RENESAS

-
o
9
ﬁ\l
7
<
O
S
=
QO

AUTOSAR MCAL R4.0.3
User’s Manual

SPI Driver Component Ver.1.0.12
Embedded User’s Manual

Target Device:
RH850/P1x

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.1.01 Mar 2017

http://www.renesas.com/
http://www.renesas.com/

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and
damages incurred by you or third parties arising from the use of these circuits, software, or information.

Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents,
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information
described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics
disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or
otherwise misappropriation of Renesas Electronics products.

Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended
applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

""Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;
home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication
equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or
bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea
repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any
and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the
product is not intended by Renesas Electronics.

When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General
Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges
specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics,
installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas
Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas
Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the
possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics
products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system.
Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or
systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including
without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable
laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale
is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1)
any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons,
chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose
relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and
security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly
or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When
exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and
regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.

Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and
conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your
resale or making Renesas Electronics products available any third party.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Abbreviations and Acronyms

Abbreviation / Acronym

Description

ANSI

American National Standards Institute

API Application Programming Interface
ARXML/arxml AutosaR eXtensible Mark-up Language
ASIC Application Specific Integration Circuit
AUTOSAR AUTomotive Open System Architecture
BSW Basic SoftWare

CPU Central Processing Unit

CSs Chip Select

CSIH/CSIG Enhanced Queued Clocked Serial Interface.
DEM/Dem Diagnostic Event Manager

DET/Det Development Error Tracer

DMA Direct Memory Access

EB External Buffer

ECU Electronic Control Unit

EEPROM Electrically Erasable Programmable Read-Only Memory
FIFO First In First Out

GNU GNU'’s Not Unix

GPT General Purpose Timer

HW HardWare

B Internal Buffer

Id Identifier

I/0 Input/Output

ISR Interrupt Service Routine

MCAL Microcontroller Abstraction Layer

MHz Mega Hertz

MCU Microcontroller unit

NA Not Applicable

PLL Phase Locked Loop

RAM Random Access Memory

ROM Read Only Memory

RTE Run Time Environment

SPI Serial Peripheral Interface

PDF Parameter Definition File

DIO Digital Input Output

WDT Watchdog Timer

RUCG Renesas Unified Code Generator

uC Micro controller

XML eXtensible Mark-up Language

ICU Input Capture Unit

CAN Controller Area Network

BUS BUS Network

PWM Pulse Width Modulation

PORT Represents a whole configurable port on a microcontroller device
ADC Analog to Digital Converter

LIN Local Interconnect Network
Definitions

Term Represented by

SI. No.

Serial Number

Table Of Contents

Chapter 1 INtrodUCTIONcivvii e 11

1.1. DOCUMENT OVEIVIEW ..eiiiiiiiiiieitiiee ettt ettt e ittt e sttt e e ettt e e st bttt e abb bt e e s bbbt e e s nbe e e e s anbne e e s nnnneeas 13

Chapter 2 Reference DOCUMENTSccoovviiiiiiiiiiciie e 15

Chapter 3 Integration And Build Process.........cccooeveviiiiiiiiiiicccinnnnnnn, 17

3.1. SPI Driver Component Makefile ... 17

Chapter 4 ForethoughtS......ccccooiiiiiii e 19

4.1. (T L= | PP OU P PP PPPRPN 19

4.2. PrECONAITIONS ...ttt n e s e e s 27

4.3. User Mode and SUPEerviSOr MOUE........ccooviiiiiiiiecce et 28

4.4, =T 0 0 0] VA 1 4o o 1= P 29

4.5, (D= U= W O o] g E=T 1= (= o o) VP 30

4.6. DEVIATION LIS .etiiiiiiiiiie ittt ettt s et e st e e s s et e s e e e e e e e e s 31

Chapter 5 Architecture DetailScoooveviiiiiiiiiii e 33

Chapter 6 Registers DetailS.......coooovuiiiiiiiiiiiie e 37

Chapter 7 Interaction Between The User And SPI Driver Component

.. 49

7.1. Services Provided By SPI Driver Component TO The USEr.........uuviviviuinieiiieinininininininininn. 49
Chapter 8 SPI Driver Component Header And Source File

1971 o] 1 01 1 o 1 o 51

Chapter 9 Generation Tool GUIde........cocvviiiiiiiiiiii e 55

Chapter 10 Application Programming Interface............cccccoceeevennnnn. 57

O R 1o] o Yol g €=To B IV 0= TR PP 57

O T A =T g To F= 1 I I o1 PO 57

10.1.2 Other MOAUIE TYPES ...ttt ettt ettt e st e e s sebe e e s nnbte e e s snneeeas 57

10.2 TYPE DEIINITIONS ettt e sttt e e st e e s bttt e e s bbb e e e anbbe e e s annbeeesnnneeeas 57

10.2.1 SPI_CONTIGTYPE oottt e e s e e 57

10.2.2 SPI_STAUSTYPE 1oeiiiiieiee ittt e e et e e s e e s e e e 57

10.2.3 SPI_JODRESUITYPE. ..ottt 58

10.2.4 SPI_SEORESUITYPE ...oeiiiiiiiieeit et 58

10.2.5 SPI_DAIBTYPE ..ottt 58

10.2.6 SPIi_NUMDErOfDAIATYPE ...oeiiiiiiiiee ittt 58

KT] o T @ =V g =1 1Y o= SR 59

LR] o TN (o] o Y/ o 1= PRSP 59

10.2.9 SPI_SEUUENCETYPE ..eeiieiiiiiiee ittt ettt ettt s et e e st e s s bt e e s snbee e e s anbaeeeennees 59

10.2.10 SPIi_HWUNITYPE .. etiiieiiiiie ettt ettt e e et e e e snbae e e s anbre e e s snbae e e e aneee 59

10.2.11 SPIi_ASYNCMOUETYPEiiiiie ittt e e et e e s st e e s snbae e e e nnees 59
10.2.12 SPIi_COMMEITOITYPE .oiitiiee ettt et e e et e e s st e e s snba e e e s snbae e e e nnees 59
10.2.13 SPI_HWEITOISTYPE ..eei ettt ettt e et e et e e st e e e st e e s st e e e e snbae e e s anbaeeeennnee 60
10.2.14 SPI_SEIfTESITYPE ..eveiieiiiiii ettt ettt e e st e e e nneee 60
10.2.15 SPIi_REIUMSTIAIUSoiiiiiiiiie ittt e st e e st e e s ebae e e e aneee 60
10.3 FUNCHON DEFINITIONS 1oeiiiiiiiiee ettt e e e e s anbn e e e s sanneeas 61
02 700 R o T [1 o | PP PRI 61
O T2 o I L= [o 1 PP PRSPPI 62
10.3.3 SPI_WIILEIB ...eeeieiiiiie ettt et e e s aabb e e e nannee s 62
10.3.4 SPI_ASYNCTIANSIML ...citiiiieiiiiee ettt ettt e e bbbt et b e e sab e e e s anbb e e e e aabbeeesannneeas 63
10.3.5 SPI_REAAIBooieiiii e 63
10.3.6 SPI_SEIUPEB ...ttt 64
10.3.7 SPI_GEISTALUS ...uteeieeitiiee ettt et e ettt stb e e s n b et e e e anneeas 64
10.3.8 SpPi_GetIJODRESUIL ...ccceeieeeeeeeeee 65
10.3.9 Spi_GetSequeNCERESUIL............ccooviiiiiie 65
O T O T Y o TS Y/ o [l I = 1] . PP 66
10.3.11 SPi_GetHWURNIESTALUSeeeiiiiiieiiiiiie ettt e e e e st e e e e e e s e anbbeeeeaeeas 66
10.3.12 SPI_CaANCEl .o 67
10.3.13 SPi_SetASYNCMOUEccceeieieieeeee e 67
10.3.14 Spi_GetVersionInfO ... 68
10.3.15 Spi_MainFunction_Handling ... 69
10.3.16 SPI_SEITES..ciiitiiiiiiiiiei ettt naeeas 69
10.3.17 SPIi_GEEITOIINTO ..ceiiiiiiii e 70
Chapter 11 Development And Production Errorscccoecevvevevneen. 71
11.1 SPI Driver Component DevelopmeNnt EFTOrS uiuiiiiiiiiiiiiieieieiiisieieineninreeernrnnnn... 71
11.2 SPI Driver Component ProduCtion EFTOrS.......ueiiiiiiiiiiiieiee e 72
11.3 SPI DIivVer HArdWare EITOIS ...ocicuiiiiiiiiiiie ittt ettt e e e e s 73
11.3.1 Data ConSIStENCY ChECKuiiiiiiiiiie e 73
11.3.2 PAFtY CRECK ...eiiiiiiiiii ittt et e e 73
L1.3.3 OVEITUN oottt ettt e e e e e e e s e s e et e e s s e s e et e e e e e s s s rraneeeee s 73
Chapter 12 Memory Organizationcoeeuueiineereeiinneeneeiiinneeeeeesnens 75
Chapter 13 P1M Specific Informationccccoevvvvviiiiiieiiiiiieeeeeei, 79
13.1. Interaction Between The User And SPI Driver COMPONENtcoovviiieiiiiieeniiiiee i 79
13.1.1 Translation HEAder Filecouiiiiiiiiiiieie ettt 79
13.1.2 Parameter Definition Filecoooiiiiiiii e 79
13.1.3 ISR FUNCHION ..ceiiitieie ettt ettt ettt s e e s e s ennnee s 80
13.2. ST T a] o] =3 o] o] 1T o= 4 Y o PSSR 82

13.2.1 Sample AppliCation SIIUCIUIEuvviiiiee et r e e s e e e e e snrraae e e e 82

13.2.2 Building Sample APPlICAtIONc.uuviiiiiee i s e e e e 84

13.2.2.1 Configuration EXamPIEcccoiciiiiiiiee i sseitee e e e e e srrrree e e e e e 84

13.2.2.2 Debugging The Sample Applicationccccceeeeiiiiiiiiieeee e 84

13.3. Memory ANd TRIOUGNPUL.....oo i e e snnee s 85
13.3.1 ROM/RAM USAQE ..ciiiiitiieieiiiieie ittt sttt e sttt e sttt e e sttt e e s nsbae e e s ssbaeeessnseeeessnbeeeesansseeas 85

13.3.2 StACK DEP ... 86

13.3.3 Throughput DELAIIScciiiiiiiiiiiiiiii et 86
Chapter 14 Release DetailS..........coviviiiiiiiiiiiicee e 87

Figure 1-1
Figure 1-2
Figure 4-1

Figure 4-2
Figure 4-3
Figure 4-4

Figure 5-1
Figure 5-2
Figure 13-1

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 6-1
Table 8-1
Table 10-1
Table 11-1
Table 11-2
Table 13-1
Table 13-2
Table 13-3
Table 13-4
Table 13-5

10

List Of Figures

System Overview Of AUTOSAR ArchiteCturecccoevvviiieiiieieiieee e 11
System Overview Of The SPI Driver In AUTOSAR MCAL Layer.........ccccceveeeeennnns 12
Chip select behavior when SpiCSlInactiveAfterlastdata is False and
SPICSIAIEENTOrCEMENT IS TIUE ..vvviiie e i e it e e e s e e s s r e e e e e s e e e e e e e eans 21
Chip select behavior when SpiCSlnactiveAfterlastdata is True and
SPICSIAIEENTOrCEMENT IS TIUE ..vviviie e i e it e e e st re e e s s r e e e s e s e e e e e e e e 22
Chip select behavior when SpiCSlInactiveAfterlastdata is True and
SpiCsIdIeENTOrcemMent is FalSe..........oviiiiiiiiiiiii e 22
Chip select behavior when SpiCSlInactiveAfterlastdata is False and
SpICsIdIEENTOrcemMENt iS FalSe.........eiiiiiiiiieiiiiie e 23
SPI DFVEr ArChItECIUIE .ot e e e e e e e e 33
Component Overview Of SPI Driver COmponentccoeeeveieiiieieie e, 34
Overview Of SPI Driver Sample Application........cccooeeeeieiiie e, 82

List Of Tables

Table for Chip Select DENAVIONeeii i 21
List of parameters in Channel container that are linked to the registers. 24
List of parameters in Job container that are linked to the registers.c..c..... 24
List of parameters in External Device container that are linked to the registers. .. 25
User Mode and SUPErviSOrY MOUEuuuuiuiuiuiuieiuieieinininiernrsinrneninrnrnrennnn... 28
HW unit and Memory Mode SeleCtionuuuviuiuieiiieiiieieiiiiiiieinieenerenn.. 29
SPI Driver Protected ReSOUICES LiSt.........oviiiviiiiiiiiiciiieee e 30
SPI Driver DeVIAtioN LiST........c.ueiiiiiiiiieiiieie et 31
REQISLEr DELAIIS.eeiiiiiiieii it 37
Description Of The SPI Driver Component FileScccviiiiiiiiiiiiieie e 52
The APIs provided by the SPI Driver COmMPONENt.........ccoocueieiniieieiniiie e 61
DET Errors Of SPI Driver COMPONENTocuuiiiiiiiieeeiiiiee ettt e st e e sireee e 71
DEM Errors Of SPI Driver COMPONENTuuviiiiiiiieeiiiiee ettt siieee e 72
PDF information fOr PLMoooiiiiiiiiiiec et 79
L1 = g U] o =V o |1 80
ROM/RAM Details WIthOUEt DETcccuviiiiiieiiiieiiee ettt 85
ROM/RAM Details With DETccouiiiiiiiiiie ittt 85
Throughput Details Of The APIS.....coo e 86

Introduction Chapter 1

Chapter 1 Introduction

The purpose of this document is to describe the information related to SPI
Driver Component for Renesas P1x microcontrollers.

This document shall be used as reference by the users of SPI Driver
Component. The system overview of complete AUTOSAR architecture is
shown in the below Figure:

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

SPI Driver

Microcontroller

Figure 1-1 System Overview Of AUTOSAR Architecture

The SPI Driver is part of the Microcontroller Abstraction Layer (MCAL), the
lowest layer of Basic Software in the AUTOSAR environment.

11

Chapter 1 Introduction

12

The Figure in the following page depicts the SPI Driver as part of layered
AUTOSAR MCAL Layer:

Microcontroller Drivers Memory Drivers Communication Drivers /O Drivers
(v} §
2 5 @ "
g 5118 |3 9
2118|580 S 113113112 2 ol B}
3 s o 9 2IE||E]||m s ¢ g - 2 | » ol
g ° = 5 5 3 2 z 5 c =l o ke
g <Q 9 4 2 >] 3 E o z & 2|8 2
82|58 glZ2]2]¢8 S1El 2] e 2l 9ellg|]g||g
< <] 2 a o =} < o o] 3 ES H E 2 2 3
8 152 < 3 = e 5|2
o ol Ed ©
3]
o3 Micro - o 7 m - N o
el 5lls2gs|controller| % | & | <D 2llas| ¢ sllzllzll 8
S S FRLC I [2 = =9 z s g
] S I o e

Figure 1-2 System Overview Of The SPI Driver In AUTOSAR MCAL Layer

The SPI Driver Component comprises Embedded software and the
Configuration Tool to achieve scalability and configurability.

The SPI Driver component code Generation Tool is a command line tool that accepts ECU
configuration description files as input and generates source and header files. The
configuration description is an ARXML file that contains information about the configuration for
SPI Driver. The tool generates the Spi_PBcfg.c, Spi_Lcfg.c, Spi_Cfg.h and Spi_Cbk.h.

The SPI driver provides services for reading from and writing to devices connected
through SPI buses. It provides access to SPI communication to several users (For
example, EEPROM, I/O ASICs). It also provides the required mechanism to configure the
on-chip SPI peripheral.

Introduction

Chapter 1

1.1

Document Overview

The document has been segmented for easy reference. The table below
provides user with an overview of the contents of each section:

Section

Contents

Section 1 (Introduction)

This section provides an introduction and overview of SPI Driver
Component.

Section 2 (Reference Documents)

This section lists the documents referred for developing this document.

Section 3 (Integration And Build
Process)

This section explains the folder structure, Makefile structure for SPI
Driver Component. This section also explains about the Makefile
descriptions, Integration of SPI Driver Component with other
components, building the SPI Driver Component along with a sample
application.

Section 4 (Forethoughts)

This section provides brief information about the SPI Driver Component,
the preconditions that should be known to the user before it is used,
memory modes, data consistency details, deviation list and Support For
Different Interrupt Categories.

Section 5 (Architecture Details)

This section describes the layered architectural details of the SPI Driver
Component.

Section 6 (Register Details)

This section describes the register details of SPI Driver Component.

Section 7 (Interaction Between
User And SPI Driver Component)

This section describes interaction of the SPI Driver Component with the
upper layers.

Section 8 (SPI Driver Component
Header And Source File
Description)

This section provides information about the SPI Driver Component
source files is mentioned. This section also contains the brief note on the
tool generated output file.

Section 9 (Generation Tool Guide)

This section provides information on the SPI Driver Component Code
Generation Tool.

Section 10 (Application
Programming Interface)

This section explains all the APIs provided by the SPI Driver Component.

Section 11 (Development And
Production Errors)

This section lists the DET ,DEM errors and hardware errors.

Section 12 (Memory
Organization)

This section provides the typical memory organization, which must be
met for proper functioning of component.

Section 13(P1M
Specific information)

This section provides P1M specific information also the information
about linker compiler and sample application.

Section 14 (Release Details)

This section provides release details with version name and base
version.

13

Chapter 1

Introduction

14

Reference Documents

Chapter 2

Chapter 2 Reference Documents

SI. No. Title Version

1. Autosar R4.0 3.2.0
AUTOSAR_SWS_SPIHandlerDriver.pdf

2. AUTOSAR BUGZILLA (http:/Aww.autosar.org/bugzilla) -
Note: AUTOSAR BUGZILLA is a database, which contains concerns raised
against information present in AUTOSAR Specifications.

