VECTOR >

CAN Interface

Technical Reference

Version 6.09.00

Authors Riidiger Naas, Eugen Stripling
Versions: 6.09.00
Status: Released

VECTOR D>

1 Document Information

1.1 History

Technical Reference CAN Interface

Author _______Date ____Version|Remarks _ |

Eugen Stripling
Rudiger Naas
Eugen Stripling

Rudiger Naas
Eugen Stripling

Eugen Stripling

Rudiger Naas
Eugen Stripling

Eugen Stripling
Eugen Stripling
Eugen Stripling

Eugen Stripling
Eugen Stripling
Eugen Stripling
Eugen Stripling

Eugen Stripling
Eugen Stripling

© 2016 Vector Informatik GmbH

2012-07-17

2013-04-03

2013-07-24
2013-09-27

2014-05-19

2014-07-10
2014-08-25

2014-09-22

2014-11-25

2015-01-26

2015-05-18
2015-11-20
2016-01-09
2016-02-22

2016-06-24
2016-09-14

5.00

5.01.00

5.01.01
6.00.00

6.01.00

6.02.00
6.02.00

6.02.00

6.03.00

6.04.00

6.05.00
6.06.00
6.06.00
6.07.00

6.08.00
6.09.00

Version 6.09.00

based on template version 2.10.0

ASR R4.0 Rev 3

ESCANO00065368
ESCANO00066338
ESCANO00066340

Adapted according to
ESCAN00066285

Adapted according to
ESCAN00065289

ESCANO00066396

Adapted according to
ESCAN00064304

ESCAN00066794
Adapted due to:

AR4-307: J1939 support

AR4-438: Dynamic address lookup
table

AR4-397: CAN FD support

CAN FD support extended: Rx-FD
and Rx- and Tx-PDUs with up to
64 bytes payload

Multiple CAN driver support

ESCANO00077304, Restriction
concerning the handling of
FD/Not-FD FullCAN-Rx-PDUs
added

ESCANO00078524, CanTSyn added,
Post-build selectable

Channel specific J1939 dynamic
address

Chapter 3.8 adapted to changed
implementation

Adapted due to FEAT-366
Adapted due to FEAT-1429
ESCAN00087340

Feature Extended RAM-check
added, ESCANO00087587

Feature: Data checksum added
Adapted due to FEAT-2076:

VECTOR > Technical Reference CAN Interface

Behavior of Tx-PDU filter extended

Eugen Stripling 2016-09-26 6.09.00 Adapted due to FEAT-2024: Set
reception mode

Table 1-1 History of the Document

1.2 Reference Documents

[1] AUTOSAR SWS_CANInterface.pdf 2o
[2] AUTOSAR_SWS_DevelopmentErrorTracer.pdf 3.2.0
[3] AUTOSAR_SRS BSWGeneral.pdf 3.2.0

Table 1-2 References Documents

Please note

We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

© 2016 Vector Informatik GmbH Version 6.09.00
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

Contents
1 DocumentInformation................ 2
1.1 HISTOTY et 2
1.2 Reference DOCUMENLScoooiiiiiii i, 3
2 INErOAUCTIONo ——————— 10
2.1 Architecture OVEIVIEW ...t 10
3 Functional DeSCHIPtioNuuuiiiiiiiiiiiiiiiiiiiiii e rrrrrrrrrerarrrrnes 12
3.1 Deviations regarding AUTOSAR standardccccoooiiiiiiiiiiieieiniee e 12
3.2 FatUIe LiSt....ooo o 12
3.3 INHANIZALION ..o 13
3.4 I = 1 15 0 01513 o o PPN 14
3.4.1 DynamicC tranSMISSIONccuuviiiiiiiieeiiiiee e 15
34.2 TransSMUt-DUFEr..... .. 15
3.4.3 Multiple Transmit-buffers ... 16
344 Tx confirmation polling SUPPOItccoeeiiiiiiiiieee e, 17
3.4.5 Data CheCKSUM TX ..ooiiiiiiiiie e 18
3.5 RECEPHION .. ————— 18
3.5.1 RENGES...c e 19
3.5.2 D IO o1 =Y o] USRS 20
3.5.3 Data checksum RX........coooviiiiiiiii 20
3.54 Control of reception mode of a RX-PDU........cccccovvivciiiiiiieee e, 21
3.6 Communication MOdES ... 22
3.6.1 Controller MOGEoviiiiiiiiee et 22
3.6.2 PDU MOAE ..ottt nntaee e 22
3.7 0] {11 RSP OTRS 23
3.8 CAN FD .ttt e e e e st e e e e st e e e e saae e e e ennteaeeennnnaeeeanns 24
3.9 Meta data RX-/ TX-SUPPOI ... eiiiiiie e e e e s e e e e e e e enanes 24
3.10 J1939 dynamic address SUPPOIt.......c..uuuiiiiiieei it e e e e ee e 24
3.1 Error NOIfICAtION ... 25
3.12 Transceiver handling..........cccoo oo, 30
313 SIEEP I WaAKEUP..ueoiiii i 31
K T = TU 1= O PR 33
315 Version INfo...... 34
316 Partial NetWOrKINGocooiiiiiiiiieee e 34
3.17 Services used by the CAN Interface..........cccooiiiiiiiiii e 36
3.18 MURIPIE CAN AFIVEIS ... 36
3.19 Extended RAM-ChECKoooiiiiiiiii e 37
© 2016 Vector Informatik GmbH Version 6.09.00 4

based on template version 2.10.0

VECTOR >

Technical Reference CAN Interface

3.20 CritiCal SECHONS....cciiii it 38
4 INeGrationoooii e 40
4.1 Files and inClude StrUCIUIeooiiiiiiii e 40
411 StAtIC FileS cooeeeei e 40
4.1.2 DyNamicC Filesooviiiii e 40
4.2 INCIUAE STTUCKUIE ... 41
4.3 Compiler Abstraction and Memory Mapping.......cccccccveeeeeiiiiiiiieeeee e 42
5 CoNFIQUIAtiONoiiiiii e 43
51 Configuration of POSt-BUIldcooiiiiiiiiii e 43
6 APIDESCHIPLION ... e e e e s 44
6.1 Services provided by the CAN Interface...........cccoooveviiiiiiiiiii e 44
6.1.1 Canlf_GetVersionInfo ... 44
6.1.2 (07 o | 1 11 S RSP 44
6.1.3 Canlf_SetControllerMOodecooiiiiiiiiiiiiee e 45
6.1.4 Canlf_GetControllerMode............ccovveeiiiiiiiiiiieccee e 45
6.1.5 Canlf_TranSmitoeeiiiei e 46
6.1.6 Canlf_TxConfirmation...........ccccuiieiii e, 46
6.1.7 Canlf_RXINAICAtIONoooviiiiiei e 47
6.1.8 Canlf_ControllerBusOff ... 47
6.1.9 Canlf_SetPAUMOEcoo o 48
6.1.10 Canlf_GetPAUMOE..........c..vviieiiee e 48
6.1.11 Canlf_INItMEMIONYooiiieee e 49
6.1.12 Canlf_CancelTxConfirmationccccovieriie i, 49
6.1.13 Canlf_SetTreVMOdE.........cuvviieiiei e 50
6.1.14 Canlf_GetTreVMOdEcc.uviiiiiii e 50
6.1.15 Canlf_GetTrcvWakeupReason...........cccceevieeiiiiiiiiiiieeee e 51
6.1.16 Canlf_SetTrcvWakeupMOode.........coovcuiiiiiiiiee e 51
6.1.17 Canlf_CheCkWaKeup.......cccuuiiiiiee e 52
6.1.18 Canlf_CheckValidationcccooiiiiiiiiiiiiii e 52
6.1.19 Canlf _ResetBusOffStart.........ccccccciviiiiiii e, 53
6.1.20 Canlf ResetBUSOffENdccovviiiiiiiiiii e, 53
6.1.21 Canlf_CancelTransmit...........cccoveeiiee i 54
6.1.22 Canlf_CancelTXNOotification ..o, 54
6.1.23 Canlf_SetDynamiCTXId.........c.uviiiiiiiiieiiee e 55
6.1.24 Canlf_ControllerModelndication............cccccceeiiiiiiiiiiiiiee e, 55
6.1.25 Canlf_TrcvModelndiCation...........ccooeciiiiiiiiee e 56
6.1.26 Canlf_ConfirmPnAvailabilityccccovieiiie e, 56
6.1.27 Canlf_ClearTrcvWufFlagindicationccccooiviiiieiiiiiiiiiiieeeeenn, 57
© 2016 Vector Informatik GmbH Version 6.09.00 5

based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.28 Canlf_CheckTrcvWakeFlagIndicationcccccoviiiiiiiiiiiiiiniiiieees 57

