VECTOR >

MICROSAR CAN Driver

Technical Reference

Renesas
RH850/P1x-C
MCAN

Version 1.02.00

Authors Cengiz Unver, Peter Herrmann

Status Released

VECTOR D>

Document Information

History Core

Technical Reference Microsar CAN Driver

mm Version _|Remarks

Holger Birke
Holger Birke
Holger Birke

Holger Birke
Holger Birke
Holger Birke
Holger Birke
Holger Birke
Holger Birke

Holger Birke

Holger Birke
Holger Birke
Holger Birke

Holger Birke
Holger Birke

Holger Birke

Holger Birke

Holger Birke

Holger Birke

Holger Birke

© 2016 Vector Informatik GmbH

2006-06-21
2006-06-28
2006-10-26

2007-01-22
2007-02-15
2007-07-10
2007-08-24
2007-08-28
2007-08-29

2007-11-13

2007-12-03
2008-02-20
2008-04-18

2008-07-21
2008-08-13

2008-08-13

2008-10-23

2009-02-06

2009-05-19

2009-07-15

Initial version

1.1 Review modifications

1.2 New feature Tx polling, FullCAN Tx and
support DEM

1.3 New feature Bus Off Polling

14 Minor Changes

1.5 ASR2.1

1.6 Renaming MICROSAR

1.7 Remove Driver version

1.8 Driver version also removed from Chapter
3

1.9 Changed API Can_|Init(), add API
Can_InitStruct(), add init structure
description (HL2.22)

1.10 Improve Interrupt description

1.1 ASR3

1.12 Review Reworks (Sh2 review and by
visem)

1.13 Review Reworks (TMS320)

1.14 Core 3.3
Optimization for runtime, ROM and RAM

1.15 Core 3.5
rename INTERRUPT & POLLING
Update Tool configuration description
Add Remote Frame rejection description

1.16 Core 3.6
add new API handle “Hardware Loop
Check” by application
+ beautifying

1.17 Core 3.7
Add individual polling

1.18 Improve “Generic Precopy” description
(extended ID bit)
Add Compiler and Memory abstraction,
Add possibility to report CAN_E_TIMEOUT
as DET.

1.18.01 Core 3.09
Remove Compiler abstraction CAN_ISR.
Change “Hardware Loop Check” naming.

Version 1.02.00 2

based on template version 3.2

VECTOR >

Holger Birke
Holger Birke

Holger Birke

Holger Birke

Holger Birke

Holger Birke
Holger Birke

Holger Birke

Holger Birke

Holger Birke

Holger Birke

Holger Birke

Holger Birke

Holger Birke

© 2016 Vector Informatik GmbH

2009-07-28
2009-10-01

2010-02-04

2010-04-01

2010-11-24

2011-04-18
2011-06-28

2011-07-29

2012-01-13

2012-04-02

2012-04-02

2012-06-29

2012-11-07

2012-11-07

1.18.02
1.18.03

1.20

2.00

2.00.01
2.00.02

2.01

2.01.01

2.02.00

2.03.00

2.04.00

2.05.00

2.05.01

Technical Reference Microsar CAN Driver

Review reworks

Core 3.10

Add RxQueue (high-end) and Generic
Confirmation

Core 3.11

Add “Multiple BasicCAN”, “Support Mixed
ID”, “Optimize for one controller”, “Dynamic
FullCAN Tx ID” and “Size of Hw
HandleType”.

Rename “Hardware Cancellation”
Correct “Services used by CAN”

Core 3.12

Add Critical Section description

Add “Common CAN”

Add Hardware assertion (DET) description

Add Can_GetStatus() + Interrupt category
configuration.

Add ApplCanlnterruptDisable/Restore()
Core 4.00

Update to MICROSAR4

Add “Overrun notification”

Add “RAM check”

Review reworks (VJ)

Rework (add missing config settings to
GENy GUI description)

Add MicroSar — AUTOSAR deviations
Core 4.01

Add “GenericPreTransmit”

Improve description for “Nested Interrupts”
and “Identical ID cancellation”

Core 4.02

Add Platform, CANCell and Manufacturer
as First Page Information

Add Void-Void ISR configuration, support
ASR3.2.1 Identical ID cancellation

Partial Network part of configuration (no
more preconfig)
Core 4.03

Support AR4-R5 (ASR4.0.3) — New API
added

Improve Hardware Loop description

Core 4.04
Add Re-initialization description
Instance ID of DET is always 0

Improve Hardware Loop description

Version 1.02.00 3
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

Holger Birke 2013-10-11 2.06.00 Add CAN FD description
(Can_SetBaudrate() API)

History Platforms

m Date ‘ Version ‘ Remarks

C. Unver 2015-04-27 1.00.00 Initial version

P. Herrmann 2016-01-28 1.01.00 Added MCAN Rev. 3.1.0 changes.

Additional description concerning the
Bosch MCAN Errata Sheet.

P. Herrmann 2016-10-06 1.02.00 Additional description concerning the
Bosch MCAN Errata Sheet.

Reference Documents

No. Title Version

[1] AUTOSAR_SWS_CAN_DRIVER.pdf 246+
3.0.0 +
4.0.0

[2] AUTOSAR_BasicSoftwareModules.pdf V1.0.0

[3] AUTOSAR_SWS BSW Scheduler V1.1.0

[4] AUTOSAR_SWS_ CAN_Interface.pdf 3.2.7+
4.0.0+
5.0.0

[5] AN-ISC-8-1118 MICROSAR BSW Compatibility Check V1.0.0

[6] M_CAN Controller Area Network Errata Sheet REL2015 0701

1.1 Scope of the Document

This document describes the functionality, APl and configuration of the MICROSAR CAN
driver as specified in [1]. The CAN driver is a hardware abstraction layer with a
standardized interface to the CAN Interface layer.

Caution

“ We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

© 2016 Vector Informatik GmbH Version 1.02.00 4
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

Contents
1.1 Scope of the DOCUMENL.........cooii e e 4
2 Hardware OVEIVIBWccooiiiii i e et e et e e et e et e e e e et e e e et e e e eneans 8
3 INtrOdUCLION........... e 9
3.1 ArchiteCture OVEIVIEWcouu it e e e e et e eens 10
4 Functional DesCription.............ooouuiiiiiiiii e 12
4.1 = (Y RPN 12
4.2 L] E=1 2= 1 o] o SRR 15
4.3 COMMUNICALIONceiiiiie e e e e e e e e e e e e et e e e e e e e eanenes 16
4.4 StAtES / MOAES ... e aaaan 18
4.5 Re-INitialiZationouiiiii e 19
4.6 CAN INterrupt LOCKINGcoiiiiiiiicee ettt e e e e e aaaees 19
4.7 Y =Y o T T Tt o] o P 19
4.8 Error Handling.........oooooiiii 20
4.9 CommMON CANt e e e et s e e e e e e e e ettt e e e aaaeeaannes 24
5 INEEGratioN.........oiiiiiiii e 27
5.1 SCOPE Of DEIIVEIY ... ennnnee 27
5.2 INCIUAE SETUCLUIE ... et e e e e e ees 28
5.3 Critical SECHONScvviiei i e e e aaaaes 28
54 Compiler Abstraction and Memory Mapping...............eeeeeeeeeieemiimemmnieenennnnnnnnnnn. 30
6 Hardware Specific Hints ... 32
T APIDeSCHIPLION.. ... e e e e e e e e et en 35
71 Interrupt Service Routines provided by CANcccooiiiiiiiiiiii e, 35
7.2 Services provided DY CANuuiiiiiiiiiiii i 36
7.3 Services used by CAN ... e 60
8 CoNFIGUIAtiONuiiiiiiiiii e nnnnnnnne 62
8.1 Pre-Compile Parameters..........oooovvviiiiiii 62
8.2 Link-Time Parameters.........ooo oot 63
8.3 Post-Build Parameterscooooiiiiiiii e 63
8.4 Configuration with da DaVinci Configurator...............ccciiiiiiiiiiiiiiieee 64
9 AUTOSAR Standard Compliance...............coooooiiiiiiiiii 65
9.1 Limitations / RESIHCHONSoiiiiii e 65
9.2 Hardware Limitationsoi i 65
© 2016 Vector Informatik GmbH Version 1.02.00 5

based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

9.3 RV L= Tex (o]l = (=1 = (o o 1 67
10 Glossary and Abbreviationsccccooiiii i 68

10.1 (€1 [01STT= | Y PSSR 68

10.2 ABDreVviationSooooeiie e 68
B T 0o 1 - o 69
lllustrations
Figure 3-1 AUTOSAR 3.x Architecture OVErviewcccceeeiiiieiiiiiiiiiiee e, 10
Figure 3-2 AUTOSAR architecture...........cooviiiiii 11
Figure 3-3 Interfaces to adjacent modules of the CAN ... 11
Figure 5-1 Include Structure (AUTOSAR)cooviiiiii e 28
Figure 7-1 Y=Y [T GO 1S T Y/ o1 S 35
Tables
Table 2-1 Supported Hardware OVEIVIEWceuuuiiiiiieiiiiiiicie e e e e e 8
Table 4-1 Supported fEAtUIEScooiieeecee e 15
Table 4-2 Hardware mailboX layoutcoooviiiii i, 17
Table 4-3 Errors reported t0 DET ... 20
Table 4-4 API from which the Errors are reported............ccccoeviiiiviiiiiiiiiiiee e, 21
Table 4-5 Errors reported 1o DEM.........cooiiiii i 22
Table 4-6 Hardware LOOp CheCKcooveuiiiiiiiie e 24
Table 5-1 StAtIC fIlES ..o 27
Table 5-2 Generated fileSuuuuuiiiiiiiiiiiii e 27
Table 5-3 Critical SeCtioN COAESuuuuuuiiiiiiiiiiiiiiiiiiiii e aeeeeaeeennne 30
Table 5-4 Compiler abstraction and memory mapping...............eeeeeeeeeeeiemmeeiiinniinnnnn. 31
Table 7-1 O =T] =] S 36
Table 7-2 (07 10 T o T1 117/ =T 0 T Y2 37
Table 7-3 (07 o T [011(07e] o1 o] 1= 38
Table 7-4 (07 o T [011(07e] o1 o] 1= 39
Table 7-5 Can_ChangeBaudrateuuuuuuiuimiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeneeeeneneenne 39
Table 7-6 Can_CheckBaudrateuuiiiiiiiiiiiiccc e 40
Table 7-7 Can_SetBaudrateooov i 41
Table 7-8 Can_INItSIIUCTE. ... 41
Table 7-9 Can_GetVersionINfO ..o 42
Table 7-10 Can_GetStatUsS ..o 43
Table 7-11 Can_SetControllerMOdeuoiiiiiiiiece e 44
Table 7-12 Can_ResetBusOffStartcccooiiiiiiiiic e 44
Table 7-13 Can_ResetBUSOENGuuuiiiiiiiiiiiiiiiiiiiiieeeeeeees 45
Table 7-14 AN VI, e 46
Table 7-15 (07 1 [7T o To =Y I G 46
Table 7-16 Can_CheCKWaKEUPuuuuuiiiiiiiiiiiiiiiiiiii e eeeeeeseeennnnnnnnne 47
Table 7-17 Can_DisableControllerInterrupts...............ueuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieens 47
Table 7-18 Can_EnableControllerInterrupts.ccccuueuimmiimiiiiiiiiiiiiiieiiieieiieneneeeenennes 48
Table 7-19 Can_MainFunction_WIteuuuuuummiiiiiiiiiiiiiiiiiiiiiiineeieeieneeeenenenennnnnes 48
Table 7-20 Can_MainFunction_Readuuuiiiiiiiiiiiiiiiiiiiiiiiiees 49
Table 7-21 Can_MainFunction_BusOff...............uuuiiiiiiiiiiiiiiiiiiiiees 50
Table 7-22 Can_MainFunction_WaKeuUp...........uuuuuumrummmmmiiiiiiiiiiiiiniiinieenneeennnnnnnnnnnnnnnne 50
Table 7-23 Can_MainFunction_MOdE............uuuuuuiiiiiiiiiiiiiiiiiiii e 51
© 2016 Vector Informatik GmbH Version 1.02.00 6

based on template version 3.2

VECTOR >

Table 7-24
Table 7-25
Table 7-26
Table 7-27
Table 7-28
Table 7-29
Table 7-30
Table 7-31
Table 7-32
Table 7-33
Table 7-34
Table 7-35
Table 7-36
Table 7-37
Table 7-38
Table 10-1
Table 10-2

© 2016 Vector Informatik GmbH

Technical Reference Microsar CAN Driver

APPlL_GENEICPIECOPY ...uviiiiii i e 51
Appl_GenericConfirmation...............uoiiii i 52
Appl_GenericConfirmation.............ccceeeiii i 53
Appl_GenericPreTransmit............couiiiiii i 53
ApPICaANTIMEISTArtceeeiiiii e 54
F Yo o] (@ ol I 4 1= T4 o o o PSR 55
ApPICANTIMEIENG ... e 55
ApplCaninterruptDisable..............couuiiiiiiiiice e 56
ApplCaninterruptREStOrecooiieecii e 57
APPL_CanOVEITUNcouiiiiei et e e e araas 57
Appl_CanFullCanOVEeITUN...........couuiiei e 58
Appl_CanCorruptMailDOX........ccciveeiieiiei e 59
Appl_CanRamCheckFailed.............cccooiiiiiiiic e 59
ApplCanInitPostProcessingccuuviiiii i 60
Services used DY the CAN ... 61
GlOSSANY ...ttt 68
ABDIrEeVIatioNSo 68

Version 1.02.00
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

2 Hardware Overview

The following table summarizes information about the CAN Driver. It gives you detailed
information about the derivatives and compilers. As very important information the
documentations of the hardware manufacturers are listed. The CAN Driver is based upon
these documents in the given version.