3. r01uh0436ej0120_rh850p1x.pdf 1.20

4. Autosar R4.0 3.2.0
AUTOSAR_SWS_CompilerAbstraction.pdf

5. Autosar R4.0 14.0
AUTOSAR_SWS_MemoryMapping.pdf

6. Autosar R4.0 25.0
AUTOSAR_SWS_PlatformTypes.pdf

7. Autosar R4.0 03
AUTOSAR_BSW_MakefileInterface.pdf

15

http://www.autosar.org/bugzilla

Chapter 2

Reference Documents

16

Integration And Build Process Chapter 3

Chapter 3

Remark

3.1.

3.1.1.

Remark

Integration And Build Process

In this section the folder structure of the SPI Driver Component is explained.
Description of the Makefiles along with samples is provided in this section.

The details about the C Source and Header files that are generated by the
SPI Driver Generation Tool are mentioned in the
“R20UT3727EJ0101-AUTOSAR.pdf”.

SPI Driver Component Makefile

The Makefile provided with the SPI Driver Component consists of the GNU
Make compatible script to build the SPI Driver Component in case of any
change in the configuration. This can be used in the upper level Makefile (of
the application) to link and build the final application executable.

Folder Structure

The files are organized in the following folders:

Trailing slash ‘\" at the end indicates a folder
X1X\common_platform\modules\spi\src\ Spi_Driver.c
\ Spi.c
\ Spi_Scheduler.c
\Spi_lIrg.c
\Spi_Ram.c

\Spi_Version.c

X1X\common_platform\modules\spilinclude\Spi_Driver.h
\Spi.h
\Spi_Scheduler.h
\Spi_lIrg.h
\Spi_LTTypes.h
\Spi_PBTypes.h
\Spi_Ram.h
\Spi_Version.h
\Spi_Types.h
\Spi_RegWrite.h

X1X\P1x\modules\spi\Sample_application\<SubVariant>\make\<Compiler>

\App_SPI_P1M_Sample.mak

17

Chapter 3 Integration And Build Process

X1X\P1x\modules\spi\Sample_application\<SubVariant>\obj\ <compiler>

X1X\common_platform\modules\spi\generator\Spi_X1x.dll
X1X\common_platform\modules\spi\generator\ Spi_X1x.cfgxml

tools/RUCG/RUCG.exe

X1X\P1x\common_family\generator
\Sample_Application_P1x.trxml
\P1x_translation.h

X1X\P1x\modules\spi\generator
\R403_SPI_P1x_BSWMDT.arxml

X1X\P1x\modules\spi\user_manual
(User manuals will be available in this folder)

Notes:
1. <Compiler> can be ghs.

2. <SubVariant> can be P1M.

3. <AUTOSAR_version> can be 4.0.3.

18

Forethoughts

Chapter 4

Chapter 4

4.1.

Forethoughts

General

Following information will aid the user to use the SPI Driver Component
software efficiently:

SPI Driver component does not take care of setting the registers which
configure clock, prescaler and PLL.

SPI Driver component handles only the Master mode.
SPI Driver component supports full-duplex mode.

The chip select is implemented using the microcontroller pins and it is
configurable.

The required initialization of the port pins configured for chip select has to
be performed by the Port Driver Component.

The microcontroller pins used for chip select is directly accessed by the SPI
Driver component without using the APIs of DIO module.

The SPI Handler/Driver interface configuration is based on Channels, Jobs
and Sequences.The Data transmissions will be done according to Channels,
Jobs and Sequences configuration parameters.

Maximum number of channels and sequences configurable is 256 and job
is 65536.

The scope is restricted to post-build with multiple configuration sets.

The identifiers for channels, jobs and sequences entered by the user should
start from 0 and should be continuous.

The width of the transmitted data unit is configurable and the valid values
are 8 bits to 32 bits.

The number of channels, jobs and sequences should be same across
multiple configuration sets.

The channels, jobs and sequences cannot be deleted or added at post-build
time.

The channel data received shall be stored in 1 entry deep internal buffers
by channel. The SPI Handler/Driver shall not take care of the overwriting of
these “receive” buffers by another transmission on the same channel.

The channel data to be transmitted shall be copied in 1 entry deep internal
buffers by channel. The SPI Handler/Driver cannot prevent overwriting of
these “transmit” buffers by users during transmissions.

If different Jobs (and consequently also Sequences) have common
Channels, the SPI Handler/Driver’ environment should ensure that read
and/or write functions are not called during transmission.

If a Job contains more than one Channel, all Channels contained have the
same Job properties during transmission and are linked together statically.

The SPI hardware unit cannot be deleted or added at post—build time. But,
the reassignment of the SPI hardware units to different jobs is possible at
post-build time.

The DMA unit cannot be deleted or added at post-build time. But, the
reassignment of DMA units to the SPI hardware units is possible at post-

19

Chapter 4

Forethoughts

20

build time.

When the level of scalable functionality is configured as 1, then the SPI
Handler/Driver offers an asynchronous transfer service for SPI buses. An
asynchronous transmission means that the user calling the transmission
service is not blocked when the transmission is ongoing.

When the level of scalable functionality is configured as 2, then two SPI
buses using separate hardware units are required. In this case, the SPI bus
dedicated for synchronous transmission is configurable.

When the level of scalable functionality is configured as 2, two modes of
asynchronous communication using polling or interrupt mechanism are
possible. These modes are selectable during execution time.

When the level of scalable functionality is configured as 1 or 2, If interrupt
mechanism is selected during execution time, the transmission and
reception will be performed using the on-chip DMA unit only if the DMA
mode is enabled through the configuration.

The LEVEL 2 SPI Handler is specified for microcontrollers that have to provide
at least two SPI busses using separated hardware units. Otherwise, using this
level of functionality makes no sense.

When Level Delivered is 0 and 2, the memory mode configured for jobs linked
for the synchronous sequence shall be always Direct Access Mode only.

The SPI Handler/Driver is not allowed to suspend a Sequence transmission
already started in favour of another Sequence in case of Non-Interruptible
Sequences

If user configures 32 bit IB and EB channels and additionally configures DMA
in direct access mode there will be a generator error message.

When the SPI driver is configured in Level 2 (SpiLevelDelivered) and the
DMA is also configured (SpiDmaMode), then the asynchronous mode needs
to be set for interrupt mode using the API Spi_SetAsyncMode.

The SPI DMA type is specified by the parameter SPI_DMA_TYPE_USED.

Note: The DMA will work whenever the DMA access for the LOCAL RAM,
which is having PE guard protection is enabled (this can be done by
configuring the PE guard registers.)

Direct Access mode can be effectively used in case of sequence having
channels and buffers of significantly different properties.

Double Buffer mode can be effectively used in case of sequence having more
number of jobs, channels and buffers with same hardware properties for
continuous transmission of data. For double buffer mode only usage of
internal buffers is allowed. FIFO mode can be effectively used at the time of
transmit/receive of large amount of data. FIFO mode can also be used in case
of sequence having lesser number of jobs and having more channels and
buffers.

In case size of buffers is more than the hardware buffer size i.e. 128 words,
an interrupt will occur after every 128 words are transmitted where the
hardware buffer will be loaded with the remaining buffers to be transmitted.

Forethoughts

Chapter 4

In a particular configurations where CSIH HW units are configured, Spi_Init
function must be called before Port_lInit function.

Only if "SpiCslnactiveAfterLastData" parameter is set to "true", the PWR bit
in CSI hardware will be cleared for that hardware unit, so setting "false" value
can lead to unnecessary power consumption.

When “SpiCsldleEnforcement” is set to true for the jobs configured for CSIH
Hw units, the value configured for "SpiCslnactive" will not have any impact in
actual Chip Select behavior".

The parameter "SpiCsldleEnforcement” influences the behavior of idle level
of the chip select during data transfer and after the transmission of a job.

When the parameter 'SpiCsldleEnforcement’ is configured as false, the
corresponding chip select is deactivated before every channel transmission
and stays active after transmission until another job with different CS is
transmitted.

When the parameter 'SpiCsldleEnforcement’ is configured as true, the chip
select is deactivated after job transmission. An idle phase of CS is inserted
between transmissions of two data buffers. The duration of idle state of the
chip select between the channels transmissions will be less than duration of
idle state of the chip select between single data of each channel.

In CSIG,CS is active during the whole job transmission independently of data
and is set to inactive state after job is finished.

Table4-1 Table for Chip Select behavior

Figure SpiCSlnactiveAfterlastdata SpiCsldleEnforcement
4-1 FALSE TRUE

4-2 TRUE TRUE

4-3 TRUE FALSE

4-4 FALSE FALSE

Note: In the below figures, the signal represented in Yellow is the clock signal
and the Blue signal is the chip select signal.

mmm“HHWWWHHHW’WWMMWM Avtoer

L A R A 1 oy = B Tt R A Bt |

ol e e i o i i b i e o O i o s e

A _[40.0ms 25.0KkS/s

& 2.00V &P 2.00V L 0.00000 s 10k points _
value Mean Vi 10 13 May 2014

@» +~width 200.1us Low resolution 12:23:25 o)

@ Rise Time 107.9MS Low resolution

Figure 4-1 Chip select behavior when SpiCSlinactiveAfterlastdata is
False and SpiCsldleEnforcement is True

21

Chapter 4 Forethoughts

Note: If ‘SpiCsldleEnforcement’ is TRUE, Chip select will get deactivated after
transmission is over, even if ‘SpiCSlnactiveAfterlastdata’ is configured as
FALSE.

2 0 }[WHNW’MQ-MWMMW' e

o i o e i v o O i W o

25.0ks/s
L 10K points o . #
value Mean Mi v1ax 113 May 2014
@» +width 200.1us Low resolutior [12:23:25 o
@ Rise Time 107.9MS Low resolution

Figure 4-2 Chip select behavior when SpiCSlinactiveAfterlastdata is
True and SpiCsldleEnforcement is True

(40.0ms 25.0KS7s
JlE§>+0.00000 s 10k points
value Mean Min
@» +width 193.0ps Low resolution
| @i Rise Time 85.34us Low resolution

Figure 4-3 Chip select behavior when SpiCSlinactiveAfterlastdata is
True and SpiCsldleEnforcement is False
Note:

1. The expected CS behavior may not be observed at high baud rates in case of
Asynchronous transmission using Direct Access Mode, due to general limitation
of the serial controllers.

2. CS state can be held for Asynchronous transmission by using buffer modes
like FIFO.

3. When channel properties are different and SpiCsldleEnforcement is
configured as False, then the corresponding chip select will be deactivated after
each channel transmission.

22

Forethoughts

Chapter 4

\,i.nt;.‘.w»-;-mwl-h-whmy‘Wn\.\.ﬁ- ,1’, PRy _»‘i‘ﬂqu‘f“'li\.lul,d,dmv'Hr\g\tu.‘.y,uf.'.ﬂv‘u»’, A Ay st b e sy b ot ok by Autoset

it R AR AR gttt e A AN A 1 T P gy

[20.0ms 50.0KkS/s
& 200V)|@§++0.00000 s 10k points

[value Mean Min std Dev "[13 May 2014
@& +width 193.0us Low resolution 12:17:12 H
@D Rise Time 87.44us Low resolution

Figure 4-4 Chip select behavior when SpiCSlinactiveAfterlastdata is
False and SpiCsldleEnforcement is False

This information is valid only for DIRECT ACCES MODE.

For availability of Data Consistency Check on the port pins, please refer
respective microcontroller user manual.

Sequences assigned to a hardware channel (CSIHx) which is configured to
work with transmit only memory mode can be an interruptible or non-
interruptible sequence (specified by the parameter
SpilnterruptibleSequence). However, even if the sequence is non-
interruptible, it can still be interrupted by CPU-controlled high priority
communication functionality. l.e. the parameter SpilnterruptibleSequence is
valid only for software interruption.

Each of the high priority sequences shall refer to a unique chip select line.
These lines shall not be referred by any of the low priority sequences too.

In order to support DEEPSTOP functionality without resetting the
microcontroller, the re initialization of the Driver using Spi_Init API is
supported. To achieve this functionality the
'SPI_E_ALREADY_INITIALIZED' Det error check is to be suppressed using
‘SpiAlreadylnitDetCheck’ parameter when DET is enabled. When DET is
disabled there is no impact of “SpiAlreadylnitDetCheck” parameter.

In a Hardware channel which has sequences working with transmit only
mode and is of high priority, if there is a request for transmission of high
priority sequence, then it will interrupt an ongoing sequence with transmit
only mode if the sequence is non-interruptible.

When the sequence is getting transmitted with transmit only mode, if there
is a request for high priority sequence, the ongoing sequence will be
interrupted after the ongoing job is finished and memory mode will switch
from transmit only mode to direct access mode automatically for high priority
sequence transmission and after its completion, the interrupted sequence
will resume transmission in transmit only mode.

MCTL1, MCTL2 and CSIHNMRWPO registers are allowed to be accessed
when there is an ongoing communication only when PWR is set.

Manual transmission is possible only in Direct Access and FIFO modes.
However user has to implement his own ISRs for SPI. In case he wants to
use Renesas SPI driver transmission in parallel, he has to call Renesas SPI
ISRs functions from his custom ISRs (e.g. use different interrupt category
mode).

23

Chapter 4

Forethoughts

24

The file Interrupt_VectorTable.c provided is just a Demo and not all
interrupts will be mapped in this file. So the user has to update the
Interrupt_VectorTable.c as per his configuration.

The notifications should be called from user’s complex driver ISRs

High values for parameter ‘SpiCsHoldTiming’should not be used with
Synchronous Transmit function but if it is used, user should make sure that
next consecutive SPI action happens after CS hold time expired.

The parameter SpiTimeOut generates a scalar value that decides the
number of times a loop will be executed while polling. If exceeded the loop
breaks reporting a production error.

This information is valid only for Static Configuration

The parameter SpiPersistentHW Configuration decides whether Hardware
configuration is static or dynamic. This is applicable for both CSIG and CSIH
and both Synchronous and Asynchronous communication and all memory
modes.

If SpiPersistentHW Configuration is “True”, then HW configuration is static
(configuration is performed in the function Spi_Init ()function and not during
each transmission.

Static Configuration, allows the user to manually start transmission without
invoking SPI module APIs after Spi driver was initialized.

In Static configuration, all parameters in channel/job/external devices
containers linked to a hardware unit should be same. Refer Table 4-2, 4-3
and 4-4 for the list of parameters

Table4-2 List of parameters in Channel container that are linked to the
registers.

Parameter in Registers linked
channel container CSIH-CSIG
SpiDataWidth CSIHNCFGx.CSIHNDLSXx CSIHNCFGx0.CSIHNDLSJ3:
0]
SpiTransferStart CSIHNCFGx.CSIHNDIRX CSIHNCFGx0.CSIHNDLSJ3:
0]
Table 4-3 List of parameters in Job container that are linked to the
registers.
Parameter in job Registers linked
container CSIH-CSIG
SpiPortPinSelect CSIHNTXOW.CSIHNCSx -
CSIHNCTL1.CSIHNCSx

Forethoughts

Chapter 4

Table 4-4
linked to the registers.

List of parameters in External Device container that are

Parameter in

channel container

Registers linked

CSIH

CSIG

SpiCsPolarity

CSIHNCTL1.CSIHNCSXx

SpiCslnactive

CSIHNCTL1.CSIHNCSRI

SpiCsldleEnforcem
ent

CSIHNCFGx.CSIHNIDLx

SpiCsldleTiming

CSIHNCFGXx.CSIHNIDX[2:0
]

SpiCsHoldTiming

CSIHNCFGx.CSIHNHDX[3:
0]

SpiCsinterDataDel
ay

CSIHNCFGx.CSIHNINX[3:0
]

SpiCsSetupTime CSIHNCFGx.CSIHNSPX[3: -

0]
SpiDataShiftEdge CSIHNCFGx.CSIHNDAPX CSIGnCFGO0.CSIGnDAP
SpishiftClockidleL | CSIHNCTL1.CSIHNCKR CSIGNnCTL1.CSIGNCKR
evel
SpiBaudrateConfig| CSIHNBRSy.CSIHOBRS[1 | CSIGnCTL2.CSIGnBRS
uration 1:0]

SpiBaudrateRegist
erSelect

CSIHNCFGx.CSIHNBRSS
X[11:0]

SpilnputClockSele
ct

CSIHNCTL2.CSIHNPRS|2:
0]

CSIGNnCTL2.CSIGNPRS[2:0
]

SpilnterruptDelayM
ode

CSIHNCTL1.CSIHnSIT

CSIGNCTL1.CSIGnSLIT

SpiParitySelection

CSIHNCFGX.CSIHNPSX[1:
0]

CSIGNCFGO0.CSIGnPS[1:0]

SpiFifoTimeOut

CSIHNMCTLO.CSIHNTO[4:
0]

SpiBroadcastingPri
ority

CSIHNCFGx.CSIHNRCBx

Integrator has to ensure that the critical section protection is configured

correctly.

User should invoke Spi_GetErrorinfo before the buffer limit exceeds.

The user must calculate proper SpiTimeOut value based on the data size

configured.

The failure of self test indicates hardware failure.

When using DMA, 'SpiDataWidthSelection' in '‘General' container shall be
'BITS_16', the user shall setup the buffer(EB or IB) in the application as type

25

Chapter 4

Forethoughts

26

'Spi_DataType' for channels that are configured for DMA and fill required
data(8 or 16) as configured in 'SpiDataWidth' in 'SpiChannel' container and
fill remaining with zeros.

When configuring DMA mode, the number of buffers configured shall be
greater than 1 in the case of Direct Access Mode and Fifo Mode.

The accesses to HW registers is possible only in the low level driver layer.
The user shall never write or read directly from any register, but shall use
the AUTOSAR standard API provided by the MCAL.

When using Interruptible Sequences, the caller must be aware that if the
multiple Sequences access the same Channels, the data for these
Channels may be overwritten by the highest priority Job accessing each
Channel.

