

MICROSAR CAN Driver

Technical Reference

Renesas

RH850/P1x-C

MCAN

Version 1.02.00

Authors Cengiz Ünver, Peter Herrmann

Status Released

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 2
based on template version 3.2

Document Information

History Core

Author Date Version Remarks

Holger Birke 2006-06-21 1.0 Initial version

Holger Birke 2006-06-28 1.1 Review modifications

Holger Birke 2006-10-26 1.2 New feature Tx polling, FullCAN Tx and
support DEM

Holger Birke 2007-01-22 1.3 New feature Bus Off Polling

Holger Birke 2007-02-15 1.4 Minor Changes

Holger Birke 2007-07-10 1.5 ASR2.1

Holger Birke 2007-08-24 1.6 Renaming MICROSAR

Holger Birke 2007-08-28 1.7 Remove Driver version

Holger Birke 2007-08-29 1.8 Driver version also removed from Chapter
3

Holger Birke 2007-11-13 1.9 Changed API Can_Init(), add API
Can_InitStruct(), add init structure
description (HL2.22)

Holger Birke 2007-12-03 1.10 Improve Interrupt description

Holger Birke 2008-02-20 1.11 ASR3

Holger Birke 2008-04-18 1.12 Review Reworks (Sh2 review and by
visem)

Holger Birke 2008-07-21 1.13 Review Reworks (TMS320)

Holger Birke 2008-08-13 1.14 Core 3.3

Optimization for runtime, ROM and RAM

Holger Birke 2008-08-13 1.15 Core 3.5

rename INTERRUPT & POLLING

Update Tool configuration description

Add Remote Frame rejection description

Holger Birke 2008-10-23 1.16 Core 3.6

add new API handle “Hardware Loop
Check” by application

+ beautifying

Holger Birke 2009-02-06 1.17 Core 3.7

Add individual polling

Holger Birke 2009-05-19 1.18 Improve “Generic Precopy” description
(extended ID bit)
Add Compiler and Memory abstraction,
Add possibility to report CAN_E_TIMEOUT
as DET.

Holger Birke 2009-07-15 1.18.01 Core 3.09

Remove Compiler abstraction CAN_ISR.
Change “Hardware Loop Check” naming.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 3
based on template version 3.2

Holger Birke 2009-07-28 1.18.02 Review reworks

Holger Birke 2009-10-01 1.18.03 Core 3.10

Add RxQueue (high-end) and Generic
Confirmation

Holger Birke 2010-02-04 1.19 Core 3.11

Add “Multiple BasicCAN”, “Support Mixed
ID”, “Optimize for one controller”, “Dynamic
FullCAN Tx ID” and “Size of Hw
HandleType”.

Rename “Hardware Cancellation”

Correct “Services used by CAN”

Holger Birke 2010-04-01 1.20 Core 3.12

Add Critical Section description

Add “Common CAN”

Add Hardware assertion (DET) description

Add Can_GetStatus() + Interrupt category
configuration.

Add ApplCanInterruptDisable/Restore()

Holger Birke 2010-11-24 2.00 Core 4.00

Update to MICROSAR4

Add “Overrun notification”

Add “RAM check”

Holger Birke 2011-04-18 2.00.01 Review reworks (VJ)

Holger Birke 2011-06-28 2.00.02 Rework (add missing config settings to
GENy GUI description)

Add MicroSar – AUTOSAR deviations

Holger Birke 2011-07-29 2.01 Core 4.01

Add “GenericPreTransmit”

Holger Birke 2012-01-13 2.01.01 Improve description for “Nested Interrupts”
and “Identical ID cancellation”

Holger Birke 2012-04-02 2.02.00 Core 4.02

Add Platform, CANCell and Manufacturer
as First Page Information

Add Void-Void ISR configuration, support
ASR3.2.1 Identical ID cancellation

Holger Birke 2012-04-02 2.03.00 Partial Network part of configuration (no
more preconfig)

Holger Birke 2012-06-29 2.04.00 Core 4.03

Support AR4-R5 (ASR4.0.3) – New API
added

Improve Hardware Loop description

Holger Birke 2012-11-07 2.05.00 Core 4.04

Add Re-initialization description

Instance ID of DET is always 0

Holger Birke 2012-11-07 2.05.01 Improve Hardware Loop description

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 4
based on template version 3.2

Holger Birke 2013-10-11 2.06.00 Add CAN FD description
(Can_SetBaudrate() API)

History Platforms

Author Date Version Remarks

C. Ünver 2015-04-27 1.00.00 Initial version

P. Herrmann 2016-01-28 1.01.00 Added MCAN Rev. 3.1.0 changes.

Additional description concerning the
Bosch MCAN Errata Sheet.

P. Herrmann 2016-10-06 1.02.00 Additional description concerning the
Bosch MCAN Errata Sheet.

Reference Documents

No. Title Version

[1] AUTOSAR_SWS_CAN_DRIVER.pdf 2.4.6 +

3.0.0 +

4.0.0

[2] AUTOSAR_BasicSoftwareModules.pdf V1.0.0

[3] AUTOSAR_SWS BSW Scheduler V1.1.0

[4] AUTOSAR_SWS_CAN_Interface.pdf 3.2.7 +

4.0.0 +

5.0.0

[5] AN-ISC-8-1118 MICROSAR BSW Compatibility Check V1.0.0

[6] M_CAN Controller Area Network Errata Sheet REL2015 0701

1.1 Scope of the Document

This document describes the functionality, API and configuration of the MICROSAR CAN
driver as specified in [1]. The CAN driver is a hardware abstraction layer with a
standardized interface to the CAN Interface layer.

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 5
based on template version 3.2

Contents

1.1 Scope of the Document.. 4

2 Hardware Overview .. 8

3 Introduction... 9

3.1 Architecture Overview .. 10

4 Functional Description ... 12

4.1 Features .. 12

4.2 Initialization .. 15

4.3 Communication .. 16

4.4 States / Modes ... 18

4.5 Re-Initialization .. 19

4.6 CAN Interrupt Locking .. 19

4.7 Main Functions .. 19

4.8 Error Handling .. 20

4.9 Common CAN .. 24

5 Integration ... 27

5.1 Scope of Delivery ... 27

5.2 Include Structure .. 28

5.3 Critical Sections ... 28

5.4 Compiler Abstraction and Memory Mapping ... 30

6 Hardware Specific Hints ... 32

7 API Description ... 35

7.1 Interrupt Service Routines provided by CAN .. 35

7.2 Services provided by CAN ... 36

7.3 Services used by CAN ... 60

8 Configuration .. 62

8.1 Pre-Compile Parameters .. 62

8.2 Link-Time Parameters .. 63

8.3 Post-Build Parameters ... 63

8.4 Configuration with da DaVinci Configurator .. 64

9 AUTOSAR Standard Compliance... 65

9.1 Limitations / Restrictions .. 65

9.2 Hardware Limitations ... 65

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 6
based on template version 3.2

9.3 Vector Extensions .. 67

10 Glossary and Abbreviations .. 68

10.1 Glossary .. 68

10.2 Abbreviations ... 68

11 Contact .. 69

Illustrations

Figure 3-1 AUTOSAR 3.x Architecture Overview ... 10
Figure 3-2 AUTOSAR architecture ... 11
Figure 3-3 Interfaces to adjacent modules of the CAN ... 11
Figure 5-1 Include Structure (AUTOSAR) .. 28
Figure 7-1 Select OS Type ... 35

Tables

Table 2-1 Supported Hardware Overview ... 8
Table 4-1 Supported features ... 15
Table 4-2 Hardware mailbox layout .. 17
Table 4-3 Errors reported to DET ... 20
Table 4-4 API from which the Errors are reported ... 21
Table 4-5 Errors reported to DEM ... 22
Table 4-6 Hardware Loop Check .. 24
Table 5-1 Static files ... 27
Table 5-2 Generated files ... 27
Table 5-3 Critical Section Codes .. 30
Table 5-4 Compiler abstraction and memory mapping .. 31
Table 7-1 MCAN CanIsr_<x>.. 36
Table 7-2 Can_InitMemory ... 37
Table 7-3 Can_InitController ... 38
Table 7-4 Can_InitController ... 39
Table 7-5 Can_ChangeBaudrate .. 39
Table 7-6 Can_CheckBaudrate .. 40
Table 7-7 Can_SetBaudrate ... 41
Table 7-8 Can_InitStruct ... 41
Table 7-9 Can_GetVersionInfo ... 42
Table 7-10 Can_GetStatus ... 43
Table 7-11 Can_SetControllerMode ... 44
Table 7-12 Can_ResetBusOffStart ... 44
Table 7-13 Can_ResetBusOffEnd .. 45
Table 7-14 Can_Write... 46
Table 7-15 Can_CancelTx .. 46
Table 7-16 Can_CheckWakeup .. 47
Table 7-17 Can_DisableControllerInterrupts ... 47
Table 7-18 Can_EnableControllerInterrupts.. 48
Table 7-19 Can_MainFunction_Write ... 48
Table 7-20 Can_MainFunction_Read ... 49
Table 7-21 Can_MainFunction_BusOff ... 50
Table 7-22 Can_MainFunction_Wakeup ... 50
Table 7-23 Can_MainFunction_Mode ... 51

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 7
based on template version 3.2

Table 7-24 Appl_GenericPrecopy ... 51
Table 7-25 Appl_GenericConfirmation .. 52
Table 7-26 Appl_GenericConfirmation .. 53
Table 7-27 Appl_GenericPreTransmit ... 53
Table 7-28 ApplCanTimerStart ... 54
Table 7-29 ApplCanTimerLoop ... 55
Table 7-30 ApplCanTimerEnd .. 55
Table 7-31 ApplCanInterruptDisable ... 56
Table 7-32 ApplCanInterruptRestore .. 57
Table 7-33 Appl_CanOverrun ... 57
Table 7-34 Appl_CanFullCanOverrun ... 58
Table 7-35 Appl_CanCorruptMailbox .. 59
Table 7-36 Appl_CanRamCheckFailed ... 59
Table 7-37 ApplCanInitPostProcessing .. 60
Table 7-38 Services used by the CAN .. 61
Table 10-1 Glossary ... 68
Table 10-2 Abbreviations .. 68

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 8
based on template version 3.2

2 Hardware Overview

The following table summarizes information about the CAN Driver. It gives you detailed
information about the derivatives and compilers. As very important information the
documentations of the hardware manufacturers are listed. The CAN Driver is based upon
these documents in the given version.

Derivative Compiler Hardware Manufacturer Document Version

R7F701325A

R7F701327

R7F701328

R7F701329

R7F701370A
R7F701370B
R7F701371
R7F701372
R7F701372A
R7F701373

R7F701373A
R7F701374
R7F701374A

GHS
Compiler
Release

v2015.1.7

Document Number: RH850/P1x-C Group

Rev. 0.60, 09/2014

RH850/P1x-C Group Rev.0.10 , Nov. 2014

RH850/P1x-C Group User’s Manual:
Hardware Renesas microcontroller RH850
Family

Rev. 0.60,

Sep. 2014

Nov, 2014
Rev.0.10

Jan, 2016
Rev.1.00

Table 2-1 Supported Hardware Overview

Derivative: This can be a single information or a list of derivatives, the CAN Driver can be used on.
Compiler: List of Compilers the CAN Driver is working with
Hardware Manufacturer Document Name: List of hardware documentation the CAN Driver is based on.
Version: To be able to reference to this hardware documentation its version is very important.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 9
based on template version 3.2

3 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module CAN as specified in [1].

Since each hardware platform has its own behavior based on the CAN specifications, the
main goal of the CAN driver is to give a standardized interface to support communication
over the CAN bus for each platform in the same way. The CAN driver works closely
together with the higher layer CAN interface.

Supported AUTOSAR Release*: 3 and 4

Supported Configuration Variants:
(Supported AUTOSAR Standard
Conform Features)

Pre-Compile,

Link-Time,

Post-Build Loadable,

Post-Build Selectable (MICROSAR Identity Manager)

Vendor ID: CAN_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: CAN_MODULE_ID 80 decimal

(according to ref. [2])

AR Version: CAN_AR_RELEASE_MAJO
R_VERSION
CAN_AR_RELEASE_MINOR
_VERSION
CAN_AR_RELEASE_REVISI
ON_VERSION

AUTOSAR Release
Version

BCD coded

SW Version: CAN_SW_MAJOR_VERSIO
N
CAN_SW_MINOR_VERSION
CAN_SW_PATCH_VERSION

MICROSAR CAN
module Version

BCD coded

* For the precise AUTOSAR Release 3.x and 4.x please see the release specific documentation.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 10
based on template version 3.2

3.1 Architecture Overview

The following figure shows where the CAN is located in the AUTOSAR architecture.

