

CAN Interface

Technical Reference

Version 6.09.00

Authors Rüdiger Naas, Eugen Stripling

Versions: 6.09.00

Status: Released

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 2
based on template version 2.10.0

1 Document Information

1.1 History

Author Date Version Remarks

Eugen Stripling

Rüdiger Naas

2012-07-17 5.00 ASR R4.0 Rev 3

Eugen Stripling 2013-04-03 5.01.00 ESCAN00065368

ESCAN00066338

ESCAN00066340

Adapted according to
ESCAN00066285

Adapted according to
ESCAN00065289

ESCAN00066396

Adapted according to
ESCAN00064304

Rüdiger Naas 2013-07-24 5.01.01 ESCAN00066794

Eugen Stripling 2013-09-27 6.00.00 Adapted due to:

AR4-307: J1939 support

AR4-438: Dynamic address lookup
table

AR4-397: CAN FD support

Eugen Stripling 2014-05-19 6.01.00 CAN FD support extended: Rx-FD
and Rx- and Tx-PDUs with up to
64 bytes payload

Rüdiger Naas 2014-07-10 6.02.00 Multiple CAN driver support

Eugen Stripling 2014-08-25 6.02.00 ESCAN00077304, Restriction
concerning the handling of
FD/Not-FD FullCAN-Rx-PDUs
added

Eugen Stripling 2014-09-22 6.02.00 ESCAN00078524, CanTSyn added,

Post-build selectable

Eugen Stripling 2014-11-25 6.03.00 Channel specific J1939 dynamic
address

Eugen Stripling 2015-01-26 6.04.00 Chapter 3.8 adapted to changed
implementation

Eugen Stripling 2015-05-18 6.05.00 Adapted due to FEAT-366

Eugen Stripling 2015-11-20 6.06.00 Adapted due to FEAT-1429

Eugen Stripling 2016-01-09 6.06.00 ESCAN00087340

Eugen Stripling 2016-02-22 6.07.00 Feature Extended RAM-check
added, ESCAN00087587

Eugen Stripling 2016-06-24 6.08.00 Feature: Data checksum added

Eugen Stripling 2016-09-14 6.09.00 Adapted due to FEAT-2076:

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 3
based on template version 2.10.0

Behavior of Tx-PDU filter extended

Eugen Stripling 2016-09-26 6.09.00 Adapted due to FEAT-2024: Set
reception mode

Table 1-1 History of the Document

1.2 Reference Documents

No. Title Version

[1] AUTOSAR_SWS_CANInterface.pdf
5.0.0
6.0.0

[2] AUTOSAR_SWS_DevelopmentErrorTracer.pdf 3.2.0

[3] AUTOSAR_SRS_BSWGeneral.pdf 3.2.0

Table 1-2 References Documents

Please note
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 4
based on template version 2.10.0

Contents

1 Document Information ..2

1.1 History ..2

1.2 Reference Documents ...3

2 Introduction ..10

2.1 Architecture Overview ..10

3 Functional Description ...12

3.1 Deviations regarding AUTOSAR standard ..12

3.2 Feature List...12

3.3 Initialization ...13

3.4 Transmission ..14

3.4.1 Dynamic transmission ...15

3.4.2 Transmit-buffer ...15

3.4.3 Multiple Transmit-buffers ...16

3.4.4 Tx confirmation polling support ...17

3.4.5 Data checksum Tx ...18

3.5 Reception ...18

3.5.1 Ranges ...19

3.5.2 DLC check ...20

3.5.3 Data checksum Rx...20

3.5.4 Control of reception mode of a Rx-PDU..21

3.6 Communication Modes ..22

3.6.1 Controller Mode ...22

3.6.2 PDU Mode ...22

3.7 Polling ...23

3.8 CAN FD ..24

3.9 Meta data Rx- / Tx-support ..24

3.10 J1939 dynamic address support ..24

3.11 Error Notification...25

3.12 Transceiver handling ..30

3.13 Sleep / WakeUp..31

3.14 Bus Off ..33

3.15 Version Info...34

3.16 Partial Networking ..34

3.17 Services used by the CAN Interface ..36

3.18 Multiple CAN drivers ..36

3.19 Extended RAM-check ..37

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 5
based on template version 2.10.0

3.20 Critical Sections ..38

4 Integration ..40

4.1 Files and include structure ...40

4.1.1 Static Files ...40

4.1.2 Dynamic Files ..40

4.2 Include Structure ..41

4.3 Compiler Abstraction and Memory Mapping ..42

5 Configuration ...43

5.1 Configuration of Post-Build ..43

6 API Description ..44

6.1 Services provided by the CAN Interface ..44

6.1.1 CanIf_GetVersionInfo ..44

6.1.2 CanIf_Init ..44

6.1.3 CanIf_SetControllerMode ..45

6.1.4 CanIf_GetControllerMode..45

6.1.5 CanIf_Transmit ..46

6.1.6 CanIf_TxConfirmation ..46

6.1.7 CanIf_RxIndication ..47

6.1.8 CanIf_ControllerBusOff ...47

6.1.9 CanIf_SetPduMode ...48

6.1.10 CanIf_GetPduMode ...48

6.1.11 CanIf_InitMemory ..49

6.1.12 CanIf_CancelTxConfirmation ..49

6.1.13 CanIf_SetTrcvMode ...50

6.1.14 CanIf_GetTrcvMode ..50

6.1.15 CanIf_GetTrcvWakeupReason ..51

6.1.16 CanIf_SetTrcvWakeupMode..51

6.1.17 CanIf_CheckWakeup ...52

6.1.18 CanIf_CheckValidation ..52

6.1.19 CanIf_ResetBusOffStart ..53

6.1.20 CanIf_ResetBusOffEnd ...53

6.1.21 CanIf_CancelTransmit ...54

6.1.22 CanIf_CancelTxNotification ...54

6.1.23 CanIf_SetDynamicTxId ..55

6.1.24 CanIf_ControllerModeIndication ..55

6.1.25 CanIf_TrcvModeIndication ...56

6.1.26 CanIf_ConfirmPnAvailability ..56

6.1.27 CanIf_ClearTrcvWufFlagIndication ...57

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 6
based on template version 2.10.0

6.1.28 CanIf_CheckTrcvWakeFlagIndication ...57

6.1.29 CanIf_SetBaudrate ..58

6.1.30 CanIf_ChangeBaudrate ...58

6.1.31 CanIf_ChangeBaudrate ...59

6.1.32 CanIf_GetTxConfirmationState ...59

6.1.33 CanIf_SetAddressTableEntry ..60

6.1.34 CanIf_ResetAddressTableEntry ..60

6.1.35 CanIf_RamCheckExecute ...61

6.1.36 CanIf_RamCheckEnableMailbox ..61

6.1.37 CanIf_RamCheckEnableController ...62

6.1.38 CanIf_RamCheckCorruptMailbox..62

6.1.39 CanIf_RamCheckCorruptController ..63

6.1.40 CanIf_SetPduReceptionMode ...63

6.2 Callout Functions..64

6.2.1 EcuM_BswErrorHook ..64

6.2.2 CanIf_RxIndicationSubDataChecksumRxVerify64

6.2.3 CanIf_TransmitSubDataChecksumTxAppend65

7 AUTOSAR Standard Compliance ..66

7.1 Not supported AUTOSAR features ..66

7.1.1 Tx notification status ..66

7.1.2 Rx notification status..66

7.1.3 Rx buffer...66

7.2 Deviations ...66

7.2.1 Tx buffer ...66

7.2.2 Partial networking ..66

7.2.3 AUTOSAR version check ..66

7.3 Limitations ..66

8 Glossary and Abbreviations ...67

8.1 Glossary ...67

8.2 Abbreviations ..67

9 Contact ...69

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 7
based on template version 2.10.0

Illustrations
Figure 2-1 AUTOSAR layer model ...10
Figure 2-2 Interfaces to adjacent modules of the CAN Interface (* optional) 11
Figure 3 Configuration of multiple Transmit-buffers ...17
Figure 3-4 Wake up sequence (No validation) ..31
Figure 3-5 Wake up sequence (Wakeup validation) ..33
Figure 4-1 Include structure ...41

Tables

Table 1-1 History of the Document ...3
Table 1-2 References Documents ..3
Table 3-1 List of supported features ...13
Table 3-2 Mapping of service IDs to services ..26
Table 3-3 Errors reported to DET ...29
Table 3-4 Sub-features of feature Partial Networking ..35
Table 3-5 API functions used by the CAN Interface ...36
Table 3-6 Adapted CAN driver APIs (* optional) ..37
Table 3-7 APIs of CAN Interface which have to be used in multiple CAN driver

configurations..37
Table 3-8 Critical Section Codes ..39
Table 3-9 Restrictions for the different lock areas ..39
Table 4-1 Static files ..40
Table 4-2 Generated files ...40
Table 4-3 Compiler abstraction and memory mapping ..42
Table 6-1 API CanIf_GetVersionInfo ..44
Table 6-2 API CanIf_Init ..44
Table 6-3 API CanIf_SetControllerMode ..45
Table 6-4 API CanIf_GetControllerMode ..45
Table 6-5 API CanIf_Transmit ..46
Table 6-6 API CanIf_TxConfirmation ..46
Table 6-7 API CanIf_RxIndication ..47
Table 6-8 API CanIf_ControllerBusOff..47
Table 6-9 API CanIf_SetPduMode ...48
Table 6-10 API CanIf_GetPduMode ...48
Table 6-11 API CanIf_InitMemory ..49
Table 6-12 API CanIf_CancelTxConfirmation ..49
Table 6-13 API CanIf_SetTrcvMode ...50
Table 6-14 API CanIf_GetTrcvMode...50
Table 6-15 API CanIf_GetTrcvWakeupReason ..51
Table 6-16 API CanIf_SetTrcvWakeupMode ..51
Table 6-17 API CanIf_CheckWakeup ...52
Table 6-18 API CanIf_CheckValidation ..52
Table 6-19 API CanIf_ResetBusOffStart ..53
Table 6-20 API CanIf_ResetBusOffEnd ...53
Table 6-21 API CanIf_CancelTransmit ...54
Table 6-22 API CanIf_CancelTxNotification ...54
Table 6-23 API CanIf_SetDynamicTxId ..55
Table 6-24 API CanIf_ControllerModeIndication ..55
Table 6-25 API CanIf_TrcvModeIndication ...56
Table 6-26 API CanIf_ConfirmPnAvailability ..56
Table 6-27 API CanIf_ClearTrcvWufFlagIndication ..57
Table 6-28 API CanIf_CheckTrcvWakeFlagIndication ...57

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 8
based on template version 2.10.0

Table 6-29 API CanIf_SetBaudrate ..58
Table 6-30 API CanIf_ChangeBaudrate ...58
Table 6-31 API CanIf_ChangeBaudrate ...59
Table 6-32 API CanIf_GetTxConfirmationState ...59
Table 6-33 API CanIf_SetAddressTableEntry ..60
Table 6-34 API CanIf_ResetAddressTableEntry ..60
Table 6-35 API CanIf_RamCheckExecute ...61
Table 6-36 API CanIf_RamCheckEnableMailbox ..61
Table 6-37 API CanIf_RamCheckEnableController ...62
Table 6-38 API CanIf_RamCheckCorruptMailbox ..62
Table 6-39 API CanIf_RamCheckCorruptController ..63
Table 6-40 API CanIf_SetPduReceptionMode ...63
Table 6-41 EcuM_BswErrorHook ...64
Table 8-1 Glossary ..67
Table 8-2 Abbreviations ..68

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 9
based on template version 2.10.0

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 10
based on template version 2.10.0

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR CAN
Interface as specified in [1]. It is based on the AUTOSAR specification release 4.0.3. The
CAN Interface is a hardware independent layer with a standardized interface to the CAN
Driver and CAN Transceiver Driver layer and upper layers like PDU Router,
Communication Manager and the Network Management.

Supported AUTOSAR Release: 4.0.3

Supported Configuration Variants: Pre-compile, Link-time, Post-build-loadable

Vendor ID: CANIF_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: CANIF_MODULE_ID 60

(according to ref.[3])

2.1 Architecture Overview

The following figure shows where the CAN Interface is located in the AUTOSAR
architecture.

Figure 2-1 AUTOSAR layer model

The CAN Interface provides a standardized interface for all upper layers which require
CAN communication. Therefore these upper layers have to communicate with the CAN

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 11
based on template version 2.10.0

Interface which is responsible for the CAN communication. This includes the transmission
and the reception of messages and the state handling of the CAN controllers as well.

The next figure shows the interfaces to adjacent modules of the CAN Interface. These
interfaces are described in chapter 6.

FR

COM DCM

CAN Interface

TRCV DRV 0

PduR CanNM DCMCanSM DCMCanTP DCMEcuM

CAN DRV 1*CAN DRV 0 FR TRCV DRV 1*

Figure 2-2 Interfaces to adjacent modules of the CAN Interface (* optional
1
)

1
 NOTE: Multiple CAN driver and TRCV driver are supported optional

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 12
based on template version 2.10.0

3 Functional Description

3.1 Deviations regarding AUTOSAR standard

Please note that the CAN Interface is tailored by Vector Informatik according to customer
requirements before delivery. As a result not all features listed below might be supported
by a delivered module.