For EB Channels the application shall provide the buffering and shall take
care of the consistency of the data in the buffer during transmission.

SPI peripherals may depend on the system clock, prescaler(s) and PLL.
Thus, changes of the system clock may also affect the clock settings of the
SPI hardware.

The SPI Handler/Driver module does not take care of setting the registers
which configure the clock, prescaler(s) and PLL in its init function. This has
to be done by the MCU module.

Depending on microcontrollers, the SPI peripheral could share registers
with other peripherals. In this typical case, the SPI Handler/Driver has a
relationship with MCU module for initialising and de-initialising those
registers.

If SpilnternalErrorBufferSize parameter is configured as Zero,
Spi_GetErrorinfo feature will be disabled. A Non zero value should be
configured to enable this feature.

Spi Driver status shall be ensured as SPI_IDLE by calling Spi_GetStatus
API, before calling Spi_GetErrorinfo API to avoid simultaneous access of
Global Error Buffer.

For Configuring the Parameter SpiTimeOut, User must consider these
factors:

1. Data transmission time strongly depends on the data length and
baudrate configured.

2. The parameter SpiTimeOut should be big enough to cover the worst
case scenario in the driver configuration.

3. MCU clock.

4. Compiler optimization level.

5. It is recommended to add additional margin to the timeout based on
user experience.

Example to consider:

Let’s say, if we are configuring the baud rate as 1 KHz:

1. For Data length of 16 bit and default data transmission is 8 or 16 bit i.e.
0x10 or 0x5639, the minimum timeout value can be configured as OXEDS.
2. If user is Configuring Data width selection of 32 bit and default data
transmission is 32 bit i.e. 0X5A5A5A5A or OXFEDCFEDC the maximum

Forethoughts

Chapter 4

4.2.

Timeout value can be configured as OxFFFF which is the worst case
needed for the transmission buffer to empty or receiving buffer to get filled

In that time.

Preconditions

Following preconditions have to be adhered by the user, for proper functioning
of the SPI Driver Component:

The Spi_Lcfg.c, Spi_PBcfg.c, Spi_Cbk.h and Spi_Cfg.h files generated by
the SPI Driver Component Code Generation Tool must be compiled and
linked along with SPI Driver Component source files.

The application has to be rebuilt, if there is any change in the Spi_Lcfg.c,
Spi_PBcfg.c, Spi_Cbk.h and Spi_Cfg.h files generated by the SPI Driver
Component Generation Tool.

File Spi_PBcfg.c generated for single configuration set or multiple
configuration sets using SPI Driver Component Generation Tool can be
compiled and linked independently.

The authorization of the user for calling the software triggering of a hardware
reset is not checked in the SPI Driver. This is the responsibility of the upper
layer.

The SPI Driver Component needs to be initialized before accepting any
request. The API Spi_Init should be invoked to initialize SPI Driver
Component.

The user should ensure that SPI Driver Component API requests are
invoked in the correct and expected sequence and with correct input
arguments.

Input parameters are validated only when the static configuration parameter
SPI_DEV_ERROR_DETECT is enabled. Application should ensure that the
right parameters are passed while invoking the APIs when
SPI_DEV_ERROR_DETECT is disabled.

Errors checked in the Development Error Detection area are only static
configuration checks. No runtime errors are checked here.

A mismatch in the version numbers of header and the source files results in
compilation error. User should ensure that the correct versions of the header
and the source files are used.

The ISR functions and the corresponding handler addresses are provided
in Table ISR Handler Addresses. User should ensure that Interrupt Vector
table configuration is done as per the information provided in the table.

User have the responsibility to enable or disable the critical protection using
the parameter SpiCriticalSectionProtection. By enabling parameter
SpiCriticalSectionProtection, Microcontroller HW registers which suffer from
concurrent access by multiple tasks are protected.

Within the callback notification functions only following APls are allowed.
Spi_ReadIB
Spi_WritelB
Spi_SetupEB
Spi_GetJobResult

27

Chapter 4 Forethoughts

Spi_GetSequenceResult

Spi_GetHWUnitStatus

Spi_Cancel

All other SPI Handler/Driver API calls are not allowed.

4.3. User Mode and Supervisor Mode

The below table specifies the APIs which can run in user mode, supervisor
mode or both modes:

Table45 User Mode and Supervisory Mode

Interrupt mode Polling mode Known

limitation in
Sl. No. API name _ User Mode
user supervisor user supervisor

mode mode mode mode

The IMR and

1. Spi_Init - X - X INTC registers
are accessed
inside this
function. Hence
2. Spi_Delnit - X - X it should not be
B invoked in User
mode.

3. Spi_WritelB X X X X

The IMR and
INTC registers
are accessed
inside this

4. Spi_AsyncTransmit - X - X function. Hence
it should not be
invoked in User
mode.

5. Spi_ReadIB X X X X

6. Spi_SetupEB X X X X

7. Spi_GetStatus X X X X

8. Spi_GetJobResult X X X X

0. Spi_GetSequenceRes X X X X

ult

10. Spi_GetVersioninfo X X X X
The IMR and
INTC registers
are accessed

. . inside this

11. Spi_SyncTransmit - X - X function. Hence
it should not be
invoked in User
mode.

The IMR and
INTC registers
are accessed

12. Spi_Cancel - X - X inside this

function. Hence
it should not be
invoked in User
mode.

28

Forethoughts Chapter 4

Interrupt mode Polling mode Known

limitation in
SI. No. API name = User Mode
user supervisor user supervisor

mode mode mode mode

The IMR and
INTC registers
are accessed
inside this
function. Hence
it should not be
invoked in User
mode.

The IMR and
INTC registers
are accessed
Spi_MainFunction_Ha inside this
ndling function. Hence
it should not be
invoked in User
mode

13. Spi_SetAsyncMode - X - X

15. Spi_GetHWUnitStatus X X X X

16. Spi_GetErrorinfo X X X X

The IMR and
INTC registers
are accessed
inside this

17. Spi_SelfTest - X - X function.
Hence it
should not be
invoked in
User mode
The IMR and
INTC registers
are accessed
inside this
function. Hence
it should not be
invoked in User
mode

18. All ISRs - X - -

Notel: Implementation of Critical Section is not dependent on MCAL. Hence Critical
Section is not considered to the entries for User mode in the above table.

4.4. Memory modes

The SPI Driver will use different memory modes depending on the HW units
selected. If the HW unit configured is CSIG then only direct access mode has
to be configured. If the HW unit configured is CSIH then any of the following
four modes can be configured.

Table4-6 HW unit and Memory Mode Selection

HW unit Memory mode
CSIGO Direct Access Mode
CSIH(0-3) Direct Access Mode

FIFO Mode

Dual Buffer mode
Transmit Only Mode

29

Chapter 4

Forethoughts

30

4.5.

Data Consistency

To support the re-entrance and interrupt services, the AUTOSAR SPI
component will ensure the data consistency while accessing its own RAM
storage or hardware registers. The SPI component will use
SchM_Enter_Spi_<Exclusive Area> and SchM_Exit_Spi_<Exclusive Area>
functions. The SchM_Enter_Spi_<Exclusive Area> function is called before the
data needs to be protected and SchM_Exit_Spi_<Exclusive Area> function is
called after the data is accessed.

The following exclusive area along with scheduler services is used to provide
data integrity for shared resources:

* CHIP_SELECT_PROTECTION
* RAM_DATA_PROTECTION

The functions SchM_Enter_Spi_<Exclusive Area> and
SchM_Exit_Spi_<Exclusive Area> can be disabled by disabling the
configuration parameter 'Spi_CriticalSectionProtection'. The flowchart will
indicate the flow with the pre-compile option 'Spi_CriticalSectionProtection’
enabled.

The information about the API's and the protected resources by the critical
section are given in the following table.

Table 4-7 SPI Driver Protected Resources List

API Name Exclusive Area Type Protected Resources

Spi_AsyncTransmit [SPI_RAM_DATA_PROTECTION Global Variable:

Spi_GaaSeqCancel,,
Spi_GddDriverStatus,
Spi_GaaSeqResult,
Spi_GucHwUnitStatus,
Spi_GddQueuelndex,
Spi_GblQueueStatus,
Spi_GusAllQueueSts,
Spi_GaaSeqQueue,
Spi_GddQueuelndex,
Spi_GblQueueStatus
Spi_GaaJobQueue
Spi_GaaJobResult
Spi_GaaJobCount

Spi_GaaHighPriorityCommRequest
Atldle

Spi_GaaHighPriorityCommRequest
Atldle
Spi_GaaHighPriorityCommActive
Spi_GaaHighPriorityCommRequest
Spi_GaaHighPrioritySequence
Spi_GucHWFifoBufferSts
Spi_GstFifoCurrentCommData

HW Registers:
IMR and INTC registers

Forethoughts

Chapter 4

APl Name

Exclusive Area Type

Protected Resources

Spi_AsyncTransmit

SPI_CHIP_SELECT_PROTECTION

HW Register:
Port PSR Register.

Spi_SyncTransmit

SPI_RAM_DATA_PROTECTION

Global Variables:
Spi_GusHwsStatus

HW Registers:
INTC registers

Spi_SyncTransmit

SPI_CHIP_SELECT_PROTECTION

HW Register:
Port PSR Register.

Spi_Cancel

SPI_RAM_DATA_PROTECTION

Global Variable:
Spi_GaaSeqCancel

Note: The highest measured duration of a critical section is 2.10 micro
seconds measured for Spi_AsyncTransmit API.

4.6. Deviation List
Table 4-8 SPI Driver Deviation List

Sl. No.

Description

AUTOSAR Bugzilla

1.

The parameter
"SpiHwUnitSynchronous" is moved
to SpiJob container from
SpiChannel container.

48763

The total number of SPI Hardware
Units is published as
“SPI_MAX_HW_UNIT".

24328

The parameter “SPI_BAUDRATE”
is not used since the value
configured for this parameter
cannot be mapped directly to the
register value. Hence, a parameter
"SpiBaudrateSelection” is used to
select input frequency source.

The parameter 'SpiTimeCIk2Cs' is
not used since the value of this
parameter is configured as count
value. Hence, the parameter
'SpiClk2CsCount' is provided to
configure the wait loop count to add
delay between clock and chip
select.

Type of the parameter SpiHwUnit is
ENUMERATION-PARAM-DEF with
a list of all possible hardware units.

The inclusion or deletion of the
hardware units will not be possible
in the post-build time. But the
reassignment of configured HW
unit for different jobs is possible.

31

Chapter 4

Forethoughts

32

Sl. No.

Description

AUTOSAR Bugzilla

Type of the parameter SpiCs is
ENUMERATION-PARAM-DEF with
a list of all possible port lines.

If the parameter "DataBufferPtr"
passed through the API
“Spi_ReadIB” is null pointer, then
the error
SPI_E_PARAM_POINTER will be
reported to DET.

The channel parameters
“SpiChannelType”, “SpiloNBuffers”
and “SpiEbMaxLength” are pre-
compile time parameters.

10.

A queue will be implemented and
maintained if there are more than
one sequence is requested for
transmission. The length of the
queue will be number of configured
jobs minus 1.

11.

If a sequence is requested for
transmission while already one
uninterruptible sequence is on-
going, the requested sequence will
be put on queue.

12.

The upper and lower multiplicity of
the parameter ‘SpiCsldentifier’ is ‘1’
i.e. mandatory and the default value
is NULL. The upper and

lower multiplicity of the parameter
‘SpiEnableCS’ is ‘1’ i.e. mandatory
and the default value is false.

13.

The parameters SpiMaxChannel,
SpiMaxJob and SpiMaxSequence
in SpiDriverConfiguration is made
as mandatory in the Parameter
Definition File of SPI Driver
Component.

14.

Notification related functions and
parameters configuration class
are changed from Link time to
Post Build, vice versa Spi_
Lcfg.c and Spi_Pbcfg.c files
structures are updated.

15.

Memory size measurements
(RAM/ROM usage, Stack,
Throughput) are not as per
requirements.

Architecture Details

Chapter 5

Chapter 5

Figure 5-1

Architecture Details

To minimize the effort and to optimize the reuse of developed software on
different platforms, the SPI driver is split as High Level Driver and Low Level
Driver. The SPI Driver architecture is shown in the following figure:

SPI Driver Architecture

The High Level Driver exports the AUTOSAR API towards upper modules and
it will be designed to allow the compilation for different platforms without or only
slight modifications, i.e. that no reference to specific microcontroller features or
registers will appear in the High Level Driver. All these references are moved
inside a pC specific Low Level Driver. The Low Level Driver interface extends
the High Level Driver types and methods in order to adapt it to the specific
target microcontroller.

SPI Driver component:

The SPI Driver provides services for reading and writing to devices connected
via SPI busses. It provides access to SPI communication to several users like
EEPROM, Watchdog, 1/0 ASICs. It also provides the required mechanism to
configure the on chip SPI peripheral.

The SPI Driver component is divided into the following sub modules based on
the functionality required:

¢ Initialization and De-initialization
* Buffer Management
* Communication

e Status information

33

Chapter 5 Architecture Details

¢« Module version information

« Communication Error Diagnosis

The basic architecture of the SPI Driver component is illustrated in the
following Figure:

APPLICATION LAYER
A A A A A A

<
b
<
<
<
<

Delnitializa tion
Buffer
Management
Communication
Not ification
Status Information
Version Information

Initialization
Communication error

diaonncic

| .
SPn)rive r Layer

=

—»
—»
>

>
>

TPI High Level Drive|

Updates the Error

setting of

HW De - Transmit and Sequen Return the Information

initialization receive the jobs ce and status of buffer with the
of SPI HW and channels job module, job, error details
units notjfica sequence (Error Type, HW
tion unit,Sequence id,
Job id)

register

Disabling
the

interrupts

SPl Low Level Driver

Figure 5-2 Component Overview Of SPI Driver Component

SPI Driver Initialization and De-Initialization module

This module initializes and de-Initializes the SPI driver. It provides the
Spi_Init() and Spi_Delnit() APIs. The Spi_lInit() API should be invoked before
the usage of any other APIs of Watchdog Driver Module.Spi-Init should be
called prior to Port_Init. De-initialization function puts all microcontroller SPI
peripherals in the same state such as Power On Reset.

Buffer Management

This module provides the services for reading and writing the internal buffers
and setting up the external buffer. The type of buffer for each channel is
configurable as either internal or external

The APIs related to this module are Spi_WritelB(), Spi_ReadIB() and
Spi_SetupEB().

Communication

This module provides the services for the transmission of data on the SPI bus
both synchronously and asynchronously, cancelling the ongoing transmission
and setting the asynchronous transfer mode.

The synchronous mode is based on polling mechanism. But for the
asynchronous mode, the possible mechanisms are Polling and Interrupt mode.

34

Architecture Details

Chapter 5

One of these modes is selectable during execution by one of the services
provided by this sub-module.

The APIs related to this module are Spi_SyncTransmit(), Spi_AsyncTransmit(),
Spi_SetAsyncMode() and Spi_Cancel().

Status Information

This module provides the services for getting the status of the SPI Driver and
hardware unit. It also provides the services for getting the result of the specified
job and specified sequence.

The APIs related to this module are Spi_GetStatus(), Spi_GetHW UnitStatus(),
Spi_GetJobResult() and Spi_GetSequenceResult().

Module Version Information

This module provides APIs for reading module Id, vendor Id and vendor
specific version numbers.

The API related to this module is Spi_GetVersionInfo().
Communication Error Diagnosis

This module provides the services for collecting the error details when the
transmission of data on the SPI bus is failed. A buffer and the size of the buffer
shall be passed as arguments to this module. This module provides following
detailes of the communication error :

1. Type of the Hardware Error (parity, data consistency, overflow, overrun)

2. HW unit in which error is reported (eg. CSIGO0, CSIH3, etc.)

3. Sequence id for which error is reported

4. Job id for which error is reported

These details will be stored in to the passed buffer. This module is implemented
for getting error details whenever a hardware error is reported.

The API related to this module is Spi_GetErrorinfo().
There are 2 approaches for using by upper layer.
1. Polling Method

The upper layer calls Spi_GetSequenceResult() APl and when the return value
is SPI_SEQ_FAILED then call to Spi_GetErrorinfo() API can be done to get the
detailed information as to why the sequence failed.

2. Application Callback Function Executed from SPI Error ISR

The user can be informed each time a SPI error occurred through the DEM error.
User can invoke Spi_GetErrorinfo API to get the error details when the DEM is
reported.

If call out from DEM is not possible, user can check the error detailed information
by calling API Spi_GetErrorinfo after confirmation of failure from
Spi_SyncTransmit API.

Note :

* For each error, the error details will be stored in the eror buffer.So it is
not a must to invoke Spi_GetErrorinfo every time the error occurs.

* User can decide to call Spi_GetErrorinfo after multiple errors or for each
error depending on the application requirement.

* The maximum number of error details that can be hold by the error buffer
can be configured by the user.

35

Chapter 5

Architecture Details

36

To store the Errors generated, error ISR will be invoked in the case
Asynchronous transmission only.

In synchronous transmission case, the internal function used for
reporting error in synchronous transmission will be invoked to report the
Error.

All the other steps and approaches are same for both Sync and Async
Transmit case.

The latest communication errors info will be always stored in error buffer
and it will not be cleared when it is read.

Any elements of error buffer will not be changed (not cleared /not shifted)
when it is read including partial read.

The error information from the status register STCRO is cleared in Error
ISR and internal function used for reporting error in synchronous
transmission after reading it,to avoid the possibility of reporting multiple
errors.

Whenever an error interrupt occurs, SPI driver will check for all the
possible errors one by one and will report separately.

For Example, if an overflow and parity error is reported simultaneously
for a data transmission, corresponding index of the error buffer will
contain Overflow Error and other index will store Parity Error.

No variables used in SPI driver are modified in Spi_GetErrorinfo API.
Copying the error information from error buffer into the user buffer is
done without modifying any Global array.