Derivative Compiler |Hardware Manufacturer Document Version

R7F701325A Document Number: RH850/P1x-C Group Rev. 0.60,

R7F701327 Rev. 0.60, 09/2014 Sep. 2014

R7F701328

R7F701329 RH850/P1x-C Group Rev.0.10, Nov. 2014 Nov, 2014
Rev.0.10

R7F701370A c GHS.I

R7F701370B Rorlnpl ° RH850/P1x-C Group User's Manual: Jan, 2016

R7F701371 ©1€aS€ Hardware Renesas microcontroller RH850 Rev.1.00

R7F701372 v2015.1.7 Eamily

R7F701372A

R7F701373

R7F701373A

R7F701374

R7F701374A

Table 2-1 Supported Hardware Overview

Derivative: This can be a single information or a list of derivatives, the CAN Driver can be used on.
Compiler: List of Compilers the CAN Driver is working with

Hardware Manufacturer Document Name: List of hardware documentation the CAN Driver is based on.
Version: To be able to reference to this hardware documentation its version is very important.

© 2016 Vector Informatik GmbH Version 1.02.00 8
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

3 Introduction

This document describes the functionality, APl and configuration of the AUTOSAR BSW
module CAN as specified in [1].

Since each hardware platform has its own behavior based on the CAN specifications, the
main goal of the CAN driver is to give a standardized interface to support communication
over the CAN bus for each platform in the same way. The CAN driver works closely
together with the higher layer CAN interface.

Supported AUTOSAR Release*: 3and4

Supported Configuration Variants: [RaCa®euldlh
(Supported AUTOSAR Standard Link-Time,

Conform Features) Post-Build Loadable,
Post-Build Selectable (MICROSAR Identity Manager)

Vendor ID: CAN_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

I CAN_MODULE_ID 80 decimal
- (according to ref. [2])
AR Version: CAN_AR_RELEASE_MAJO | AUTOSAR Release
R_VERSION Version

CAN_AR_RELEASE_MINOR | BCD coded
_VERSION
CAN_AR_RELEASE_REVISI
ON_VERSION

SW Version: CAN_SW_MAJOR_VERSIO | MICROSAR CAN
N module Version
CAN_SW_MINOR_VERSION | BCD coded
CAN_SW_PATCH_VERSION

* For the precise AUTOSAR Release 3.x and 4.x please see the release specific documentation.

© 2016 Vector Informatik GmbH Version 1.02.00 9
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

3.1 Architecture Overview
The following figure shows where the CAN is located in the AUTOSAR architecture.

RTE

DIOHWAB'
SENT'

J1939TP! LINXCP? FRXCP' ETHXCP
CANXCP! LINTP FRTP SOAD/DOIP
CANTP LINSM FRISOTP TCPIP
CANNM LINIF FRNM ETHSM SCC
CANSM FRSM ETHIF TLS
CANIF FRIF XML Security

PORTDRV SPIDRV [cantrcy [FrTRCV |
ETHDRV! GPTDRV PWMDRY WDGDRV DRVEXT? LINTRCV
FLSDRV ICUDRV RAMTST

Vector Standard Softw 3rd Party Software " Available extensions for AUTOSAR
seermtandaresethar - ? Includes EXTADC, EEPEXT, FLSEXT, and
WDGEXT

Figure 3-1 AUTOSAR 3.x Architecture Overview

E2E Protection Application
Wrapper

RTE
: [0 |
BSWM DcM EA com [@PDUM [NM [PDUR | [oionwas™ | [caLcrn |
COMM DEM FEE |SEN'I" | CRC
CSM FIM MEMIF E2E
SRY V)
£EL J1939TP LINXCP? FRXCP ETHXCP
5=l CANXCP LINTP FRTP SOAD/DOIP
SIER CANTP LINNM FRARTP TLS
pDCIE CANNM LINSM FRNM TCPIP
Een CANSM LINIF FRSM ETHSM XML Security
CANIF FRIF ETHIF

AVTP
SRP
PTP?

DIOCDRV GPTDRV LINDRV PWMDRV SPIDRV CANTRCV FRTRCV

i EEPDRV FLSTST ICUDRV MCUDRV RAMTST | WDGDRV I DRVEXT? LINTRCV

ETHDRV FRDRV IICDRV' PORTDRV CRY (HW)' ETHTRCV

Vector Standard Software 3rd Party Software ;A"Q'I"ble extensions for AUTOSAR
Includes EXTADC, EEPEXT, FLSEXT, and
WDGEXT
© 2016 Vector Informatik GmbH Version 1.02.00 10

based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

Figure 3-2 AUTOSAR architecture

The next figure shows the interfaces to adjacent modules of the CAN. These interfaces are
described in chapter 7.

? P s

Figure 3-3 Interfaces to adjacent modules of the CAN

© 2016 Vector Informatik GmbH Version 1.02.00 1
based on template version 3.2

VECTOR >

4 Functional Description

4.1 Features

Technical Reference Microsar CAN Driver

The features listed in this chapter cover the complete functionality specified in [1].

The "supported" and "not supported" features are presented in the following table. For
further information of not supported features also see chapter 9.

Initialization

Driver

Controller

Communication
Transmission
Transmit confirmation
Reception
Receive indication

Controller Modes
Sleep mode
Wakeup over CAN
Stop mode

Bus Off detection
Polling Modes

Tx confirmation

Reception
Wakeup
Bus Off

Mode

Mailbox objects

Tx BasicCAN

Multiplexed Tx

© 2016 Vector Informatik GmbH

General driver initialization function
Can_lInit()

Controller specific initialization function
Can_InitController().

Transmitting CAN frames.
Callback for successful Transmission.
Receiving CAN frames.

Callback for receiving Frame.

Controller support sleep mode (power
saving).

Controller support wakeup over CAN.

Controller support stop mode (passive to
CAN bus).

Callback for Bus Off event.

Support polling mode for Transmit
confirmation.

Support polling mode for Reception.
Support polling mode for Wakeup event.
Support polling mode for Bus Off event.

MICROSAR4x only: Support polling
mode for mode transition.

Standard mailbox to send CAN frames
(Used by CAN Interface data queue).

Using 3 mailboxes for Tx BasicCAN
mailbox (external priority inversion
avoided).

Version 1.02.00
based on template version 3.2

12

VECTOR >

Tx FullCAN
Maximum amount
Rx FullCAN

Maximum amount

Rx BasicCAN

Maximum amount

Others

DEM

DET

Version API
Maximum supported
Controllers

Cancellation of Tx objects

Identical ID cancellation
Standard ID types
Extended ID types
Mixed ID types

CAN FD Mode1

CAN FD Mode2

Hardware Loop Check
(Timeout monitoring)

AutoSar extensions

Individual Polling

Multiple Rx Basic CAN

© 2016 Vector Informatik GmbH

Technical Reference Microsar CAN Driver

Separate mailbox for special Tx message
used.

Available amount of mailboxes.

Separate mailbox for special Rx
message used.

Available amount of mailboxes.

Standard mailbox to receive CAN frame
(depending on hardware, FIFO or
shadow buffer supported).

Available amount of BasicCAN objects.

By default there is one FIFO(0)
supported with a max. amount of 64
entries. In case of “Multiple BasicCAN”
(see below) support an additional second
FIFO(1) with 64 entries is supported.

Support Diagnostic Event Manager (error
notification).

Support Development Error Detection
(error notification).

API to read out component version.

Maximum amount of supported
controllers (hardware channels).

Support of Tx Cancellation (out of
hardware). Avoid internal priority
inversion.

Tx Cancellation also for identical IDs.
Standard ldentifier supported (Tx and
Rx).

Extended Identifier supported (Tx and
Rx).

Standard and Extended Identifier
supported (Tx and Rx).

FD frames with baudrate switch
supported (Tx and Rx).

FD frames up to 64 data bytes supported
(Tx and Rx).

To avoid possible endless loops (occur
by hardware issue).

Support individual polling mode
(selectable for each mailbox separate).

Support Multiple BasicCAN objects.

Version 1.02.00
based on template version 3.2

32

64

2764

] *kkk

.*

.*

13

VECTOR > Technical Reference Microsar CAN Driver

This gives the possibility to use
additionally Fifo-1 with 64 additional
elements. By optimizing the acceptance
filtering overruns can be avoided .

Support Multiple Tx BasicCAN objects.
Used to send different Tx groups over

Al b Feee L separate mailboxes with different -
buffering behavior (see Can Interface).
Support Rx Queue. This offers the
Rx Queue possibility to buffer received data in m*
interrupt context but handle it later
asynchronous in the polling task.
Secure Rx Buffer used Special hardware buffer used to 0
temporary save received data.
“Hardware Loop Check” can be defined
Halrdwlare Loop Check by to be done by application (special API u
Application .
available)
Configurable “Nested CAN Nested CAN interrupts allowed, and can -
Interrupts” be also switched to none-nested.

Report CAN_E_TIMEOUT (Hardware
Loop Check / Timeout monitoring) to DET u
instead of DEM.

Force CAN driver to handle Mixed ID

(standard and extended ID) at pre- .
compile-time to expand the ID type later

on.

Report CAN_E_TIMEOUT
DEM as DET

Support Mixed ID

Activate this for 1 controller systems

when you never will expand to multi- -
controller. So that the CAN driver works

more efficient

Always write FullCAN Tx ID within
Dynamic FullCAN Tx ID CanWrite() API function. Deactivate this -
(***) to optimize code when you do not use
FullCAN Tx objects dynamically.

Optimize for one controller

Support 8-bit or 16-bit Hardware Handles -

Size of Hw HandleType depending on the hardware usage.

Support a callback function for receiving
Generic PreCopy any CAN message (following callbacks u
could be suppressed)

Support a callback function for successful

Generic Confirmation transmission of any CAN message -
(following callbacks could be
suppressed)

S e e Support a API to get hardware status -

Information (see Can_GetStatus())

Interrupt Category Support Category 1 or Category 2 -
selection Interrupt Service Routines for OS
Common CAN Support merge of 2 controllers in 0

hardware to get more Rx FullCAN

© 2016 Vector Informatik GmbH Version 1.02.00 14
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

objects

Support DET or Application notification
caused by overrun (overwrite) of an Rx
message.

Please note that ‘Overrun’ is supported
for BasicCAN objects but is not available
for FullCAN objects.

While not processed a Message ID Filter
Element referencing a specific FullCAN
object will not match, causing the

Overrun Notification acceptance filtering to continue.
Subsequent Message ID Filter Elements
may cause the received message to be
stored into

- another FullCAN object, or
- a BasicCAN object, or

- the message may be rejected,
depending on the filter configuration.

RAM check Support CAN mailbox RAM check u

The feature Multiple ECU is usually used
Multiple ECU for nodes that exist more than once in a -
configurations (***) car. At power up the application decides
which node should be realized.

Support a callback function with pointer
to Data, right before this data will be

Generic PreTransmit written in Hardware mailbox buffer to u
send. (Use this to change data or cancel
transmission)

Table 4-1 Supported features

*%
*k*k

*kkk

4.2 Initialization

Can_Init () has to be called to initialize the CAN driver at power on and sets controller
independent init values. This function has to be called before Can InitController ().

MicroSar3 only: Use Can InitStruct () to change the used baud rate and filter settings
like given in the Initialization structure from the Tool. The used default set by
Can_InitMemory () is the first structure. This APl has to be called before
Can InitController () butafter Can InitMemory ().

© 2016 Vector Informatik GmbH Version 1.02.00 15
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

MICROSAR401 only: baud rate settings given by Can_InitController parameter.

Can InitController () initializes the controller, given as parameter, and can also be
used to reinitialize. After this call the controller stays in stop-mode until the CAN Interface
changes to start-mode.

Can InitMemory () is an additional service function to reinitialize the memory to bring
the driver back to a pre-power-on state (not initialized). Afterwards Can Init () and
Can InitController () have to be called again. It is recommended to use this function
before calling Can Init () to secure that no startup-code specific pre-initialized variables
affect the driver startup behavior.

4.3 Communication

Can Write () is used to send a message over the mailbox object given as "Hth". The
data, DLC and ID is copied into the hardware mailbox object and a send request is set.
After sending the message the CAN Interface CanIf TxConfirmation () function is
called. Right before the data is copied in mailbox buffer the ID, DLC and data may be
changed by Appl GenericPreTransmit () callback.

When “Generic Confirmation® is activated the callback Appl GenericConfirmation()
will be called before CanIf TxConfirmation () and the call to this can be suppressed
by Appl GenericConfirmation() return value.

For Tx messages the ID will be copied. (Exception: feature “Dynamic FullCAN Tx ID” is
deactivated, then the FullCAN Tx messages will be only set while initialization)

If the mailbox is currently sending the status busy will be returned. Then the message may
be queued in the CAN interface (if feature is active).

If cancellation in hardware is supported the lowest priority ID inside currently sending
object is canceled, and therefore re-queued in the CAN Interface.

Appl GenericPreCopy() (if activated) is called and depend on return value also
CanIf RxIndication() as a CAN Interface callback, is called when a message is
received. The receive information like ID, DLC and data are given as parameter.

When Rx Queue is activated the received messages (polling or interrupt context) will be
queued (same queue over all channels). The Rx Queue will be read by calling
Can Mainfunction Read () and the Rx Indication (like CanIf RxIndication()) will
be called out of this context. Rx Queue is used for Interrupt systems to keep Interrupt
latency time short.

4.3.1 Mailbox Layout

The generation tool supports a flexible allocation of message buffers. In the following
tables the possible mailbox layout is shown (the range for each mailbox type depends on
the used mailboxes).

© 2016 Vector Informatik GmbH Version 1.02.00 16
based on template version 3.2

VECTOR >

Technical Reference Microsar CAN Driver

Tx
FullCAN

0 ... 31 max.
(0...29in
case of
multiplexed
transmission)

These objects are used to transmit specific message IDs.
The user must define statically in the generation tool
which CAN message IDs are located in Tx FullCAN
objects. The generation tool assigns the message IDs to
the FullCAN hardware objects.

(N+1)

Tx
BasicCAN

1or3 3
in case of
multiplexed

transmission)

All other CAN message IDs are transmitted via the Tx
Basic object. If the transmit message object is busy, the
transmit requests are stored in the CAN Interface queue
(if activated).

(M+1)

Unused

0..95

These objects are not used. It depends on the
configuration of receive and transmit objects how many
unused objects are available.

