VECTOR >

MICROSAR XCP

Technical Reference

Version 2.0.0

Authors Andreas Herkommer

Status Released

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Document Information

History

Author |Date _ |Version |Remarks |
Andreas Herkommer 2017-02-13 1.00.00 Initial Version

Andreas Herkommer 2017-11-14 2.00.00 Added new API Xcp_SetStimMode

Reference Documents

No Source _Tie __ _ _ _____________ |Version _

[1] AUTOSAR AUTOSAR_SWS_XCP.pdf 2.3.0

[2] AUTOSAR AUTOSAR_SWS_DET.pdf 3.41

[3] AUTOSAR AUTOSAR_SWS_DEM.pdf 5.2.0

[4] AUTOSAR AUTOSAR_BasicSoftwareModules.pdf V1.0.0

[5] ASAM ASAM_XCP_Part2-Protocol-Layer-Specification_V1-1- V1.1
0.pdf

Scope of the Document

This document describes the features, APls, and integration of the XCP Protocol Layer.

This document does not cover the XCP Transport Layers for CAN, FlexRay and Ethernet,
which are available at Vector Informatik.

Further information about XCP on CAN, FlexRay and Ethernet Transport Layers can be
found in their documentation.

Please also refer to “The Universal Measurement and Calibration Protocol Family”
specification by ASAM e.V.

The XCP Protocol Layer is a hardware independent protocol that can be ported to almost
any hardware. Due to there are numerous combinations of micro controllers, compilers
and memory models it cannot be guaranteed that it will run properly on any of the above
mentioned combinations.

Please note that in this document the term Application is not used strictly for the user
software but also for any higher software layer, like e.g. a Communication Control Layer.
Therefore, Application refers to any of the software components using XCP.

The API of the functions is described in a separate chapter at the end of this document.

Info

“ The source code of the XCP Protocol Layer, configuration examples and
documentation are available on the Internet at www.vector-informatik.de in a functional
restricted form.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 2
based on template version 6.0.1

http://www.vector-informatik.de/

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Caution

n We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 3
based on template version 6.0.1

VECTOR >

Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Contents
1 Component HIStOrY ... e 10
2 INtrodUCION..... .o e 1
21 Architecture OVEIVIEWcoooiiiiii e 11
3 Functional DeSCriptioncooiiiiiiiiii e 13
3.1 Features ... 13
3.1.1 DeVIatiONS ... 13
3.1.2 Additions/ EXIENSIONS.........ccovviiiiiiiiiiiiii 15
3.2 L= 1= 1o o P 15
3.3 S €= 1 (=TSSP 15
3.4 Main FUNCLIONS ...t eeeeeeees 16
3.5 Block Transfer Communication Model............cccooooviiiiiiiiiiicee e 16
3.6 Slave Device IdentifiCationuuuiiiiiiiiiiiiiiiiiiii 17
3.6.1 XCP Station Identifier............oovvviiiiiiiiiiiiii 17
3.6.2 XCP Generic Identificationcccooiiiiiiiiiiiii e 17
3.7 SEEA & KBY . aaaaaae 17
3.8 Checksum CalCulationoouueiiiii e e eaeees 18
3.8.1 Custom CRC calculationcccoeeeiiiiiiiiiie e 18
3.9 Memory Access by AppliCation...........ooooiiiiiiiiiii e 18
3.9.1 Memory Read and Write Protectionccccccvviiiiiiiiiiiiiiiiiiiiiiiins 18
3.9.2 Special use case “Type Safe Copy” ...cooovvviiiiiieieeeeeeeee e, 19
O V=T o 70T [19
3.1 Service REQUEST MESSAQJESuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiibebbbbeeeeeeeeeeeeeeeeeenee 20
3.12 User Defined CoOmMmMaNd.............uuuuuuimmimmiiiiiiiiiiiiiiiiiiiienieeeeneeeeseeeneeeeeneeeeneeneee 20
3.13 Synchronous Data Transfer ... 20
3.13.1 Synchronous Data Acquisition (DAQ)..........ccooeciiiiiiiiiiiiiiiiiiiieeen 20
1 T B 07 B VX @ B T4 T3 =T o 0 o J 21
3.13.3 Power-Up Data Transferuuiiiiiiiiiicee e 21
3.13.4 Data Stimulation (STIM).........uuuuuuimiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeees 22
3.13.5 BYP@SSING ..eeiiiiiiiiiiiiiiiiii e 22
3.13.6 Data Acquisition Plug & Play Mechanismscccccccuviiiiiiinnnnnns 22
3.13.7 Event Channel Plug & Play Mechanismccccccoiiiiiiiiiiniiinnnnnns 23
3.13.8 Send QUEUE.......cooeeeec e 23
3.13.9 Data CONSISIENCY.......uuuiiiiiiiiiiiiiiiiiiiiiiiii i eeeeeenee 23
3.14 The Online Data Calibration Modeluuuumimiiiimiiiiiiiiiiiiiieieieeeenees 24
3.14.1 Page SWItChINGuuiiiiiiiiiiiiiiiiiiiiiiii e 24
3.14.2 Page Switching Plug & Play Mechanismcccccccviiiiiiiiiiinnnnnns 24
© 2017 Vector Informatik GmbH Version 2.0.02.0.0 4

based on template version 6.0.1

VECTOR >

Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

3.14.3 Calibration Data Page COpYinguuuuuummummmmmmmmiiiiiiiiiiiiinnnnnnnnnnns 24
3.14.4 Freeze Mode Handling............couvuiiiiiieiiiiiiccie e, 24
3.15 Flash Programming.............uuuuuuuuumeiiiiiiiiiiiiiiiiii e 25
3.15.1 Flash Programming by the ECU’s Applicationccccccvviiiinnnns 25
3.15.2 Flash Programming Plug & Play Mechanismc.cccccoeeeieiinnnn, 25
3.15.3 Flash Programming with a Flash Kernel................ccccccoiiiiiiiiiinnnnns 26
316 MuUlti COre SUPPOI ...eiiiiii e e e e e ettt eeaaeeaaanes 26
3.16.1 TYPE SaAfE COPY .. 26
3.16.2 DAQ/STIM With Multi COreuuvuuuiiiiiiiiiiiiiiiiiiiiieiiiiienenreeeenreennnennees 27
3.17 En-/ Disabling the XCP mModule..........ccoiiiiiiiiiiii i 28
3.18 XCP measurement during the post eventtime.........ccccccoeeiiiiiiiiiii s 28
3.19 ErrOr HAnAING.eeeiiiiiiiiiiiiiii e 29
3.191 Development Error Reporting.........cccvviviiiiiiiiiiiiii e, 29
3.19.2 Production Code Error Reportingeuuevveeieiiiiiiiiiiiiiiiiiiiiiininnnns 30
4 INtegratioN e aan 31
4.1 SCOPE Of DEIIVEIY ... enenee 31
411 StAtIC FIlES e 31
41.2 Templates — user modifiable...........cccccooeiiiiii 31
41.3 DYNa@mIC FlESuuuiiiiiiiiiiiiiiiiii e 31
41.4 Generated a2l fileS.....ccoooioieeeee 31
4.2 L0 41 ioz= IS T=Tox 1o o =30 USSR 32
421 XCP_EXCLUSIVE_AREA O..ccooviivviieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeaae 32
422 XCP_EXCLUSIVE_AREA 1. 32
423 XCP_EXCLUSIVE_AREA 2.t 32
4.3 MeEMOIY MaPPING ...ceeeeiiiee ettt e e e e e e et eeeeeaneee 33
B API DESCIIPLION... .o 34
5.1 TYPE DEfINItIONS ... 34
5.2 Services provided by XCPouuiiiiii i 35
5.2.1 XCP_INIEMEMOIY .. e e e e e e eaaees 35
5.2.2 XCP_ NIt 35
523 XCP_EVENE e e 36
524 Xep_StimEventStatus ... 36
525 XCp_MainFUNCHONooveii e 37
5.2.6 XCP_SeNAEVENLccovviiiiiiiiiiiiii 38
5.2.7 XCP_PULCNAN....cciiiiiieieeeeeeeeeeeeeeeeee 38
528 XCP PNt e e 39
5.2.9 XCP_DISCONNECL.......coiiiiiiiiiiiiiiiiiiii e 39
S I0Z2 1 O B (et o TS T=Y o T [o T 40
5.2.11 Xep_GetVersionInfo ... 40

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 5

based on template version 6.0.1

VECTOR >

Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

5.212 Xcp_ModifyProtectionStatusccoooeeviviiiiiiii e 41
5213 Xcp_GetSessionStatusoouvviiiiiiiiiiicien e 42
5214 Xcp_GetXcpDataPointer.........oouviiiiiiiiiiiiee e 42
5215 Xcp_SetStimMOeueoiiiiiiiie e 43
5.3 Services provided by the XCP Protocol Layer and called by the XCP
TrANSPOIT LAY ... 43
5.3.1 Xep TIRXINAICAtIoON .ccvvvii e 43
5.3.2 Xep_TITXCoNfirmation..........oovv e 44
5.3.3 XCP_SEtACHVET ... e e 44
5.34 XCP_GEACHVET ... e e 45
5.4 XCP Transport Layer Services called by the XCP Protocol Layer 46
5.4.1 <BUS>XCP _SeNA...ouiiiiiiiiiice e 46
542 <Bus>Xcp_SendFIushuviiiiiiiiie e 47
543 <BUS>XCP_TISEIVICE....cciiieiiiiiiie e 47
5.5 Application Services called by the XCP Protocol Layer...............cccoovvvieeennenn. 48
5.5.1 XepAppl_GetTimestampcoovvveeeieie e 49
55.2 XCPAPPL_GEtPOINTEr.....uueii i 49
55.3 XcepAppl_GetldDataccooeeeeiiiece e 50
554 XCPAPPL_GEtSEEA ... 51
55.5 XCPAPPIL _UNIOCK. .. .o e 51
5.5.6 XepAppl_CalibrationWritecovvvvieiiiieeeeeci e 52
5.5.7 XcpAppl_MeasurementReadccoovveviiiiiiiiiiin e 53
55.8 XcpAppl_CheckReadACCESS..........ceiiieeiiieeece e, 53
5.5.9 XCpApPpPl_CheckProgramACCESS.viiiieiiiieiiiiiee e e e e 54
5510 XCPAPPI_USEISEIVICEcoeeeiiieiiiiiee e 54
5.5.11 XCpAppl_OpenCmdIf 55
5512 XcpAppl_SendStallcoooeeiiiiiiiiie e 55
5.5.13 XcpAppl_DisableNormalOperation...........cccccceeeiiiiiiiiiiiiiiiie e, 56
5.5.14 XcpAppl_StartBootLoader...........cccoooiiiiiiiiiiiiii e 57
5515 XCPAPPIL_RESEL ... 57
5.5.16 XcpAppl_ProgramStarteeueiieiiiiiiiiiiiiiiiiiiiiiiiiiiiienees 58
5517 XcpAppPl_FIashClear ... 58
5518 XcpAppl_FIlashProgrameuiiiiiiiiiiiiiiciei e 59
5519 XcpAppl_DagReSUME.......ccooiiiiiiiiiii e 59
5.5.20 XcpAppl_DagResumeStoreuuuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiieiiinninnn. 60
5.5.21 XcpAppl_DagResumeClearoovvvvvviiiiiiiiiiiiiiiieeeeeeeeeeeeeee 61
55.22 XcpAppl_CalResSumeStOre..........uuuuuuiuiuiiiiiiiiiiiiiiieiiniieneeneennnnnnnnnnnnne 61
5.5.23 XcpAppl_GetCalPageuuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieenennieeees 62
55.24 XcpAppl_SetCalPage............uuuuuumimummiuiiiiiiiiiiiieiiineeneniennnnennnnnnnnnnnnnnes 62
5.5.25 XcpAppl_CopyCalPage..........uuuuuuiuimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiieeninnennee 63
5.5.26 XcpAppl_SetFreezeModeuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiees 64
© 2017 Vector Informatik GmbH Version 2.0.02.0.0 6

based on template version 6.0.1

VECTOR >

55.27 XcpAppl_GetFreezeMode.............ooiiiiiiiiiiiiiii e 65

5.5.28 XcpAppl_CalculateChecksumccovviiiiiiiiiii e, 65

5.5.29 XcpAppl_ConStateNotificationcccoeeeiiiiiii s 66

5530 XCPAPPL_MEMOCPY ..ooviriiiiieeiieeeeeee e 66

5.6 Services USed by XCP ... 67

6 CoNfigUIration ... e 68

6.1 Configuration Variants.............iiiiiii e 68

7 Glossary and Abbreviations ... 69

7.1 ABDIeVIationScoooeiiiee 69

8 CONtACT e aar e aan 71
© 2017 Vector Informatik GmbH Version 2.0.02.0.0 7

Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

lllustrations

Figure 2-1 AUTOSAR 4.1 Architecture OVerviewccceeeiiiieiiieeiicie e, 11
Figure 2-2 Interfaces to adjacent modules of the XCP ... 12
Figure 3-1 Connection State Machine...............cccooiiiiiiiiiiiiie 16
Figure 3-2 Data CONSISIENCY ...ccvviiiii i 23
Figure 3-3 Application of Xcp_Event function on Multi Core systems..............c..e.e... 28
Tables