6.1.29 Canlf _SetBaudrate..........cccoveeiieiiiii e, 58

6.1.30 Canlf_ChangeBaudrate............c..cccoeiiiiiiiiiiie i 58

6.1.31 Canlf_ChangeBaudrate............cccccceeiiiiiiiiiiiccececeeee e, 59

6.1.32 Canlf_GetTxConfirmationStateccoocveeiiei e, 59

6.1.33 Canlf_SetAddressTableEntrycccooiiiiiiiiiiii e 60

6.1.34 Canlf_ResetAddressTableEntrycccocoviiiiiiiiiii s 60

6.1.35 Canlf_RamCheckEXeCUteccccoiviiiiiiiiiii e 61

6.1.36 Canlf_RamCheckEnableMailboXccccccceviiiiiiiiiiiiiiiiee e, 61

6.1.37 Canlf_RamCheckEnableControllerc.cccccooiiiiiiiiiiiciiiiiiiiieeeeenn, 62

6.1.38 Canlf_RamCheckCorruptMailboX..........ccccceeeeiiiiiiiiiiiieeeee e, 62

6.1.39 Canlf_RamCheckCorruptControllerccccveiiiiiineiiiiie e 63

6.1.40 Canlf_SetPduReceptionMode.........ccccuvviiiiiieeiiiiieeee e 63

6.2 CalloUt FUNCHONS......cci it a e e e e e 64

6.2.1 EcuM_BsWEIOrHOOKovviiieeiii a1 64

6.2.2 Canlf_RxIndicationSubDataChecksumRxVerifyccccccceeeiiiiinnnen. 64

6.2.3 Canlf_TransmitSubDataChecksumTxAppend..........cccoccveveeeeiiicinnnnnn. 65

7 AUTOSAR Standard Compliancecccviiiiiiiii e 66

71 Not supported AUTOSAR features ..o 66

711 Tx notification Status..........ccooeciiiiiii e 66

71.2 Rx notification Status...........cccoueiiiiiiiiiii e 66

713 L o111 =Y RSP TRRR 66

7.2 [TV = 1T o 1 SRR 66

7.21 TXDUTFEE .. 66

7.2.2 Partial NetWOrKINGocuveiiiiiiiiecee e 66

7.2.3 AUTOSAR version CheCKooocuiiiiiiiii e 66

7.3 LIMIEALIONS ... e 66

8 Glossary and Abbreviations..............ccccoo i 67

8.1 L] (01T T oSO PR 67

8.2 ADDIeVIatioNS........e e ————— 67

£ T 0« T | - V- R 69
© 2016 Vector Informatik GmbH Version 6.09.00 6

based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

lllustrations
Figure 2-1 AUTOSAR 1ayer MOEl........cocuiiiiiiieiiii e 10
Figure 2-2 Interfaces to adjacent modules of the CAN Interface (* optional) 11
Figure 3 Configuration of multiple Transmit-bufferscccoovviiiiiii s 17
Figure 3-4 Wake up sequence (No validation)ccceeeiiiiiiiiiniiiie e 31
Figure 3-5 Wake up sequence (Wakeup validation)...........cccccccoivviiiiiiiiiiicciiieeeee, 33
Figure 4-1 INCIUAE STIUCIUIE ... 41
Tables
Table 1-1 History of the DOCUMENT..........oooiiii e 3
Table 1-2 References DOCUMENTScoiiiiiiiiiiiiie e 3
Table 3-1 List of supported features.........cccoovviiiiiiii e 13
Table 3-2 Mapping of service IDS t0 SEIVICEScuvveeeiiiiiiiiiiiiiee e 26
Table 3-3 Errors reported to DET ..o 29
Table 3-4 Sub-features of feature Partial Networking ... 35
Table 3-5 API functions used by the CAN Interface..........cccccceeeeiiiiiiiiiee e, 36
Table 3-6 Adapted CAN driver APIs (* optional)coocciiiiiiiiiiiiiiieceec e 37
Table 3-7 APIs of CAN Interface which have to be used in multiple CAN driver
CONFIGUIALIONS.....eiiiie e 37
Table 3-8 Critical SecCtion COAESccoiiiiiiiiiiiiiie s 39
Table 3-9 Restrictions for the different lock areas............cccocceeiiiii 39
Table 4-1 SHALC fIlES i e 40
Table 4-2 Generated fil€Soooiiiiiiei i e 40
Table 4-3 Compiler abstraction and memory mappingcccccovvvveeeeniieeee e 42
Table 6-1 API Canlf_GetVersionInfo ... 44
Table 6-2 AP CanIf_INit......eeeeee et 44
Table 6-3 API Canlf_SetControllerModecueeeiieiiiiiiieiee e 45
Table 6-4 API Canlf_GetControllerMode............c.cevvveiiiiiiiiieienee e 45
Table 6-5 APL Canlf_TransSmitccuveiiiiii e 46
Table 6-6 API Canlf_TxConfirmation ..o 46
Table 6-7 APl Canlf _RXINAICAtIONoovviiiiiiiiiicc e 47
Table 6-8 API Canlf_ControllerBusOff.........coiciiiieiee e 47
Table 6-9 API Canlf_SetPduMOdecccvviiiiiie e 48
Table 6-10 API Canlf_GetPAUMOUEoooiiiiiiiee e 48
Table 6-11 API Canlf_INItMEMOIYovvieiiiie e 49
Table 6-12 API Canlf_CancelTxConfirmationcccooiiiiiiee e, 49
Table 6-13 API Canlf_SetTreVMOde ...t 50
Table 6-14 API Canlf_GetTreVMOdE........c.cooiiiiiiieee e 50
Table 6-15 API Canlf_GetTrcvWaKeupREaSON...........ccoviiiiiiiiiiiiee et 51
Table 6-16 API Canlf_SetTrcvWakeupMode..........ccccoeeiiiiiiiiiiiiiiieeeccieeee e, 51
Table 6-17 API Canlf_CheCkWaKeUPccoiiiiuiiiiiiiie e 52
Table 6-18 API Canlf_CheckValidationccccoeeiiiiii e, 52
Table 6-19 API Canlf_ResetBusOffStartcccoevieeie i, 53
Table 6-20 API Canlf_ResetBUSOENGcccuvieeiiiiiie e, 53
Table 6-21 API Canlf_CancelTransSmitccccuiiiiiiee e 54
Table 6-22 API Canlf_CancelTxNotificationcccccciiiiiiiiiiei e, 54
Table 6-23 API Canlf_SetDynamiCTXIdcuuviiiiiiiieiiii e 55
Table 6-24 API Canlf_ControllerModelndication.............cccccviiieiiie e, 55
Table 6-25 API Canlf_TrcvModelndication.............ooviveeiiiiiiee e, 56
Table 6-26 API Canlf_ConfirmPnAvailabilityccccccciiiiiiiiii e, 56
Table 6-27 API Canlf_ClearTrecvWufFlagindication.............cccooiviiiiiiiiie e 57
Table 6-28 API Canlf_CheckTrcvWakeFlagindicationccccoccviiieiieeiiiiiiiiieeeee, 57

© 2016 Vector Informatik GmbH

Version 6.09.00
based on template version 2.10.0

VECTOR >

Table 6-29
Table 6-30
Table 6-31
Table 6-32
Table 6-33
Table 6-34
Table 6-35
Table 6-36
Table 6-37
Table 6-38
Table 6-39
Table 6-40
Table 6-41
Table 8-1

Table 8-2

© 2016 Vector Informatik GmbH

Technical Reference CAN Interface

API Canlf_SetBaudrate ... 58
API Canlf_ChangeBaudrate............cccoveiiiiiiiiiiiee e 58
API Canlf_ChangeBaudrate............ccccveiieeiiiiiiiiee e 59
API Canlf_GetTxConfirmationStateccoecciiieeiiie e, 59
API Canlf_SetAddressTableEntry ... 60
API Canlf_ResetAddressTableENtryccooociiieeiiiiiceeee e, 60
API Canlf_RamCheCkEXECULEeeeiiveeeiiciiiee e 61
API Canlf_RamCheckEnableMailboXccccviiieiieeiiiiiiiieeee e, 61
API Canlf_RamCheckEnableController..........ccccoovevieeiiiiiciiieieee e, 62
API Canlf_RamCheckCorruptMailboX............ccccviiieiieeiiiiiieeee e, 62
API Canlf_RamCheckCorruptControllercccccvveeiiiiiciiieieee e, 63
API Canlf_SetPduReceptionMOodecccoiiiiiiiiiiiiiiee e, 63
ECUM_BSWEOrHOOKeiiiiiiiieei e 64
(€[0T TT= | o RS PPPRPRN 67
ADDIeVIationsooo i 68

Version 6.09.00
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

© 2016 Vector Informatik GmbH Version 6.09.00 9
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

2 Introduction

This document describes the functionality, APl and configuration of the AUTOSAR CAN
Interface as specified in [1]. It is based on the AUTOSAR specification release 4.0.3. The
CAN Interface is a hardware independent layer with a standardized interface to the CAN
Driver and CAN Transceiver Driver layer and upper layers like PDU Router,
Communication Manager and the Network Management.

Supported AUTOSAR Release: 4.0.3
Supported Configuration Variants: Pre-compile, Link-time, Post-build-loadable

Vendor ID: CANIF VENDOR ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: CANIF MODULE ID 60
(according to ref.[3])

2.1 Architecture Overview

The following figure shows where the CAN Interface is located in the AUTOSAR
architecture.

Application

RTE

IOHW
Complex
Drivers

Vector MICROSAR Product Service by Vector * Option included in LINIF
Figure 2-1 AUTOSAR layer model

The CAN Interface provides a standardized interface for all upper layers which require
CAN communication. Therefore these upper layers have to communicate with the CAN

© 2016 Vector Informatik GmbH Version 6.09.00 10
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

Interface which is responsible for the CAN communication. This includes the transmission
and the reception of messages and the state handling of the CAN controllers as well.

The next figure shows the interfaces to adjacent modules of the CAN Interface. These
interfaces are described in chapter 6.