For deviations and extensions regarding the AUTOSAR standard [1], please see chapter
7.

3.2 Feature List

Available Features For This BSW Module:

Feature Naming Supported Short Description

Initialization

Generic Initialization  General initialization of the CAN Interface (CanIf_Init())

Communication

Transmission  Transmission of PDUs

Dynamic transmission  Transmission of PDUs with changeable CAN IDs

Transmit-buffer 

Buffering (send request and data) of Tx-PDUs mapped to
a Tx-buffer in the CAN Interface. Two handling types of
Tx-buffer are supported: FIFO and prioritized by CAN
identifier.

Multiple Tx-BasicCAN hardware
objects


Per CAN channel multiple Tx-BasicCAN hardware
objects may be configured. This feature can only be used
if the underlying CAN driver supports this feature as well.

Multiple transmit-buffers per CAN
channel



Per CAN channel multiple independent transmit-buffers
may be configured with different handling types: FIFO or
prioritization by CAN identifier. This feature can only be
used in combination with above mentioned feature
“Multiple Tx-BasicCAN hardware objects”.

Cancellation of Tx-PDUs 
Cancellation of PDUs and requeueing. (Feature to avoid
inner priority inversion)

Transmit confirmation  Call back for successful transmission

Reception  Reception of PDUs

Receive indication  Call back for reception of PDUs

Control of reception mode of a
Rx-PDU


This feature provides the ability to control the reception
mode of a Rx-PDU individually at runtime.

DLC check  Check DLC of received PDUs against predefined values

CAN FD support  CAN with flexible data-rate

Meta data Rx- / Tx-support 
Support for dynamic CAN identifier handling by using of
SDU meta data

J1939 Dynamic Address Support 
Translating of addresses according to J1939 by using of
dynamic address lookup tables which are maintained by
J1939Nm.

Data checksum Rx  Verification of checksum of Rx-PDUs

Data checksum Tx  Appending of checksum to Tx-PDUs

Controller Modes

Sleep mode  Support sleep mode

External wake up (CAN)  Support external wake up by CAN Driver

External wake up (Transceiver)  Support external wake up by Transceiver Driver

Wake up validation  Support wake up validation for external wake up events

Internal wake up  Internal wake up by calling CanIf_SetControllerMode()

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 13
based on template version 2.10.0

Stop mode  Support stop mode

BusOff detection  Handling of bus off notifications

Error Reporting

DET  Support Development Error Detection (error notification)

Mailbox objects

Tx BasicCAN 
Standard mailbox to send CAN frames (Used by CAN
Interface data queue)

Tx FullCAN  Separate mailbox for special Tx message used

Rx BasicCAN 
Standard mailbox to receive CAN frames (depending on
hardware, FIFO or shadow buffer supported)

Rx FullCAN  Separate mailbox for special Rx message used

Miscellaneous

Transceiver handling 
API for upper layers to set and read transceiver states;
Interface to the Transceiver Driver

Version API  API to read out component version

Supported ID types
- Standard Identifiers
- Extended Identifiers
- Mixed Identifiers





Support of CAN Standard (11 bits) identifiers
Support of CAN Extended (29 bits) identifiers
Support standard as well as extended identifiers

Multiple CAN networks 
Each CAN network has to be connected to exactly one
controller

Multiple CAN driver  Supports multiple CAN driver

Partial Networking 
Handling of partial networking transceiver
Tx-PDU filter during wake-up

Tx Confirmation Polling Support 

This service provides the information on whether any Tx
confirmation has occurred for a CAN channel since the
last start of that CAN channel at all.

Post-build loadable 
Post-build loadable allows the re-configuration of an ECU
at Post-build time

Post-build selectable  MICROSAR identity manager using Post-build selectable

Extended RAM-check 

This service provides the ability in order to request an
underlying CAN-channel to execute a check of
CAN-controller-HW-registers. The usage of this feature
requires a corresponding license.

Table 3-1 List of supported features

3.3 Initialization

Several functions are available to initialize the CAN Interface. The following code example
shows which functions have to be called to initialize the CAN Interface and to allow
transmission and reception.

CanIf_InitMemory();

 /* Mandatory call which reinitializes global variables to

set the CAN Interface back to uninitialized

state. */

CanTrcv_xxx_InitMemory() and CanTrcv_xxx_Init()

 /* have to be called to initialize the CAN Transceiver Driver

and set the CAN Transceiver to the preconfigured

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 14
based on template version 2.10.0

state. For some CAN Controllers it is necessary

to have a recessive signal on the Rx Pin to be

able to initialize the CAN Controller. This

means the transceiver has to be set to “normal

mode” before CanIf_Init() is called. */

Can_InitMemory() and Can_Init();

 /* have to be called before CanIf_Init is called. */

CanIf_Init(<PtrToCanIfConfiguration>);

 /* Global initialization of the CAN Interface: all available CAN

Interface channels are initialized within this

call. If postbuild-selectable configuration is

active a valid configuration has to be passed to

CanIf_Init. In other cases the parameter is

ignored and a NULL pointer can be used */

CanIf_SetControllerMode(0, CANIF_CS_STARTED);

 /* The controller mode of CAN-channel 0 is set to started mode.

This means the CAN controller is initialized and

ready to communicate (acknowledge of the CAN

controller is activated). Communication is not

yet possible because the CAN Interface will

neither pass Tx PDUs from higher layers to the

CAN Driver nor accept Rx PDUs from the CAN

Driver. */

CanIf_SetPduMode(0, CANIF_SET_ONLINE);

 /* The PDU mode in the CAN Interface of the CAN-channel 0 is

switched to online mode. After initialization

this mode remains in the state CANIF_GET_OFFLINE

until the CanIf_SetPduMode function is called.

Now transmission requests will be passed from

the upper layer to the CAN Driver and Rx PDUs

are forwarded from the CAN Driver to the

corresponding higher layer. */

3.4 Transmission

The transmission of PDUs is only possible after the CAN Interface and CAN Driver are
initialized and the CAN Interface resides in the CANIF_CS_STARTED /
CANIF_GET_ONLINE or CANIF_CS_STARTED / CANIF_GET_TX_ONLINE mode. In all
other states the Tx requests are rejected by the CAN Interface.

The Tx request has to be initiated by a call to the function:

CanIf_Transmit(<TxPduId>, <PduInfoPtr>);

The CAN Interface uses the PDU ID (<TxPduId>) to acquire more information from the

generated data to be able to transmit the message. This data is used to call the function

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 15
based on template version 2.10.0

Can_Write of the CAN Driver which needs information about the PDU like the

CAN identifier, length of data, data by itself and the hardware transmit handle which
represents the mailbox used for transmission of the PDU.

After a successful transmission of the message on the bus a confirmation function is called
by the CAN Driver either from interrupt context or in case of Tx polling from task context.
This confirmation is dispatched in the CAN Interface to notify the corresponding higher
layer about the transmission of the PDU. For this purpose for each PDU a call back
function has to be specified at configuration time.

The transmission request is rejected by returning E_NOT_OK in the following cases:

- The CAN Interface is not in the controller state CANIF_CS_STARTED

- The CAN Interface is not in the PDU mode CANIF_GET_ONLINE or
CANIF_GET_TX_ONLINE

- The transmit buffer is not active and the corresponding mailbox used for
transmission is occupied (BasicCAN Tx messages only).

- An error occurred during transmission (DET will be informed)

3.4.1 Dynamic transmission

The feature is activated by the parameter “Dynamic Tx Objects”.

The adjustments for the dynamic objects are the same as for the static with the exception
that the CAN ID and the attribute whether extended or standard CAN ID can be selected
manually.

By default the dynamic object has the CAN ID parameterized during configuration time

until it is changed by the call of the API CanIf_SetDynamicTxId(). In order to set an

extended CAN ID the most significant bit of its value passed to the API shall be set.

The PDU IDs of the dynamic objects are represented as symbolic handles in the file

CanIf_Cfg.h.

3.4.2 Transmit-buffer

The CAN Interface provides a mechanism to buffer Tx-PDUs (including data) which are
mapped to a Tx-buffer. This means if the Tx-hardware-object of such Tx-PDU is occupied
the Tx-PDU-instance is stored within the CAN Interface until the Tx-hardware-object
becomes free. Two handling types of a transmit-buffer are supported:

1. FIFO

2. Prioritization by CAN-identifier

The handling type defines in which manner the Tx-PDUs stored within the Tx-buffer are
transmitted in case of the underlying Tx-hardware-object becomes free.

FIFO: The stored Tx-PDUs are transmitted in manner First-In-First-Out. Each
Tx-PDU-instance is stored. If the FIFO is full then NO Tx-PDUs are stored until the FIFO
becomes free.

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 16
based on template version 2.10.0

Caution
In case of transmit-buffer of handling type FIFO only one instance of a Tx-PDU (the last
one stored within the FIFO) can be and is cancelled from the FIFO via usage of API

CanIf_CancelTransmit! (Feature: “Cancellation of Tx-PDUs”, see chapter

6.1.21).

Prioritization by CAN-identifier: The stored Tx-PDUs are transmitted in manner: Tx-PDU
with high priority is sent before those one with lower priority. The priority is given by the
CAN-identifier of the Tx-PDU. A Tx-PDU with a low CAN-identifier has higher priority than
a one with greater CAN-identifier. The priority of a Tx-PDU is static and is determined from

values of parameters CanIfTxPduCanId and CanIfTxPduCanIdType. Please consider

this aspect in case of configuration of Tx-PDUs with dynamic CAN-identifier. Only one
instance of each Tx-PDU is stored within such Tx-buffer: If a Tx-PDU is requested to be
transmitted and the Tx-buffer of this Tx-PDU is already in use the already stored data of
this Tx-PDU is overwritten in order to ensure the transmission of most newest data.

This handling type can be used to avoid inner priority inversion. This means if the
CAN Interface passes a transmit request to the CAN Driver while all Tx-hardware-objects
are occupied and at least one hardware object is occupied by a CAN message with lower
priority than the message used for the current transmit request the CAN Driver initiates the
cancellation of the message with the lowest priority. The cancelled CAN-message is stored
in the Tx-buffer of the CAN Interface if the corresponding Tx-buffer is free. Otherwise it is
discarded to ensure the transmission of most newest data. By this way a Tx-hardware
message object becomes free and allows the CAN Interface to pass the CAN-message
with the highest priority to the CAN Driver.

Caution
The described: “inner priority inversion” is only supported if at most only one Tx-buffer
of handling type: Prioritization by CAN-identifier is configured per CAN-channel!

At all the Tx-PDUs stored within a Tx-buffer are processed either in context of the
Tx-confirmation interrupt or in context of CAN Driver’s Tx-main-function in case of polling
mode.

The configuration of multiple transmit-buffers is described in chapter 3.4.3.

3.4.3 Multiple Transmit-buffers

This feature can only be used if the underlying CAN driver supports the feature “Multiple
Tx-BasicCAN hardware objects”. The Figure 3 shows the objects which are needed to be

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 17
based on template version 2.10.0

configured within the EcuC-configuration and the relationship among themselves. For each

Transmit-buffer a triple of objects: CanHardwareObject, CanIfHthCfg and

CanIfBufferCfg must be configured and linked with each other and to corresponding

CAN-channel (objects: CanController and CanIfCtrlCfg).

Figure 3 Configuration of multiple Transmit-buffers

After this step you can map Tx-PDUs to configured Transmit-buffer

(object: CanIfBufferCfg). The described handling type of a transmit-buffer (see

chapter 3.4.2) can be configured via the parameter CanIfTxBufferHandlingType. For

further information about configuration of a Transmit-buffer please refer to the help which
can be found in the GUI of the DaVinci Configurator 5 and to the descriptions of attributes

of container CanIfBufferCfg.

3.4.4 Tx confirmation polling support

The CAN Interface supports a service which provides the information on whether any Tx
confirmation has occurred for a CAN channel since the last start of that CAN channel at
all. This feature can be enabled via the parameter

CanIfPublicTxConfirmPollingSupport. If enabled the API

CanIf_GetTxConfirmation() is provided and can be used for this service.

 class Tx buffer configuration (EcuC)

Container

CanHardwareObject

Container

CanIfBufferCfg

Container

CanIfTxPduCfg

Container

CanIfHthCfg

Container

CanIfCtrlCfg

CanDrv CanIf

Container

CanController

Triple required for multiple Tx-BasicCANs / Tx-buffers

«point to»

«point to»

1:1

«point to»

1:1

«point to»

1:1

«point to»

1:n

«point to»

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 18
based on template version 2.10.0

3.4.5 Data checksum Tx

This feature can be used to append a checksum to data of a Tx-PDU. The configuration of
such Tx-PDU can be done individually via the parameter

CanIfTxPduDataChecksumPdu. The appending of checksum is application specific and

must be implemented within the API CanIf_TransmitSubDataChecksumTxAppend().

For further information please see the description of the prototype of this API in chapter

6.2.3.

For further information about configuration of this feature at all please refer to the help
which can be found in the GUI of the DaVinci Configurator 5 and to the description of
mentioned parameters.