Table 1-1 ComMPONENt NISTOMY........uuiiiiiiiiiiiiii e 10
Table 3-1 Supported AUTOSAR standard conform features..............cooevvvviiiieennnnn. 13
Table 3-2 Deviations from AUTOSAR standard conform features.............ccccvvvvinnne. 13
Table 3-3 Deviations from ASAM standard conform features...............cccevvieinn. 15
Table 3-4 Features provided beyond the AUTOSAR standard................oevvveennnnn. 15
Table 3-5 = =Y 15
Table 3-6 V=T o] oY [20
Table 3-7 SEIVICE IDS ... 29
Table 3-8 Errors reported t0 DETovuiiiiei e e 30
Table 3-9 Errors reported t0 DEM.......cooooiiiiiiiie e 30
Table 4-1 StAtIC fIlES ..o 31
Table 4-2 TeMPIALES ..o e 31
Table 4-3 Generated fileSuuuuiiiiiiiiiiiii e 31
Table 5-1 Type definitioNS......coi e 34
Table 5-2 XCP_ChannelStruCt........ccooveii e 34
Table 5-3 D o] o T 10111\ [= T 1 41 P 35
4 (] o T 1 1| S 35
Table 5-5 XCP_EVENE .. 36
Table 5-6 Xep StmMEveNtStatusvvveeei i 37
Table 5-7 XCP_MainNFUNCHONcei e e 37
Table 5-8 XCP_SENAEVENT 38
Table 5-9 XCP _PULCQNAN c.eee et 39
Table 5-10 o] o TR 11 P 39
Table 5-11 XCP_DISCONNECL.... .ot 40
Table 5-12 (o] o TR 1= [o [y o o TSP 40
Table 5-13 Xep_GetVersionInfo........uuciii i 41
Table 5-14 Xcp_ModifyProtectionStatus.........oovveeeiiiiiiii 41
Table 5-15 Xep_GetSessioNStatUS.. ... iiiiii e, 42
Table 5-16 Xcp_GetXepDataPointer... ..o 43
Table 5-17 XCp_SetStiMMOdEcoviiiiiiec s 43
Table 5-18 XCP_TIRXINAICAtION ... e 44
Table 5-19 Xep _TITXConfirmationco e 44
Table 5-20 XCp_SetACHVET oo 45
Table 5-21 XCP_GetACHVET ..o 46
Table 5-22 SBUS>XCP_SENG... ittt 46
Table 5-23 <BUS>XCP_SeNAFIUSNuiiiiiiiiiiiiiiiiii e 47
Table 5-24 SBUS>XCP_TISEIVICE ...ttt 48
Table 5-25 XcpAppl_GetTimestamp ... 49
Table 5-26 XCPAPPL_GetPoINter........cooeeiieiee 50
Table 5-27 XcpAppl_GetldData.........ccoovveieiiie 51
Table 5-28 XCPAPPL_GetSeed ... 51
Table 5-29 XCPAPPL_UNIOCK ..o 52
Table 5-30 XcpAppl_CalibrationWriteooooiviiiii 52

© 2017 Vector Informatik GmbH

Version 2.0.02.0.0
based on template version 6.0.1

VECTOR >

Table 5-31
Table 5-32
Table 5-33
Table 5-34
Table 5-35
Table 5-36
Table 5-37
Table 5-38
Table 5-39
Table 5-40
Table 5-41
Table 5-42
Table 5-43
Table 5-44
Table 5-45
Table 5-46
Table 5-47
Table 5-48
Table 5-49
Table 5-50
Table 5-51
Table 5-52
Table 5-53
Table 5-54
Table 5-55
Table 7-1

© 2017 Vector Informatik GmbH

Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

XcpAppl_MeasurementReadcoiiiiiiiiiiiiic e 53
XCpApPPl_CheCkREAdACCESScovvviiiii e 54
XCPAPPl_CheCkProgramACCESSuuuuiiii et 54
XCPAPPI_USEISEIVICE....uuuniii ettt e e e 55
XCpAPPL_OpenCmdIf.... ... 55
XCPAPPL_SendStall.........ouiiiiiii s 56
XcpAppl_DisableNormalOperationcooeuiiiiiiiiiiiieiiceee e, 56
XcpAppl_StartBootLoaderooevveeiiiiieiieee e 57
XCPAPPL RESEL.... - 58
XCPAPPL_ProgramStartcooo e 58
XCPAPPL_FIashCIEar.........uoiiii e 59
XCpAppPl_FlashProgram ..o 59
XCPAPP!L_DagRESUMEoveiiiicccieeece e 60
XepAppl_DagResumeSIOoreoouvveiiiieieeieeeeee e 61
XcpAppl_DagResumeClear...........cccoceeiiieiiiiieeceee e 61
XCpApPPl_CalRESUMESIOre ... 62
XCPAPPL_GetCalPage......uuoiiie et 62
XCPAPPL_SetCalPageuuiiieieiiieeee e 63
XCPAPPL_CopyCalPageccoeeeeiiieecee e 64
XCPAPPL_SetFreezeMOode.......cooivveiiiiiii e 64
XCPAPPl_GetFreezeMOode..........ooveeiiiiiiie e 65
XcpAppl_CalculateChecksum..........ccccooiiiiiiiiiiiicii e, 66
XcpAppl_ConStateNotification..........ccooooeeiiiiiiii 66
D (ed o TN o] o I Y[1 4107 o)PP 67
Services used by the XCPovuiiiiiiiiice e 67
ABDIrEeVIatioNS ... oo 70

Version 2.0.02.0.0
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version | New Features

1.00.xx Initial Version of re-factored AR4 Protocol Layer.
2.00.xx Series production of MultiCore feature.
3.00.xx Bugfixes and Continuous STIM feature.

Table 1-1 Component history

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 10
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module XCP as specified in [1].

Supported AUTOSAR Release*: 4
Supported Configuration Variants: pre-compile
Vendor ID: XCP_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: XCP_MODULE_ID 212 decimal

(according to ref. [4])
* For the detailed functional specification please also refer to the corresponding AUTOSAR SWS.

2.1 Architecture Overview
The following figure shows where the XCP is located in the AUTOSAR architecture.

E2E Protection

Application
RTE
0s | |Bswwm DCM e~ 1 [oiohwaer | [caLcry |
COMM DEM FEE SEN CRC
csM FIM MEMIF H E2E
CRY (SW) J1939DCM CAN ETH y
[DRM 1939TP LINXCP' FRXCP ETHXCP DNS
EEU J1939NM LINTP FRTP UDPNM EXI
ST 11939RM LINNM FRARTP SOME/IP! HTTP
Uit CANXCP LINSM FRNM sD
Weel]? lpee | CANTP LINIF FRSM DOIP
Wise DLT CANNM FRIF SOAD
RTM? CANSM TLS ol
CANIF TCPIP
ETHSM
ETHIF
ADCDRY DIODRV FLSDRV GPTDRV LINDRV PORTDRV | CRY (HW)' CANTRCV | FRTRCV.
CANDRV EEPDRV FLSTST ICUDRV MCUDRV PWMDRV | SPIDRV DRVEXT: | LINTRCV
CORTST ETHDRV FRDRV IICDRV! OCUDRV RAMTST WDGDRV ETHTRCV PSI5 DRV

S E— S o
ncludes o ' ¢ an
WDGEXT

Figure 2-1 AUTOSAR 4.1 Architecture Overview

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 1"
based on template version 6.0.1

VECTOR >

Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

The following figure shows the interfaces to adjacent modules of the XCP. The interfaces
of the XCP Protocol Layer and the application call-back header are described in chapter 5.

class Module Structure Adj acency/

DET

Canlf

Frif

SoAd

Must be implemented Application E
by the user

'

'

'

'

XcpApp! —O)— XCP
XcpOnCan XcpOnFr XcpOnTeplp

Figure 2-2 Interfaces to adjacent modules of the XCP

© 2017 Vector Informatik GmbH

Version 2.0.02.0.0
based on template version 6.0.1

12

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

3 Functional Description

3.1 Features

The Universal Measurement and Calibration Protocol (XCP) is standardized by the
European ASAM working committee for standardization of interfaces used in calibration
and measurement data acquisition. XCP is a higher level protocol used for communication
between a measurement and calibration system (MCS, i.e. CANape) and an electronic
control unit (ECU). The implementation supports the ASAM XCP 1.1 Specification.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

> Table 3-1 Supported AUTOSAR standard conform features
> Table 3-2 Deviations from AUTOSAR standard conform features
> Table 3-3 Deviations from ASAM standard conform features

Vector Informatik provides further XCP functionality beyond the AUTOSAR standard. The
corresponding features are listed in the table

> Table 3-4 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features
ASAM XCP Version 1.1

Table 3-1 Supported AUTOSAR standard conform features

3.1.1 Deviations
The following features specified in [1] are not or only partly supported:

Category | Description ASR
Version
Functional The following features are not supported: 4.2.2

e The command GET SLAVE ID
e ACDD as transport layer

API The following APIs are not provided by XCP: 422
o Xcp_SetTransmissionMode
API The API Xcp_<Module>TriggerTransmit is only supported for transport 4.2.2
layer Frif.

Table 3-2 Deviations from AUTOSAR standard conform features

Category | Description ASAM
Version
Functional 1.6.4.1.2.4 Get general information on DAQ processor: 1.1
© 2017 Vector Informatik GmbH Version 2.0.02.0.0 13

based on template version 6.0.1

VECTOR >

Functional

Functional

Functional

Functional

Functional

Functional

Functional

Functional

Functional
Functional

Functional

Functional

Functional

Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Bitwise stimulation is not supported
1.6.4.2 Static DAQ list configuration (stat):

Static DAQ lists are not supported; only dynamic DAQ lists are

supported

1.7.2.3 Interleaved Communication Model:

1.6.5.2.4 Set Data Format before Programming:

Only the default programming format is supported, therefore the
command PROGRAM FORMAT is not supported

Multiple request messages are not allowed to be transmitted by the
XCP master before receiving the corresponding response

message

1.6.5.2.2 Get specific information for a sector:

Daq configuration:

5.1.10

Overload indication by an event is not supported

The command GET SECTOR INFO does not return a Program

Sequence Number
1.6.5.2.7 Program Verify:

The command PROGRAM VERIFY is not supported

Number of DAQ lists is limited to OxFF

Maximum DTO length is limited to OxFF
DAQ does not support address extension
DAQ-list and event channel prioritization is not supported

DAQ bit offset not supported

The resume bits in DAQ lists are not set (no indication in response

of command GET DAQ LIST MODE)
ODT Optimization:

The ODT Optimization is not supported
1.2 Table of Event Codes:

XCP does not send any event packet natively. If required, the
implementation has to be added to application

1.3 Table of Service Request Codes (SERV):

The Service Request sErv _RESET is not supported

1.6.1.2.9 Build Checksum over memory range:

The checksum type xCp CRC 16 or XCP CRC 32 is only supported
if the checksum calculation is forwarded to a AUTOSAR CRC

module

Maximum checksum block size is OxFFFF

1.6.3 Page Switching Commands (PAG):

The command GET PAGE INFO is not supported
The command GET SEGMENT INFO is not supported
Only one segment and two pages are supported

Seed and Key:

The seed size and key size must be equal or less MAX_CTO-2

© 2017 Vector Informatik GmbH

Version 2.0.02.0.0
based on template version 6.0.1

14

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Functional Consistency only supported on ODT level. 1.1
Functional No other identification field type supported than “absolute ODT number”. 1.1

Table 3-3 Deviations from ASAM standard conform features

3.1.2 Additions/ Extensions
The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

Support of CAN-FD
Support transmission and reception of DTO on multiple cores simultaneously.

Table 3-4 Features provided beyond the AUTOSAR standard

3.2 Initialization
The XCP gets initialized by call of the following services:
e 5.2.1 Xcp_InitMemory
e 5.2.2 Xcp_Init
Xcp_InitMemory has to be called if memory is not initialized by start-up code.

The EcuM takes care of initialization, if no EcuM is used these functions have to be called
by application in correct order.

3.3 States

The XCP’s connection state machine is shown in Figure 3-1, comprises the following
states:

State Name Description

XCP_CON_STATE_DISCONNECTED |n this state neither CTO nor DTO messages can be received or
transmitted, except of the Connect CTO.

XCP_CON_STATE_CONNECTED In this state communication is fully supported.

XCP_CON_STATE_RESUME In this state CTO messages (except of Connection CTO) are
rejected, whereas DTO messages can be received and
transmitted.

