@ CP_Component1_OsAppll
[]-@ CP_CalComponent1_OsAppli
[- CP_NvComponent
E]-@ CP_Components
[#-55 Service Components
A Mool i
[Basic Editor 5= Port Interface Mapping Sets 10of 2 elements selected. Sorting by <MName >
[Properties 53 l /18 validation | 5% Generation R.esult| =0
Exclusive Area Impl Mech
viption To be used implementation mechanism for the spedified ExdusiveArea.
Definition
Status
‘ PreCompile |
Figure 6-12 Exclusive Area Implementation Configuration
© 2017 Vector Informatik GmbH Version 4.16.0 138

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

6.10 Periodic Trigger Implementation

The runnable activation offset and the trigger implementation for cyclic runnable entities
may be set in the ECU project editor as shown in the following picture.

%2 paVinci Configurator Pro.MD.WF.RTE - DoorUnit.dpa - C:\Config I [m]]
File Edit Navigate View Project Help

JSHd| 920 ¥Rl FEREA|loe-=-

& configuration Editors| = B ||[F Basic Editor &1 l = 8
= E € © ComM_DoorUnit_P_EcuSwCompasition » ﬂ RteEventToTaskMappings » I OIT_GetCurrentComMode_URD00_GetCurrentComMode ¥ - - IE

@, <Filter=
I al h - Short Name: |OlT_GetCurrEntComMode_URUDU_GetCurrent(-

c icati ¥

ommunication ¥ | Activation Offset [ms]: I dec) W

Runtime System B e -

Lydlic Trigger Implementztion:

EE] Runtime System General ke [-

[[B £ Software Components B RteBswModulelnstances Immediate Restart:

Module Internal Behavior @ RtelmplidtCommunications ‘ .

@ 05 Confi 5 [@ RtelnitislizationBehaviors Mapped To Task Ref: I

U5 Lonnguration

i B RteOslnteractions Os Schedule Point: | h B

Enfn Add Compenent Connection ﬂ RtePostBuildVariantConfigurations Pasition In Task: I = -

= B ﬁ RteSwComponentInstances
pping - N " 3

E £dd Data Mappiny -8 ComM_DoorUnit_P_EcuswCompasition Used Os Alarm Ref: | L]~

E@ ‘ = @ RteEventToTaskMappings Used Os Event Ref: I L.~

Eﬂ Add Task Mapain OIT_GetCurrentComMode_URDO0_GetCurrentComMode

Add Task Mapoing i 2
OIT_GetCurrentComMode_URDO1_GetCurrentComMode — Used Os Sch Tbl Expiry Paint Ref: | L.1]™
OIT_GetMaxComMode_UR000_GetMaxComMode Virtually Mapped To Task Ref: | L.1|=
OIT_GetMaxComMode_URD01_GetMaxComMode
OIT_GetRequestedComMode_UR000_GetRequestedCom
OIT_GetRequestedComMode_UR001_GetRequestedCom
OIT_RequestComMode_UR000_RequestComMode
‘ @ OIT_RequestComMode_UR0D01_RequestComMode -

32 Basic Editor 4 | Bl m | =
F Properties 5 | 5% Generation Resu\t| = O || A8 vaidation 53 l EEgE = O
Cyclic Trigger Implementation 0 messages in 0 categories

_— If set to "Auto’ the RTE generator automatically creates the necessary 05 =l|/| D Message |

Description 21 tg realize the cydic trigger with the configured activation offset,

Definition If set to 'None' the trigger is not implemented by the RTE generator. It has to

be implemented by the user either by configuring an appropriate 05 alarmor =
Status an 05 schedule table.
The O5 task and optional the OS event for that trigger can be found in the ;I
| PreCompile |

Figure 6-13 Periodic Trigger Implementation Configuration

Caution

n Currently it is not supported to define an activation offset and a trigger implementation
per trigger. The settings can only be made for the complete runnable with potential
several cyclic triggers.