Figure 3-1 AUTOSAR 3.x Architecture Overview

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 11
based on template version 3.2

Figure 3-2 AUTOSAR architecture

The next figure shows the interfaces to adjacent modules of the CAN. These interfaces are
described in chapter 7.

CAN Driver

CAN Interface

... CAN X

EcuM DET DEM

Figure 3-3 Interfaces to adjacent modules of the CAN

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 12
based on template version 3.2

4 Functional Description

4.1 Features

The features listed in this chapter cover the complete functionality specified in [1].

The "supported" and "not supported" features are presented in the following table. For
further information of not supported features also see chapter 9.

Feature Naming Short Description CFG5

Initialization

 Driver
General driver initialization function
Can_Init()



 Controller
Controller specific initialization function
Can_InitController().



Communication

 Transmission Transmitting CAN frames. 

 Transmit confirmation Callback for successful Transmission. 

 Reception Receiving CAN frames. 

 Receive indication Callback for receiving Frame. 

Controller Modes

 Sleep mode
Controller support sleep mode (power
saving).

 Wakeup over CAN Controller support wakeup over CAN.

 Stop mode
Controller support stop mode (passive to
CAN bus).



 Bus Off detection Callback for Bus Off event. 

Polling Modes

 Tx confirmation
Support polling mode for Transmit
confirmation.



 Reception Support polling mode for Reception. 

 Wakeup Support polling mode for Wakeup event.

 Bus Off Support polling mode for Bus Off event. 

 Mode
MICROSAR4x only: Support polling
mode for mode transition.



Mailbox objects

 Tx BasicCAN
Standard mailbox to send CAN frames
(Used by CAN Interface data queue).



 Multiplexed Tx
Using 3 mailboxes for Tx BasicCAN
mailbox (external priority inversion
avoided).



Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 13
based on template version 3.2

 Tx FullCAN
Separate mailbox for special Tx message
used.



 Maximum amount Available amount of mailboxes. 32

 Rx FullCAN
Separate mailbox for special Rx
message used.



 Maximum amount Available amount of mailboxes. 64

 Rx BasicCAN
Standard mailbox to receive CAN frame
(depending on hardware, FIFO or
shadow buffer supported).



 Maximum amount

Available amount of BasicCAN objects.

By default there is one FIFO(0)
supported with a max. amount of 64
entries. In case of “Multiple BasicCAN”
(see below) support an additional second
FIFO(1) with 64 entries is supported.

2*64

Others

 DEM
Support Diagnostic Event Manager (error
notification).



 DET
Support Development Error Detection
(error notification).



 Version API API to read out component version. 

 Maximum supported
Controllers

Maximum amount of supported
controllers (hardware channels).

4

 Cancellation of Tx objects
Support of Tx Cancellation (out of
hardware). Avoid internal priority
inversion.



 Identical ID cancellation Tx Cancellation also for identical IDs. 

 Standard ID types
Standard Identifier supported (Tx and
Rx).



 Extended ID types
Extended Identifier supported (Tx and
Rx).



 Mixed ID types
Standard and Extended Identifier
supported (Tx and Rx).



 CAN FD Mode1
FD frames with baudrate switch
supported (Tx and Rx).

-

 CAN FD Mode2
FD frames up to 64 data bytes supported
(Tx and Rx).

****

 Hardware Loop Check

 (Timeout monitoring)

To avoid possible endless loops (occur
by hardware issue).



AutoSar extensions

 Individual Polling

Support individual polling mode
(selectable for each mailbox separate).

*

 Multiple Rx Basic CAN Support Multiple BasicCAN objects. *

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 14
based on template version 3.2

This gives the possibility to use
additionally Fifo-1 with 64 additional
elements. By optimizing the acceptance
filtering overruns can be avoided .

 Multiple Tx Basic CAN

Support Multiple Tx BasicCAN objects.
Used to send different Tx groups over
separate mailboxes with different
buffering behavior (see Can Interface).

*

 Rx Queue

Support Rx Queue. This offers the
possibility to buffer received data in
interrupt context but handle it later
asynchronous in the polling task.

*

 Secure Rx Buffer used
Special hardware buffer used to
temporary save received data.



 Hardware Loop Check by
Application

“Hardware Loop Check” can be defined
to be done by application (special API
available)



 Configurable “Nested CAN
Interrupts”

Nested CAN interrupts allowed, and can
be also switched to none-nested.



 Report CAN_E_TIMEOUT
DEM as DET

Report CAN_E_TIMEOUT (Hardware
Loop Check / Timeout monitoring) to DET
instead of DEM.



 Support Mixed ID

Force CAN driver to handle Mixed ID
(standard and extended ID) at pre-
compile-time to expand the ID type later
on.



 Optimize for one controller

Activate this for 1 controller systems
when you never will expand to multi-
controller. So that the CAN driver works
more efficient



 Dynamic FullCAN Tx ID
(***)

Always write FullCAN Tx ID within
CanWrite() API function. Deactivate this
to optimize code when you do not use
FullCAN Tx objects dynamically.



 Size of Hw HandleType
Support 8-bit or 16-bit Hardware Handles
depending on the hardware usage.



 Generic PreCopy
Support a callback function for receiving
any CAN message (following callbacks
could be suppressed)



 Generic Confirmation

Support a callback function for successful
transmission of any CAN message
(following callbacks could be
suppressed)



 Get Hardware Status
Support a API to get hardware status
Information (see Can_GetStatus())



 Interrupt Category
selection

Support Category 1 or Category 2
Interrupt Service Routines for OS



 Common CAN
Support merge of 2 controllers in
hardware to get more Rx FullCAN



Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 15
based on template version 3.2

objects

 Overrun Notification

Support DET or Application notification
caused by overrun (overwrite) of an Rx
message.

Please note that ‘Overrun’ is supported
for BasicCAN objects but is not available
for FullCAN objects.

While not processed a Message ID Filter
Element referencing a specific FullCAN
object will not match, causing the
acceptance filtering to continue.
Subsequent Message ID Filter Elements
may cause the received message to be
stored into

- another FullCAN object, or

- a BasicCAN object, or

- the message may be rejected,
depending on the filter configuration.



 RAM check Support CAN mailbox RAM check 

 Multiple ECU
configurations (***)

The feature Multiple ECU is usually used
for nodes that exist more than once in a
car. At power up the application decides
which node should be realized.



 Generic PreTransmit

Support a callback function with pointer
to Data, right before this data will be
written in Hardware mailbox buffer to
send. (Use this to change data or cancel
transmission)



Table 4-1 Supported features

 Feature is supported

 Feature is not supported

* HighEnd Licence only

** Project specific (may not be available)

*** Not supported or cannot be configured for AutoSar version 4

**** Only available for MicroSar 4

4.2 Initialization

Can_Init() has to be called to initialize the CAN driver at power on and sets controller

independent init values. This function has to be called before Can_InitController().

MicroSar3 only: Use Can_InitStruct() to change the used baud rate and filter settings

like given in the Initialization structure from the Tool. The used default set by

Can_InitMemory() is the first structure. This API has to be called before

Can_InitController() but after Can_InitMemory().

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 16
based on template version 3.2

MICROSAR401 only: baud rate settings given by Can_InitController parameter.

Can_InitController() initializes the controller, given as parameter, and can also be

used to reinitialize. After this call the controller stays in stop-mode until the CAN Interface
changes to start-mode.

Can_InitMemory() is an additional service function to reinitialize the memory to bring

the driver back to a pre-power-on state (not initialized). Afterwards Can_Init() and

Can_InitController() have to be called again. It is recommended to use this function

before calling Can_Init() to secure that no startup-code specific pre-initialized variables

affect the driver startup behavior.

4.3 Communication

Can_Write() is used to send a message over the mailbox object given as "Hth". The

data, DLC and ID is copied into the hardware mailbox object and a send request is set.

After sending the message the CAN Interface CanIf_TxConfirmation() function is

called. Right before the data is copied in mailbox buffer the ID, DLC and data may be

changed by Appl_GenericPreTransmit() callback.

When “Generic Confirmation“ is activated the callback Appl_GenericConfirmation()

will be called before CanIf_TxConfirmation() and the call to this can be suppressed

by Appl_GenericConfirmation() return value.

For Tx messages the ID will be copied. (Exception: feature “Dynamic FullCAN Tx ID” is
deactivated, then the FullCAN Tx messages will be only set while initialization)

If the mailbox is currently sending the status busy will be returned. Then the message may
be queued in the CAN interface (if feature is active).

If cancellation in hardware is supported the lowest priority ID inside currently sending
object is canceled, and therefore re-queued in the CAN Interface.

Appl_GenericPreCopy() (if activated) is called and depend on return value also

CanIf_RxIndication() as a CAN Interface callback, is called when a message is

received. The receive information like ID, DLC and data are given as parameter.

When Rx Queue is activated the received messages (polling or interrupt context) will be
queued (same queue over all channels). The Rx Queue will be read by calling

Can_Mainfunction_Read () and the Rx Indication (like CanIf_RxIndication()) will

be called out of this context. Rx Queue is used for Interrupt systems to keep Interrupt
latency time short.

4.3.1 Mailbox Layout

The generation tool supports a flexible allocation of message buffers. In the following
tables the possible mailbox layout is shown (the range for each mailbox type depends on
the used mailboxes).

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 17
based on template version 3.2

Hardware
object
number

Hardware
object
type

Amount of
hardware
objects

Description

0… N
Tx

FullCAN

0 … 31 max.

(0 … 29 in
case of

multiplexed
transmission)

These objects are used to transmit specific message IDs.
The user must define statically in the generation tool
which CAN message IDs are located in Tx FullCAN
objects. The generation tool assigns the message IDs to
the FullCAN hardware objects.

(N+1)
… M

Tx
BasicCAN

1 or 3 (3
in case of

multiplexed
transmission)

All other CAN message IDs are transmitted via the Tx
Basic object. If the transmit message object is busy, the
transmit requests are stored in the CAN Interface queue
(if activated).

(M+1)
 … O

Unused 0 … 95
These objects are not used. It depends on the
configuration of receive and transmit objects how many
unused objects are available.

O…P
Rx

FullCAN
0 … 64

These objects are used to receive specific CAN
messages. The user defines statically (Generation Tool)
that a CAN message should be received in a FullCAN
message object. The Generation Tool distributes the
messages to the FullCAN objects.

96
Rx

BasicCAN

FIFO-0 with

max. 64

entries

All CAN message IDs, depending on the acceptance filter
match, are received via the Rx BasicCAN message object
through Rx FIFO 0.
Each Rx Basic message object consists of 64 message
buffers.
128 acceptance filters are available for standard IDs and
64 acceptance filters are available for extended IDs.
In case of mixed ID mode 128+64 = 192 filters are
available.
Please note that this maximum amount of filters is also
used for FIFO-1 if available.

97
Rx

BasicCAN

FIFO-1 with

max. 64

entries

All CAN message IDs, depending on the acceptance filter
match, are received via the Rx BasicCAN message
objects through Rx FIFO 1.
Each Rx Basic message object consists of 64 message
buffers.
128 acceptance filters are available for standard IDs and
64 acceptance filters are available for extended IDs.
In case of mixed ID mode 128+64 = 192 filters are
available.
Please note that this maximum amount of filters is also
used for FIFO-0.

Table 4-2 Hardware mailbox layout

The “CanObjectId” (ECUc parameter) numbering is done in following order: Tx FullCAN,
Tx BasicCAN, Unused, Rx BasicCAN (like shown above). “CanObjectId’s” for next
controller begin at end of last controller. Gaps in “CanObjectId” for unused mailboxes may
occur.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 18
based on template version 3.2

4.3.2 Mailbox Processing Order

The hardware mailbox will be processed in following order:

Object Type Order / priority to send or receive

Tx FullCAN Object ID Low to High

Tx BasicCAN Object ID Low to High

Rx FullCAN Object ID Low to High

Rx BasicCAN FIFO

In Case of Interrupt Rx FullCANs will be processed before Rx BasicCANs.

In Case of Polling Rx FullCANs will be processed before Rx BasicCANs.

The order between Rx and Tx mailboxes depends on the call order of the polling tasks or
the interrupt context and cannot be guaranteed.

The Rx Queue will work like a FIFO filled with the above mentioned method.

4.3.3 Acceptance Filter for BasicCAN

For each CAN channel a maximum amount of 128 filters for standard and 64
filters for extended ID configurations is available. Thus 192 filters are available for
mixed ID configurations.

For acceptance filtering each list of filters is executed from element #0 until the
first matching element. Acceptance filtering stops at the first matching element. Each
filter element decides if the received message is stored within FIFO-0 (or FIFO-1 if
available).

