
StdDiag Classic Integration Manual

Project BMW AUTOSAR 4 Core Rel. 3
Author BMW AG

Release Date 2017-12-14
Version 5.4.0
Status Release

Hotline +49 89 382 - 32233
Contact bac@bmw.de

https://asc.bmw.com/jira/browse/BSUP (extern)
https://asc.bmwgroup.net/jira/browse/BSUP (intern)

Company
Bayerische

Motoren Werke
Aktiengesellschaft

Postal address
BMW AG

80788 München
Office address

Forschungs- und
Innovationszentrum

(FIZ)
Hufelandstr. 1

80937 München
Telephone
Switchboard

+49 89 382-0
Internet

www.bmwgroup.com

Revision History

Version Date Description
5.4.0 2017-12-14 BAC-6257: Add integration of functionality "Application Data

Transfer" (ADT)
5.3.0 2017-11-09 BAC-6249: Move SgbdIndex to adapter part and add post build

support
5.2.0 2017-10-12 Version Update
5.1.0 2017-08-10 Version Update
5.0.0 2017-06-08 Initial version for SP2021

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 1 of 30

Table of Contents

1 Introduction 4
1.1 Functional overview 4

2 Related documentation 5

3 Limitations 6
3.1 Unreleased Dlt specification in AUTOSAR 6

4 Software Architecture 7
4.1 Dependencies on AUTOSAR modules 7
4.1.1 RTE 7
4.1.2 Det 7
4.1.3 Dcm 7
4.1.4 Dem 7
4.1.5 BswM 7
4.1.6 Dlt 7
4.1.7 EcuC 8
4.2 Dependencies to other modules 8
4.2.1 Darh 8
4.2.2 Omc 8
4.2.3 Stm 8
4.2.4 Other SWC 8

5 Integration 9
5.1 Configuration of other Modules 9
5.1.1 Dcm 9
5.1.1.1 Read Data By Identifier 9
5.1.1.2 RoutineControl 11
5.1.1.3 Service Request Manufacturer Notification 16
5.1.1.4 Service Handler for Upload Download Services 16
5.1.2 Det 17
5.1.3 Dem 17
5.1.4 BswM 17
5.1.5 EcuC 20
5.2 Configuration of generic part 20
5.2.1 StdDiagGeneral 20
5.2.1.1 StdDiagDevErrorDetect 20
5.2.1.2 StdDiagUserEstablishIntrinsicSafety 20
5.2.1.3 StdDiagUserActiveSessionState 21
5.2.2 StdDiagUserProgrammingPreconditionsCheck 21
5.2.2.1 MaxNumberUserProgrammingPrecondition 21
5.2.3 StdDiagProvideIDRL 21
5.2.3.1 DIDTableFormatIdentifier 22
5.2.3.2 IDRLClient 22
5.3 Configuration of adapter part 22
5.3.1 StdDiagGeneral 22
5.3.1.1 StdDiagClearSecondaryErrorMemory 22

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 2 of 30

5.3.2 StdDiagUserDefinedMemory 23
5.3.2.1 StdDiagUserDefinedMemoryName 23
5.3.2.2 StdDiagUserDefinedMemoryId 23
5.3.3 StdDiagSgbdIndex 23
5.3.3.1 SgbdIndex 23
5.3.4 StdDiagApplicationDataTransfer 24
5.3.4.1 ApplicationRoutineControlIdentifier 24
5.3.4.2 RoutineIdentifierValue 24
5.3.4.3 ApplicationSubRoutineControlIdentifier 24
5.3.4.4 SubRoutineIdentifierValue 24
5.3.4.5 controlIDs 24
5.3.5 StdDiagProvideDLTSupport 24
5.3.5.1 StdDiagNumberSupportedDLTLogChannels 25
5.4 Configuration of the RTE 25
5.4.1 Assembly Software Connectors 25
5.4.1.1 Dcm 25
5.4.1.2 Dem 26
5.4.1.3 Det 27
5.4.1.4 Darh 27
5.4.1.5 Omc 27
5.4.1.6 Stm 27
5.4.1.7 BswM 27
5.4.1.8 Other Application SWC 28
5.4.2 Event Mapping 29
5.4.3 Data Mapping 29
5.4.4 Exclusive Areas 29
5.5 Software Integration 29
5.5.1 Startup/Initialization 29
5.5.2 Normal Operation 29
5.5.3 Shutdown/Deactivation 29
5.5.4 Select Post Build Configuration 29
5.5.5 SWCD 30
5.5.6 Prevent sleep mode 30

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 3 of 30

1 Introduction

This Integration Manual describes the basic functionality of the BMW system function "Standard
Diagnostics" (StdDiag), the configuration of the StdDiag module and of dependant modules, and the
integration of the StdDiag module into BAC4 or aBAC.

Functional overview

The main functionality of the StdDiag module is to handling the active session states ("subsessions") of
the default diagnostic session and the extended diagnostic session. It ensures that the programming
preparation process (i.e. the transition from the diagnostic default session via the extended diagnostic
session to the programming session) is only successful, if the diagnostic requests are received in the
correct sequence and all necessary preconditions are fulfilled. It also checks whether diagnostic requests
shall be rejected or allowed in the different session states.

The StdDiag module also provides diagnostic service handlers for

– clearing the secondary error memory
– reading the active session state
– reading the programming preconditions
– reading the SGBD-Index
– diagnostic communication loopback functionality
– handling Diagnostic Log and Trace settings
– handling IDRL basic functionality

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 4 of 30

2 Related documentation

References

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 5 of 30

3 Limitations

Unreleased Dlt specification in AUTOSAR

StdDiag optionally uses services of the AUTOSAR BSW module Dlt (Diagnostic Log and Trace). The
specification of the ClientServer-Interface "DLTService", which provides the services used by StdDiag, is
released with AUTOSAR 4.3.0. As required in the document "AUTOSAR features for SP2021", projects
using Dlt shall support Dlt based on AUTOSAR 4.3.

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 6 of 30

4 Software Architecture

Dependencies on AUTOSAR modules

The current version of the Module StdDiag depends on the following BSW modules:

RTE

As a software component, the StdDiag module uses Rte client/server and sender/receiver communication
to communicate with other SWCs and BSW modules.

Det

StdDiag optionally reports development errors to the Det.

Dcm

StdDiag is tightly coupled with the Dcm. The StdDiag implements several RDBI/WDBI and RC services,
as well as services for upload download functionality. Dcm shall be configured in a way, that it dispatches
theses jobs to the StdDiag SWC. In addition, the StdDiag requests information about the current
diagnostic session.

Moreover the StdDiag receives information about incoming requests and the corresponding result of the
request via a Manufacturer Notification. The StdDiag uses this feature to accept / deny a number of
requests, and to handle the active session state.

Dem

StdDiag sets an EnableCondition to allow / deny writing of error entries and clears DTCs in the secondary
error memory.

BswM

StdDiag receives and requests mode switches from the BswM to switch the current StdDiag operational
mode. It further requests Communication Control mode switches, and receives a mode switch from the
BswM when the active diagnostic session has changed.

Dlt

StdDiag optionally receives diagnostic requests for Diagnostic Log and Trace control and forwards them
to the Dlt service interface.

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 7 of 30

EcuC

StdDiag provides post build configurable parameters. If post build support is used, an EcuC configuration
is needed to evaluate available variants.

Dependencies to other modules

Darh

The StdDiag suspends / resumes sending Response on Events.

Omc

The StdDiag needs the current operating mode and extended operating mode from the Omc module. In
addition, StdDiag provides a handler to allow / deny changing the operating mode.

Stm

The StdDiag reads the current PWF state from the Stm.