Table 3-5 States

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 15
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

stm Connection State Machine/

Inifial

Xcp,_Init

Resume Mode

[OFF]

DISCONNECTED Xcp_CmdsStd_Connect CONNECTED RESUME
Xcp_CmdStd_Connect
Xcp_Disconnect j K

Figure 3-1 Connection State Machine

The states can be changed by the XCP master by sending the CTOs connect and
pisconnect. Additionally, the connection can be broken by the service:

e 5.2.9 Xcp_Disconnect

3.4 Main Functions
The Xcp provides a MainFunction:
e 5.2.5 Xcp_MainFunction
It must be called cyclically and performs the following tasks:

> Checksum calculation which is done asynchronously in configurable chunks to prevent
extensive runtime

> Resume Mode Handling

The Xcp MainFunction is normally called by the SchM. If you use a 3" party SchM you
must configure it accordingly such that the function is called cyclically.

3.5 Block Transfer Communication Model

In the standard communication model, each request packet is responded by a single
response packet or an error packet. To speed up memory uploads, downloads and flash
programming the XCP commands urroap, powNLOAD and PROGRAM support a block transfer
mode similar to ISO/DIS 15765-2.

In the Master Block Transfer Mode can the master transmit subsequent (up to the
maximum block size MAX_BS) request packets to the slave without getting any response
in between. The slave responds after transmission of the last request packet of the block.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 16
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

In Slave Block Transfer Mode the slave can respond subsequent (there is no limitation) to
a request without additional requests in between.

The Block Transfer Mode is limited to a block size of 255 Bytes. On bus systems with a
large max CTO (e.g. 254 Bytes) this Mode might be counterproductive and should stay
disabled.

3.6 Slave Device ldentification

3.6.1 XCP Station Identifier

The XCP station identifier is an ASCII string that identifies the ECU’s software program
version.

The MCS can interpret this identifier as file name for the ECU database. The ECU
developer should change the XCP station identifier with each program change. This will
prevent database mix-ups and grant the correct access of measurement and calibration
objects from the MCS to the ECU. Another benefit of the usage of the XCP station
identifier is the automatic assignment of the correct ECU database at program start of the
MCS via the plug & play mechanism. The plug & play mechanism prevents the user from
selecting the wrong ECU database.

3.6.2 XCP Generic Identification

The XCP provides a generic mechanism for identification by the cer 1o command. For this
purpose a call-back exist which can be implemented by the user to provide the requested
information (see 5.5.3 XcpAppl_GetldData).

3.7 Seed & Key

The seed and key feature allows individual access protection for calibration, flash
programming, synchronous data acquisition and data stimulation. The MCS requests a
seed (a few data bytes) from the ECU and calculates a key based on a proprietary
algorithm and sends it back to the ECU.

If Seed & Key is enabled in the configuration tool the following APIs need to be
implemented by the user:

e 5.5.4 XcpAppl_GetSeed
e 5.5.5 XcpAppl_Unlock

The XcpAppl_GetSeed call-back function returns a seed that is transferred to the MCS.
The XcpAppl_Unlock call-back function has to verify a received key based on the seed
and then return the resource that shall be unlocked.

The protection state can also individually be modified by the application. The following
service can be used for this purpose:

e 5.2.12 Xcp_ModifyProtectionStatus

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 17
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Note
Annotation for the usage of CANape:

The calculation of the key is done in a DLL, which is developed by the ECU
manufacturer and which must be located in the EXEC directory of CANape. CANape
can access the ECU only if the ECU accepts the key. If the key is not valid, the ECU
stays locked.

3.8 Checksum Calculation

The XCP Protocol Layer supports calculation of a checksum over a specific memory
range. The XCP Protocol Layer supports all XCP ADD algorithms and the CRC16CCITT
checksum calculation algorithm. If the AUTOSAR CRC Module is used also the XCP
CRC32 algorithm can be used.

If checksum calculation is enabled the background task has to be called cyclically.

3.8.1 Custom CRC calculation

The Protocol Layer also allows the calculation of the CRC by the application. For this the
call-back is called:

o 5.5.28 XcpAppl_CalculateChecksum

This call-back can either calculate the checksum synchronously and return xce cvp ox or
it can trigger the calculation and return xce _cvp pEnDING for asynchronous calculation of
the checksum. In each case the response frame has to be assembled.

3.9 Memory Access by Application

Memory access to measure or to calibrate variables is performed by two call-backs that
can be modified by the user to his needs. Please note that these API are only used for
polling access by default. DAQ/STIM uses direct memory access out of performance
reasons. DAQ/STIM access via these call-backs can be enabled by
/MICROSAR/Xcp/XcpGeneral/XcpDAQMemAccessByApplication.

The following call-backs are called by the Protocol Layer whenever a memory access is
performed:

e 5.5.6 XcpAppl_CalibrationWrite
e 5.5.7 XcpAppl_MeasurementRead

These APIs can be used to perform the memory access synchronously, asynchronously
(e.g. for EEPROM access), and they can deny the memory access, depending on the
return value.

3.9.1 Memory Read and Write Protection

Memory protection can easily be performed by the two above mentioned call-backs
returning xCp_ERR_ACCESS_DENIED.

Additionally the configuration switch
/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpMemoryReadProtection enables the call-
back:

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 18
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

e 5.5.8 XcpAppl_CheckReadAccess

This call-back is required for other services like CRC calculation to check the requested
memory size beforehand.

As Flash programming uses a different memory access mechanism, a different set of call-
backs is used.

The configuration switch
/MICROSAR/Xcp/XcpCmdConfig/XcpProgramming/XcpProgrammingWriteProtection enables
the call-back:

e 5.5.9 XcpAppl_CheckProgramAccess

This call-back can be used to check the memory range whenever a flash segment is
cleared or programmed.

3.9.2 Special use case “Type Safe Copy”

The above mentioned APIs will also be used if the feature “Type Safe Copy” is enabled. If
this is the case polling as well as DAQ/STIM measurement will use these functions to
read/write data. The template code for these functions performs read/write access in an
atomic way for basic data types (e.g. uint16 / uint32).

3.10 Event Codes

The slave device may report events by sending asynchronous event packets (EV), which
contain event codes, to the master device. The transmission is not guaranteed due to the
fact that these event packets are not acknowledged.

The transmission of event codes is enabled with the configuration switch
/MICROSAR/Xcp/XcpCmdConfig/XcpAsynchMessage/XcpEventCodes. The transmission is done
by the service:

e 5.2.6 Xcp_SendEvent.
The event codes can be found in the following table.

Event ___________ Code Description

XCP_EVC_RESUME_MODE 0x00 The slave indicates that it is starting in RESUME
mode.

XCP_EVC_CLEAR_DAQ 0x01 " The slave indicates that the DAQ configuration in non-
volatile memory has been cleared.

XCP_EVC_STORE_DAQ 002 The slave indicates that the DAQ configuration has
been stored into non-volatile memory.

XCP_EVC_STORE_CAL 003 The slave indicates that the calibration data has been
stored.

XCP_EVC_CMD_PENDING 0205 The slave requests the master to restart the time-out
detection.

XCP_EVC_DAQ_OVERLOAD 0x06 The slave indicates an overload situation when

transferring DAQ lists.

XCP_EVC SESSION TERMINATED 0x07 The slave indicates to the master that it autonomously
decided to disconnect the current XCP session.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 19
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

XCP_EVC_TIME_SYNC 0x08 Transfer of externally triggered timestamp.
XCP_EVC_STIM TIMEOUT 0x09 " Indication of a STIM timeout.
XCP_EVC_SLEEP 0x0A glave entering SLEEP mode.

XCP_EVC WAKE UP 0x0B glave leaving SLEEP mode.
XCP_EVC_USER 0xFE User-defined event.

XCP_EVC_TRANSPORT OxFF Transport layer specific event.

Table 3-6 Event codes

3.11 Service Request Messages

The slave device may request some action to be performed by the master device. This is
done by the transmission of a Service Request Packet (SERV) that contains the service
request code. The transmission of service request packets is asynchronous and not
guaranteed because these packets are not acknowledged.

The service request messages can be sent by the following functions:
e 5.2.7 Xcp_PutChar
e 5.2.8 Xcp_Print

3.12 User Defined Command

The XCP Protocol allows having a user defined command with an application specific
functionality. The user defined command is enabled by setting
/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpUserDefinedCommand and upon reception of
the user command the following callback function is called by the XCP command
processor:

e 5.5.10 XcpAppl_UserService

3.13 Synchronous Data Transfer

3.13.1 Synchronous Data Acquisition (DAQ)

The synchronous data transfer can be enabled with the container
/MICROSAR/Xcp/XcpCmdConfig/XcpDagAndstim. In this mode, the MCS configures tables of
memory addresses in the XCP Protocol Layer. These tables contain pointers to
measurement objects, which have been configured previously for the measurement in the
MCS. Each configured table is assigned to an event channel.

The function Xcp_Event(x) has to be called for each event channel with the corresponding
event channel number as parameter. The application has to ensure that Xcp_Event is
called with the correct cycle time. Note that the event channel numbers are given by the
GenTool by configuring /MICROSAR/Xcp/XcpConfig/XcpEventChannel. Symbolic name
values for each event channel are generated by the GenTool.

The ECU automatically transmits the current value of the measurement objects via
messages to the MCS, when the function Xcp_Event is executed in the ECU’s code with
the corresponding event channel number. This means that the data can be transmitted at
any particular point of the ECU code when the data values are valid.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 20
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

The data acquisition mode can be used in multiple configurations that are described within
the next chapters.

Note
Annotation for the usage of CANape:

It is recommended to enable both data acquisition plug & play mechanisms to detect
the DAQ settings.

3.13.2 DAQ Timestamp

There are two methods to generate timestamps for data acquisition signals.
1. By the MCS tool on reception of the message
2. By the ECU (XCP slave)

The time precision of the MCS tool is adequate for the most applications; however, some
applications like the monitoring of the OSEK operating system or measurement on
FlexRay with an event cycle time smaller than the FlexRay cycle time require higher
precision timestamps. In such cases, ECU generated timestamps are recommended.

The timestamp must be implemented in a call-back which returns the current value:
e 5.5.1 XcpAppl_GetTimestamp
There are several possibilities to implement such a timestamp:

> 16bit Counter variable, incremented by software in a fast task (.e.g. 1ms task) for
applications where such a resolution is sufficient and returned in the above mentioned
call-back.

> 32bit General Purpose Timer of the used uC, configured to a certain repetition rate
(e.g. 1us increment) for applications that require a high resolution of the timestamp
and returned in the above mentioned call-back.

The resolution and increment value of this timer must be configured in the configuration
tool accordingly.

3.13.3 Power-Up Data Transfer

Power-up data transfer (also called resume mode) allows automatic data transfer (DAQ) of
the slave directly after power-up. Automotive applications would e.g. be measurements
during cold start.

The slave and the master have to store all the necessary communication parameters for
the automatic data transfer after power-up. Therefore the following functions have to be
implemented in the slave.

e 5.5.19 XcpAppl_DagResume
e 5.5.20 XcpAppl_DagResumeStore
e 5.5.21 XcpAppl_DagResumeClear

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 21
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

To use the resume mode the compiler switch
/MICROSAR/Xcp/XcpCmdConfig/XcpDagAndStim/XcpResumeMode has to be enabled.

Keep also in mind that the Xcp_MainFunction has to be called cyclically in order for the
resume mode to work. If Resume Mode is enabled by the MCS tool the before mentioned
call-back XcpAppl_DaqResumeStore is called by the Xcp_MainFunction.

Note
Annotation for the use of CANape:

Start the resume mode with the menu command Measurement | Start and push the
button “Measure offline” on the dialog box.

3.13.4 Data Stimulation (STIM)
Synchronous Data Stimulation is the inverse mode of Synchronous Data Acquisition.

The STIM processor buffers incoming data stimulation packets. When an event occurs
(Xcp_Event is called), which triggers a DAQ list in data stimulation mode, the buffered
data is transferred to the slave device’s memory.

To use data stimulation (STIM) the configuration switch
/MICROSAR/Xcp/XcpCmdConfig/XcpDagAndStim/XcpSynchronousDataStimulation has to be
enabled.

With the APl Xcp_SetStimMode the mode of the write operation can be selected.

3.13.5 Bypassing

Bypassing can be realized by making use of Synchronous Data Acquisition (DAQ) and
Synchronous Data Stimulation (STIM) simultaneously.

State-of-the-art Bypassing also requires the administration of the bypassed functions. This
administration has to be performed in a MCS like e.g. CANape.

Also the slave should perform plausibility checks on the data it receives through data
stimulation. The borders and actions of these checks are set by standard calibration
methods. No special XCP commands are needed for this.

3.13.6 Data Acquisition Plug & Play Mechanisms
The XCP Protocol Layer comprises two plug & play mechanisms for data acquisition:

> General information on the DAQ processor
> General information on DAQ processing resolution

The general information on the DAQ processor contains:
> General properties of DAQ lists

> Total number of available DAQ lists and event channels

The general information on the DAQ processing resolution contains:
> Granularity and maximum size of ODT entries for both directions

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 22
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

> Information on the time stamp mode

3.13.7 Event Channel Plug & Play Mechanism

The XCP Protocol Layer supports a plug & play mechanism that allows the MCS to
automatically detect the available event channels in the slave. The associated service is
enabled by /MICROSAR/Xcp/XcpCmdConfig/XcpDagAndStim/XcpGetDAQEvent Info.