Rx
FullCAN

These objects are used to receive specific CAN
messages. The user defines statically (Generation Tool)
that a CAN message should be received in a FullCAN
message object. The Generation Tool distributes the
messages to the FullCAN obijects.

96

97

Rx
BasicCAN

FIFO-0 with
max. 64
entries

All CAN message IDs, depending on the acceptance filter
match, are received via the Rx BasicCAN message object
through Rx FIFO 0.

Each Rx Basic message object consists of 64 message
buffers.

128 acceptance filters are available for standard IDs and
64 acceptance filters are available for extended IDs.

In case of mixed ID mode 128+64 = 192 filters are
available.

Please note that this maximum amount of filters is also
used for FIFO-1 if available.

Rx
BasicCAN

FIFO-1 with
max. 64
entries

All CAN message IDs, depending on the acceptance filter
match, are received via the Rx BasicCAN message
objects through Rx FIFO 1.

Each Rx Basic message object consists of 64 message
buffers.

128 acceptance filters are available for standard IDs and
64 acceptance filters are available for extended IDs.

In case of mixed ID mode 128+64 = 192 filters are
available.

Please note that this maximum amount of filters is also
used for FIFO-0.

Table 4-2

Hardware mailbox layout

The “CanObjectld” (ECUc parameter) numbering is done in following order: Tx FullCAN,
Tx BasicCAN, Unused, Rx BasicCAN (like shown above). “CanObjectld’s” for next
controller begin at end of last controller. Gaps in “CanObijectld” for unused mailboxes may
ocCcur.

© 2016 Vector Informatik GmbH Version 1.02.00 17

based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

4.3.2 Mailbox Processing Order
The hardware mailbox will be processed in following order:

Tx FullCAN Object ID Low to High
Tx BasicCAN Object ID Low to High
Rx FullCAN Object ID Low to High
Rx BasicCAN FIFO

In Case of Interrupt Rx FullCANSs will be processed before Rx BasicCANSs.
In Case of Polling Rx FullCANSs will be processed before Rx BasicCANSs.

The order between Rx and Tx mailboxes depends on the call order of the polling tasks or
the interrupt context and cannot be guaranteed.

The Rx Queue will work like a FIFO filled with the above mentioned method.

4.3.3 Acceptance Filter for BasicCAN

For each CAN channel a maximum amount of 128 filters for standard and 64
filters for extended ID configurations is available. Thus 192 filters are available for
mixed D configurations.

For acceptance filtering each list of filters is executed from element #0 until the
first matching element. Acceptance filtering stops at the first matching element. Each
filter element decides if the received message is stored within FIFO-0 (or FIFO-1 if
available).

If no message should be received, select the “Multiple Basic CAN” feature and set
the amount to 0. Otherwise the filter should be set to “close”. Use feature “Rx
BasicCAN Support” to deactivate unused code (for optimization).

4.3.4 Remote Frames

The CAN driver initializes the CAN controller not to receive remote frames. Therefore no
additional action is required during runtime by the CAN driver for remote frame filtering.
Remote frames will not have any influence on communication because they are not
received by the CAN hardware.

4.4 States / Modes

You can change the CAN cell mode via Can_SetControllerMode(). The last requested
transition will be executed. The Upper layer has to take care about valid transitions.

The following modes changes are supported:
CAN T START
CAN T STOP

© 2016 Vector Informatik GmbH Version 1.02.00 18
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

MICROSARA4 only: Notification of mode change may occur asynchronous by notification
CanIf ControllerModeIndication ()

44,1 Start Mode (Normal Running Mode)

This is the mode where communication is possible. This mode has to be set after
Initialization because Controller is first in stop-mode.

The Bit Stream Processor synchronizes itself to the data transfer on the CAN bus
by waiting for the occurrence of a sequence of 11 consecutive recessive bits (=
Bus_Idle) before it can take part in bus activities and start the message transfer.

4.4.2 Stop Mode

If stop mode is requested, either by software or by going BusOff, then the CAN module is
switched into INIT mode. In this mode message transfer from and to the CAN bus
is stopped, the status of the CAN bus transmit output is recessive (HIGH).

Going to stop mode does not change any configuration register.

443 Bus Off

CanIf ControllerBusOff () is called when the controller detects a Bus Off event. The
mode is automatically changed to stop mode. The upper layers have to care about
returning to normal running mode by calling start mode

45 Re-Initialization

A call to Can_InitController() cause a re-initialization of a dedicated CAN controller.
Pending messages may be processed before the transition will be finished. A re-
initialization is only possible out of Stop Mode and does not change to another Mode.
After re-initialization all CAN communication relevant registers are set to initial conditions.

4.6 CAN Interrupt Locking

Can DisableControllerInterrupts () and
Can_EnableControllerInterrupts () are used to disable and enable the controller
specific Interrupt, Rx, Tx, Wakeup and Bus Off (/ Status) together. These functions can be
called nested.

4.7 Main Functions

Can MainFunction Write (), Can MainFunction Read(),

Can MainFunction BusOff () and Can MainFunction Wakeup () are called by
upper layers to poll the events if the specific polling mode is activated. Otherwise these
functions return without any action and the events will be handled in interrupt context.

When individual polling is activated only mailboxes that are configured as to be polled will
be polled in the main functions “Can_MainFunction Write ()” and
“‘Can_MainFunction Read ()", all others are handled in interrupt context.

© 2016 Vector Informatik GmbH Version 1.02.00 19
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

If the Rx Queue feature is activated then the queue is filled in interrupt or polling context,
like configured. But the processing (indications) will be done in
“Can MainFunction Read ()" context.

MICROSARA4 only: Can_MainFunction_Mode() can be called by upper layers to poll
asynchronous mode transition notifications.

4.8 Error Handling

4.8.1 Development Error Reporting

Development errors are reported to DET using the service Det ReportError (), if the
pre-compile parameter CAN_DEV_ERROR_DETECT == STD_ON.

The tables below, shows the API ID and Error ID given as parameter for calling the DET.
Instance ID is always 0 because no multiple Instances are supported.

Errors reported to DET:

Error ID Short Description

CAN_E PARAM_POINTER API gets an illegal pointer as parameter.
CAN_E PARAM_HANDLE API gets an illegal handle as parameter
CAN_E PARAM_DLC API gets an illegal DLC as parameter
CAN_E PARAM_CONTROLLER API gets an illegal controller as parameter
CAN_E_UNINIT Driver API is used but not initialized
CAN_E_TRANSITION Transition for mode change is illegal

CAN_E_DATALOST
(value: 0x07, AutoSar extension)

CAN_E_PARAM_BAUDRATE
(value: 0x08, AutoSar extension)

Rx overrun (overwrite) detected

Selected Baudrate is not valid

Rx Queue overrun
CAN_E_RXQUEUE (Last received message is lost and will not be received.

(value: 0x10, AutoSar extension) Avoid this by increasing the queue size)

CAN E TIMEOUT DET Same as CAN_E_T"VIEOUT for DEM but this is notified to DET
- - = due to switch “CAN_DEV_TIMEOUT DETECT” is set to

(value: 0x11, AutoSar extension) STD_ON (see configuration options)

Table 4-3 Errors reported to DET

‘ API from which the errors are reported to DET: ‘

API ID Functions using that ID |

CAN_VERSION_ID Can_GetVersionInfo()
CAN_INIT_ID Can_lInit()
CAN_INITCTR_ID Can_InitController()
© 2016 Vector Informatik GmbH Version 1.02.00 20

based on template version 3.2

VECTOR >

CAN_SETCTR_ID
CAN_DIINT_ID
CAN_ENINT_ID
CAN_WRITE_ID
CAN_TXCNF_ID
CAN_RXINDI_ID
CAN_CTRBUSOFF_ID
CAN_CKWAKEUP_ID
CAN_MAINFCT_WRITE_ID
CAN_MAINFCT_READ_ID
CAN_MAINFCT_BO_ID
CAN_MAINFCT_WU_ID
CAN_MAINFCT_MODE_ID
CAN_CHANGE_BR_ID
CAN_CHECK_BR_ID
CAN_SET_BR_ID

Technical Reference Microsar CAN Driver

Can_SetControllerMode()
Can_DisableControllerinterrupts()
Can_EnableControllerinterrupts()

Can_Write(), Can_CancelTx()
CanHL_TxConfirmation()
CanBasicCanMsgReceived(), CanFullCanMsgReceived()
CanHL_ErrorHandling()

CanHL_WakeUpHandling(), Can_Cbk_CheckWakeup()
Can_MainFunction_Write()

Can_MainFunction_Read()
Can_MainFunction_BusOff()
Can_MainFunction_Wakeup()
Can_MainFunction_Mode()

Can_ChangeBaudrate()

Can_CheckBaudrate()

Can_SetBaudrate()

CAN_HW_ACCESS_ID

: Used when hardware is accessed (call context is unknown)
(value: 0x20, AUTOSAR extension)

Table 4-4 API from which the Errors are reported

4.8.1.1 Parameter Checking

AUTOSAR requires that API functions check the validity of their parameters (Refer to [1]).
These checks are for development error reporting and can be enabled and disabled
separately. Refer to the configuration chapter where the enabling/disabling of the checks is
described. Enabling/disabling of single checks is an addition to the AUTOSAR standard
which requires enable/disable the complete parameter checking via the parameter
CAN DEV_ERROR DETECT.

4.8.1.2 Overrun/Overwrite Notification

As AUTOSAR extension the overrun detection may be activated by configuration tool. The
notification can be configured to issue a DET call (MICROSAR 4.x) or an Application call
(Appl_CanOverrun()).

4.8.2 Production Code Error Reporting

Production code related errors are reported to DEM using the service
Dem ReportErrorStatus (), if the pre-compile parameter CAN_PROD ERROR_DETECT
== STD ON.

The table below shows the Event ID and Event Status given as parameter for calling the
DEM. This callout may occur in the context of different API calls (see Chapter “4.8.2.1”).

© 2016 Vector Informatik GmbH Version 1.02.00 21
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

Event ID Event Status Short Description

CAN_E_TIMEOUT DEM_EVENT_STATUS_ FAILED Timeout in “Hardware Loop Check”
occurred, hardware has to be checked
or timeout is too short.

Table 4-5 Errors reported to DEM

4.8.2.1 Hardware Loop Check / Timeout Monitoring

The feature “Hardware Loop Check” is used to break endless loops caused by hardware
issue. This feature is configurable see Chapter 7 and also Timeout Duration description.

The Hardware Loop Check will be handled by CAN driver internal except when setting
“Hardware Loop Check by Application” is activated.

Loop Name / Short Description

source

kCanLoopInit This channel dependent loop is called in Can InitController
and is processed as long as the CAN cell does not enter
resp. leave the configuration mode.
While entering the configuration mode, message transfer from
and to the CAN bus is stopped, the status of the CAN bus
transmit output i1s recessive.
There is a delay from writing to a command register until
the update of the related status register bits due to clock
domain crossing (Host and CAN clock). Therefore the
programmer has to assure that the previous value written to
INIT has been accepted.
Due to the high precision clocking requirements of the CAN
Core, a separate clock without any modulation has to be
provided as CAN clock. The CAN Core should be programmed to
have at least 8 clocks per bit time (e.g.: at least 8 MHz
CAN clock at 1 Mbaud CAN speed). In order to achieve a
stable function of the M CAN, the Host clock must always be
faster than or equal to the CAN clock.
If the loop cancels, try to reinitialize the controller
again or reset the hardware.
After leaving the configuration mode the Bit Stream
Processor synchronizes itself to the data transfer on the
CAN bus by waiting for the occurrence of a sequence of 11
consecutive recessive bits (= Bus Idle) before it can take
part in bus activities and start the message transfer.

kCanLoopStart MICROSAR3:
- Used while transition in mode ‘START’.
- Call context: Can_ SetControllerMode ()
- There is a delay from writing to a command register until
the update of the related status register bits due to clock
domain crossing (Host and CAN clock). Therefore the
programmer has to assure that the previous value written to
INIT has been accepted.

- If the loop cancels try to recall Can SetControllerMode () .

© 2016 Vector Informatik GmbH Version 1.02.00 22
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

Loop Name / Short Description

source
MICROSAR4:
Used for short time mode transition blocking (short
synchronous timeout). Same value for kCanLoopStart,

kCanLoopStop, kCanLoopSleep and kCanLoopWakeup.
No Issue when timeout occurs.

kCanLoopStop MICROSAR3:
- Used while transition in mode ‘STOP’.
- Call context: Can_ SetControllerMode ()

- There is a delay from writing to a command register until
the update of the related status register bits due to clock
domain crossing (Host and CAN clock). Therefore the
programmer has to assure that the previous value written to
INIT has been accepted.

- If the loop cancels try to recall Can SetControllerMode () .

MICROSAR4:

Used for short time mode transition blocking (short
synchronous timeout). Same value for kCanLoopStart,
kCanLoopStop, kCanLoopSleep and kCanLoopWakeup.

No Issue when timeout occurs.

kCanLoopSleep MICROSAR3:
- Used while transition in mode ‘SLEEP'.
- Call context: Can_ SetControllerMode ()

- When all pending transmission requests have completed, the
M CAN waits until bus idle state is detected.

- If the loop cancels try to recall Can SetControllerMode.

MICROSAR4:

Used for short time mode transition blocking (short
synchronous timeout). Same value for kCanLoopStart,
kCanLoopStop, kCanLoopSleep and kCanLoopWakeup.

No Issue when timeout occurs.

kCanLoopWakeup MICROSAR3:
- Used while transition in mode ‘WAKEUP’.

- Call context: Can SetControllerMode ()

- Once the M CAN is initialized it synchronizes itself to the
CAN bus and is ready for communication.

- If the loop cancels try to recall Can SetControllerMode.

MICROSAR4:
Used for short time mode transition blocking (short
synchronous timeout). Same value for kCanLoopStart,

kCanLoopStop, kCanLoopSleep and kCanLoopWakeup.
No Issue when timeout occurs.