Other SWC

The StdDiag optionally calls another Application Software Component to establish intrinsic safety and to
check the users programming preconditions.

The StdDiag optionally calls another Application Software Component to get the active session state in
Sessions that have their own active session handling.

The StdDiag calls another Application Software Component (e.g. PiaClient) to read, write or reset the
individual data, if the feature "Individual Data Recovery Light" (IDRL) is activated.

The StdDiag calls another Application Software Component (e.g. Bs) to upload or download application
data, if the feature "Application Data Transfer" (ADT) is activated.

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 8 of 30

5 Integration

Configuration of other Modules

The following modules shall be configured, before this module can be generated, compiled and linked.

Dcm

Read Data By Identifier

The following RDBI-requests shall be configured in the Dcm module:

Read Active Session State (0x22 0xF1 0x00)

[IM_StdDiagClassic_0007] dThe following parameters have to be configured: c(FL896, FL897,
FL898, FL899)

– a container "DcmDspData" with
– a "DcmDspDataSize" of 32 bit (4 bytes)
– "DcmDspDataType" = UINT8_N
– "DcmDspDataUsePort" = USE_DATA_SYNCH_CLIENT_SERVER
– "DcmDspDataConditionCheckReadFncUsed" = TRUE

– a container "DcmDspDid" with
– "DcmDspDidIdentifier" = 0xF100
– only read-access, without session or security restrictions
– one DID Signal "DcmDspDidSignal" with Data Position = 0 and a Data Reference to the

"DcmDspData" container configured before.

Read SGBD Index (0x22 0xF1 0x50)

[IM_StdDiagClassic_0006] dThe following parameters have to be configured: c(DK_T3_318)

– a container "DcmDspData" with
– a "DcmDspDataSize" of 24 bit (3 bytes)
– "DcmDspDataType" = UINT8_N
– "DcmDspDataUsePort" = USE_DATA_SYNCH_CLIENT_SERVER
– "DcmDspDataConditionCheckReadFncUsed" = FALSE

– a container "DcmDspDid" with
– "DcmDspDidIdentifier" = 0xF150
– only read-access, without session or security restrictions
– one DID Signal "DcmDspDidSignal" with Data Position = 0 and a Data Reference to the

"DcmDspData" container configured before.

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 9 of 30

Read Individual Data Identifier Table (0x22 0x17 0x34)

This request is needed, if the configuration container "StdDiagProvideIDRL" is available. The response to
this request contains the table format identifier (2 byte) and the individual data IDs that are configured in
the parameter "DIDValue" of the StdDiag configuration. The response has a fixed length that is calculated
with the lengths of the table format and of the individual data IDs.

[IM_StdDiagClassic_0008] dThe following parameters have to be configured: c(ADUE_3927,
ADUE_3929)

– a container "DcmDspData" with
– a "DcmDspDataSize": 16 bit for the format identifier plus 16 bit for each configured individual data ID.
– "DcmDspDataType" = UINT8_N
– "DcmDspDataUsePort" = USE_DATA_SYNCH_CLIENT_SERVER
– "DcmDspDataConditionCheckReadFncUsed" = FALSE

– a container "DcmDspDid" with
– "DcmDspDidIdentifier" = 0x1734
– only read-access, only allowed in extended diagnostic session
– one DID Signal "DcmDspDidSignal" with Data Position = 0 and a Data Reference to the

"DcmDspData" container configured before.

Note: If IDRL clients with individual data IDs are configured (see parameter "DIDValue"), the user shall
configure the following for each individual data ID:

– a container "DcmDspData" describing the individual data with
– a "DcmDspDataSize": the maximum length of the individual data in bit (see parameter

"MaxDataSize").
– "DcmDspDataType" = UINT8_DYN
– "DcmDspDataUsePort" = USE_DATA_ASYNCH_CLIENT_SERVER
– "DcmDspDataConditionCheckReadFncUsed" = TRUE

– a container "DcmDspDid" with
– "DcmDspDidIdentifier" is the individual data ID "DIDValue" configured in the DID table of the StdDiag.
– read/write-access, only allowed in extended diagnostic session
– one DID Signal "DcmDspDidSignal" with Data Position = 0 and a Data Reference to the

"DcmDspData" container configured before.

Read log channel names for Dlt (0x22 0x18 0x28)

[IM_StdDiagClassic_0017] dThis request is only needed, if the configuration container
"StdDiagProvideDLTSupport" is available. The response to this request contains the log channel names
supported by Dlt module. The response has a fix length that is derived from the number of configured log
channels in the Dlt.

The following parameters have to be configured: c(DK_T3_1637, DK_T3_1639)

– a container "DcmDspData" with
– a "DcmDspDataSize": 32 bit for each configured DLT Log Channel.
– "DcmDspDataType" = UINT8_N
– "DcmDspDataUsePort" = USE_DATA_SYNCH_CLIENT_SERVER

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 10 of 30

– "DcmDspDataConditionCheckReadFncUsed" = FALSE
– a container "DcmDspDid" with

– "DcmDspDidIdentifier" = 0x1828
– only read-access, without session or security restrictions
– one DID Signal "DcmDspDidSignal" with Data Position = 0 and a Data Reference to the

"DcmDspData" container configured before.

RoutineControl

The following RoutineControl-requests shall be configured in the Dcm module:

Diagnostic Communication Loopback (0x31 0x01 0x03 0x03)

[IM_StdDiagClassic_0004] dThis request has a variable request length and a variable response length.
The following parameters have to be configured: c(DK_T3_792, DK_T3_799, DK_T3_800)

– a container "DcmDspRoutine" with
– "DcmDspRoutineIdentifier" = 0x0303
– "DcmDspRoutineUsePort" = TRUE

– a subcontainer "DcmDspStartRoutine" and "DcmDspStartRoutineIn" with
– a "StartRoutineInSignal" with
∗ "DcmDspRoutineSignalLength" = max. diagnostic buffer size (e.g. 8192 bits)
∗ "DcmDspRoutineSignalPos" = 0
∗ "DcmDspRoutineSignalType" = VARIABLE_LENGTH

– a subcontainer "DcmDspStartRoutine" and "DcmDspStartRoutineOut" with
– a "StartRoutineOutSignal" with
∗ "DcmDspRoutineSignalLength" = max. diagnostic buffer size (e.g. 8192 bits)
∗ "DcmDspRoutineSignalPos" = 0
∗ "DcmDspRoutineSignalType" = VARIABLE_LENGTH

[IM_StdDiagClassic_0003] dNote: According to the "LH Diagnose Part 3" this request shall handle a
variable data length in a range from 0 bytes up to the maximum length that the diagnostic buffer can
handle. In this example configuration the value is set to 1024 bytes (8192 bits). c(DK_T3_794)

Check Programming Preconditions (0x31 0x01 0x02 0x03)

[IM_StdDiagClassic_0019] dThis request has no input signals, and a variable response length.
Therefore, it is sufficient to configure only an Out-Signal, but no In-Signal: c(FL1082, FL1083)
[IM_StdDiagClassic_0001] dThis request shall be available in all sessions. c(FL194)

– a container "DcmDspRoutine" with
– "DcmDspRoutineIdentifier" = 0x0203
– "DcmDspRoutineUsePort" = TRUE
– a reference to "DcmDspCommonAuthorization" which references all (or none) diagnostic sessions

– a subcontainer "DcmDspStartRoutine" and "DcmDspStartRoutineOut" with
– a "StartRoutineOutSignal" with