If this option is enabled the MCS can read the configured Event Channels from the XCP
Slave.

3.13.8 Send Queue

The Send Queue is used to store measurement values until they can be transmitted on the
bus. The Send Queue size can be configured in the configuration tool. It is defined by the
parameter /MICROSAR/Xcp/XcpConfig/XcpCoreDefinition/XcpSendQueueSize. Please be
aware that in a Multi Core system multiple Send Queues may be configured. Each Core
the Xcp_Event function is called on requires its own Send Queue. The sizes may vary,
depending on the number of measurement values on each Core. See chapter 3.16 Multi
Core Support.

3.13.9 Data consistency

The XCP supports a data consistency on ODT level. If a consistency on DAQ level is
required, interrupts must be disabled prior calling Xcp_Event and enabled again after the
function returns. The following example demonstrates the integrity on ODT level by
showing the XCP ODT frames as sent on the bus. Two Events (x, y) are configured with
DAQ list DAQ1 assigned to Event(x) and DAQ list DAQ2 assigned to Event(y). A call of the
Xcp_Event function with the respective event channel number will then trigger the
transmission of the associated DAQ list.

Example1: a call of Xcp_Event(x) is interrupted by a call of Xcp_Event(y). This is allowed
as long as the interrupt locks are provided by the Schedule Manager (default with
MICROSAR stack).

Example2: a call of Xcp_Event(x) is interrupted by a call of Xcp_Event(x). As a result a
DAQ list is interrupted by itself. This is not allowed and must be prevented by data
consistency on DAQ level. For this use a interrupt lock when calling Xcp_Event()

DAQ1 DAQ2
ODTO ODT3
ODT1 OoDT4
ODT2

Examplel ODTO ODT1|ODT3 ODT4|0ODT2

Example2 ODTO ODT1|ODTO ODT1 ODT2|ODT2

Figure 3-2 Data consistency

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 23
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Note on Multi Core systems: It is in the responsibility of the user to assign only
measurement values relevant for the Core to the corresponding Event Channel called on
the specific Core.

3.14 The Online Data Calibration Model

3.14.1 Page Switching

The MCS can switch between a flash page and a RAM page. The XCP command
SET_CAL_PAGE is used to activate the required page. The page switching is enabled with
the /MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching definition.

The following application callback functions have to be implemented:
e 5.5.23 XcpAppl_GetCalPage
e 5.5.24 XcpAppl_SetCalPage

Note
Annotation for the use of CANape:

Open the dialog XCP Device Setup with the menu command Tools|Driver
Configuration. Go to the tab “FLASH”. Activate page switching. Enter a flash selector
value e.g. 1 and a Ram selector e.g. 0.

3.14.2 Page Switching Plug & Play Mechanism

The MCS can be automatically configured if the page switching plug & play mechanism is
used. This mechanism comprises

> General information about the paging processor

The page switching plug & play mechanism is enabled with the switch
/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching/XcpGeneralPagingInfo.

3.14.3 Calibration Data Page Copying

Calibration data page copying is performed by the XCP command COPY_CAL_PAGE. To
enable this feature the compiler switch
/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching/XcpCopyPage has to be enabled.

For calibration data page copying the following application callback function has to be
provided by the application:

e 5.5.25 XcpAppl_CopyCalPage

3.14.4 Freeze Mode Handling

Freeze mode handling is performed by the XCP commands SET_SEGMENT_MODE and
GET_SEGMENT_MODE. To enable this feature the parameter
/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching/XcpFreezeMode has to be enabled.

For freeze mode handling the following application callback functions have to be provided
by the application:

o 5.5.26 XcpAppl_SetFreezeMode

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 24
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

e 5.5.27 XcpAppl_GetFreezeMode
o 5.5.22 XcpAppl_CalResumeStore

3.15 Flash Programming
There are two methods available for the programming of flash memory.
> Flash programming by the ECU’s application

> Flash programming with a flash kernel

Depending on the hardware it might not be possible to reprogram an internal flash sector,
while a program is running from another sector. In this case the usage of a special flash
kernel is necessary.

3.15.1 Flash Programming by the ECU’s Application

If the internal flash has to be reprogrammed and the microcontroller allows to
simultaneously reprogram and execute code from the flash the programming can be
performed with the ECU’s application that contains the XCP. This method is also used for
the programming of external flash.

The flash programming is done with the following XCP commands PROGRAM START,

PROGRAM RESET, PROGRAM CLEAR, PROGRAM, PROGRAM NEXT, PROGRAM MAX, PROGRAM RESET,

PROGRAM_FORMAT!, PROGRAM VERIFY'.

The flash prepare, flash program and the clear routines are platform dependent and
therefore have to be implemented by the application.

e 5.5.15 XcpAppl_Reset

e 5.5.16 XcpAppl_ProgramStart
e 5.5.17 XcpAppl_FlashClear

e 5.5.18 XcpAppl_FlashProgram

The flash programming is enabled with the switch
/MICROSAR/Xcp/XcpCmdConfig/XcpProgramming.

Note
Annotation for the usage of CANape:

Open the dialog XCP Device Setup with the menu command Tools|Driver
Configuration. Go to the tab “FLASH” and select the entry “Direct” in the flash kernel
drop down list.

3.15.2 Flash Programming Plug & Play Mechanism

The MCS (like e.g. CANape) can get information about the Flash and the Flash
programming process from the ECU. The following information is provided by the ECU:

1 Command not supported

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 25
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

> Number of sectors, start address or length of each sector
> The program sequence number, clear sequence number and programming method
> Additional information about compression, encryption

The flash programming plug & play mechanism is enabled with the switch
/MICROSAR/Xcp/XcpCmdConfig/XcpProgramming/XcpSector.

3.15.3 Flash Programming with a Flash Kernel

A flash kernel has to be used for the flash programming if it is not possible to
simultaneously reprogram and execute code from the flash. Even though the
reprogrammed sector and the sector the code is executed from are different sectors.

The application callback function
e 5.5.13 XcpAppl_DisableNormalOperation
e 5.5.14 XcpAppl_StartBootLoader

is called prior to the flash kernel download in the RAM. Within this function the normal
operation of the ECU has to be stopped and the flash kernel download can be prepared.
Due to the flash kernel is downloaded in the RAM typically data gets lost and no more
normal operation of the ECU is possible.

The flash programming with a flash kernel is enabled with the switch
/MICROSAR/Xcp/XcpGeneral/XcpBootloaderDownload.

Note
Annotation for the usage of CANape:

The flash kernel is loaded by CANape into the microcontroller's RAM via XCP
whenever the flash memory has to be reprogrammed. The flash kernel contains the
necessary flash routines, its own CAN-Driver and XCP Protocol implementation to
communicate via the CAN interface with CANape.

Every flash kernel must be customized to the microcontroller and the flash type being
used. CANape already includes some flash kernels for several microcontrollers. There
is also an application note available by Vector Informatik GmbH that describes the
development of a proprietary flash kernel.

Open the dialog XCP Device Setup with the menu command Tools|Driver
Configuration. Go to the tab “FLASH”, and select in the ‘flash kernel’ drop down list, the
corresponding fkl file for the microcontroller being used.

3.16 Multi Core Support

3.16.1 Type Safe Copy

The XCP Protocol Layer supports a feature called “Type Safe Copy” which provides
atomic access to aligned uint16 and uint32 measurement values. This is important on multi
core platforms where one core is accessing a measurement value while the XCP is trying

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 26
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

to do the same running from another core. The Type Safe Copy is used for polling while
DAQ/STIM usually use direct memory access and copy byte wise.

With this option disabled, all access to measurement values is performed byte wise which
is not an atomic operation.

The following points must be taken into consideration when enabling this option:

> This option allows the XCP to only read/write basic data types used on another core; it
cannot provide data consistency on ODT level.

> This option has a slightly higher runtime.

> Some MCS tools perform an optimization by grouping measurement values. This
option must be disabled; otherwise they do not represent unique data types anymore.

3.16.2 DAQ/STIM with Multi Core

It is possible to execute the Xcp Event function on a different Core. This must be
configured in the configuration tool accordingly. For each Core the XCP is used on the
following Container must be created: /MICROSAR/Xcp/XcpConfig/XcpCoreDefinition. The
correct Core Definition must be referenced for each configured Event Channel:
/MICROSAR/Xcp/XcpConfig/XcpEventChannel/XcpEventChannelCoreRef. An Event Channel
can only be called on the Core it is configured for; otherwise a DET error is thrown.

The following picture shows the architecture behind the Multi Core support and the way
the Xcp_Event function is called on each Core:

act Activity /
OsTask

OsTask BSW Application OsTask
Core Core Utility Core

Calculation of Application
Data

Calculation of Utility Data

o stons Collecting Data
E Applicati
P e Co g Xcp_Event(5ms_ApplicationCore)
Specific Queue
\ ActivityFinal

«datastore»
Lock free Core
Specific Queue

Xcp_MainFunction (Trigger
Sequential Transmission)

Collecting Data
Xcp_Event(5ms_UtilityCore)

ActivityFinal

ActivityFinal

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 27
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Figure 3-3 Application of Xcp_Event function on Multi Core systems

3.17 En-/Disabling the XCP module

The macro xcp AcTIVATE/xCP DEACTIVATE can be used to en- or disable the XCP module
during run time. Thus the XCP functionality can be controlled by the application. These
macros control the protocol and transport layer together, i.e. enabling or disabling them as
a whole. It is recommended to perform a Xcp_Disconnect() API call to bring the XCP in a
save state before it is disabled.

3.18 XCP measurement during the post event time

In use cases where there is no further communication request except XCP measurement
the session state of the XCP can be determined to prevent an early shutdown of the ECU.
For this purpose the following API exist:

e 5.2.13 Xcp_GetSessionStatus
An example implementation that is called cyclically could look like the following example:

A Example
sl |
uintl6 sessionState;
sessionState = Xcp GetSessionStatus();
if(0 != (sessionState & XCP_SESSION CONNECTED))

{
/* Is the xcp actively used? */
if(0 != (sessionState & (XCP _SESSION DAQ | XCP SESSION POLLING)))
{
/* Yes, reload timer */
swTimer = XCPAPPL TIMEOUT TIMER RELOAD;
}
}

if(swTimer > 0)

{
/* No timeout so far */
swTimer—--;

}

else
{
/* Timer timeout happened, release xcp communication request */
}
}

Please note that polling requests may happen erratically. Therefore it is important not to
choose the timeout value xcp _TiMEOUT TIMER RELOAD t0O Small.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 28
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

3.19 Error Handling

3.19.1 Development Error Reporting

By default, development errors are reported to the DET using the service
Det_ReportError() as specified in [2], if development error reporting is enabled:
/MICROSAR/Xcp/XcpGeneral/XcpDevErrorDetect.

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature
as the service Det_ReportError().

The reported XCP ID is 212.

The reported service IDs identify the services which are described in 5.2. The following
table presents the service IDs and the related services:

Service ID Service

0x00 Xcp_Init

0x03 Xcp_SendEvent

0x04 Xcp_PutChar

0x05 Xcp_Print

0x06 Xcp_Disconnect

0x07 Xcp_SendCrm

0x08 Xcp_GetXcpDataPointer
0x0A Xcp_GetVersioninfo
0x0B Xcp_TIRxIndication
0x0C Xcp_TITxConfirmation
Ox0E Xcp_GetSessionStatus
OxOF Xcp_SetActiveTl

0x10 Xcp_GetActiveTl

0x11 Xcp_SetStimMode

0x14 Xcp_ModifyProtectionStatus
0xC8 Xcp_MainFunction

0xC9 Xcp_Event

OxFD Xcp_StimEventStatus

Table 3-7 Service IDs

The errors reported to DET are described in the following table:

Error Code Description

Ox0A API service Xcp_lInit() called with wrong parameter.
0x0B API service used with an invalid channel identifier or channel was not configured
for the functionality of the calling API.
0x0C API service used with an invalid event channel identifier or event channel was
not configured for the functionality of the calling API.
0x0D API service used with invalid pointer parameter (NULL).
© 2017 Vector Informatik GmbH Version 2.0.02.0.0 29

based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Error Code Description

Ox0E API service used with an invalid channel identifier or channel was not configured
for the functionality of the calling API.

0x10 API service used without module initialization.
0x11 The service Xcp_Init() is called while the module is already initialized.
0x12 The service Xcp_Event() is called with a wrong channel id on a wrong core.

Table 3-8 Errors reported to DET

3.19.2 Production Code Error Reporting
The errors reported to DEM are described in the following table:

Error Code Description

- No production errors are reported by the XCP.

Table 3-9 Errors reported to DEM

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 30
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

4 Integration

This chapter gives necessary information for the integration of the MICROSAR XCP into
an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the XCP contains the files which are described in the chapters 4.1.1 and
4.1.3:

4.1.1 Static Files

File Name Description

Xcp.c This is the source file of the XCP. It contains the XCP protocol layer.

Xcp.h This is the header file. It contains global declarations.