3.5 Reception

Reception of PDUs is only possible in the states

 CANIF_CS_STARTED and CANIF_GET_ONLINE

or

 CANIF_CS_STARTED and CANIF_GET_RX_ONLINE.

In all other states the PDUs received by the CAN Driver are discarded by the CAN
Interface without notification to the upper layers.

The CAN Interface supports reception of FullCAN- as well as BasicCAN-messages. The
upper layers do not notice any differences between these two reception types as in both
cases a call back function is called which was configured for the specified PDU in the
generation tool.

The upper layer is notified about the PDU ID given by the corresponding upper layer at
configuration time, the received data and depending on the used indication function about
the length of the received data.

In case of BasicCAN reception the CAN Interface has to search through a list of all known
Rx messages and compare the received CAN ID with the CAN ID in the Rx message list.

The CAN Interface offers three different search algorithms:

 Linear search: The list of all Rx PDUs is searched from high priority (Low CAN
Identifier) to low priority (High CAN Identifier). This algorithm is efficient for a small
amount of Rx messages.

 Double Hash search: The Rx PDU is calculated via two special hash functions. The
algorithm is very efficient for a high amount of Rx messages and always takes the
same time.

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 19
based on template version 2.10.0

 Note
The Double Hash search algorithm uses the mathematical operation
modulo.

 Binary search: The list of Rx PDUs is split in two equal sized parts and the search is

continued recursively on a list of PDUs which contains half the messages. This search
algorithm terminates faster for big amounts of Rx messages than the linear search.

Caution

The binary search algorithm cannot be used for mixed ID systems.

3.5.1 Ranges

The BasicCAN message object can be used to receive groups of CAN messages called
ranges. A range can be defined either by an upper and a lower CAN identifier or by a mask
and a code.

The definition of a range by an upper and a lower CAN identifier is performed by the
following parameters:

 CanIfRxPduCanIdRangeLowerCanId and

 CanIfRxPduCanIdRangeUpperCanId.

A mask-code-range is defined by parameters:

 CanIfRxPduCanId (code) and

 CanIfRxPduCanIdMask (mask).

In case of a mask-code-range each CAN identifier which fulfills the following equation pass
the range and the reception of the corresponding Rx PDU is reported to the upper layer.

 <CAN identifier> & <mask> == <code> & <mask>

One PDU ID is assigned to all messages which pass the configured range. Hence the
upper layer is not able to get additional message properties like the CAN identifier. For
each range an indication function can be assigned in the generation tool in order to notify
the higher layer about the reception of a message.

A range defined by an upper and a lower CAN identifier can be converted into a
mask-code-range. Therefor please see the following example.

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 20
based on template version 2.10.0

Example: How to convert a lower CAN ID and an upper CAN ID into mask and
code?

Lower CAN ID: 0x400

Upper CAN ID: 0x43F

The code is same as the lower CAN ID:

code = 0x400

You need the count which is upper CAN ID – lower CAN ID  0x43F – 0x400 = 0x3F

The count 0x3F is 000 0011 1111b in 11-bit binary format. For a range with extended
CAN IDs the count needs to be 29-bit wide.

The mask is calculated out of negated count and a 11-bit mask:

mask = ~0x3F & 0x7FF = 0x7C0

For extended IDs you need a 29-bit mask:

mask = ~0x3F & 0x1FFF FFFF = 0x1FFF FFC0

Note:

If for count the first set bit is followed by unset bits on lower significant positions for the
calculation of the mask these bits need to be set. For example a count of 0xA3 (1010
0011b) you need to calculate with the count 0xFF (1111 1111b). The consequence is
that more CAN IDs are received as intended.

3.5.2 DLC check

The DLC check is executed for all received messages after they pass the search algorithm
(PDU is in Rx list) or if they are defined to be received in FullCAN message objects. The
feature DLC check can be activated only at Pre-compile time at all. If activated the DLC
check can be configured for each Rx-PDU individually and can be reconfigured in the
Post-build-loadable configuration phase.

The DLC check verifies if the received DLC is greater or equal to the DLC specified during
configuration time. If the DLC is less than the configured one a DET error is raised and the
reception of the PDU is abandoned.

3.5.3 Data checksum Rx

This feature can be used to verify the validity of a Rx-PDU after reception. The Rx-PDU
which shall be verified can be configured individually via the parameter

CanIfRxPduDataChecksumPdu. The verification is application specific and must be

implemented within the API CanIf_RxIndicationSubDataChecksumRxVerify().

For further information please see the description of the prototype of this API in chapter
6.2.2.

In addition an indication function may be configured which signals about invalidity of a
Rx-PDU. This indication function can be configured via the parameter

CanIfDispatchDataChecksumRxErrorIndicationName. The call of this indication

function is application specific too and if required must be invoked within the

implementation of CanIf_RxIndicationSubDataChecksumRxVerify().

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 21
based on template version 2.10.0

The prototype of the indication function must match following signature:

 void My_DataChecksumRxErrFct (PduIdType CanIfRxPduId)

and can be accessed via the macro: CanIf_GetDataChecksumRxErrFctPtr() (see

file CanIf_Cfg.h)

It is recommended to call this indication function with the identifier of affected Rx-PDU.

Therefor the value of parameter CanIfRxPduId should be used which is passed by call

of CanIf_RxIndicationSubDataChecksumRxVerify(). The value of this parameter

is a CAN interface internal identifier which corresponds to value of configuration parameter

CanIfRxPduId. Corresponding macros are generated per Rx-PDU into file

CanIf_Cfg.h. These ones can be used by application (s. example below).

/***

 \def AUTOSAR Rx PDU handles

***/

#define CanIfConf_CanIfRxPduCfg_RxRange2_0 0U

#define CanIfConf_CanIfRxPduCfg_RxRange1_0 1U

#define CanIfConf_CanIfRxPduCfg_RxMSG00000711_0 2U

#define CanIfConf_CanIfRxPduCfg_RxMSG95555311_0 3U

#define CanIfConf_CanIfRxPduCfg_RxMSG00000511_0 4U

#define CanIfConf_CanIfRxPduCfg_RxMSG91111151_0 5U

Caution
Please use these macros wisely. They can change in case of configuration variant
Post-build-loadable.

For further information about configuration of this feature at all please refer to the help
which can be found in the GUI of the DaVinci Configurator 5 and to the description of
mentioned parameters.

3.5.4 Control of reception mode of a Rx-PDU

This feature provides the ability to control the reception mode of a Rx-PDU at runtime. The
reception mode can be set per Rx-PDU individually at runtime via the API:

CanIf_SetPduReceptionMode(). In order to address a Rx-PDU you can use the

corresponding symbolic name value which can be found in file CanIf_Cfg.h (s. example

below).

/***

 \def AUTOSAR Rx PDU handles

***/

#define CanIfConf_CanIfRxPduCfg_RxRange2_0 0U

#define CanIfConf_CanIfRxPduCfg_RxRange1_0 1U

#define CanIfConf_CanIfRxPduCfg_RxMSG00000711_0 2U

#define CanIfConf_CanIfRxPduCfg_RxMSG95555311_0 3U

#define CanIfConf_CanIfRxPduCfg_RxMSG00000511_0 4U

#define CanIfConf_CanIfRxPduCfg_RxMSG91111151_0 5U

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 22
based on template version 2.10.0

For further information about this API please see chapter 6.1.40. This feature can be used
for e.g. either to receive a CAN-message as a Rx-PDU with an explicit CAN-identifier or as
a Rx-range-PDU. In case of the configured CAN-identifier of a Rx-PDU fits the range of
CAN-identifiers of a Rx-range-PDU on the same CAN-channel as well. In case of a
FullCAN-Rx-PDU the reception can be controlled at runtime at all.

This feature can be enabled via the parameter CanIfSetPduReceptionModeSupport.

In addition Rx-PDUs whose reception mode is intended to be controlled at runtime must

be configured accordingly via the parameter CanIfRxPduSetReceptionModePdu.

For further information about configuration of this feature at all please refer to the help
which can be found in the GUI of the DaVinci Configurator 5 and to the description of
mentioned parameters.

3.6 Communication Modes

The CAN Interface knows two main types of communication modes.

3.6.1 Controller Mode

The controller mode represents the physical state of the CAN controller. The following
modes are available:

 CANIF_CS_STOPPED

 CANIF_CS_STARTED

 CANIF_CS_SLEEP

 CANIF_CS_UNINIT

There is no state called bus off. Bus off is treated as a transition from STARTED to
STOPPED mode. All transitions have to be initiated using the API function

CanIf_SetControllerMode(). The controller mode can be switched for each

controller independent of the state of other controllers in the system.

The state CANIF_CS_UNINIT is left after CanIf_InitController() is called and can

only be entered by a reset of the ECU.

The modes CANIF_CS_SLEEP and CANIF_CS_STARTED can only be entered from

CANIF_CS_STOPPED. This means a transition from STARTED to SLEEP and vice versa is

not possible without requesting the STOPPED mode first.

It is always possible to request the current active controller mode by calling the API

CanIf_GetControllerMode().

3.6.2 PDU Mode

The other type of communication mode is completely processed by software (it does not
represent any state of the hardware). Transitions of the PDU mode are only possible if the

controller mode is set to CANIF_CS_STARTED.

The following PDU modes are available:

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 23
based on template version 2.10.0

 CANIF_GET_OFFLINE

 Rx and Tx path are switched offline

 CANIF_GET_RX_ONLINE

 Rx path online, Tx path offline

 CANIF_GET_TX_ONLINE

 Rx path offline, Tx path online

 CANIF_GET_ONLINE

 Rx and Tx path are switched online

 CANIF_GET_OFFLINE_ACTIVE

 Rx and Tx path offline, confirmation is emulated by the CAN Interface

 CANIF_GET_OFFLINE_ACTIVE_RX_ONLINE

 Rx path online, Tx path offline, confirmation is emulated by the CAN Interface

If parameter CanIfPnWakeupTxPduFilterSupport (s. chapter 3.16) is enabled then

the following two further modes are available:

- CANIF_GET_TX_ONLINE_WAKF

 Rx path offline, tx path online

- CANIF_GET_ONLINE_WAKF

 Rx and Tx path are switched online

The difference to the modes CANIF_GET_ONLINE and CANIF_GET_TX_ONLINE is that

the Tx-PDU filter is activated if the PDU mode is changed to one of these two modes.
(s. chapter 3.16).

Caution

If one of the modes CANIF_GET_TX_ONLINE_WAKF or CANIF_GET_ONLINE_WAKF is

left by calling of CanIf_SetPduMode()with parameter PduModeRequest which

equals CANIF_SET_OFFLINE or CANIF_SET_TX_OFFLINE or

CANIF_SET_TX_OFFLINE_ACTIVE or CANIF_SET_ONLINE or

CANIF_SET_TX_ONLINE then the Tx-PDU Filter is deactivated!

The PDU modes can be set via the function CanIf_SetPduMode() and can be retrieved

via the function CanIf_GetPduMode().

3.7 Polling

The CAN Interface can process events in polling and interrupt mode. As the polling of
events is executed by other layers (e.g. CAN Driver, Transceiver Driver) the CAN Interface
is notified by call back functions which are called in the corresponding context.

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 24
based on template version 2.10.0

Info
There is no need for changes in the configuration to run the CAN Interface in
polling mode.

3.8 CAN FD

The CAN Interface supports CAN FD. The configuration can be performed both for

Rx- and Tx-PDUs. Therefor please configure the attribute CanIfRxPduCanIdType

(Rx-PDU) and CanIfTxPduCanIdType (Tx-PDU) accordingly as required by your

application. In case of Rx-PDUs the message type (e.g. FD or not-FD) is evaluated during
the Rx-search algorithm. Hence it is possible to handle two messages with the same CAN
identifier, at which one is configured as FD and one as not-FD and to map them to different
Rx-PDUs.

Expert Knowledge
If you intend to switch the baudrate of the CAN hardware at runtime it is suggested to

use the API CanIf_SetBaudrate instead of CanIf_ChangeBaudrate.

Rx- and Tx-FD-PDUs with up to 64 bytes payload are supported.

Basic Knowledge
If you intend to configure BasicCAN-FD-Tx-PDUs and the Tx-buffer is enabled in your

configuration please ensure that attribute CanIfStaticFdTxBufferSupport is

enabled.

3.9 Meta data Rx- / Tx-support

If this feature is enabled the CAN Interface supports the handling of dynamic
CAN-identifiers by using of SDU meta data. Such dynamic PDU can be configured by

parameter MetaDataLength. This parameter can be found in the container of

corresponding global PDU.

In case of configuration variant Link-time or Post-build loadable please enable this feature

by setting of parameter CanIfMetaDataSupport to true. In case of configuration variant

Pre-compile the activation/deactivation of this feature is determined from the configuration
of Rx- and Tx-PDUs. If there is any PDU which has configured the parameter

MetaDataLength then this feature is enabled else disabled.

3.10 J1939 dynamic address support

If this feature is enabled the CAN Interface translates the addresses (CAN identifiers) of
Rx- and Tx-PDUs according to J1939 by using of dynamic address lookup tables. These
tables are maintained by J1939Nm by using of following APIs:

> CanIf_SetAddressTableEntry and

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 25
based on template version 2.10.0

> CanIf_ResetAddressTableEntry.