Registers Details

Chapter 6

Chapter 6

Registers Detalils

This section describes the register details of SPI Driver Component.

Table6-1 Register Details
: Config Register .
API Name Registers Parameter ACCESS Macro/Variable
R/W/RW
Spi_Init CSIGNCTLO SpiMemoryModeSelection W SPI_ZERO
CSIHNCTLO w SPI_ZERO
DCSTCn - w SPI_DMA_STR_CLEAR
DCSTn - R -
DCENnN - w SPI_DMA_DCEN_DISABLE
DSAN SpiDma W LpDmacConfig-
>ulTxRxRegAddress
DTCTn SpiTxDmaChannel/ w SPI_DMA_16BIT_TX_SETTI
SpiRxDmaChannel NGS
SPI_DMA_16BIT_RX_SETTI
NGS
DDAN SpiDma w LpDmaConfig-
>ulTxRxRegAddress
DTFRn SpiTxDmaChannel/ w LpDmacConfig-
SpiRxDmaChannel >usDmaDtfrRegValue
CSIGNnCTL1 SpiCslnactiveAfterLastDat w LunDataAccessl.ulRegData
a, SpiDataWidth
CSIHNCTL1 w LunDataAccessl.ulRegData
EICn - w SPI_CLR_INT_REQ
IMRn SpiHwUnitSelection W Spi_GstHWUnitinfo[LddHWU
and nit].usRxImrMask,
SpiMemoryModeSelection Spi_GstHWUnitInfo[LddHWU
nit].pTxImrAddress,
Spi_GstHWUnitInfo[LddHWU
nit].pErrorimrAddress,
Spi_GstHWUnitInfo[LddHWU
nit].usRximrMask,
Spi_GstHWUnitinfo[LddHWU
nit].pTxImrAddress,
LpHWUnitInfo-
>usTxCancellmrMask,
Spi_GstHWUnitInfo[LddHWU
nit].pErrorimrAddress
CSIHNTX0OW - W LunDataAccessl.ulRegData
SELCSIHDMA | - w SPI_SELECT_CSIH_DMA _
REG_VAL
CSIGNnCTL2 SpilnputClockSelect W LpJobConfig->usCtl2Value

SpiBaudrateConfiguration

Chapter 6

Registers Details

. Config Register .
API Name Registers Parameter P Macro/Variable
R/W/RW
CSIGCFGO SpiDataWidth W LunDataAccess1.ulRegData
SpiParitySelection
SpiTransferStart
SpiDataShiftEdge
SpiShiftClockldleLevel
CSIHNnSTCRO | - w SPI_CSIH_CLR_STS_FLAG
S
CSIGNSTCRO | - w SPI_CSIG_CLR_STS_FLAG
S
CSIHNnSTRO - R -
CSIGnSTRO - R -
CSIHNCTL2 SpilnputClockSelect W LpJobConfig->usCtl2Value
SpiBaudrateConfiguration & SPI_CSIH_PRE_MASK
CSIHNMCTLO | SpiMemoryModeSelection W LpJobConfig->usMCtl0Value
CSIHNBRSy | SpilnputClockSelect W (LpJobConfigCSConfig-
SpiBaudrateConfiguration >usCtl2Value) &
SPI_CSIH_BRS_MASK
CSIHNCFGx SpiDatawidth W LunDataAccess1.ulRegData
SpiParitySelection
SpiTransferStart
SpiDataShiftEdge
SpiShiftClockldleLevel
ECCCSIHNCTL | SpiECCSelfTest R/W SET_EC1EDIC_EC2EDIC
ECC_CTL_ECEMF_SET
ECC_CTL_ECER1F_ECER
2F_CLEAR
CTL_ERRCLR_FLAG
CTL_2BIT_ERRCLR_FLAG
CTL_1BIT_ERR_FLAG
ECCCSIHNTM | SpiECCSelfTest w SET_TMC_BITS
C SET_TEST_DISABLE
ECCCSIHNTRC| SpiECCSelfTest W TRC_ERDB_INITIALIZE
ECCCSIHNTED| SpiECCSelfTest R/W | RAM_INITIALIZE,

ALL_ZERO_PATTERN,
ALL_ONE_PATTERN,
TWO_BIT_PATTERN

38

Registers Details

Chapter 6

: Config Register .
API Name Registers Parameter P Macro/Variable
R/W/RW

CSIHNRXO0H - R -

CSIGNnRXO0 - R -

CSIGnTX0H - W SPI_LOOPBACK_DATA

CSIHNMCTLL | SpiMemoryModeSelection w SPI_CTL_32BIT_REG_VAL

CSIHNMCTL2 | SpiMemoryModeSelection w SPI_CTL_32BIT_REG_VAL

CSIGBCTLO - W SPI_BCTLO_SET_SCE

Spi_Delnit CSIGnCTLO [SpiMemoryModeSelection w SPI_ZERO

CSIHNCTLO w SPI_ZERO

CSIGNnCTL1 - W SPI_ZERO

CSIHNCTL1 - w SPI_ZERO

CSIGNnCTL2 - w SPI_CTL2_16BIT_REG_DEI
NIT

CSIHNCTL2 - W SPI_CTL2_16BIT_REG_DEI
NIT

CSIGBCTLO - w SPI_CTL_8BIT_REG_MASK

CSIHNMCTLO | - W SPI_MCTLO_16BIT_REG_D
EINIT

CSIHNMCTL1 |- w SPI_CTL_32BIT_REG_MAS
K

CSIHNMCTL2 |- w SPI_CTL_32BIT_REG_MAS
K

CSIGNSTCRO | - W SPI_CTL_16BIT_REG_DEIN

CSIHNSTCRO | - w SPI_CTL_16BIT_REG_DEIN

IT

39

Chapter 6

Registers Details

: Config Register .
API Name Registers Parameter P Macro/Variable
R/W/IRW
CSIHMRWPO | - w SPI_CTL_32BIT_REG_MAS
K
CSIHNBRSYy - w SPI_CTL_16BIT_REG_DEIN
IT
DSAn - w SPI_DMA_DEINIT
DDAN - w SPI_DMA_DEINIT
DCENnN - w SPI_DMA_DCEN_DISABLE
DTCTn - w SPI_DMA_DEINIT
CSIGCFGO - w SPI_CTL_32BIT_REG_MAS
K
CSIHCFGO - w SPI_CTL_32BIT_REG_MAS
K
DTFRRQCn - w SPI_DMA_DRQ_CLEAR
DCSTCn - w SPI_DMA_STR_CLEAR
DTFRRQnN - R -
DCSTn - R -
DTFRn - w SPI_DMA_DEINIT
CSIHnMRWPO | - w SPI_CTL_32BIT_REG_VAL
CSIHNCFGx w SPI_CTL_32BIT_REG_VAL
IMRn SpiHwUnitSelection W Spi_GstHWUnitInfo[LddHWU
and nit].usRxImrMask,
SpiMemoryModeSelection Spi_GstHWUnitinfo[LddHWU
nit].pTxImrAddress,
Spi_GstHWUnitinfo[LddHWU
nit].pErrorimrAddress,
Spi_GstHWUnitinfo[LddHWU
nit].usRxImrMask,
Spi_GstHWUnitinfo[LddHWU
nit].pTxImrAddress,
LpHW UnitInfo-
>usTxCancellmrMask,
Spi_GstHWUnitInfo[LddHWU
nit].pErrorimrAddress
EICn - w SPI_CLR_INT_REQ
PORTPSRXx SpiPortPinSelect LpJobConfiguration-
>ulPortPinMask
Spi_WritelB CSIHMCTLO SpiMemoryModeSelection w LusMctIData
SPI_TX_ONLY_MODE_SET
SPI_DUAL_BUFFER_MOD
E_SET
CSIHhMRWPO | - RW ulRegData
LunDataAccessl.ulRegData
CSIHNTX0OW - w LunDataAccessl.ulRegData

40

Registers Details

Chapter 6

: Config Register .
API Name Registers Parameter P Macro/Variable
R/W/RW
Spi_AsyncTransmit CSIHNMCTLO | - w LpJobConfig->usMCtl0Value
CSIGNCFGO - W LpJobConfig-
>ulConfigRegValue
CSIGNnCTLO SpiMemoryModeSelection W SPI_RESET_PWR
SPI_SET_DIRECT_ACCES
S
SPI_SET_MEMORY_ACCE
SS
CSIHNCTLO w SPI_RESET_PWR
SPI_SET_DIRECT_ACCES
S
CSIGnSTCRO | - w SPI_CLR_STS_FLAGS
CSIHNSTCRO | - w SPI_CLR_STS_FLAGS
CSIHNSTRO - R -
CSIGNnSTRO - R -
CSIGNnCTL1 SpiCslnactiveAfterLastDat w LunDataAccessl.ulRegData
a, SpiDataWidth LpJobConfig-
>ulMainCtl1Value
SPI_SET_SLIT
CSIHNCTL1 w LunDataAccessl.ulRegData
LpJobConfig-
>ulMainCtl1Value
SPI_SET_SLIT
DCSTCn - w SPI_DMA_STR_CLEAR
DCSTn - R -
DCENnN - w SPI_DMA_DCEN_DISABLE
DTCTn - w SPI_DMA_FIXED_TX_SETT
INGS
SPI_DMA_INV_TX_SETTIN
GS
LddNoOfBuffers
SPI_DMA_STR_REQ
SPI_DMA_ONCE
SPI_DMA_FIXED_RX_SET
TINGS
DSAnNn - w (uint32)LpTxData
DTFRn - w (uint32)SPI_ZERO
(uint32)(LpDmacConfig->
usDmabtfrRegValue
DCSTSn - w SPI_DMA_STR
DTCn - W SPI_ONE
DTFRRQCn - w SPI_DMA_DRQ_CLEAR
DCENnN - w SPI_DMA_DCEN_ENABLE
DDAN - W (uint32)(&Spi_GddDmaRxD
ata)
CSIGNnCTL2 SpiBaudrateRegisterSelect W LpJobConfig->usCtl2Value
CSIHNCTL2 SpiFifoTimeOut W LpJobConfig->usCtl2Value
CSIHNMCTL2 |- w LunDataAccessl.ulRegData

41

Chapter 6

Registers Details

. Config Register .
API Name Registers Parameter P Macro/Variable
R/W/RW
CSIHNTXOW - W LunDataAccessl.ulRegData,
LunDataAccess2.ulRegData,
LpDataAccess->ulRegData
CSIHNTX0H - w LddData,
LunDataAccess2.usRegData
5[SPI_ZERO]
CSIGNnTXO0H - w LddData,
LunDataAccess2.usRegDatal
5[SPI_ZERO]
CSIHNCFGx [SpiCsldleTiming, W LunDataAccessl.ulRegData
SpiCsHoldTiming,
SpiCslinterDataDelay,
SpiCsSetupTime,
SpiCsldleEnforcement
CSIGnTX0W - W LunDataAccessl.ulRegData,
LpDataAccess->ulRegData
CSIHNBRS[0] | SpiBaudrateConfiguration w LpCsihOsBaseAddr-
>usCSIHBRSJ0]
CSIHNBRS[1] |- w LpCsihOsBaseAddr-
>usCSIHBRSJ[1]
CSIHNBRS[2] |- w LpCsihOsBaseAddr-
>usCSIHBRS[2]
CSIHNBRS[3] |- W LpCsihOsBaseAddr-
>usCSIHBRS[3]
IMRn SpiHwUnitSelection W LpHW UnitInfo-
and >usRxImrMask,
SpiMemoryModeSelection LpHW UnitInfo-
>usTxImrMask,
LpHW UnitInfo-
>usErrorimrMask,
LpHWUnitInfo-
>usRximrMask,
LpHWUnitInfo-
>usTxImrMask,
LpHWUnitInfo-
>usTxCancellmrMask,
LpHW UnitInfo-
>usErrorimrMask
EICn - w SPI_CLR_INT_REQ
DTFRRQnN - R -
PORTPSRx SpiPortPinSelect w LulPinMskVal &
SPI_PORT_REG_MASK,
LulPinMskVal
CSIHNRX0H - R -
CSIGnRx0 - R -
CSIHNRX0OW - R -
Spi_ReadIB CSIHNRX0OW - W LunDataAccess2.ulRegData

42

Registers Details

Chapter 6

: Config Register .
API Name Registers Parameter P Macro/Variable
R/W/IRW
CSIHNRX0H - W LunDataAccess2.usRegDatal
5[SPI_ONE],
LunDataAccess2.usRegData
5[SPI_ZEROQ]
CSIHhnMRWPO | - RW LunDataAccessl.ulRegData
Spi_SetupEB - - - -
Spi_GetStatus - - - -
Spi_GetJobResult - - - -
Spi_GetSequenceRes| - - - -
ult
Spi_SyncTransmit CSIHNMCTLO | - w LpJobConfig->usMCtlOValue
CSIGNnCTLO - w SPI_RESET_PWR
SPI_SET_DIRECT_ACCES
S
LunDataAccessl.ulRegData
CSIHNCTLO - w SPI_RESET_PWR
SPI_SET_DIRECT_ACCES
S
SPI_SET_PWR
SPI_ZERO
CSIGnTX0W - w LunDataAccess2.ulRegData
LunDataAccessl.ulRegData
CSIHNRXO0H - RW LunDataAccess3.ulRegData,
Spi_GusSynDataAccess
CSIGnCFGO - RW Spi_GusAsynDataAccess
LddData
LpJobConfig-
>ulConfigRegValue,
LunDataAccessl.ulRegData
CSIGNnSTRO - R -
CSIHNSTRO - R -
CSIGNSTCRO | - SPI_PE_ERR_CLR,
SPI_DCE_ERR_CLR,
SPI_OFE_ERR_CLR
CSIHNSTCRO | - w SPI_DCE_ERR_CLR,
SPI_PE_ERR_CLR,
SPI_OFE_ERR_CLR
CSIGnCTL1 - W LpJobConfig-
>ulMainCtl1Value,
LpMainOsBaseAddr-
>ulMainCTL1 |
SPI_SET_SLIT
CSIHNnCTL1 SpiCslnactiveAfterLastDat W LunDataAccessl.ulRegData,
a, SpiDataWidth (LpMainOsBaseAddr-
>ulMainCTL1 |
~SPI_CSRI_AND_MASK
CSIGNnCTL2 SpiBaudrateRegisterSelect W LunDataAccessl.ulRegData,
LpJobConfig->usCtl2Value,
CSIHNCTL2 SpiFifoTimeOut W LpJobConfig->usCtl2Value
CSIHNTX0W - W LpJobConfig->usCtl2Value,

LunDataAccess3.ulRegData

43

Chapter 6

Registers Details

API Name

Registers

Config
Parameter

Register
Access
R/W/RW

Macro/Variable

CSIHNCFG

SpiCsldleTiming,
SpiCsHoldTiming,
SpiCslinterDataDelay,
SpiCsSetupTime,
SpiCsldleEnforcement

RW

LunDataAccessl.ulRegData

LpJobConfig-
>ulConfigRegValue

CSIGNnRX0

CSIHNBRS[0]

SpiBaudrateConfiguration

CSIHNBRS[1]

CSIHNBRS[2]

CSIHNBRS[3]

LpCsihOsBaseAddr-
>usCSIHBRSJ0],
LpJobConfig->usCtl2Value &
SPI_CSIH_BRS_MASK

LpCsihOsBaseAddr-
>usCSIHBRSI[1],
LpJobConfig->usCtl2Value)
& SPI_CSIH_BRS_MASK

LpCsihOsBaseAddr-
>usCSIHBRS[2],
LpJobConfig->usCtl2Value)
& SPI_CSIH_BRS_MASK

=

LpCsihOsBaseAddr-
>usCSIHBRSJ[3],
LpJobConfig->usCtl2Value)
& SPI_CSIH_BRS_MASK

EICn

SPI_CLR_INT_REQ

PORTPSRXx

SpiPortPinSelect

g =

LulPinMskVal, LulPinMskVal
& SPI PORT REG MASK

Spi_GetHWUnitStatus

CSIGnSTRO

Py

CSIHNSTRO

Py)

Spi_Cancel

CSIHNnCTLO

R/W

SPI_SET_JOBE

IMRnN

LpHWUnitInfo-
>ucTxCancellmrMask

EICn

SPI_CLR_INT_REQ

Spi_SetAsyncMode

IMRnN

SpiHwUnitSelection
and
SpiMemoryModeSelection

Spi_GstHWUnitInfo[LddHWU
nit].usRxImrMask,
Spi_GstHWUnitInfo[LddHWU
nit].usTximrMask,
Spi_GstHWUnitInfo[LddHWU
nit].usErrorimrMask,
Spi_GstHWUnitInfo[LddHWU
nit].usRxImrMask,
Spi_GstHWUnitInfo[LddHWU
nit].usTxImrMask,
Spi_GstHWUnitInfo[LddHWU
nit].usTxCancellmrMask
Spi_GstHWUnitInfo[LddHWU
nit].usErrorimrMask

EICn

SPI_CLR_INT_REQ

ndling

Spi_MainFunction_Ha

CSIGnCTLO

SPI_SET_PWR

CSIHNCTLO

SPI_SET_PWR

44

Registers Details Chapter 6
: Config Register .
API Name Registers Parameter P Macro/Variable
R/W/RW

CSIGnRX0 - R -

CSIHNRX0H - R -

CSIGnTX0W - w LunDataAccessl.ulRegData

CSIHNTXOW - w LunDataAccessl.ulRegData

CSIGNTX0H - w LddData
LunDataAccess2.usRegData
5[01

CSIHNTXO0H - w LddData
LunDataAccess2.usRegData
5[01

CSIHNRX0OW - R -

CSIHNMCTL2 | SpiMemoryModeSelection w LunDataAccessl.ulRegData

EICn - w SPI_CLR_INT_REQ

DCSTCn - w SPI_DMA_STR_CLEAR

DCSTn - R -

DCENnN - w SPI_DMA_DCEN_DISABLE

DTCTn - w SPI_DMA_FIXED_TX_SETT
INGS

DSAnN - w (uint32)LpTxData

DTFRn - w (uint32)SPI_ZERO
(uint32)(LpDmaConfig->
usDmabDtfrRegValue

DCSTSn - w SPI_DMA_STR

DTCn - w SPI_ONE

DTFRRQCn - w SPI_DMA_DRQ_CLEAR

DCENnN - w SPI_DMA_DCEN_ENABLE

DDAN - W (uint32)(&Spi_GddDmaRxD
ata)