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 11 of 30

∗ "DcmDspRoutineSignalLength" = 8 bit for each programming precondition specified for the ECU
(max. 255 preconditions, i.e. 2048 bits)
∗ "DcmDspRoutineSignalPos" = 0
∗ "DcmDspRoutineSignalType" = VARIABLE_LENGTH

Reset individual data (0x31 0x01 0x10 0x1A)

[IM_StdDiagClassic_0009] dThis request is supported, if the configuration container
"StdDiagProvideIDRL" is available. The request has no input signals, and a fixed response length. The
response contains the routine result (1 byte). If all resets of individual data are successful, the routine
result is 0x00. Otherwise, the routine result is 0x01. Therefore, it is sufficient to configure only an
Out-Signal, but no In-Signal: c(ADUE_3981, ADUE_3982)

– a container "DcmDspRoutine" with
– "DcmDspRoutineIdentifier" = 0x101A
– "DcmDspRoutineUsePort" = TRUE
– a reference to "DcmDspCommonAuthorization" with a reference to the extended diagnostic session

– a subcontainer "DcmDspStartRoutine" and "DcmDspStartRoutineOut" with
– a "StartRoutineOutSignal" with
∗ "DcmDspRoutineSignalPos" = 0
∗ "DcmDspRoutineSignalType" = UINT8

Clear DTCs Secondary Error Memory (0x31 0x01 0x0F 0x06)

[IM_StdDiagClassic_0005] dThis diagnostic request has to be configured only, if the ECU supports
DTCs in the secondary error memory. The configuration container StdDiagClearSecondaryErrorMemory
has to be available. This request has no input signals and no output signals.

The following parameters have to be configured: c(DK_T3_862, DK_T3_863, DK_T3_864, DK_T3_865)

– a container "DcmDspRoutine" with
– "DcmDspRoutineIdentifier" = 0x0F06
– "DcmDspRoutineUsePort" = TRUE
– no further sub-containers configured

Upload/Download Pre/Post-Processing (0x31 0x01 0x70 0x00)

[IM_StdDiagClassic_0023] dThis request is supported, if the configuration container
"StdDiagApplicationDataTransfer" is available. The request has a variable request length, and a fixed
response length. The response contains the routine result (1 byte): c(ADUE_2773, ADUE_2774,
ADUE_3618)

– a container "DcmDspRoutine" with
– "DcmDspRoutineIdentifier" = 0x7000
– "DcmDspRoutineUsePort" = TRUE

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 12 of 30

– a reference to "DcmDspCommonAuthorization" with a reference to the extended diagnostic session,
but no reference to default or programming session

– a subcontainer "DcmDspStartRoutine" and "DcmDspStartRoutineIn" with
– a "StartRoutineInSignal" named "Data" with
∗ "DcmDspRoutineSignalLength" = 64 bit - 2184 bit (see note below)
∗ "DcmDspRoutineSignalPos" = 0
∗ "DcmDspRoutineSignalType" = VARIABLE_LENGTH

– a subcontainer "DcmDspStartRoutine" and "DcmDspStartRoutineOut" with
– a "StartRoutineOutSignal" named "Result" with
∗ "DcmDspRoutineSignalPos" = 0
∗ "DcmDspRoutineSignalType" = UINT8

Note: Request data consists of 3 byte fix + size of memoryObjectIdentifier + size of
applicationSpecificParameter. According to "LH Applikationsdatenuebertragung" the
memoryObjectIdentifier size is in range 5 byte to 15 byte, applicationSpecificParameter size is in range 0
byte to 255 byte. So minimum value for "DcmDspRoutineSignalLength" is 64 bit (8 byte), maximum value
is 2184 bit (273 byte).

Note: This RoutineControl (RID 0x7000) is a common job for all ADT clients. "LH
Applikationsdatenuebertragung" requires further Routine Control jobs for each application specific
routine control identifier. These jobs are not part of StdDiag.

Set log level for Dlt (0x31 0x01 0x10 0x90)

[IM_StdDiagClassic_0010] dThis request is only supported, if the configuration container
"StdDiagProvideDLTSupport" is available. The request has only input signals, and a fixed request length.

The following parameters have to be configured: c(DK_T3_1583, DK_T3_1586)

– a container "DcmDspRoutine" with
– "DcmDspRoutineIdentifier" = 0x1090
– "DcmDspRoutineUsePort" = TRUE

– a subcontainer "DcmDspStartRoutine" and "DcmDspStartRoutineIn" with
– a "StartRoutineInSignal" named "applicationId" with
∗ "DcmDspRoutineSignalPos" = 0
∗ "DcmDspRoutineSignalType" = UINT32

– a "StartRoutineInSignal" named "contextId" with
∗ "DcmDspRoutineSignalPos" = 32
∗ "DcmDspRoutineSignalType" = UINT32

– a "StartRoutineInSignal" named "newLogLevel" with
∗ "DcmDspRoutineSignalPos" = 64
∗ "DcmDspRoutineSignalType" = UINT8

Reset Dlt to default configuration (0x31 0x01 0x10 0x91)

[IM_StdDiagClassic_0011] dThis request is only supported, if the configuration container
"StdDiagProvideDLTSupport" is available. The request has neither input nor output signals.

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 13 of 30

The following parameters have to be configured: c(DK_T3_1590, DK_T3_1592)

– a container "DcmDspRoutine" with
– "DcmDspRoutineIdentifier" = 0x1091
– "DcmDspRoutineUsePort" = TRUE
– no further sub-containers configured

Set message filtering state for Dlt (0x31 0x01 0x10 0x92)

[IM_StdDiagClassic_0012] dThis request is only supported, if the configuration container
"StdDiagProvideDLTSupport" is available. The request has only input signals, and a fixed request length.

The following parameters have to be configured: c(DK_T3_1596, DK_T3_1599)

– a container "DcmDspRoutine" with
– "DcmDspRoutineIdentifier" = 0x1092
– "DcmDspRoutineUsePort" = TRUE

– a subcontainer "DcmDspStartRoutine" and "DcmDspStartRoutineIn" with
– a "StartRoutineInSignal" named "newFilterStatus" with
∗ "DcmDspRoutineSignalPos" = 0
∗ "DcmDspRoutineSignalType" = UINT8

Set log channel threshold for Dlt (0x31 0x01 0x10 0x93)

[IM_StdDiagClassic_0022] dThis request is only supported, if the configuration container
"StdDiagProvideDLTSupport" is available. The request has only input signals, and a fixed request length.

The following parameters have to be configured: c(DK_T3_1603, DK_T3_1606)

– a container "DcmDspRoutine" with
– "DcmDspRoutineIdentifier" = 0x1093
– "DcmDspRoutineUsePort" = TRUE

– a subcontainer "DcmDspStartRoutine" and "DcmDspStartRoutineIn" with
– a "StartRoutineInSignal" named "logChannelName" with
∗ "DcmDspRoutineSignalPos" = 0
∗ "DcmDspRoutineSignalType" = UINT32

– a "StartRoutineInSignal" named "newLogLevelThreshold" with
∗ "DcmDspRoutineSignalPos" = 32
∗ "DcmDspRoutineSignalType" = UINT8

– a "StartRoutineInSignal" named "newTraceStatus" with
∗ "DcmDspRoutineSignalPos" = 40
∗ "DcmDspRoutineSignalType" = UINT8

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 14 of 30

Store Dlt configuration persistently (0x31 0x01 0x10 0x94)

[IM_StdDiagClassic_0013] dThis request is only supported, if the configuration container
"StdDiagProvideDLTSupport" is available. The request has neither input nor output signals.