This feature has to be configured for each CAN channel individually by the parameter

CanIfCtrlJ1939DynAddrSupport. Please consider that in case of configuration

variant Post-build loadable and configuration phase Post-build the value which you can

select by CanIfCtrlJ1939DynAddrSupport is limited by value of

CanIfJ1939DynAddrSupport which was set at configuration phase Pre-compile.

Therefore in case of configuration variant Post-build loadable please first enable this

feature as far as you need at all by the parameter CanIfJ1939DynAddrSupport and

then configure the channel specific parameter of this feature. In case of configuration
variant Pre-compile it is only possible to configure the channel specific parameter.

Caution

The feature J1939 dynamic address support works only if all Rx-PDUs of the

CAN channel at which this feature is enabled are configured as BasicCANs and if all
the corresponding hardware filters are opened completely!

3.11 Error Notification

AUTOSAR specifies two mechanisms of error notification and reporting. Only DET
reporting is supported by the CAN Interface and can be activated at configuration time
(Pre-compile configuration).

Development errors are reported to DET using the service Det_ReportError().This

feature is normally activated during the development phase to detect fatal errors in
configuration and integration of the CAN Interface with other layers.

The reported CAN Interface ID is 60.

The reported service IDs identify the services which are described in chapter 6. The
following table presents the service IDs and the related services:

Service ID Service

1 CanIf_Init

2 CanIf_InitController

3 CanIf_SetControllerMode

4 CanIf_GetControllerMode

5 CanIf_Transmit

6 CanIf_ReadRxPduData

9 CanIf_SetPduMode

10 CanIf_GetPduMode

11 CanIf_GetVersionInfo

12 CanIf_SetDynamicTxId

13 CanIf_SetTrcvMode

14 CanIf_GetTrcvMode

15 CanIf_GetTrcvWakeupReason

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 26
based on template version 2.10.0

Service ID Service

16 CanIf_SetTrcvWakeupMode

17 CanIf_CheckWakeup

18 CanIf_CheckValidation

19 CanIf_TxConfirmation

20 CanIf_RxIndication

21 CanIf_CancelTxConfirmation

22 CanIf_ControllerBusoff

23 CanIf_ControllerModeIndication

24 CanIf_TrcvModeIndication

25 CanIf_GetTxConfirmationState

26 CanIf_ConfirmPnAvailability

27 CanIf_ChangeBaudrate

28 CanIf_CheckBaudrate

30 CanIf_ClearTrcvWufFlag

31 CanIf_CheckTrcvWakeFlag

32 CanIf_ClearTrcvWufFlagIndication

33 CanIf_CheckTrcvWakeFlagIndication

39 CanIf_SetBaudrate

250 CanIf_CancelTransmit

251 CanIf_CancelTxNotification

Table 3-2 Mapping of service IDs to services

The errors reported to DET are described in the following table:

Error Code Description

10 CANIF_E_PARAM_CANID The error code is used if an invalid CAN identifier is
passed to the CAN Interface from the CAN driver
during the reception of a Rx-PDU.

The error can be raised from:

- CanIf_RxIndication

- CanIf_SetDynamicTxId

11 CANIF_E_PARAM_DLC The error will be reported by

- CanIf_RxIndication

if a DLC greater than 8 is passed to the CAN
Interface during reception.

12 CANIF_E_PARAM_HRH The error code is used in the function

- CanIf_RxIndication

If an invalid hardware receive handle is passed to the
CAN Interface.

13 CANIF_E_PARAM_LPDU The error will be raised by the following functions if
an unexpected PduId is passed to the function by

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 27
based on template version 2.10.0

Error Code Description

either the CAN Driver or the higher layer.

- CanIf_TxConfirmation

- CanIf_CancelTxConfirmation

- CanIf_CancelTransmit

- CanIf_CancelTxNotification

14 CANIF_E_PARAM_CONTROLLER Used by the following functions if an invalid controller
index is passed:

- CanIf_ControllerBusOff

- CanIf_ResetBusOffStart

- CanIf_ResetBusOffEnd

- CanIf_ControllerModeIndication

- CanIf_GetTxConfirmationState

15 CANIF_E_PARAM_CONTROLLERID Used by the following functions if an invalid controller
index is passed:

- CanIf_SetControllerMode

- CanIf_GetControllerMode

- CanIf_SetPduMode

- CanIf_GetPduMode

- CanIf_CheckBaudrate

- CanIf_ChangeBaudrate

- CanIf_SetBaudrate

16 CANIF_E_PARAM_WAKEUPSOURCE Used by the following functions if an invalid wakeup
source is passed:

- CanIf_CheckValidation

- CanIf_CheckWakeup

17 CANIF_E_PARAM_TRCV Used by the following functions if an invalid
transceiver ID is passed:

- CanIf_TrcvModeIndication

- CanIf_GetTrcvWakeupReason

- CanIf_GetTrcvMode

- CanIf_SetTrcvMode

- CanIf_SetTrcvWakeupMode

- CanIf_ConfirmPnAvailability

- CanIf_ClearTrcvWufFlagIndication

- CanIf_CheckTrcvWakeFlagIndication

- CanIf_ClearTrcvWufFlag

- CanIf_CheckTrcvWakeFlag

18 CANIF_E_PARAM_TRCVMODE Used by the following functions if an invalid
transceiver mode is passed:

- CanIf_SetTrcvMode

19 CANIF_E_PARAM_TRCVWAKEUPMO

DE

Used by the following functions if an invalid
transceiver wakeup mode is passed:

- CanIf_SetTrcvWakeupMode

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 28
based on template version 2.10.0

Error Code Description

20 CANIF_E_PARAM_POINTER The error is raised if a NULL pointer is passed to one

of the following functions:

- CanIf_Init

- CanIf_GetControllerMode

- CanIf_Transmit

- CanIf_RxIndication

- CanIf_GetPduMode

- CanIf_GetVersionInfo

- CanIf_GetTrcvWakeupReason

- CanIf_GetTrcvMode

- CanIf_CancelTxConfirmation

21 CANIF_E_PARAM_CTRLMODE The error is raised if an invalid parameter
ControllerMode is passed to the function:

- CanIf_SetControllerMode

30 CANIF_E_UNINIT The error is raised if one of the following API
functions is called before the CAN Interface is
initialized:

- CanIf_InitController

- CanIf_Transmit

- CanIf_TxConfirmation

- CanIf_RxIndication

- CanIf_ControllerBusOff

- CanIf_SetPduMode

- CanIf_GetPduMode

- CanIf_CancelTxConfirmation

- CanIf_CheckWakeup

- CanIf_CheckValidation

- CanIf_GetTrcvWakeupReason

- CanIf_SetTrcvWakeupMode

- CanIf_ControllerModeIndication

- CanIf_SetDynamicTxId

- CanIf_TrcvModeIndication

- CanIf_SetControllerMode

- CanIf_GetControllerMode

- CanIf_CancelTxNotification

- CanIf_SetTrcvMode

- CanIf_GetTrcvMode

- CanIf_CancelTransmit

- CanIf_ConfirmPnAvailability

- CanIf_ClearTrcvWufFlagIndication

- CanIf_CheckTrcvWakeFlagIndication

- CanIf_ClearTrcvWufFlag

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 29
based on template version 2.10.0

Error Code Description

- CanIf_CheckTrcvWakeFlag

- CanIf_GetTxConfirmationState

- CanIf_CheckBaudrate

- CanIf_ChangeBaudrate

- CanIf_SetBaudrate

40 CANIF_E_NOK_NOSUPPORT Not used.

50 CANIF_E_INVALID_TXPDUID Used by the following functions if an invalid Tx PDU
ID is passed:

- CanIf_CancelTransmit

- CanIf_SetDynamicTxId

- CanIf_Transmit

61 CANIF_E_INVALID_DLC Used by the function CanIf_HlIndication if the

received DLC is smaller than the configured one.

70 CANIF_E_STOPPED Used by the function CanIf_Transmit if the

function is called while either the controller mode is

STOPPED or the PDU mode is OFFLINE.

71 CANIF_E_NOT_SLEEP Used by the function CanIf_CheckWakeup if the

function is called while the controller mode is not

SLEEP or STOPPED.

Additionally defined error codes (not AUTOSAR compliant)

45 CANIF_E_CONFIG The error code CANIF_E_CONFIG is used to detect

inconsistent data in the generated files due to
misconfiguration.

The error can be raised in context of following
functions:

- CanIf_RxIndication

51 CANIF_E_FULL_TX_BUFFER_FIFO The error code informs that the transmit-buffer of
handling type FIFO is full and that no further
Tx-PDUs can be buffered within.

The error can be raised in context of following
functions:

- CanIf_Transmit

Table 3-3 Errors reported to DET

Caution
If the development error detection is disabled not only the reporting of the errors is
suppressed but also the detection i.e. the verification of valid function parameters.

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 30
based on template version 2.10.0

3.12 Transceiver handling

The CAN Interface provides APIs and call back functions to control as many transceivers
as CAN controllers are available in the system. The transceiver handling has to be
activated at pre-compile time.

The CAN Interface provides the following functions for higher layers to control the behavior
of the transceiver.

 CanIf_SetTrcvMode()

 CanIf_TrcvModeIndication()

 CanIf_GetTrcvMode()

 CanIf_GetTrcvWakeupReason()

 CanIf_SetTrcvWakeupMode()

Additionally the following APIs are provided in order to control a partial networking CAN
transceiver.

 CanIf_CheckTrcvWakeFlag()

 CanIf_CheckTrcvWakeFlagIndication()

 CanIf_ClearTrcvWufFlag()

 CanIf_ClearTrcvWufFlagIndication()

 CanIf_ConfirmPnAvailability()

The initialization of the transceiver driver itself is not executed by the CAN Interface. This
means the calling layer has to make sure the transceiver driver is initialized before using
the listed API functions.

If more than one different transceiver driver is used in the system the CAN Interface
provides a mapping to address the correct transceiver driver with the correct parameters.

The parameter CanIfTransceiverMapping has to be activated to control more than

one transceiver driver.

It is also allowed to activate the parameter CanIfTransceiverMapping if only one

transceiver driver is used in the system. Because of additional runtime it is suggested to
deactivate this feature in this use case.

The CAN Interface supports the detection of wake up events raised by a transceiver. The
feature “Wakeup Support” has to be activated and a wakeup source has to be configured
for the corresponding transceiver channel.

Within the API CanIf_CheckWakeup() the CAN Interface analyses the passed wakeup

source parameter and decides whether a CAN Controller or a CAN Transceiver has to be
requested for a pending wake up event.

For more details refer to the chapter 3.13 Sleep / WakeUp.

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 31
based on template version 2.10.0

3.13 Sleep / WakeUp

The CAN Interface controls the modes of the underlying CAN driver and transceiver driver.

The API CanIf_SetControllerMode() has to be used to change the mode of the CAN

controller while the CAN transceiver can be controlled with the API

CanIf_SetTrcvMode().

Caution
The CAN Interface itself does not perform any checks whether the CAN controller and
the CAN transceiver are set to sleep consistently and in the correct sequence. It is up to

the higher layer to call CanIf_SetControllerMode() and CanIf_SetTrcvMode()

in the correct sequence.

Wake up events can be raised either by the CAN controller or by the CAN transceiver. In
both cases the CAN Interface is not directly informed about state changes. This means the

higher layers (normally the EcuM) has to call the API CanIf_CheckWakeup()with the

wakeup sources configured for CAN transceiver or CAN controller (1).

The CAN Interface decides by analyzing the passed wakeup source whether the CAN
controller or the CAN transceiver driver has to be checked for a pending wakeup (2 or 2’).

The following figure illustrates the described wake up sequence:

Figure 3-4 Wake up sequence (No validation)

If the parameter “CanIfPublicWakeupCheckValidSupport” is enabled the following figure
shows the sequence which has to be executed for a valid wake up. Steps 1 to 3 take place
as described above.

CanIf

EcuM

Can Driver Can
Transceiver

1. CanIf_CheckWakeup
 (wakeupsource)

2. Can_CheckWakeup
 (controller)

2’. CanTrcv_CheckWakeup
 (transceiver)

3. Returns E_OK/E_NOT_OK

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 32
based on template version 2.10.0

After the call of EcuM_SetWakeupEvent() the CAN Interface has to be set to the state

CANIF_CS_STARTED to be able to receive messages. These messages won’t be passed

to upper layers by the CAN Interface because the PDU-mode is still set to OFFLINE. The

state change which sets the CAN Interface to the mode STARTED has to be realized by the

call of the API CanIf_SetControllerMode() with mode CANIF_CS_STARTED (5) from

the function EcuM_StartWakeupSources() (4). If the wake up was detected by the

transceiver the CAN controller has to be woken up internally. This means the call

CanIf_SetControllerMode() with mode CANIF_CS_STOPPED is necessary in (5)

before the transition to mode STARTED is executed.

If the wake up is initiated by the CAN controller the corresponding transceiver channel has

to be set to mode NORMAL and the CAN controller has to be set to mode STARTED.