Figure 2-2 Interfaces to adjacent modules of the CAN Interface (* optional®)

! NOTE: Multiple CAN driver and TRCV driver are supported optional

© 2016 Vector Informatik GmbH Version 6.09.00 11
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

3 Functional Description

3.1 Deviations regarding AUTOSAR standard

Please note that the CAN Interface is tailored by Vector Informatik according to customer
requirements before delivery. As a result not all features listed below might be supported
by a delivered module.

For deviations and extensions regarding the AUTOSAR standard [1], please see chapter
7.

3.2 Feature List

Available Features For This BSW Module:

Feature Naming Supported Short Description
Initialization
Generic Initialization General initialization of the CAN Interface (Canlf_Init())
Communication
Transmission Transmission of PDUs
Dynamic transmission Transmission of PDUs with changeable CAN IDs

Buffering (send request and data) of Tx-PDUs mapped to
a Tx-buffer in the CAN Interface. Two handling types of
Tx-buffer are supported: FIFO and prioritized by CAN
identifier.

Transmit-buffer

Per CAN channel multiple Tx-BasicCAN hardware
objects may be configured. This feature can only be used
if the underlying CAN driver supports this feature as well.

Multiple Tx-BasicCAN hardware
objects

Per CAN channel multiple independent transmit-buffers
may be configured with different handling types: FIFO or
prioritization by CAN identifier. This feature can only be
used in combination with above mentioned feature
“Multiple Tx-BasicCAN hardware objects”.

Multiple transmit-buffers per CAN
channel

Cancellation of PDUs and requeueing. (Feature to avoid

Cancellation of Tx-PDUs inner priority inversion)

Transmit confirmation Call back for successful transmission

Reception Reception of PDUs

Receive indication Call back for reception of PDUs

Control of reception mode of a This feature provides the ability to control the reception
Rx-PDU mode of a Rx-PDU individually at runtime.

DLC check Check DLC of received PDUs against predefined values
CAN FD support CAN with flexible data-rate

Support for dynamic CAN identifier handling by using of

Meta data Rx- / Tx-support SDU meta data

Translating of addresses according to J1939 by using of

J1939 Dynamic Address Support dynamic address lookup tables which are maintained by
J1939Nm.

Data checksum Rx Verification of checksum of Rx-PDUs

Data checksum Tx Appending of checksum to Tx-PDUs

Controller Modes

Sleep mode Support sleep mode

External wake up (CAN) Support external wake up by CAN Driver

External wake up (Transceiver) Support external wake up by Transceiver Driver

Wake up validation Support wake up validation for external wake up events

Internal wake up Internal wake up by calling Canlf_SetControllerMode()

© 2016 Vector Informatik GmbH Version 6.09.00 12

based on template version 2.10.0

VECTOR >

Technical Reference CAN Interface

Stop mode Support stop mode

BusOff detection Handling of bus off notifications

Error Reporting

DET Support Development Error Detection (error notification)

Mailbox objects

Tx BasicCAN Standard mailbox to send CAN frames (Used by CAN
Interface data queue)

Tx FullCAN Separate mailbox for special Tx message used

Rx BasicCAN Standard mailbox to receive CAN frames (depending on
hardware, FIFO or shadow buffer supported)

Rx FullCAN Separate mailbox for special Rx message used

Miscellaneous

Transceiver handling

API for upper layers to set and read transceiver states;
Interface to the Transceiver Driver

Version API

API to read out component version

Supported ID types
- Standard Identifiers
- Extended Identifiers
- Mixed Identifiers

Support of CAN Standard (11 bits) identifiers
Support of CAN Extended (29 bits) identifiers
Support standard as well as extended identifiers

Multiple CAN networks

Each CAN network has to be connected to exactly one
controller

Multiple CAN driver

Supports multiple CAN driver

Partial Networking

Handling of partial networking transceiver
Tx-PDU filter during wake-up

Tx Confirmation Polling Support

This service provides the information on whether any Tx
confirmation has occurred for a CAN channel since the
last start of that CAN channel at all.

Post-build loadable

Post-build loadable allows the re-configuration of an ECU
at Post-build time

Post-build selectable

MICROSAR identity manager using Post-build selectable

Extended RAM-check

This service provides the ability in order to request an
underlying CAN-channel to execute a check of
CAN-controller-HW-registers. The usage of this feature
requires a corresponding license.

Table 3-1 List of supported features

3.3 Initialization

Several functions are available to initialize the CAN Interface. The following code example
shows which functions have to be called to initialize the CAN Interface and to allow
transmission and reception.

CanIf InitMemory();

/* Mandatory call which reinitializes global variables to
set the CAN Interface back to uninitialized
state. */

CanTrcv_xxx InitMemory () and CanTrcv_xxx Init ()

/* have to be called to initialize the CAN Transceiver Driver
and set the CAN Transceiver to the preconfigured

© 2016 Vector Informatik GmbH Version 6.09.00 13
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

state. For some CAN Controllers it is necessary
to have a recessive signal on the Rx Pin to be
able to initialize the CAN Controller. This
means the transceiver has to be set to “normal
mode” before CanIf Init() is called. */

Can_InitMemory () and Can_Init();
/* have to be called before CanIf Init is called. */
CanIf Init (<PtrToCanIfConfiguration>);

/* Global initialization of the CAN Interface: all available CAN
Interface channels are initialized within this
call. If postbuild-selectable configuration is
active a valid configuration has to be passed to
CanIf Init. In other cases the parameter is
ignored and a NULL pointer can be used */

CanIf SetControllerMode (0, CANIF CS STARTED);

/* The controller mode of CAN-channel 0 is set to started mode.
This means the CAN controller is initialized and
ready to communicate (acknowledge of the CAN
controller is activated). Communication is not
yet possible because the CAN Interface will
neither pass Tx PDUs from higher layers to the
CAN Driver nor accept Rx PDUs from the CAN
Driver. */

CanIf SetPduMode (0, CANIF SET ONLINE) ;

/* The PDU mode in the CAN Interface of the CAN-channel 0 is
switched to online mode. After initialization
this mode remains in the state CANIF GET OFFLINE
until the CanIf SetPduMode function is called.
Now transmission requests will be passed from
the upper layer to the CAN Driver and Rx PDUs
are forwarded from the CAN Driver to the
corresponding higher layer. */

3.4 Transmission

The transmission of PDUs is only possible after the CAN Interface and CAN Driver are
initialized and the CAN Interface resides in the CANIF_CS STARTED /
CANIF_GET_ONLINE or CANIF_CS_STARTED / CANIF_GET_TX_ONLINE mode. In all
other states the Tx requests are rejected by the CAN Interface.

The Tx request has to be initiated by a call to the function:
CanIf Transmit (<TxPduld>, <PdulnfoPtr>);

The CAN Interface uses the PDU ID (<TxPduId>) to acquire more information from the
generated data to be able to transmit the message. This data is used to call the function

© 2016 Vector Informatik GmbH Version 6.09.00 14
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

Can Write of the CAN Driver which needs information about the PDU like the
CAN identifier, length of data, data by itself and the hardware transmit handle which
represents the mailbox used for transmission of the PDU.

After a successful transmission of the message on the bus a confirmation function is called
by the CAN Driver either from interrupt context or in case of Tx polling from task context.
This confirmation is dispatched in the CAN Interface to notify the corresponding higher
layer about the transmission of the PDU. For this purpose for each PDU a call back
function has to be specified at configuration time.

The transmission request is rejected by returning E_NOT_OK in the following cases:
- The CAN Interface is not in the controller state CANIF CS STARTED

- The CAN Interface is not in the PDU mode CANIF GET ONLINE or
CANIF GET TX ONLINE

- The transmit buffer is not active and the corresponding mailbox used for
transmission is occupied (BasicCAN Tx messages only).

- An error occurred during transmission (DET will be informed)

3.4.1 Dynamic transmission
The feature is activated by the parameter “Dynamic Tx Objects”.

The adjustments for the dynamic objects are the same as for the static with the exception
that the CAN ID and the attribute whether extended or standard CAN ID can be selected
manually.

By default the dynamic object has the CAN ID parameterized during configuration time
until it is changed by the call of the APl CanIf SetDynamicTxId(). In order to set an
extended CAN ID the most significant bit of its value passed to the API shall be set.

The PDU IDs of the dynamic objects are represented as symbolic handles in the file
CanIf Cfg.h.

3.4.2 Transmit-buffer

The CAN Interface provides a mechanism to buffer Tx-PDUs (including data) which are
mapped to a Tx-buffer. This means if the Tx-hardware-object of such Tx-PDU is occupied
the Tx-PDU-instance is stored within the CAN Interface until the Tx-hardware-object
becomes free. Two handling types of a transmit-buffer are supported:

1. FIFO
2. Prioritization by CAN-identifier

The handling type defines in which manner the Tx-PDUs stored within the Tx-buffer are
transmitted in case of the underlying Tx-hardware-object becomes free.

FIFO: The stored Tx-PDUs are transmitted in manner First-In-First-Out. Each
Tx-PDU-instance is stored. If the FIFO is full then NO Tx-PDUs are stored until the FIFO
becomes free.

© 2016 Vector Informatik GmbH Version 6.09.00 15
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

Caution

n In case of transmit-buffer of handling type FIFO only one instance of a Tx-PDU (the last
one stored within the FIFO) can be and is cancelled from the FIFO via usage of API
CanIf CancelTransmit! (Feature: “Cancellation of Tx-PDUs”, see chapter
6.1.21).