The following parameters have to be configured: c(DK_T3_1610, DK_T3_1612)

– a container "DcmDspRoutine" with
– "DcmDspRoutineIdentifier" = 0x1094
– "DcmDspRoutineUsePort" = TRUE
– no further sub-containers configured

Set trace state for Dlt (0x31 0x01 0x10 0x95)

[IM_StdDiagClassic_0014] dThis request is only supported, if the configuration container
"StdDiagProvideDLTSupport" is available. The request has only input signals, and a fixed request length.

The following parameters have to be configured: c(DK_T3_1616, DK_T3_1619)

– a container "DcmDspRoutine" with
– "DcmDspRoutineIdentifier" = 0x1095
– "DcmDspRoutineUsePort" = TRUE

– a subcontainer "DcmDspStartRoutine" and "DcmDspStartRoutineIn" with
– a "StartRoutineInSignal" named "applicationId" with
∗ "DcmDspRoutineSignalPos" = 0
∗ "DcmDspRoutineSignalType" = UINT32

– a "StartRoutineInSignal" named "contextId" with
∗ "DcmDspRoutineSignalPos" = 32
∗ "DcmDspRoutineSignalType" = UINT32

– a "StartRoutineInSignal" named "newTraceStatus" with
∗ "DcmDspRoutineSignalPos" = 64
∗ "DcmDspRoutineSignalType" = UINT8

Set default log level for Dlt (0x31 0x01 0x10 0x96)

[IM_StdDiagClassic_0015] dThis request is only supported, if the configuration container
"StdDiagProvideDLTSupport" is available. The request has only input signals, and a fixed request length.

The following parameters have to be configured: c(DK_T3_1623, DK_T3_1626)

– a container "DcmDspRoutine" with
– "DcmDspRoutineIdentifier" = 0x1096
– "DcmDspRoutineUsePort" = TRUE

– a subcontainer "DcmDspStartRoutine" and "DcmDspStartRoutineIn" with
– a "StartRoutineInSignal" named "newDefaultLogLevel" with
∗ "DcmDspRoutineSignalPos" = 0
∗ "DcmDspRoutineSignalType" = UINT8

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 15 of 30

Set default trace state for Dlt (0x31 0x01 0x10 0x97)

[IM_StdDiagClassic_0016] dThis request is only supported, if the configuration container
"StdDiagProvideDLTSupport" is available. The request has only input signals, and a fixed request length.

The following parameters have to be configured: c(DK_T3_1630, DK_T3_1633)

– a container "DcmDspRoutine" with
– "DcmDspRoutineIdentifier" = 0x1097
– "DcmDspRoutineUsePort" = TRUE

– a subcontainer "DcmDspStartRoutine" and "DcmDspStartRoutineIn" with
– a "StartRoutineInSignal" named "newDefaultTraceStatus" with
∗ "DcmDspRoutineSignalPos" = 0
∗ "DcmDspRoutineSignalType" = UINT8

Service Request Manufacturer Notification

A StdDiag Service Request Manufacturer Notification shall be configured in the container
"DcmDsdServiceRequestManufacturerNotification". The Mapping to the StdDiag module is done by
connecting the corresponding ports.

Service Handler for Upload Download Services

To implement the functionality "Application Data Transfer" (ADT, german
"Applikationsdatenuebertragung, ADUE) (see LH "Applikationsdatenuebertragung"), the UDS Services
0x34 (RequestDownload), 0x35 (RequestUpload), 0x36 (TransferData) and 0x37 (RequestTransferExit)
are necessary. For these services AUTOSAR Dcm basically provides callouts like
"Dcm_ProcessRequestDownload" and "Dcm_WriteMemory", which has two constraints: The parameter
MemoryAddress within these APIs is of type uint32, i.e. values are restricted to 4 bytes. ADT needs at
least 5 byte for the memory object identifier, which is ISO-14229 compliant. Furthermore Dcm currently
only provides C-API callouts, but no Service Interface. For these reasons StdDiag requires the following
configuration:

– configure container "DcmDspService" for service "RequestDownload" with
– "DcmDsdSidTabServiceId" = 0x34
– "DcmDsdSidTabSubfuncAvail" = 0
– "DcmDsdSidTabFnc" = StdDiag_RequestDownload

– configure container "DcmDspService" for service "RequestUpload" with
– "DcmDsdSidTabServiceId" = 0x35
– "DcmDsdSidTabSubfuncAvail" = 0
– "DcmDsdSidTabFnc" = StdDiag_RequestUpload

– configure container "DcmDspService" for service "TransferData" with
– "DcmDsdSidTabServiceId" = 0x36
– "DcmDsdSidTabSubfuncAvail" = 0
– "DcmDsdSidTabFnc" = StdDiag_TransferData

– configure container "DcmDspService" for service "RequestTransferExit" with
– "DcmDsdSidTabServiceId" = 0x37

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 16 of 30

– "DcmDsdSidTabSubfuncAvail" = 0
– "DcmDsdSidTabFnc" = StdDiag_RequestTransferExit

Det

A StdDiag entry shall be added to the Software Component List from Det. This is only necessary, if the
parameter "StdDiagDevErrorDetect" is set to "true".

Dem

[IM_StdDiagClassic_0002] dIn the container "DemEnableCondition" a new Enable Condition has to
be configured (StdDiag Enable Condition). This Enable condition has to be referenced by each Enable
Condition Group configured in the container "DemEnableConditionGroup". In addition, each configured
Event ("DemEventParameter") has to refer to an Enable Condition Group
("DemEnableConditionGroupRef") in its Event Class ("DemEventClass"). c(FL257)

Exceptions: The Events related to the DTCs "CODING_EVENT_NOT_CODED" (see
IntegrationManual_Coding.pdf) and "Energy saving mode active" (see IntegrationManual_Omc.pdf) shall
not be locked by the StdDiag Enable Condition. These Events shall refer to either no Enable Condition
Group, or to an Enable Condition Group that does not include the StdDiag Enable Condition.

BswM

The following BswMModeRequestPorts have to be configured in the BswM:

Port_StdDiag_LifeCycle
This port shall have a BswMModeRequestSource of type "BswMSwcModeNotification", and receives
mode switch notifications of the ModeDeclarationGroup "StdDiag_LifeCycle" from the StdDiag module.

Port_StdDiag_ComControlModeRequest
This port shall have a BswMModeRequestSource of type "BswMSwcModeRequest", and receives mode
requests of the ModeDeclarationGroup "StdDiag_NormalCommunicationModeGroup" from the StdDiag
module.

Port_Dcm_CommunicationControl
This port shall have a BswMModeRequestSource of type "BswMDcmComModeRequest", and shall
receive the current communication mode of the ModeDeclarationGroup
"Dcm_CommunicationControl_<Channel>" defined by the Dcm.

Port_Dcm_SessionControl
This port shall have a BswMModeRequestSource of type "BswMSwcModeNotification", and shall receive
the current diagnostic session of the ModeDeclarationGroup "Dcm_DiagnosticSessionControl" defined
by the Dcm.

The following BswMRteModeRequestPort have to be configured in the BswM:

StdDiagLifeCycleRequestPort

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 17 of 30

To request modes of the ModeDeclarationGroup "StdDiag_LifeCycle", this port shall have a
BswMRteModeRequestPortInterfaceRef to the variable data prototype "requestMode" related to the Port
"LifeCycle" of the StdDiag module.

The following BswMSwitchPorts have to be configured in the BswM:

StdDiagSessionChangeIndicationPort
To switch modes of the ModeDeclarationGroup "StdDiag_SessionModeGroup", this port shall have a
BswMModeSwitchInterfaceRef to the ModeSwitchInterface "SessionChangeIndicationInterface" of the
StdDiag module.