If the wake up is initiated by a transceiver channel the CAN controller has to be woken up

internally. This means an additional call of CanIf_SetControllerMode() with mode

CANIF_CS_STOPPED has to be executed to wake up the CAN controller before the

transition to mode STARTED is initiated. (Depending on the behavior of the transceiver the

CAN controller and the configuration itself it is possible to wake up both the CAN controller
and the transceiver channel externally.)

Next the EcuM starts a time out for the wake up validation. This means if a message is

received within this timeout (6) the call of CanIf_CheckValidation() executed by the

EcuM (7) will result in a successful validation. The CAN Interface checks for a recent Rx
event (6) which occurred after the wake up and notifies the EcuM by calling of

EcuM_ValidationWakeupEvent().

If there is no message reception after (5) the function CanIf_CheckValidation() has

been called no successful wake up validation won’t be notified and the EcuM will run into

a timeout. In this case the EcuM calls EcuM_StopWakeupSources() (8’) and the CAN

Driver and CAN transceiver have to be set to mode SLEEP again.

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 33
based on template version 2.10.0

Figure 3-5 Wake up sequence (Wakeup validation)

During the wake up sequence as well as during the transition to mode SLEEP, the higher

layers have to take care about the sequence of the state transitions affecting the CAN
controller (CAN driver) and the Transceiver driver.

Since ASR4.0R3 it is configurable on whether only a received CanNm-message is able to
do the validation.

3.14 Bus Off

The CAN Interface handles bus off events notified by the CAN Driver in interrupt driven or
polling systems. If a bus off event is raised the CAN Driver forwards it to the CAN Interface

by calling the function CanIf_ControllerBusOff().

The CAN Interface switches its internal controller state from STARTED to STOPPED and the

PDU mode is set to OFFLINE.

In this state no reception and no transmission is possible until the CAN Interface’s
controller state and as a result the CAN Controller’s bus off state is recovered by the call of

the function CanIf_SetControllerMode() for the affected channel by the higher

layer.

After the controller state is switched the bus off state is recovered. For successful

reception and transmission the PDU mode has to be switched to RX_ONLINE, TX_ONLINE

or ONLINE by the higher layer.

CanIf

EcuM 4.
EcuM_StartWakeupSources
(wakeupsource)

6. Rx message received
(not passed to upper layers yet)
CanIf_RxIndication(…)

8.
EcuM_ValidateWakeupEvent
 (wakeupsource)

5.
 CanIf_SetTrcvMode (transceiver,
CANTRCV_TRCV_MODE_NORMAL)
[ CanIf_SetControllerMode (controller,
CANIF_CS_STOPPED)]
 CanIf_SetControllerMode (controller,
CANIF_CS_STARTED)

7.
CanIf_CheckValidation
(wakeupsource)

8’. EcuM_StopWakeupSources(wakeupsource)
 CanIf_SetControllerMode(controller,
CANIF_CS_STOPPED)
CanIf_SetControllerMode(controller,
CANIF_CS_SLEEP)
 CanIf_SetTrcvMode(transceiver,
CANTRCV_TRCV_MODE_STANDBY)

Can Driver

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 34
based on template version 2.10.0

3.15 Version Info

The version of the CAN Interface module can be acquired in three different ways. The first

possibility is by calling of the function CanIf_GetVersionInfo(). This function returns

the module’s version in the structure Std_VersionInfoType which includes the

VendorID and the ModuleID additionally.

The second possibility is the access of version defines which are specified in the header

file CanIf.h.

The following defines can be evaluated to access different versions:

 AUTOSAR version:

 CANIF_AR_RELEASE_MAJOR_VERSION

 CANIF_AR_RELEASE_MINOR_VERSION

 CANIF_AR_RELEASE_PATCH_VERSION

 Module version:

 CANIF_SW_MAJOR_VERSION

 CANIF_SW_MINOR_VERSION

 CANIF_SW_PATCH_VERSION

 Module ID:

 CANIF_MODULE_ID

 Vendor ID:

 CANIF_VENDOR_ID

There is a third possibility to at least acquire the SW version by accessing globally visible
constants:

 CanIf_MainVersion

 CanIf_SubVersion

 CanIf_ReleaseVersion

Info

The API CanIf_GetVersionInfo() is only available if enabled at Pre-compile

time. The definitions can be accessed independent of the configuration.

3.16 Partial Networking

This feature consists of two sub-features:

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 35
based on template version 2.10.0

 Wakeup Tx-PDU filter (parameter: CanIfPnWakeupTxPduFilterSupport)

 Handling of a partial networking transceiver (parameter:

CanIfPnTrcvHandlingSupport)

The mentioned sub-features can be used only if the attribute CanIfPublicPnSupport

is enabled. See the following table for more information about mentioned sub-features.

Feature Description

CanIfPnWakeupTxPduFilterSupport Tx-PDU filter which is activated if the PDU
mode is changed either to

CANIF_SET_ONLINE_WU_FILTER or to

CANIF_SET_TX_ONLINE_WU_FILTER. This

filter is active until the first Tx-confirmation /
Rx-indication of the corresponding CAN
channel arrives. Only certain Tx-PDUs which
are labeled as Tx wakeup filter PDUs (s.

parameter CanIfTxPduPnFilterPdu) can

pass the filter. All Tx-requests of other Tx-PDUs
are refused by CAN Interface until the filter is
disabled.

CanIfPnTrcvHandlingSupport Handling of a partial networking transceiver

Table 3-4 Sub-features of feature Partial Networking

The parameter CanIfPnTrcvHandlingSupport is enabled automatically if at least one

underlying transceiver driver supports partial networking. In case of using the feature

CanIfPnWakeupTxPduFilterSupport the Tx-PDUs which are allowed to pass the filter

have to be configured accordingly. This kind of configuration can be performed individually

for every Tx-PDU via the parameter CanIfTxPduPnFilterPdu.

Note
Please consider that the filter of a certain CAN channel is only active if at least
one Tx-PDU of this CAN channel has the parameter

CanIfTxPduPnFilterPdu enabled.

The feature CanIfPnWakeupTxPduFilterSupport is configurable in all three

configuration variants:

 Pre-compile

 Link-time

 Post-build-loadable

Except the restriction that this feature has to be enabled at Pre-compile time at all there
are no any further restrictions concerning the reconfiguration of this feature in accordance
with the Tx-PDUs which may pass the filter in case of a Link-time or a Post-build-loadable
configuration variant.

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 36
based on template version 2.10.0

3.17 Services used by the CAN Interface

In the following table services provided by other components which are used by the CAN
Interface are listed. For details about prototype and functionality refer to the documentation
of the corresponding component.

Component API

DET Det_ReportError

CanDrv Can_SetControllerMode

Can_Write

PduR, CanNm, CanTp, CDD User_TxConfirmation (*)

User_RxIndication (*)

CanNm, EcuM, CDD User_ControllerBusOff (*)

User_ValidationWakeupEvent (*)

SchM SchM_Enter_CanIf_##area

SchM_Exit_CanIf_##area

CanTrcv CanTrcv_SetOpMode

CanTrcv_GetOpMode

CanTrcv_GetBusWuReason

CanTrcv_SetWakeupMode

CanTrcv_CheckWakeup

MICROSAR extension (optional) EcuM_BswErrorHook

Table 3-5 API functions used by the CAN Interface

* Names of the call back functions can be configured freely.

3.18 Multiple CAN drivers

The CAN Interface supports multiple CAN drivers which are implemented according to
AUTOSAR specification 4.1.1.

Different CAN drivers are addressed by using the values of attributes "VendorId" and
"VendorApiInfix" defined in BSWMD file of corresponding CAN driver.

In order to ensure compatibility with this CAN Interface the following naming convention of
APIs of CAN driver need to be provided.

 <Bsw>_<VendorId>_<VendorApiInfix>_<ApiName>

The APIs of used CAN driver has to be named as follows:

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 37
based on template version 2.10.0

Basic CAN Driver APIs

Can_<VendorId>_<VendorApiInfix>_SetControllerMode

Can_<VendorId>_<VendorApiInfix>_Write

Can_<VendorId>_<VendorApiInfix>_CancelTx(*)

Can_<VendorId>_<VendorApiInfix>_CheckWakeup(*)

Can_<VendorId>_<VendorApiInfix>_CheckBaudrate(*)

Can_<VendorId>_<VendorApiInfix>_ChangeBaudrate(*)

Can_<VendorId>_<VendorApiInfix>_SetBaudrate(*)

Table 3-6 Adapted CAN driver APIs (* optional)

The following table lists APIs of CAN Interface which have to be called by a CAN driver in
case of multiple CAN drivers are configured.

Basic CAN Driver APIs

CanIf_<VendorId>_<VendorApiInfix>_RxIndication

CanIf_<VendorId>_<VendorApiInfix>_TxConfirmation

CanIf_<VendorId>_<VendorApiInfix>_ControllerBusOff

CanIf_<VendorId>_<VendorApiInfix>_ControllerModeIndication

CanIf_<VendorId>_<VendorApiInfix>_CancelTxNotification

CanIf_<VendorId>_<VendorApiInfix>_CancelTxConfirmation

Table 3-7 APIs of CAN Interface which have to be used in multiple CAN driver configurations

3.19 Extended RAM-check

This feature is configured via the parameter CanIfExtendedRamCheckSupport. For

further information about configuration of this feature please refer to the help which can be
found in the GUI of the DaVinci Configurator 5 and to the description of mentioned
parameter.

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 38
based on template version 2.10.0

3.20 Critical Sections

The AUTOSAR standard provides with the BSW Scheduler a BSW module, which handles
entering and leaving critical sections.

For more information about the BSW Scheduler please refer to [3]. When the BSW
Scheduler is used the CAN Interface provides critical section codes that have to be
mapped by the BSW Scheduler to following mechanism:

Critical Section Define Description

CANIF_EXCLUSIVE_AREA_0 Usage inside CanIf_SetControllerMode()

> Duration is short (< 10 instructions)

> Call to Can_SetControllerMode()

CANIF_EXCLUSIVE_AREA_1 Usage inside CanIf_CancelTxConfirmation(),
CanIf_CancelTransmit(), CanIf_ClearQueue()

> Duration is short (< 10 instructions).

> No calls inside

CANIF_EXCLUSIVE_AREA_2 Usage inside CanIf_TxConfirmation() and
CanIf_CancelTxConfirmation()

> Duration is medium (< 50 instructions).

> Call to CanIf_TxQueueTreatment(),

CanIf_TxQueueTransmit(), Can_Write(), .

CANIF_EXCLUSIVE_AREA_3 Usage inside CanIf_SetPduMode()

> Duration is short (< 10 instructions).

> Call to CanIf_ClearQueue()

CANIF_EXCLUSIVE_AREA_4 Usage inside CanIf_Transmit()

> Duration is medium (< 50 instructions).

> Call to Can_Write()

CANIF_EXCLUSIVE_AREA_5 Usage inside CanIf_SetDynamicTxId()

> Duration is short (< 10 instructions).

> Setting of dynamic CAN identifier

CANIF_EXCLUSIVE_AREA_6 Usage inside CanIf_SetAddressTableEntry() and
CanIf_ResetAddressTableEntry()

> Duration is short (< 10 instructions).

> Setting of J1939 Rx- and Tx-address

> No calls inside

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 39
based on template version 2.10.0

CANIF_EXCLUSIVE_AREA_7 Usage inside CanIf_RxIndication()

> Duration is short (< 10 instructions).

> Consistent reading from J1939 Rx-address table

> No calls inside

Table 3-8 Critical Section Codes

If the exclusive areas are entered the upper layer needs to make sure that the CAN
interrupts are disabled. Additionally the following table describes which API of the CAN
Interface must not be called during the corresponding area is entered. The CAN Interface

API CanIf_CancelTxNotification() / CanIf_CancelTxConfirmation()is

entered mostly via the CAN interrupt. In case of a platform which confirmation for a
transmit cancellation needs to be polled the corresponding API (for example

Can_MainFunction_Write()) must not be called if the corresponding lock area is

entered.

 CANIF_EXCLUSI
VE_ AREA_0

CANIF_EXCLUSIV
E_ AREA_1

CANIF_EXCLUSIV
E_ AREA_2

CANIF_EXCLUSI
VE_ AREA_3

CANIF_EXCLUSI
VE_ AREA_4

CANIF_EXCLUSI
VE_ AREA_5

CANIF_EXCLUSI
VE_ AREA_6

CANIF_EXCLUSI
VE_ AREA_7

CanIf_Init        

CanIf_InitMemory 

CanIf_Transmit       

CanIf_CancelTransmit     

CanIf_SetControllerMode     

CanIf_CancelTxNotification/
CanIf_CancelTxConfirmation

    

CanIf_SetPduMode     

CanIf_TxConfirmation     

CanIf_ControllerBusOff     

CanIf_RxIndication 

CanIf_SetAddressTableEntry   

CanIf_ResetAddressTableEntry   

Table 3-9 Restrictions for the different lock areas

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 40
based on template version 2.10.0

4 Integration

This chapter gives necessary information for the integration of the MICROSAR CAN
Interface into an application environment of an ECU.