If no message should be received, select the “Multiple Basic CAN” feature and set
the amount to 0. Otherwise the filter should be set to “close”. Use feature “Rx
BasicCAN Support” to deactivate unused code (for optimization).

4.3.4 Remote Frames

The CAN driver initializes the CAN controller not to receive remote frames. Therefore no
additional action is required during runtime by the CAN driver for remote frame filtering.
Remote frames will not have any influence on communication because they are not
received by the CAN hardware.

4.4 States / Modes

You can change the CAN cell mode via Can_SetControllerMode(). The last requested
transition will be executed. The Upper layer has to take care about valid transitions.

The following modes changes are supported:

CAN_T_START

CAN_T_STOP

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 19
based on template version 3.2

MICROSAR4 only: Notification of mode change may occur asynchronous by notification
CanIf_ControllerModeIndication()

4.4.1 Start Mode (Normal Running Mode)

This is the mode where communication is possible. This mode has to be set after
Initialization because Controller is first in stop-mode.

The Bit Stream Processor synchronizes itself to the data transfer on the CAN bus
by waiting for the occurrence of a sequence of 11 consecutive recessive bits (=
Bus_Idle) before it can take part in bus activities and start the message transfer.

4.4.2 Stop Mode

If stop mode is requested, either by software or by going BusOff, then the CAN module is
switched into INIT mode. In this mode message transfer from and to the CAN bus
is stopped, the status of the CAN bus transmit output is recessive (HIGH).
Going to stop mode does not change any configuration register.

4.4.3 Bus Off

CanIf_ControllerBusOff() is called when the controller detects a Bus Off event. The

mode is automatically changed to stop mode. The upper layers have to care about
returning to normal running mode by calling start mode

4.5 Re-Initialization

A call to Can_InitController() cause a re-initialization of a dedicated CAN controller.
Pending messages may be processed before the transition will be finished. A re-
initialization is only possible out of Stop Mode and does not change to another Mode.
After re-initialization all CAN communication relevant registers are set to initial conditions.

4.6 CAN Interrupt Locking

Can_DisableControllerInterrupts() and

Can_EnableControllerInterrupts() are used to disable and enable the controller

specific Interrupt, Rx, Tx, Wakeup and Bus Off (/ Status) together. These functions can be
called nested.

4.7 Main Functions

Can_MainFunction_Write(), Can_MainFunction_Read(),

Can_MainFunction_BusOff() and Can_MainFunction_Wakeup() are called by

upper layers to poll the events if the specific polling mode is activated. Otherwise these
functions return without any action and the events will be handled in interrupt context.

When individual polling is activated only mailboxes that are configured as to be polled will

be polled in the main functions “Can_MainFunction_Write()” and

“Can_MainFunction_Read()”, all others are handled in interrupt context.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 20
based on template version 3.2

If the Rx Queue feature is activated then the queue is filled in interrupt or polling context,
like configured. But the processing (indications) will be done in

“Can_MainFunction_Read()” context.

MICROSAR4 only: Can_MainFunction_Mode() can be called by upper layers to poll
asynchronous mode transition notifications.

4.8 Error Handling

4.8.1 Development Error Reporting

Development errors are reported to DET using the service Det_ReportError(), if the

pre-compile parameter CAN_DEV_ERROR_DETECT == STD_ON.

The tables below, shows the API ID and Error ID given as parameter for calling the DET.

Instance ID is always 0 because no multiple Instances are supported.

Errors reported to DET:

Error ID Short Description

CAN_E_PARAM_POINTER API gets an illegal pointer as parameter.

CAN_E_PARAM_HANDLE API gets an illegal handle as parameter

CAN_E_PARAM_DLC API gets an illegal DLC as parameter

CAN_E_PARAM_CONTROLLER API gets an illegal controller as parameter

CAN_E_UNINIT Driver API is used but not initialized

CAN_E_TRANSITION Transition for mode change is illegal

CAN_E_DATALOST

(value: 0x07, AutoSar extension)
Rx overrun (overwrite) detected

CAN_E_PARAM_BAUDRATE

(value: 0x08, AutoSar extension)
Selected Baudrate is not valid

CAN_E_RXQUEUE

(value: 0x10, AutoSar extension)

Rx Queue overrun
(Last received message is lost and will not be received.

Avoid this by increasing the queue size)

CAN_E_TIMEOUT_DET

(value: 0x11, AutoSar extension)

Same as CAN_E_TIMEOUT for DEM but this is notified to DET
due to switch “CAN_DEV_TIMEOUT_DETECT” is set to
STD_ON (see configuration options)

Table 4-3 Errors reported to DET

API from which the errors are reported to DET:

API ID Functions using that ID

CAN_VERSION_ID Can_GetVersionInfo()

CAN_INIT_ID Can_Init()

CAN_INITCTR_ID Can_InitController()

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 21
based on template version 3.2

CAN_SETCTR_ID Can_SetControllerMode()

CAN_DIINT_ID Can_DisableControllerInterrupts()

CAN_ENINT_ID Can_EnableControllerInterrupts()

CAN_WRITE_ID Can_Write(), Can_CancelTx()

CAN_TXCNF_ID CanHL_TxConfirmation()

CAN_RXINDI_ID CanBasicCanMsgReceived(), CanFullCanMsgReceived()

CAN_CTRBUSOFF_ID CanHL_ErrorHandling()

CAN_CKWAKEUP_ID CanHL_WakeUpHandling(), Can_Cbk_CheckWakeup()

CAN_MAINFCT_WRITE_ID Can_MainFunction_Write()

CAN_MAINFCT_READ_ID Can_MainFunction_Read()

CAN_MAINFCT_BO_ID Can_MainFunction_BusOff()

CAN_MAINFCT_WU_ID Can_MainFunction_Wakeup()

CAN_MAINFCT_MODE_ID Can_MainFunction_Mode()

CAN_CHANGE_BR_ID Can_ChangeBaudrate()

CAN_CHECK_BR_ID Can_CheckBaudrate()

CAN_SET_BR_ID Can_SetBaudrate()

CAN_HW_ACCESS_ID

(value: 0x20, AUTOSAR extension)
Used when hardware is accessed (call context is unknown)

Table 4-4 API from which the Errors are reported

4.8.1.1 Parameter Checking

AUTOSAR requires that API functions check the validity of their parameters (Refer to [1]).
These checks are for development error reporting and can be enabled and disabled
separately. Refer to the configuration chapter where the enabling/disabling of the checks is
described. Enabling/disabling of single checks is an addition to the AUTOSAR standard
which requires enable/disable the complete parameter checking via the parameter

CAN_DEV_ERROR_DETECT.

4.8.1.2 Overrun/Overwrite Notification

As AUTOSAR extension the overrun detection may be activated by configuration tool. The
notification can be configured to issue a DET call (MICROSAR 4.x) or an Application call
(Appl_CanOverrun()).

4.8.2 Production Code Error Reporting

Production code related errors are reported to DEM using the service

Dem_ReportErrorStatus(), if the pre-compile parameter CAN_PROD_ERROR_DETECT

== STD_ON.

The table below shows the Event ID and Event Status given as parameter for calling the
DEM. This callout may occur in the context of different API calls (see Chapter “4.8.2.1”).

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 22
based on template version 3.2

Event ID Event Status Short Description

CAN_E_TIMEOUT

DEM_EVENT_STATUS_FAILED Timeout in “Hardware Loop Check”
occurred, hardware has to be checked
or timeout is too short.

Table 4-5 Errors reported to DEM

4.8.2.1 Hardware Loop Check / Timeout Monitoring

The feature “Hardware Loop Check” is used to break endless loops caused by hardware
issue. This feature is configurable see Chapter 7 and also Timeout Duration description.

The Hardware Loop Check will be handled by CAN driver internal except when setting
“Hardware Loop Check by Application” is activated.

Loop Name /
source

Short Description

kCanLoopInit This channel dependent loop is called in Can_InitController

and is processed as long as the CAN cell does not enter

resp. leave the configuration mode.

While entering the configuration mode, message transfer from

and to the CAN bus is stopped, the status of the CAN bus

transmit output is recessive.

There is a delay from writing to a command register until

the update of the related status register bits due to clock

domain crossing (Host and CAN clock). Therefore the

programmer has to assure that the previous value written to

INIT has been accepted.

Due to the high precision clocking requirements of the CAN

Core, a separate clock without any modulation has to be

provided as CAN clock. The CAN Core should be programmed to

have at least 8 clocks per bit time (e.g.: at least 8 MHz

CAN clock at 1 Mbaud CAN speed). In order to achieve a

stable function of the M_CAN, the Host clock must always be

faster than or equal to the CAN clock.

If the loop cancels, try to reinitialize the controller

again or reset the hardware.

After leaving the configuration mode the Bit Stream

Processor synchronizes itself to the data transfer on the

CAN bus by waiting for the occurrence of a sequence of 11

consecutive recessive bits (= Bus_Idle) before it can take

part in bus activities and start the message transfer.

kCanLoopStart MICROSAR3:

- Used while transition in mode ‘START’.

- Call context: Can_SetControllerMode()

- There is a delay from writing to a command register until

the update of the related status register bits due to clock

domain crossing (Host and CAN clock). Therefore the

programmer has to assure that the previous value written to

INIT has been accepted.

- If the loop cancels try to recall Can_SetControllerMode().

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 23
based on template version 3.2

Loop Name /
source

Short Description

MICROSAR4:

Used for short time mode transition blocking (short

synchronous timeout). Same value for kCanLoopStart,

kCanLoopStop, kCanLoopSleep and kCanLoopWakeup.

No Issue when timeout occurs.

kCanLoopStop MICROSAR3:

- Used while transition in mode ‘STOP’.

- Call context: Can_SetControllerMode()

- There is a delay from writing to a command register until

the update of the related status register bits due to clock

domain crossing (Host and CAN clock). Therefore the

programmer has to assure that the previous value written to

INIT has been accepted.

- If the loop cancels try to recall Can_SetControllerMode().

MICROSAR4:

Used for short time mode transition blocking (short

synchronous timeout). Same value for kCanLoopStart,

kCanLoopStop, kCanLoopSleep and kCanLoopWakeup.

No Issue when timeout occurs.

kCanLoopSleep MICROSAR3:

- Used while transition in mode ‘SLEEP’.

- Call context: Can_SetControllerMode()

- When all pending transmission requests have completed, the

M_CAN waits until bus idle state is detected.

- If the loop cancels try to recall Can_SetControllerMode.

MICROSAR4:

Used for short time mode transition blocking (short

synchronous timeout). Same value for kCanLoopStart,

kCanLoopStop, kCanLoopSleep and kCanLoopWakeup.

No Issue when timeout occurs.

kCanLoopWakeup MICROSAR3:

- Used while transition in mode ‘WAKEUP’.

- Call context: Can_SetControllerMode()

- Once the M_CAN is initialized it synchronizes itself to the

CAN bus and is ready for communication.

- If the loop cancels try to recall Can_SetControllerMode.

MICROSAR4:

Used for short time mode transition blocking (short

synchronous timeout). Same value for kCanLoopStart,

kCanLoopStop, kCanLoopSleep and kCanLoopWakeup.

No Issue when timeout occurs.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 24
based on template version 3.2

kCanLoopClock

Stop

When Clock Stop is requested then all pending transfer

requests are completed first.

When the CAN bus reached idle then Clock Stop will be

acknowledged.

kCanLoopRxFifo

This channel dependent loop is called in CanInterruptRxFifo

and is processed until the Rx FIFO becomes empty. The loop

is delayed if the controller receives a burst of messages.

The maximum expected duration is the time needed until

all messages in the reception FIFO are confirmed. If

the loop cancels, reinitialize the Controller.

Table 4-6 Hardware Loop Check

4.8.3 CAN RAM Check

The CAN driver supports a check of the CAN controller’s mailboxes. The CAN controller
RAM check is called internally every time a power on is executed within function
Can_InitController(), or a Bus-Wakeup event happen. The CAN driver verifies that no used
mailboxes are corrupt. A mailbox is considered corrupt if a predefined pattern is written to
the appropriate mailbox registers and the read operation does not return the expected
pattern. If a corrupt mailbox is found the function Appl_CanCorruptMailbox() is called. This
function tells the application which mailbox is corrupt.

After the check of all mailboxes the CAN driver calls the call back function
Appl_CanRamCheckFailed() if at least one corrupt mailbox was found. The application
must decide if the CAN driver disables communication or not by means of the call back
function’s return value. If the application has decided to disable the communication there is
no possibility to enable the communication again until the next call to Can_Init().

The CAN RAM check functionality itself can be activated via Generation Tool.