CSIGnSTCRO | - w SPI_CLR_STS_FLAGS

CSIHNSTCRO | - w SPI_CLR_STS_FLAGS

CSIHNSTRO - R -

CSIGnSTRO - R -

CSIGNnCTL1 SpiCslnactiveAfterLastDat w LunDataAccessl.ulRegData

a, SpiDataWidth LpJobConfig-

>ulMainCtl1Value

CSIHNCTL1 - w LunDataAccessl.ulRegData
LpJobConfig-
>ulMainCtl1Value
SPI_SET_SLIT

CSIGNnCTL2 SpiBaudrateRegisterSelect W LpJobConfig->usCtl2Value

CSIHNCTL2 SpiFifoTimeOut LpJobConfig->usCtl2Value

CSIHNMCTL2 |- LunDataAccessl.ulRegData

45

Chapter 6

Registers Details

: Config Register .
API Name Registers Parameter P Macro/Variable
R/W/RW
CSIHNCFGx (SpiCsldleTiming, W LunDataAccess1.ulRegData
SpiCsHoldTiming,
SpiCslinterDataDelay,
SpiCsSetupTime,
SpiCsldleEnforcement
CSIHNBRS[0] | SpiBaudrateConfiguration W LpCsihOsBaseAddr-
>usCSIHBRS|0]
CSIHnBRS[1] |- W LpCsihOsBaseAddr-
>usCSIHBRS[1]
CSIHnBRS[2] |- LpCsihOsBaseAddr-
>usCSIHBRS[2]
CSIHNBRS[3] |- w LpCsihOsBaseAddr-
>usCSIHBRSJ[3]
CSIHNMCTLO |- w LpJobConfig->usMCtl0Value
DTFRRQnN - R -
PORTPSRx SpiPortPinSelect W LulPinMskVal, LulPinMskVal
& SPI_PORT_REG_MASK
Spi_GetVersioninfo - - - -
Spi_GetErrorinfor - - - -
Spi_SelfTest CSIGnRX0 - R -
CSIHNRX0H - R -
CSIGnCTLO SpiLoopBackSelfTest w SPI_SET_DIRECT_ACCES
S
SPI_ZERO
CSIHNCTLO SpiLoopBackSelfTest W LpJobConfig->usMCtl0Value
SPI_ZERO
CSIGnCTL1 SpiLoopBackSelfTest w SPI_LOOPBACK_ENABLE
SPI_ZERO
SPI_SET_SLIT
CSIHNCTL1 SpiLoopBackSelfTest W SPI_LOOPBACK_ENABLE
SPI_ZERO SPI_SET_SLIT
LunDataAccessl.ulRegData
CSIGNCTL2 SpilLoopBackSelfTest w SPI_LOOPBACK_CNTRL2_
VALUE
SPI_ZERO
LpJobConfig->usCtl2Value
CSIHNCTL2 SpiLoopBackSelfTest W SPI_LOOPBACK_CSIH_CN

TRL2_VALUE
SPI_ZERO

((LpJobConfig->usCtl2Value)
& SPI_CSIH_PRE_MASK)

46

Registers Details

Chapter

6

API Name

Registers

Config
Parameter

Register
Access
R/W/RW

Macro/Variable

CSIGNCFGO

SpiLoopBackSelfTest

w

SPI_LOOPBACK_DLS_SET
TING

SPI_ZERO
LunDataAccessl.ulRegData

CSIGNSTCRO

SpiLoopBackSelfTest

SPI_PE_ERR_CLR
SPI_ZERO

CSIHNSTCRO

SpiLoopBackSelfTest

SPI_CSIH_CLR_STS_FLAG
s
SPI_PE_ERR_CLR

CSIGNnTXO0H

SpiLoopBackSelfTest

SPI_LOOPBACK_DATA
SPI_ZERO

CSIHNCFGO

SpiLoopBackSelfTest

SPI_LOOPBACK_DLS_SET
TING SPI_ZERO
LunDataAccessl.ulRegData

CSIHNBRSy

SpiLoopBackSelfTest

SPI_LOOPBACK_CSIH_BR
S0_VALUE

SPI_ZERO
((LpJobConfigCSConfig-
>usCtl2Value) &
SPI_CSIH_BRS_MASK)

CSIHNTX0W

SpiLoopBackSelfTest

SPI_LOOPBACK_DATA
SPI_ZERO

CSIHNSTRO

SpiLoopBackSelfTest

CSIGnSTRO

SpiLoopBackSelfTest

ECCCSIHNCTL

SpiECCSelfTest

R/W

SET_EC1EDIC_EC2EDIC
ECC_CTL_ECEMF_SET
ECC_CTL_ECERIF_ECER
2F CLEAR
CTL_ERRCLR_FLAG
CTL_2BIT_ERRCLR_FLAG
CTL_1BIT_ERR_FLAG

ECCCSIHNTM
C

SpiECCSelfTest

SET_TMC_BITS
SET_TEST_DISABLE

ECCCSIHNTRC

SpiECCSelfTest

TRC_ERDB_INITIALIZE

ECCCSIHNTED

SpiECCSelfTest

R/W

RAM_INITIALIZE,
ALL_ZERO_PATTERN,
ALL_ONE_PATTERN,
TWO_BIT_PATTERN

IMR

SpiHwUnitSelection
and
SpiLoopBackSelfTest

Spi_GstHWUnitInfo[LddHWU
nit].usRxImrMask,
Spi_GstHWUnitInfo[LddHWU
nit].pTxImrAddress,
Spi_GstHWUnitinfo[LddHWU
nit].pErrorimrAddress,
Spi_GstHWUnitInfo[LddHWU
nit].usRxImrMask,

LpHW UnitInfo-
>usTxCancellmrMask

EICn

SPI_CLR_INT_REQ

47

Chapter 6

Registers Details

48

Interaction Between The User And SPI Driver Component Chapter 7

Chapter 7 Interaction Between The User And SPI
Driver Component

The details of the services supported by the SPI Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

7.1. Services Provided By SPI Driver Component To The

User

The SPI Driver Component provides the following functions to upper layer: -

To provide the required mechanism to configure the on-chip SPI peripheral.
To initialize and de-initialize the SPI driver.
To read and write to devices connected through SPI buses.

To provide the transmission of data on the SPI bus both synchronously and
asynchronously.

To cancel an ongoing transmission.

To set the asynchronous transfer mode.

To get the status of the SPI Driver and hardware unit.

To get the result of the specified job and specified sequence.

To provide access to SPI communication to several users(for example,
EEPROM, I/O ASICs).

To read the SPI Driver Component version information.

To copy Hardware Error Details to User Buffer.

49

Chapter 7

Interaction Between The User And SPI Driver Component

50

SPI Driver Component Header And Source File Description Chapter 8

Chapter 8 SPI Driver Component Header And
Source File Description

This section explains the SPI Driver Component’s source and header
files. These files have to be included in the project application while integrating
with other modules.

The C header file generated by SPI Driver Generation Tool:
+ Spi_Cfg.h
+ Spi_Cbk.h

The C source file generated by SPI Driver Generation Tool:
* Spi_PBcfg.c

* Spi_Lcfg.c

The SPI Driver Component C header files:

e Spi_Driver.h

* Spi_PBTypes.h
e Spi_LTTypes.h

* Spi_Ram.h
* Spi.h
e Spi_Irg.h

e Spi_Scheduler.h
e Spi_Version.h

* Spi_Types.h

* Spi_RegWrite.h

The SPI Driver Component C source files:

* Spi_Driver.c

* Spi.c
* Spi_lrg.c
* Spi_Ram.c

* Spi_Scheduler.c

* Spi_Version.c

The Stub C header files:
« Compiler.h

* Compiler_Cfg.h

* MemMap.h

* Platform_Types.h

* rh850_Types.h

« Dem.h

51

Chapter 8

SPI Driver Component Header And Source File Description

52

* SchM_Spi.h
e Det.h
« Os.h

* Rte.h
e Std_Types.h

The description of the SPI Driver Component files is provided in the table
below:

Table81 Description Of The SPI Driver Component Files

File

Details

Spi_Cfg.h

This file is generated by the SPI Driver Component Code Generation Tool for
various SPI Driver component pre-compile time parameters. This file contains
macro definitions for the configuration elements and exclusive areas for data
protection. The macros and the parameters generated will vary with respect to the
configuration in the input XML file.

Spi_Cbk.h

This file is generated by the SPI Driver Component Code Generation Tool for
provision of function prototype Declarations for SPI callback Notification

Spi_PBcfg.c

This file contains post-build configuration data. The structures related to channel
configuration, job configuration and sequence configuration are provided in this
file. Data structures will vary with respect to parameters configured.

Spi_Lcfg.c

This file contains provision of SPI Link time Parameters. The structures related
to hardware registers are provided in this file. Data structures will vary with
respect to parameters configured.

Spi_Driver.h

This file contains the Function Prototypes that are defined in Spi_Driver.c file.

Spi_PBTypes.h

This file contains the data structure definitions of the channel configuration,
job configuration and sequence configuration

Spi_LTTypes.h

This file contains the data structure definitions of CSIG and CSIH hardware
registers, Interrupt control registers, DMA hardware registers, Hardware unit
information, DMA unit information, storing current status of SPI communication,
channel for the link time parameters, function pointer for Callback notification
function for Jobs, processing sequence, storing external buffer attributes,
Scheduler and DMA Address.

Spi_Ram.h

This file contains the extern declarations for the global variables that are defined in
Spi_Ram.c file and the version information of the file.

Spi.h

This file provides extern declarations for all the SPI Driver Component APIs. This
file provides service Ids of APIs, DET Error codes and type definitions for SPI
Driver initialization structure. This header file shall be included in other modules
to use the features of SPI Driver Component.

Spi_Irg.h

This file contains the function prototypes that are defined in Spi_Irg.c file.

Spi_Scheduler.h

This file contains the function prototypes that are defined in Spi_Scheduler.c file.

Spi_Types.h This file contains the common macro definitions and the data types required
internally by the SPI software component.
Spi_Version.h This file contains the definitions of AUTOSAR version numbers of all modules

that are interfaced to SPI Driver.

Spi_RegWrite.h

This file is to have macro definitions for the register write verification.

Spi_Driver.c This file contains the SPI Low Level Driver code.

Spi.c This file contains the implementation of all APIs.

Spi_Irg.c This file contains the ISR functions for SPI Driver Component.
Spi_Ram.c This file contains the global variables used by SPI Driver Component.

SPI Driver Component Header And Source File Description

Chapter 8

File

Details

Spi_Scheduler.c

This file contains the SPI Scheduler code. This contains function to schedule
the sequences according to the priority of the jobs.

Spi_Version.c

This file contains the code for checking version of all modules that are interfaced to
SPI Driver.

Compiler.h

This file Provides compiler specific (non-ANSI) keywords. All mappings of keyword
which are not standardized, and/or compiler specific are placed and organized in th
compiler specific header.

Compiler_Cfg.h

This file contains the memory and pointer classes.

MemMap.h

This file allows to map variables, constants and code of modules to individual
memory sections. Memory mapping can be modified as per ECU specific
needs.

Platform_Types.h

This file provides provision for defining platform and compiler dependent types.

rh850_Types.h

This file provides macros to perform supervisor mode (SV) write enabled Register
ICxxx and IMR register writing using OR/AND/Direct operation

Dem.h This file is a stub for DEM Component
Det.h This file is a stub for DET Component
Os.h This file is a stub for Os Component

Rte.h This file is a stub for Rte Component
SchM_Spi.h This file is a stub for Spi SchM Component
Std_Types.h This file is a stub for Standard types

53

Chapter 8

SPI Driver Component Header And Source File Description

54

Generation Tool Guide

Chapter 9

Chapter 9

Generation Tool Guide

For information on the SPI Driver Component Code Generation Tool,
please refer “R20UT3727EJ0101-AUTOSAR.pdf’ document.

55

Chapter 9

Generation Tool Guide

56

Application Programming Interface

Chapter 10

Chapter 10 Application Programming Interface

10.1

This section explains the Data types and APIs provided by the SPI Driver
Component to the Upper layers.

Imported Types

This section explains the Data types imported by the SPI Driver Component

and lists its dependency on other modules.

In this section all types included from the Std_Types.h are listed:
* Std_ReturnType
* Std_VersioninfoType

10.1.1 Standard Types

10.1.2

10.2

In this section all types included from the Std_Types.h are listed:
e Std_ReturnType
* Std_VersioninfoType

Other Module Types

In this chapter all types included from the Dem_types.h are listed:
« Dem_EventldType
« Dem_EventStatusType

Type Definitions

Following are the type definitions of SPI Driver Component according to

AUTOSAR Specification.

10.2.1 Spi_ConfigType
Name: Spi_ConfigType
Type: Structure
; Implementation Specific The contents of the initialization data
Range: structure are SPI specific
L This type of the external data structure shall contain the initialization data for the SPI
Description: .
driver/Handler
10.2.2 Spi_StatusType
Name: Spi_StatusType
Type: Enumeration
SPI_UNINIT The SPI Handler/Driver is not initialized or not
usable
. SPI_IDLE The SPI Handler/Driver is not currently
Range: transmitting any job

57

Chapter 10 Application Programming Interface
SPI_BUSY The SPI Handler/Driver is performing a SPI
job(transmit)
Description: This type defines a range of specific status for SPI Handler/driver
10.2.3 Spi_JobResultType
Name: Spi_JobResultType
Type: Enumeration
SPI_JOB_OK The last transmission of the job has been
finished successfully
. SPI_JOB_PENDING The SPI Handler/Driver is performing a SPI
Range: Job. The meaning of this status is equal to
SPI_BUSY
SPI_JOB_FAILED The last transmission of the job has failed
Description: This type defines a range of specific jobs status for SPI Handler/driver
10.2.4 Spi_SeqResultType
Name: Spi_SeqResultType
Type: Enumeration
SPI_SEQ_OK The last transmission of the Sequence has
been finished successfully
SPI_SEQ_PENDING The SPI Handler/Driver is performing a SPI
Sequence The meaning of this status is equal to
SPI_BUSY
Range: -
SPI_SEQ_FAILED The last transmission of the Sequence has
failed
SPI_SEQ_ CANCELLED The last transmission of the Sequence has
been cancelled by user.
Description: This type defines a range of specific sequences status for SPI Handler/driver
10.2.5 Spi_DataType
Name: Spi_DataType
Type: uint8,uint16,uint32
0 to 255, 0 to 65535, This is implementation specific but not all
0 to 4294967296. values may be valid within the type This type
Range: shall be chosen in order to have the most
efficient implementation on a specific
microcontroller platform
Description: Type of application data buffer elements
10.2.6 Spi_NumberOfDataType
Name: Spi_NumberOfDataType
Type: uintl6
Range: 0 to 65535
Description: Type for deflnlng the number of data elements of the type Spi_DataType to send
and/or receive by channel

58

Application Programming Interface

Chapter 10

10.2.7 Spi_ChannelType
Name: Spi_ChannelType
Type: uint8
Range: 0 to 255
Description: Specifies the identification(ld) for a channel
10.2.8 Spi_JobType
Name: Spi_JobType
Type: uintl6
Range: 0 to 65535
Description: Specifies the identification(ld) for a Job
10.2.9 Spi_SequenceType
Name: Spi_SequenceType
Type: uint8
Range: 0 to 255
Description: Specifies the identification(ld) for a sequence of Jobs
10.2.10 Spi_HWUnitType
Name: Spi_ HWUnitType
Type: uint8
Range: 0 to 255
Description: Specifies the identification(ld) for a SPI Hardware microcontroller peripheral(unit)
10.2.11 Spi_AsyncModeType
Name: Spi_AsyncModeType
Type: Enumeration
SPI_POLLING_MODE The asynchronous mechanism is ensured
by polling, so interrupts related to SPI
Range: busses handled asynchronously are
SPI_INTERRUPT_MODE Streaming access mode
T Specifies the asynchronous mechanism mode for SPI busses handled
Description:

asynchronously in LEVEL2.

Following are the internal type definitions used by the SPI Driver module.

10.2.12 Spi_CommErrorType
Name: Spi_CommErrorType
Type: Structure

59

Chapter 10 Application Programming Interface
Type Name Explanation
Spi_HWErrorsType ErrorType [This is the type of the
hardware error.
Spi_HWUnitType HwUnit [This is the hardware
unit in which error is
reported.
Spi_SequenceType SeqID [This is the sequence
Element: id for which error is
reported.
Spi_JobType JobID This is the job id for
hich error is
reported.
Description: This type is used to provide the details regarding the type of hardware errors, hardware
unit, sequence and job in which the errors were reported.
10.2.13 Spi_HWErrorsType
Name: Spi_HWErrorsType
Type: Enumeration
SPI_NO_ERROR No hardware error has occured.
SPI_OVERRUN_ERROR Over Run Error has occured.
SPI_PARITY_ERROR Parity Error has occured.
SPI_DATA_CONSISTENCY_ERROR| Data Consistency Error has occured
Range: SPI_OVERFLOW_ERROR Over Flow Error has occured
SPI_ECC _1BIT_ERROR 1 Bit ECC Error has occured
Description: This type defines different types of hardware errors in SPI driver.
10.2.14 Spi_SelfTestType
Name: Spi_SelfTestType
Type: uint8
Range: 0 to 255
Description: Specifies the type for self test functionality.
10.2.15 Spi_ReturnStatus
Name: Spi_ReturnStatus
Type: Enumeration
SPI_SELFTEST_INVALID_MODE When invalid argument other than
Range: LoopBack_Init/ LoopBack_Init_RunTime/
g€ ECC_Init_RunTime/ ECC_Init are
SPI_SELFTEST_DRIVERBUSY When SelfTest APl is invoked during any
active transmission, i.e when driver is busy.
Range: SPI_SELFTEST_PASS SelfTest functionality is successful.
SPI_SELFTEST_FAILED SelfTest functionality is failed.
Description: This type defines the return status of the self test functionality.