4.1 Files and include structure

The CAN Interface consists of the following files:

The delivery of the CAN Interface contains the files which are described in the chapters
4.1.1 and 4.1.2:

4.1.1 Static Files

File Name Description

CanIf.c Implementation

CanIf.h Header file, has to be included by higher layers to access the API

CanIf_Cbk.h Header file, has to be included by underlying layers to access call
back functions provided by the CAN Interface

CanIf_Types.h Definition of types provided by the CAN Interface which have to be
used by other layers. This file is included automatically if either

CanIf.h or CanIf_Cbk.h is included.

CanIf_Hooks.h This header file is included by CanIf.c and defines so called hook-

macros. Every API of the CAN interface has an own pair of hook-
macro. One of them is called at the beginning of each API and the
other one at the end. The intention of these hook-macros is the
ability to measure the execution time of an API. The hook-macros
are defined to nothing by default. So they do not influence the
execution of code by default.

CanIf_GeneralTypes.h This header file is included by Can_GeneralTypes.h and

contains the public types of the CAN Interface.

Table 4-1 Static files

4.1.2 Dynamic Files

The dynamic files are generated by the configuration tool.

File Name Description

CanIf_Cfg.h Generated header file (included automatically by CanIf.h and

CanIf_Cbk.h)

CanIf_Lcfg.c Contains link time configuration data. Contains data in case of
Pre-compile, Link-time and Post-build configuration variant.

CanIf_PBcfg.c Contains post build configuration data. In case of Link-time variant is
used, this file is empty.

CanIf_CanTrcv.h Generated header file which includes the necessary header files of the
transceiver drivers used in the system.

Table 4-2 Generated files

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 41
based on template version 2.10.0

4.2 Include Structure

Figure 4-1 Include structure

 composite structure Include structure

Det.h

CanIf.c

Can_Cfg.h

CanIf.h

CanIf_Cfg.h

CanIf_Types.h

CanIf_Cbk.h

EcuM_Cbk.h

ComStack_Types.h

Std_Types.h

Platform_Types.h
Compiler.h

Compiler_Cfg.h

Can.h

MemMap.h

CanSM_Cbk.h

SchM_CanIf.h CanIf_CanTrcv.h

Can_GeneralTypes.h

CanIf_Lcfg.c

CanNm_Cfg.h

CanTp_Cfg.h

PduR_Cfg.h

CanXcp.h

CanIf_PBcfg.c

J1939Nm_Cfg.h

J1939Nm_Cbk.h

J1939Tp_Cbk.h

J1939Tp_Cfg.h

CanTSyn_Cbk.h

CanIf_DataChecksum.c

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include» «include»
«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include» «include»

«include»

«include»

«include»

«include»
«include»

«include»

«include»

«include»

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 42
based on template version 2.10.0

4.3 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions – the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following table contains the memory section names and the compiler abstraction
definitions defined for the CAN Interface and illustrates their assignment among each
other.

Compiler Abstraction

Definitions

Memory Mapping

Sections

C
A

N
IF

_
V

A
R

_
Z

E
R

O
IN

IT

C
A

N
IF

_
V

A
R

_
IN

IT

C
A

N
IF

_
V

A
R

_
N

O
IN

IT

C
A

N
IF

_
C

O
N

S
T

C
A

N
IF

_
P

B
C

F
G

C
A

N
IF

_
C

O
D

E

C
A

N
IF

_
A

P
P

L
_

C
O

D
E

C
A

N
IF

_
A

P
P

L
_

V
A

R

C
A

N
IF

_
A

P
P

L
_

P
B

C
F

G

C
A

N
IF

_
V

A
R

_
P

B
C

F
G

CANIF_START_SEC_CODE

CANIF_STOP_SEC_CODE
 

CANIF_START_SEC_PBCFG

CANIF_STOP_SEC_PBCFG
 

CANIF_START_SEC_CONST_8BIT

CANIF_STOP_SEC_CONST_8BIT
 

CANIF_START_SEC_CONST_32BIT

CANIF_STOP_SEC_CONST_32BIT
 

CANIF_START_SEC_CONST_UNSPECIFIED

CANIF_STOP_SEC_CONST_UNSPECIFIED
 

CANIF_START_SEC_VAR_NOINIT_UNSPECIFIED

CANIF_STOP_SEC_VAR_NOINIT_UNSPECIFIED
 

CANIF_START_SEC_VAR_ZERO_INIT_UNSPECIFIED

CANIF_STOP_SEC_VAR_ZERO_INIT_UNSPECIFIED
 

CANIF_START_SEC_VAR_INIT_UNSPECIFIED

CANIF_STOP_SEC_VAR_INIT_UNSPECIFIED
 

CANIF_START_SEC_VAR_PBCFG

CANIF_STOP_SEC_VAR_PBCFG
 

Table 4-3 Compiler abstraction and memory mapping

The Compiler Abstraction Definitions CANIF_APPL_CODE, CANIF_APPL_VAR and

CANIF_APPL_PBCFG are used to address code, variables and constants which are

declared by other modules and used by the CAN Interface.

These definitions are not mapped by the CAN Interface but by the memory mapping
realized in the CAN Driver, CAN Transceiver Driver, PDU Router, Network management,
Transport Protocol Layer, ECU State Manager and the CAN State manager.

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 43
based on template version 2.10.0

5 Configuration

The CAN Interface is configured with DaVinci Configurator 5. Please refer to the help
which can be found in the GUI of the configurator and to the descriptions of attributes in
BSWMD file of CAN Interface.

5.1 Configuration of Post-Build

The configuration of post-build loadable is described in

TechnicalReference_PostBuildLoadable.pdf.

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 44
based on template version 2.10.0

6 API Description

6.1 Services provided by the CAN Interface

6.1.1 CanIf_GetVersionInfo

Prototype

void CanIf_GetVersionInfo(Std_VersionInfoType *VersionInfo);

Parameter

VersionInfo Pointer to the structure including the version information.

Return code

- -

Functional Description

CanIf_GetVersionInfo() returns version information, vendor ID and AUTOSAR module ID of the component.

The versions are BCD-coded.

Particularities and Limitations

The function is only available if enabled at Pre-compile time (CANIF_VERSION_INFO_API = STD_ON)

Table 6-1 API CanIf_GetVersionInfo

6.1.2 CanIf_Init

Prototype

void CanIf_Init(const CanIf_ConfigType *ConfigPtr)

Parameter

ConfigPtr Pointer to the structure including configuration data.

Return code

- -

Functional Description

This function initializes global CAN Interface variables during ECU start-up.

Particularities and Limitations

This API has to be called during start-up before any CAN communication. Can_Init() has to be executed

successfully.

Table 6-2 API CanIf_Init

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 45
based on template version 2.10.0

6.1.3 CanIf_SetControllerMode

Prototype

Std_ReturnType CanIf_SetControllerMode(uint8 ControllerId,

CanIf_ControllerModeType ControllerMode)

Parameter

ControllerId

ControllerMode

The Controller to change mode.

Mode request.

Return code

Std_ReturnType Returns whether the state transition was successful.

Functional Description

Request the mode of the specified channel. Supported modes: CANIF_CS_SLEEP, CANIF_CS_STOPPED,

CANIF_CS_STARTED.

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-3 API CanIf_SetControllerMode

6.1.4 CanIf_GetControllerMode

Prototype

Std_ReturnType CanIf_GetControllerMode(uint8 ControllerId,

CanIf_ControllerModeType *ControllerModePtr)

Parameter

ControllerId

ControllerModePtr

Request mode of specified Controller.

Pointer to data type the information is stored in.

Return code

Std_ReturnType Returns whether the state request was successful or not.

Functional Description

Acquire the current controller mode of the specified channel

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-4 API CanIf_GetControllerMode

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 46
based on template version 2.10.0

6.1.5 CanIf_Transmit

Prototype

Std_ReturnType CanIf_Transmit(PduIdType CanTxPduId, const PduInfoType

*PduInfoPtr)

Parameter

CanTxPduId

PduIndoPtr

Handle of the Tx PDU which will be transmitted.

Pointer to a struct containing the properties of the Tx PDU.

Return code

Std_ReturnType Returns if the transmit request was accepted.

Functional Description

Requests the transmission of the specified Tx PDU.

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-5 API CanIf_Transmit

6.1.6 CanIf_TxConfirmation

Prototype

void CanIf_TxConfirmation(PduIdType CanTxPduId)

Parameter

CanTxPduId ID of the successfully transmitted PDU.

Return code

- -

Functional Description

Confirms the successful transmission of a Tx PDU

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-6 API CanIf_TxConfirmation

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 47
based on template version 2.10.0

6.1.7 CanIf_RxIndication

Prototype

void CanIf_RxIndication(CanIf_HwHandleType Hrh, Can_IdType CanId, uint8 CanDlc,

const uint8 *CanSduPtr)

Parameter

Hrh

CanId

CanDlc

CanSduPtr

Hardware handle the PDU was received in.

CAN identifier of the received PDU.

Data length code of the received PDU.

Pointer to hardware or temporary buffer containing the data of the received
PDU.

Return code

- -

Functional Description

The CAN Driver notifies the CAN Interface about a received Rx PDU.

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-7 API CanIf_RxIndication

6.1.8 CanIf_ControllerBusOff

Prototype

void CanIf_ControllerBusOff(uint8 Controller)

Parameter

Controller Affected controller.

Return code

- -

Functional Description

Indicates a BusOff for the specified controller to the CAN Interface.

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-8 API CanIf_ControllerBusOff

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 48
based on template version 2.10.0

6.1.9 CanIf_SetPduMode

Prototype

Std_ReturnType CanIf_SetPduMode(uint8 ControllerId, CanIf_PduSetModeType

PduModeRequest)

Parameter

ControllerId

PduModeRequest

Controller which will be affected by the new Pdu mode.

Requested Pdu mode

Return code

Std_ReturnType Returns whether the state request was successful.

Functional Description

Change mode for specified controller. Possible states are:

 CANIF_SET_OFFLINE,

 CANIF_SET_RX_OFFLINE,

 CANIF_SET_RX_ONLINE,

 CANIF_SET_TX_OFFLINE,

 CANIF_SET_TX_ONLINE,

 CANIF_SET_ONLINE,

 CANIF_SET_TX_OFFLINE_ACTIVE

Particularities and Limitations

CAN Interface has to be initialized. Controller has to be in state CANIF_CS_STARTED.

Table 6-9 API CanIf_SetPduMode

6.1.10 CanIf_GetPduMode

Prototype

Std_ReturnType CanIf_GetPduMode(uint8 ControllerId, CanIf_PduGetModeType *

PduModePtr)

Parameter

ControllerId

PduModePtr

Request mode of the specified Controller.

Pointer to a data buffer the current mode will be stored in.

Return code

Std_ReturnType Returns whether the request of the current state was successful.

Functional Description

Request the current mode of the specified controller.

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-10 API CanIf_GetPduMode

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 49
based on template version 2.10.0

6.1.11 CanIf_InitMemory

Prototype

void CanIf_InitMemory(void)

Parameter

- -

Return code

- -

Functional Description

Initializes global RAM variables, which have to be available before any call to the CanIf API.

Particularities and Limitations

May only be called once before CanIf_Init().

Table 6-11 API CanIf_InitMemory

6.1.12 CanIf_CancelTxConfirmation

Prototype

void CanIf_CancelTxconfirmation(PduIdType CanTxPduId, const Can_PduType

*PduInfoPtr)

Parameter

CanTxPduId

PduInfoPtr

Handle of the Tx PDU which was cancelled.

Contains information about cancelled PDU

Return code

- -

Functional Description

Called by the CAN Driver to notify the CAN Interface about a cancelled PDU which has to be re-queued.

Particularities and Limitations

Only available if CANIF_TRANSMIT_CANCELLATION = STD_ON is set.

Table 6-12 API CanIf_CancelTxConfirmation

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 50
based on template version 2.10.0

6.1.13 CanIf_SetTrcvMode

Prototype

StdReturnType CanIf_SetTrcvMode(uint8 TransceiverId, CanTrcv_TrcvModeType

TransceiverMode)

Parameter

TransceiverId

TransceiverMode

Address the transceiver by a transceiver index.

Requested mode transition

Return code

Std_ReturnType Returns whether the state transition was successful.

Functional Description

Called by an upper layer to set the transceiver to another mode.

Particularities and Limitations

Only available if transceiver handling is activated at configuration time.

(CANIF_TRCV_HANDLING = STD_ON)

Table 6-13 API CanIf_SetTrcvMode

6.1.14 CanIf_GetTrcvMode

Prototype

StdReturnType CanIf_GetTrcvMode(CanTrcv_TrcvModeType *TransceiverModePtr, uint8

TransceiverId)

Parameter

TransceiverId

TransceiverModePtr

Address the transceiver by a transceiver index.

Pointer to a buffer where current transceiver mode can be stored in.

Return code

Std_ReturnType Returns whether the request of the current transceiver mode was
successful.

Functional Description

Called by an upper layer to request the current mode of the transceiver.