The activation offset specifies at what time relative to the start of the RTE the runnable /
main function is triggered for the first time.

Trigger implementation can either be set to Auto or None. When it is set to the default
setting Auto, the RTE generator will automatically generate and set OS alarms that will
then trigger the runnables / main functions. When trigger implementation is set to None,
the RTE generator only creates the tasks and events for triggering the runnables / main
functions. It is then the responsibility of the user to periodically activate the basic task to
which a runnable / main function is mapped or to send an event when the runnable / main
function is mapped to an extended task.

This feature can also be used to trigger cyclic runnable entities / main functions with a
schedule table. This allows the synchronization with FlexRay.

© 2017 Vector Informatik GmbH Version 4.16.0 139
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

To ease the creation of such a schedule table, the generated report Rte.html contains a
trigger listing. The listing contains the triggered runnables / main functions, their tasks and
the used events and alarms.

5 Task List

Task | Type Schedule [Priority
Tl Extended | NOM 1

T2 Basic MICIH 2
Back

6 Trigger List

Trigger Runnable Task [OS Event 05S alarm

TimingEvent Cyclic 2ms | Runnablel T1 Rte Ev_Runl ¢ Runnablel

TimingEvent Cyclic 2ms | Runnable? T2 n/fa

TimingEvent Cyclic Sms | RunnableCyclic [T1 Rte Ev Run c RunnableCyclic [Rte &l TE ¢ RunnahleCyclic
TimingEvent Cyclic 5ms | Runnables T1 Rte Ev Runl ¢ Runnahle3

Figure 6-14 HTML Report

If the OS alarm column for a trigger is empty, the runnable / main function needs to be
triggered manually. In the example above, this is the case for all runnables except for
RunnableCyclic.

The row for Runnable2 does not contain an event because this runnable is mapped to a
basic task.

To manually implement the cyclic triggers, one could for example create a repeating
schedule table in the OS configuration with duration 10 that uses a counter with a tick time
of one millisecond. An expiry point at offset 0 would then need to contain SETEVENT
actions for the runnables Runnable1 and Runnable3 and an ACTIVATETASK action for

Runnable2.

Moreover further expiry points with the offsets 2, 4, 6, 8 are needed to activate Runnable1
and Runnable2 and another expiry point with offset 5 is needed to activate Runnable3.

Caution

n When the trigger implementation is set to none, the settings for the cycle time and the
activation offset are no longer taken into account by the RTE. It is then the
responsibility of the user to periodically trigger the runnables / main functions at the
configured times. Moreover the user also has to make sure that this triggering does not
happen before the RTE is completely started.

© 2017 Vector Informatik GmbH Version 4.16.0 140
based on template version 3.5

VECTOR D>

6.11 Resource Calculation

Technical Reference MICROSAR RTE

The RTE generator generates the file Rte.html containing the RAM and CONST usage of
the generated RTE. The RTE generator makes the following assumptions.

» Size of a pointer: 2 bytes. The default value of the RTE generator can be changed with

the parameter Size Of RAM Pointer in the EcuC module.

» Size of the OS dependent data type TaskType: 1 byte

Size of the OS dependent data type EventMaskType: 1 byte

Padding bytes in structures and arrays are considered according to the configured
parameters Struct Alignment and Struct In Array Alignment inthe EcuC
module for NvM blocks.

» Size of a boolean data type: 1 byte (defined in PlatformTypes.h)

The pointer size and the alignment parameters can be found in the container
EcuC/EcucGeneral in the Basic Editor of DaVinci Configurator.