StdDiagComControlNormalNotificationPort
To switch modes of the ModeDeclarationGroup "StdDiag_NormalCommunicationModeGroup", this port
shall have a BswMModeSwitchInterfaceRef to the ModeSwitchInterface
"ComControlNormalNotificationInterface" of the StdDiag module.

The following Rules have to be configured in the BswM:

LifeCycle handling:
To initialize the StdDiag module the BswM has to provide a rule, that results in an action that requests the
mode "STDDIAG_INITIALIZED" of the mode declaration group "StdDiag_LifeCycle".

To set the StdDiag module to normal operation mode the BswM has to provide a rule, that results in an
action that requests the mode "STDDIAG_RUNNING" of the mode declaration group
"StdDiag_LifeCycle". This rule is triggered by a mode switch to the mode "STDDIAG_INITIALIZED" by
the StdDiag module itself. When the StdDiag module is in normal operation mode, the StdDiag module
switches the mode to "STDDIAG_RUNNING".

To deactivate the StdDiag module the BswM has to provide a rule, that results in an action that requests
the mode "STDDIAG_STOPPED" of the mode declaration group "StdDiag_LifeCycle".

For details on how to initialize / deactivate the StdDiag module, please refer to chapter 5.5.

Diagnostic Session handling:
To notify the StdDiag module when the DefaultSession is entered, the BswM has to provide a rule, that
results in an action that switches the mode of the mode declaration group "StdDiag_SessionModeGroup"
to "STDDIAG_DEFAULT_SESSION" via BswMSwitchPort "StdDiagSessionChangeIndicationPort" (see
above), when the Dcm module indicates a mode switch of the mode declaration group
"DcmDiagnosticSessionControl" to "DefaultSession" via BswMModeRequestPort
"Port_Dcm_SessionControl".

To notify the StdDiag module when the DefaultSession is left, the BswM has to provide a rule, that results
in an action that switches the mode of the mode declaration group "StdDiag_SessionModeGroup" to
"STDDIAG_OTHER_SESSION" via BswMSwitchPort "StdDiagSessionChangeIndicationPort" (see
above), when the Dcm module indicates a mode switch of the mode declaration group
"DcmDiagnosticSessionControl" to any other than the "DefaultSession" via BswMModeRequestPort
"Port_Dcm_SessionControl".

Communication Control handling:
To notify the StdDiag module about a change of the normal communication mode, the BswM has to
provide rules that result in actions that switch the corresponding mode of the mode declaration group

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 18 of 30

"StdDiag_NormalCommunicationModeGroup" via BswMSwitchPort
"StdDiagComControlNormalNotificationPort" (see above).

These rules have to be triggered either when the Dcm switches the mode of the mode declaration group
"DcmCommunicationControl_<Channel>", or when the StdDiag module itself requests a mode of the
mode declaration group "StdDiag_NormalCommunicationModeGroup".

(Note: These rules also have to result in actions that enable / disable the corresponding Pdu-Groups)

To achieve a correct combination of the two request sources StdDiag and Dcm, the following four rules
should be configured:

BswMRule_ComControl_Enable_Rx_Enable_Tx
if ((LogEx_Enable_Rx == TRUE) && (LogEx_Enable_Tx == TRUE))
{
Switch StdDiagComControlNormalNotificationPort to ENABLE_RX_AND_TX_NORMAL
}

BswMRule_ComControl_Enable_Rx_Disable_Tx
if ((LogEx_Enable_Rx == TRUE) && (LogEx_Disable_Tx == TRUE))
{
Switch StdDiagComControlNormalNotificationPort to ENABLE_RX_DISABLE_TX_NORMAL
}

BswMRule_ComControl_Disable_Rx_Enable_Tx
if ((LogEx_Disable_Rx == TRUE) && (LogEx_Enable_Tx == TRUE))
{
Switch StdDiagComControlNormalNotificationPort to DISABLE_RX_ENABLE_TX_NORMAL
}

BswMRule_ComControl_Disable_Rx_Disable_Tx
if ((LogEx_Disable_Rx == TRUE) && (LogEx_Disable_Tx == TRUE))
{
Switch StdDiagComControlNormalNotificationPort to DISABLE_RX_AND_TX_NORMAL
}

The corresponding locigal expressions are defined as follows:

Both StdDiag and Dcm allow to enable Rx:
LogEx_Enable_Rx = (LogEx_Enable_Rx_StdDiag) && (LogEx_Enable_Rx_Dcm)

Both StdDiag and Dcm allow to enable Tx:
LogEx_Enable_Tx = (LogEx_Enable_Tx_StdDiag) && (LogEx_Enable_Tx_Dcm)

Either StdDiag or Dcm want to disable Rx:
LogEx_Disable_Rx = !((LogEx_Enable_Rx_StdDiag) && (LogEx_Enable_Rx_Dcm))

Either StdDiag or Dcm want to disable Tx:
LogEx_Disable_Tx = !((LogEx_Enable_Tx_StdDiag) && (LogEx_Enable_Tx_Dcm))

LogEx_Enable_Rx_StdDiag =
Port_StdDiag_ComControlModeRequest == ENABLE_RX_AND_TX_NORMAL ||

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 19 of 30

Port_StdDiag_ComControlModeRequest == ENABLE_RX_DISABLE_TX_NORMAL

LogEx_Enable_Rx_Dcm =
Port_Dcm_CommunicationControl == DCM_ENABLE_RX_TX_NORM ||
Port_Dcm_CommunicationControl == DCM_ENABLE_RX_DISABLE_TX_NORM ||
Port_Dcm_CommunicationControl == DCM_ENABLE_RX_TX_NORM_NM ||
Port_Dcm_CommunicationControl == DCM_ENABLE_RX_DISABLE_TX_NORM_NM

LogEx_Enable_Tx_StdDiag =
Port_StdDiag_ComControlModeRequest == ENABLE_RX_AND_TX_NORMAL ||
Port_StdDiag_ComControlModeRequest == DISABLE_RX_ENABLE_TX_NORMAL

LogEx_Enable_Tx_Dcm =
Port_Dcm_CommunicationControl == DCM_ENABLE_RX_TX_NORM ||
Port_Dcm_CommunicationControl == DCM_DISABLE_RX_ENABLE_TX_NORM ||
Port_Dcm_CommunicationControl == DCM_ENABLE_RX_TX_NORM_NM ||
Port_Dcm_CommunicationControl == DCM_DISABLE_RX_ENABLE_TX_NORM_NM

EcuC

If post build support is needed, the EcuC configuration shall provide a collection of toplevel
PostBuildSelectable variants in containers "EcucPostBuildVariants". These containers shall refer to
predefined variants, which in turn refer to post build variant criterion value sets. During the generation
process, PAGe evaluates all available variants whether the criterion value matches the value given in the
variation point of the post build selectable configuration parameter.

Configuration of generic part

StdDiagGeneral

This container contains the configuration parameters of the generic part of the StdDiag module

StdDiagDevErrorDetect

This parameter activates/deactivates the Development Error Detection and Notification.

If set to true: Development Error Detection and Notification is activated.
If set to false: Development Error Detection and Notification is deactivated.

StdDiagUserEstablishIntrinsicSafety

[IM_StdDiag_0001] dDuring UDS Routine Service 0x31 01 0F 0C 03 (set EnergyMode = Flash) an
ECU shall establish intrinsic safety. StdDiag checks whether the PWF status is
"PruefenAnalyseDiagnose", which is mandatory for all ECUs. During UDS Routine Service 0x31 01 0F 0C

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 20 of 30

00 (set EnergyMode = Normal), if flash mode was active before, an ECU shall revert all actions taken to
establish intrinsic safety. If there are more actions to be taken by the ECU to establish or revert intrinsic
safety, this parameter has to be set to "true". c(FL215, FL216, FL217, FL283, FL284, FL285)

If set to true: StdDiag calls a user specific function to establish or revert intrinsic safety.
If set to false: StdDiag only checks for correct PWF state.