© 2016 Vector Informatik GmbH Version 1.02.00 23
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

kCanLoopClock When Clock Stop is requested then all pending transfer
Stop requests are completed first.
When the CAN bus reached idle then Clock Stop will be
acknowledged.
kCanLoopRxFifo This channel dependent loop is called in CanInterruptRxFifo

and is processed until the Rx FIFO becomes empty. The loop
is delayed if the controller receives a burst of messages.
The maximum expected duration is the time needed until

all messages 1in the «reception FIFO are confirmed. If
the loop cancels, reinitialize the Controller.

Table 4-6 Hardware Loop Check

4.8.3 CAN RAM Check

The CAN driver supports a check of the CAN controller’s mailboxes. The CAN controller
RAM check is called internally every time a power on is executed within function
Can_InitController(), or a Bus-Wakeup event happen. The CAN driver verifies that no used
mailboxes are corrupt. A mailbox is considered corrupt if a predefined pattern is written to
the appropriate mailbox registers and the read operation does not return the expected
pattern. If a corrupt mailbox is found the function Appl_CanCorruptMailbox() is called. This
function tells the application which mailbox is corrupt.

After the check of all mailboxes the CAN driver calls the call back function
Appl_CanRamCheckFailed() if at least one corrupt mailbox was found. The application
must decide if the CAN driver disables communication or not by means of the call back
function’s return value. If the application has decided to disable the communication there is
no possibility to enable the communication again until the next call to Can_Init().

The CAN RAM check functionality itself can be activated via Generation Tool.

4.9 Common CAN

Common CAN connect 2 hardware CAN channels to one logical controller. This allows
configuring more FullCAN mailboxes. The second hardware channel is used for Rx
FullCAN mailboxes.

The filter mask of the BasicCAN should exclude the message received by the FullCAN
messages of the second CAN Controller. This means each message ID must be received
on one CAN hardware channel only. The filter optimization takes care about this when
common CAN is activated.

For configuration of Common CAN specific settings in generation tool see chapter 7.6.2.

Caution
n Only one Transceiver (Driver) has to be used for this two Common CAN hardware
channels (connect TX and RX lines).

Reason: Upper layers only know one Controller for this 2 hardware channel Common
CAN and therefore only one Transceiver can be handled.

© 2016 Vector Informatik GmbH Version 1.02.00 24
based on template version 3.2

VECTOR >

49.1

Error Interrupt

Technical Reference Microsar CAN Driver

The MCAN error interrupt source is used only partially by the CAN driver. Only
BusOff events are handled and reported to the upper layers by the CAN driver.

Not reported errors are:

Stuff Error
Format Error
Acknowledge Error

Bit Error

CRC Error

Watchdog Interrupt
Warning Status

Error Passive

Error Logging Overflow
Bit Error Uncorrected
Bit Error Corrected
Timeout Occurred
Timestamp

Rx FIFO O Full

Rx FIFO 0 Watermark
Rx FIFO 1 Full

Rx FIFO 1 Watermark

Please note

More than 5 equal bits in a sequence occurred
A fixed format part of a received frame has the wrong format

A transmitted message was not acknowledged by another
node

Device wanted to send a recessive/dominant
the monitored level was dominant/recessive

level, but

Received CRC did not match the calculated CRC

Message RAM Watchdog event due to missing READY
Error_Warning status changed

Error_Passive status changed

Overflow of CAN Error Logging Counter occurred
Message RAM bit error detected, uncorrected.
Message RAM bit error detected and corrected.
Timeout reached

Wraparound Timestamp counter wrapped around
Rx FIFO O Full

Reached fill level watermark

Rx FIFO 1 Full

Reached fill level watermark

The BusOff recovery sequence cannot be shortened (e.g. by initializing the CAN

device). If the device goes BusOff, it will enter the INIT mode by its own, stopping all

bus activities.

When leaving the INIT mode the device will wait for 129 occurrences of Bus Idle (129 x
11 consecutive recessive bits) before resuming normal operation.

Please note

The Timeout Counter is used for CAN driver internal purposes (supervision of possible

transmit confirmations arriving delayed after a cancellation was requested). Thus the
“Timeout Occurred” interrupt may occur occasionally.

© 2016 Vector Informatik GmbH

Version 1.02.00 25
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

4.9.2 Not supported

Neither the Tx Event FIFO nor the Tx Queue is used. All available 32 transmit message
buffers per CAN channel are used as dedicated buffers and can be used either as
BasicCAN or FullCAN objects (see 4.3.1).

The filtering of High Priority messages is not supported.

No Range Filters are supported.

© 2016 Vector Informatik GmbH Version 1.02.00 26
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

5 Integration

This chapter gives necessary information for the integration of the MICROSAR CAN into
an application environment of an ECU.

5.1 Scope of Delivery

The delivery of the CAN contains the files, which are described in the chapter’s 5.1.1 and
51.2:

Dependent on library or source code delivery the marked (+) files may not be delivered.
5.1.1 Static Files

File Name Description

(+) Can_Local.h This is an internal header file which should not be included outside this

module
(+) Can.c This is the source file of the CAN. It contains the implementation of CAN
module functionality.
(+) Can.(lib) This is the library build out of Can.c, Can.h and Can_Local.h
Can.h This is the header file of the CAN module (include API declaration)
Can_Hooks.h This is the header file to define the Hook-functions or macros. (this is a project

specific file and may not exist)

Can_lIrq.c This is the interrupt declaration and callout file (supports interrupt
configuration as link time settings)

Table 5-1 Static files

5.1.2 Dynamic Files
The dynamic files are generated by the configuration tool [GENYy].

File Name Description

Can_Cfg.h Generated header file, contains some type,
prototype and pre-compile settings

Can_Lcfg.c Generated file contains link time settings.

Can_PBcfg.c Generated file contains post build settings.

Can_DrvGeneralTypes.h Generated file contains CAN driver part of
Can_GeneralTypes.h (supported by
Integrator)

Table 5-2 Generated files

© 2016 Vector Informatik GmbH Version 1.02.00 27
based on template version 3.2

VECTOR >

5.2

Include Structure

Technical Reference Microsar CAN Driver

cd Header File Structure /

Derm_IntErrid.k

A

includes
|

Dernb

Det.h

Spi.h Can_Cfg.h
il'|l3|l;IdE5 includes
_|[|9I’u_d_e§_] Can.c _|_n_c1l.ld_e_s_3b Can.h L irlc_h:'??f} ComStack_Tyvpes.h
includes includes “includes ineludes
- ' - '
W -y i
Canif_Cbk.h MernMap b Std_Types.h
Can_lrqe Lo ... iPPI_u-d-E-S-------------l,::=~ G500

Figure 5-1

Include Structure (AUTOSAR)

Deviation from AUTOSAR specification:
Additionally the EcuM_Cbk.h is included by Can_Cfg.h (needed for wakeup notification

5.3

API).

ComStack_Types.h included by Can_Cfg.h, because the specified types have to be

known in generated data as well.

MICROSAR4x only: Os.h will be included by Can_Cfg.h because of used data-types
Spi.h is not yet used.

Additionally the file Can_Hooks.h may be included by Can.h.
MICROSAR403 only: Can_GeneralTypes.h will be included by Can_Cfg.h not by Can.h

direct.

Critical Sections

The AUTOSAR standard provides with the BSW Scheduler a BSW module, which handles
entering and leaving critical sections.

For more information about the BSW Scheduler please refer to [3]. When the BSW
Scheduler is used the CAN Driver provides critical section codes that have to be mapped
by the BSW Scheduler to following mechanism:

© 2016 Vector Informatik GmbH

Version 1.02.00 28

based on template version 3.2

VECTOR D>

Technical Reference Microsar CAN Driver

Critical Section Define

CAN_EXCLUSIVE_AREA 0

CAN_EXCLUSIVE_AREA_1

CAN_EXCLUSIVE_AREA_2

CAN_EXCLUSIVE_AREA_3

CAN_EXCLUSIVE_AREA_4

CAN_EXCLUSIVE_AREA_5

© 2016 Vector Informatik GmbH

CanNestedGloballnterruptDisable/Restore() is used within
Can_MainFunction_Write() to assure that transmit confirmations do not
conflict with further transmit requests.

> Duration is short.

> No API call of other BSW inside.

Using inside Can_DisableControllerinterrupts() and
Can_EnableControllerinterrupts() to secure Interrupt counters for nested
calls.

> Duration is short.

> No API call of other BSW inside.

> Disable global interrupts — or — Empty in case
Can_Disable/EnableControllerinterrupts() are called within context

with lower or equal priority than CAN interrupt.

Using inside Can_Write() to secure software states of transmit objects.
> Only when no Vector CAN Interface is used.

> Duration is medium

> No API call of other BSW inside.

\Y

Disable global interrupts - or - Disable CAN interrupts and do not call
function Can_Write() reentrant.

Using inside Tx confirmation to secure state of transmit object in case of
cancellation (Only used when Vector Interface Version smaller 4.10
used).

> Duration is medium
> Call to Canlf_CancelTxConfirmation() inside (no more calls in Canlf).

> Disable global interrupts - or - Disable CAN interrupts and do not call
function Can_Write() within.

Using inside received data handling (Rx Queue treatment) to secure Rx
Queue counter and data.

> Duration is short
> No API call of other BSW inside.

> Disable Global Interrupts - or - Disable all CAN interrupts.

Using inside wakeup handling to secure state transition. (Only in wakeup
polling mode)

> Duration is short
> Call to DET inside.

> Disable global interrupts (do not use CAN interrupt locks here)

Version 1.02.00 29
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

CAN_EXCLUSIVE_AREA_6 Using inside Can_SetControllerMode() and BusOff to avoid nested state
transition requests.

> Duration is medium
> No API call of other BSW inside.

> Use CAN interrupt locks here, in case the above mentioned APIs are
only called within same tasklevel and CAN interrupt context (no
nesting - like BusOff-handling in interrupt has to be blocked).
or
Disable global interrupts

Table 5-3 Critical Section Codes

5.4 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions — the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following table contains the memory section names and the compiler abstraction
definitions defined for the CAN Interface and illustrates their assignment among each
other.

Compiler Abstraction
Definitions

Memory Mapping
Sections

CAN_START_SEC_CODE
CAN_STOP_SEC_CODE
CAN_START_SEC_STATIC_CODE
CAN_STOP_SEC_STATIC_CODE
CAN_START_SEC_CONST_8BIT
CAN_STOP_SEC_CONST_8BIT
CAN_START_SEC_CONST_16BIT
CAN_STOP_SEC_CONST_16BIT
CAN_START SEC_CONST_32BIT
CAN_STOP_SEC_CONST _32BIT
CAN_START_SEC_CONST_UNSPECIFIED
CAN_STOP_SEC_CONST_UNSPECIFIED
CAN_START_SEC_PBCFG
CAN_STOP_SEC_PBCFG
CAN_START_SEC_PBCFG_ROOT
CAN_STOP_SEC_PBCFG_ROOT

CAN_ CODE
CAN_STATIC_ CODE
CAN_ CONST

CAN_ CONST_PBCFG
CAN_VAR_NOINIT
CAN_ VAR_INIT

CAN_ INT_CTRL
CAN_ REG_CANCELL
CAN_ RX_TX_DATA
CAN_APPL_CODE
CAN_APPL_CONST
CAN_APPL_VAR

© 2016 Vector Informatik GmbH Version 1.02.00 30
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

CAN_START_SEC_VAR_NOINIT_UNSPECIFIED
CAN_STOP_SEC_VAR_NOINIT_UNSPECIFIED

CAN_START_SEC_VAR_INIT_UNSPECIFIED
CAN_STOP_SEC_VAR_INIT_UNSPECIFIED

CAN_START_SEC_CODE_APPL
CAN_STOP_SEC_CODE_APPL

Table 5-4 Compiler abstraction and memory mapping

The Compiler Abstraction Definitions CAN_ APPL_CODE, CAN_ APPL_VAR and CAN_
APPL_CONST are used to address code, variables and constants which are declared by
other modules and used by the CAN driver.

These definitions are not mapped by the CAN driver but by the memory mapping realized
in the CAN Interface or direct by application.

CAN__ CODE: used for CAN module code.

CAN_ STATIC_CODE: used for CAN module local code.

CAN_ CONST: used for CAN module constants.

CAN_ CONST_PBCFG: used for CAN module constants in Post-Build section.
CAN_ VAR _*: used for CAN module variables.

CAN__ INT_CTRL: is used to access the CAN interrupt controls.

CAN_ REG_CANCELL: is used to access the CAN cell itself.

CAN_ RX_TX DATA: access to CAN Data buffers.

CAN_ APPL_*: access to higher layers.

© 2016 Vector Informatik GmbH Version 1.02.00 31
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

6 Hardware Specific Hints

6.1.1 Usage of interrupt functions
According to the current implementation of MCAN generator there is a fix assignment of

interrupt functions to the CAN Controller. The postfix of the interrupt function name

equates the controller number. The following table shows the corresponding assignment
for the derivative RH850 P1X-C.

Critical Section Define Description
MCAN_0, BaseAddress: OxFFEF0000 Canlsr_1 Canlsr_1
MCAN_1, BaseAddress: OxFFD31000 Canlsr_2 Canlsr_2
MCAN_2, BaseAddress: OXFFEF1000 Canlsr_3 Canlsr_3

Table 5-5 Hardware Controller — Interrupt Functions

Canlsr_0 is used for MTT_CANO of the RH850 P1X-C.

6.1.2 MCAN Errata

The following Errata (please see [6] for further details) are considered by the CAN Driver.
By default all erratas which are appropriate for the configured MCAN Revision are
enabled. If a specific erratum shall be disabled or enabled beyond that it can be configured
via a user configuration file.