4.9 Common CAN

Common CAN connect 2 hardware CAN channels to one logical controller. This allows
configuring more FullCAN mailboxes. The second hardware channel is used for Rx
FullCAN mailboxes.

The filter mask of the BasicCAN should exclude the message received by the FullCAN
messages of the second CAN Controller. This means each message ID must be received
on one CAN hardware channel only. The filter optimization takes care about this when
common CAN is activated.

For configuration of Common CAN specific settings in generation tool see chapter ‎7.6.2.

Caution
Only one Transceiver (Driver) has to be used for this two Common CAN hardware
channels (connect TX and RX lines).

Reason: Upper layers only know one Controller for this 2 hardware channel Common
CAN and therefore only one Transceiver can be handled.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 25
based on template version 3.2

4.9.1 Error Interrupt

The MCAN error interrupt source is used only partially by the CAN driver. Only
BusOff events are handled and reported to the upper layers by the CAN driver.

Not reported errors are:

Stuff Error More than 5 equal bits in a sequence occurred

Format Error A fixed format part of a received frame has the wrong format

Acknowledge Error A transmitted message was not acknowledged by another
node

Bit Error Device wanted to send a recessive/dominant level, but
the monitored level was dominant/recessive

CRC Error Received CRC did not match the calculated CRC

Watchdog Interrupt Message RAM Watchdog event due to missing READY

Warning Status Error_Warning status changed

Error Passive Error_Passive status changed

Error Logging Overflow Overflow of CAN Error Logging Counter occurred

Bit Error Uncorrected Message RAM bit error detected, uncorrected.

Bit Error Corrected Message RAM bit error detected and corrected.

Timeout Occurred Timeout reached

Timestamp Wraparound Timestamp counter wrapped around

Rx FIFO 0 Full Rx FIFO 0 Full

Rx FIFO 0 Watermark Reached fill level watermark

Rx FIFO 1 Full Rx FIFO 1 Full

Rx FIFO 1 Watermark Reached fill level watermark

Please note
The BusOff recovery sequence cannot be shortened (e.g. by initializing the CAN
device). If the device goes BusOff, it will enter the INIT mode by its own, stopping all
bus activities.

When leaving the INIT mode the device will wait for 129 occurrences of Bus Idle (129 x
11 consecutive recessive bits) before resuming normal operation.

Please note
The Timeout Counter is used for CAN driver internal purposes (supervision of possible
transmit confirmations arriving delayed after a cancellation was requested). Thus the
“Timeout Occurred” interrupt may occur occasionally.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 26
based on template version 3.2

4.9.2 Not supported

Neither the Tx Event FIFO nor the Tx Queue is used. All available 32 transmit message
buffers per CAN channel are used as dedicated buffers and can be used either as
BasicCAN or FullCAN objects (see 4.3.1).

The filtering of High Priority messages is not supported.

No Range Filters are supported.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 27
based on template version 3.2

5 Integration

This chapter gives necessary information for the integration of the MICROSAR CAN into
an application environment of an ECU.

5.1 Scope of Delivery

The delivery of the CAN contains the files, which are described in the chapter’s 5.1.1 and
5.1.2:

Dependent on library or source code delivery the marked (+) files may not be delivered.

5.1.1 Static Files

File Name Description

(+) Can_Local.h This is an internal header file which should not be included outside this
module

(+) Can.c This is the source file of the CAN. It contains the implementation of CAN
module functionality.

(+) Can.(lib) This is the library build out of Can.c, Can.h and Can_Local.h

Can.h This is the header file of the CAN module (include API declaration)

Can_Hooks.h This is the header file to define the Hook-functions or macros. (this is a project
specific file and may not exist)

Can_Irq.c This is the interrupt declaration and callout file (supports interrupt
configuration as link time settings)

Table 5-1 Static files

5.1.2 Dynamic Files

The dynamic files are generated by the configuration tool [GENy].

File Name Description

Can_Cfg.h Generated header file, contains some type,
prototype and pre-compile settings

Can_Lcfg.c Generated file contains link time settings.

Can_PBcfg.c Generated file contains post build settings.

Can_DrvGeneralTypes.h Generated file contains CAN driver part of
Can_GeneralTypes.h (supported by
Integrator)

Table 5-2 Generated files

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 28
based on template version 3.2

5.2 Include Structure

Figure 5-1 Include Structure (AUTOSAR)

Deviation from AUTOSAR specification:
 Additionally the EcuM_Cbk.h is included by Can_Cfg.h (needed for wakeup notification

API).

 ComStack_Types.h included by Can_Cfg.h, because the specified types have to be
known in generated data as well.

 MICROSAR4x only: Os.h will be included by Can_Cfg.h because of used data-types

 Spi.h is not yet used.

 Additionally the file Can_Hooks.h may be included by Can.h.

 MICROSAR403 only: Can_GeneralTypes.h will be included by Can_Cfg.h not by Can.h
direct.

5.3 Critical Sections

The AUTOSAR standard provides with the BSW Scheduler a BSW module, which handles
entering and leaving critical sections.

For more information about the BSW Scheduler please refer to [3]. When the BSW
Scheduler is used the CAN Driver provides critical section codes that have to be mapped
by the BSW Scheduler to following mechanism:

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 29
based on template version 3.2

Critical Section Define Description

CAN_EXCLUSIVE_AREA_0 CanNestedGlobalInterruptDisable/Restore() is used within

Can_MainFunction_Write() to assure that transmit confirmations do not

conflict with further transmit requests.

> Duration is short.

> No API call of other BSW inside.

CAN_EXCLUSIVE_AREA_1 Using inside Can_DisableControllerInterrupts() and

Can_EnableControllerInterrupts() to secure Interrupt counters for nested

calls.

> Duration is short.

> No API call of other BSW inside.

> Disable global interrupts – or – Empty in case
Can_Disable/EnableControllerInterrupts() are called within context

with lower or equal priority than CAN interrupt.

CAN_EXCLUSIVE_AREA_2 Using inside Can_Write() to secure software states of transmit objects.

> Only when no Vector CAN Interface is used.

> Duration is medium

> No API call of other BSW inside.

> Disable global interrupts - or - Disable CAN interrupts and do not call
function Can_Write() reentrant.

CAN_EXCLUSIVE_AREA_3 Using inside Tx confirmation to secure state of transmit object in case of
cancellation (Only used when Vector Interface Version smaller 4.10
used).

> Duration is medium

> Call to CanIf_CancelTxConfirmation() inside (no more calls in CanIf).

> Disable global interrupts - or - Disable CAN interrupts and do not call
function Can_Write() within.

CAN_EXCLUSIVE_AREA_4 Using inside received data handling (Rx Queue treatment) to secure Rx
Queue counter and data.

> Duration is short

> No API call of other BSW inside.

> Disable Global Interrupts - or - Disable all CAN interrupts.

CAN_EXCLUSIVE_AREA_5 Using inside wakeup handling to secure state transition. (Only in wakeup
polling mode)

> Duration is short

> Call to DET inside.

> Disable global interrupts (do not use CAN interrupt locks here)

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 30
based on template version 3.2

CAN_EXCLUSIVE_AREA_6 Using inside Can_SetControllerMode() and BusOff to avoid nested state
transition requests.

> Duration is medium

> No API call of other BSW inside.

> Use CAN interrupt locks here, in case the above mentioned APIs are
only called within same tasklevel and CAN interrupt context (no
nesting - like BusOff-handling in interrupt has to be blocked).
or
Disable global interrupts

Table 5-3 Critical Section Codes

5.4 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions – the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following table contains the memory section names and the compiler abstraction
definitions defined for the CAN Interface and illustrates their assignment among each
other.

Compiler Abstraction

Definitions

Memory Mapping

Sections

C
A

N
_
 C

O
D

E

C
A

N
_
S

T
A

T
IC

_
 C

O
D

E

C
A

N
_
 C

O
N

S
T

C
A

N
_
 C

O
N

S
T

_
P

B
C

F
G

C
A

N
_
V

A
R

_
N

O
IN

IT

C
A

N
_
 V

A
R

_
IN

IT

C
A

N
_
 I

N
T

_
C

T
R

L

C
A

N
_
 R

E
G

_
C

A
N

C
E

L
L

C
A

N
_
 R

X
_
T

X
_
D

A
T
A

C
A

N
_
 A

P
P

L
_
C

O
D

E

C
A

N
_
 A

P
P

L
_
C

O
N

S
T

C
A

N
_
 A

P
P

L
_
V

A
R

CAN_START_SEC_CODE

CAN_STOP_SEC_CODE


CAN_START_SEC_STATIC_CODE

CAN_STOP_SEC_STATIC_CODE
 

CAN_START_SEC_CONST_8BIT

CAN_STOP_SEC_CONST_8BIT
 

CAN_START_SEC_CONST_16BIT

CAN_STOP_SEC_CONST_16BIT
 

CAN_START_SEC_CONST_32BIT

CAN_STOP_SEC_CONST_32BIT
 

CAN_START_SEC_CONST_UNSPECIFIED

CAN_STOP_SEC_CONST_UNSPECIFIED
 

CAN_START_SEC_PBCFG

CAN_STOP_SEC_PBCFG
 

CAN_START_SEC_PBCFG_ROOT

CAN_STOP_SEC_PBCFG_ROOT
 

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 31
based on template version 3.2

CAN_START_SEC_VAR_NOINIT_UNSPECIFIED

CAN_STOP_SEC_VAR_NOINIT_UNSPECIFIED
 

CAN_START_SEC_VAR_INIT_UNSPECIFIED

CAN_STOP_SEC_VAR_INIT_UNSPECIFIED
 

CAN_START_SEC_CODE_APPL

CAN_STOP_SEC_CODE_APPL
 

Table 5-4 Compiler abstraction and memory mapping

The Compiler Abstraction Definitions CAN_ APPL_CODE, CAN_ APPL_VAR and CAN_
APPL_CONST are used to address code, variables and constants which are declared by
other modules and used by the CAN driver.

These definitions are not mapped by the CAN driver but by the memory mapping realized
in the CAN Interface or direct by application.

CAN_ CODE: used for CAN module code.

CAN_ STATIC_CODE: used for CAN module local code.

CAN_ CONST: used for CAN module constants.

CAN_ CONST_PBCFG: used for CAN module constants in Post-Build section.

CAN_ VAR_*: used for CAN module variables.

CAN_ INT_CTRL: is used to access the CAN interrupt controls.

CAN_ REG_CANCELL: is used to access the CAN cell itself.

CAN_ RX_TX_DATA: access to CAN Data buffers.

CAN_ APPL_*: access to higher layers.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 32
based on template version 3.2

6 Hardware Specific Hints

6.1.1 Usage of interrupt functions

According to the current implementation of MCAN generator there is a fix assignment of

interrupt functions to the CAN Controller. The postfix of the interrupt function name

equates the controller number. The following table shows the corresponding assignment

for the derivative RH850 P1X-C.

Critical Section Define Description

MCAN_0, BaseAddress: 0xFFEF0000 CanIsr_1 CanIsr_1

MCAN_1, BaseAddress: 0xFFD31000 CanIsr_2 CanIsr_2

MCAN_2, BaseAddress: 0xFFEF1000 CanIsr_3 CanIsr_3

Table 5-5 Hardware Controller – Interrupt Functions

CanIsr_0 is used for MTT_CAN0 of the RH850 P1X-C.

6.1.2 MCAN Errata

The following Errata (please see [6] for further details) are considered by the CAN Driver.
By default all erratas which are appropriate for the configured MCAN Revision are
enabled. If a specific erratum shall be disabled or enabled beyond that it can be configured
via a user configuration file.

 Errata
No.

Title MCAN
Rev.
affected

6 Change of CAN operation mode during start of transmission.

Only activated if “CAN_BOSCH_ERRATUM_006“ is defined as STD_ON.

2.9.5,
2.9.6,
3.0.0,
3.0.1

7 Problem with frame transmission after recovery from Restricted
Operation Mode.

Only activated if “CAN_BOSCH_ERRATUM_007“ is defined as STD_ON.

2.9.5,
2.9.6,
3.0.0,
3.0.1

8 Setting / resetting CCCR.INIT during frame reception.

Only activated if “CAN_BOSCH_ERRATUM_008“ is defined as STD_ON.

2.9.5,
2.9.6,
3.0.0,
3.0.1

10 Setting CCCR.CCE while a Tx scan is ongoing.

Only activated if “CAN_BOSCH_ERRATUM_010“ is defined as STD_ON.

2.9.5,
2.9.6,
3.0.0,

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 33
based on template version 3.2

3.0.1

11 Needless activation of interrupt IR.MRAF.

Only activated if “CAN_BOSCH_ERRATUM_011“ is defined as STD_ON.