Prioritization by CAN-identifier: The stored Tx-PDUs are transmitted in manner: Tx-PDU
with high priority is sent before those one with lower priority. The priority is given by the
CAN-identifier of the Tx-PDU. A Tx-PDU with a low CAN-identifier has higher priority than
a one with greater CAN-identifier. The priority of a Tx-PDU is static and is determined from
values of parameters CanIfTxPduCanId and CanIfTxPduCanIdType. Please consider
this aspect in case of configuration of Tx-PDUs with dynamic CAN-identifier. Only one
instance of each Tx-PDU is stored within such Tx-buffer: If a Tx-PDU is requested to be
transmitted and the Tx-buffer of this Tx-PDU is already in use the already stored data of
this Tx-PDU is overwritten in order to ensure the transmission of most newest data.

This handling type can be used to avoid inner priority inversion. This means if the
CAN Interface passes a transmit request to the CAN Driver while all Tx-hardware-objects
are occupied and at least one hardware object is occupied by a CAN message with lower
priority than the message used for the current transmit request the CAN Driver initiates the
cancellation of the message with the lowest priority. The cancelled CAN-message is stored
in the Tx-buffer of the CAN Interface if the corresponding Tx-buffer is free. Otherwise it is
discarded to ensure the transmission of most newest data. By this way a Tx-hardware
message object becomes free and allows the CAN Interface to pass the CAN-message
with the highest priority to the CAN Driver.

Caution
n The described: “inner priority inversion” is only supported if at most only one Tx-buffer
of handling type: Prioritization by CAN-identifier is configured per CAN-channel!

At all the Tx-PDUs stored within a Tx-buffer are processed either in context of the
Tx-confirmation interrupt or in context of CAN Driver’s Tx-main-function in case of polling
mode.

The configuration of multiple transmit-buffers is described in chapter 3.4.3.

3.4.3 Multiple Transmit-buffers

This feature can only be used if the underlying CAN driver supports the feature “Multiple
Tx-BasicCAN hardware objects”. The Figure 3 shows the objects which are needed to be

© 2016 Vector Informatik GmbH Version 6.09.00 16
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

configured within the EcuC-configuration and the relationship among themselves. For each
Transmit-buffer a triple of objects: CanHardwareObject, CanIfHthCfg and
CanIfBufferCfg must be configured and linked with each other and to corresponding
CAN-channel (objects: CanController and CanIfCtr1Cfqg).

class Tx buffer configuration (EcuC)/

Canlf

CanDrv

TS T Tt T T T T T T T T T CanlfctriCfg
CanController «point to»
CanlfTxPduCfg

|
:I.;:n
«point to»
|
i Triple required for multiple Tx-BasicCANs/ Tx—lbuffers 1|:l

1
| .
«poir|1t to» «pm?t to»

|
| |
| |
| CanlfBufferCfg |
| |
| |
I ! 1:1 :
| :
| L———- -0 |
| «point to» | |

1:1
CanHardwareObject «point to» CanlfHthCfg

Figure 3 Configuration of multiple Transmit-buffers

After this step you <can map Tx-PDUs to configured Transmit-buffer
(object: canIfBufferCfg). The described handling type of a transmit-buffer (see
chapter 3.4.2) can be configured via the parameter CanIfTxBufferHandlingType. For
further information about configuration of a Transmit-buffer please refer to the help which
can be found in the GUI of the DaVinci Configurator 5 and to the descriptions of attributes
of container CanIfBufferCfgq.

3.4.4 Tx confirmation polling support

The CAN Interface supports a service which provides the information on whether any Tx
confirmation has occurred for a CAN channel since the last start of that CAN channel at
all. This feature can be enabled via the parameter
CanIfPublicTxConfirmPollingSupport. If enabled the API

CanIf GetTxConfirmation () is provided and can be used for this service.

© 2016 Vector Informatik GmbH Version 6.09.00 17
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

3.4.5 Datachecksum Tx

This feature can be used to append a checksum to data of a Tx-PDU. The configuration of
such Tx-PDU can be done individually via the parameter
CanIfTxPduDataChecksumPdu. The appending of checksum is application specific and
must be implemented within the APl CanIf TransmitSubDataChecksumTxAppend ().
For further information please see the description of the prototype of this APl in chapter
6.2.3.

For further information about configuration of this feature at all please refer to the help
which can be found in the GUI of the DaVinci Configurator 5 and to the description of
mentioned parameters.

3.5 Reception
Reception of PDUs is only possible in the states
» CANIF CS STARTED and CANIF GET ONLINE

or
> CANIF CS STARTED and CANIF GET RX ONLINE.

In all other states the PDUs received by the CAN Driver are discarded by the CAN
Interface without notification to the upper layers.

The CAN Interface supports reception of FUllCAN- as well as BasicCAN-messages. The
upper layers do not notice any differences between these two reception types as in both
cases a call back function is called which was configured for the specified PDU in the
generation tool.

The upper layer is notified about the PDU ID given by the corresponding upper layer at
configuration time, the received data and depending on the used indication function about
the length of the received data.

In case of BasicCAN reception the CAN Interface has to search through a list of all known
Rx messages and compare the received CAN ID with the CAN ID in the Rx message list.

The CAN Interface offers three different search algorithms:

» Linear search: The list of all Rx PDUs is searched from high priority (Low CAN
Identifier) to low priority (High CAN Identifier). This algorithm is efficient for a small
amount of Rx messages.

» Double Hash search: The Rx PDU is calculated via two special hash functions. The
algorithm is very efficient for a high amount of Rx messages and always takes the
same time.

© 2016 Vector Informatik GmbH Version 6.09.00 18
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

> Note
ﬂ The Double Hash search algorithm uses the mathematical operation
modulo.

» Binary search: The list of Rx PDUs is split in two equal sized parts and the search is
continued recursively on a list of PDUs which contains half the messages. This search
algorithm terminates faster for big amounts of Rx messages than the linear search.

Caution
The binary search algorithm cannot be used for mixed ID systems.

3.5.1 Ranges

The BasicCAN message object can be used to receive groups of CAN messages called
ranges. A range can be defined either by an upper and a lower CAN identifier or by a mask
and a code.

The definition of a range by an upper and a lower CAN identifier is performed by the
following parameters:

» CanIfRxPduCanIdRangeLowerCanId and
» CanIfRxPduCanIdRangeUpperCanlId.

A mask-code-range is defined by parameters:
» CanIfRxPduCanId (code)and

» CanIfRxPduCanIdMask (mask).

In case of a mask-code-range each CAN identifier which fulfills the following equation pass
the range and the reception of the corresponding Rx PDU is reported to the upper layer.

» <CAN identifier> & <mask> == <code> & <mask>

One PDU ID is assigned to all messages which pass the configured range. Hence the
upper layer is not able to get additional message properties like the CAN identifier. For
each range an indication function can be assigned in the generation tool in order to notify
the higher layer about the reception of a message.

A range defined by an upper and a lower CAN identifier can be converted into a
mask-code-range. Therefor please see the following example.

© 2016 Vector Informatik GmbH Version 6.09.00 19
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

E Example: How to convert a lower CAN ID and an upper CAN ID into mask and
code?

Lower CAN ID: 0x400

Upper CAN ID: 0x43F

The code is same as the lower CAN ID:
code = 0x400

You need the count which is upper CAN ID — lower CAN ID > 0x43F — 0x400 = 0x3F

The count 0x3F is 000 0011 1111b in 11-bit binary format. For a range with extended
CAN IDs the count needs to be 29-bit wide.

The mask is calculated out of negated count and a 11-bit mask:
mask = ~0x3F & 0x7FF = 0x7CO

For extended IDs you need a 29-bit mask:

mask = ~0x3F & Ox1FFF FFFF = Ox1FFF FFCO

Note:

If for count the first set bit is followed by unset bits on lower significant positions for the
calculation of the mask these bits need to be set. For example a count of 0xA3 (1010
0011b) you need to calculate with the count OxFF (1111 1111b). The consequence is
that more CAN IDs are received as intended.

3.5.2 DLC check

The DLC check is executed for all received messages after they pass the search algorithm
(PDU is in Rx list) or if they are defined to be received in FUICAN message objects. The
feature DLC check can be activated only at Pre-compile time at all. If activated the DLC
check can be configured for each Rx-PDU individually and can be reconfigured in the
Post-build-loadable configuration phase.

The DLC check verifies if the received DLC is greater or equal to the DLC specified during
configuration time. If the DLC is less than the configured one a DET error is raised and the
reception of the PDU is abandoned.

3.5.3 Data checksum Rx

This feature can be used to verify the validity of a Rx-PDU after reception. The Rx-PDU
which shall be verified can be configured individually via the parameter
CanIfRxPduDataChecksumPdu. The verification is application specific and must be
implemented within the APl CanIf RxIndicationSubDataChecksumRxVerify ().
For further information please see the description of the prototype of this APl in chapter
6.2.2.

In addition an indication function may be configured which signals about invalidity of a
Rx-PDU. This indication function can be configured via the parameter
CanIfDispatchDataChecksumRxErrorIndicationName. The call of this indication
function is application specific too and if required must be invoked within the
implementation of CanIf RxIndicationSubDataChecksumRxVerify ().