Xcp_Priv.h This is the private header file. It contains declarations only relevant for the XCP
itself.

Xcp_Types.h This is the type definition header file. It contains type definitions used by the XCP.

Table 4-1 Static files

4.1.2 Templates — user modifiable

File Name Description

XcpAppl.c This is the source file of the application call-back. This file usually must be
modified by the user to his needs.

XcpAppl.h This is the header file of the application call-backs. It contains global declarations.

Table 4-2 Templates

4.1.3 Dynamic Files
The dynamic files are generated by the configuration tool.

FileName | Description

Xcp_Cfg.h XCP Protocol Layer configuration file.
Xcp_Lcfg.c Parameter definition for the XCP Protocol Layer.
Xcp_Lcfg.h External declarations for the parameters.

Table 4-3 Generated files

414 Generated a2l files

The GenTool also generates multiple a2l files which can be used in the MCS tool for easier
integration. The following files are generated:

e XCP.a2l (general protocol layer settings)
e XCP_daq.a2l (DAQ specific settings)
e XCP_events.a2l (DAQ event info)

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 31
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

e XCP_Checksum.a2l (Checksum information)

Y Example Master.a2l:

/begin IF DATA XCP
/include XCP.a2l
/begin DAQ
/include XCP_daq.a2l
/include XCP_events.a2l
/include XCP_checksum.a2l

/end DAQ
/include CanXCPAsr.a2l
/end IF_DATA

/include bsw.a2l

4.2 Critical Sections

The XCP protocol layer makes use of three critical sections in order to protect functions
that are not re-entrant. The following sections are used:

® XCP EXCLUSIVE AREA 0
® XCP EXCLUSIVE AREA 1
® XCP EXCLUSIVE AREA 2

The individual exclusive areas must not be allowed to interrupt each other. The areas are
used for the following cases:

42.1 XCP_EXCLUSIVE_AREA_O

This exclusive area is used to protect non-reentrant functions. This critical section covers
calls to several sub-functions and can have a long run-time.

422 XCP_EXCLUSIVE_AREA_1

This exclusive area is used by Xcp_Event during DAQ measurement. It is used to provide
data integrity on ODT level and its duration is dependent on the MAX_DTO parameter, i.e.
can be short on CAN and long on Ethernet.

423 XCP_EXCLUSIVE_AREA 2

This exclusive area is used by Xcp_Event during STIM measurement. It is used to provide
data integrity on ODT level and its duration is dependent on the MAX_DTO parameter, i.e.
can be short on CAN and long on Ethernet.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 32
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

4.3 Memory Mapping

The XCP has requirements regarding memory mapping to avoid misaligned memory
access. The following section: XcP_START_SEC_VAR_NOCACHE_NOINIT_32BIT must be mapped to a
32Bit section in order to guarantee correct alignment.

Caution
n If this section is not mapped accordingly, a trap will happen on architectures that do not
support misaligned access, e.g. TriCore.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 33
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

5 API Description

For an interfaces overview please see Figure 2-2.

5.1 Type Definitions
The types defined by the XCP are described in this chapter.

Type Name C-Type |Description

Xcp TimestampType c-type This is a type used for timestamp values. Its size is depending
on the configuration in the tool and can be uint8, uint16 or
uint32.

Table 5-1 Type definitions

Xcp_ChannelStruct

Struct Element Name | C-Type |Description

Xcp ChannelStruct c-type This is a complex structure containing all the configuration
data of the XCP. This structure needs to be stored in NVM for
resume mode.

Table 5-2 Xcp_ChannelStruct

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 34
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

5.2 Services provided by XCP
5.2.1 Xcp_InitMemory

Prototype
void Xep_InitMemory (void)
Parameter

Return code

Functional Description

This service initializes the XCP Protocol Layer memory. It must be called from the application program
before any other XCP function is called. This is only required if the Startup Code does not initialize the
memory with zero.

Particularities and Limitations

\%

Service ID: see table 'Service IDs'
This function is synchronous.
This function is reentrant.

VvV V V

The global interrupts have to be disabled while this service function is executed. This function should be
called during initialization of the ECU before the interrupts have been enabled.

Expected Caller Context
> Task and interrupt level

Table 5-3 Xcp_InitMemory

Prototype

o
N
(N
X
o
-
=
=

void Xep_Init (void)

Parameter

Return code

Functional Description

This service initializes the XCP Protocol Layer and its internal variables. It must be called from the
application program before any other XCP function is called (except of Xcp_InitMemory).

Particularities and Limitations

> Service ID: see table 'Service IDs'
> This function is synchronous.
> This function is non-reentrant.

Expected Caller Context

> Task level

N

Xcp_Init

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 3
based on template version 6.0.1

5]

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

5.2.3 Xcp_Event
Prototype

uint8 Xcp_Event (uintl6 EventChannel)

Parameter

EventChannel Number of event channels to process.

The event channel numbers have to start at 0 and have to be continuous. The
range is: 0..x

Return code

uint8 XCP_EVENT_NORP : Inactive (DAQ not running, Event not configured)
XCP_EVENT_DAQ : DAQ active */
XCP_EVENT_DAQ_OVERRUN : DAQ queue overflow, data lost
XCP_EVENT_STIM : STIM active
XCP_EVENT_STIM_OVERRUN : STIM data not available

Functional Description

Calling Xcp_Event with a particular event channel number triggers the sampling and transmission of all
DAQ lists that are assigned to this event channel.

The event channels are defined by the ECU developer in the application program. An MCS (e.g. CANape)
must know about the meaning of the event channel numbers. These are usually described in the tool
configuration files or in the interface specific part of the ASAM MC2 (ASAP2) database.

Example:

A motor control unit may have a 10ms, a 100ms and a crank synchronous event channel. In this case, the
three Xcp Event calls have to be placed at the appropriate locations in the ECU’s program:

Xcp Event (XcpConf XcpEventChannel 10ms); /* 10ms cycle */
xcp Event (XcpConf XcpEventChannel 100ms); /* 100ms cycle */
xcp Event (XcpConf XcpEventChannel Crank); /* Crank synchronous cycle */

Particularities and Limitations

> Service ID: see table 'Service IDs'
> This function is synchronous.

\Y

This function is reentrant (for different Event Channel).

\%

The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

\Y

Data acquisition has to be enabled
/MICROSAR/Xcp/XcpCmdConfig/XcpDagAndStim

Expected Caller Context
> Task and interrupt level

Table 5-5 Xcp_Event

5.2.4 Xcp_StimEventStatus

Prototype
uint8 Xcp_StimEventStatus (uintl6 EventChannel, uint8 Action)

Parameter
EventChannel Event channel number.
© 2017 Vector Informatik GmbH Version 2.0.02.0.0 36

based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Action STIM CHECK ODT BUFFER :check ODT buffer
STIM RESET ODT BUFFER :reset ODT buffer

Return code

XCP_NO_STIM_DATA_AVAILABLE : stimulation data not available
XCP_STIM_DATA_AVAILABLE : new stimulation data is available

uint8

Functional Description
Check if data stimulation (STIM) event can perform or delete the buffers.

Particularities and Limitations

\%

Service ID: see table 'Service IDs'

This function is synchronous.

This function is reentrant.

The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

V V V V

Data acquisition has to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpDagAndStim/XcpSynchronousDataStimulation

Expected Caller Context
> Task and interrupt level

Table 5-6 Xcp_StimEventStatus

5.2.5 Xcp_MainFunction

Prototype
void Xep_MainFunction (void)
Parameter

Return code

Functional Description

If the XCP command for the calculation of the memory checksum has to be used for large memory areas, it
might not be appropriate to block the processor for a long period of time. Therefore, the checksum
calculation is divided into smaller sections that are handled in the Xcp MainFunction.

Additionally, the main function handles persisting requests.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has been initialized correctly
Expected Caller Context

> Task level

Table 5-7 Xcp_MainFunction

~

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 3
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

5.2.6 Xcp_SendEvent
Prototype

void Xecp_SendEvent (Xcp ChannelType XcpChannel, uint8 EventCode, uint8
*EventData, uint8 Length)

XcpChannel The channel number in multi client mode.
EventCode The event code of the message to send.
EventData A pointer to the string of the event to send.
Length The length of the event data.

Return code

Functional Description
Transmission of event codes via event packets (EV).

Particularities and Limitations

‘

Service ID: see table 'Service IDs'

\%

This function is synchronous.

\Y

This function is non-reentrant.

\%

The XCP Protocol Layer has been initialized correctly and XCP is in connected state.
> Event Codes has to be enabled: /MICROSAR/Xcp/XcpCmdConfig/XcpAsynchMessage/XcpEventCodes

Expected Caller Context
> Task level

Table 5-8 Xcp_SendEvent

5.2.7 Xcp_PutChar
Prototype

void Xep_PutChar (Xcp ChannelType XcpChannel, uint8 *Character)

Parameter
XcpChannel The channel number in multi client mode.
Character The char to send.

Return code

Functional Description

Put a char into a service request packet (SERV).

The service request packet is transmitted if either the maximum packet length is reached (the service
request message packet is full) or the character 0x00 is in the service request packet.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 3
based on template version 6.0.1

©

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Particularities and Limitations

\%

Service ID: see table 'Service IDs'

This function is synchronous.

This function is non-reentrant.

The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

V V V V

Service Request Message has to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpAsynchMessage/XcpServiceRequestMessage

Expected Caller Context
> Task level

Table 5-9 Xcp_PutChar

o
N
o
X
o
-
1Y)
=
=
~—

Prototype
void Xep_Print (Xcp ChannelType XcpChannel, uint8 *Str)

XcpChannel The channel number in multi client mode.
Str The 0 terminated string to send.

Return code

Functional Description

Transmission of a service request packet (SERV).
The string str is sent via service request packets. The string has to be terminated by 0x00.

Particularities and Limitations

\Y

Service ID: see table 'Service IDs'

This function is synchronous.

This function is non-reentrant.

The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

V V V V

Service Request Message has to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpAsynchMessage/XcpServiceRequestMessage

Expected Caller Context
> Task level

Table 5-10 Xcp_Print

5.2.9 Xcp_Disconnect
Prototype

void Xcp_Disconnect (Xcp ChannelType XcpChannel)

Parameter
XcpChannel The channel number in multi client mode.
© 2017 Vector Informatik GmbH Version 2.0.02.0.0 39

based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Return code

Functional Description

If the XCP slave is connected to a XCP master a call of this function discontinues the connection (transition
to disconnected state). If the XCP slave is not connected this function performs no action.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

Expected Caller Context
> Task level

Table 5-11 Xcp_Disconnect

o1
N
[EEN
o
x
O
°
n
@D
>
(o8
Q
3

Prototype
void Xcp_SendCrm (Xcp ChannelType XcpChannel)

Parameter

XcpChannel The channel number in multi client mode.

Return code

Functional Description
Transmission of a command response packet (RES), or error packet (ERR) if no other packet is pending.

Particularities and Limitations

> Service ID: see table 'Service IDs'
> This function is synchronous.
> This function is non-reentrant.

> The XCP Protocol Layer has been initialized correctly, XCP is in connected state and a command
packet (CMD) has been received.

Expected Caller Context
> Task level

Table 5-12 Xcp_SendCrm

5.2.11 Xcp_GetVersioninfo
Prototype

void Xcp_GetVersionInfo (Std VersionInfoType *versionInfo)

Parameter
versionInfo Pointer to the location where the Version information shall be stored.
© 2017 Vector Informatik GmbH Version 2.0.02.0.0 40

based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Return code

Functional Description

Xcp_GetVersionlnfo() returns version information, vendor ID and AUTOSAR module ID of the component.
The versions are BCD-coded.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is reentrant.

> The version info API has to be enabled: /MICROSAR/Xcp/XcpGeneral/XcpVersionInfoApi

Expected Caller Context
> Task level

Table 5-13 Xcp_GetVersioninfo

5.2.12 Xcp_ModifyProtectionStatus

Prototype

void Xcp_ModifyProtectionStatus (Xcp ChannelType XcpChannel, uint8 AndState,
uint8 OrState)

XcpChannel The channel number in multi client mode.
AndState The following flags: XCP_RM_CAL_PAG, XCP_RM_DAQ, XCP_RM_STIM

and XCP_RM_PGM can be used to clear the protection state of the respective
resource. The modified state is persistent until Xcp_Init.

OrState The following flags: XCP_RM_CAL_PAG, XCP_RM_DAQ, XCP_RM_STIM
and XCP_RM_PGM can be used to set the protection state of the respective
resource. The modified state is persistent until Xcp_lInit.

Return code

Functional Description

This method can be used to enable or disable the protection state of an individual resource during runtime.
The newly set protection state is persistent until the next call of the Xcp_Init function where all flags are set
again.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> Seed&Key has to be enabled: /MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpSeedKey
Expected Caller Context

> Task level

Table 5-14 Xcp_ModifyProtectionStatus

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 41
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

5.2.13 Xcp_GetSessionStatus

Prototype
uintl6 Xcp_GetSessionStatus (Xcp ChannelType XcpChannel)

Parameter

XcpChannel The channel number in multi client mode.