2.9.5,
2.9.6,
3.0.0,
3.0.1,
3.1.0

12 Return of receiver from Bus Integration state after Protocol Exception
Event.

Only activated if “CAN_BOSCH_ERRATUM_012“ is defined as STD_ON.

2.9.6,
3.0.0,
3.0.1,
3.1.0

13 Message RAM / RAM Arbiter not responding in time.

When the M_CAN wants to store a received frame and the Message
RAM / RAM Arbiter does not respond in time, this message cannot be
stored completely and it is discarded with the reception of the next
message. Interrupt flag IR.MRAF is set. It may happen that the next
received message is stored incomplete.

In this case, the respective Rx Buffer or Rx FIFO element holds
inconsistent data.

When the M_CAN has been integrated correctly (the Host and the
CAN clock must be fast enough to handle a worst case
configuration containing the maximum of MCAN Message RAM
elements), this behaviour can only occur in case of a problem with
the Message RAM itself or the RAM Arbiter.

The application must assure that the clocking of Host and CAN is
appropriate. The CAN Driver does not care about these
configuration aspects.

2.9.6,
3.0.0,
3.0.1,
3.1.0,
3.2.0

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 34
based on template version 3.2

14 Data loss (payload) in case storage of a received frame has not
completed until end of EOF field is reached.

The time needed for acceptance filtering and storage of a received
message depends on the

- Host clock frequency,

- the number of M_CANs connected to a single Message RAM,

- the Message RAM arbitration scheme, and

- the number of configured filter elements.

In case storage of a received message has not completed until end of
the received frame then corrupted data can be contained in the
Message RAM.

Interrupt flag IR.MRAF is not set.

If storage of messages cannot be completed the application is
responsible for reducing the maximum number of configured filter
elements for the M_CANs attached to the Message RAM until the
calculated clock frequency is below the Host clock frequency used
with the actual device.

2.9.6,
3.0.0,
3.0.1,
3.1.0,
3.2.0

1-5 These errata are in the responsibility of the application and are not
considered by the CAN Driver.

2.0.0,
2.9.5,
2.9.6,
3.0.0,
3.0.1

9 Frame transmission in DAR mode.

Not considered by the CAN Driver, frame transmission in DAR mode is
not supported.

2.9.5,
2.9.6,
3.0.0,
3.0.1

15 Edge filtering causes mis-synchronization when falling edge at Rx input
pin coincides with end of integration phase.

Not considered by the CAN Driver, Edge Filtering is not supported.

3.1.0,
3.2.0,
3.2.1

16 Configuration of NBTP.NTSEG2 = ’0’ not allowed.

Not considered by the CAN Driver, the user is responsible to care about
the according bit timing configuration.

3.1.0,
3.2.0,
3.2.1

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 35
based on template version 3.2

7 API Description

7.1 Interrupt Service Routines provided by CAN

Depend on the settings in Tools component Hw_Mpc5700Cpu, the interrupt routine is
given by the driver or by Operating System. (Selection below, not MICROSAR403)

Figure 7-1 Select OS Type

There is the possibility to choose OS Type. Please select “None” for using no OS,
“Autosar” for AUTOSAR OS or “OSEK” for OSEK OS systems.

7.1.1 OSEK (OS)

This means to include osek.h.

Switch: V_OSTYPE_OSEK

7.1.2 AutoSar (OS)

Os.h header file is used.

Switch: V_OSTYPE_AUTOSAR

7.1.3 None (OS)

Choose “None” for OS Type, to include no Os header files and have no category 2
interrupt.
Switch: V_OSTYPE_NONE

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 36
based on template version 3.2

7.1.4 Type of Interrupt Function

- Category 2 (only for OSEK OS or AUTOSAR OS):
A macro “ISR(CanIsr_x)” will be used to declare ISR function call. The name given
as parameter for interrupt naming (x = Physical CAN Channel number). For macro
definition see OS specification. The OS has full control of the ISR.
switch: C_ENABLE_OSEK_OS_INTCAT2

- Category 1:
Using OS with category 1 interrupts need an Interface layer handling these
interrupts in task context like defined in BSW00326 (AUTOSAR_SRS_General).
switch: C_DISABLE_OSEK_OS_INTCAT2

- Void-Void Interrupt Function:
Like in Category 1 the Interrupt is not handled by OS and the ISR is declared as
void ISR(void) and has to be called by interrupt controller in case of an CAN
interrupt.
switch: C_ENABLE_ISRVOID

7.1.5 CAN ISR API

Prototype

void CanIsr_<x>(void);

Parameter

--- ---

Return code

--- ---

Functional Description

Handles interrupts of hardware channel <x> for Rx, Tx, BusOff events.

Particularities and Limitations

> Number of available functions depends on used MCU derivative.

> The functions are not designated as interrupt functions. If it is necessary to save/restore all general
purpose registers and to use a different “return from interrupt” instruction the application code has to
implement the compiler specific pragma (e.g. for Wind River™ DIAB™: #pragma interrupt CanIsr_x).

Table 7-1 MCAN CanIsr_<x>

7.2 Services provided by CAN

The CAN API consists of services, which are realized by function calls.

7.2.1 Can_InitMemory

Prototype

void Can_InitMemory (void)

Parameter

-

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 37
based on template version 3.2

Return code

void -

Functional Description

Service initializes module global variables, which cannot be initialized in the startup code.

Use this to re-run the system without performing a new start from power on.

(E.g.: used to support an ongoing debug session without a complete re-initialization.)

Must be followed by a call to “Can_Init()”.

Particularities and Limitations

Called by Application.

Caution

None AUTOSAR API

Call context

> Should be called while power on initialization before „Can_Init()“ on task level.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-2 Can_InitMemory

7.2.2 Can_Init

Prototype

void Can_Init(const Can_ConfigType *Config)

Parameter

Config
Pointer to the structure including configuration data.

In case of Multiple ECU configuration feature is used, for each Identity one
“Config” structure exists and has to be chosen here

Return code

- -

Functional Description

This function initializes global CAN driver variables during ECU start-up.

Particularities and Limitations

> Has to be called during start-up before CAN communication.

> Must be called before calling Can_InitController().

> Mulitple ECU configuration pointer for “Config” does only work with none Post-Build variants

> Can_InitMemory() has to be called before.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 38
based on template version 3.2

7.2.3 Can_InitController

Prototype

void Can_InitController (uint8 Controller, Can_ControllerBaudrateConfigPtrType

Config)

Parameter

Controller [in] Number of controller

Config [in] Pointer to baud rate configuration structure

Return code

Void -

Functional Description

Initialization of controller specific CAN hardware.

The CAN driver registers and variables are initialized.

The CAN controller is fully initialized and left back within the state “Stop Mode”, ready to change to
“Running Mode”.

Particularities and Limitations

Called by CanInterface.

Disabled Interrupts.

Call context

> Must be called during the startup sequence before CAN communication takes place but after calling
„Can_Init()“.

> Must not be called while in „Sleep Mode“.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: MICROSAR401 only

Table 7-3 Can_InitController

7.2.4 Can_InitController

Prototype

void Can_InitController (uint8 Controller, Can_ControllerConfigPtrType

ControllerConfigPtr)

Parameter

Controller [in] Number of controller

Config [in] Pointer to the configuration data structure.

Return code

Void -

Functional Description

Initialization of controller specific CAN hardware.

The CAN driver registers and variables are initialized.

The CAN controller is fully initialized and left back within the state “stop mode”, ready to change to “Running

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 39
based on template version 3.2

Mode”.

Particularities and Limitations

Called by CanInterface.

Disabled Interrupts

Call context

> Must be called during the startup sequence before CAN communication takes place but after calling
„Can_Init()“.

> Must not be called while in „Sleep Mode“.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: MICROSAR3 only

Table 7-4 Can_InitController

7.2.5 Can_ChangeBaudrate

Prototype

Std_ReturnType Can_ChangeBaudrate (uint8 Controller, const uint16 Baudrate)

Parameter

Controller [in] Number of controller to be changed

Baudrate [in] Baud rate to be set

Return code

Std_ReturnType > E_NOT_OK Baud rate is not set

> E_OK Baud rate is set

Functional Description

This service shall change the baud rate and reinitialize the CAN controller.

Particularities and Limitations

Called by Application.

The CAN controller must be in “Stop Mode”.

Call context

> Must be called during the startup sequence before CAN communication takes place but after calling
„Can_Init()“.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: MICROSAR403 only & if „CanChangeBaudrateApi“ is activated or „CanSetBaudrateApi“ is
de-activated.

Table 7-5 Can_ChangeBaudrate

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 40
based on template version 3.2

7.2.6 Can_CheckBaudrate

Prototype

Std_ReturnType Can_CheckBaudrate (uint8 Controller, const uint16 Baudrate)

Parameter

Controller [in] Number of controller to be checked

Baudrate [in] Baud rate to be checked

Return code

Std_ReturnType > E_NOT_OK Baud rate is not available

> E_OK Baud rate is available

Functional Description

This service shall check if the given baud rate is supported of the CAN controller.

Particularities and Limitations

Called by Application.

The CAN controller must be initialized.

Call context

> Must not be called nested.

> Only available if „CanChangeBaudrateApi“ is activated.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: MICROSAR403 only & „CanChangeBaudrateApi“ is activated
(„CAN_CHANGE_BAUDRATE_SUPPORT == STD_ON“)

Table 7-6 Can_CheckBaudrate

7.2.7 Can_SetBaudrate

Prototype

Std_ReturnType Can_SetBaudrate (uint8 Controller, uint16 BaudRateConfigID)

Parameter

Controller [in] Number of controller to be set

BaudRateConfigID [in] Identity of the configured baud rate (available as Symbolic Name)

Return code

Std_ReturnType > E_NOT_OK Baud rate is not set

> E_OK Baud rate is set

Functional Description

This service shall change the baud rate and reinitialize the CAN controller.

(Similar to “Can_ChangeBaudrate()” but used when identical baud rates are used for different CAN FD
settings).

Particularities and Limitations

Called by Application.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 41
based on template version 3.2

Call context

> Must not be called nested.

> Only available if „CanSetBaudrateApi“ is activated.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: MICROSAR403 only & „CanSetBaudrateApi“ is activated („CAN_SET_BAUDRATE_API ==
STD_ON“)

Table 7-7 Can_SetBaudrate

7.2.8 Can_InitStruct

Prototype

void Can_InitStruct (uint8 Controller, uint8 Index)

Parameter

Controller [in] Number of the controller to be changed

Index [in] Index of the initialization structure to be used for baud rate and mask settings

Return code

void -

Functional Description

Set content of the initialization structure (before calling “Can_InitController()”).

Service function to change the initialization structure setup left behind by the Generation Tool.

The structure contains information about baud rate and filter settings.

Subsequent “Can_InitController()” must be called to activate these settings.

Particularities and Limitations

Called by Application.

“Can_Init” was called.

Caution

None AUTOSAR API

Call context

> Call this function between calling „Can_Init()“ and „Can_InitController()“.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: MICROSAR3 only

Table 7-8 Can_InitStruct

7.2.9 Can_GetVersionInfo

Prototype

void Can_GetVersionInfo (Can_VersionInfoPtrType VersionInfo)

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 42
based on template version 3.2

Parameter

VersionInfo [out] Pointer to where to store the version information of the CAN driver.

typedef struct {

uint16 vendorID;

uint16 moduleID;

MICROSAR3 only: uint8 instanceID;

uint8 sw_major_version; (MICROSAR3 only: BCD coded)

uint8 sw_minor_version; (MICROSAR3 only: BCD coded)

uint8 sw_patch_version; (MICROSAR3 only: BCD coded)

} Std_VersionInfoType;

Return code

void -

Functional Description

Get the version information of the CAN driver.

Particularities and Limitations

Called by Application.

Call context

> Only available if „CanVersionInfoApi“ is activated.

> This function is Synchronous

> This function is Reentrant

> Availability: „CanVersionInfoApi“ is activated („CAN_VERSION_INFO_API == STD_ON“)

Table 7-9 Can_GetVersionInfo

7.2.10 Can_GetStatus

Prototype

uint8 Can_GetStatus (uint8 Controller)

Parameter

Controller [in] Number of the controller requested for status information

Return code

uint8 > CAN_STATUS_STOP (Bit coded status information)

> CAN_STATUS_INIT

> CAN_STATUS_INCONSISTENT, CAN_DEACTIVATE_CONTROLLER
(only with „CanRamCheck“ active)

> CAN_STATUS_WARNING

> CAN_STATUS_PASSIVE

> CAN_STATUS_BUSOFF

> CAN_STATUS_SLEEP

Functional Description

Delivers the status of the hardware.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 43
based on template version 3.2

Only one of the status bits CAN_STATUS_SLEEP/STOP/BUSOFF/PASSIVE/WARNING is set.