&:2 pavinci Configurator Pro.MD.WF.RTE - MemoryProtectedEcu.dpa - C:\Config =13l x|
File Edit Mavigate View Project Help
N9 Ve TEREARG-= -
+ Configuration Editorsl | EE ECU Software Components “}"_! Basic Editor 3 = 8
- E <« %“ EcuC P @ EcucGeneral » Bswinitialization ¥ o<l 'Ia
@ <Fiter=
& hd |@, <Fiter v t Name: |EcucGeneral hd
Communication ¥
ad %‘ Com Array Alignment: IAIignSBit j -
Memo ¥ -l Ecuc
L/ ¥ R Atomic Bit Access In Bitfield: M-
Runtime System S (=R g FcucGener
= i nitialization Atomic Variable Access: IAbomichBitAccess j b
[T Runtime System General @ InitFunctions Bit Field Data Type: IINT j*'
[[8 ECU Software Components H @ EcucPartitionCollection " .
Miodule Intermal Beh \ B0 EcucPduCollection Bit Order: IMSB—‘D—LSB = -
lodule Internal Behavior i
& &' Fee Bsw Implementation Code Type: IEcuCSourceCode j*'
@ 05 Configuration -l um
T @ . | -
: b 0s Byte Order: |e1G_EnDIAN =]
Eula Add Component Connection %\ Rte CPU Type: ICPU 18Bit j -
F& Add Data Mappin Conditional Generating: r -
E[ﬁl Add Memory Mappin Dummy Function: *-
B2l add Task Mapoin Dummy Statement: [T*=
Dummy Statement Kind: INone j*'
safe Bsw Checks: -
Size OF Enum: |size 168t x| -
Size OF Int; |size 168t =l -
| siz= OF Rav Pointer:] |size 168t x| -
Size Of ROM Pointer: [size 168t =l -
Struct Alignment: IAuhD j*'
Struct In Array Alignment: IAIignSBit j hd
E,'_} Basic Editor Use 5td Return Type For Rte: [*~
F Properties £3 lr.is Validation | 5% Generation Result = 3
EcucGeneral {{MICROSAR/EcuC [EcucGeneral)
Description Global configuration parameters of the EcuC.
Definition
=
| PreCompile
Figure 6-15 Configuration of platform settings
© 2017 Vector Informatik GmbH Version 4.16.0 141

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

7 Glossary and Abbreviations

7.1 Glossary

Term Description

DaVinci DEV DaVinci Developer: The SWC Configuration Editor.
DaVinci CFG DaVinci Configurator: The BSW and RTE Configuration Editor.

Table 7-1 Glossary

The AUTOSAR Glossary [14] also describes a lot of important terms, which are used in
this document.

7.2 Abbreviations

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

Com Communication Layer

ComXf Com based Transformer

C/S Client-Server

E2E End-to-End Communication Protection

E2EXf End-to-End Transformer

EA Exclusive Area

ECU Electronic Control Unit

EcuM ECU State Manager

FOSS Free and Open Source Software

HIS Hersteller Initiative Software

I0C Inter OS-Application Communicator

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (Vector's AUTOSAR solution)
NvM Non-volatile Memory Manager

PIM Per-Instance Memory

OIL OSEK Implementation Language

OSEK Open Systems and their corresponding Interfaces for Electronics in

Automotive

RE Runnable Entity

SE Schedulable Entity

RTE Runtime Environment

SchM Schedule Manager
© 2017 Vector Informatik GmbH Version 4.16.0 142

based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

SOME/IP Scalable service-oriented middleware over IP
SomelpXf SOME/IP Transformer

S/R Sender-Receiver

SWC Software Component

SWS Software Specification

VFB Virtual Functional Bus

Table 7-2 Abbreviations

© 2017 Vector Informatik GmbH Version 4.16.0 143
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

8 Additional Copyrights

The MICROSAR RTE Generator contains Free and Open Source Software (FOSS). The
following table lists the files which contain this software, the kind and version of the FOSS,
the license under which this FOSS is distributed and a reference to a license file which
contains the original text of the license terms and conditions. The referenced license files
can be found in the directory of the RTE Generator.