Return code

uintlé6 The function returns a bit mask with the following flags:
XCP_SESSION_CONNECTED: The XCP is in state connected.
XCP_SESSION_POLLING: A polling measurement is ongoing.
XCP_SESSION_DAQ: A DAQ measurement is active.

Functional Description

This service can be used to get the session state of the XCP Protocol Layer. The session state is returned
as a bit mask where the individual bits can be tested.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> Session Status API has to be enabled: /MICROSAR/Xcp/XcpGeneral/XcpSessionStatusAPI

Expected Caller Context
> Task level

Table 5-15 Xcp_GetSessionStatus

5.2.14 Xcp_GetXcpDataPointer

Prototype
uintl6 Xcp GetXcpDataPointer (Xcp_ChannelStructPtr * pXcpData)

Parameter

pXcpData Pointer to XCP channel information.

Return code

Functional Description

This service can be used to get the complete XCP data. This is required for flash programming with a flash
kernel.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> Bootloader Download has to be enabled: /MICROSAR/Xcp/XcpGeneral/XcpBootloaderDownload

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 4
based on template version 6.0.1

N

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Expected Caller Context
> Task level

Table 5-16 Xcp_GetXcpDataPointer

5.2.15 Xcp_SetStimMode

Prototype
void Xcp_SetStimMode (uint8 mode)

Parameter

Mode The STIM mode to select. This can either be

XCP_STIM_SINGLE_SHOT_MODE: Valid STIM data is written a single time
(default).
XCP_STIM_CONTINUOUS_MODE: Valid STIM data is written continuously.

Return code

Functional Description
This service is used to change the behavior of the Xcp_Event function when new STIM data is written.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> Data acquisition and STIM has to be enabled
/MICROSAR/Xcp/XcpCmdConfig/XcpDagAndStim/XcpSynchronousDataStim

Expected Caller Context
> Task level

Table 5-17 Xcp_SetStimMode
5.3 Services provided by the XCP Protocol Layer and called by the XCP Transport
Layer

5.3.1 Xcp_TIRxIndication
Prototype

void Xep_T1RxIndication (Xcp ChannelType XcpChannel, unt8 *CmdPtr)

XcpChannel The channel number in multi client mode.
CmdPtr Pointer to the XCP protocol message, which must be extracted from the XCP

protocol packet.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 4
based on template version 6.0.1

w

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Return code

Functional Description

Every time the XCP Transport Layer receives a XCP CTO Packet this function has to be called.
The parameter is a pointer to the XCP protocol message, which must be extracted from the XCP protocol
packet.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context
> Task level

Table 5-18 Xcp_TIRxIndication

5.3.2 Xcp_TITxConfirmation
Prototype

void Xep_T1TxConfirmation (Xcp ChannelType XcpChannel)

Parameter

XcpChannel The channel number in multi client mode.

Return code

Functional Description

The XCP Protocol Layer does not call <Bus>Xcp Send again, until Xcp T1TxConfirmation has
confirmed the successful transmission of the previous message. Xcp T1TxConfirmation transmits
pending data acquisition messages by calling <Bus>Xcp_ Send again.

Note that if Xcp T1TxConfirmation is called from inside <Bus>Xcp Send a recursion occurs, which
assumes enough space on the call stack.

Particularities and Limitations

> Service ID: see table 'Service IDs'
> This function is synchronous.
> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.
Expected Caller Context
> Task level

Table 5-19 Xcp_TITxConfirmation

5.3.3 Xcp_SetActiveTl
Prototype

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 4
based on template version 6.0.1

N

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

void Xcp_SetActiveTl (Xcp ChannelType XcpChannel, uint8 MaxCto, uintl6 MaxDto,
uint8 ActiveTl)

XcpChannel The channel number in multi client mode.

MaxCto Max CTO used by the respective XCP Transport Layer
MaxDto Max DTO used by the respective XCP Transport Layer
ActiveTl XCP_TRANSPORT LAYER CAN: XCP on CAN Transport Layer

XCP_TRANSPORT LAYER FR: XCP on Fr Transport Layer
XCP_TRANSPORT LAYER ETH: XCP on Ethernet Transport Layer

Return code

Functional Description

This service is used by the XCP Transport Layers to set the Transport Layer to be used by the XCP
Protocol Layer

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context
> Task level

Table 5-20 Xcp_SetActiveTl

5.3.4 Xcp_GetActiveTl
Prototype

uint8 Xcp_GetActiveTl (Xcp ChannelType XcpChannel)

Parameter
XcpChannel The channel number in multi client mode.

Return code

uint8 XCP_TRANSPORT LAYER CAN: XCP on CAN Transport Layer
XCP_TRANSPORT LAYER FR: XCP on Fr Transport Layer
XCP_TRANSPORT LAYER ETH: XCP on Ethernet Transport Layer

Functional Description

This service is used by the XCP Transport Layers to get the currently active Transport Layer used by the
XCP Protocol Layer

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 4
based on template version 6.0.1

[

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context
> Task level

Table 5-21 Xcp_GetActiveTl

5.4 XCP Transport Layer Services called by the XCP Protocol Layer

5.4.1 <Bus>Xcp_Send

Prototype
void <Bus>Xcp Send (Xcp ChannelType XcpChannel, uint8 len, uint8 *msg)

XcpChannel The channel number in multi client mode.
len Length of message data
msg Pointer to message

Return code

Functional Description

Requests for the transmission of a command transfer object (CTO) or data transfer object (DTO).
Xcp T1TxConfirmation must be called after the successful transmission of any XCP message. The
XCP Protocol Layer will not request further transmissions otherwise.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.
Expected Caller Context

> Task level

Table 5-22 <Bus>Xcp_Send

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 4
based on template version 6.0.1

[«

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

5.4.2 <Bus>Xcp_SendFlush
Prototype

void <Bus>Xcp SendFlush(Xcp ChannelType XcpChannel, uint8 FlushType)

Parameter
XcpChannel The channel number in multi client mode.
FlushType This is one of the following:

XCP_FLUSH CTO: To flush CTO messages.
XCP_FLUSH DTO: To flush DTO message.
XCP_FLUSH ALL: To flush either message.

Return code

Functional Description
Flush the transmit buffer.

Particularities and Limitations

> Service ID: see table 'Service IDs'

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.
Expected Caller Context

> Task level

Table 5-23 <Bus>Xcp_SendFlush

5.4.3 <Bus>Xcp_TIService

Prototype
uint8 <Bus>Xcp TlService(Xcp ChannelType XcpChannel, uint8 *pCmd)

Parameter
XcpChannel The channel number in multi client mode.
pCmd Pointer to transport layer command string

Return code

uints XCP_CMD_OK :Done
XCP_CMD PENDING : Call Xcp_SendCrm() when done
XCP_CMD_SYNTAX : Error
XCP_CMD BUSY : not executed
XCP_CMD UNKNOWN : not implemented optional command
XCP_CMD OUT OF RANGE :command parameters out of range

Functional Description

Transport Layer specific commands are processed within the XCP Transport Layer.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 4
based on template version 6.0.1

hy]

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Particularities and Limitations

>

Service ID: see table 'Service IDs'

\%

This function is synchronous.
> This function is non-reentrant.
> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context
> Task level

Table 5-24 <Bus>Xcp_TIService

5.5 Application Services called by the XCP Protocol Layer

The prototypes of the functions that are required by the XCP Protocol Layer can be found
in the XcpAppl header.

The XCP Protocol Layer provides application callback functions in order to perform
application and hardware specific tasks.

Note: All services within this chapter are called from task or interrupt level. All services are
not reentrant.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 48
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

55.1 XcpAppl_GetTimestamp

Prototype
Xcp TimestampType XcpAppl GetTimestamp(void)

Parameter

Return code

Xcp TimestampType The timestamp which is either uint8, uint16 or uint32, depending on
- configuration.

Functional Description
Returns the current timestamp.

Particularities and Limitations

\Y

This function is synchronous.
This function is non-reentrant.
The XCP Protocol Layer has to be initialized correctly.

VvV V V

DAQ and timestamp feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpDagAndStim
/MICROSAR/Xcp/XcpGeneral/XcpTimestampType

Expected Caller Context
> Task level

Table 5-25 XcpAppl_GetTimestamp

5.5.2 XcpAppl_GetPointer
Prototype

Xcp AddressPtrType XcpAppl GetPointer (Xcp ChannelType XcpChannel, uint8
AddrExt, const Xcp AddressPtrType Addr)

XcpChannel The channel number in multi client mode.
AddrExt 8 bit address extension
Addr 32 bit address

Return code

Xcp AddressPtrType Pointer to the address specified by the parameters

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 4
based on template version 6.0.1

©

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Functional Description

This function converts a memory address from XCP format (32-bit address plus 8-bit address extension) to
a C style pointer. An MCS like CANape usually reads this memory addresses from the ASAP2 database or
from a linker map file.

The address extension may be used to distinguish different address spaces or memory types. In most
cases, the address extension is not used and may be ignored.

This function is used to convert an address from the MCS tool.
Example:
The following code shows an example of a typical implementation of XcpAppl GetPointer:
Xcp AddressPtrType XcpAppl GetPointer (Xcp ChannelType XcpChannel, uint8 AddrExt, uint32 Addr)
{
return (Xcp AddressPtrType)Addr;

Particularities and Limitations

‘

> This function is synchronous.
This function is non-reentrant.
The XCP Protocol Layer has to be initialized correctly.

vV V V

DAQ and timestamp feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpDagAndStim
/MICROSAR/Xcp/XcpGeneral/XcpTimestampType

Expected Caller Context
> Task level

Table 5-26 XcpAppl_GetPointer

5.5.3 XcpAppl_GetldData
Prototype

uint32 XcpAppl GetIdData(uint8 **Data, uint8 Id)

Data Pointer to location where address pointer to Id data is stored.
Id Identification of the requested information/identification

Return code
uint32 Length of the MAP file names

Functional Description

Returns a pointer to identification information as requested by the Xcp Master.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.
>

Get ID feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpGetIdGeneric

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 5
based on template version 6.0.1

o

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Expected Caller Context
> Task level

Table 5-27 XcpAppl_GetldData

554 XcpAppl_GetSeed
Prototype

uint8 XcpAppl GetSeed(const uint8 Resource, uint8 *Seed)

Parameter

Resource Resource for which the seed has to be generated
XCP_RM CAL PAG: to unlock the resource calibration/paging
XCP_RM DAQ : to unlock the resource data acquisition
XCP_RM STIM: to unlock the resource stimulation
XCP_RM PGM : to unlock the resource programming

Seed Pointer to RAM where the seed has to be generated to.

Return code

uint8 The length of the generated seed that is returned by seed.

Functional Description

Generate a seed for the appropriate resource.
The seed has a maximum length of MAX_CTO-2 bytes.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.
>

Seed&Key feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpSeedKey

Expected Caller Context
> Task level

Table 5-28 XcpAppl_GetSeed

5.5.5 XcpAppl_Unlock
Prototype

uint8 XcpAppl Unlock(const uint8 *Key, const uint8 Length)

Parameter
Key Pointer to key.
Length Length of the key.
© 2017 Vector Informatik GmbH Version 2.0.02.0.0 51

based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Return code

uint8 0 : if the key is not valid
XCP_RM CAL PAG: to unlock the resource calibration/paging
XCP_RM DAQ : to unlock the resource data acquisition
XCP_RM STIM: to unlock the resource stimulation
XCP_RM_ PGM : to unlock the resource programming

Functional Description

Check the key and return the resource that has to be unlocked.
Only one resource may be unlocked at one time.

Particularities and Limitations

\%

This function is synchronous.
This function is non-reentrant.
The XCP Protocol Layer has to be initialized correctly.

vV V V

Seed&Key feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpSeedKey

Expected Caller Context
> Task level

Table 5-29 XcpAppl_Unlock

5.5.6 XcpAppl_CalibrationWrite

Prototype
uint8 XcpAppl CalibrationWrite(Xcp AddressPtrType Dst, uint8 *Src, uint8 Size

\

Parameter

Dst Destination address as integer.

Src Pointer to source of data.

Size Size of data to copy from Src to Dst.

Return code

uints XCP_CMD_DENIED : ifaccess is denied
XCP_CMD PENDING : access is performed asynchronously (e.g. EEPROM)
XCP_CMD_OK : if access is granted

Functional Description
Check addresses for valid write access and copy data from source to destination.

Particularities and Limitations

> This function can be synchronous and asynchronous.
> This function is non-reentrant.
> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context
> Task level

Table 5-30 XcpAppl_CalibrationWrite

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 5
based on template version 6.0.1

N

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

5.5.7 XcpAppl_MeasurementRead

Prototype
uint8 XcpAppl_ MeasurementRead(uint8 *Dst, Xcp AddressPtrType Src, uint8 Size)

Dst Pointer to destination address
Src Source address of data as integer
Size Size of data to copy from Src to Dst.

Return code

uints XCP_CMD DENIED : if access is denied
XCP_CMD_PENDING : access is performed asynchronously (e.g. EEPROM)
XCP_CMD_OK : if access is granted

Functional Description
Check addresses for valid read access and copy data from source to destination.