Errata| Title MCAN
No. Reuv.
affected
6 Change of CAN operation mode during start of transmission. 2.9.5,
Only activated if “can_ BOSCH ERRATUM 006“ is defined as STD ON. ggg
3.0.1
7 Problem with frame transmission after recovery from Restricted 2.9.5,
Operation Mode. 2.9.6,
Only activated if “can BoSCH ERRATUM 007“ is defined as STD ON. 28(1)
8 Setting / resetting CCCR.INIT during frame reception. 2.9.5,
Only activated if “caN_BoSCH ERRATUM 008“ is defined as STD ON. ggg
3.01
10 Setting CCCR.CCE while a Tx scan is ongoing. 2.9.5,
Only activated if “can_ BoSCH ERRATUM 010“ is defined as STD ON. ggg
© 2016 Vector Informatik GmbH Version 1.02.00 32

based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

3.0.1
11 Needless activation of interrupt IR.MRAF. 2.9.5,
Only activated if “cAN_BOSCH ERRATUM 011" is defined as STD ON. ggg
3.0.1,
3.1.0
12 Return of receiver from Bus Integration state after Protocol Exception 2.9.6,
Event. 3.0.0,
Only activated if “cAN_BOSCH ERRATUM 012" is defined as STD ON. 2(1);
13 Message RAM / RAM Arbiter not responding in time. 2.9.6,
When the M_CAN wants to store a received frame and the Message 28?
RAM / RAM Arbiter does not respond in time, this message cannot be 3'1'0’
stored completely and it is discarded with the reception of the next 3'2'0’
message. Interrupt flag IR.MRAF is set. It may happen that the next ~*
received message is stored incomplete.
In this case, the respective Rx Buffer or Rx FIFO element holds
inconsistent data.
When the M_CAN has been integrated correctly (the Host and the
CAN clock must be fast enough to handle a worst case
configuration containing the maximum of MCAN Message RAM
elements), this behaviour can only occur in case of a problem with
the Message RAM itself or the RAM Arbiter.
The application must assure that the clocking of Host and CAN is
appropriate. The CAN Driver does not care about these
configuration aspects.
© 2016 Vector Informatik GmbH Version 1.02.00 33

based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

14 Data loss (payload) in case storage of a received frame has not 2.9.6,

completed until end of EOF field is reached. 3.0.0,
3.0.1,
3.1.0,
3.2.0

The time needed for acceptance filtering and storage of a received
message depends on the

- Host clock frequency,

- the number of M_CANSs connected to a single Message RAM,
- the Message RAM arbitration scheme, and

- the number of configured filter elements.

In case storage of a received message has not completed until end of
the received frame then corrupted data can be contained in the
Message RAM.

Interrupt flag IR.MRAF is not set.

n If storage of messages cannot be completed the application is
responsible for reducing the maximum number of configured filter
elements for the M_CANSs attached to the Message RAM until the
calculated clock frequency is below the Host clock frequency used
with the actual device.

1-5 These errata are in the responsibility of the application and are not 2.0.0,
considered by the CAN Driver. 2.9.5,

2.9.6,

3.0.0,

3.0.1

9 Frame transmission in DAR mode. 2.9.5,
2.9.6,

Not considered by the CAN Driver, frame transmission in DAR mode is 30.0

not supported.

3.0.1

15 Edge filtering causes mis-synchronization when falling edge at Rx input 3.1.0,
pin coincides with end of integration phase. 3.2.0,

Not considered by the CAN Driver, Edge Filtering is not supported. 3.2

16 Configuration of NBTP.NTSEG2 =0’ not allowed. 3.1.0,

Not considered by the CAN Driver, the user is responsible to care about
the according bit timing configuration.

© 2016 Vector Informatik GmbH Version 1.02.00
based on template version 3.2

34

VECTOR > Technical Reference Microsar CAN Driver

7 API Description

7.1 Interrupt Service Routines provided by CAN

Depend on the settings in Tools component Hw_Mpc5700Cpu, the interrupt routine is
given by the driver or by Operating System. (Selection below, not MICROSAR403)

{;} ECU: CHO_Node0 Configurable Options Hw_Mpc5700Cpu
-l Components Dertvative MPCE746M =
g E::EM peh P00 can Compiler T =
. E> GenTool_Genpdsb aze [+ General Settings
Ex GenTool_GenyPlugind:fE o |- CPU Seftings
B GenTool_GenyPluginConfigh CPU Type 2Bt _
EE% H v b pcE700Cpu : _ ||
B NaEDECDratDr Biyte Order Big Endian |-
------ £ zBrs_EmbeddedRunTimeSys Bit Crder M5B ta LSB ||
EEI---@ T« Mezsages Defintion of 'Define C_COMP oo GHU_MPCEY00_RCAM
-4 Rx Messages Defintion of ‘Define C_PROCESSOR oo MPCE746M
SE: ;::: SSIiE:aaIIz |: Generation Additions
Dumimy Functions =
Dumimry Statement ™3
|: o=
0% Type |.-’-'-.utcnsar j
|: Optimization
Atomic Bit Access in Bitfield *
Atomic Wariable Access Atomic] BBithcoess j
|iru1urtiple GEMy Projects
&Generaﬁun Options
|i\-"9tdLib

Figure 7-1 Select OS Type

There is the possibility to choose OS Type. Please select “None” for using no OS,
“‘Autosar” for AUTOSAR OS or “OSEK” for OSEK OS systems.

7.1.1 OSEK (0S)
This means to include osek.h.

Switch: V_OSTYPE_OSEK
7.1.2 AutoSar (OS)

Os.h header file is used.
Switch: V_OSTYPE_AUTOSAR
7.1.3 None (0OS)

Choose “None” for OS Type, to include no Os header files and have no category 2
interrupt.
Switch: V_OSTYPE_NONE

© 2016 Vector Informatik GmbH Version 1.02.00 35
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

7.1.4 Type of Interrupt Function

- Category 2 (only for OSEK OS or AUTOSAR 0OS):
A macro “ISR(Canlsr_x)” will be used to declare ISR function call. The name given
as parameter for interrupt naming (x = Physical CAN Channel number). For macro
definition see OS specification. The OS has full control of the ISR.
switch: C_ENABLE_OSEK_OS_INTCAT2

- Category 1:
Using OS with category 1 interrupts need an Interface layer handling these
interrupts in task context like defined in BSW00326 (AUTOSAR_SRS_General).
switch: C_DISABLE_OSEK_OS_INTCAT2

- Void-Void Interrupt Function:
Like in Category 1 the Interrupt is not handled by OS and the ISR is declared as
void ISR(void) and has to be called by interrupt controller in case of an CAN
interrupt.
switch: C_ENABLE_ISRVOID

7.1.5 CANISR API
Prototype

void CanIsr_<x>(void);

Parameter

I EE———————————————
Functional Description

Handles interrupts of hardware channel <x> for Rx, Tx, BusOff events.

Particularities and Limitations

> Number of available functions depends on used MCU derivative.

> The functions are not designated as interrupt functions. If it is necessary to save/restore all general
purpose registers and to use a different “return from interrupt” instruction the application code has to
implement the compiler specific pragma (e.g. for Wind River™ DIAB™: #pragma interrupt Canlsr_x).

Table 7-1 MCAN Canlsr_<x>

7.2 Services provided by CAN
The CAN API consists of services, which are realized by function calls.

7.2.1 Can_InitMemory

Prototype

void Can_InitMemory (void)

Parameter

© 2016 Vector Informatik GmbH Version 1.02.00 36
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

Return code

void -

Functional Description

Service initializes module global variables, which cannot be initialized in the startup code.
Use this to re-run the system without performing a new start from power on.

(E.g.: used to support an ongoing debug session without a complete re-initialization.)
Must be followed by a call to “Can_Init()".

Particularities and Limitations

Called by Application.

| Caution
. None AUTOSAR API

Call context

> Should be called while power on initialization before ,Can_Init()“ on task level.
> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-2 Can_InitMemory

7.2.2 Can_lInit

Prototype
void Can_Init(const Can_ConfigType *Config)

Parameter

Pointer to the structure including configuration data.

Config In case of Multiple ECU configuration feature is used, for each Identity one
“Config” structure exists and has to be chosen here

Return code

Functional Description

This function initializes global CAN driver variables during ECU start-up.

Particularities and Limitations
> Has to be called during start-up before CAN communication.

> Must be called before calling Can_InitController().
> Mulitple ECU configuration pointer for “Config” does only work with none Post-Build variants

> Can_InitMemory() has to be called before.

© 2016 Vector Informatik GmbH Version 1.02.00 37
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

7.2.3 Can_lInitController
Prototype

void Can_InitController (uint8 Controller, Can ControllerBaudrateConfigPtrType
Config)

Controller [in] Number of controller
Config [in] Pointer to baud rate configuration structure

Return code
Void -

Functional Description

Initialization of controller specific CAN hardware.
The CAN driver registers and variables are initialized.

The CAN controller is fully initialized and left back within the state “Stop Mode”, ready to change to
“Running Mode”.

Particularities and Limitations

Called by Caninterface.
Disabled Interrupts.
Call context

> Must be called during the startup sequence before CAN communication takes place but after calling
»can_Init()".

Must not be called while in ,Sleep Mode*.
This function is Synchronous

This function is Non-Reentrant
Availability: MICROSAR401 only

Table 7-3 Can_InitController

vV V. V V

7.2.4 Can_lInitController

Prototype

void Can_InitController (uint8 Controller, Can ControllerConfigPtrType
ControllerConfigPtr)

Controller [in] Number of controller
Config [in] Pointer to the configuration data structure.

Return code
Void -

Functional Description

Initialization of controller specific CAN hardware.

The CAN driver registers and variables are initialized.

The CAN controller is fully initialized and left back within the state “stop mode”, ready to change to “Running

© 2016 Vector Informatik GmbH Version 1.02.00 3
based on template version 3.2

©

VECTOR > Technical Reference Microsar CAN Driver

Mode”.

Particularities and Limitations

Called by Canlnterface.
Disabled Interrupts
Call context

> Must be called during the startup sequence before CAN communication takes place but after calling
~can_lInit()“.

Must not be called while in ,Sleep Mode*.
This function is Synchronous

This function is Non-Reentrant
Availability: MICROSARS only

Table 7-4 Can_InitController

vV V. V V

7.2.5 Can_ChangeBaudrate
Prototype

Std ReturnType Can_ChangeBaudrate (uint8 Controller, const uintl6 Baudrate)

Controller [in] Number of controller to be changed
Baudrate [in] Baud rate to be set

Return code

Std_ReturnType > E_NOT_OK Baud rate is not set
> E_OK Baud rate is set

Functional Description

This service shall change the baud rate and reinitialize the CAN controller.

Particularities and Limitations

Called by Application.

The CAN controller must be in “Stop Mode”.
Call context

> Must be called during the startup sequence before CAN communication takes place but after calling
»can_Init()".

This function is Synchronous
This function is Non-Reentrant

> Availability: MICROSAR403 only & if ,CanChangeBaudrateApi“ is activated or ,CanSetBaudrateApi“ is
de-activated.

Table 7-5 Can_ChangeBaudrate

© 2016 Vector Informatik GmbH Version 1.02.00 39
based on template version 3.2

Technical Reference Microsar CAN Driver

<
m
(2]
-
o
A
\4

\l
N
o
0
Q
=}
@)
>
®
o
Q
o8]
Q
c
o
=
=4
®

Prototype

Std ReturnType Can_CheckBaudrate (uint8 Controller, const uintl6 Baudrate)

Controller [in] Number of controller to be checked
Baudrate [in] Baud rate to be checked

Return code

Std_ReturnType > E_NOT_OK Baud rate is not available
> E_OK Baud rate is available

Functional Description
This service shall check if the given baud rate is supported of the CAN controller.

Particularities and Limitations

Called by Application.
The CAN controller must be initialized.

Call context

> Must not be called nested.

Only available if ,CanChangeBaudrateApi“ is activated.
This function is Synchronous

This function is Non-Reentrant

Availability: MICROSAR403 only & ,CanChangeBaudrateApi* is activated
(,CAN_CHANGE_BAUDRATE_SUPPORT == STD_ON")

Table 7-6 Can_CheckBaudrate

vV V. V V

7.2.7 Can_SetBaudrate
Prototype

Std_ReturnType Can_SetBaudrate (uint8 Controller, uintl6 BaudRateConfigID)

Controller [in] Number of controller to be set
BaudRateConfigID [in] Identity of the configured baud rate (available as Symbolic Name)

Return code

Std_ReturnType > E_NOT_OK Baud rate is not set
> E_OK Baud rate is set

Functional Description

This service shall change the baud rate and reinitialize the CAN controller.

(Similar to “Can_ChangeBaudrate()” but used when identical baud rates are used for different CAN FD
settings).

Particularities and Limitations

Called by Application.

© 2016 Vector Informatik GmbH Version 1.02.00 4
based on template version 3.2

o

VECTOR > Technical Reference Microsar CAN Driver

Call context

> Must not be called nested.

Only available if ,CanSetBaudrateApi“ is activated.

This function is Synchronous

This function is Non-Reentrant

Availability: MICROSARA403 only & ,CanSetBaudrateApi“ is activated (,CAN_SET_BAUDRATE_API| ==
STD_ONY)

Table 7-7 Can_SetBaudrate

vV V V V

7.2.8 Can_InitStruct

Prototype

void Can_InitStruct (uint8 Controller, uint8 Index)

Controller [in] Number of the controller to be changed
Index [in] Index of the initialization structure to be used for baud rate and mask settings

Return code

void -

Functional Description

Set content of the initialization structure (before calling “Can_InitController()”).

Service function to change the initialization structure setup left behind by the Generation Tool.
The structure contains information about baud rate and filter settings.

Subsequent “Can_InitController()” must be called to activate these settings.

Particularities and Limitations

Called by Application.
“Can_Init” was called.

| Caution
- None AUTOSAR API

Call context

> Call this function between calling ,,Can_Init()* and ,,Can_InitController()*.
> This function is Synchronous

> This function is Non-Reentrant

> Availability: MICROSARS3 only

Table 7-8 Can_InitStruct

7.2.9 Can_GetVersioninfo

Prototype

void Can_GetVersionInfo (Can VersionInfoPtrType VersionInfo)

© 2016 Vector Informatik GmbH Version 1.02.00 41
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

VersionInfo [out] Pointer to where to store the version information of the CAN driver.
typedef struct {

uint16 vendorlD;

uint16 modulelD;

MICROSARS only: uint8 instancelD;

uint8 sw_major_version; (MICROSARS only: BCD coded)
uint8 sw_minor_version; (MICROSARS only: BCD coded)
uint8 sw_patch_version; (MICROSARS only: BCD coded)
} Std_VersionInfoType;

Return code

void -

Functional Description

Get the version information of the CAN driver.