The CAN_STATUS_INIT bit is always set if a controller is initialized.

CAN_STATUS_SLEEP has the highest and CAN_STATUS_WARNING the lowest priority.

CAN_STATUS_INCONSISTENT will be set if one Common CAN channel. Is not “Stop” or “Sleep”.

CAN_DEACTIVATE_CONTROLLER is set in case the “CanRamCheck” detected an Issue.

“status” can be analyzed using the provided API macros:

CAN_HW_IS_OK(status): return “true” in case no warning, passive or bus off occurred.

CAN_HW_IS_WARNING(status): return “true” in case of waning status.

CAN_HW_IS_PASSIVE(status): return “true” in case of passive status.

CAN_HW_IS_BUSOFF(status): return “true” in case of bus off status (may be already false in Notification).

CAN_HW_IS_WAKEUP(status): return “true” in case of not in sleep mode.

CAN_HW_IS_SLEEP(status): return “true” in case of sleep mode.

CAN_HW_IS_STOP(status): return “true” in case of stop mode.

CAN_HW_IS_START(status): return “true” in case of not in stop mode.

CAN_HW_IS_INCONSISTENT(status): return “true” in case of an inconsistency between two common CAN
channels.

Particularities and Limitations

Called by network management or Application.

Caution

None AUTOSAR API

Call context

> This function is Synchronous

> This function is Non-Reentrant

> Availability: „CanGetStatus“ is activated („CAN_GET_STATUS == STD_ON“)

Table 7-10 Can_GetStatus

7.2.11 Can_SetControllerMode

Prototype

Can_ReturnType Can_SetControllerMode (uint8 Controller, Can_StateTransitionType

Transition)

Parameter

Controller [in] Number of the controller to be set

Transition [in] Requested transition to destination mode

Return code

Can_ReturnType > CAN_NOT_OK mode change unsuccessful

> CAN_OK mode change successful

Functional Description

Change the controller mode to the following possible destination values:

CAN_T_START,

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 44
based on template version 3.2

CAN_T_STOP,

CAN_T_SLEEP,

CAN_T_WAKEUP.

Particularities and Limitations

Called by CanInterface.

Interrupts locked by CanInterface

Call context

> Must not be called within CAN driver context like RX, TX or Bus Off callouts.

> This function is Non-Reentrant

> Availability: Always

Table 7-11 Can_SetControllerMode

7.2.12 Can_ResetBusOffStart

Prototype

void Can_ResetBusOffStart (uint8 Controller)

Parameter

Controller [in] Number of the controller

Return code

void -

Functional Description

This is a compatibility function (for a CANbedded protocol stack) used during the start of the

Bus Off handling to remove the Bus Off state.

Particularities and Limitations

Called by CAN driver.

Caution

None AUTOSAR API

Call context

> Called while BusOff event handling (Polling or Interrupt context).

> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-12 Can_ResetBusOffStart

7.2.13 Can_ResetBusOffEnd

Prototype

void Can_ResetBusOffEnd (uint8 Controller)

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 45
based on template version 3.2

Parameter

Controller [in] Number of the controller

Return code

void -

Functional Description

This is a compatibility function (for a CANbedded protocol stack) used during the end of the

Bus Off handling to remove the Bus Off state.

Particularities and Limitations

Called by CAN driver.

Caution

None AUTOSAR API

Call context

> Called inside „Can_SetControllerMode()“ while Start transition.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-13 Can_ResetBusOffEnd

7.2.14 Can_Write

Prototype

Can_ReturnType Can_Write (Can_HwHandleType Hth, Can_PduInfoPtrType PduInfo)

Parameter

Hth [in] Handle of the mailbox intended to send the message

PduInfo [in] Information about the outgoing message (ID, dataLength, data)

Return code

Can_ReturnType > CAN_NOT_OK transmit unsuccessful

> CAN_OK transmit successful

> CAN_BUSY transmit could not be accomplished due to controller is busy.

Functional Description

Send a CAN message over CAN.

Particularities and Limitations

Called by CanInterface.

CAN Interrupt locked.

Call context

> Called by the CanInterface with at least disabled CAN interrupts.

> (Due to data security reasons the CanInterface should accomplish this and thus it is not needed further
more in the CAN Driver.)

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 46
based on template version 3.2

> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-14 Can_Write

7.2.15 Can_CancelTx

Prototype

void Can_CancelTx (Can_HwHandleType Hth, PduIdType PduId)

Parameter

Hth [in] Handle of the mailbox intended to be cancelled.

PduId [in] Pdu identifier

Return code

void -

Functional Description

Cancel the TX message in the hardware buffer (if possible) or mark the message as not to be confirmed

in case of the cancellation is unsuccessful.

Particularities and Limitations

Called by CanTp or Application.

Caution

None AUTOSAR API

Call context

> Called by CanTp or Application.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-15 Can_CancelTx

7.2.16 Can_CheckWakeup

Prototype

Std_ReturnType Can_CheckWakeup (uint8 Controller)

Parameter

Controller [in] Number of the controller to be checked for Wake Up events.

Return code

Std_ReturnType > E_OK the given controller caused a Wake Up before.

> E_NOT_OK the given controller caused no Wake Up before.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 47
based on template version 3.2

Functional Description

Service function to check the occurrence of Wake Up events for the given controller

(used as Wake Up callback for higher layers).

Particularities and Limitations

Called by CanInterface.

Call context

> Called while Wakeup validation phase.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: In AR4.x named „Can_CheckWakeup“, in AR3.x named „Can_Cbk_CheckWakeup“ (Name
mapped by define)

Table 7-16 Can_CheckWakeup

7.2.17 Can_DisableControllerInterrupts

Prototype

void Can_DisableControllerInterrupts (uint8 Controller)

Parameter

Controller [in] Number of the CAN controller to disable interrupts for.

Return code

void -

Functional Description

Service function to disable the CAN interrupt for the given controller (e.g. due to data security reasons).

Particularities and Limitations

Called by SchM.

Must not be called while CAN controller is in sleep mode.

Call context

> Called within Critical Area handling or out of Application code.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-17 Can_DisableControllerInterrupts

7.2.18 Can_EnableControllerInterrupts

Prototype

void Can_EnableControllerInterrupts (uint8 Controller)

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 48
based on template version 3.2

Parameter

Controller [in] Number of the CAN controller to disable interrupts for.

Return code

void -

Functional Description

Service function to (re-)enable the CAN interrupt for the given controller (e.g. due to data security reasons).

Particularities and Limitations

Called by SchM.

Must not be called while CAN controller is in sleep mode.

Call context

> Called within Critical Area handling or out of Application code.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-18 Can_EnableControllerInterrupts

7.2.19 Can_MainFunction_Write

Prototype

void Can_MainFunction_Write (void)

Parameter

-

Return code

void -

Functional Description

Service function to poll TX events (confirmation, cancellation) for all controllers and all TX mailboxes

to accomplish the TX confirmation handling (like CanInterface notification).

Particularities and Limitations

Called by SchM.

Must not interrupt the call of “Can_Write()”.

Call context

> Called within cyclic TX task.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-19 Can_MainFunction_Write

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 49
based on template version 3.2

7.2.20 Can_MainFunction_Read

Prototype

void Can_MainFunction_Read (void)

Parameter

-

Return code

void -

Functional Description

Service function to poll RX events for all controllers and all RX mailboxes to accomplish the

RX indication handling (like CanInterface notification).

Also used for a delayed read (from task level) of the RX Queue messages which were queued from
interrupt context.

Particularities and Limitations

Called by SchM.

Call context

> Called within cyclic RX task.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-20 Can_MainFunction_Read

7.2.21 Can_MainFunction_BusOff

Prototype

void Can_MainFunction_BusOff (void)

Parameter

-

Return code

void -

Functional Description

Polling of Bus Off events to accomplish the Bus Off handling. Service function to poll Bus Off events for all
controllers to accomplish the Bus Off handling

(like calling of “CanIf_ControllerBusOff()” in case of Bus Off occurrence).

Particularities and Limitations

Called by SchM.

Call context

> Called within cyclic BusOff task.

> This function is Synchronous

> This function is Non-Reentrant

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 50
based on template version 3.2

> Availability: Always

Table 7-21 Can_MainFunction_BusOff

7.2.22 Can_MainFunction_Wakeup

Prototype

void Can_MainFunction_Wakeup (void)

Parameter

-

Return code

void -

Functional Description

Service function to poll Wake Up events for all controllers to accomplish the Wake Up handling

(like calling of “CanIf_SetWakeupEvent()” in case of Wake Up occurrence).

Particularities and Limitations

Called by SchM.

Call context

> Called within cyclic Wakeup task.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-22 Can_MainFunction_Wakeup

7.2.23 Can_MainFunction_Mode

Prototype

void Can_MainFunction_Mode (void)

Parameter

-

Return code

void -

Functional Description

Service function to poll Mode changes over all controllers.

(This is handled asynchronous if not accomplished in “Can_SetControllerMode()”).

Particularities and Limitations

Called by SchM.

Call context

> Called within cyclic mode change task.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 51
based on template version 3.2

> This function is Synchronous

> This function is Non-Reentrant

> Availability: MICROSAR4x only

Table 7-23 Can_MainFunction_Mode

7.2.24 Appl_GenericPrecopy

Prototype

Can_ReturnType Appl_GenericPrecopy (uint8 Controller, Can_IdType ID, uint8

DataLength, Can_DataPtrType DataPtr)

Parameter

Controller [in] Controller which received the message

ID [in] ID of the received message.

In case of extended or mixed ID systems the highest bit (bit 31) is set to mark
an extended ID.

FD-bit will not be set at all.

DataLength [in] Data length of the received message.

pData [in] Pointer to the data of the received message.

Return code

Can_ReturnType > CAN_OK if the indication of the message should be called afterwards
(notification to higher layer),

> CAN_NOT_OK in case of stopping furthermore reception.

Functional Description

Application callback function which informs about all incoming RX messages including the contained data.

Particularities and Limitations

Called by CAN driver.

“pData” is read only and must not be accessed for further write operations.

Caution

None AUTOSAR API

Call context

> Called within CAN message reception context (Polling or Interrupt).

> This function is Synchronous

> This function is Non-Reentrant

> Availability: „CanGenericPrecopy“ is activated („CAN_GENERIC_PRECOPY == STD_ON“).

Table 7-24 Appl_GenericPrecopy

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 52
based on template version 3.2

7.2.25 Appl_GenericConfirmation

Prototype

Can_ReturnType Appl_GenericConfirmation (PduIdType PduId)

Parameter

PduId [in] Handle of the PDU specifying the message.

Return code

Can_ReturnType > CAN_OK Higher layer (CanInterface) confirmation will be called.

> CAN_NOT_OK No further higher layer (CanInterface) confirmation will be
called.

Functional Description

Application callback function which informs about TX messages being sent to the CAN bus.

Particularities and Limitations

Called by CAN driver.

“PduId” is read only and must not be accessed for further write operations.

Caution

None AUTOSAR API

Call context

> Called within CAN message transmission finished context (Polling or Interrupt).

> This function is Synchronous

> This function is Non-Reentrant

> Availability: „CanGenericConfirmation“ is activated („CAN_GENERIC_CONFIRMATION == STD_ON“) &
„CanIfTransmitBuffer“ activated (in CanInterface).

Table 7-25 Appl_GenericConfirmation

7.2.26 Appl_GenericConfirmation

Prototype

Can_ReturnType Appl_GenericConfirmation (uint8 Controller, Can_PduInfoPtrType

DataPtr)

Parameter

Controller [in] Number of the causing controller.

DataPtr [in]

Return code

Can_ReturnType CAN_OK Higher layer (CanInterface) confirmation will be called.
CAN_NOT_OK No further higher layer (CanInterface) confirmation will be
called.

Functional Description

Application callback function which informs about TX messages being sent to the CAN bus.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 53
based on template version 3.2

Particularities and Limitations

Called by CAN driver.

If “Generic Confirmation” and “Transmit Buffer” (both set in CanInterface) are active, then the switch

“Cancel Support Api” is also needed (also set in CanIf), otherwise a compiler error occurs.

Caution

None AUTOSAR API

Call context

> Called within CAN message transmission finished context (Polling or Interrupt).

> This function is Synchronous

> This function is Non-Reentrant

> Availability: If "CanGenericConfirmation" ("CAN_GENERIC_CONFIRMATION == STD_ON") and

"CanIfTransmitBuffer" (in CanInterface) is activated.