StdDiagUserActiveSessionState

The positive response on UDS service 0x22 F1 00 provides the active session state in its second byte.
StdDiag provides the active session state within the application default session and the application
extended diagnostic session. For all other sessions StdDiag sets the active session state to "0", or
optionally calls a user specific application that provides this information.

If set to true: StdDiag call a user specific function that provides the active session state.
If set to false: StdDiag uses the default value "0" for the active session state.

StdDiagUserProgrammingPreconditionsCheck

[IM_StdDiag_0002] dTo evaluate EUC specific programming preconditions, StdDiag optionally
provides a callout to a user specific application. If an ECU has to evaluate programming preconditions, the
integrator shall provide this configuration container and configure its parameters. This container defines
whether a user specific function for checking additional programming preconditions is used. c(FL191,
FL193)

MaxNumberUserProgrammingPrecondition

This parameter defines the maximum number of failed user programming preconditions.

StdDiagProvideIDRL

This configuration container defines if the StdDiag module shall provide the IDRL feature.

Container is available: StdDiag provides the IDRL feature Container is not available: StdDiag does not
provide the IDRL feature

If this container is available, the following parameters and subcontainers, which are part of this container,
shall be configured.

The user has at least to configure the format identifier of the DID table.

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 21 of 30

DIDTableFormatIdentifier

This parameter defines the format identifier of the individual DID table. According to LH ADUE this
parameter has to be set to 0x0001.

IDRLClient

This container defines the name of an application software component that implements an IDRL client,
i.e. that provides individual data. This container has a subcontainer IndivData. This container shall be
configured once for each application component implementing an IDRL client.

IndivData

The container IndivData defines the individual data of an IDRL client. The configured name of this
container represents a symbolic name for the individual data. This container has a configuration
parameter DIDValue.

DIDValue

Each individual data has a 2 bytes data identifier. This identifier shall be configured in parameter DIDValue.

MaxDataSize

This parameter defines the maximum size of individual data for the corresponding DIDValue.

Configuration of adapter part

StdDiagGeneral

This container contains the configuration parameters of the classic adapter of the StdDiag module.

StdDiagClearSecondaryErrorMemory

This parameter defines if the StdDiag module provides a service handler to clear the secondary error
memory via the UDS service 0x31 01 0F 06. true: StdDiag provides a service handler false: StdDiag does
not provide a service handler

If the ECU supports DTCs in the secondary error memory, this parameter shall be set to "true", and the
following configuration container "StdDiagUserDefinedMemory" as well as the two parameters, which are
part of this container, shall be configured.

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 22 of 30

StdDiagUserDefinedMemory

This configuration container and the parameters within this container have to be configured, if the
parameter "StdDiagClearSecondaryErrorMemory" is set to ’true’

StdDiagUserDefinedMemoryName

This string parameter shall be set to the short-name of the Dem configuration container
DemUserDefinedMemory, which represents the secondary error memory. To clear the secondary error
memory, StdDiag calls the operation "ClearDTC" of the Interface "CddIf" with Parameter "DTCOrigin" set
to "DEM_DTC_ORIGIN_USERDEFINED_MEMORY_XX", where "XX" is the short-name of
DemUserDefinedMemory. StdDiag uses the parameter "StdDiagUserDefinedMemoryName" to replace
"XX" here.

StdDiagUserDefinedMemoryId

This parameter shall be set to the value of "Dem_DTCOriginType" (i.e. the value of the compu-scale
"DEM_DTC_ORIGIN_USERDEFINED_MEMORY_XX"), which represents the secondary error memory.

Basically this is the value of the Dem parameter "DemUserDefinedMemoryIdentifier". According to
AUTOSAR 4.2.2 the value of the Dem parameter is restricted to a range 16..255. As BMW requires a
value of 0x01 for the parameter "MemorySelection" of UDS-Service 0x19 with subfunctions 0x17, 0x18
or 0x19, some Stack vendors might provide different workarounds to realize this. StdDiag provides the
configuration parameter "StdDiagUserDefinedMemoryId" to configure the value of the compu-scale
"DEM_DTC_ORIGIN_USERDEFINED_MEMORY_XX" according to the stack specific implementation.

With RfC70370 the range of "DemUserDefinedMemoryIdentifier" will be changed to 0..255.

StdDiagSgbdIndex

[IM_StdDiagClassic_0020] dThis container defines the SGBD-Index which is read out by UDS service
0x22 F1 50. c(DK_T3_312, DK_T3_316)

SgbdIndex

[IM_StdDiagClassic_0021] dThis parameter shall be set to the value of the SGBD-Index. This value
shall be in range 0x000000 to 0xFFFFFF. c(DK_T3_312, DK_T3_316)

Note: The parameter "SgbdIndex" is post build configurable. If a post build selectable SgbdIndex is
needed, the parameter "SgbdIndex" shall be configured once for each variant. Each instance of
"SgbdIndex" shall have a variation point with a post build variant condition, that specifies the necessary
value of the corresponding post build variant criterion.

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 23 of 30

StdDiagApplicationDataTransfer

This configuration container and its parameters and subcontainers has to be configured to enable
functionality application data transfer (ADT). ADT is necessary to support e.g. certificate and key
managemet of system function "Basic Security" (BS).

ApplicationRoutineControlIdentifier

This configuration container shall exist for each supported applicationRoutineControlIdentifier.

RoutineIdentifierValue

This parameter shall be set to the value of the applicationRoutineControlIdentifier (e.g. 0x10AA for BS).

ApplicationSubRoutineControlIdentifier

This configuration container shall exist for each supported applicationSubRoutineControlIdentifier. If no
applicationSubRoutineControlIdentifier is needed, this container shall be configured anyway, and
parameter SubRoutineIdentifierValue shall be set to 0x0000.

SubRoutineIdentifierValue

This parameter shall be set to the value of the applicationSubRoutineControlIdentifier (e.g. 0x0000 for
BS).

controlIDs

This parameter has a multiplicity of 1..n. For each cntrlID of the corresponding combination
applicationRoutineControlIdentifier/applicationSubRoutineControlIdentifier one instance of this parameter
shall exist, and shall be set to the value of the cntrlID (e.g. one instance with value 0x00 for BS).

StdDiagProvideDLTSupport

This configuration container defines if the StdDiag module shall provide the implementation for BMW
specific support of Diagnostic Log and Trace (DLT).

container is available: StdDiag provides the DLT feature container is not available: StdDiag does not
provide the DLT feature

If this container is available, the following parameter, which is part of this container, shall be configured.

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 24 of 30

StdDiagNumberSupportedDLTLogChannels

This parameter defines the number of supported DLT log channels. This has to be equal to the number
of DltLogChannel containers in Dlt module configuration.

Configuration of the RTE

After performing the steps indicated in chapters 5.1, 5.2 and 5.3, the RTE configuration can be started. In
other way, the RTE will report an interface incompatibility error.

Assembly Software Connectors

The ports of the StdDiag module have to be connected with ports of other modules as follows:

Dcm

ActiveSessionState <-> DataServices_<Data>
where <Data> is the name of the corresponding container "DcmDspData" describing the active Session
State configured in the Dcm module according to chapter 5.1.1.

SgbdIndex <-> DataServices_<Data>
where <Data> is the name of the corresponding container "DcmDspData" describing the SGBD Index
configured in the Dcm module according to chapter 5.1.1.