Particularities and Limitations

Called by Application.

Call context

> Only available if ,CanVersionInfoApi“ is activated.

> This function is Synchronous

> This function is Reentrant

> Availability: ,CanVersionInfoApi“ is activated (,CAN_VERSION_INFO_API == STD_ON®)

Table 7-9 Can_GetVersionlInfo

\'
N
[EEN
o
0O
Q
|:
Q)
@D
—
92)
—
=4
c
(%]

Prototype
uint8 Can_GetStatus (uint8 Controller)

Parameter

Controller [in] Number of the controller requested for status information
Return code

uint8 > CAN_STATUS_STOP (Bit coded status information)
CAN_STATUS_INIT

CAN_STATUS_INCONSISTENT, CAN_DEACTIVATE_CONTROLLER
(only with ,CanRamCheck* active)

CAN_STATUS_WARNING
CAN_STATUS_PASSIVE
CAN_STATUS_BUSOFF
CAN_STATUS_SLEEP

\%

V V. V V

Functional Description

Delivers the status of the hardware.

© 2016 Vector Informatik GmbH Version 1.02.00 4
based on template version 3.2

N

VECTOR > Technical Reference Microsar CAN Driver

Only one of the status bits CAN_STATUS_SLEEP/STOP/BUSOFF/PASSIVE/WARNING is set.

The CAN_STATUS _INIT bit is always set if a controller is initialized.

CAN_STATUS_SLEEP has the highest and CAN_STATUS_WARNING the lowest priority.
CAN_STATUS_INCONSISTENT will be set if one Common CAN channel. Is not “Stop” or “Sleep”.
CAN_DEACTIVATE_CONTROLLER is set in case the “CanRamCheck” detected an Issue.

“status” can be analyzed using the provided API macros:

CAN_HW_IS_OK(status): return “true” in case no warning, passive or bus off occurred.
CAN_HW_IS_WARNING(status): return “true” in case of waning status.

CAN_HW_IS_PASSIVE(status): return “true” in case of passive status.

CAN_HW_IS BUSOFF(status): return “true” in case of bus off status (may be already false in Notification).
CAN_HW_IS_WAKEUP(status): return “true” in case of not in sleep mode.

CAN_HW_IS_SLEEP(status): return “true” in case of sleep mode.

CAN_HW_IS_STOP(status): return “true” in case of stop mode.

CAN_HW_IS_START (status): return “true” in case of not in stop mode.

CAN_HW _IS_INCONSISTENT(status): return “true” in case of an inconsistency between two common CAN
channels.

Particularities and Limitations

Called by network management or Application.

| Caution
= None AUTOSAR API

Call context

> This function is Synchronous
> This function is Non-Reentrant
> Availability: ,CanGetStatus” is activated (,CAN_GET_STATUS == STD_ON")

Table 7-10 Can_GetStatus

7.2.11 Can_SetControllerMode
Prototype

Can ReturnType Can_SetControllerMode (uint8 Controller, Can StateTransitionType
Transition)

Controller [in] Number of the controller to be set
Transition [in] Requested transition to destination mode

Return code

Can_ReturnType > CAN_NOT_OK mode change unsuccessful
> CAN_OK mode change successful

Functional Description

Change the controller mode to the following possible destination values:
CAN_T_START,

© 2016 Vector Informatik GmbH Version 1.02.00 43
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

CAN_T_STOP,
CAN_T_SLEEP,
CAN_T_WAKEUP.

Particularities and Limitations
Called by Canlnterface.

Interrupts locked by Canlinterface
Call context

> Must not be called within CAN driver context like RX, TX or Bus Off callouts.
> This function is Non-Reentrant
> Availability: Always

Table 7-11 Can_SetControllerMode

7.2.12 Can_ResetBusOffStart

Prototype
void Can_ResetBusOffStart (uint8 Controller)

Parameter

Controller [in] Number of the controller

Return code

void -

Functional Description

This is a compatibility function (for a CANbedded protocol stack) used during the start of the
Bus Off handling to remove the Bus Off state.

Particularities and Limitations
Called by CAN driver.

| Caution
. None AUTOSAR API

Call context

> Called while BusOff event handling (Polling or Interrupt context).
> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-12 Can_ResetBusOffStart

7.2.13 Can_ResetBusOffEnd
Prototype

void Can_ResetBusOffEnd (uint8 Controller)

© 2016 Vector Informatik GmbH Version 1.02.00 4
based on template version 3.2

N

VECTOR > Technical Reference Microsar CAN Driver

Parameter

Controller [in] Number of the controller

Return code

void -

Functional Description

This is a compatibility function (for a CANbedded protocol stack) used during the end of the
Bus Off handling to remove the Bus Off state.

Particularities and Limitations
Called by CAN driver.

| Caution
- None AUTOSAR API

Call context

> Called inside ,Can_SetControllerMode()" while Start transition.
> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-13 Can_ResetBusOffEnd

\'
N
[N
N
O
QD
5
2
—
(0]

Prototype
Can_ReturnType Can_Write (Can_ HwHandleType Hth, Can_PduInfoPtrType Pdulnfo)

Hth [in] Handle of the mailbox intended to send the message
Pdulnfo [in] Information about the outgoing message (ID, dataLength, data)

Return code

Can_ReturnType > CAN_NOT_OK transmit unsuccessful
> CAN_OK transmit successful
> CAN_BUSY transmit could not be accomplished due to controller is busy.

Functional Description
Send a CAN message over CAN.

Particularities and Limitations

Called by Canlnterface.

CAN Interrupt locked.

Call context

> Called by the Canlinterface with at least disabled CAN interrupts.

> (Due to data security reasons the Canlinterface should accomplish this and thus it is not needed further
more in the CAN Driver.)

© 2016 Vector Informatik GmbH Version 1.02.00 4
based on template version 3.2

[

VECTOR > Technical Reference Microsar CAN Driver

> This function is Synchronous
> This function is Non-Reentrant
> Availability: Always

Table 7-14 Can_Write

7.2.15 Can_CancelTx

Prototype
void Can_CancelTx (Can HwHandleType Hth, PduldType Pduld)

Hth [in] Handle of the mailbox intended to be cancelled.
Pduld [in] Pdu identifier

Return code

void -

Functional Description

Cancel the TX message in the hardware buffer (if possible) or mark the message as not to be confirmed
in case of the cancellation is unsuccessful.

Particularities and Limitations

Called by CanTp or Application.

| Caution
. None AUTOSAR API

Call context

> Called by CanTp or Application.
> This function is Synchronous

> This function is Non-Reentrant
> Availability: Always

Table 7-15 Can_CancelTx

7.2.16 Can_CheckWakeup
Prototype

Std ReturnType Can_CheckWakeup (uint8 Controller)

Parameter

Controller [in] Number of the controller to be checked for Wake Up events.

Return code

Std_ReturnType > E_OK the given controller caused a Wake Up before.
> E_NOT_OK the given controller caused no Wake Up before.

© 2016 Vector Informatik GmbH Version 1.02.00 4
based on template version 3.2

[«

VECTOR > Technical Reference Microsar CAN Driver

Functional Description

Service function to check the occurrence of Wake Up events for the given controller
(used as Wake Up callback for higher layers).

Particularities and Limitations

Called by Canlnterface.

Call context

> Called while Wakeup validation phase.
> This function is Synchronous

> This function is Non-Reentrant
>

Availability: In AR4.x named ,,Can_CheckWakeup®, in AR3.x named ,Can_Cbk_CheckWakeup*“ (Name
mapped by define)

Table 7-16 Can_CheckWakeup

7.2.17 Can_DisableControllerinterrupts
Prototype

void Can_DisableControllerInterrupts (uint8 Controller)

Parameter

Controller [in] Number of the CAN controller to disable interrupts for.

Return code

void -

Functional Description

Service function to disable the CAN interrupt for the given controller (e.g. due to data security reasons).

Particularities and Limitations

Called by SchM.
Must not be called while CAN controller is in sleep mode.
Call context

> Called within Critical Area handling or out of Application code.
> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-17 Can_DisableControllerinterrupts

7.2.18 Can_EnableControllerinterrupts
Prototype

void Can_EnableControllerInterrupts (uint8 Controller)

© 2016 Vector Informatik GmbH Version 1.02.00 4
based on template version 3.2

~

VECTOR > Technical Reference Microsar CAN Driver

Parameter

Controller [in] Number of the CAN controller to disable interrupts for.

Return code

void -

Functional Description

Service function to (re-)enable the CAN interrupt for the given controller (e.g. due to data security reasons).

Particularities and Limitations

Called by SchM.
Must not be called while CAN controller is in sleep mode.
Call context

> Called within Critical Area handling or out of Application code.
> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-18 Can_EnableControllerinterrupts

7.2.19 Can_MainFunction_Write
Prototype

void Can_MainFunction Write (void)

Parameter

Return code

void

Functional Description

Service function to poll TX events (confirmation, cancellation) for all controllers and all TX mailboxes
to accomplish the TX confirmation handling (like Canlinterface notification).

Particularities and Limitations
Called by SchM.

Must not interrupt the call of “Can_Write()".
Call context

> Called within cyclic TX task.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-19 Can_MainFunction_Write

© 2016 Vector Informatik GmbH Version 1.02.00 4
based on template version 3.2

©

Technical Reference Microsar CAN Driver

<
m
(2]
-
o
A
\4

\]
N
HS)
o
0
QL
=}
<
Q.
=}
=
c
S
o
=
o
=}
Py
®
Y}
a

Prototype

void Can_MainFunction Read (void)

Parameter

Return code

void

Functional Description

Service function to poll RX events for all controllers and all RX mailboxes to accomplish the
RX indication handling (like Canlinterface natification).

Also used for a delayed read (from task level) of the RX Queue messages which were queued from
interrupt context.

Particularities and Limitations

Called by SchM.
Call context

> Called within cyclic RX task.

> This function is Synchronous
> This function is Non-Reentrant
> Availability: Always

Table 7-20 Can_MainFunction_Read

7.2.21 Can_MainFunction_BusOff

Prototype

void Can_MainFunction_BusOff (void)

Parameter

Return code

void

Functional Description

Polling of Bus Off events to accomplish the Bus Off handling. Service function to poll Bus Off events for all
controllers to accomplish the Bus Off handling

(like calling of “Canlif _ControllerBusOff()” in case of Bus Off occurrence).

Particularities and Limitations
Called by SchM.
Call context

> Called within cyclic BusOff task.
> This function is Synchronous
> This function is Non-Reentrant

© 2016 Vector Informatik GmbH Version 1.02.00 4
based on template version 3.2

©

VECTOR > Technical Reference Microsar CAN Driver

> Availability: Always

Table 7-21 Can_MainFunction_BusOff

7.2.22 Can_MainFunction_Wakeup

Prototype

void Can_MainFunction_Wakeup (void)

Parameter

Return code

void

Functional Description

Service function to poll Wake Up events for all controllers to accomplish the Wake Up handling
(like calling of “Canlf_SetWakeupEvent()” in case of Wake Up occurrence).

Particularities and Limitations
Called by SchM.
Call context

> Called within cyclic Wakeup task.
> This function is Synchronous

> This function is Non-Reentrant

> Availability: Always

Table 7-22 Can_MainFunction_Wakeup

7.2.23 Can_MainFunction_Mode

Prototype

void Can_MainFunction Mode (void)

Parameter

Return code

void

Functional Description

Service function to poll Mode changes over all controllers.
(This is handled asynchronous if not accomplished in “Can_SetControllerMode()”).

Particularities and Limitations

Called by SchM.
Call context

> Called within cyclic mode change task.

© 2016 Vector Informatik GmbH Version 1.02.00 5
based on template version 3.2

o

VECTOR > Technical Reference Microsar CAN Driver

> This function is Synchronous
> This function is Non-Reentrant
> Availability: MICROSAR4x only

Table 7-23 Can_MainFunction_Mode

7.2.24 Appl_GenericPrecopy

Prototype

Can_ReturnType Appl_GenericPrecopy (uint8 Controller, Can_ IdType ID, uint8
DataLength, Can DataPtrType DataPtr)

Controller [in] Controller which received the message
ID [in] ID of the received message.

In case of extended or mixed ID systems the highest bit (bit 31) is set to mark
an extended ID.

FD-bit will not be set at all.
DatalLength [in] Data length of the received message.
pData [in] Pointer to the data of the received message.

Return code

Can_ReturnType > CAN_OK if the indication of the message should be called afterwards
(notification to higher layer),

> CAN_NOT_OK in case of stopping furthermore reception.

Functional Description

Application callback function which informs about all incoming RX messages including the contained data.

Particularities and Limitations

Called by CAN driver.
“pData” is read only and must not be accessed for further write operations.

| Caution
o None AUTOSAR API

Call context

> Called within CAN message reception context (Polling or Interrupt).

> This function is Synchronous

> This function is Non-Reentrant

> Availability: ,CanGenericPrecopy” is activated (,CAN_GENERIC_PRECOPY == STD_ON®).

Table 7-24 Appl_GenericPrecopy

© 2016 Vector Informatik GmbH Version 1.02.00 51
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

7.2.25 Appl_GenericConfirmation

Prototype
Can_ReturnType Appl_GenericConfirmation (PduIldType Pduld)

Pduld [in] Handle of the PDU specifying the message.
Can_ReturnType > CAN_OK Higher layer (Canlinterface) confirmation will be called.
> E:HI:E.I\IOT_OK No further higher layer (Canlinterface) confirmation will be

Functional Description

Application callback function which informs about TX messages being sent to the CAN bus.

Particularities and Limitations

Called by CAN driver.
“Pduld” is read only and must not be accessed for further write operations.

| Caution
= None AUTOSAR API

Call context

> Called within CAN message transmission finished context (Polling or Interrupt).
This function is Synchronous
This function is Non-Reentrant

Availability: ,CanGenericConfirmation“ is activated (,CAN_GENERIC_CONFIRMATION == STD_ON*) &
»CanlfTransmitBuffer activated (in Canlinterface).

vV V V

Table 7-25 Appl_GenericConfirmation

7.2.26 Appl_GenericConfirmation
Prototype

Can ReturnType Appl_GenericConfirmation (uint8 Controller, Can PdulnfoPtrType
DataPtr)

Controller [in] Number of the causing controller.