Particularities and Limitations

> This function can be synchronous and asynchronous.
> This function is non-reentrant.
> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context
> Task level

Table 5-31 XcpAppl_MeasurementRead

5.5.8 XcpAppl_CheckReadAccess
Prototype

uint8 XcpAppl CheckReadAccess (Xcp_ChannelType XcpChannel, Xcp_AddressPtrType
Address, uint32 Size)

XcpChannel The channel number in multi client mode.
Address Destination address to check.
Size Size of data to check.

Return code

uint8 XCP _CMD DENIED : if access is denied
XCP_CMD_OK : if access is granted

Functional Description
Check addresses for valid read access.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 5
based on template version 6.0.1

w

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Particularities and Limitations

\%

This function is synchronous.
This function is non-reentrant.
The XCP Protocol Layer has to be initialized correctly.

vV V V

Read Protection feature need to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpMemoryReadProtection

Expected Caller Context
> Task level

Table 5-32 XcpAppl_CheckReadAccess

5.5.9 XcpAppl_CheckProgramAccess

Prototype
uint8 XcpAppl CheckProgramAccess(Xcp AddressPtrType Address, uint32 Size)

Address Destination address to check.
Size Size of data to check.

Return code

uint8 XCP _CMD DENIED : if access is denied
XCP_CMD_OK : if access is granted

Functional Description
Check addresses for valid write flash access.

Particularities and Limitations

> This function is synchronous.
> This function is non-reentrant.
> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context
> Task level

Table 5-33 XcpAppl_CheckProgramAccess

5.5.10 XcpAppl_UserService
Prototype

uint8 XcpAppl UserService(uint8 *Cmd)

Parameter

Cmd Pointer to command string

Return code

uints XCP_CMD OK :if command is accepted.
XCP_CMD PENDING : if command is performed asynchronously.
XCP _CMD SYNTAX : if command is not accepted.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 5
based on template version 6.0.1

iy

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Functional Description
Application specific user command.

Particularities and Limitations

\Y

This function is asynchronous if it returns XCP_CMD_PENDING.
This function is non-reentrant.
The XCP Protocol Layer has to be initialized correctly.

vV V V

User command feature need to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpUserDefinedCommand

Expected Caller Context
> Task level

Table 5-34 XcpAppl_UserService

5.5.11 XcpAppl_OpenCmdlIf

Prototype

uint8 XcpAppl OpenCmdIf (Xcp ChannelType XcpChannel, uint8 *Cmd, uint8
*Response, uint8 *Length)

XcpChannel The channel number in multi client mode.
Cmd Pointer to command string
Response Pointer to response string
Length Pointer to response length

Return code

uints XCP_CMD OK :if command is accepted.
XCP_CMD_PENDING : if command is performed asynchronously.
XCP_CMD_UNKNOWN : if command is not accepted.

Functional Description

Call back that can be used to extend the XCP commands of the XCP protocol layer.

Particularities and Limitations

\Y

This function is asynchronous if it returns XCP_CMD_PENDING.
This function is non-reentrant.
The XCP Protocol Layer has to be initialized correctly.

vV V V

User command feature need to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpOpenCommandInterface

Expected Caller Context
> Task level

Table 5-35 XcpAppl_OpenCmdIf

5.5.12 XcpAppl_SendStall
Prototype

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 5
based on template version 6.0.1

a

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

uint8 XcpAppl SendStall(Xcp_ ChannelType XcpChannel)

Parameter
XcpChannel The channel number in multi client mode.

Return code

uint8 0 : Reject sending of new message.
1 : continue processing.

Functional Description
Resolve a transmit stall condition in Xcp Putchar or Xcp SendEvent.

Particularities and Limitations

\Y

This function is synchronous.
This function is non-reentrant.
The XCP Protocol Layer has to be initialized correctly.

vV V V

Service request Messages feature need to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpAsynchMessage/XcpServiceRequestMessage

Expected Caller Context
> Task level

Table 5-36 XcpAppl_SendStall

5.5.13 XcpAppl_DisableNormalOperation

Prototype
uint8 XcpAppl DisableNormalOperation(Xcp AddressPtrType Address, uintl6 Size)

Address Address (where the flash kernel is downloaded to)
Size Size (of the flash kernel)

Return code

uints XCP_CMD OK: download of flash kernel confirmed
XCP CMD DENIED: download of flash kernel refused

Functional Description

Prior to the flash kernel download has the ECU’s normal operation to be stopped in order to avoid
misbehavior due to data inconsistencies.

Particularities and Limitations

\%

This function is synchronous.
This function is non-reentrant.
The XCP Protocol Layer has to be initialized correctly.

VvV V V

Bootloader download feature need to be enabled:
/MICROSAR/Xcp/XcpGeneral /XcpBootloaderDownload

Expected Caller Context
> Task level

Table 5-37 XcpAppl_DisableNormalOperation

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 5
based on template version 6.0.1

(o)

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

5.5.14 XcpAppl_StartBootLoader
Prototype

uint8 XcpAppl_ StartBootLoader(void)

Parameter

Return code

uints This function should not return.
XCP_CMD OK: positive response
XCP_CMD_BUSY : negative response

Functional Description
Start of the boot loader.

Particularities and Limitations

> This function is synchronous.
> This function is non-reentrant.
> The XCP Protocol Layer has to be initialized correctly.

> Bootloader download feature need to be enabled:
/MICROSAR/Xcp/XcpGeneral/XcpBootloaderDownload

Expected Caller Context
> Task level

Table 5-38 XcpAppl_StartBootLoader

5.5.15 XcpAppl_Reset
Prototype

void XcpAppl Reset(void)

Parameter

Return code

Functional Description
Perform an ECU reset after reprogramming of the application.

Particularities and Limitations

> This function is synchronous.
> This function is non-reentrant.
> The XCP Protocol Layer has to be initialized correctly.

> Programming feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpProgramming

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 5
based on template version 6.0.1

by

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Expected Caller Context
> Task level

Table 5-39 XcpAppl_Reset

5.5.16 XcpAppl_ProgramsStart

Prototype
uint8 XcpAppl ProgramStart(void)

Parameter

Return code

uints XCP_CMD_OK : Preparation done
XCP_CMD_ PENDING : Call Xcp_SendCrm() when done
XCP_CMD_ERROR : Flash programming not possible

Functional Description
Prepare the ECU for flash programming.

Particularities and Limitations

> This function is asynchronous if it returns XCP_CMD_PENDING.
> This function is non-reentrant.
> The XCP Protocol Layer has to be initialized correctly.

> Programming feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpProgramming

Expected Caller Context
> Task level

Table 5-40 XcpAppl_ProgramStart

5.5.17 XcpAppl_FlashClear
Prototype

uint8 XcpAppl FlashClear(uint8 *Address, uint32 Size)

Parameter
Address Address of memory area to clear
Size Size of memory area to clear

Return code

uints XCP CMD OK : Flash memory erase done
XCP—CMD_PENDING : Call Xcp_SendCrm() when done
XCP:CMD:ERROR : Flash memory erase error

Functional Description

Clear the flash memory, before the flash memory will be reprogrammed.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 5
based on template version 6.0.1

[e2)

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Particularities and Limitations

> This function is synchronous.
This function is non-reentrant.
The XCP Protocol Layer has to be initialized correctly.

vV V V

Programming feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpProgramming

Expected Caller Context
> Task level

Table 5-41 XcpAppl_FlashClear

5.5.18 XcpAppl_FlashProgram

Prototype
uint8 XcpAppl FlashProgram(const uint8 *Data, uint8 *Address, uint8 Size)

Data Pointer to data.
Address Address of memory to store data at.
Size Size of data.

Return code

uint8 XCP_CMD OK : Flash memory programming finished

XCP_CMD PENDING : Flash memory programming in progress.
Xcp_SendCrm has to be called when done.

Functional Description

Program the cleared flash memory.

Particularities and Limitations

> This function is synchronous.

> This function is non-reentrant.

> The XCP Protocol Layer has to be initialized correctly.
>

Programming feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpProgramming

Expected Caller Context
> Task level

Table 5-42 XcpAppl_FlashProgram

5.5.19 XcpAppl_DagResume

Prototype

uint8 XcpAppl DagResume (Xcp ChannelType XcpChannel, Xcp ChannelStruct *Channel
)

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 5
based on template version 6.0.1

©

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

XcpChannel The channel number in multi client mode.
Channel Pointer to dynamic DAQ list structure

Return code

uint8 Boolean flag whether valid DAQ list was restored.

Functional Description

Resume the automatic data transfer.

The whole dynamic DAQ list structure that had been stored in non-volatile memory within the service
XcpAppl DagResumeStore (..) has to be restored to RAM.

Particularities and Limitations

\%

This function is synchronous.
This function is non-reentrant.
The XCP Protocol Layer has to be initialized correctly.

vV V V

Resume Mode feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpDagAndStim/XcpResumeMode

Expected Caller Context
> Task level

Table 5-43 XcpAppl_DagResume

5.5.20 XcpAppl_DagResumeStore
Prototype

void XcpAppl DagResumeStore (Xcp ChannelType XcpChannel, const
Xcp ChannelStruct *Channel, uint8 MeasurementStart)

XcpChannel The channel number in multi client mode.
Channel Pointer to dynamic DAQ list structure
MeasurementStart If > 0 then set flag to start measurement during next init

Return code

Functional Description

This application callback service has to store the whole dynamic DAQ list structure in non-volatile
memory for the DAQ resume mode. Any old DAQ list configuration that might have been stored in non-
volatile memory before this command, must not be applicable anymore.

After a cold start or reset the dynamic DAQ list structure has to be restored by the application callback
service XcpAppl DagResume (. .)when the flag MeasurementStart is > 0.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 6
based on template version 6.0.1

o

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Particularities and Limitations

\%

This function is synchronous.
This function is non-reentrant.
The XCP Protocol Layer has to be initialized correctly.

vV V V

Resume Mode feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpDagAndStim/XcpResumeMode

Expected Caller Context
> Task level

Table 5-44 XcpAppl_DagResumeStore

5.5.21 XcpAppl_DagResumeClear

Prototype
void XcpAppl DagResumeClear (Xcp ChannelType XcpChannel)

Parameter
XcpChannel The channel number in multi client mode.

Return code

Functional Description

The whole dynamic DAQ list structure that had been stored in non-volatile memory within the service
XcpAppl DagResumeStore (..) has to be cleared.

Particularities and Limitations

\Y

This function is synchronous.
This function is non-reentrant.
The XCP Protocol Layer has to be initialized correctly.

vV V V

Resume Mode feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpDagAndStim/XcpResumeMode

Expected Caller Context
> Task level

Table 5-45 XcpAppl_DagResumeClear

5.5.22 XcpAppl_CalResumeStore

Prototype
boolean XcpAppl CalResumeStore(Xcp ChannelType XcpChannel)

Parameter
XcpChannel The channel number in multi client mode.

Return code
boolean If true the calibration page was stored.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 6
based on template version 6.0.1

e

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Functional Description

This application callback service has to store the current calibration data in non-volatile memory for the
resume mode.

After a cold start or reset the calibration data has to be restored by the application.

Particularities and Limitations

\%

This function is synchronous.
This function is non-reentrant.
The XCP Protocol Layer has to be initialized correctly.

VvV V V

Resume Mode feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching/XcpFreezeMode

Expected Caller Context
> Task level

Table 5-46 XcpAppl_CalResumeStore

5.5.23 XcpAppl_GetCalPage
Prototype

uint8 XcpAppl GetCalPage(uint8 Segment, uint8 Mode)

Parameter
Segment Logical data segment number
Mode Access mode

The access mode can be one of the following values:
1: ECU access
2 : XCP access

Return code
uint8 Logical data page number

Functional Description

This function returns the logical number of the calibration data page that is currently activated for the
specified access mode and data segment.

Particularities and Limitations

\Y

This function is synchronous.
This function is non-reentrant.

The XCP Protocol Layer has to be initialized correctly.

VvV V V

Resume Mode feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching

Expected Caller Context
> Task level

Table 5-47 XcpAppl_GetCalPage

5.5.24 XcpAppl_SetCalPage

Prototype
© 2017 Vector Informatik GmbH Version 2.0.02.0.0 62

based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

uint8 XcpAppl SetCalPage(uint8 Segment, uint8 Page, uint8 Mode)

Segment Logical data segment number
Page Logical data page number
Mode Access mode

The access mode can be one of the following values:

1 : ECU access the given page will be used by the slave device application
2 : XCP access the slave device XCP driver will access the given page
Both flags may be set simultaneously or separately.

Return code

uintsg XCP _CMD OK : Operation completed successfully
XCP_CMD PENDING : Call Xcp_SendCrm() when done
XCP_CRC_OUT OF RANGE : segment out of range (only one segment
supported)
XCP_CRC_PAGE NOT VALID : Selected page not available
XCP_CRC_PAGE MODE NOT VALID : Selected page mode not available

Functional Description
Switch pages, e.g. from reference page to working page.