60

Application Programming Interface

Chapter 10

10.3 Function Definitions

Table 10-1 The APIs provided by the SPI Driver Component
SI. No API’'s
1. Spi_Init
2. Spi_Delnit
3. Spi_WritelB
4, Spi_AsyncTransmit
5. Spi_ReadIB
6. Spi_SetupEB
7. Spi_GetStatus
8. Spi_GetJobResult
9. Spi_GetSequenceResult
10. Spi_GetVersioninfo
11. Spi_SyncTransmit
12. Spi_Cancel
13. Spi_SetAsyncMode
14. Spi_MainFunction_Handling
15. Spi_GetHWUnitStatus
16. Spi_SelfTest
17. Spi_GetErrorinfo

10.3.1 Spi_Init

Name: Spi_Init

FUNC (void, SPI_PUBLIC_CODE) Spi_lInit
Prototype:

P2CONST(Spi_ConfigType, AUTOMATIC, SPI_APPL_CONST) ConfigPtr

)
Service ID: 0x00
Sync/Async: Synchronous
Reentrancy: Non-Reentrant

Type Parameter Value/Range
Parameters In: Pointer to Spi_ConfigType [ConfigPtr NA
Parameters InOut; | NA NA NA
Parameters out: NA NA NA

Type Possible Return Values
Return Value: -

void NA
Description: This service performs initialization of the SPI Driver component.
Configuration None
Dependency:
Preconditions: None

61

Chapter 10

Application Programming Interface

62

10.3.2 Spi_Delnit

Name: Spi_Delnit
FUNC (Std_ReturnType, SPI_PUBLIC_CODE) Spi_Delnit
Prototype: (
void
)
Service ID: 0x01
Sync/Async: Synchronous
Reentrancy: Non-Reentrant
Type Parameter Value/Range
Parameters In: NA NA NA
Parameters InOut; | NA NA NA
Parameters out: NA NA NA
st illirss Type Possible Return Values
Std_ReturnType E_OK, E_NOT_OK

Description: This service performs De-initialization of the SPI Driver component.
Configuration None
Dependency:

Preconditions:

None

10.3.3 Spi_WritelB

Name: Spi_WritelB

FUNC (Std_ReturnType, SPI_PUBLIC_CODE) Spi_WritelB
Prototype: (

Spi_ChannelType Channel,
P2CONST(Spi_DataType, AUTOMATIC, SPI_APPL_CONST) DataBufferPtr

)
Service ID: 0x02
Sync/Async: Synchronous
Reentrancy: Reentrant

Type Parameter Value/Range
Parameters In: Spi_ChannelType Channel Min: 0

Max: 255

Pointer to Spi_DataType DataBufferPtr NA
Parameters InOut;: | NA NA NA
Parameters out: NA NA NA

Type Possible Return Values
Return Value:

Std_ReturnType E OK, E_NOT_OK

Description:

IThis service for writing one or more data to an IB SPI Handler/Driver channel specified
by parameter.

Configuration
Dependency:

None

Preconditions:

The SPI Handler/Driver should have been initialized before this service is called.

Application Programming Interface

Chapter 10

10.3.4 Spi_AsyncTransmit

Return Value:

Name: Spi_AsyncTransmit

FUNC (Std_ReturnType, SPI_PUBLIC_CODE) Spi_AsyncTransmit
Prototype: (

Spi_SequenceType Sequence

)
Service ID: 0x03
Sync/Async: Asynchronous
Reentrancy: Reentrant

Type Parameter Value/Range
HelElilEene I Spi_SequenceType Sequence Min: O

Max: 255

Parameters InOut: | NA NA NA
Parameters out: NA NA NA

Type Possible Return Values

Std_ReturnType

E_OK, E_NOT_OK

Description:

IThis service for transmitting data asynchronously

Configuration
Dependency:

None

Preconditions:

The SPI Handler/Driver should have been initialized before this service is called.
This method shall be called after a Spi_SetupEB method for EB Channels or
Spi_WritelB method for IB Channels but before the Spi_ReadlB method.

10.3.5 Spi_ReadlB

Return Value:

Name: Spi_ReadlB
FUNC (Std_ReturnType, SPI_PUBLIC_CODE) Spi_ReadIB
Prototype: (
Spi_ChannelType Channel,
P2VAR(Spi_DataType, AUTOMATIC, SPI_APPL_DATA) DataBufferPtr
)
Service ID: 0x04
Sync/Async: Synchronous
Reentrancy: Reentrant
Type Parameter Value/Range
Parameters In: Spi_ChannelType Channel Min: O
Max: 255
Pointer to Spi_DataType DataBufferPtr NA
Parameters InOut; | NA NA NA
Parameters out: NA NA NA
Type Possible Return Values

Std_ReturnType

E_OK, E_NOT_OK

Description:

parameter.

Service for reading one or more data from an IB SPI Handler/Driver Channel specified by

63

Chapter 10

Application Programming Interface

Configuration
Dependency:

None

Preconditions:

The SPI Handler/Driver should have been initialized before this service is called.
This method shall be called after one Transmit method call to have relevant data within
IB Channel.

10.3.6 Spi_SetupEB

Name: Spi_SetupEB
FUNC (Std_ReturnType, SPI_PUBLIC_CODE) Spi_SetupEB
Prototype: (
Spi_ChannelType Channel,
CONST(Spi_DataType, AUTOMATIC, SPI_APPL_DATA) SrcDataBufferPtr
P2VAR(Spi_DataType, AUTOMATIC, SPI_APPL_DATA) DesDataBufferPtr
Spi_NumberOfDataType Length,
)
Service ID: 0x05
Sync/Async: Synchronous
Reentrancy: Reentrant
Type Parameter Value/Range
Parameters In:
Pointer to Spi_DataType SrcDataBufferPtr NA
Spi_ChannelType Channel Min : 0
MAX: 255
Spi_NumberOfDataType Length Min : 0
MAX: 65535
Pointer to Spi_DataType DesDataBufferPtr NA
Parameters InOut: | NA NA NA
Parameters out: NA NA NA
Type Possible Return Values
Return Value:
Std_ReturnType E OK, E_NOT_OK

Description:

Channel specified.

Service to setup the buffers and the length of data for the EB SPI Handler/Driver

Configuration
Dependency:

None

Preconditions:

The SPI Handler/Driver should have been initialized before this service is called.

10.3.7 Spi_GetStatus

Name: Spi_GetStatus
FUNC (Spi_StatusType, SPI_PUBLIC_CODE) Spi_GetStatus
Prototype: (
void
Service ID: 0x06

64

Application Programming Interface Chapter 10
Sync/Async: Synchronous
Reentrancy: Reentrant
Type Parameter Value/Range
Parameters In: NA NA NA
Parameters InOut: | NA NA NA
Parameters out: NA NA NA
Type Possible Return Values
Return Value:
Spi_StatusType SPI_UNINIT/SPI_IDLE/SPI_BUSY

Description: This service shall return the SPI Handler/Driver software module status.
Configuration None
Dependency:

Preconditions:

None

10.3.8 Spi_GetJobResult

Name: Spi_GetJobResult

FUNC (Spi_JobResultType, SPI_PUBLIC_CODE) Spi_GetJobResult
Prototype: (

Spi_JobType Job

)
Service ID: 0x07
Sync/Async: Synchronous
Reentrancy: Reentrant

Type Parameter Value/Range
FEEIE S Spi_JobType Job Min: 0

Max: 65535

Parameters InOut: | NA NA NA
Parameters out: NA NA NA

Type Possible Return Values
Return Value:

Spi_JobResultType | SPI_JOB_OK/SPI_JOB_PENDING/SPI_JOB_FAILED

Description:

IThis service shall return the last transmission result of the specified Job.

Configuration
Dependency:

None

Preconditions:

The SPI Handler/Driver should have been initialized before this service is called.

10.3.9 Spi_GetSequenceResult

Name: Spi_GetSequenceResult
FUNC (Spi_SeqResultType, SPI_PUBLIC_CODE) Spi_GetSequenceResult
Prototype: (
Spi_SequenceType Sequence
Service ID: 0x08

65

Chapter 10 Application Programming Interface

Sync/Async: Synchronous
Reentrancy: Reentrant

Type Parameter Value/Range
Parameters In: Spi_SequenceType | Sequence Min: 0

Max: 255

Parameters InOut: | NA NA NA
Parameters out: NA NA NA

Type Possible Return Values
Return Value: -

Spi_SeqResultType | SPI_SEQ_OK/SPI_SEQ_PENDING/SPI_SEQ_FAILED/

SPI_SEQ_CANCELLED

Description:

IThis service shall return the last transmission result of the specified Sequence.

Configuration
Dependency:

None

Preconditions:

IThe SPI Handler/Driver should have been initialized before this service is called.

10.3.10 Spi_SyncTransmit

Name: Spi_SyncTransmit

FUNC (Std_ReturnType, SPI_PUBLIC_CODE) Spi_SyncTransmit
Prototype: (

Spi_SequenceType Sequence

Service ID: 0x0A
Sync/Async: Asynchronous
Reentrancy: Reentrant

Type Parameter Value/Range
Parameters In: Spi_SequenceType | Sequence Min: 0

Max: 255

Parameters InOut: | NA NA NA
Parameters out: NA NA NA

Type Possible Return Values
Return Value:

Std_ReturnType E_OK/E_NOT_OK

Description: IThis service is for transmitting data synchronously.
Configuration None
Dependency:

66

Preconditions:

IThe SPI Handler/Driver should have been initialized before this service is called.

10.3.11 Spi_GetHWUnitStatus
Name: Spi_GetHWUnitStatus
FUNC (Spi_StatusType, SPI_PUBLIC_CODE) Spi_GetHWUnitStatus
Prototype: (
Spi_HWUnitType HWUnit
Service ID: 0x0B

Application Programming Interface Chapter 10

Sync/Async: Synchronous
Reentrancy: Reentrant

Type Parameter Value/Range
Parameters In: Spi_HWUnitType HWUnit Min: O

Max: 255

Parameters InOut: | NA NA NA
Parameters out: NA NA NA

Type Possible Return Values
Return Value: -

Spi_StatusType SPI_UNINIT/SPI_IDLE/SPI_BUSY

Description:

[This service shall return the status of the specified SPI Hardware microcontroller
peripheral

Configuration
Dependency:

SpiHwStatusApi should be Enabled

Preconditions:

IThe SPI Handler/Driver should have been initialized before this service is called

10.3.12 Spi_Cancel

Name: Spi_Cancel

FUNC (void, SPI_PUBLIC_CODE) Spi_Cancel
Prototype: (

Spi_SequenceType Sequence

Service ID: 0x0C
Sync/Async: Asynchronous
Reentrancy: Reentrant

Type Parameter Value/Range
FEEIE S Spi_SequenceType | Sequence Min: O

Max: 255

Parameters InOut: | NA NA NA
Parameters out: NA NA NA

Type Possible Return Values
Return Value:

NA NA

Description:

IThis service shall cancel the specified on-going sequence transmission.

Configuration
Dependency:

SpiCancelApi should be Enabled

Preconditions:

IThe SPI Handler/Driver should have been initialized before this service is called

10.3.13 Spi_SetAsyncMode

Name:

Spi_SetAsyncMode

Prototype:

FUNC (Std_ReturnType, SPI_PUBLIC_CODE) Spi_SetAsyncMode

(
Spi_AsyncModeType Mode

)

67

Chapter 10 Application Programming Interface

Service ID: 0x0D
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Type Parameter Value/Range
Parameters In: Spi_AsyncModeType Mode SPI_POLLING_MODE /

SPI_INTERRUPT_MODE

Parameters InOut: | NA NA NA
Parameters out: NA NA NA

Type Possible Return Values
Return Value:

Std_ReturnType E_OK/E_NOT_OK
Description: Service to set the asynchronous mechanism mode for SPI buses handled

asynchronously.
Configuration None
Dependency:
Preconditions: IThe SPI Handler/Driver should have been initialized before this service is called

10.3.14 Spi_GetVersioninfo

Name: Spi_GetVersioninfo
FUNC (void, SPI_PUBLIC_CODE) Spi_GetVersioninfo
Prototype: (
P2VAR(Std_VersioninfoType, AUTOMATIC, SPI_APPL_DATA)
\versioninfoPtr
Service ID: 0x09
Sync/Async: Synchronous
Reentrancy: Reentrant
Type Parameter Value/Range
Parameters In: NA NA NA
Parameters InOut: | NA NA NA
Parameters out: pointer to Std_VersioninfoType [versioninfoPtr NA
Type Possible Return Values
Return Value:
NA NA
Description: This service returns the version information of this module. The version information
includes:
- Module Id
- Vendor Id
- Vendor specific version numbers
Configuration SpiVersioninfoApi should be Enabled
Dependency:
Preconditions: None

68

Application Programming Interface Chapter 10

10.3.15 Spi_MainFunction_Handling

Name: Spi_MainFunction_Handling

FUNC(void, SPI_PUBLIC_CODE) Spi_MainFunction_Handling
Prototype: (

void

Service ID: 0x10
Sync/Async: NA
Reentrancy: Non Reentrant

Type Parameter Value/Range
Parameters In: NA NA NA
Parameters InOut: | NA NA NA
Parameters out: NA NA NA

Type Possible Return Values
Return Value:

NA NA

Description: IThis function is to be invoked in the scheduler loop for asynchronous transmission in

polling mode
Configuration None
Dependency:
Preconditions: IThis function should be invoked only when polling is selected by Spi_SetAsyncMode API

10.3.16 Spi_SelfTest

Name: Spi_SelfTest
FUNC(Spi_ReturnStatus, SPI_PUBLIC_CODE) Spi_SelfTest
Prototype: (

Spi_SelfTestType LucTestFeature
)

Service ID: 0x11
Sync/Async: Synchronous
Reentrancy: Reentrant

Type Parameter Value/Range
Parameters In: Spi_SelfTestType LucTestFeature Min: 0

Max: 255

Parameters InOut: | NA NA NA
Parameters out: NA NA NA

Type Possible Return Values
Return Value:

Spi_ReturnStatus SPI_SELFTEST_DRIVERBUSY, SPI_SELFTEST_PASS,

SPI_SELFTEST_FAILED, SPI_SELFTEST_INVALID_MODE

Description: Function to Execute SPI Self Test
Configuration None
Dependency:
Preconditions: None

69

Chapter 10 Application Programming Interface

10.3.17 Spi_GetErrorinfo

Name: Spi_GetErrorinfo

FUNC(uint8, SPI_PUBLIC_CODE) Spi_GetErrorinfo
Prototype: (

P2VAR(Spi_CommErrorType, AUTOMATIC, SPI_CONFIG_DATA) LpUserBuffer,
uint8 LucBufferSize

Service ID: 0x12
Sync/Async: Synchronous
Reentrancy: Reentrant

Type Parameter Value/Range
Parameters In: Pointer to Spi_CommErrorType |LpUserBuffer NA

unit8 LucBufferSize Min: O

Max: 255

Parameters InOut: | NA NA NA
Parameters out: NA NA NA
T Vilies Type Possible Return Values

uint8 0 to 255
Description: Function to Copy Hardware Error Details to User Buffer
Configuration None
Dependency:
Preconditions: None

70

Development And Production Errors Chapter 11

Chapter 11 Development And Production Errors

In this section the development errors that are reported by the SPI Driver Component
are tabulated. The development errors will be reported only when the pre compiler option
SpiDevErrorDetect is enabled in the configuration. The production code errors are not
supported by SPI Driver Component.

11.1 SPI Driver Component Development Errors

The following table contains the DET errors that are reported by SPI Driver
Component. These errors are reported to Development Error Tracer Module when the SPI
Driver Component APIs are invoked with wrong input parameters or without initialization of
the driver.

Table11-1 DET Errors Of SPI Driver Component

Sl. No.

1

Error Code

SPI_E_PARAM_CHANNEL

Related API(s)

Spi_WritelB, SpiReadIB and Spi_SetupEB

Source of Error

When the API service is invoked with invalid channel Id and if incorrect type of
channel (IB or EB) is used with services.

Sl. No.

2

Error Code

SPI_E_PARAM_JOB

Related API(s)

Spi_GetJobResult

Source of Error

When the API service is invoked with invalid job Id.

Sl. No.

3

Error Code

SPI_E_PARAM_SEQ

Related API(s)

Spi_AsyncTransmit, Spi_GetSequenceResult, Spi_SyncTransmit and Spi_Cancel.

Source of Error

When the API service is invoked with invalid sequence Id.

SI. No. 4
Error Code SPI_E_PARAM_LENGTH
Related API(s) Spi_SetupEB

Source of Error

When the API service is invoked with length greater than the configured length.

Sl. No.

5

Error Code

SPI_E_PARAM_UNIT

Related API(s)

Spi_GetHWUnitStatus

Source of Error

When the API service is invoked with invalid hardware unit Id.

Sl. No.

6

Error Code

SPI_E_SEQ_PENDING

Related API(s)

Spi_AsyncTransmit

Source of Error

When the API service is invoked in a wrong sequence.

Sl. No.

7

Error Code

SPI_E_SEQ_IN_PROCESS

Related API(s)

Spi_SyncTransmit, Spi_SelfTest

Source of Error

When the API service is invoked at wrong time.

Sl. No. 8
Error Code SPI_E_ALREADY_INITIALIZED
Related API(s) Spi_Init

71

Chapter 11

Development And Production Errors

Source of Error

When the API Spi_lInit is invoked when the SPI driver is already initialized.