File FOSS License License Reference
MicrosarRteGen.exe Perl 5.20.2 Artistic License License_Artistic.txt
Newtonsoft.Json.dll Json.NET 6.0.4 MIT License License_JamesNewton-King.txt
Rte.jar flexjson 2.1 Apache License V2.0 License_Apache-2.0.txt

Table 8-1 Free and Open Source Software Licenses

© 2017 Vector Informatik GmbH Version 4.16.0 144
based on template version 3.5

VECTOR > Technical Reference MICROSAR RTE

9 Contact

Visit our website for more information on

News

Products
Demo software
Support

Training data

vV v v v v Vv

Addresses

www.vector.com

© 2017 Vector Informatik GmbH Version 4.16.0 145
based on template version 3.5

http://www.vector.com/

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.1.1 Deviations
	3.1.2 Additions/ Extensions
	3.1.3 Limitations

	3.2 Initialization
	3.3 AUTOSAR ECUs
	3.4 AUTOSAR Software Components
	3.5 Runnable Entities
	3.6 Triggering of Runnable Entities
	3.6.1 Time Triggered Runnables
	3.6.2 Data Received Triggered Runnables
	3.6.3 Data Reception Error Triggered Runnables
	3.6.4 Data Send Completed Triggered Runnables
	3.6.5 Mode Switch Triggered Runnables
	3.6.6 Mode Switched Acknowledge Triggered Runnables
	3.6.7 Operation Invocation Triggered Runnables
	3.6.8 Asynchronous Server Call Return Triggered Runnables
	3.6.9 Init Triggered Runnables
	3.6.10 Background Triggered Runnables

	3.7 Exclusive Areas
	3.7.1 OS Interrupt Blocking
	3.7.2 All Interrupt Blocking
	3.7.3 OS Resource
	3.7.4 Cooperative Runnable Placement

	3.8 Error Handling
	3.8.1 Development Error Reporting

	4 RTE Generation and Integration
	4.1 Scope of Delivery
	4.2 RTE Generation
	4.2.1 Command Line Options
	4.2.2 RTE Generator Command Line Options
	4.2.3 Generation Path

	4.3 MICROSAR RTE generation modes
	4.3.1 RTE Generation Phase
	4.3.2 RTE Contract Phase Generation
	4.3.3 Template Code Generation for Application Software Components
	4.3.4 VFB Trace Hook Template Code Generation

	4.4 Include Structure
	4.4.1 RTE Include Structure
	4.4.2 SWC Include Structure
	4.4.3 BSW Include Structure

	4.5 Compiler Abstraction and Memory Mapping
	4.5.1 Memory Sections for Calibration Parameters and Per-Instance Memory
	4.5.2 Memory Sections for Software Components
	4.5.3 Compiler Abstraction Symbols for Software Components and RTE

	4.6 Memory Protection Support
	4.6.1 Partitioning of SWCs
	4.6.2 OS Applications
	4.6.3 Partitioning Architecture
	4.6.3.1 Trusted RTE and BSW
	4.6.3.2 Non-Trusted RTE and BSW

	4.6.4 Conceptual Aspects
	4.6.5 Memory Protection Integration Hints
	4.6.5.1 Enabling of Memory Protection support
	4.6.5.2 Memory mapping in Linker Command File
	4.6.5.3 OS Configuration extension

	4.7 Multicore support
	4.7.1 Partitioning of SWCs
	4.7.2 BSW in Multicore Systems
	4.7.3 Service BSW in Multicore Systems
	4.7.4 IOC Usage

	4.8 BSW Access in Partitioned systems
	4.8.1 Inter-ECU Communication
	4.8.2 Client Server Communication

	5 API Description
	5.1 Data Type Definition
	5.1.1 Invalid Value
	5.1.2 Upper and Lower Limit
	5.1.3 Initial Value

	5.2 API Error Status
	5.3 Runnable Entities
	5.3.1 <RunnableEntity>
	5.3.2 Runnable Activation Reason

	5.4 SWC Exclusive Areas
	5.4.1 Rte_Enter
	5.4.2 Rte_Exit

	5.5 BSW Exclusive Areas
	5.5.1 SchM_Enter
	5.5.2 SchM_Exit

	5.6 Sender-Receiver Communication
	5.6.1 Rte_Read
	5.6.2 Rte_DRead
	5.6.3 Rte_Write
	5.6.4 Rte_Receive
	5.6.5 Rte_Send
	5.6.6 Rte_IRead
	5.6.7 Rte_IWrite
	5.6.8 Rte_IWriteRef
	5.6.9 Rte_IStatus
	5.6.10 Rte_Feedback
	5.6.11 Rte_IsUpdated