Particularities and Limitations

Only available if transceiver handling is activated at configuration time.
(CANIF_TRCV_HANDLING = STD_ON)

Table 6-14 API CanIf_GetTrcvMode

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 51
based on template version 2.10.0

6.1.15 CanIf_GetTrcvWakeupReason

Prototype

StdReturnType CanIf_GetTrcvWakeupReason(uint8 TransceiverId,

CanIf_TrcvWakeupReasonType *TrcvWuReasonPtr)

Parameter

TransceiverId

TrcvWuReasonPtr

Address the transceiver by a transceiver index.

Pointer to a buffer where the transceiver’s wake up reason can be stored
in.

Return code

Std_ReturnType Returns whether the request of the wake up reason was successful.

Functional Description

Called by an upper layer to request the wake up reason stored in the transceiver.

Particularities and Limitations

Only available if transceiver handling is activated at configuration time.
(CANIF_TRCV_HANDLING = STD_ON)

Table 6-15 API CanIf_GetTrcvWakeupReason

6.1.16 CanIf_SetTrcvWakeupMode

Prototype

StdReturnType CanIf_SetTrcvWakeupMode(uint8 TransceiverId,

CanTrcv_TrcvWakeupModeType TrcvWakeupMode)

Parameter

TransceiverId

TrcvWakeupMode

Address the transceiver by a transceiver index.

Enable, disable or clear notification for wake up events.

Return code

Std_ReturnType Returns whether the requested mode was set successfully.

Functional Description

Called by an upper layer to enable, disable or clear the wake up event notification of the transceiver.

Particularities and Limitations

Only available if transceiver handling is activated at configuration time.
(CANIF_TRCV_HANDLING = STD_ON)

Table 6-16 API CanIf_SetTrcvWakeupMode

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 52
based on template version 2.10.0

6.1.17 CanIf_CheckWakeup

Prototype

Std_ReturnType CanIf_CheckWakeup(EcuM_WakeupSourceType WakeupSource)

Parameter

WakeupSource Wakeup source which identifies the possible wakeup source (Transceiver /
CAN Controller)

Return code

Std_ReturnType Returns whether the request to the Transceiver/ CAN Controller was
successful.

Functional Description

Called by an upper layer to check if a transceiver or CAN controller recently raised a wakeup.

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-17 API CanIf_CheckWakeup

6.1.18 CanIf_CheckValidation

Prototype

Std_ReturnType CanIf_CheckValidation(EcuM_WakeupSourceType WakeupSource)

Parameter

WakeupSource Wakeup source which identifies the possible wakeup source (Transceiver /
CAN Controller)

Return code

Std_ReturnType Returns whether the requested mode was set successfully.

Functional Description

Called by an upper layer to check if a Rx message was received after a wake up occurred from one of the
supported sources.

If a message was received between the call of CanIf_CheckWakeup and CanIf_CheckValidation the

configurable EcuM call back function EcuM_ValidationWakeupEvent is called from the context of

this function.

Particularities and Limitations

CAN Interface has to be initialized.

CanIf_CheckWakeup has to be called before and a wake up event has to be detected.

CAN Interface has to be set to CANIF_CS_STARTED mode before a validation is possible.

Table 6-18 API CanIf_CheckValidation

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 53
based on template version 2.10.0

6.1.19 CanIf_ResetBusOffStart

Prototype

void CanIf_ResetBusOffStart(uint8 ControllerId)

Parameter

ControllerId Recover bus off for the specified controller

Return code

- -

Functional Description

Initiates the bus off recovery for a specified channel.

A call to CanIf_ResetBusOffEnd() has to follow on task level.

Particularities and Limitations

Non-Autosar compliant API function which has to be enabled by defining CANIF_BUSOFF_RECOVERY_API
= STD_ON

Table 6-19 API CanIf_ResetBusOffStart

6.1.20 CanIf_ResetBusOffEnd

Prototype

void CanIf_ResetBusOffEnd(uint8 ControllerId)

Parameter

ControllerId Recover bus off for the specified controller

Return code

- -

Functional Description

Finishes the bus off recovery for a specified channel.

A call to CanIf_ResetBusOffStart() has to be executed before.

Particularities and Limitations

Non-Autosar compliant API function which has to be enabled by defining
CANIF_BUSOFF_RECOVERY_API = STD_ON

The function has to be called on task level.

Table 6-20 API CanIf_ResetBusOffEnd

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 54
based on template version 2.10.0

6.1.21 CanIf_CancelTransmit

Prototype

void CanIf_CancelTransmit (PduIdType CanTxPduId)

Parameter

CanTxPduId PduId of the message which has to be cancelled

Return code

- -

Functional Description

Initiates the cancellation / suppression of the confirmation of a Tx message.

Particularities and Limitations

CAN Interface has to be initialized.

AUTOSAR only defines a dummy function. For MICROSAR this function has the functionality to cancel an

ordered Tx PDU. This API is provided only in case of CANIF_CANCEL_SUPPORT_API = STD_ON.

Table 6-21 API CanIf_CancelTransmit

6.1.22 CanIf_CancelTxNotification

Prototype

void CanIf_CancelTxNotification (PduIdType PduId, CanIf_CancelResultType

IsCancelled)

Parameter

PduId

IsCancelled

Id of the Tx message which was cancelled

Parameter currently not evaluated.

Return code

- -

Functional Description

Called by the CAN Driver to notify about a cancelled message. No confirmation is raised for this message.

Particularities and Limitations

CAN Interface has to be initialized.

Non-AUTOSAR compliant API function which is enabled in case of
CANIF_CANCEL_SUPPORT_API = STD_ON.

Table 6-22 API CanIf_CancelTxNotification

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 55
based on template version 2.10.0

6.1.23 CanIf_SetDynamicTxId

Prototype

void CanIf_SetDynamicTxId(PduIdType CanTxPduId, Can_IdType CanId)

Parameter

CanTxPduId

CanId

PDU ID of the Tx message

CAN ID of the messageParameter

Return code

- -

Functional Description

Called by the application to set the CAN Id of the corresponding Tx PDU.

Particularities and Limitations

CAN Interface has to be initialized.

Shall not be interrupted by a call of CanIf_Transmit() for the same Tx PDU.

Table 6-23 API CanIf_SetDynamicTxId

6.1.24 CanIf_ControllerModeIndication

Prototype

void CanIf_ControllerModeIndication(uint8 Controller, CanIf_ControllerModeType

ControllerMode)

Parameter

Controller

ControllerMode

Channel where the mode transition happened

Controller mode to which the CAN controller transitioned

Return code

- -

Functional Description

Called by the CAN driver to notify about successful controller mode transition

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-24 API CanIf_ControllerModeIndication

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 56
based on template version 2.10.0

6.1.25 CanIf_TrcvModeIndication

Prototype

void CanIf_TrcvModeIndication(uint8 TransceiverId, CanTrcv_TrcvModeType

TransceiverMode)

Parameter

TransceiverId

TransceiverMode

Transceiver where the mode transition happened

Transceiver mode to which the transceiver transitioned

Return code

- -

Functional Description

Called by the transceiver driver to notify about successful transceiver mode transition

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-25 API CanIf_TrcvModeIndication

6.1.26 CanIf_ConfirmPnAvailability

Prototype

void CanIf_ConfirmPnAvailability(uint8 TransceiverId)

Parameter

TransceiverId

CAN transceiver, which was checked for PN availability

Return code

- -

Functional Description

This service indicates that the transceiver is running in PN communication mode

Particularities and Limitations

This API is only available in case of CANIF_PN_TRCV_HANDLING = STD_ON.

Table 6-26 API CanIf_ConfirmPnAvailability

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 57
based on template version 2.10.0

6.1.27 CanIf_ClearTrcvWufFlagIndication

Prototype

void CanIf_ClearTrcvWufFlagIndication(uint8 TransceiverId)

Parameter

TransceiverId

CAN transceiver, for which the API was called

Return code

- -

Functional Description

This service indicates that the transceiver has cleared the WufFlag.

Particularities and Limitations

CanIf_Init() has already been called and all transceiver driver have been initialized.

This API is only available in case of CANIF_PN_TRCV_HANDLING = STD_ON.

Table 6-27 API CanIf_ClearTrcvWufFlagIndication

6.1.28 CanIf_CheckTrcvWakeFlagIndication

Prototype

void CanIf_CheckTrcvWakeFlagIndication(uint8 TransceiverId)

Parameter

TransceiverId

CAN transceiver, for which the API was called

Return code

- -

Functional Description

This service indicates the reason for the wake up that the CAN transceiver has detected

CanIf_Init() has already been called and all transceiver driver have been initialized.

This API is only available in case of CANIF_PN_TRCV_HANDLING = STD_ON.

Table 6-28 API CanIf_CheckTrcvWakeFlagIndication

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 58
based on template version 2.10.0

6.1.29 CanIf_SetBaudrate

Prototype

Std_ReturnType CanIf_SetBaudrate(uint8 ControllerId, uint16 BaudRateConfigID)

Parameter

ControllerId

BaudRateConfigID

Abstracted CanIf ControllerId which is assigned to a CAN

References a baud rate configuration by ID

Return code

E_OK

E_NOT_OK

Service request accepted, baudrate change started.

Service request not accepted.

Functional Description

This service shall set the baud rate configuration of the CAN controller.

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of

CANIF_SET_BAUDRATE_API = STD_ON.

Table 6-29 API CanIf_SetBaudrate

6.1.30 CanIf_ChangeBaudrate

Prototype

Std_ReturnType CanIf_ChangeBaudrate(uint8 ControllerId, const uint16 Baudrate)

Parameter

ControllerId

Baudrate

The Controller the Baudrate shall be changed for

Baudrate to which shall be changed

Return code

E_OK

E_NOT_OK

Service request accepted, change started

Service request not accepted

Functional Description

This service changes the baudrate of the CAN controller

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of

CANIF_CHANGE_BAUDRATE_SUPPORT = STD_ON.

Table 6-30 API CanIf_ChangeBaudrate

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 59
based on template version 2.10.0

6.1.31 CanIf_ChangeBaudrate

Prototype

Std_ReturnType CanIf_ChangeBaudrate(uint8 ControllerId, const uint16 Baudrate)

Parameter

ControllerId

Baudrate

The Controller the Baudrate shall be changed for

Baudrate to which shall be changed

Return code

E_OK

E_NOT_OK

Service request accepted, change started

Service request not accepted

Functional Description

This service changes the baudrate of the CAN controller

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of

CANIF_CHANGE_BAUDRATE_SUPPORT = STD_ON.

Table 6-31 API CanIf_ChangeBaudrate

6.1.32 CanIf_GetTxConfirmationState

Prototype

CanIf_NotifStatusType CanIf_GetTxConfirmationState (uint8 ControllerId)

Parameter

ControllerId Controller to be checked

Return code

CANIF_NO_NOTIFICATION

CANIF_TX_RX_NOTIFICATION

No transmit event occurred for requested CAN Controller

The CAN Controller has successfully transmitted any message

Functional Description

This service reports, if any TX confirmation has been done for the whole CAN controller since the last CAN
controller start.

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of
CANIF_PUBLIC_TX_CONFIRM_POLLING_SUPPORT = STD_ON.

Table 6-32 API CanIf_GetTxConfirmationState

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 60
based on template version 2.10.0

6.1.33 CanIf_SetAddressTableEntry

Prototype

void CanIf_SetAddressTableEntry (uint8 ControllerId, uint8 intAddr, uint8

busAddr)

Parameter

ControllerId

intAddr

busAddr

The channel at which a J1939 address shall be set.

J1939 internal address.

J1939 bus address.

Return code

- -

Functional Description

The service will be called to describe the relation between internal and external ID. Only used in J1939
environment.

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of

CANIF_J1939_DYN_ADDR_SUPPORT != CANIF_J1939_DYN_ADDR_DISABLED.

Table 6-33 API CanIf_SetAddressTableEntry

6.1.34 CanIf_ResetAddressTableEntry

Prototype

void CanIf_ResetAddressTableEntry (uint8 ControllerId, uint8 intAddr)

Parameter

ControllerId

intAddr

The channel at which a J1939 internal address shall be reset.

J1939 internal address.

Return code

- -

Functional Description

The service will be called to reset the relation between internal and external ID. Only used in J1939
environment.

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of

CANIF_J1939_DYN_ADDR_SUPPORT != CANIF_J1939_DYN_ADDR_DISABLED.

Table 6-34 API CanIf_ResetAddressTableEntry

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 61
based on template version 2.10.0

6.1.35 CanIf_RamCheckExecute

Prototype

void CanIf_RamCheckExecute (uint8 ControllerId)

Parameter

ControllerId The CAN-channel for which the RAM-check shall be executed.

Return code

- -

Functional Description

This service requests an underlying CAN-channel to execute the RAM-check of CAN-controller-
HW-registers.

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of

CANIF_EXTENDED_RAM_CHECK_SUPPORT == STD_ON.

Table 6-35 API CanIf_RamCheckExecute

6.1.36 CanIf_RamCheckEnableMailbox

Prototype

void CanIf_RamCheckEnableMailbox (uint8 ControllerId, CanIf_HwHandleType

HwHandle)

Parameter

ControllerId

HwHandle

The CAN-channel to which the mailbox (<HwHandle>) belongs to.

The mailbox which shall be enabled.