Particularities and Limitations

> This function is asynchronous if it returns XCP_CMD_PENDING.
> This function is non-reentrant.
> The XCP Protocol Layer has to be initialized correctly.

> Resume Mode feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching

Expected Caller Context
> Task level

Table 5-48 XcpAppl_SetCalPage

5.5.25 XcpAppl_CopyCalPage
Prototype

uint8 XcpAppl CopyCalPage (uint8 SrcSeg, uint8 SrcPage, uint8 DestSeg, uint$8
DestPage)

SrcSeg Source segment.
SrcPage Source page.
DestSeg Destination segment.
DestPage Destination page.
© 2017 Vector Informatik GmbH Version 2.0.02.0.0 63

based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Return code

uint8 XCP_CMD_OK : Operation completed successfully
XCP_CMD_PENDING : Call XcpSendCrm() when done
XCP_CRC_PAGE NOT VALID : Page not available
XCP_CRC_SEGMENT NOT VALID :Segment not available
XCP_CRC_WRITE PROTECTED : Destination page is write protected.

Functional Description

Copying of calibration data pages.
The pages are copied from source to destination.

Particularities and Limitations

‘

This function is asynchronous if it returns XCP_ CMD PENDING.
This function is non-reentrant.

The XCP Protocol Layer has to be initialized correctly.
Resume Mode feature needs to be enabled:

V V V V

/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching/XcpCopyPage
Expected Caller Context
> Task level

Table 5-49 XcpAppl_CopyCalPage

5.5.26 XcpAppl_SetFreezeMode

Prototype

void XcpAppl SetFreezeMode(uint8 Segment, uint8 Mode)

Parameter
Segment Segment to set freeze mode
Mode New freeze mode

Return code

Functional Description

Setting the freeze mode of a certain segment. Application must store the current freeze mode of each
segment.

Particularities and Limitations

‘

This function is synchronous.

This function is non-reentrant.

The XCP Protocol Layer has to be initialized correctly.
Resume Mode feature needs to be enabled:

V V V V

/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching/XcpFreezeMode
Expected Caller Context
> Task level

Table 5-50 XcpAppl_SetFreezeMode

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 6
based on template version 6.0.1

S

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

5.5.27 XcpAppl_GetFreezeMode
Prototype

uint8 XcpAppl GetFreezeMode (uint8 Segment)

Parameter

Segment Segment to read freeze mode

Return code
uint8 Return the current freeze mode, set by XcpAppl_SetFreezeMode().

Functional Description

Reading the freeze mode of a certain segment. Application must store the current freeze mode of each
segment and report it by the return value of this function.

Particularities and Limitations

‘

This function is synchronous.

\Y

This function is non-reentrant.

\%

The XCP Protocol Layer has to be initialized correctly.

\Y

Resume Mode feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpPageSwitching/XcpFreezeMode

Expected Caller Context
> Task level

Table 5-51 XcpAppl_GetFreezeMode

5.5.28 XcpAppl_CalculateChecksum
Prototype

uint8 XcpAppl CalculateChecksum(uint8 *MemArea, uint8 *Result, uint32 Length)

MemArea Address pointer to memory area
Result Pointer to response string
Length Length of mem area, used for checksum calculation

Return code

uint8 XCP_CMD OK : CRC calculation performed successfully

XCP_CMD PENDING : Pending response, triggered by call of
Xcp_SendCrm
XCP_CMD DENIED : CRC calculation not possible

Functional Description

Normally the XCP uses internal checksum calculation functions. If the internal checksum calculation
does not fit the user requirements this call-back can be used to calculate the checksum by the
application.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 6
based on template version 6.0.1

a

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Particularities and Limitations

‘

This function is asynchronous if it returns XCP_CMD PENDING.

\Y

This function is non-reentrant.

\Y

The XCP Protocol Layer has to be initialized correctly.

\Y

Resume Mode feature needs to be enabled:
/MICROSAR/Xcp/XcpCmdConfig/XcpStandard/XcpCRC/XcpCustomCRC

Expected Caller Context
> Task level

Table 5-52 XcpAppl_CalculateChecksum

5.5.29 XcpAppl_ConStateNotification

Prototype

uint8 XcpAppl ConStateNotification(Xcp ChannelType XcpChannel, uint8
ConnectionState)

Parameter
XcpChannel The channel number in multi client mode.
ConnectionState The new connection state (XCP_CON_STATE RESUME,

XCP_CON_STATE DISCONNECTED, XCP_CON STATE CONNECTED).
Return code

Functional Description
Notifies the application that the connection state has changed and which the new state is.

Particularities and Limitations

> This function is synchronous.
> This function is non-reentrant.
> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context
> Task and interrupt level

Table 5-53 XcpAppl_ConStateNotification

5.5.30 XcpAppl_MemCpy
Prototype

uint8 XcpAppl MemCpy (uint8 * Dst, const uint8 * Src, uintlé6 Size)

Parameter
Dst The destination where the data is copied to.
Src The source where the data is copied from.
Size The number of byte to be copied.
© 2017 Vector Informatik GmbH Version 2.0.02.0.0 66

based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Return code

Functional Description
Copies data from source to destination.

Particularities and Limitations

> This function is synchronous.
> This function is non-reentrant.
> The XCP Protocol Layer has to be initialized correctly.

Expected Caller Context
> Task and interrupt level

Table 5-54 XcpAppl_MemCpy

5.6 Services used by XCP

In the following table services provided by other components, which are used by the XCP
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Component API
DET Det_ReportError
(OS] GetCorelD

Table 5-55 Services used by the XCP

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 67
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

6 Configuration

6.1 Configuration Variants
The XCP supports the configuration variants
> VARIANT-PRE-COMPILE

The configuration classes of the XCP parameters depend on the supported configuration
variants. For their definitions please see the Xcp_bswmd.arxml file.

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 68
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

7 Glossary and Abbreviations

7.1 Abbreviations

A2L File Extension for an ASAM 2MC Language File

AML ASAM 2 Meta Language

API Application Programming Interface

ASAM Association for Standardization of Automation and Measuring Systems
BYP BYPassing

CAN Controller Area Network

CAL CALibration

CANape Calibration and Measurement Data Acquisition for Electronic Control

Systems

CMD Command

CTO Command Transfer Object

DAQ Synchronous Data Acquistion

DLC Data Length Code (Number of data bytes of a CAN message)
DLL Data link layer

DTO Data Transfer Object

ECU Electronic Control Unit

ERR Error Packet

EV Event packet

ID Identifier (of a CAN message)

Identifier Identifies a CAN message

ISR Interrupt Service Routine

MCS Master Calibration System

Message One or more signals are assigned to each message.

oDT Object Descriptor Table

OEM Original equipment manufacturer (vehicle manufacturer)

PAG PAGing

PID Packet Identifier

PGM Programming

RAM Random Access Memory

RES Command Response Packet

ROM Read Only Memory

SERV Service Request Packet

STIM Stimulation

TCP/IP Transfer Control Protocol / Internet Protocol
© 2017 Vector Informatik GmbH Version 2.0.02.0.0 69

based on template version 6.0.1

VECTOR >

UDP/IP
usSB
XCP

Vi

Table 7-1 Abbreviations

© 2017 Vector Informatik GmbH

Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

Unified Data Protocol / Internet Protocol
Universal Serial Bus

Universal Measurement and Calibration Protocol
Vector Informatik GmbH

Version 2.0.02.0.0 70
based on template version 6.0.1

VECTOR > Technical ReferenceTechnical Reference MICROSAR XCPMICROSAR XCP

8 Contact

Visit our website for more information on

> News

> Products

> Demo software
> Support

> Training data

> Addresses

www.vector.com

© 2017 Vector Informatik GmbH Version 2.0.02.0.0 71
based on template version 6.0.1

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.1.1 Deviations
	3.1.2 Additions/ Extensions

	3.2 Initialization
	3.3 States
	3.4 Main Functions
	3.5 Block Transfer Communication Model
	3.6 Slave Device Identification
	3.6.1 XCP Station Identifier
	3.6.2 XCP Generic Identification

	3.7 Seed & Key
	3.8 Checksum Calculation
	3.8.1 Custom CRC calculation

	3.9 Memory Access by Application
	3.9.1 Memory Read and Write Protection
	3.9.2 Special use case “Type Safe Copy”

	3.10 Event Codes
	3.11 Service Request Messages
	3.12 User Defined Command
	3.13 Synchronous Data Transfer
	3.13.1 Synchronous Data Acquisition (DAQ)
	3.13.2 DAQ Timestamp
	3.13.3 Power-Up Data Transfer
	3.13.4 Data Stimulation (STIM)
	3.13.5 Bypassing
	3.13.6 Data Acquisition Plug & Play Mechanisms
	3.13.7 Event Channel Plug & Play Mechanism
	3.13.8 Send Queue
	3.13.9 Data consistency

	3.14 The Online Data Calibration Model
	3.14.1 Page Switching
	3.14.2 Page Switching Plug & Play Mechanism
	3.14.3 Calibration Data Page Copying
	3.14.4 Freeze Mode Handling

	3.15 Flash Programming
	3.15.1 Flash Programming by the ECU’s Application
	3.15.2 Flash Programming Plug & Play Mechanism
	3.15.3 Flash Programming with a Flash Kernel

	3.16 Multi Core Support
	3.16.1 Type Safe Copy
	3.16.2 DAQ/STIM with Multi Core

	3.17 En- / Disabling the XCP module
	3.18 XCP measurement during the post event time
	3.19 Error Handling
	3.19.1 Development Error Reporting
	3.19.2 Production Code Error Reporting

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Templates – user modifiable
	4.1.3 Dynamic Files
	4.1.4 Generated a2l files

	4.2 Critical Sections
	4.2.1 XCP_EXCLUSIVE_AREA_0
	4.2.2 XCP_EXCLUSIVE_AREA_1
	4.2.3 XCP_EXCLUSIVE_AREA_2

	4.3 Memory Mapping

	5 API Description
	5.1 Type Definitions
	5.2 Services provided by XCP
	5.2.1 Xcp_InitMemory
	5.2.2 Xcp_Init
	5.2.3 Xcp_Event
	5.2.4 Xcp_StimEventStatus
	5.2.5 Xcp_MainFunction
	5.2.6 Xcp_SendEvent
	5.2.7 Xcp_PutChar
	5.2.8 Xcp_Print
	5.2.9 Xcp_Disconnect
	5.2.10 Xcp_SendCrm
	5.2.11 Xcp_GetVersionInfo
	5.2.12 Xcp_ModifyProtectionStatus
	5.2.13 Xcp_GetSessionStatus
	5.2.14 Xcp_GetXcpDataPointer
	5.2.15 Xcp_SetStimMode

	5.3 Services provided by the XCP Protocol Layer and called by the XCP Transport Layer
	5.3.1 Xcp_TlRxIndication
	5.3.2 Xcp_TlTxConfirmation
	5.3.3 Xcp_SetActiveTl
	5.3.4 Xcp_GetActiveTl

	5.4 XCP Transport Layer Services called by the XCP Protocol Layer
	5.4.1 <Bus>Xcp_Send
	5.4.2 <Bus>Xcp_SendFlush
	5.4.3 <Bus>Xcp_TlService

	5.5 Application Services called by the XCP Protocol Layer
	5.5.1 XcpAppl_GetTimestamp
	5.5.2 XcpAppl_GetPointer
	5.5.3 XcpAppl_GetIdData
	5.5.4 XcpAppl_GetSeed
	5.5.5 XcpAppl_Unlock
	5.5.6 XcpAppl_CalibrationWrite
	5.5.7 XcpAppl_MeasurementRead
	5.5.8 XcpAppl_CheckReadAccess
	5.5.9 XcpAppl_CheckProgramAccess
	5.5.10 XcpAppl_UserService
	5.5.11 XcpAppl_OpenCmdIf
	5.5.12 XcpAppl_SendStall
	5.5.13 XcpAppl_DisableNormalOperation
	5.5.14 XcpAppl_StartBootLoader
	5.5.15 XcpAppl_Reset
	5.5.16 XcpAppl_ProgramStart
	5.5.17 XcpAppl_FlashClear
	5.5.18 XcpAppl_FlashProgram
	5.5.19 XcpAppl_DaqResume
	5.5.20 XcpAppl_DaqResumeStore
	5.5.21 XcpAppl_DaqResumeClear
	5.5.22 XcpAppl_CalResumeStore
	5.5.23 XcpAppl_GetCalPage
	5.5.24 XcpAppl_SetCalPage
	5.5.25 XcpAppl_CopyCalPage
	5.5.26 XcpAppl_SetFreezeMode
	5.5.27 XcpAppl_GetFreezeMode
	5.5.28 XcpAppl_CalculateChecksum
	5.5.29 XcpAppl_ConStateNotification
	5.5.30 XcpAppl_MemCpy

	5.6 Services used by XCP

	6 Configuration
	6.1 Configuration Variants

	7 Glossary and Abbreviations
	7.1 Abbreviations

	8 Contact