DataPtr [in]

Can_ReturnType CAN_OK Higher layer (Canlinterface) confirmation will be called.
g:”l;ld_.NOT_OK No further higher layer (Canlinterface) confirmation will be

Functional Description

Application callback function which informs about TX messages being sent to the CAN bus.

© 2016 Vector Informatik GmbH Version 1.02.00 5
based on template version 3.2

N

VECTOR > Technical Reference Microsar CAN Driver

Particularities and Limitations

Called by CAN driver.
If “Generic Confirmation” and “Transmit Buffer” (both set in Caninterface) are active, then the switch
“Cancel Support Api” is also needed (also set in Canlf), otherwise a compiler error occurs.

| Caution
. None AUTOSAR API

Call context

> Called within CAN message transmission finished context (Polling or Interrupt).
This function is Synchronous
This function is Non-Reentrant

Availability: If "CanGenericConfirmation" ("CAN_GENERIC_CONFIRMATION == STD_ON") and
"CanlfTransmitBuffer" (in Canlinterface) is activated.

vV V V

Table 7-26 Appl_GenericConfirmation

7.2.27 Appl_GenericPreTransmit

Prototype

void Appl_GenericPreTransmit (uint8 Controller, Can PdulnfoPtrType var DataPtr)

Controller [in] Number of the controller on which the hardware observation takes place.
DataPtr [in] Pointer to a Can_PduType structure including ID, DatalLength, Pdu and data
pointer.

Return code
void -

Functional Description

Application callback function allowing the modification of the data to be transmitted (e.g.: add CRC).
Particularities and Limitations
Called by CAN driver.

| Caution
L None AUTOSAR API

Call context

> Called within ,Can_Write()".
> This function is Synchronous

> This function is Non-Reentrant
> Availability: ,CanGenericPretransmit® is activated (,CAN_GENERIC_PRETRANSMIT == STD_ON®).

Table 7-27 Appl_GenericPreTransmit

© 2016 Vector Informatik GmbH Version 1.02.00 53
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

7.2.28 ApplCanTimerStart

Prototype

void ApplCanTimerStart (CanChannelHandle Controller, uint8 source)

Parameter

Controller [in] Number of the controller on which the hardware observation takes place.
(only if not using “Optimize for one controller”)

source [in] Source for the hardware observation (see chapter Hardware Loop Check /
Timeout Monitoring).

Return code

void -

Functional Description

Service function to start an observation timer (see chapter Hardware Loop Check / Timeout Monitoring).
Particularities and Limitations

Called by CAN driver.

| Caution
o None AUTOSAR API

Call context

> For context information please refer to chapter ,Hardware Loop Check®.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: ,CanHardwareCancelByAppl“ is activated (,CAN_HW_LOOP_SUPPORT_API| ==
STD_ON").

Table 7-28 ApplCanTimerStart

7.2.29 ApplCanTimerLoop

Prototype

Can_ReturnType ApplCanTimerLoop (CanChannelHandle Controller, uint8 source)

Parameter

Controller [in] Number of the controller on which the hardware observation takes place.
(only if not using “Optimize for one controller”)

source [in] Source for the hardware observation (see chapter Hardware Loop Check /
Timeout Monitoring).

Return code

Can_ReturnType > CAN_NOT_OK when loop shall be broken (observation stops)

CAN_NOT_OK should only be used in case of a timeout occurs due to a
hardware issue.

> After this an appropriate error handling is needed (see chapter Hardware
Loop Check / Timeout Monitoring).

> CAN_OK when loop shall be continued (observation continues)

iy

© 2016 Vector Informatik GmbH Version 1.02.00 5
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

Functional Description

Service function to check (against generated max loop value) whether a hardware loop shall be continued
or broken.

Particularities and Limitations
Called by CAN driver.

| Caution
= None AUTOSAR API

Call context

> For context information please refer to chapter ,Hardware Loop Check®.

This function is Synchronous

This function is Non-Reentrant

Availability: ,CanHardwareCancelByAppl“ is activated (,CAN_HW_LOOP_SUPPORT_API ==
STD_ON®).

Table 7-29 ApplCanTimerLoop

vV V V

7.2.30 ApplCanTimerEnd
Prototype

void ApplCanTimerEnd (CanChannelHandle Controller, uint8 source)

Parameter

Controller [in] Number of the controller on which the hardware observation takes place.
(only if not using “Optimize for one controller”)

source [in] Source for the hardware observation (see chapter Hardware Loop Check /
Timeout Monitoring).

Return code

void -

Functional Description

Service function to to end an observation timer (see chapter Hardware Loop Check / Timeout Monitoring).

Particularities and Limitations
Called by CAN driver.

| Caution
- None AUTOSAR API

Call context

> For context information please refer to chapter ,Hardware Loop Check®.

This function is Synchronous

This function is Non-Reentrant

Availability: ,CanHardwareCancelByAppl“ is activated (,CAN_HW_LOOP_SUPPORT_API ==
STD_ONY).

Table 7-30 ApplCanTimerEnd

vV V V

a

© 2016 Vector Informatik GmbH Version 1.02.00 5
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

7.2.31 ApplCaninterruptDisable

Prototype
void ApplCanInterruptDisable (uint8 Controller)

Parameter

Controller [in] Number of the controller for the CAN interrupt lock.

Return code

void -

Functional Description

Service function to support the disabling of CAN Interrupts by the application.

E.g.: the CAN driver itself should not access the common Interrupt Controller due to application
specific restrictions (like security level etc.). Or the application like to be informed because of
an CAN interrupt lock.

Particularities and Limitations
Called by CAN driver.

| Caution
. None AUTOSAR API

Call context

> Called by the CAN Driver within ,Can_DisableControllerinterrupts()“.
This function is Synchronous
This function is Non-Reentrant

Availability: "CanlinterruptLock" is set to APPL or BOTH ("CAN_INTLOCK == CAN_APPL" or
"CAN_INTLOCK == CAN_BOTH").

Table 7-31 ApplCaninterruptDisable

vV V V

7.2.32 ApplCaninterruptRestore

Prototype
void ApplCanInterruptRestore (uint8 Controller)

Parameter

Controller [in] Number of the controller for the CAN interrupt unlock.

Return code

void -

Functional Description

Service function to support the enabling of CAN Interrupts by the application.

E.g.: the CAN driver itself should not access the common Interrupt Controller due to application
specific restrictions (like security level etc.). Or the application like to be informed because of
an CAN interrupt lock.

© 2016 Vector Informatik GmbH Version 1.02.00 5
based on template version 3.2

(o)

VECTOR > Technical Reference Microsar CAN Driver

Particularities and Limitations
Called by CAN driver.

| Caution
o None AUTOSAR API

Call context

> Called by the CAN Driver within ,Can_EnableControllerinterrupts()“.
This function is Synchronous
This function is Non-Reentrant

Availability: ,CanlinterruptLock” is set to APPL or BOTH (,CAN_INTLOCK == CAN_APPL" or
,CAN_INTLOCK == CAN_BOTH").

vV V V

Table 7-32 ApplCaninterruptRestore

7.2.33 Appl_CanOverrun
Prototype

void Appl_CanOverrun (uint8 Controller)

Parameter

Controller [in] Number of the controller for which the overrun was detected.

Return code

void -

Functional Description

This function will be called when an overrun is detected for a BasicCAN mailbox.
Alternatively a DET call can be selected instead of (“CanOverrunNotification” is set to “DET”).

Particularities and Limitations
Called by CAN driver.

| Caution
None AUTOSAR API

Call context

> Called within CAN message reception or error detection context (Polling or Interrupt).

> This function is Synchronous

> This function is Non-Reentrant

> Availability: ,CanOverrunNotification“ set to APPL (,CAN_OVERRUN_NOTIFICATION == CAN_APPL").

Table 7-33 Appl_CanOverrun

7.2.34 Appl_CanFullCanOverrun

Prototype
void Appl_ CanFullCanOverrun (uint8 Controller)

© 2016 Vector Informatik GmbH Version 1.02.00 5
based on template version 3.2

]

VECTOR > Technical Reference Microsar CAN Driver

Parameter

Controller [in] Number of the controller for which the overrun was detected.

Return code

void -

Functional Description

This function will be called when an overrun is detected for a FUlCAN mailbox.
Alternatively a DET call can be selected instead of (“CanOverrunNotification” is set to “DET”).

Particularities and Limitations
Called by CAN driver.

| Caution
- None AUTOSAR API

Call context

> Called within CAN message reception or error detection context (Polling or Interrupt).

> This function is Synchronous

> This function is Non-Reentrant

> Availability: ,CanOverrunNotification® set to APPL (,CAN_OVERRUN_NOTIFICATION == CAN_APPL").

Table 7-34 Appl_CanFullCanOverrun

7.2.35 Appl_CanCorruptMailbox

Prototype
void Appl CanCorruptMailbox (uint8 Controller, Can_HwHandleType hwObjHandle)

Controller [in] Number of the controller for which the check failed.
hwObjHandle [in] Hardware handle of the defect mailbox.

Return code

void -

Functional Description

This function will notify the application (during “Can_InitController()”) about a defect mailbox within the CAN
cell.

Particularities and Limitations
Called by CAN driver.

| Caution
. None AUTOSAR API

Call context

> Call within controller initialization.
> This function is Synchronous
> This function is Non-Reentrant

© 2016 Vector Informatik GmbH Version 1.02.00 5
based on template version 3.2

[e2)

VECTOR > Technical Reference Microsar CAN Driver

> Availability: ,CanRamCheck"” set to ,MailboxNotifiation“ (,CAN_RAM_CHECK ==
CAN_NOTIFY_MAILBOX").

Table 7-35 Appl_CanCorruptMailbox

7.2.36 Appl_CanRamCheckFailed

Prototype
uint8 Appl_ CanRamCheckFailed (uint8 Controller)

Parameter

Controller [in] Number of the controller for which the check failed

Return code

uint8 > action With this ,action“ the application can decide how to proceed with the
initialization.
> CAN_DEACTIVATE_CONTROLLER - deactivate the controller
> CAN_ACTIVATE_CONTROLLER - activate the controller

Functional Description

This function will notify the application (during “Can_InitController()”) about a defect CAN controller
due to a previous failed mailbox check.

Particularities and Limitations
Called by CAN driver.

| Caution
o None AUTOSAR API

Call context

> Call within controller initialization.
This function is Synchronous
This function is Non-Reentrant

Availability: ,CanRamCheck" set to ,Active® or ,MailboxNotifiation“ (,CAN_RAM_CHECK !=
CAN_NONE").

Table 7-36 Appl_CanRamCheckFailed

vV V V

7.2.37 ApplCaninitPostProcessing

Prototype
void ApplCanlInitPostProcessing (CAN HW CHANNEL CANTYPE ONLY)

Parameter
Controller [in] Number of the controller for which the check failed

Return code

void none

© 2016 Vector Informatik GmbH Version 1.02.00 5
based on template version 3.2

©

VECTOR > Technical Reference Microsar CAN Driver

Functional Description

Service function to overwrite the previously set initialization values for the bit timing, taken from the
generated data,

with customer specific values.

For your convenience the following access function is supported:

- CanBtpReg(controller): - the BTP register of the specified CAN channel can be set according to the
register definition

as specified in the Hardware Manufacturer Document ((see ch. 2).
Example: CanBtpReg(Controller) = 0x00070F70u;
or CanBtpReg(0) = 0x00070F70u; (when using ‘Optimize for one controller’).

Particularities and Limitations

Called by CAN driver.
None

| Caution
= None AUTOSAR API

It is the responsibility of the application to assure that the register values are consistent with the
release of the underlying derivative.

Call context

> Called within controller initialization.

> This function is Synchronous

> This function is Non-Reentrant

> Availability: Only available if ,C_ENABLE_INIT_POST_PROCESS' is defined via a user-config file.

Table 7-37 ApplCanlnitPostProcessing

7.3 Services used by CAN

In the following table services provided by other components, which are used by the CAN
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Component API
DET Det_ReportError

(see “Development Error Reporting”)
DEM Dem_ReportErrorStatus

(see “Production Code Error Reporting”)
EcuM EcuM_CheckWakeup

This function is called when Wakeup over CAN bus occur.

EcuM_GeneratorCompatibilityError
This function is called during the initialization, of the CAN Driver if
the Generator Version Check or the CRC Check fails. (see [5])

© 2016 Vector Informatik GmbH Version 1.02.00 60
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

Comporent AP

Application (optional non AUTOSAR) Appl_GenericPrecopy
Appl_GenericConfirmation
Appl_GenericPreTransmit
ApplCanTimerStart/Loop/End
Appl_CanRamCheckFailed, Appl_CanCorruptMailbox
ApplCaninterruptDisable/Restore
Appl_CanOverrun,
For detailed description see Chapter 7.2

CANIF Canlf_CancelTxNotification (non AUTOSAR)
A special Software cancellation callback only used within Vector
CAN driver CAN Interface bundle.

Canlf_TxConfirmation
Notification for a successful transmission. (see [4])

Canlf_CancelTxConfirmation
Notification for a successful Tx cancellation. (see [4])

Canlf_RxIndication
Notification for a message reception. (see [4])

Canlf_ControllerBusOff
Bus Off notification function. (see [4])

Canlf_ControllerModelndication
MICROSARA4x only: Notification for mode sucessfully changed.

Os (MICROSARA4x) OS_TICKS2MS_<counterShortName>()
Os macro to get timebased ticks from counter.
GetElapsedValue
Get elapsed tick count.
GetCounterValue
Get tick count start.

Table 7-38 Services used by the CAN

© 2016 Vector Informatik GmbH Version 1.02.00 61
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

8 Configuration

For CAN driver the attributes can be configured with configuration Tool “CFG5”
The CAN driver supports pre-compile, link-time and post-build configuration.