DiagCommLoopback <-> RoutineServices_<Routine>
where <Routine> is the name of the corresponding container "DcmDspRoutine" configured in the Dcm
module according to chapter 5.1.1.

CheckProgrammingPreconditions <-> RoutineServices_<Routine>
where <Routine> is the name of the corresponding container "DcmDspRoutine" configured in the Dcm
module according to chapter 5.1.1.

ClearSecondaryErrorMemory <-> RoutineServices_<Routine>
where <Routine> is the name of the corresponding container "DcmDspRoutine" configured in the Dcm
module according to chapter 5.1.1. (Only necessary when configuration container
"StdDiagClearSecondaryErrorMemory" is available, see chapter 5.3.)

ServiceRequestManufacturerNotificationPort <-> ServiceRequestNotification_<Name>
where <Name> is the name of the corresponding container
"DcmDslServiceRequestManufacturerNotification" configured in the Dcm module according to chapter
5.1.1.

DCMServicesPort <-> DCMServices

If the configuration container "StdDiagProvideIDRL" is available (see chapter 5.2), the following ports of
the StdDiag module have to be connected with the ports of DCM as follows:
IdrlDidTable <-> DataServices_<Data>

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 25 of 30

where <Data> is the name of the corresponding container "DcmDspData" configured in the Dcm module
according to chapter 5.1.1.

ResetIdrlData <-> RoutineServices_<Routine>
where <Routine> is the name of the corresponding container "DcmDspRoutine" configured in the Dcm
module according to chapter 5.1.1.

If the configuration container "StdDiagProvideIDRL" is available, and the IDRL clients and the individual
data IDs are also configured (see chapter 5.2), the following ports of the StdDiag module have to be
connected with the ports of DCM as follows:
IdrlData<IDRLClient><DID> <-> DataServices_<Data>
where <IDRLClient> is the name of an IDRL client configured in container IDRLClient, <DID> is the
symbolic name of the individual data configured in container IndivData, and <Data> is the name of the
corresponding container "DcmDspData" configured in the Dcm module according to Note of chapter
5.1.1.

If the configuration container "StdDiagApplicationDataTransfer" is available (see chapter 5.3), the
following port of the StdDiag module has to be connected with the port of DCM as follows:
UpDownloadPrePostProcessingPort <-> RoutineServices_<Routine>
where <Routine> is the name of the corresponding container "DcmDspRoutine" configured in the Dcm
module according to chapter 5.1.1.

If the configuration container "StdDiagProvideDLTSupport" is available (see chapter 5.3), the following
ports of the StdDiag module have to be connected with the ports of DCM as follows:

DltReadLogChannelNames <-> DataServices_<Data>
where <Data> is the name of the corresponding container "DcmDspData" configured in the Dcm module
according to chapter 5.1.1.
DltSetLoglevel <-> RoutineServices_<Routine>
DltResetToDefault <-> RoutineServices_<Routine>
DltSetMessagefilteringstate <-> RoutineServices_<Routine>
DltSetLogchannelThreshold <-> RoutineServices_<Routine>
DltStoreConfiguration <-> RoutineServices_<Routine>
DltSetTracestate <-> RoutineServices_<Routine>
DltSetDefaultLoglevel <-> RoutineServices_<Routine>
DltSetDefaultTracestate <-> RoutineServices_<Routine>
where <Routine> is the name of the corresponding container "DcmDspRoutine" configured in the Dcm
module according to chapter 5.1.1.

Dem

EnableConditionPort <-> EnableCond_<Name>
where <Name> is the name of the corresponding container "DemEnableCondition" configured in the
Dem module according to chapter 5.1.3.

ClearDTCPort<-> Dem_Cdd
(Only necessary when configuration container "StdDiagClearSecondaryErrorMemory" is available, see
chapter 5.3)

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 26 of 30

Det

ReportErrorPort <-> DS<xxx>
where <xxx> is an identifier of the StdDiag configured in the Det module (see chapter 5.1.2).

Darh

RoEStatePort <-> RoeStatePort

Omc

OperatingModeControlPort <-> operatingModeSwitchPort
ExtendedOperatingModeControlPort <-> extendedOperatingModeSwitchPort
AllowOpModeChangePort <-> StdDiag AllowOpModeChangeCbkPort <-> StdDiagCbk

Stm

VehicleStatePort <-> VehicleStateSP2015ModeSwitchPort

BswM

LifeCycle <-> BswMModeRequestPort_xxx
where BswMModeRequestPort_xxx means the R-Port of the BswM that receives a mode switch of the
ModeDeclarationGroup "StdDiag_LifeCycle" from the StdDiag module. (see "Port_StdDiag_LifeCycle" in
chapter 5.1.4)

LifeCycleRequest <-> RteModeRequestPort_xxx
where RteModeRequestPort_xxx means the P-Port of the BswM that provides a mode requret of the
ModeDeclarationGroup "StdDiag_LifeCycle" to the StdDiag module. (see
"StdDiagLifeCycleRequestPort" in chapter 5.1.4)

SessionChangeIndicationPort <-> ModeSwitchPort_xxx
where ModeSwitchPort_xxx means the P-Port of the BswM that provides a mode switch of the
ModeDeclarationGroup "StdDiag_SessionModeGroup" to the StdDiag module. (see
"StdDiagSessionChangeIndicationPort" in chapter 5.1.4)

ComControlNormalModeAccessPort <-> ModeSwitchPort_xxx
where ModeSwitchPort_xxx means the P-Port of the BswM that provides a mode switch of the
ModeDeclarationGroup "StdDiag_NormalCommunicationModeGroup" to the StdDiag module. (see
"StdDiagComControlNormalNotificationPort" in chapter 5.1.4)

ComControlModeRequestPort <-> ModeRequestPort_xxx
where ModeRequestPort_xxx means the R-Port of the BswM that receives a mode request of the
ModeDeclarationGroup "StdDiag_NormalCommunicationModeGroup" from the StdDiag module. (see
"Port_StdDiag_ComControlModeRequest" in chapter 5.1.4)

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 27 of 30

Other Application SWC

UserEstablishIntrinsicSafetyPort <-> ApplicationPort
where ApplicationPort means the P-Port of an Application SWC that establishes intrinsic safety. (Only
necessary when parameter "StdDiagUserEstablishIntrinsicSafety" is set to ’true’, see chapter 5.2.)

UserEstablishIntrinsicSafetyCbkPort <-> ApplicationPort
where ApplicationPort means the R-Port of an Application SWC that notifies StdDiag when intrinsic
safety is established. (Only necessary when parameter "StdDiagUserEstablishIntrinsicSafety" is set to
’true’, see chapter 5.2.)

UserProgrammingPreconditionsCheckPort <-> ApplicationPort
where ApplicationPort means the P-Port of an Application SWC that provides a user programming
precondition check. (Only necessary when parameter "UserProgrammingPreconditionsCheck" is set to
’true’, see chapter 5.2.)

UserActiveSessionStatePort <-> ApplicationPort
where ApplicationPort means the P-Port of an Application SWC that provides the active session state for
HDD Update Session. (Only necessary when parameter "StdDiagUserActiveSessionState" is set to ’true’,
see chapter 5.2.)

If the configuration container "StdDiagProvideIDRL" is available, and the IDRL clients and the individual
data IDs are also configured (see chapter 5.2), the following ports of the StdDiag module have to be
connected with the ports of the IDRL clients as follows:

IdrlDataSwc<IDRLClient><DID> <-> ApplicationPort
where <IDRLClient> is the name of an IDRL client configured in container IDRLClient, and <DID> is the
symbolic name of the individual data configured in container IndivData (see chapter 5.2).