© 2016 Vector Informatik GmbH Version 6.09.00 20
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

The prototype of the indication function must match following signature:
» void My DataChecksumRxErrFct (PduldType CanIfRxPduld)

and can be accessed via the macro: CanIf GetDataChecksumRxErrFctPtr () (see
fle CanIf Cfg.h)

It is recommended to call this indication function with the identifier of affected Rx-PDU.
Therefor the value of parameter CanIfRxPdulId should be used which is passed by call
of CanIf RxIndicationSubDataChecksumRxVerify (). The value of this parameter
is a CAN interface internal identifier which corresponds to value of configuration parameter
CanIfRxPduld. Corresponding macros are generated per Rx-PDU into file
CanIf Cfg.h. These ones can be used by application (s. example below).

/~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<**

\def AUTOSAR Rx PDU handles

~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<***************************************/

CanIfConf CanIfRxPduCfg RxRange2 0 0U
CanIfConf CanIfRxPduCfg RxRangel 0 1U
CanIfConf CanIfRxPduCfg RxMSG00000711 O 20
CanIfConf CanIfRxPduCfg RxMSG95555311 0 3U
CanIfConf CanIfRxPduCfg RxMSG00000511 0 4U
CanIfConf CanIfRxPduCfg RxMSG91111151 O 50U

Caution
n Please use these macros wisely. They can change in case of configuration variant
Post-build-loadable.

For further information about configuration of this feature at all please refer to the help
which can be found in the GUI of the DaVinci Configurator 5 and to the description of
mentioned parameters.

3.5.4 Control of reception mode of a Rx-PDU

This feature provides the ability to control the reception mode of a Rx-PDU at runtime. The
reception mode can be set per Rx-PDU individually at runtime via the API:
CanIf SetPduReceptionMode (). In order to address a Rx-PDU you can use the
corresponding symbolic name value which can be found in file CanIf Cfg.h (s. example
below).

/***

\def AUTOSAR Rx PDU handles

~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<~)<***************************************/

CanIfConf CanIfRxPduCfg RxRange2 0 0U
CanIfConf CanIfRxPduCfg RxRangel 0 10
CanIfConf CanIfRxPduCfg RxMSG00000711 O 20
CanIfConf CanIfRxPduCfg RxMSG95555311 O 3U
CanIfConf CanIfRxPduCfg RxMSG00000511 0 4U
CanIfConf CanIfRxPduCfg RxMSG91111151 O 5U
© 2016 Vector Informatik GmbH Version 6.09.00 21

based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

For further information about this API please see chapter 6.1.40. This feature can be used
for e.g. either to receive a CAN-message as a Rx-PDU with an explicit CAN-identifier or as
a Rx-range-PDU. In case of the configured CAN-identifier of a Rx-PDU fits the range of
CAN-identifiers of a Rx-range-PDU on the same CAN-channel as well. In case of a
FullCAN-Rx-PDU the reception can be controlled at runtime at all.

This feature can be enabled via the parameter CanIfSetPduReceptionModeSupport.
In addition Rx-PDUs whose reception mode is intended to be controlled at runtime must
be configured accordingly via the parameter CanIfRxPduSetReceptionModePdu.

For further information about configuration of this feature at all please refer to the help
which can be found in the GUI of the DaVinci Configurator 5 and to the description of
mentioned parameters.

3.6 Communication Modes
The CAN Interface knows two main types of communication modes.

3.6.1 Controller Mode

The controller mode represents the physical state of the CAN controller. The following
modes are available:

» CANIF CS STOPPED
» CANIF CS STARTED
» CANIF CS SLEEP

» CANIF CS UNINIT

There is no state called bus off. Bus off is treated as a transition from STARTED to
STOPPED mode. All transitions have to be initiated using the API function
CanIf SetControllerMode (). The controller mode can be switched for each
controller independent of the state of other controllers in the system.

The state CANIF CS UNINIT is left after CanIf InitController () is called and can
only be entered by a reset of the ECU.

The modes CANIF CS SLEEP and CANIF CS STARTED can only be entered from
CANIF CS_STOPPED. This means a transition from STARTED to SLEEP and vice versa is
not possible without requesting the STOPPED mode first.

It is always possible to request the current active controller mode by calling the API
CanIf GetControllerMode ().

3.6.2 PDU Mode

The other type of communication mode is completely processed by software (it does not
represent any state of the hardware). Transitions of the PDU mode are only possible if the
controller mode is set to CANIF CS_STARTED.

The following PDU modes are available:

© 2016 Vector Informatik GmbH Version 6.09.00 22
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

» CANIF GET OFFLINE

Rx and Tx path are switched offline
» CANIF GET RX ONLINE

Rx path online, Tx path offline
» CANIF GET TX ONLINE

Rx path offline, Tx path online
» CANIF GET ONLINE

Rx and Tx path are switched online
» CANIF GET OFFLINE ACTIVE

Rx and Tx path offline, confirmation is emulated by the CAN Interface
» CANIF GET OFFLINE ACTIVE RX ONLINE

Rx path online, Tx path offline, confirmation is emulated by the CAN Interface

If parameter CanIfPnWakeupTxPduFilterSupport (S. chapter 3.16) is enabled then
the following two further modes are available:

- CANIF GET TX ONLINE WAKF
Rx path offline, tx path online
- CANIF GET ONLINE WAKF
Rx and Tx path are switched online

The difference to the modes CANIF GET ONLINE and CANIF GET TX ONLINE is that
the Tx-PDU filter is activated if the PDU mode is changed to one of these two modes.
(s. chapter 3.16).

Caution

n If one of the modes CANIF GET TX ONLINE WAKF or CANIF GET ONLINE WAKF is
left by calling of CanIf SetPduMode () with parameter pduModeRequest which
equals CANIF SET OFFLINE Of CANIF SET TX OFFLINE Of
CANIF SET TX OFFLINE ACTIVE Of CANIF SET ONLINE Orf
CANIF SET TX ONLINE then the Tx-PDU Filter is deactivated!/

The PDU modes can be set via the function CanIf SetPduMode () and can be retrieved
via the function CanIf GetPduMode ().

3.7 Polling

The CAN Interface can process events in polling and interrupt mode. As the polling of
events is executed by other layers (e.g. CAN Driver, Transceiver Driver) the CAN Interface
is notified by call back functions which are called in the corresponding context.

© 2016 Vector Informatik GmbH Version 6.09.00 23
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

Info
ﬂ There is no need for changes in the configuration to run the CAN Interface in
polling mode.

3.8 CANFD

The CAN Interface supports CAN FD. The configuration can be performed both for
Rx- and Tx-PDUs. Therefor please configure the attribute CanIfRxPduCanIdType
(Rx-PDU) and canIfTxPduCanIdType (Tx-PDU) accordingly as required by your
application. In case of Rx-PDUs the message type (e.g. FD or not-FD) is evaluated during
the Rx-search algorithm. Hence it is possible to handle two messages with the same CAN
identifier, at which one is configured as FD and one as not-FD and to map them to different
Rx-PDUs.

- Expert Knowledge
If you intend to switch the baudrate of the CAN hardware at runtime it is suggested to
use the APl CanIf SetBaudrate instead of CanIf ChangeBaudrate.

Rx- and Tx-FD-PDUs with up to 64 bytes payload are supported.

Basic Knowledge

If you intend to configure BasicCAN-FD-Tx-PDUs and the Tx-buffer is enabled in your
configuration please ensure that attribute CanIfStaticFdTxBufferSupport is
enabled.

3.9 Metadata Rx-/ Tx-support

If this feature is enabled the CAN Interface supports the handling of dynamic
CAN-identifiers by using of SDU meta data. Such dynamic PDU can be configured by
parameter MetaDatalLength. This parameter can be found in the container of
corresponding global PDU.

In case of configuration variant Link-time or Post-build loadable please enable this feature
by setting of parameter CanIfMetaDataSupport to true. In case of configuration variant
Pre-compile the activation/deactivation of this feature is determined from the configuration
of Rx- and Tx-PDUs. If there is any PDU which has configured the parameter
MetaDataLength then this feature is enabled else disabled.

3.10 J1939 dynamic address support

If this feature is enabled the CAN Interface translates the addresses (CAN identifiers) of
Rx- and Tx-PDUs according to J1939 by using of dynamic address lookup tables. These
tables are maintained by J1939Nm by using of following APIs:

> CanIf SetAddressTableEntry and

© 2016 Vector Informatik GmbH Version 6.09.00 24
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

> CanIf ResetAddressTableEntry.

This feature has to be configured for each CAN channel individually by the parameter
CanIfCtrlJ1939DynAddrSupport. Please consider that in case of configuration
variant Post-build loadable and configuration phase Post-build the value which you can
select by CanIfCtrlJ1939DynAddrSupport is limited by value of
CanIfJ1939DynAddrSupport which was set at configuration phase Pre-compile.
Therefore in case of configuration variant Post-build loadable please first enable this
feature as far as you need at all by the parameter CanIfJ1939DynAddrSupport and
then configure the channel specific parameter of this feature. In case of configuration
variant Pre-compile it is only possible to configure the channel specific parameter.

n Caution

The feature J1939 dynamic address support works only if all Rx-PDUs of the
CAN channel at which this feature is enabled are configured as BasicCANs and if all
the corresponding hardware filters are opened completely!

3.11 Error Notification

AUTOSAR specifies two mechanisms of error notification and reporting. Only DET
reporting is supported by the CAN Interface and can be activated at configuration time
(Pre-compile configuration).

Development errors are reported to DET using the service Det ReportError ().This
feature is normally activated during the development phase to detect fatal errors in
configuration and integration of the CAN Interface with other layers.

The reported CAN Interface ID is 60.