Return code

- -

Functional Description

This service requests an underlying CAN-channel to enable a mailbox.

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of

CANIF_EXTENDED_RAM_CHECK_SUPPORT == STD_ON.

Table 6-36 API CanIf_RamCheckEnableMailbox

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 62
based on template version 2.10.0

6.1.37 CanIf_RamCheckEnableController

Prototype

void CanIf_RamCheckEnableController (uint8 ControllerId)

Parameter

ControllerId The CAN-channel which shall be enabled.

Return code

- -

Functional Description

This service requests to enable an underlying CAN-channel.

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of

CANIF_EXTENDED_RAM_CHECK_SUPPORT == STD_ON.

Table 6-37 API CanIf_RamCheckEnableController

6.1.38 CanIf_RamCheckCorruptMailbox

Prototype

void CanIf_RamCheckCorruptMailbox (uint8 ControllerId, CanIf_HwHandleType

HwHandle)

Parameter

ControllerId

HwHandle

The CAN-channel to which the corrupt mailbox (<HwHandle>) belongs to.

The corrupt mailbox.

Return code

- -

Functional Description

This service indicates about a corrupt mailbox.

Particularities and Limitations

This service may be used also if CAN Interface is NOT initialized. This API is provided in case of

CANIF_EXTENDED_RAM_CHECK_SUPPORT == STD_ON.

Table 6-38 API CanIf_RamCheckCorruptMailbox

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 63
based on template version 2.10.0

6.1.39 CanIf_RamCheckCorruptController

Prototype

void CanIf_RamCheckCorruptController (uint8 ControllerId)

Parameter

ControllerId The corrupt CAN-channel.

Return code

- -

Functional Description

This service indicates about a corrupt CAN-channel.

Particularities and Limitations

This service may be used also if CAN Interface is NOT initialized. This API is provided in case of

CANIF_EXTENDED_RAM_CHECK_SUPPORT == STD_ON.

Table 6-39 API CanIf_RamCheckCorruptController

6.1.40 CanIf_SetPduReceptionMode

Prototype

Std_ReturnType CanIf_SetPduReceptionMode (PduIdType id, CanIf_ReceptionModeType

mode)

Parameter

id The identifier of Rx-PDU whose reception mode shall be changed.

mode The reception mode which shall be set. Following reception modes are
possible:

1) CANIF_RMT_IGNORE_CONTINUE: In case of a match the received

Rx-PDU is not forwarded to configured upper layer and the search for a
potential match continues.

2) CANIF_RMT_RECEIVE_STOP: In case of a match the received

Rx-PDU is forwarded to configured upper layer.

Return code

E_OK

E_NOT_OK

Service request accepted, reception mode was changed

Service request not accepted, reception mode was not changed

Functional Description

Via this API the reception mode of a Rx-PDU can be set.

Particularities and Limitations

CAN Interface has to be initialized. During the initialization the reception mode of all affected Rx-PDUs is set

to CANIF_RMT_RECEIVE_STOP. This API is provided in case of

CANIF_SET_PDU_RECEPTION_MODE_SUPPORT == STD_ON.

Table 6-40 API CanIf_SetPduReceptionMode

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 64
based on template version 2.10.0

6.2 Callout Functions

6.2.1 EcuM_BswErrorHook

Prototype

void EcuM_BswErrorHook(uint16 CanIfModuleId, uint8 CanIfInstanceId)

Parameter

CanIfModuleId Contains the CANIF_MODULE_ID (60) as defined by AUTOSAR.

CanIfInstanceId For the CanIf only one instance is available, so this value is always zero.

Return code

None

Functional Description

Called once by the CanIf during the initialization phase to indicate one of the following possible errors:

- Abort initialization as generator is not compatible

Particularities and Limitations

None

Call Context

This function is called in context of CanIf_Init().

Table 6-41 EcuM_BswErrorHook

6.2.2 CanIf_RxIndicationSubDataChecksumRxVerify

Prototype

Std_ReturnType CanIf_RxIndicationSubDataChecksumRxVerify (PduIdType

CanIfRxPduId, Can_IdType CanId, uint8 CanDlc, const uint8 *CanSduPtr)

Parameter

CanIfRxPduId CanIf-internal unique handle ID of Rx-PDU

CanId CAN identifier of received Rx-PDU

CanDlc Data length of received Rx-PDU

CanSduPtr Pointer to data of received Rx-PDU

Return code

E_OK Verification of checksum passed. In this case the Rx-PDU is forwarded to upper layer.

E_NOT_OK Verification of checksum failed. In this case the Rx-PDU is discarded and NOT
forwarded to upper layer.

Functional Description

API called by CanIf in case of a data checksum PDU was received in order to verify its correctness.

Particularities and Limitations

This API is called only if CANIF_DATA_CHECKSUM_RX_SUPPORT == STD_ON.

Call Context

This function is called in context of CanIf_RxIndication().

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 65
based on template version 2.10.0

6.2.3 CanIf_TransmitSubDataChecksumTxAppend

Prototype

void CanIf_TransmitSubDataChecksumTxAppend (const Can_PduType

*txPduInfoPtr, uint8 *txPduDataWithChecksumPtr)

Parameter

txPduInfoPtr Pointer to Tx-PDU-parameters: CAN identifier, data length, data.

txPduDataWithChecksu

mPtr

Pointer to data buffer where the data of Tx-PDU incl. the checksum shall be
stored in. The data checksum PDU is transmitted with data stored in this
buffer.

Note: Parameter "txPduDataWithChecksumPtr" may only be written with index
>= 0 and < CANIF_CFG_MAXTXDLC_PLUS_DATACHECKSUM (see file
CanIf_Cfg.h). The length of data can not be changed hence the checksum
must only be added within valid data-length of the Tx-PDU which is given by
range: 0 - (txPduInfoPtr->length - 1).

Return code

None

Functional Description

API called by CanIf before transmission of a data checksum Tx-PDU in order to add a checksum to its
data.

Particularities and Limitations

This API is called only if CANIF_DATA_CHECKSUM_TX_SUPPORT == STD_ON.

Call Context

This function is called in context of CanIf_Transmit().

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 66
based on template version 2.10.0

7 AUTOSAR Standard Compliance

Following restrictions apply to the current CAN Interface implementation.

7.1 Not supported AUTOSAR features

The following features which are specified by the AUTOSAR CAN Interface SWS ([1]) are
not supported.

7.1.1 Tx notification status

This feature is specified by the requirements: CANIF202, CANIF393, CANIF472,
CANIF331, CANIF391, CANIF334, CANIF335, CANIF609_Conf and CANIF589_Conf.

7.1.2 Rx notification status

This feature is specified by the requirements: CANIF230, CANIF336, CANIF339,
CANIF340, CANIF392, CANIF394, CANIF473, CANIF595_Conf and CANIF608_Conf.

7.1.3 Rx buffer

This feature is specified by the requirements: CANIF194, CANIF198, CANIF199,
CANIF324, CANIF325, CANIF326, CANIF330, CANIF329, CANIF600_Conf and
CANIF607_Conf.

7.2 Deviations

7.2.1 Tx buffer

At least and at most one Tx buffer is supported per each BasicCAN-Tx-PDU. Hence no
configuration can be performed by the user as intended by the attribute

CanIfBufferSize.

7.2.2 Partial networking

Against the requirement CANIF749 the Partial Networking Wakeup Tx Pdu Filter is
enabled only if the PDU mode of CAN Interface is set either to mode

CANIF_GET_TX_ONLINE_WU_FILTER or to mode CANIF_GET_ONLINE_WU_FILTER.

7.2.3 AUTOSAR version check

The CAN Interface does not perform AUTOSAR release version check in accordance with
other modules because the version check is not specified by AUTOSAR clearly.

7.3 Limitations

The priority of a dynamic Tx-PDU is determined from the initial configured CAN identifier

and not from the CAN identifier set by using the API CanIf_SetDynamicTxId().

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 67
based on template version 2.10.0

8 Glossary and Abbreviations

8.1 Glossary

Term Description

DaVinci Configurator 5 Configuration and generation tool for MICROSAR software components

Table 8-1 Glossary

8.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

CanNm CAN Network Manager

CanSM CAN State Manager

CanTp CAN Transport Protocol

CanTrcv CAN Transceiver

CCMSM CAN Interface Controller Mode State Machine (for one controller)

CDD Complex Device Driver

ComM Communication Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

DLC Data Length Code

ECU Electronic Control Unit

EcuM ECU State Manager

FD Flexible Data-rate

FIFO First In First Out

HRH Hardware Receive Handle

HTH Hardware Transmit Handle

HW Hardware

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

PDU Protocol Data Unit

PduR PDU Router

SchM Schedule Manager

SDU Service Data Unit

SRS Software Requirement Specification

SWC Software Component

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 68
based on template version 2.10.0

SWS Software Specification

Table 8-2 Abbreviations

Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 69
based on template version 2.10.0

9 Contact

Visit our website for more information on

> News
> Products
> Demo software
> Support
> Training data
> Addresses

www.vector-informatik.com

	1 Document Information
	1.1 History
	1.2 Reference Documents

	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Deviations regarding AUTOSAR standard
	3.2 Feature List
	3.3 Initialization
	3.4 Transmission
	3.4.1 Dynamic transmission
	3.4.2 Transmit-buffer
	3.4.3 Multiple Transmit-buffers
	3.4.4 Tx confirmation polling support
	3.4.5 Data checksum Tx

	3.5 Reception
	3.5.1 Ranges
	3.5.2 DLC check
	3.5.3 Data checksum Rx
	3.5.4 Control of reception mode of a Rx-PDU

	3.6 Communication Modes
	3.6.1 Controller Mode
	3.6.2 PDU Mode

	3.7 Polling
	3.8 CAN FD
	3.9 Meta data Rx- / Tx-support
	3.10 J1939 dynamic address support
	3.11 Error Notification
	3.12 Transceiver handling
	3.13 Sleep / WakeUp
	3.14 Bus Off
	3.15 Version Info
	3.16 Partial Networking
	3.17 Services used by the CAN Interface
	3.18 Multiple CAN drivers
	3.19 Extended RAM-check
	3.20 Critical Sections

	4 Integration
	4.1 Files and include structure
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Include Structure
	4.3 Compiler Abstraction and Memory Mapping

	5 Configuration
	5.1 Configuration of Post-Build

	6 API Description
	6.1 Services provided by the CAN Interface
	6.1.1 CanIf_GetVersionInfo
	6.1.2 CanIf_Init
	6.1.3 CanIf_SetControllerMode
	6.1.4 CanIf_GetControllerMode
	6.1.5 CanIf_Transmit
	6.1.6 CanIf_TxConfirmation
	6.1.7 CanIf_RxIndication
	6.1.8 CanIf_ControllerBusOff
	6.1.9 CanIf_SetPduMode
	6.1.10 CanIf_GetPduMode
	6.1.11 CanIf_InitMemory
	6.1.12 CanIf_CancelTxConfirmation
	6.1.13 CanIf_SetTrcvMode
	6.1.14 CanIf_GetTrcvMode
	6.1.15 CanIf_GetTrcvWakeupReason
	6.1.16 CanIf_SetTrcvWakeupMode
	6.1.17 CanIf_CheckWakeup
	6.1.18 CanIf_CheckValidation
	6.1.19 CanIf_ResetBusOffStart
	6.1.20 CanIf_ResetBusOffEnd
	6.1.21 CanIf_CancelTransmit
	6.1.22 CanIf_CancelTxNotification
	6.1.23 CanIf_SetDynamicTxId
	6.1.24 CanIf_ControllerModeIndication
	6.1.25 CanIf_TrcvModeIndication
	6.1.26 CanIf_ConfirmPnAvailability
	6.1.27 CanIf_ClearTrcvWufFlagIndication
	6.1.28 CanIf_CheckTrcvWakeFlagIndication
	6.1.29 CanIf_SetBaudrate
	6.1.30 CanIf_ChangeBaudrate
	6.1.31 CanIf_ChangeBaudrate
	6.1.32 CanIf_GetTxConfirmationState
	6.1.33 CanIf_SetAddressTableEntry
	6.1.34 CanIf_ResetAddressTableEntry
	6.1.35 CanIf_RamCheckExecute
	6.1.36 CanIf_RamCheckEnableMailbox
	6.1.37 CanIf_RamCheckEnableController
	6.1.38 CanIf_RamCheckCorruptMailbox
	6.1.39 CanIf_RamCheckCorruptController
	6.1.40 CanIf_SetPduReceptionMode

	6.2 Callout Functions
	6.2.1 EcuM_BswErrorHook
	6.2.2 CanIf_RxIndicationSubDataChecksumRxVerify
	6.2.3 CanIf_TransmitSubDataChecksumTxAppend

	7 AUTOSAR Standard Compliance
	7.1 Not supported AUTOSAR features
	7.1.1 Tx notification status
	7.1.2 Rx notification status
	7.1.3 Rx buffer

	7.2 Deviations
	7.2.1 Tx buffer
	7.2.2 Partial networking
	7.2.3 AUTOSAR version check

	7.3 Limitations

	8 Glossary and Abbreviations
	8.1 Glossary
	8.2 Abbreviations

	9 Contact