Table 7-26 Appl_GenericConfirmation

7.2.27 Appl_GenericPreTransmit

Prototype

void Appl_GenericPreTransmit (uint8 Controller, Can_PduInfoPtrType_var DataPtr)

Parameter

Controller [in] Number of the controller on which the hardware observation takes place.

DataPtr [in] Pointer to a Can_PduType structure including ID, DataLength, Pdu and data
pointer.

Return code

void -

Functional Description

Application callback function allowing the modification of the data to be transmitted (e.g.: add CRC).

Particularities and Limitations

Called by CAN driver.

Caution

None AUTOSAR API

Call context

> Called within „Can_Write()“.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: „CanGenericPretransmit“ is activated („CAN_GENERIC_PRETRANSMIT == STD_ON“).

Table 7-27 Appl_GenericPreTransmit

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 54
based on template version 3.2

7.2.28 ApplCanTimerStart

Prototype

void ApplCanTimerStart (CanChannelHandle Controller, uint8 source)

Parameter

Controller [in] Number of the controller on which the hardware observation takes place.

(only if not using “Optimize for one controller”)

source [in] Source for the hardware observation (see chapter Hardware Loop Check /
Timeout Monitoring).

Return code

void -

Functional Description

Service function to start an observation timer (see chapter Hardware Loop Check / Timeout Monitoring).

Particularities and Limitations

Called by CAN driver.

Caution

None AUTOSAR API

Call context

> For context information please refer to chapter „Hardware Loop Check“.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: „CanHardwareCancelByAppl“ is activated („CAN_HW_LOOP_SUPPORT_API ==
STD_ON“).

Table 7-28 ApplCanTimerStart

7.2.29 ApplCanTimerLoop

Prototype

Can_ReturnType ApplCanTimerLoop (CanChannelHandle Controller, uint8 source)

Parameter

Controller [in] Number of the controller on which the hardware observation takes place.

(only if not using “Optimize for one controller”)

source [in] Source for the hardware observation (see chapter Hardware Loop Check /
Timeout Monitoring).

Return code

Can_ReturnType > CAN_NOT_OK when loop shall be broken (observation stops)

> CAN_NOT_OK should only be used in case of a timeout occurs due to a
hardware issue.

> After this an appropriate error handling is needed (see chapter Hardware
Loop Check / Timeout Monitoring).

> CAN_OK when loop shall be continued (observation continues)

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 55
based on template version 3.2

Functional Description

Service function to check (against generated max loop value) whether a hardware loop shall be continued
or broken.

Particularities and Limitations

Called by CAN driver.

Caution

None AUTOSAR API

Call context

> For context information please refer to chapter „Hardware Loop Check“.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: „CanHardwareCancelByAppl“ is activated („CAN_HW_LOOP_SUPPORT_API ==
STD_ON“).

Table 7-29 ApplCanTimerLoop

7.2.30 ApplCanTimerEnd

Prototype

void ApplCanTimerEnd (CanChannelHandle Controller, uint8 source)

Parameter

Controller [in] Number of the controller on which the hardware observation takes place.

(only if not using “Optimize for one controller”)

source [in] Source for the hardware observation (see chapter Hardware Loop Check /
Timeout Monitoring).

Return code

void -

Functional Description

Service function to to end an observation timer (see chapter Hardware Loop Check / Timeout Monitoring).

Particularities and Limitations

Called by CAN driver.

Caution

None AUTOSAR API

Call context

> For context information please refer to chapter „Hardware Loop Check“.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: „CanHardwareCancelByAppl“ is activated („CAN_HW_LOOP_SUPPORT_API ==
STD_ON“).

Table 7-30 ApplCanTimerEnd

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 56
based on template version 3.2

7.2.31 ApplCanInterruptDisable

Prototype

void ApplCanInterruptDisable (uint8 Controller)

Parameter

Controller [in] Number of the controller for the CAN interrupt lock.

Return code

void -

Functional Description

Service function to support the disabling of CAN Interrupts by the application.

E.g.: the CAN driver itself should not access the common Interrupt Controller due to application

specific restrictions (like security level etc.). Or the application like to be informed because of

an CAN interrupt lock.

Particularities and Limitations

Called by CAN driver.

Caution

None AUTOSAR API

Call context

> Called by the CAN Driver within „Can_DisableControllerInterrupts()“.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: "CanInterruptLock" is set to APPL or BOTH ("CAN_INTLOCK == CAN_APPL" or
"CAN_INTLOCK == CAN_BOTH").

Table 7-31 ApplCanInterruptDisable

7.2.32 ApplCanInterruptRestore

Prototype

void ApplCanInterruptRestore (uint8 Controller)

Parameter

Controller [in] Number of the controller for the CAN interrupt unlock.

Return code

void -

Functional Description

Service function to support the enabling of CAN Interrupts by the application.

E.g.: the CAN driver itself should not access the common Interrupt Controller due to application

specific restrictions (like security level etc.). Or the application like to be informed because of

an CAN interrupt lock.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 57
based on template version 3.2

Particularities and Limitations

Called by CAN driver.

Caution

None AUTOSAR API

Call context

> Called by the CAN Driver within „Can_EnableControllerInterrupts()“.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: „CanInterruptLock“ is set to APPL or BOTH („CAN_INTLOCK == CAN_APPL“ or
„CAN_INTLOCK == CAN_BOTH“).

Table 7-32 ApplCanInterruptRestore

7.2.33 Appl_CanOverrun

Prototype

void Appl_CanOverrun (uint8 Controller)

Parameter

Controller [in] Number of the controller for which the overrun was detected.

Return code

void -

Functional Description

This function will be called when an overrun is detected for a BasicCAN mailbox.

Alternatively a DET call can be selected instead of (“CanOverrunNotification” is set to “DET”).

Particularities and Limitations

Called by CAN driver.

Caution

None AUTOSAR API

Call context

> Called within CAN message reception or error detection context (Polling or Interrupt).

> This function is Synchronous

> This function is Non-Reentrant

> Availability: „CanOverrunNotification“ set to APPL („CAN_OVERRUN_NOTIFICATION == CAN_APPL“).

Table 7-33 Appl_CanOverrun

7.2.34 Appl_CanFullCanOverrun

Prototype

void Appl_CanFullCanOverrun (uint8 Controller)

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 58
based on template version 3.2

Parameter

Controller [in] Number of the controller for which the overrun was detected.

Return code

void -

Functional Description

This function will be called when an overrun is detected for a FullCAN mailbox.

Alternatively a DET call can be selected instead of (“CanOverrunNotification” is set to “DET”).

Particularities and Limitations

Called by CAN driver.

Caution

None AUTOSAR API

Call context

> Called within CAN message reception or error detection context (Polling or Interrupt).

> This function is Synchronous

> This function is Non-Reentrant

> Availability: „CanOverrunNotification“ set to APPL („CAN_OVERRUN_NOTIFICATION == CAN_APPL“).

Table 7-34 Appl_CanFullCanOverrun

7.2.35 Appl_CanCorruptMailbox

Prototype

void Appl_CanCorruptMailbox (uint8 Controller, Can_HwHandleType hwObjHandle)

Parameter

Controller [in] Number of the controller for which the check failed.

hwObjHandle [in] Hardware handle of the defect mailbox.

Return code

void -

Functional Description

This function will notify the application (during “Can_InitController()”) about a defect mailbox within the CAN
cell.

Particularities and Limitations

Called by CAN driver.

Caution

None AUTOSAR API

Call context

> Call within controller initialization.

> This function is Synchronous

> This function is Non-Reentrant

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 59
based on template version 3.2

> Availability: „CanRamCheck“ set to „MailboxNotifiation“ („CAN_RAM_CHECK ==
CAN_NOTIFY_MAILBOX“).

Table 7-35 Appl_CanCorruptMailbox

7.2.36 Appl_CanRamCheckFailed

Prototype

uint8 Appl_CanRamCheckFailed (uint8 Controller)

Parameter

Controller [in] Number of the controller for which the check failed

Return code

uint8 > action With this „action“ the application can decide how to proceed with the
initialization.

> CAN_DEACTIVATE_CONTROLLER – deactivate the controller

> CAN_ACTIVATE_CONTROLLER – activate the controller

Functional Description

This function will notify the application (during “Can_InitController()”) about a defect CAN controller

due to a previous failed mailbox check.

Particularities and Limitations

Called by CAN driver.

Caution

None AUTOSAR API

Call context

> Call within controller initialization.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: „CanRamCheck“ set to „Active“ or „MailboxNotifiation“ („CAN_RAM_CHECK !=
CAN_NONE“).

Table 7-36 Appl_CanRamCheckFailed

7.2.37 ApplCanInitPostProcessing

Prototype

void ApplCanInitPostProcessing (CAN_HW_CHANNEL_CANTYPE_ONLY)

Parameter

Controller [in] Number of the controller for which the check failed

Return code

void none

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 60
based on template version 3.2

Functional Description

Service function to overwrite the previously set initialization values for the bit timing, taken from the
generated data,

with customer specific values.

For your convenience the following access function is supported:

- CanBtpReg(controller): - the BTP register of the specified CAN channel can be set according to the
register definition

as specified in the Hardware Manufacturer Document ((see ch. 2).

Example: CanBtpReg(Controller) = 0x00070F70u;

or CanBtpReg(0) = 0x00070F70u; (when using ‘Optimize for one controller’).

Particularities and Limitations

Called by CAN driver.

None

Caution

None AUTOSAR API

It is the responsibility of the application to assure that the register values are consistent with the
release of the underlying derivative.

Call context

> Called within controller initialization.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: Only available if ‚C_ENABLE_INIT_POST_PROCESS‘ is defined via a user-config file.

Table 7-37 ApplCanInitPostProcessing

7.3 Services used by CAN

In the following table services provided by other components, which are used by the CAN
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Component API

DET Det_ReportError
(see “Development Error Reporting”)

DEM Dem_ReportErrorStatus
(see “Production Code Error Reporting”)

EcuM EcuM_CheckWakeup
This function is called when Wakeup over CAN bus occur.

EcuM_GeneratorCompatibilityError
This function is called during the initialization, of the CAN Driver if
the Generator Version Check or the CRC Check fails. (see [5])

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 61
based on template version 3.2

Component API

Application (optional non AUTOSAR) Appl_GenericPrecopy

Appl_GenericConfirmation

Appl_GenericPreTransmit

ApplCanTimerStart/Loop/End

Appl_CanRamCheckFailed, Appl_CanCorruptMailbox

ApplCanInterruptDisable/Restore

Appl_CanOverrun,

For detailed description see Chapter 7.2

CANIF CanIf_CancelTxNotification (non AUTOSAR)
A special Software cancellation callback only used within Vector
CAN driver CAN Interface bundle.

CanIf_TxConfirmation
Notification for a successful transmission. (see [4])

CanIf_CancelTxConfirmation
Notification for a successful Tx cancellation. (see [4])

CanIf_RxIndication
Notification for a message reception. (see [4])

CanIf_ControllerBusOff
Bus Off notification function. (see [4])

CanIf_ControllerModeIndication
MICROSAR4x only: Notification for mode sucessfully changed.

Os (MICROSAR4x) OS_TICKS2MS_<counterShortName>()

Os macro to get timebased ticks from counter.

GetElapsedValue

Get elapsed tick count.

GetCounterValue

Get tick count start.

Table 7-38 Services used by the CAN

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 62
based on template version 3.2

8 Configuration

For CAN driver the attributes can be configured with configuration Tool “CFG5”

The CAN driver supports pre-compile, link-time and post-build configuration.

For post-build systems, re-flashing the generated data can change some configuration
settings.

For post-build and link-time configurations pre-compile settings are configured at compile
time and therefore unchangeable at link or post-build time.

The following parameters are set by CFG5 configuration (see Chapter “DaVinci
Configurator”).