Sl. No.

9

Error Code

SPI_E_INVALID_DATABASE

Related API(s)

Spi_Init

Source of Error

When the API service is invoked with invalid pointer.

Sl. No.

10

Error Code

SPI_E_UNINIT

Related API(s)

Spi_Delnit, Spi_AsyncTransmit, Spi_Cancel, Spi_GetStatus,
Spi_GetHWUnitStatus, Spi_GetJobResult, Spi_GetSequenceResult, Spi_WritelB,
Spi_ReadIB, Spi_SetupEB, Spi_SyncTransmit, Spi_SetAsyncMode,
Spi_MainFunction_Handling and Spi_GetErrorinfo.

Source of Error

When the APIs are invoked without the initialization of SPI Driver Component.

Sl. No.

11

Error Code

SPI_E_PARAM_POINTER

Related API(s)

Spi_ReadIB and Spi_GetVersioninfo.

Source of Error

When the API service is invoked with null pointer.
Note: This error code (SPI_E_PARAM_POINTER) is applicable for Autosar R4.0

only.
Sl. No. 12
Error Code SPI_E_PARAM_CONFIG
Related API(s) Spi_Init

Source of Error

When the API invoked with null config pointer.

Sl. No.

13

Error Code

SPI_E_MAINFUNCTION_HANDLING_INVALIDMODE

Related API(s)

Spi_MainFunction_Handling

Source of Error

When the APl invoked in SPI_INTERRUPT_MODE.

11.2 SPI Driver Component Production Errors

In this section the DEM errors identified in the SPI Driver Component are listed. SPI Driver
Component reports these errors to DEM by invoking Dem_ReportErrorStatus API. This API is
invoked, when the processing of the given API request fails.

Table11-2 DEM Errors Of SPI Driver Component

Sl. No.

1

Error Code

SPI_E_HARDWARE_ERROR

Related API(s)

Spi_Init, Spi_SyncTransmit, Spi_MainFunction_Handling, Spi_ComErrorISR and
Spi_SelfTest

Source of Error

1. Overrun error: When previously received data still resides in the reception
register(RX), because it wasn’t read, and new data is received.

2. Data Consistency Check error: When data physically sent to the output pin is not
identical to the original data that was copied to the shift register.

3. Parity error: When parity check fails during data transmission.

Note: When DEM error 'SPI_E_HARDWARE_ERROR' occurs, corresponding
sequence result will be updated as failed and sequence will be suspended.

Sl. No.

2

Error Code

SPI_E_DATA_TX_TIMEOUT_FAILURE

Related API(s)

Spi_SyncTransmit, Spi_Init and Spi_SelfTest.

Development And Production Errors Chapter 11

Source of Error When Hardware data transmit timeout error is detected, This error will be reported to

DEM

SI. No. 3
Error Code SPI_E_INT_INCONSISTENT
Related API(s) All ISRs

Source of Error

DemEventParameter which shall be issued when Interrupt consistency error was
detected.

Sl. No.

4

Error Code

SPI_E_ECC_SELFTEST_FAILURE

Related API(s)

Spi_Init and Spi_SelfTest

Source of Error

DemEventParameter which shall be issued when Ecc selft test error was detected.

Sl. No.

5

Error Code

SPI_E_LOOPBACK_SELFTEST_FAILURE

Related API(s)

Spi_Init and Spi_SelfTest

Source of Error

DemEventParameter which shall be issued when loop back self test error was
detected.

Sl. No.

6

Error Code

SPI_E_REG_WRITE_VERIFY

Related API(s)

All APIs accessing the registers

Source of Error

DemEventParameter which shall be issued when a mismatch during write-verify

check is detected.

11.3 SPI Driver Hardware Errors

11.3.1 Data Consistency Check

The purpose of the data consistency check is to ensure that the data physically sent to the output pin is

identical to the original data that was copied to the shift register. When the data consistency check is
active, the data transferred from CSIGNTXOW/CSIGNTX0H or CSIHNTXOW/CSIHNTXO0H to the shift
register is copied to a separate register. In addition, the physical levels at CSIGTSO/ CSIHTSO are
capture and the logical interpretation is written to an own shift register.After completion of the
transmission, the data sent is compared with the original transmission data.

11.3.2 Parity Check

Parity is a mean to detect a single bit failure during data transmission. CSIG/CSIH can append a
parity bit to the last data bit.The parity bit is checked after reception is complete.When the extended
data length (EDL) function is used, a parity bit is added after the last bit of the data.

11.3.3 Overrun

This error occurs when previously received data still resides in the reception register
CSIGnRX0/CSIHNRXO0, because it wasn’t read, and new data is received.The overrun error is not
generated if data reception is disabled.

Note:

In general, If any of the above error is occured,a DEM error 'SPI_E_ HARDWARE_ERROR' is reported to
DEM .Also corresponding sequence result will be updated as failed and sequence will be suspended.

73

Chapter 11

Development And Production Errors

74

Memory Organization Chapter 12

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be met
for proper functioning of SPI Driver Component software.

75

Chapter 12

Memory Organization

ROM Section

SPI Driver Component

Library / Object Files

RAM Section

SPI Driver code related to APIs are
placed in this memory.

Segment Name:
SPI_PUBLIC_CODE_ROM

?

X1

‘

Global RAM of unspecific size
required for SPI Driver functioning.
Segment Name:
NO_INIT_RAM_UNSPECIFIED

SPI Driver code related to internal
functions are placed in this memory

Segment Name:
SPI PRIVATE CODE ROM

?

X2

¢

Global 1- bit RAM initialized by
start-Up code.

Segment Name:
RAM_UNSPECIFIED

SPI Driver code related to ISR functions
are placed in this memory

Segment Name:
SPI FAST CODE ROM

?

X3

Global 1-bit RAM to be initialized
by SPI Driver

Segment Name:
NO_INIT_RAM_1BIT

Global 8- bit R AM initialized by
SPI D river.

Segment Name:

NO INIT RAM 8BIT

Global 16 -bit RAM initialized by
SPI Driver.

Segment Name:

NO INIT RAM 16BIT

Global RAM variables of 16-bit size that are
initialized by start-up code
Segment Name:

RAM_16BIT

Tool Generated Files

The const section (other than SP |
Configuration structure) in the file
Spi_PBcfg.c is placed in this memory.

Segment name:
SPI_CFG_DATA_UNSPECIFIED

The const section in the file Spi_Lcfg.c,
is placed in this memory.

Segment Name:
CONST_ROM_UNSPECIFIED

X5

¥ ey __

f

<
[

=< =<
CFP 5P EEE—>ECEF > 5 e

o o o o o S S R S R S R S R R S R R R R

Global RAM of unspecific size required
for SPI Driver functioning. The
Generation tool allocates this RAM.

Segment Name:
SPI_CFG_RAM_UNSPECIFIED

t

1
Y71

Figure 12-1

76

SPI Driver Component Driver Organization

Memory Organization Chapter 12

SPI_PUBLIC_CODE_ROM (X1): API(s) of SPI Driver Component, which can
be located in code memory.

SPI_PRIVATE_CODE_ROM (X2): Internal functions of SPI Driver Component
code that can be located in code memory.

SPI_FAST_CODE_ROM(X3): SPI Driver code related to ISR
functions are placed in this memory Segment Name

SPI_CFG_DATA_UNSPECIFIED (X4): This section consists of SPI Driver
Component constant configuration structures. This can be located in code
memory.

CONST_ROM_UNSPECIFIED (X5): This section consists of SPI Driver
Component constant structures used for function pointers in SPI Driver
Component. This can be located in code memory.

RAM Section (Y1, Y2, Y3, Y4, Y5 and YO):

NO_INIT_RAM_UNSPECIFIED (Y1): This section consists of the global RAM
variables that are used internally by SPI Driver Component. This can be
located in data memory.

RAM_UNSPECIFIED (Y2): This section consists of the global RAM variables
of 1-bit size that are initialized by start-up code and used internally by SPI
Driver Component. This can be located in data memory.

RAM_1BIT (Y3): This section consists of the global RAM variables of 1-bit size
that are initialized by start-up code and used internally by SPI Driver
Component. The specific sections of respective software components will be
merged into this RAM section accordingly.

NO_INIT_RAM_8BIT (Y4): This section consists of the global RAM variables of
8-bit size that are used internally by SPI Driver Component. This can be
located in data memory.

NO_INIT_RAM_16BIT (Y5): This section consists of the global RAM variables
of 16-bit size that are used internally by SPI Driver Component. This can be
located in data memory.

RAM_16BIT (Y6): This section consists of the global RAM variables of 16-bit
size that are initialized by start-up code and used internally by SPI software
component and other software components. The specific sections of respective
software components will be merged into this RAM section accordingly.

SPI_CFG_RAM_UNSPECIFIED (Y7): This section consists of the global RAM

variables that are generated by SPI Driver Component Generation Tool. This
can be located in data memory.

77

78

Chapter 12 Memory Organization

Remark

o X1,X2,Y1,Y2,Y3, Y4, Y5, Y6 pertain to only SPI Driver Component and
do not include memory occupied by Spi_PBcfg.c or Spi_Lcfg.c file
generated by SPI Driver Component Generation Tool.

e User must ensure that none of the memory areas overlap with each other.
Even ‘debug’ information should not overlap.

P1M Specific Information Chapter 13

Chapter 13 P1M Specific Information

P1M supports following devices:

R7F701304
R7F701305
R7F701310
R7F701311
R7F701312
R7F701313
R7F701314
R7F701315
R7F701318
R7F701319
R7F701320
R7F701321
R7F701322
R7F701323

13.1. Interaction Between The User And SPI Driver
Component

The details of the services supported by the SPI Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

13.1.1 Translation Header File

The translation header file supports following devices:

R7F701304
R7F701305
R7F701310
R7F701311
R7F701312
R7F701313
R7F701314
R7F701315
R7F701318
R7F701319
R7F701320
R7F701321
R7F701322
R7F701323

13.1.2 Parameter Definition File
Parameter definition files support information for P1M

Table13-1 PDFinformation for P1IM

PDF Files Devices Supported

R403_SPI_P1M_04 05 12 13 20 21.[701304, 701305, 701312, 701313, 701320,
arxml 701321

79

Chapter 13 P1M Specific Information

R403_SPI_P1M_10_11 14 15 18 19(701310, 701311, 701314, 701315, 701318,
_22_23.arxml 701319, 701322, 701323

13.1.3 ISR Function

The table below provides the list of handler addresses corresponding to the
hardware unit ISR(s) in SPI Driver Component. The user should configure the
ISR functions mentioned below.

Table13-2 Interrupt Handler

80

Interrupt Source Name of the ISR Function
INTCSIGOIRE SPI_CSIGO_TIRE_ISR
SPI_CSIGO_TIRE_CAT2_ISR
INTCSIGOIR SPI_CSIGO_TIR_ISR
SPI_CSIGO_TIR_CAT2_ISR
INTCSIGOIC SPI_CSIGO_TIC_ISR
SPI_CSIGO_TIC_CAT2_ISR
INTCSIHOIRE SPI_CSIHO_TIRE_ISR
SPI_CSIHO_TIRE_CAT2_ISR
INTCSIHOIR SPI_CSIHO_TIR_ISR
SPI_CSIHO_TIR_CAT2_ISR
INTCSIHOIC SPI_CSIHO_TIC_ISR
SPI_CSIHO_TIC_CAT2_ISR
INTCSIHOIJC SPI_CSIHO_THJC_ISR
SPI_CSIHO_TIJC_CAT2_ISR
INTCSIH1IRE SPI_CSIH1_TIRE_ISR
SPI_CSIH1_TIRE_CAT2_ISR
INTCSIH1IR SPI_CSIH1_TIR_ISR
SPI_CSIH1_TIR_CAT2_ISR
INTCSIH1IC SPI_CSIH1_TIC_ISR
SPI_CSIH1_TIC_CAT2_ISR
INTCSIH11JC SPI_CSIH1_TIJC_ISR
SPI_CSIH1_TIJC_CAT2_ISR
INTCSIH2IRE SPI_CSIH2_TIRE_ISR
SPI_CSIH2_TIRE_CAT2_ISR
INTCSIH2IR SPI_CSIH2_TIR_ISR
SPI_CSIH2_TIR_CAT2_ISR
INTCSIH2IC SPI_CSIH2_TIC_ISR
SPI_CSIH2_TIC_CAT2_ISR
INTCSIH21JC SPI_CSIH2_TIJC_ISR
SPI_CSIH2_TIJC_CAT2_ISR
INTCSIH3IRE SPI_CSIH3_TIRE_ISR
SPI_CSIH3_TIRE_CAT2_ISR
INTCSIH3IR SPI_CSIH3_TIR_ISR

P1M Specific Information Chapter 13

Interrupt Source Name of the ISR Function
SPI_CSIH3_TIR_CAT2_ISR
INTCSIH3IC SPI_CSIH3_TIC_ISR
SPI_CSIH3_TIC_CAT2_ISR
INTCSIH3IJC SPI_CSIH3_TIJC_ISR
SPI_CSIH3_TIJC_CAT2_ISR
INTDMA[0-15] SPI_DMAOO_ISR

SPI_DMAOO_CAT2_ISR

SPI_DMAO1_ISR

SPI_DMAO1_CAT2_ISR

SPI_DMA02_ISR

SPI_DMA02_CAT2_ISR

SPI_DMAO3_ISR

SPI_DMAO3_CAT2_ISR

SPI_DMAO04_ISR

SPI_DMA04_CAT2_ISR

SPI_DMAO5_ISR

SPI_DMAO5_CAT2_ISR

SPI_DMAO6_ISR

SPI_DMAO6_CAT2_ISR

SPI_DMAO7_ISR

SPI_DMAO7_CAT2_ISR

SPI_DMAOS8_ISR

SPI_DMAO08_CAT2_ISR

SPI_DMAO09_ISR

SPI_DMAQ9_CAT2_ISR

SPI_DMA10_ISR

SPI_DMA10_CAT2_ISR

SPI_DMA11_ISR

SPI_DMA11_CAT2_ISR

SPI_DMA12_ISR

SPI_DMA12_CAT2_ISR

SPI_DMA13_ISR

SPI_DMA13_CAT2_ISR

SPI_DMA14_ISR

SPI_DMA14_CAT2_ISR

SPI_DMA15_ISR

SPI_DMA15_CAT2_ISR

Note: The functions with “INTERRUPT" as pilot tag, provides an indication to
the compiler that the function following this tag is an interrupt function type.
The tag name can vary according to the compiler. User should take care of
the tag name with respect to compiler used.

81

Chapter 13 P1M Specific Information

13.2. Sample Application
The Sample Application is provided as reference to the user to understand the
method in which the SPI APIs can be invoked from the application.

Generic
AUTOSAR COMPILER RH850 Types
STUB sTUB
Det
Common SPI P1x SPI
SchM STUB
sample Sample
licati licati DEM
application application
PP PP STUB Os STUB
MCU

Figure 13-1 Overview Of SPI Driver Sample Application

13.2.1 Sample Application Structure

The Sample Application of the P1M is available in the path
The Sample Application consists of the following folder structure
X1X\P1x\modules\spi\definition\<AUTOSAR_version>\

<SubVariant>\R403_SPI_P1M_04_05_12_13_20_21.arxml
\R403_SPI_P1M_10_11 14 15 _18_19 22 23.arxml

X1X\P1x\modules\spi\sample_application\<SubVariant>\<AUTOSAR_version>

\src\Spi_Lcfg.c
\src\Spi_PBcfg.c
\inc\Spi_Cfg.h
\inc\Spi_Cbk.h

/config/App_SPI_P1M_701304_Sample.arxml
/config/App_SPI_P1M_701305_Sample.arxml
/config/App_SPI_P1M_701310_Sample.arxml
/config/App_SPI_P1M_701311_Sample.arxml
/config/App_SPI_P1M_701312_Sample.arxml
/config/App_SPI_P1M_701313_Sample.arxml

/config/App_SPI_P1M_701314_Sample.arxml

82

P1M Specific Information

Chapter 13

/config/App_SPI_P1M_701315 Sample.arxml

/config/App_SPI_P1M_701318_Sample.arxml

/config/App_SPI_P1M_701319 Sample.arxml

/config/App_SPI_P1M_701320_Sample.arxml

[config/App_SPI_P1M_701321_Sample.arxml

/config/App_SPI_P1M_701322_Sample.arxml

/config/App_SPI_P1M_701323_Sample.arxml

In

the Sample Application all the SPI APIs are invoked in the following

sequence:

The API Spi_Init is invoked with a valid database address for the proper
initialization of the SPI Driver, all the SPI Driver control registers and RAM
variables will get initialized after this APl is called.

The API Spi_GetVersioninfo is invoked to get the version of the SPI Driver
module with a variable of Std_VersionInfoType, after the call of this API the
passing parameter will get updated with the SPI Driver version details.

The API Spi_GetHWUnitStatus will return the status of the specified SPI
Hardware microcontroller peripheral.

The API Spi_SyncTransmit will transmit data on the SPI bus synchronously.

This module will take the passing parameter and set the SPI Driver status to
SPI_BUSY. Also it sets the sequence result to SPI_SEQ_PENDING and first
job result to SPI_JOB_PENDING and performs the transmission.

The API Spi_SetAsyncMode will set the asynchronous mechanism mode for
SPI busses handled asynchronously.

The API Spi_GetErrorinfo copies Hardware Error Details to User Buffer

The API Spi_MainFunction_Driving is used for Asynchronous transmission
of the sequences in polling mode. This service is should be invoked in a
scheduler loop if the asynchronous transmission mode is selected as
SPI_POLLING_MODE.

The APl Spi_Cancel will cancel the specified on-going sequence
transmission without canceling any Job transmission and the SPI Driver will
set the sequence result to SPI_SEQ_CANCELLED.