For post-build systems, re-flashing the generated data can change some configuration
settings.

For post-build and link-time configurations pre-compile settings are configured at compile
time and therefore unchangeable at link or post-build time.

The following parameters are set by CFG5 configuration (see Chapter “DaVinci
Configurator”).

8.1 Pre-Compile Parameters
Some settings have to be available before compilation:

> MCAN Core Release
#define C_ENABLE_MPC5700_MCAN_MAJOR_CREL 1/2/3/...

> MCAN Step of Core Release
#define C_ENABLE_MPC5700_MCAN_MAJOR_CREL_STEP 0/1/2/3/...

> MCAN Sub Step of Core Release
#define C_ENABLE_MPC5700_MCAN_MAJOR_CREL_SSTEP 0/1/2/3/...

> Non ISO Operation
#define CAN_FD_NISO 0=1S0 11898-1:2015/ 1 = Bosch CAN FD Spec. V1.0

> > Version API (Can_GetVersionInfo() activation)
#define CAN_VERSION_INFO_API STD_ON/STD_OFF

> DET (development error detection)
#define CAN_DEV_ERROR_DETECT STD_ON/STD_OFF

> Hardware Loop Check (timeout monitoring)
#define CAN_HARDWARE_CANCELLATION STD_ON/STD_OFF

> Polling modes: Tx confirmation, Reception, Wakeup, BusOff
#define CAN_TX_PROCESSING CAN_INTERRUPT/ CAN_POLLING
#define CAN_RX_PROCESSING CAN_INTERRUPT/ CAN_POLLING
#define CAN_BUSOFF_PROCESSING CAN_INTERRUPT/ CAN_POLLING
#define CAN_WAKEUP_PROCESSING CAN_INTERRUPT/ CAN_POLLING
#define CAN_INDIVIDUAL_PROCESSING STD_ON/STD_OFF

> Multiplexed Tx (external PIA — by usage of multiple Tx mailboxes)
#define CAN_MULTIPLEXED_TRANSMISSION STD_ON/STD_OFF

> Configuration Variant (define the configuration type when using post build variant)
#define CAN_ENABLE_SELECTABLE_PB

> Use Generic Precopy Function (None AUTOSAR feature)
#define CAN_GENERIC_PRECOPY STD_ON/STD_OFF

> Use Generic Confirmation Function (None AUTOSAR feature)
#define CAN_GENERIC_CONFIRMATION STD_ON/STD_OFF

© 2016 Vector Informatik GmbH Version 1.02.00 62
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

8.2

Use Rx Queue Function (None AUTOSAR feature)
#define CAN_RX_QUEUE STD_ON/STD_OFF

Used ID type (standard/extended or mixed ID format)
#define CAN_EXTENDED ID STD_ON/STD_OFF
#define CAN_MIXED_ID STD_ON/STD_OFF

Usage of Rx and Tx Full and BasicCAN objects (deactivate only when not using and to save ROM and
runtime consumption)

#define CAN_RX_FULLCAN_OBJECTS STD_ON/STD_OFF

#define CAN_TX_FULLCAN_OBJECTS STD_ON/STD_OFF

#define CAN_RX_BASICCAN_OBJECTS STD_ON/STD_OFF

Use Multiple BasicCAN objects
#define CAN_MULTIPLE_BASICCAN STD_ON/STD_OFF

Optimizations
#define CAN_ONE_CONTROLLER_OPTIMIZATION STD_ON/STD_OFF
#define CAN_DYNAMIC_FULLCAN_ID STD_ON/STD_OFF

Usage of nested CAN interrupts
#define CAN_NESTED_INTERRUPTS STD_ON/STD_OFF

Use Multiple ECU configurations
#define CAN_MULTI_ECU_CONFIG STD_ON/STD_OFF

Use RAM Check (verify mailbox buffers)
#define CAN_RAM_CHECK CAN_NONE/CAN_NOTIFY_ISSUE/CAN_NOTIFY_MAILBOX

Use Overrun detection
#define CAN_OVERRUN_NOTIFICATION CAN_NONE/ CAN_DET/ CAN_APPL

Select MicroSar version
#define CAN_MICROSAR_VERSION CAN_MSR30/ CAN_MSR40/ CAN_MSR403

Tx Cancellation of Identical IDs
#define CAN_IDENTICAL_ID _CANCELLATION STD_ON/STD_OFF

Link-Time Parameters

The library version of the CAN driver uses the following generated settings:

>

8.3

Maximum amount of used controllers and Tx mailboxes (has to be set for post-build
variants at link-time)

Rx Queue size
Controller mapping (mapping of logical channel to hardware node).

CAN hardware base address.

Post-Build Parameters

Following settings are post-build data that can be changed for re-flashing:

> Amount and usage of FullCAN Rx and Tx mailboxes
> Used database (message information like ID, DLC)
> Filters for BasicCAN Rx mailbox
© 2016 Vector Informatik GmbH Version 1.02.00 63

based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

> Baud-rate settings

> Module Start Address (only for post-build systems: The memory location for re-
flashed data has to be defined)

> Configuration ID (only for post-build systems: This number is used to identify the
post-build data

> CAN hardware Fifo depth

> CAN hardware clock and bit timing settings

8.4 Configuration with da DaVinci Configurator
See Online help within DaVinci Configurator and BSWMD file for parameter settings.

© 2016 Vector Informatik GmbH Version 1.02.00 64
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

9 AUTOSAR Standard Compliance

9.1 Limitations / Restrictions

Category Description Version

Functional No multiple AUTOSAR CAN driver allowed in the system 3.0.6

Functional No support for L-PDU callout (AUTOSAR 3.2.1), but support ‘Generic 3.2.1
Precopy’ instead

Functional No support for multiple read and write period configuration 3.2.1

API “Symbolic Name Values” may change their values after precompile 3.0.6
phase so do not use it for Link Time or Post Build variants.
It's recommended that higher layer generator use Values (ObjectIDs)
from EcuC file. Vector CAN Interface does so.
For the acceptance filtering a maximum of 64 filters per CAN channel
is supported in case of GENy is used as Generation Tool.

9.2 Hardware Limitations
8.2.1 Tx side

MCAN Tx Event FIFO is not supported.

MCAN Tx Queue is not supported.

All available buffers per CAN (32) are configured as dedicated Tx buffers.

8.2.2 Rx side

SREQO00014271 “message reception shall use overwrite mode” is not fulfilled for FullCAN
messages due to hardware behaviour.

8.2.3 Used resources

Please note that the theoretical possible maximum configuration for the RH850P1xC
derivative requires more RAM space in the Shared Message RAM than there is
actual available.

For each CAN channel the following elements can be configured. If the required size for a
distinct configuration exceeds the maximum available RAM space in hardware then
the configuration tool issues an error during generation time and you are requested totailor
down your configuration until it fits into the available Shared Message RAM.

Resource usage for one CAN channel:

Address range Max size Max. number of

(byte) elements

© 2016 Vector Informatik GmbH Version 1.02.00 65
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

Std Filter 0x0000 — Ox01FF 512 128
Ext Filter 0x0200 — Ox03FF 512 64
Rx FIFO 0 0x0400 — Ox07FF 1024 64
Rx FIFO 1 0x0800 — OxOBFF 1024 64
Rx Buffer 0x0C00 — OXOFFF 1024 64
TxEvt FIFO 0x1000 — Ox10FF 256 32
Tx buffer 0x1100 — Ox12FF 512 32
0x1300 4864 bytes total

Thus a maximum of “4864 * NumberOfChannels” can theoretically be configured but less
RAM is physically available. You are requested to reduce the areas according to your
needs.

Please note that the “Tx Buffer region” and the “TTCAN region” (for channels with TTCAN
support) for each channel is restricted to a dedicated address.

This is not consistent for all hardware releases, please refer to your hardware
manufacturer documentation (see ch. 2 “Hardware Overview”).

9.2.1 Initialization of the CAN Message RAM

The internal SRAM features Error Correcting Code (ECC). Because these ECC bits can
contain random data after the device is turned on, all SRAM locations must be initialized
before being read by application code. Initialization is done by executing 64-bit writes to
the entire SRAM block. The value written does not matter at this point, so the
Store Multiple Word instruction will be used to write 16 general-purpose registers with
each loop iteration.

By default the CAN driver tries to accomplish this initialization. Due to the need of using
assembler code notation it might happen that specific options for a distinct compiler
(assembler) are not appropriate. If so, you can feel free to disable the CAN driver internal
initialization (see below on how to) and use your own initialization instead of.

To disable the CAN driver internal initialization use a “User Config File” containing
the following preprocessor definition:

#define CAN_ECC_INIT STD_OFF

Put your initialization into execution just before calling Can_Init(). The MCAN clock must
be available at this point of time.

Please refer to your hardware manufacturer documentation (see ch. 2 “Hardware

Overview”) for the address layout.

© 2016 Vector Informatik GmbH Version 1.02.00 66
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

9.3 Vector Extensions
Refer to Chapter 4.1 “Features” listed under “AUTOSAR extensions”

© 2016 Vector Informatik GmbH Version 1.02.00 67
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

10 Glossary and Abbreviations

10.1 Glossary

Term Description

GENy Generation tool for CANbedded and MICROSAR components
High End (license) Product license to support an extended feature set (see Feature table)

Table 10-1 Glossary

10.2 Abbreviations

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

DEM Diagnostic Event Manager

DET Development Error Tracer

ECU Electronic Control Unit

HIS Hersteller Initiative Software

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR solution)

3,3x = AUTOSAR version 3
401 = AUTOSAR version 4.0.1
403 = AUTOSAR version 4.0.3
4x = AUTOSAR version 4.x.x

SWS Software Specification

Common CAN Connect two physical peripheral channels to one CAN bus (to increase
the amount of FullCAN)

Hardware Loop Timeout monitoring for possible endless loops.

Check

Table 10-2 Abbreviations

© 2016 Vector Informatik GmbH Version 1.02.00 68
based on template version 3.2

VECTOR > Technical Reference Microsar CAN Driver

11 Contact

Visit our website for more information on

News

Products
Demo software
Support
Training data
Addresses

VVVYVVYV

www.vector.com

© 2016 Vector Informatik GmbH Version 1.02.00 69
based on template version 3.2

http://www.vector.com/

	1.1 Scope of the Document
	2 Hardware Overview
	3 Introduction
	3.1 Architecture Overview

	4 Functional Description
	4.1 Features
	4.2 Initialization
	4.3 Communication
	4.3.1 Mailbox Layout
	4.3.2 Mailbox Processing Order
	4.3.3 Acceptance Filter for BasicCAN
	4.3.4 Remote Frames

	4.4 States / Modes
	4.4.1 Start Mode (Normal Running Mode)
	4.4.2 Stop Mode
	4.4.3 Bus Off

	4.5 Re-Initialization
	4.6 CAN Interrupt Locking
	4.7 Main Functions
	4.8 Error Handling
	4.8.1 Development Error Reporting
	4.8.1.1 Parameter Checking
	4.8.1.2 Overrun/Overwrite Notification

	4.8.2 Production Code Error Reporting
	4.8.2.1 Hardware Loop Check / Timeout Monitoring

	4.8.3 CAN RAM Check

	4.9 Common CAN
	4.9.1 Error Interrupt
	4.9.2 Not supported

	5 Integration
	5.1 Scope of Delivery
	5.1.1 Static Files
	5.1.2 Dynamic Files

	5.2 Include Structure
	5.3 Critical Sections
	5.4 Compiler Abstraction and Memory Mapping

	6 Hardware Specific Hints
	6.1.1 Usage of interrupt functions
	6.1.2 MCAN Errata

	7 API Description
	7.1 Interrupt Service Routines provided by CAN
	7.1.1 OSEK (OS)
	7.1.2 AutoSar (OS)
	7.1.3 None (OS)
	7.1.4 Type of Interrupt Function
	7.1.5 CAN ISR API

	7.2 Services provided by CAN
	7.2.1 Can_InitMemory
	7.2.2 Can_Init
	7.2.3 Can_InitController
	7.2.4 Can_InitController
	7.2.5 Can_ChangeBaudrate
	7.2.6 Can_CheckBaudrate
	7.2.7 Can_SetBaudrate
	7.2.8 Can_InitStruct
	7.2.9 Can_GetVersionInfo
	7.2.10 Can_GetStatus
	7.2.11 Can_SetControllerMode
	7.2.12 Can_ResetBusOffStart
	7.2.13 Can_ResetBusOffEnd
	7.2.14 Can_Write
	7.2.15 Can_CancelTx
	7.2.16 Can_CheckWakeup
	7.2.17 Can_DisableControllerInterrupts
	7.2.18 Can_EnableControllerInterrupts
	7.2.19 Can_MainFunction_Write
	7.2.20 Can_MainFunction_Read
	7.2.21 Can_MainFunction_BusOff
	7.2.22 Can_MainFunction_Wakeup
	7.2.23 Can_MainFunction_Mode
	7.2.24 Appl_GenericPrecopy
	7.2.25 Appl_GenericConfirmation
	7.2.26 Appl_GenericConfirmation
	7.2.27 Appl_GenericPreTransmit
	7.2.28 ApplCanTimerStart
	7.2.29 ApplCanTimerLoop
	7.2.30 ApplCanTimerEnd
	7.2.31 ApplCanInterruptDisable
	7.2.32 ApplCanInterruptRestore
	7.2.33 Appl_CanOverrun
	7.2.34 Appl_CanFullCanOverrun
	7.2.35 Appl_CanCorruptMailbox
	7.2.36 Appl_CanRamCheckFailed
	7.2.37 ApplCanInitPostProcessing

	7.3 Services used by CAN

	8 Configuration
	8.1 Pre-Compile Parameters
	8.2 Link-Time Parameters
	8.3 Post-Build Parameters
	8.4 Configuration with da DaVinci Configurator

	9 AUTOSAR Standard Compliance
	9.1 Limitations / Restrictions
	9.2 Hardware Limitations
	9.2.1 Initialization of the CAN Message RAM

	9.3 Vector Extensions

	10 Glossary and Abbreviations
	10.1 Glossary
	10.2 Abbreviations

	11 Contact