ResetIdrlData<IDRLClient> <-> ApplicationPort
where <IDRLClient> is the name of an IDRL client configured in container IDRLClient (see chapter 5.2).

If the configuration container "StdDiagApplicationDataTransfer" is available, and the
applicationRoutineControlIdentifer, applicationSubRoutineControlIdentifer and cntrlIDs are also
configured (see chapter 5.3), the following ports of the StdDiag module have to be connected with the
ports of the ADT clients as follows:

Adt_<applRID>_<applSubRID>_CtrlID_<cntrlID> <-> ApplicationPort
where ApplicationPort means the P-Port of an Application SWC that implements an ADT client (e.g. port
"StdDiag_AdueCertificates" of module Bs), and where <applRID> is the name of the container
"ApplicationRoutineControlIdentifier", <applSubRID> is the name of the container
"ApplicationSubRoutineControlIdentifier", and <cntrlID> is the hex representation of parameter
"controlIDs" (see chapter 5.3).

Note: <applSubRID> is an empty string if corresponding parameter "SubRoutineIdentifierValue" is 0.

Adt_<applRID>_<applSubRID>_CtrlID_<cntrlID>_Cbk <-> ApplicationPort
This is the corresponding optional callback port connection, which is only necessary if an ADT client
handles requests asynchronously.

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 28 of 30

Event Mapping

The mode switch events "Event_SessionChange_DefaultSession" and
"Event_SessionChange_OtherSession" have to be mapped to an os-task.

Data Mapping

No Data Mapping necessary for the StdDiag module.

Exclusive Areas

No Exclusive Area available in the StdDiag module.

Software Integration

Startup/Initialization

Before initialization of the StdDiag module, the modules Det, Dcm, Dem, Omc, Darh and the RTE have to
be initialized. To initialize the StdDiag module, the BswM shall request the mode
"STDDIAG_INITIALIZED" of the mode declaration group "StdDiag_LifeCycle".

When initialization of the StdDiag has been finished successfully, the StdDiag module switches the mode
to "STDDIAG_INITIALIZED".

Normal Operation

When the StdDiag module switches the mode to "STDDIAG_INITIALIZED", the BswM shall request the
mode "STDDIAG_RUNNING". There are no further conditions that have to be considered. When the
StdDiag module switches the mode to "STDDIAG_RUNNING", the module is in normal operation mode.

Shutdown/Deactivation

To deactivate the StdDiag module, the BswM has to request to the mode "STDDIAG_STOPPED". There
are no further conditions that have to be considered. When the StdDiag module switches the mode to
"STDDIAG_STOPPED", the module is deactivated.

Select Post Build Configuration

If the configuration parameter "SgbdIndex" is configured for two or more variants, the integrator shall call
the API StdDiag_SetConfiguration(const StdDiag_PBConfigType * selectedConfig),
with parameter selectedConfig set to the desired post build variant. Possible variants and necessary

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 29 of 30

type definitions are available in the generated header file StdDiagClassic_PBCfg.h. If only one
SgbdIndex is configured, this configuration is used by default, i.e. it is not necessary to call this API.

SWCD

After generating the Dcm SWC description files the integrator shall perform changes within
StdDiag_ext_interface.arxml.pgen to make the Rte interfaces between Dcm and StdDiag compatible from
Rte point of view. Within the StdDiag_ext_interface.arxml.pgen the <ARRAY-SIZE> of the parameters
Indication_ArrayType and DiagCommLoopback_ArrayType shall be set to the values given by Dcm. If the
RTE importer still complains about incompatible interfaces, please check the compatibility of the StdDiag
configuration and the Dcm configuration.

Prevent sleep mode

[IM_StdDiagClassic_0018] dLH Fahrzeugprogrammierung (10505691-000-02) requires in FL247
that an ECU shall not go into sleep mode as long as EnergyMode is set to "Flash". This has to be ensured
by the integrator, and can be acheived in different ways. One possibility is the following:

– Evaluate the current operating mode (=EnergyMode) provided by module "Omc" via Port
"operatingModeSwitchPort"

– Create BswM-Rules that realize the following items
– If the operating mode equals "Flash" (0x03), trigger communication request for Partial Network

"Fahrzeug Infrastruktur"
– If the operating mode does not equal "Flash" (0x03), release communication request for Partial

Network "Fahrzeug Infrastruktur"

For details on the operating mode refer to OmcClassic_IntegrationManual.pdf c(FL247)

StdDiagClassic_IntegrationManual.pdf, Version 5.4.0, Software Platforms Page 30 of 30

	1 Introduction
	1.1 Functional overview

	2 Related documentation
	3 Limitations
	3.1 Unreleased Dlt specification in AUTOSAR

	4 Software Architecture
	4.1 Dependencies on AUTOSAR modules
	4.1.1 RTE
	4.1.2 Det
	4.1.3 Dcm
	4.1.4 Dem
	4.1.5 BswM
	4.1.6 Dlt
	4.1.7 EcuC

	4.2 Dependencies to other modules
	4.2.1 Darh
	4.2.2 Omc
	4.2.3 Stm
	4.2.4 Other SWC

	5 Integration
	5.1 Configuration of other Modules
	5.1.1 Dcm
	5.1.1.1 Read Data By Identifier
	5.1.1.2 RoutineControl
	5.1.1.3 Service Request Manufacturer Notification
	5.1.1.4 Service Handler for Upload Download Services

	5.1.2 Det
	5.1.3 Dem
	5.1.4 BswM
	5.1.5 EcuC

	5.2 Configuration of generic part
	5.2.1 StdDiagGeneral
	5.2.1.1 StdDiagDevErrorDetect
	5.2.1.2 StdDiagUserEstablishIntrinsicSafety
	5.2.1.3 StdDiagUserActiveSessionState

	5.2.2 StdDiagUserProgrammingPreconditionsCheck
	5.2.2.1 MaxNumberUserProgrammingPrecondition

	5.2.3 StdDiagProvideIDRL
	5.2.3.1 DIDTableFormatIdentifier
	5.2.3.2 IDRLClient

	5.3 Configuration of adapter part
	5.3.1 StdDiagGeneral
	5.3.1.1 StdDiagClearSecondaryErrorMemory

	5.3.2 StdDiagUserDefinedMemory
	5.3.2.1 StdDiagUserDefinedMemoryName
	5.3.2.2 StdDiagUserDefinedMemoryId

	5.3.3 StdDiagSgbdIndex
	5.3.3.1 SgbdIndex

	5.3.4 StdDiagApplicationDataTransfer
	5.3.4.1 ApplicationRoutineControlIdentifier
	5.3.4.2 RoutineIdentifierValue
	5.3.4.3 ApplicationSubRoutineControlIdentifier
	5.3.4.4 SubRoutineIdentifierValue
	5.3.4.5 controlIDs

	5.3.5 StdDiagProvideDLTSupport
	5.3.5.1 StdDiagNumberSupportedDLTLogChannels

	5.4 Configuration of the RTE
	5.4.1 Assembly Software Connectors
	5.4.1.1 Dcm
	5.4.1.2 Dem
	5.4.1.3 Det
	5.4.1.4 Darh
	5.4.1.5 Omc
	5.4.1.6 Stm
	5.4.1.7 BswM
	5.4.1.8 Other Application SWC

	5.4.2 Event Mapping
	5.4.3 Data Mapping
	5.4.4 Exclusive Areas

	5.5 Software Integration
	5.5.1 Startup/Initialization
	5.5.2 Normal Operation
	5.5.3 Shutdown/Deactivation
	5.5.4 Select Post Build Configuration
	5.5.5 SWCD
	5.5.6 Prevent sleep mode