8.1 Pre-Compile Parameters

Some settings have to be available before compilation:

> MCAN Core Release
#define C_ENABLE_MPC5700_MCAN_MAJOR_CREL 1/2/3/…

> MCAN Step of Core Release
#define C_ENABLE_MPC5700_MCAN_MAJOR_CREL_STEP 0/1/2/3/…

> MCAN Sub Step of Core Release
#define C_ENABLE_MPC5700_MCAN_MAJOR_CREL_SSTEP 0/1/2/3/…

> Non ISO Operation
#define CAN_FD_NISO 0 = ISO 11898-1:2015 / 1 = Bosch CAN FD Spec. V1.0

> > Version API (Can_GetVersionInfo() activation)
#define CAN_VERSION_INFO_API STD_ON/STD_OFF

> DET (development error detection)
#define CAN_DEV_ERROR_DETECT STD_ON/STD_OFF

> Hardware Loop Check (timeout monitoring)
#define CAN_HARDWARE_CANCELLATION STD_ON/STD_OFF

> Polling modes: Tx confirmation, Reception, Wakeup, BusOff
#define CAN_TX_PROCESSING CAN_INTERRUPT/ CAN_POLLING
#define CAN_RX_PROCESSING CAN_INTERRUPT/ CAN_POLLING
#define CAN_BUSOFF_PROCESSING CAN_INTERRUPT/ CAN_POLLING
#define CAN_WAKEUP_PROCESSING CAN_INTERRUPT/ CAN_POLLING
#define CAN_INDIVIDUAL_PROCESSING STD_ON/STD_OFF

> Multiplexed Tx (external PIA – by usage of multiple Tx mailboxes)
#define CAN_MULTIPLEXED_TRANSMISSION STD_ON/STD_OFF

> Configuration Variant (define the configuration type when using post build variant)
#define CAN_ENABLE_SELECTABLE_PB

> Use Generic Precopy Function (None AUTOSAR feature)
#define CAN_GENERIC_PRECOPY STD_ON/STD_OFF

> Use Generic Confirmation Function (None AUTOSAR feature)
#define CAN_GENERIC_CONFIRMATION STD_ON/STD_OFF

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 63
based on template version 3.2

> Use Rx Queue Function (None AUTOSAR feature)
#define CAN_RX_QUEUE STD_ON/STD_OFF

> Used ID type (standard/extended or mixed ID format)
#define CAN_EXTENDED_ID STD_ON/STD_OFF
#define CAN_MIXED_ID STD_ON/STD_OFF

> Usage of Rx and Tx Full and BasicCAN objects (deactivate only when not using and to save ROM and
runtime consumption)
#define CAN_RX_FULLCAN_OBJECTS STD_ON/STD_OFF
#define CAN_TX_FULLCAN_OBJECTS STD_ON/STD_OFF
#define CAN_RX_BASICCAN_OBJECTS STD_ON/STD_OFF

> Use Multiple BasicCAN objects
#define CAN_MULTIPLE_BASICCAN STD_ON/STD_OFF

> Optimizations
#define CAN_ONE_CONTROLLER_OPTIMIZATION STD_ON/STD_OFF
#define CAN_DYNAMIC_FULLCAN_ID STD_ON/STD_OFF

> Usage of nested CAN interrupts
#define CAN_NESTED_INTERRUPTS STD_ON/STD_OFF

> Use Multiple ECU configurations
#define CAN_MULTI_ECU_CONFIG STD_ON/STD_OFF

> Use RAM Check (verify mailbox buffers)
#define CAN_RAM_CHECK CAN_NONE/CAN_NOTIFY_ISSUE/CAN_NOTIFY_MAILBOX

> Use Overrun detection
#define CAN_OVERRUN_NOTIFICATION CAN_NONE/ CAN_DET/ CAN_APPL

> Select MicroSar version
#define CAN_MICROSAR_VERSION CAN_MSR30/ CAN_MSR40/ CAN_MSR403

> Tx Cancellation of Identical IDs
#define CAN_IDENTICAL_ID_CANCELLATION STD_ON/STD_OFF

8.2 Link-Time Parameters

The library version of the CAN driver uses the following generated settings:

> Maximum amount of used controllers and Tx mailboxes (has to be set for post-build
variants at link-time)

> Rx Queue size

> Controller mapping (mapping of logical channel to hardware node).

> CAN hardware base address.

8.3 Post-Build Parameters

Following settings are post-build data that can be changed for re-flashing:

> Amount and usage of FullCAN Rx and Tx mailboxes

> Used database (message information like ID, DLC)

> Filters for BasicCAN Rx mailbox

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 64
based on template version 3.2

> Baud-rate settings

> Module Start Address (only for post-build systems: The memory location for re-
flashed data has to be defined)

> Configuration ID (only for post-build systems: This number is used to identify the
post-build data

> CAN hardware Fifo depth

> CAN hardware clock and bit timing settings

8.4 Configuration with da DaVinci Configurator

See Online help within DaVinci Configurator and BSWMD file for parameter settings.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 65
based on template version 3.2

9 AUTOSAR Standard Compliance

9.1 Limitations / Restrictions

Category Description Version

Functional No multiple AUTOSAR CAN driver allowed in the system 3.0.6

Functional No support for L-PDU callout (AUTOSAR 3.2.1), but support ‘Generic
Precopy’ instead

3.2.1

Functional No support for multiple read and write period configuration 3.2.1

API “Symbolic Name Values” may change their values after precompile

phase so do not use it for Link Time or Post Build variants.
It’s recommended that higher layer generator use Values (ObjectIDs)
from EcuC file. Vector CAN Interface does so.

3.0.6

 For the acceptance filtering a maximum of 64 filters per CAN channel
is supported in case of GENy is used as Generation Tool.

9.2 Hardware Limitations

8.2.1 Tx side

MCAN Tx Event FIFO is not supported.

MCAN Tx Queue is not supported.

All available buffers per CAN (32) are configured as dedicated Tx buffers.

8.2.2 Rx side

SREQ00014271 “message reception shall use overwrite mode” is not fulfilled for FullCAN

messages due to hardware behaviour.

8.2.3 Used resources

Please note that the theoretical possible maximum configuration for the RH850P1xC

derivative requires more RAM space in the Shared Message RAM than there is

actual available.

For each CAN channel the following elements can be configured. If the required size for a

distinct configuration exceeds the maximum available RAM space in hardware then

the configuration tool issues an error during generation time and you are requested totailor

down your configuration until it fits into the available Shared Message RAM.

Resource usage for one CAN channel:

Area Address range Max size

(byte)

Max. number of

elements

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 66
based on template version 3.2

Std Filter 0x0000 – 0x01FF 512 128

Ext Filter 0x0200 – 0x03FF 512 64

Rx FIFO 0 0x0400 – 0x07FF 1024 64

Rx FIFO 1 0x0800 – 0x0BFF 1024 64

Rx Buffer 0x0C00 – 0x0FFF 1024 64

TxEvt FIFO 0x1000 – 0x10FF 256 32

Tx buffer 0x1100 – 0x12FF 512 32

 0x1300 4864 bytes total

Thus a maximum of “4864 * NumberOfChannels” can theoretically be configured but less
RAM is physically available. You are requested to reduce the areas according to your
needs.

Please note that the “Tx Buffer region” and the “TTCAN region” (for channels with TTCAN
support) for each channel is restricted to a dedicated address.
This is not consistent for all hardware releases, please refer to your hardware
manufacturer documentation (see ch. 2 “Hardware Overview”).

9.2.1 Initialization of the CAN Message RAM

The internal SRAM features Error Correcting Code (ECC). Because these ECC bits can
contain random data after the device is turned on, all SRAM locations must be initialized
before being read by application code. Initialization is done by executing 64-bit writes to
the entire SRAM block. The value written does not matter at this point, so the
Store Multiple Word instruction will be used to write 16 general-purpose registers with
each loop iteration.

By default the CAN driver tries to accomplish this initialization. Due to the need of using
assembler code notation it might happen that specific options for a distinct compiler
(assembler) are not appropriate. If so, you can feel free to disable the CAN driver internal
initialization (see below on how to) and use your own initialization instead of.

To disable the CAN driver internal initialization use a “User Config File” containing
the following preprocessor definition:

#define CAN_ECC_INIT STD_OFF

Put your initialization into execution just before calling Can_Init(). The MCAN clock must
be available at this point of time.

Please refer to your hardware manufacturer documentation (see ch. 2 “Hardware
Overview”) for the address layout.

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 67
based on template version 3.2

9.3 Vector Extensions

Refer to Chapter 4.1 “Features” listed under “AUTOSAR extensions”

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 68
based on template version 3.2

10 Glossary and Abbreviations

10.1 Glossary

Term Description

GENy Generation tool for CANbedded and MICROSAR components

High End (license) Product license to support an extended feature set (see Feature table)

Table 10-1 Glossary

10.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

DEM Diagnostic Event Manager

DET Development Error Tracer

ECU Electronic Control Unit

HIS Hersteller Initiative Software

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR solution)

3,3x = AUTOSAR version 3

401 = AUTOSAR version 4.0.1

403 = AUTOSAR version 4.0.3

4x = AUTOSAR version 4.x.x

SWS Software Specification

Common CAN Connect two physical peripheral channels to one CAN bus (to increase
the amount of FullCAN)

Hardware Loop
Check

Timeout monitoring for possible endless loops.

Table 10-2 Abbreviations

Technical Reference Microsar CAN Driver

© 2016 Vector Informatik GmbH Version 1.02.00 69
based on template version 3.2

11 Contact

Visit our website for more information on

> News
> Products
> Demo software
> Support
> Training data
> Addresses

www.vector.com

http://www.vector.com/

	1.1 Scope of the Document
	2 Hardware Overview
	3 Introduction
	3.1 Architecture Overview

	4 Functional Description
	4.1 Features
	4.2 Initialization
	4.3 Communication
	4.3.1 Mailbox Layout
	4.3.2 Mailbox Processing Order
	4.3.3 Acceptance Filter for BasicCAN
	4.3.4 Remote Frames

	4.4 States / Modes
	4.4.1 Start Mode (Normal Running Mode)
	4.4.2 Stop Mode
	4.4.3 Bus Off

	4.5 Re-Initialization
	4.6 CAN Interrupt Locking
	4.7 Main Functions
	4.8 Error Handling
	4.8.1 Development Error Reporting
	4.8.1.1 Parameter Checking
	4.8.1.2 Overrun/Overwrite Notification

	4.8.2 Production Code Error Reporting
	4.8.2.1 Hardware Loop Check / Timeout Monitoring

	4.8.3 CAN RAM Check

	4.9 Common CAN
	4.9.1 Error Interrupt
	4.9.2 Not supported

	5 Integration
	5.1 Scope of Delivery
	5.1.1 Static Files
	5.1.2 Dynamic Files

	5.2 Include Structure
	5.3 Critical Sections
	5.4 Compiler Abstraction and Memory Mapping

	6 Hardware Specific Hints
	6.1.1 Usage of interrupt functions
	6.1.2 MCAN Errata

	7 API Description
	7.1 Interrupt Service Routines provided by CAN
	7.1.1 OSEK (OS)
	7.1.2 AutoSar (OS)
	7.1.3 None (OS)
	7.1.4 Type of Interrupt Function
	7.1.5 CAN ISR API

	7.2 Services provided by CAN
	7.2.1 Can_InitMemory
	7.2.2 Can_Init
	7.2.3 Can_InitController
	7.2.4 Can_InitController
	7.2.5 Can_ChangeBaudrate
	7.2.6 Can_CheckBaudrate
	7.2.7 Can_SetBaudrate
	7.2.8 Can_InitStruct
	7.2.9 Can_GetVersionInfo
	7.2.10 Can_GetStatus
	7.2.11 Can_SetControllerMode
	7.2.12 Can_ResetBusOffStart
	7.2.13 Can_ResetBusOffEnd
	7.2.14 Can_Write
	7.2.15 Can_CancelTx
	7.2.16 Can_CheckWakeup
	7.2.17 Can_DisableControllerInterrupts
	7.2.18 Can_EnableControllerInterrupts
	7.2.19 Can_MainFunction_Write
	7.2.20 Can_MainFunction_Read
	7.2.21 Can_MainFunction_BusOff
	7.2.22 Can_MainFunction_Wakeup
	7.2.23 Can_MainFunction_Mode
	7.2.24 Appl_GenericPrecopy
	7.2.25 Appl_GenericConfirmation
	7.2.26 Appl_GenericConfirmation
	7.2.27 Appl_GenericPreTransmit
	7.2.28 ApplCanTimerStart
	7.2.29 ApplCanTimerLoop
	7.2.30 ApplCanTimerEnd
	7.2.31 ApplCanInterruptDisable
	7.2.32 ApplCanInterruptRestore
	7.2.33 Appl_CanOverrun
	7.2.34 Appl_CanFullCanOverrun
	7.2.35 Appl_CanCorruptMailbox
	7.2.36 Appl_CanRamCheckFailed
	7.2.37 ApplCanInitPostProcessing

	7.3 Services used by CAN

	8 Configuration
	8.1 Pre-Compile Parameters
	8.2 Link-Time Parameters
	8.3 Post-Build Parameters
	8.4 Configuration with da DaVinci Configurator

	9 AUTOSAR Standard Compliance
	9.1 Limitations / Restrictions
	9.2 Hardware Limitations
	9.2.1 Initialization of the CAN Message RAM

	9.3 Vector Extensions

	10 Glossary and Abbreviations
	10.1 Glossary
	10.2 Abbreviations

	11 Contact