The reported service IDs identify the services which are described in chapter 6. The
following table presents the service IDs and the related services:

1 CanIf Init

2 CanIf InitController

3 CanIf SetControllerMode

4 CanIf GetControllerMode

) CanIf Transmit

6 CanIf ReadRxPduData

9 CanIf SetPduMode

10 CanIf GetPduMode

11 CanIf GetVersionInfo

12 CanIf SetDynamicTxId

13 CanIf SetTrcvMode

14 CanIf GetTrcvMode

15 CanIf GetTrcvWakeupReason
© 2016 Vector Informatik GmbH Version 6.09.00 25

based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

16 CanIf SetTrcvWakeupMode

17 CanIf CheckWakeup

18 CanIf CheckValidation

19 CanIf TxConfirmation

20 CanIf RxIndication

21 CanIf CancelTxConfirmation

22 CanIf ControllerBusoff

23 CanIf ControllerModeIndication
24 CanIf TrcvModeIndication

25 CanIf GetTxConfirmationState

26 CanIf ConfirmPnAvailability

27 CanIf ChangeBaudrate

28 CanIf CheckBaudrate

30 CanIf ClearTrcvWufFlag

31 CanIf CheckTrcvWakeFlag

32 CanIf ClearTrcvWufFlagIndication
33 CanIf CheckTrcvWakeFlagIndication
39 CanIf SetBaudrate

250 CanIf CancelTransmit

251 CanIf CancelTxNotification

Table 3-2 Mapping of service IDs to services

The errors reported to DET are described in the following table:

Error Code Description

10 CANIF E PARAM CANID The error code is used if an invalid CAN identifier is
passed to the CAN Interface from the CAN driver
during the reception of a Rx-PDU.

The error can be raised from:
- CanIf_RxIndication
- CanIf SetDynamicTxId

11 CANIF E PARAM DLC The error will be reported by
- CanIf RxIndication
if a DLC greater than 8 is passed to the CAN
Interface during reception.
12 CANIF E PARAM HRH The error code is used in the function
- CanIf RxIndication
If an invalid hardware receive handle is passed to the
CAN Interface.

13 CANIF E PARAM LPDU The error will be raised by the following functions if
an unexpected Pduld is passed to the function by

© 2016 Vector Informatik GmbH Version 6.09.00 26
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

‘ Error Code Description ‘

either the CAN Driver or the higher layer.
- CanIf TxConfirmation
- CanIf CancelTxConfirmation
- CanIf CancelTransmit
- CanIf CancelTxNotification
14 CANIF E PARAM CONTROLLER Used by the following functions if an invalid controller
index is passed:
- CanIf ControllerBusOff
- CanIf ResetBusOffStart
- CanIf ResetBusOffEnd
- CanIf ControllerModeIndication
- CanIf GetTxConfirmationState
15 CANIF E_PARAM CONTROLLERID Used by the following functions if an invalid controller
index is passed:
- CanIf SetControllerMode
- CanIf GetControllerMode
- CanIf SetPduMode
- CanIf GetPduMode
- CanIf CheckBaudrate
- CanIf ChangeBaudrate
- CanIf SetBaudrate
16 CANIF E_PARAM WAKEUPSOURCE Used by the following functions if an invalid wakeup
source is passed:
- CanIf CheckValidation
- CanIf CheckWakeup
17 CANIF E PARAM TRCV Used by the following functions if an invalid
transceiver ID is passed:
- CanIf TrcvModelIndication
- CanIf GetTrcvWakeupReason
- CanIf GetTrcvMode
- CanIf SetTrcvMode
- CanIf SetTrcvWakeupMode
- CanIf ConfirmPnAvailability
- CanIf ClearTrcvWufFlagIndication
- CanIf CheckTrcvWakeFlagIndication
- CanIf ClearTrcvWufFlag
- CanIf CheckTrcvWakeFlag
18 CANIF E PARAM TRCVMODE Used by the following functions if an invalid
transceiver mode is passed:
- CanIf SetTrcvMode
19 CANIF E PARAM TRCVWAKEUPMO Used by the following functions if an invalid
DE transceiver wakeup mode is passed:
- CanIf SetTrcvWakeupMode

© 2016 Vector Informatik GmbH Version 6.09.00 27
based on template version 2.10.0

VECTOR D>

Technical Reference CAN Interface

Error Code Description

20 CANIF E PARAM POINTER The error is raised if a NULL pointer is passed to one
of the following functions:

CanIf Init

CanIf GetControllerMode
CanIf Transmit

CanIf RxIndication

CanIf GetPduMode

CanIf GetVersionInfo

CanIf GetTrcvWakeupReason
CanIf GetTrcvMode

CanIf CancelTxConfirmation

21 CANIF E PARAM CTRLMODE The error is raised if an invalid parameter
ControllerMode is passed to the function:

CanIf SetControllerMode

30 CANIF E UNINIT The error is raised if one of the following API
functions is called before the CAN Interface is
initialized:

CanIf InitController

CanIf Transmit

CanIf TxConfirmation

CanIf RxIndication

CanIf ControllerBusOff

CanIf SetPduMode

CanIf GetPduMode

CanIf CancelTxConfirmation
CanIf CheckWakeup

CanIf CheckValidation

CanIf GetTrcvWakeupReason
CanIf SetTrcvWakeupMode

CanIf ControllerModeIndication
CanIf SetDynamicTxId

CanIf TrcvModeIndication

CanIf SetControllerMode

CanIf GetControllerMode

CanIf CancelTxNotification
CanIf SetTrcvMode

CanIf GetTrcvMode

CanIf CancelTransmit

CanIf ConfirmPnAvailability
CanIf ClearTrcvWufFlagIndication
CanIf CheckTrcvWakeFlagIndication
CanIf ClearTrcvWufFlag

© 2016 Vector Informatik GmbH Version 6.09.00 28
based on template version 2.10.0

VECTOR D>

‘ Error Code

40 CANIF E NOK NOSUPPORT
50 CANIF E INVALID TXPDUID
61 CANIF E INVALID DLC

70 CANIF E STOPPED

71 CANIF E NOT SLEEP

Technical Reference CAN Interface

Description
- CanIf CheckTrcvWakeFlag
- CanIf GetTxConfirmationState
- CanIf CheckBaudrate
- CanIf ChangeBaudrate
- CanIf SetBaudrate

Not used.

Used by the following functions if an invalid Tx PDU
ID is passed:

- CanIf CancelTransmit

- CanIf SetDynamicTxId

- CanIf Transmit

Used by the function CanIf HlIndication if the
received DLC is smaller than the configured one.

Used by the function CanIf Transmit if the
function is called while either the controller mode is
STOPPED or the PDU mode is OFFLINE.

Used by the function CanIf CheckWakeup if the
function is called while the controller mode is not
SLEEP or STOPPED.

Additionally defined error codes (not AUTOSAR compliant)

45

51

Table 3-3

CANIF E CONFIG

CANIF E FULL TX BUFFER FIFO

Errors reported to DET

Caution

The error code CANIF E CONFIG is used to detect
inconsistent data in the generated files due to
misconfiguration.

The error can be raised in context of following
functions:

- CanIf RxIndication

The error code informs that the transmit-buffer of
handling type FIFO is full and that no further
Tx-PDUs can be buffered within.

The error can be raised in context of following
functions:

- CanIf Transmit

If the development error detection is disabled not only the reporting of the errors is
suppressed but also the detection i.e. the verification of valid function parameters.

© 2016 Vector Informatik GmbH

Version 6.09.00 29

based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

3.12 Transceiver handling

The CAN Interface provides APIs and call back functions to control as many transceivers
as CAN controllers are available in the system. The transceiver handling has to be
activated at pre-compile time.

The CAN Interface provides the following functions for higher layers to control the behavior
of the transceiver.

CanIf SetTrcvMode ()
CanIf TrcvModeIndication ()

CanIf GetTrcvMode ()

vV v v Vv

CanIf GetTrcvWakeupReason ()
» CanIf SetTrcvWakeupMode ()

Additionally the following APIs are provided in order to control a partial networking CAN
transceiver.

» CanIf CheckTrcvWakeFlag()
CanIf CheckTrcvWakeFlagIndication ()
CanIf ClearTrcvWufFlag()

CanIf ClearTrcvWufFlagIndication ()

vV v v VY

CanIf ConfirmPnAvailability ()

The initialization of the transceiver driver itself is not executed by the CAN Interface. This
means the calling layer has to make sure the transceiver driver is initialized before using
the listed API functions.

If more than one different transceiver driver is used in the system the CAN Interface
provides a mapping to address the correct transceiver driver with the correct parameters.
The parameter CanIfTransceiverMapping has to be activated to control more than
one transceiver driver.

It is also allowed to activate the parameter CanIfTransceiverMapping if only one
transceiver driver is used in the system. Because of additional runtime it is suggested to
deactivate this feature in this use case.

The CAN Interface supports the detection of wake up events raised by a transceiver. The
feature “Wakeup Support” has to be activated and a wakeup source has to be configured
for the corresponding transceiver channel.

Within the APl CanIf CheckWakeup () the CAN Interface analyses the passed wakeup
source parameter and decides whether a CAN Controller or a CAN Transceiver has to be
requested for a pending wake up event.

For more details refer to the chapter 3.13 Sleep / WakeUp.