The API Spi_Delnit is invoked for de-initialization of the all the controls
registers and RAM variables.

83

Chapter 13 P1M Specific Information

13.2.2 Building Sample Application

13.2.2.1 Configuration Example
This section contains the typical configuration which is used for measuring
RAM/ROM consumption, stack depth and throughput details

Configuration Details: App_SPI_P1M_<Device_name>_Sample.arxml

13.2.2.2 Debugging The Sample Application

Remark GNU Make utility version 3.81 or above must be installed and available in the
path as defined by the environment user variable “GNUMAKE” to complete the

build process using the delivered sample files.

* Open a Command window and change the current working directory to
"make” directory present as mentioned in below path:

“X1X\P1x\common_family\make\<Compiler>"

* Now execute the batch file SampleApp.bat with following parameters
SampleApp.bat Spi 4.0.3 <Device_name>.

« After this, the tool output files will be generated with the configuration as

mentioned in App_SPI_P1M_<Device_Name>_Sample.arxml file available
in the path:

“X1X\P1x\modules\spi\sample_application\<SubVariant>\<AUTOSAR_ver
sion>\config\App_SPI_P1M_<Device_Name>_Sample.arxml’

+ After this, all the object files, map file and the executable file
App_Spi_P1M_Sample.out will be available in the output folder:
(“X1X\P1x\modules\spi\sample_application\<SubVariant>
\obj\<Compiler>")

* The executable can be loaded into the debugger and the sample application
can be executed.

Remark Executable files with “*.out’ extension can be downloaded into the target
hardware with the help of Green Hills debugger.

» If any configuration changes (only post-build) are made to the ECU
Configuration Description files

“X1X\P1x\modules\spi\sample_application\<SubVariant>
\<AUTOSAR_version>\config\App_SPI_P1M_<Device_Name>_Sample.arx
ml”

* The database alone can be generated by using the following commands.
make —f App_SPI_P1M_Sample.mak generate_spi_config
make —f App_SPI_P1M_Sample.mak App_SPI_P1M_Sample.s37
After this, a flash able Motorola S-Record file App_SPI_P1M_Sample.s37 is
available in the output folder.

Note: The <Device_name> indicates the device to be compiled, which can
be 701304 or 701305 or 701310 or 701311 or 701312 or 701313 or 701314
or 701315 or 701318 or 701319 or 701320 or 701321 or 701322 or 701323

84

P1M Specific Information Chapter 13

13.3. Memory And Throughput

13.3.1

ROM/RAM Usage

The details of memory usage for the typical configuration, with DET
disabled as provided in Section 13.2.2.1 Configuration Example are provided
in this section.

Table13-3 ROM/RAM Details without DET

SI. No. | ROM/RAM Segment Name Size in bytes for
701318

1. ROM SPI_PUBLIC_CODE_ROM 730
SPI_PRIVATE_CODE_ROM 6312
CONST_ROM_UNSPECIFIED 100
SPI_CFG_DATA_UNSPECIFIED 212
SPI_FAST_CODE_ROM 1108
ROM.RAM_UNSPECIFIED 20

2. RAM RAM_UNSPECIFIED 20
NO_INIT_RAM_1BIT 2
NO_INIT_RAM_8BIT 0
NO_INIT_RAM_16BIT 6
NO_INIT_RAM_UNSPECIFIED 103
SPI_CFG_RAM_UNSPECIFIED 0

The details of memory usage for the typical configuration, with DET
enabled and all other configurations as provided in13.2.2.1 Configuration
Example are provided in this section.

Table 13-4 ROM/RAM Details with DET

Sl. No. | ROM/RAM Segment Name Size in bytes for
701318

1. ROM SPI_PUBLIC_CODE_ROM 1672
SPI_PRIVATE_CODE_ROM 6494
CONST_ROM_UNSPECIFIED 100
SPI_CFG_DATA_UNSPECIFIED 212
SPI_FAST_CODE_ROM 1108
ROM.RAM_UNSPECIFIED 20

85

Chapter 13 P1M Specific Information

2. RAM RAM_UNSPECIFIED 20
NO_INIT_RAM_1BIT 2
NO_INIT_RAM_8BIT 0
NO_INIT_RAM_16BIT 6
NO_INIT_RAM_UNSPECIFIED 103
SPI_CFG_RAM_UNSPECIFIED 0
13.3.2 Stack Depth

The worst-case stack depth for Driver Component is 88 bytes for the
typical configuration provided in Section 13.2.2.1 Configuration Example.

13.3.3 Throughput Details
The throughput details of the APIs for the configuration mentioned in

the Section13.2.2.1 Configuration Example. The clock frequency used to
measure the throughput is 160 MHz for all APIs.

Table13-5 Throughput Details Of The APIs

Sl. No. | APl Name Throughput It Remarks
microseconds
for 701318
1. Spi_Init 4.000 -
2. Spi_Delnit 4.550 -
3. Spi_WritelB 0.612 -
4. Spi_AsyncTransmit 11.250 -
5. Spi_ReadlB 0.437 -
6. Spi_SetupEB 0.287 -
7. Spi_GetStatus 0.870 -
8. Spi_GetJobResult 0.100 -
9. Spi_GetSequenceResult 0.100 -
10. Spi_GetVersioninfo 0.150 -
11. Spi_SyncTransmit 13.950 -
12. Spi_GetHWUnitStatus 0.362 -
13. Spi_Cancel 0.662 -
14. Spi_SetAsyncMode 0.262 SPI_INTERRUPT
_ MODE
15. Spi_SetAsyncMode 2.862 SPI_POLLING_
MODE
16. Spi_MainFunction_Handling 1.462 -
17. Spi_SelfTest 2227.500 |SPI_LOOP_BACK
_SELF_TEST
18. Spi_SelfTest 57.275 SPI_ECC_SELF_ T
EST
19. Spi_GetErrorinfo 0.225 -

86

Release Details Chapter 14

Chapter 14 Release Detalils

SPI Driver Software
Version: 1.6.6

87

Chapter 14

Release Details

88

Revision History

1. Chapter 4 is updated for CS logs and note is added

regarding general limitation of the serial controllers.

2. Note is added regarding the usage of the parameter
‘SpiCsHoldTiming’ for synchronous transmission.

3. Name of Table 4-4 and 4-5 is updated.

4. Table 4-3, Table 4-4 and Table 4-5 are updated for

Static configuration.

5. Section 4.1, description of parameter ‘SpiTimeOut’ is updated.
6. In Section 4.1 Note is added regarding extended data size
supported by FIFO.

7. Sections 13.4, ROM/RAM and Throughput Details are

updated.

8. Section 4.6 Deviation list is updated.

9. Section 13.2.1, 13.2.2 and 13.2.3 are updated for compiler, linker
and assembler details.

10. Chapter 14, Release Details are updated.

11. Section 11.2 is updated to delete error code
‘SPI_E_SELF_TEST_FAILURE’ for Self-Test and
SPI_E_READBACK_FAILURE for readback.

12. Chapter 12 Memory Organization is updated to correct section
name SPI_START_SEC_CODE_FAST to
SPI_FAST_CODE_ROM.

13. Section 13 is updated for device names and to add Parameter
Definition files section.

14. Chapter 8 is update to include rh850_types.h file

15. In chapter 4 note is added regarding the DMA access for local RAM

area.

SI.No. | Description Version Date
1. Initial Version 1.0.0 25-Oct-2013
2. Following changes are made. 1.01 28-Jan-2014
1. Chapter 2 is updated for referenced documents version.
2. Section 13.1.1 is updated for adding the device names.
3. Section 13.2 is updated for assembler and linker details.
4. Section 13.3 is updated for naming convention change of
parameter definition files.
5. Chapter 14 is updated for SPI driver component version
information.
3. Following changes are made.
1. Insection 13.4.3,Throughput Details are updated.
2. In Section 13.4.1, ROM/RAM Usage are updated. 1.0.2 02-May-2014
3. In Section13.3.1,Sample Application Structure API details are
updated.
4. In chapter 5, Architecture Details Spi API are updated.
5. In chapter 14, Release Details Spi software version is updated.
4. Following changes are made. 1.0.3 12-May-2014
1.Unwanted Device names are removed.
2.In page no 47, header is updated.
5. Following changes are made. 1.04 27-Oct-2014

89

1. Section 4.1 General forethoughts are updated.

2. Section 4.3 User mode/ supervisor mode is updated as per
JIRA#ARDAAAE-1426 to add ISR related information.

3. Section 4.6 Deviation list is updated for the memory size
measurement mismatches.

4. Section 6 Register details are updated for new added APIs
Spi_SelfTest and Spi_GetErrorinfo.

5. Section 10.3 Function definitions is updated for new added APIs
Spi_SelfTest and Spi_GetErrorinfo.

6. Section 11.2 Component production errors

SPI_E_INT_INCONSISTENT,

SPI_E_ECC_SELFTEST_FAILURE,

SPI_E_LOOPBACK_SELFTEST_FAILURE and

SPI_E_REG_WRITE_VERIFY are added.

Section 13.3 Memory and Throughput details are updated.

Section 14 S/W driver version is updated.

9. Chapter 11, As per JIRA#ARDAAAE-1419, new development
error SPI_E_MAINFUNCTION_HANDLING_INVALIDMODE is
added for Spi_MainFunction_Handling API.

10. Section 4.3, as per JIRA#ARDAAAE-1335, “-“ is marked for
Spi_AsyncTransmit API for interrupt mode in user mode.

11. In section 4.1 As per JIRA#ARDAAAE-1452, Information for 16 bit
datawidth selection is added when DMA is configured.

12. Table — 6.1 Register details, 8bit and 32bit settings when DMA is
configured are removed.

13. Table 4-5 User Mode and Supervisory Mode is updated.

© N

SI.No. | Description Version Date
6. Following changes are made. 1.05 19-Nov-2014
1. Section 4.1 is updated to correct the notes and spell checks.
2. Revision history points are corrected
7. Following changes are made: 1.0.6 29-April-2015
1.Updated Chapter 2 ‘Reference Documents’ to correct the name and
\version of device manual.
2.Information regarding Interrupt vector table has been provided in
section 4.1 ‘General’.
3.In Chapter 13, 'P1M Specific Information’ P1M 4.0.3 supported
devices are updated.
4.Table 13-1 PDF information updated for P1M 4.0.3 supported
devices.
5.Section 13.1.1 has been updated to include the translation header file
for all P1M 4.0.3 supporting devices.
6.Updated section 13.3.1 ‘Sample Application Structure’ to add all the
supported devices for P1M 4.0.3.
7.Updated section 13.3.2 ‘Building the Sample Application’ to add
configuration details for the device 701310.
8.Updated section 13.4 ‘Memory and Throughput’ for the device
R7F701310.
9.Updated chapter 14 ‘Release Details’ to correct the SPI driver
lversion.
10.Removed section ‘Compiler, Linker and Assembler’ from chapter 13.
8. As per P1x V4.00.05 release following changes are made: 1.0.7 29-Jan-2016

90

SI.No. | Description Version Date
9. Following changes are made: 1.0.8 07-Apr-2016
1. Section 4.1 is updated for adding a note when CsldleEnforcement
is configured as False as per the JIRA ticket #ARDAAAE-1549.
2. Section 4.1 is updated for adding a note about the usage of HW
registers.
3. Section 13.4.1 is updated for removing memory section
SPI_CFG_DBTOC_UNSPECIFIED as part of ticket ARDAAAE-
1672.
4. Software patch version is updated in Chapter4.
10. Following changes are made: 1.0.9 12-Jul-2016

=

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

Software patch version is updated in Chapter 14.

Section 4.1 is updated for adding the notes as part of requirement
analysis.

Section 4.3, User mode and Supervisor mode details are updated
for Spi_SetAsyncMode.

Tables, figures links and numbering is corrected.

Stub header files heading is updated and missing header files are
added.

Section 13.3.1, sample application file structure is updated and
Section 13.3.2, Building sample application is updated.

Updated Table 6-1 to rename global variable
‘Spi_GusDataAccess’ as ‘Spi_GusSynDataAccess’ or
‘Spi_GusAsynDataAccess’ for synchronous and asynchronous
transmission respectively.

Updated section 13.3.1 Sample Application Structure to add
details about Spi_GetErrorinfo API.

Added Spi_GetErrorinfo API in section 11.1 under Related API(s)
corresponding to the error SPI_E_UNINIT.

Updated 4.1 ‘General’ to add a caution regarding usage of buffers
for transmission/reception during DMA operation.

Updated Chapter 12 to correct the INIT policy of memory sections
from NOINIT to NO_INIT.

Chapter 13.1.3 ISR Function “Interrupt Handler” table is updated
with note.

Updated 4.1 ‘General’ to add the information regarding the
number of buffers to be configured in Direct Access or FIFO
mode when DMA is configured.

Chapter 6, Register access details are updated.

Spi_GetErrorinfo details have been added. Chapter 4, 5 and 7
are updated for the same.

Section 4.2 Preconditions and Section 4.5 Data Consistency is
updated for information about critical section protection.

Chapter 6, Register access details are updated.

Updated Table 4-1 for information regarding user mode and
supervisor mode.

Section 3.1.1 is updated to add the header file Spi_RegWrite.h as
part of implementing the register write functionality as part of
ticket ARDAAAE-1685.

Section 4.3, A note is added regarding the critical section usage.
Spi_RegWrite.h is added to the folder structure in the section
3.1.1.

Chapter 11 is updated for the API details of the DET and DEM
errors.

Updated Section 10.2 to add details regarding
Spi_CommErrorType, Spi_ HWErrorsType, Spi_SelfTestType and
Spi_ReturnStatus type definitions.

91

SI.No. | Description Version Date
11. Following changes are made: 1.0.10 28-0Oct-2016
1. Software patch version is updated in Chapter 14.
2. Chapter 13.3 updated for ROM/RAM Usage,Stack Depth and
Throughput Details.
12. Following changes are made: 1.0.11 21-Feb-2017
1. Section 11.2 is updated and 11.3 is added with the hardware
errors description details
2. Section 10.3 is updated with the detailed description of the
functions
3. Section 3.1.1 is updated with the deletion of the redundant
mentioned Driver.h file name
4. Throughput details, RAM/ROM Usage and stack depth values are
updated in the section 13.3
5. Section 4.1 is updated with the SpiTimeOut configuring details.
6. The unused segment SPI_CFG_DBTOC_UNSPECIFIED details
are removed from the chapter 12.
7. Abbreviations and Acronyms section is updated
8. Chapter 14 is updated with the release details.
9. R-number is updated
10. Notice and Company addresses are updated
11. Copyright information is updated
13. Following changes are made: 1.0.12 15-Mar-2017

1.

2.

Throughput details, RAM/ROM Usage and stack depth values are
updated in the section 13.3
Software patch version is updated in Chapter 14.

92

93

AUTOSAR MCAL R4.0.3 User's Manual
SPI Driver Component Ver.1.0.12
Embedded User’s Manual

Publication Date: Rev.1.01, March 15, 2017

Published by: Renesas Electronics Corporation

L(ENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3

Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China

Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HAL Il Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2006-2017 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3

User’s Manual

RENESAS

. R R20UT3726EJ0101
Renesas Electronics Corporation

	Chapter 1 Introduction
	1.1. Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration And Build Process
	3.1. SPI Driver Component Makefile

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. User Mode and Supervisor Mode
	4.4. Memory modes
	4.5. Data Consistency
	4.6. Deviation List

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction Between The User And SPI Driver Component
	7.1. Services Provided By SPI Driver Component To The User

	Chapter 8 SPI Driver Component Header And Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1 Imported Types
	10.1.1 Standard Types
	10.1.2 Other Module Types

	10.2 Type Definitions
	10.2.1 Spi_ConfigType
	10.2.2 Spi_StatusType
	10.2.3 Spi_JobResultType
	10.2.4 Spi_SeqResultType
	10.2.5 Spi_DataType
	10.2.6 Spi_NumberOfDataType
	10.2.7 Spi_ChannelType
	10.2.8 Spi_JobType
	10.2.9 Spi_SequenceType
	10.2.10 Spi_HWUnitType
	10.2.11 Spi_AsyncModeType
	10.2.12 Spi_CommErrorType
	10.2.13 Spi_HWErrorsType
	10.2.14 Spi_SelfTestType
	10.2.15 Spi_ReturnStatus

	10.3 Function Definitions
	10.3.1 Spi_Init
	10.3.2 Spi_DeInit
	10.3.3 Spi_WriteIB
	10.3.4 Spi_AsyncTransmit
	10.3.5 Spi_ReadIB
	10.3.6 Spi_SetupEB
	10.3.7 Spi_GetStatus
	10.3.8 Spi_GetJobResult
	10.3.9 Spi_GetSequenceResult
	10.3.10 Spi_SyncTransmit
	10.3.11 Spi_GetHWUnitStatus
	10.3.12 Spi_Cancel
	10.3.13 Spi_SetAsyncMode
	10.3.14 Spi_GetVersionInfo
	10.3.15 Spi_MainFunction_Handling
	10.3.16 Spi_SelfTest
	10.3.17 Spi_GetErrorInfo

	Chapter 11 Development And Production Errors
	11.1 SPI Driver Component Development Errors
	11.2 SPI Driver Component Production Errors
	11.3 SPI Driver Hardware Errors
	11.3.1 Data Consistency Check
	11.3.2 Parity Check
	11.3.3 Overrun

	Chapter 12 Memory Organization
	Chapter 13 P1M Specific Information
	13.1. Interaction Between The User And SPI Driver Component
	13.1.1 Translation Header File
	13.1.2 Parameter Definition File
	13.1.3 ISR Function

	13.2. Sample Application
	13.2.1 Sample Application Structure
	13.2.2 Building Sample Application
	13.2.2.1 Configuration Example
	13.2.2.2 Debugging The Sample Application

	13.3. Memory And Throughput
	13.3.1 ROM/RAM Usage
	13.3.2 Stack Depth
	13.3.3 Throughput Details

	Chapter 14 Release Details