	5.7 Data Element Invalidation
	5.7.1 Rte_Invalidate
	5.7.2 Rte_IInvalidate

	5.8 Mode Management
	5.8.1 Rte_Switch
	5.8.2 Rte_Mode
	5.8.3 Enhanced Rte_Mode
	5.8.4 Rte_SwitchAck

	5.9 Inter-Runnable Variables
	5.9.1 Rte_IrvRead
	5.9.2 Rte_IrvWrite
	5.9.3 Rte_IrvIRead
	5.9.4 Rte_IrvIWrite

	5.10 Per-Instance Memory
	5.10.1 Rte_Pim

	5.11 Calibration Parameters
	5.11.1 Rte_CData
	5.11.2 Rte_Prm

	5.12 Client-Server Communication
	5.12.1 Rte_Call
	5.12.2 Rte_Result

	5.13 Indirect API
	5.13.1 Rte_Ports
	5.13.2 Rte_NPorts
	5.13.3 Rte_Port

	5.14 RTE Lifecycle API
	5.14.1 Rte_Start
	5.14.2 Rte_Stop
	5.14.3 Rte_InitMemory

	5.15 SchM Lifecycle API
	5.15.1 SchM_Init
	5.15.2 SchM_Deinit
	5.15.3 SchM_GetVersionInfo

	5.16 VFB Trace Hooks
	5.16.1 Rte_[<client>_]<API>Hook_<cts>_<ap>_Start
	5.16.2 Rte_[<client>_]<API>Hook_<cts>_<ap>_Return
	5.16.3 SchM_[<client>_]<API>Hook_<Bsw>_<ap>_Start
	5.16.4 SchM_[<client>_]<API>Hook_<Bsw>_<ap>_Return
	5.16.5 Rte_[<client>_]ComHook_<SignalName>_SigTx
	5.16.6 Rte_[<client>_]ComHook_<SignalName>_SigIv
	5.16.7 Rte_[<client>_]ComHook_<SignalName>_SigGroupIv
	5.16.8 Rte_[<client>_]ComHook_<SignalName>_SigRx
	5.16.9 Rte_[<client>_]ComHook<Event>_<SignalName>
	5.16.10 Rte_[<client>_]Task_Activate
	5.16.11 Rte_[<client>_]Task_Dispatch
	5.16.12 Rte_[<client>_]Task_SetEvent
	5.16.13 Rte_[<client>_]Task_WaitEvent
	5.16.14 Rte_[<client>_]Task_WaitEventRet
	5.16.15 Rte_[<client>_]Runnable_<cts>_<re>_Start
	5.16.16 Rte_[<client>_]Runnable_<cts>_<re>_Return

	5.17 RTE Interfaces to BSW
	5.17.1 Interface to COM / LDCOM
	5.17.2 Interface to Transformer
	5.17.3 Interface to OS
	5.17.4 Interface to NVM
	5.17.5 Interface to XCP
	5.17.6 Interface to SCHM
	5.17.7 Interface to DET

	6 RTE Configuration
	6.1 Configuration Variants
	6.2 Task Configuration
	6.3 Memory Protection and Multicore Configuration
	6.4 NV Memory Mapping
	6.5 RTE Generator Settings
	6.6 Measurement and Calibration
	6.7 Optimization Mode Configuration
	6.8 VFB Tracing Configuration
	6.9 Exclusive Area Implementation
	6.10 Periodic Trigger Implementation
	6.11 Resource Calculation

	7 Glossary and Abbreviations
	7.1 Glossary
	7.2 Abbreviations

	8 Additional Copyrights
	9 Contact