© 2016 Vector Informatik GmbH Version 6.09.00 30
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

3.13 Sleep / WakeUp
The CAN Interface controls the modes of the underlying CAN driver and transceiver driver.

The APl CanIf SetControllerMode () has to be used to change the mode of the CAN
controller while the CAN transceiver can be controlled with the API
CanIf SetTrcvMode ().

Caution

The CAN Interface itself does not perform any checks whether the CAN controller and
n the CAN transceiver are set to sleep consistently and in the correct sequence. It is up to

the higher layer to call CanIf SetControllerMode () and CanIf SetTrcvMode ()

in the correct sequence.

Wake up events can be raised either by the CAN controller or by the CAN transceiver. In
both cases the CAN Interface is not directly informed about state changes. This means the
higher layers (normally the EcuM) has to call the API CanIf CheckWakeup ()with the
wakeup sources configured for CAN transceiver or CAN controller (1).

The CAN Interface decides by analyzing the passed wakeup source whether the CAN
controller or the CAN transceiver driver has to be checked for a pending wakeup (2 or 2’).

The following figure illustrates the described wake up sequence:

EcuM
1. Canlf_CheckWakeup 3. Returns E_OK/E_NOT_OK
(wakeupsource)
Canlf
2. Can_CheckWakeup 2. CanTrcv_CheckWakeup
(controller) (transceiver)
Can Driver Can

Transceiver

Figure 3-4 Wake up sequence (No validation)

If the parameter “CanlfPublicWakeupCheckValidSupport” is enabled the following figure
shows the sequence which has to be executed for a valid wake up. Steps 1 to 3 take place
as described above.

© 2016 Vector Informatik GmbH Version 6.09.00 31
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

After the call of EcuM SetWakeupEvent () the CAN Interface has to be set to the state
CANIF CS STARTED to be able to receive messages. These messages won't be passed
to upper layers by the CAN Interface because the PDU-mode is still set to OFFLINE. The
state change which sets the CAN Interface to the mode STARTED has to be realized by the
call of the APl CanIf SetControllerMode () with mode CANIF CS STARTED (5) from
the function EcuM StartWakeupSources () (4). If the wake up was detected by the
transceiver the CAN controller has to be woken up internally. This means the call
CanIf SetControllerMode () with mode CANIF CS STOPPED is necessary in (5)
before the transition to mode STARTED is executed.

If the wake up is initiated by the CAN controller the corresponding transceiver channel has
to be set to mode NORMAL and the CAN controller has to be set to mode STARTED.

If the wake up is initiated by a transceiver channel the CAN controller has to be woken up
internally. This means an additional call of CanIf SetControllerMode () with mode
CANIF CS_STOPPED has to be executed to wake up the CAN controller before the
transition to mode STARTED is initiated. (Depending on the behavior of the transceiver the
CAN controller and the configuration itself it is possible to wake up both the CAN controller
and the transceiver channel externally.)

Next the EcuM starts a time out for the wake up validation. This means if a message is
received within this timeout (6) the call of CanIf CheckValidation () executed by the
EcuM (7) will result in a successful validation. The CAN Interface checks for a recent Rx
event (6) which occurred after the wake up and notifies the EcuM by calling of
EcuM ValidationWakeupEvent ().

If there is no message reception after (5) the function CanIf CheckvValidation () has
been called no successful wake up validation won’t be notified and the EcuM will run into
a timeout. In this case the EcuM calls EcuM StopWakeupSources () (8) and the CAN
Driver and CAN transceiver have to be set to mode SLEEP again.

© 2016 Vector Informatik GmbH Version 6.09.00 32
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

8’. EcuM_StopWakeupSources(wakeupsource)
- Canlf_SetControllerMode(controller,

4. EcuM CANIF_CS_STOPPED)
EcuM_StartWakeupSources - Canlf_SetControllerMode(controller,
(wakeupsource) CANIF_CS_SLEEP)

- Canlf_SetTrcvMode(transceiver,
CANTRCV_TRCV_MODE_STANDBY)

7. 8.
Canlf_CheckValidation EcuM_ValidateWakeupEvent
(wakeupsource) (wakeupsource)

5.

- Canlf_SetTrcvMode (transceiver,
CANTRCV_TRCV_MODE_NORMAL) Canlf
[= Canlf_SetControllerMode (controllg
CANIF_CS_STOPPED)]

-> Canlf_SetControllerMode (controller,
CANIF_CS_STARTED)

Fal

6. Rx message received
(not passed to upper layers yet)
Canlf_RxIndication(...)

Can Driver

Figure 3-5 Wake up sequence (Wakeup validation)

During the wake up sequence as well as during the transition to mode SLEEP, the higher
layers have to take care about the sequence of the state transitions affecting the CAN
controller (CAN driver) and the Transceiver driver.

Since ASR4.0R3 it is configurable on whether only a received CanNm-message is able to
do the validation.

3.14 Bus Off

The CAN Interface handles bus off events notified by the CAN Driver in interrupt driven or
polling systems. If a bus off event is raised the CAN Driver forwards it to the CAN Interface
by calling the function CanIf ControllerBusOff ().

The CAN Interface switches its internal controller state from STARTED to STOPPED and the
PDU mode is set to OFFLINE.

In this state no reception and no transmission is possible until the CAN Interface’s
controller state and as a result the CAN Controller’s bus off state is recovered by the call of
the function CanIf SetControllerMode () for the affected channel by the higher
layer.

After the controller state is switched the bus off state is recovered. For successful
reception and transmission the PDU mode has to be switched to RX ONLINE, TX ONLINE
or ONLINE by the higher layer.

© 2016 Vector Informatik GmbH Version 6.09.00 33
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

3.15 Version Info

The version of the CAN Interface module can be acquired in three different ways. The first
possibility is by calling of the function CanIf GetVersionInfo (). This function returns
the module’s version in the structure Std VersionInfoType which includes the
VendorID and the ModulelD additionally.

The second possibility is the access of version defines which are specified in the header
file CanIf.h.

The following defines can be evaluated to access different versions:
» AUTOSAR version:

> CANIF AR RELEASE MAJOR VERSTION
> CANIF AR RELEASE MINOR VERSION
> CANIF AR RELEASE PATCH VERSION
» Module version:
> CANIF SW MAJOR VERSION
» CANIF SW MINOR VERSION
» CANIF SW PATCH VERSION
» Module ID:
» CANIF MODULE ID
» Vendor ID:

» CANIF VENDOR ID

There is a third possibility to at least acquire the SW version by accessing globally visible
constants:

> CanIf MainVersion
» CanIf SubVersion

» CanIf ReleaseVersion

Info
The APl CanIf GetVersionInfo () is only available if enabled at Pre-compile
time. The definitions can be accessed independent of the configuration.

3.16 Partial Networking

This feature consists of two sub-features:

© 2016 Vector Informatik GmbH Version 6.09.00 34
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

» Wakeup Tx-PDU filter (parameter: CanIfPnWakeupTxPduFilterSupport)

» Handling of a partial networking transceiver (parameter:
CanIfPnTrcvHandlingSupport)

The mentioned sub-features can be used only if the attribute CanIfPublicPnSupport
is enabled. See the following table for more information about mentioned sub-features.

| Feawe | Description __

CanIfPnWakeupTxPduFilterSupport Tx-PDU filter which is activated if the PDU
mode is changed either to
CANIF SET ONLINE WU FILTER or to
CANIF SET TX ONLINE WU FILTER. This
filter is active until the first Tx-confirmation /
Rx-indication of the corresponding CAN
channel arrives. Only certain Tx-PDUs which
are labeled as Tx wakeup filter PDUs (s.
parameter CanIfTxPduPnFilterPdu) can
pass the filter. All Tx-requests of other Tx-PDUs
are refused by CAN Interface until the filter is
disabled.

CanIfPnTrcvHandlingSupport Handling of a partial networking transceiver

Table 3-4 Sub-features of feature Partial Networking

The parameter CanIfPnTrcvHandl ingSupport is enabled automatically if at least one
underlying transceiver driver supports partial networking. In case of using the feature
CanIfPnWakeupTxPduFilterSupport the Tx-PDUs which are allowed to pass the filter
have to be configured accordingly. This kind of configuration can be performed individually
for every Tx-PDU via the parameter CanIfTxPduPnFilterPdu.

Note

ﬂ Please consider that the filter of a certain CAN channel is only active if at least
one Tx-PDU of this CAN channel has the parameter
CanIfTxPduPnFilterPdu enabled.

The feature CanIfPnWakeupTxPduFilterSupport is configurable in all three
configuration variants:

» Pre-compile
» Link-time
» Post-build-loadable

Except the restriction that this feature has to be enabled at Pre-compile time at all there
are no any further restrictions concerning the reconfiguration of this feature in accordance
with the Tx-PDUs which may pass the filter in case of a Link-time or a Post-build-loadable
configuration variant.

© 2016 Vector Informatik GmbH Version 6.09.00 35
based on template version 2.10.0

VECTOR D>

Technical Reference CAN Interface

3.17 Services used by the CAN Interface

In the following table services provided by other components which are used by the CAN
Interface are listed. For details about prototype and functionality refer to the documentation

of the corresponding component.

Component a0l

DET
CanDrv

PduR, CanNm, CanTp, CDD

CanNm, EcuM, CDD

SchM

CanTrcv

MICROSAR extension (optional)

Table 3-5

Det ReportError
Can_SetControllerMode
Can Write

User TxConfirmation (%*)
User RxIndication (*)
User ControllerBusOff (*)
User ValidationWakeupEvent (*)
SchM Enter CanIf ##area
SchM Exit CanIf ##area
CanTrcv_SetOpMode
CanTrcv_GetOpMode
CanTrcv_ GetBusWuReason
CanTrcv_SetWakeupMode
CanTrcv_CheckWakeup

EcuM BswErrorHook

API functions used by the CAN Interface

* Names of the call back functions can be configured freely.

3.18 Multiple CAN drivers

The CAN Interface supports multiple CAN drivers which are implemented according to

AUTOSAR specification 4.1.1.

Different CAN drivers are addressed by using the values of attributes "Vendorld" and
"VendorApilnfix" defined in BSWMD file of corresponding CAN driver.

In order to ensure compatibility with this CAN Interface the following naming convention of

APls of CAN driver need to be provided.

<Bsw> <VendorId> <VendorApiInfix> <ApiName>

The APlIs of used CAN driver has to be named as follows:

© 2016 Vector Informatik GmbH

Version 6.09.00

based on template version 2.10.0

36

VECTOR > Technical Reference CAN Interface

Basic CAN Driver APIs

Can_<VendorId> <VendorApiInfix> SetControllerMode
Can_<VendorId> <VendorApiInfix> Write

Can_ <VendorId> <VendorApiInfix> CancelTx (*)
Can_<VendorId> <VendorApiInfix> CheckWakeup (*)
Can_<VendorId> <VendorApiInfix> CheckBaudrate (*)
Can_<VendorId> <VendorApiInfix> ChangeBaudrate (*)
Can <VendorId> <VendorApiInfix> SetBaudrate (*)

Table 3-6 Adapted CAN driver APIs (* optional)

The following table lists APIs of CAN Interface which have to be called by a CAN driver in
case of multiple CAN drivers are configured.

Basic CAN Driver APIs

CanIf <VendorId> <VendorApiInfix> RxIndication

CanIf <VendorId> <VendorApiInfix> TxConfirmation

CanIf <VendorId> <VendorApiInfix> ControllerBusOff

CanIf <VendorId> <VendorApiInfix> ControllerModeIndication
CanIf <VendorId> <VendorApiInfix> CancelTxNotification
CanIf <VendorId> <VendorApiInfix> CancelTxConfirmation

Table 3-7 APIs of CAN Interface which have to be used in multiple CAN driver configurations

3.19 Extended RAM-check

This feature is configured via the parameter CanIfExtendedRamCheckSupport. For
further information about configuration of this feature please refer to the help which can be
found in the GUI of the DaVinci Configurator 5 and to the description of mentioned
parameter.

© 2016 Vector Informatik GmbH Version 6.09.00 37
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

3.20 Critical Sections

The AUTOSAR standard provides with the BSW Scheduler a BSW module, which handles
entering and leaving critical sections.

For more information about the BSW Scheduler please refer to [3]. When the BSW
Scheduler is used the CAN Interface provides critical section codes that have to be
mapped by the BSW Scheduler to following mechanism:

Critical Section Define Description
CANIF_EXCLUSIVE_AREA_0 Usage inside CanIf SetControllerMode ()
> Duration is short (< 10 instructions)

> Callto Can_SetControllerMode ()

CANIF_EXCLUSIVE_AREA 1 Usage inside CanIf CancelTxConfirmation(),
CanIf CancelTransmit (), CanIf ClearQueue ()

> Duration is short (< 10 instructions).
> No calls inside

CANIF EXCLUSIVE AREA 2 Usageinside CanIf TxConfirmation() and
- - - CanIf CancelTxConfirmation ()

> Duration is medium (< 50 instructions).

> CalltocanIf TxQueueTreatment (),
CanIf TxQueueTransmit (), Can Write(),

CANIF_EXCLUSIVE_AREA 3 Usage inside CanIf_SetPduMode ()

> Duration is short (< 10 instructions).

> CalltocanIf ClearQueue ()
CANIF_EXCLUSIVE_AREA 4 Usage inside CanIf Transmit ()

> Duration is medium (< 50 instructions).

> CalltoCcan Write ()
CANIF_EXCLUSIVE_AREA 5 Usage inside CanIf_SetDynamicTxId ()

> Duration is short (< 10 instructions).

> Setting of dynamic CAN identifier

CANIF_EXCLUSIVE_AREA 6 Usage inside CanIf_SetAddressTableEntry() and
CanIf ResetAddressTableEntry ()

> Duration is short (< 10 instructions).
> Setting of J1939 Rx- and Tx-address

> No calls inside

© 2016 Vector Informatik GmbH Version 6.09.00 38
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

CANIF_EXCLUSIVE_AREA 7 Usage inside CanIf RxIndication ()
> Duration is short (< 10 instructions).
> Consistent reading from J1939 Rx-address table

> No calls inside

Table 3-8 Critical Section Codes

If the exclusive areas are entered the upper layer needs to make sure that the CAN
interrupts are disabled. Additionally the following table describes which API of the CAN
Interface must not be called during the corresponding area is entered. The CAN Interface
APl CanIf CancelTxNotification() / CanIf CancelTxConfirmation()is
entered mostly via the CAN interrupt. In case of a platform which confirmation for a
transmit cancellation needs to be polled the corresponding APl (for example
Can MainFunction Write()) must not be called if the corresponding lock area is
entered.

CANIF_EXCLUSI|CANIF_EXCLUSNCANIF_EXCLUSIJCANIF_EXCLUSI|CANIF_EXCLUSI| CANIF_EXCLUSI|CANIF_EXCLUSI|CANIF_EXCLUSI
VE_AREA_0 E_AREA_1 E_AREA_2 VE_AREA 3 | VE_AREA 4 | VE_AREA 5 | VE_AREA 6 | VE_AREA 7

Canlf_Init

Canlf_InitMemory

Canlf_Transmit

Canlf_CancelTransmit

Canlf_SetControllerMode

Canlf_CancelTxNotification/
Canlf_CancelTxConfirmation

Canlf_SetPduMode

Canlf_TxConfirmation

Canlf_ControllerBusOff

Canlf_RxIndication

Canlf_SetAddressTableEntry

Canlf_ResetAddressTableEntry|

Table 3-9 Restrictions for the different lock areas

© 2016 Vector Informatik GmbH Version 6.09.00 39
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

4 Integration

This chapter gives necessary information for the integration of the MICROSAR CAN
Interface into an application environment of an ECU.

4.1 Files and include structure
The CAN Interface consists of the following files:

The delivery of the CAN Interface contains the files which are described in the chapters
4.1.1and 4.1.2:

4.1.1 Static Files

(FiloName ________Description

CanIf.c Implementation

CanIf.h Header file, has to be included by higher layers to access the API

CanIf Cbk.h Header file, has to be included by underlying layers to access call
back functions provided by the CAN Interface

CanIf Types.h Definition of types provided by the CAN Interface which have to be

used by other layers. This file is included automatically if either
CanIf.horCanIf Cbk.his included.

CanIf Hooks.h This header file is included by CanIf.c and defines so called hook-
macros. Every API of the CAN interface has an own pair of hook-
macro. One of them is called at the beginning of each API and the
other one at the end. The intention of these hook-macros is the
ability to measure the execution time of an API. The hook-macros
are defined to nothing by default. So they do not influence the
execution of code by default.

CanIf GeneralTypes.h This header file is included by Can GeneralTypes.h and
contains the public types of the CAN Interface.

Table 4-1 Static files

4.1.2 Dynamic Files
The dynamic files are generated by the configuration tool.

FileName | Descripion

CanIf Cfg.h Generated header file (included automatically by canIf.h and
CanIf Cbk.h)

CanIf Lcfg.c Contains link time configuration data. Contains data in case of
Pre-compile, Link-time and Post-build configuration variant.

CanIf PBcfg.c Contains post build configuration data. In case of Link-time variant is

used, this file is empty.

CanIf CanTrcv.h Generated header file which includes the necessary header files of the
transceiver drivers used in the system.

Table 4-2 Generated files

© 2016 Vector Informatik GmbH Version 6.09.00 40
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

4.2 Include Structure

composite structure Include structure /
AN
e CanlfiCH - — — — — — — — — — — — - — — - ————
[D 1 Canlf_DataChecksum.c
| .
| «incllude»
| | | . .
«include» | «include» : cinclude» «include» cinclude»
y : y | | | |
AN ! AN N AN
________ I
SchM_Canif.h r Canlf_Cbkh Canlf.h Deth Canlf_CanTrev.
|
N ' Lo |
«includel» | | I includ
| «include»
Can_Cfg.h : | : l«include»l !
| |
__ _— | N
N < «include»-JI- —————— J Canlf_Lcfg.c
cndude» L <E-—----—-———- T-—————- cinclude»— — (RN _ _ _ «include» |
|
|]
) P |:
————————————————— «include» [T |
I : [|:
| | [
AN Py !
P!
EcuM_Cbkh) Py !
. ~ .«include». — Py |:
[
' I | !
«include» :— «include» | : [: : | : :'
! I | EEEEENEE
: ! | | : : L : | I:
| I AR
- =1 comstack Typesh ez — — J : | Prrpr !
<Typ Fm————=- «includer— — — — - RN
e ey !
«include» | : : o : 1 :
| el
! P!
«include» 0 0| lem o C indudey- — — — — — [1!
I P!
| ! Lt H
[
AN R |
1! [
Pyt |:
— — _ _|Std_Typeshl _ _ _ _ _ [
r _: = cinclude»' | 1 111 ':
«include» . [|
| «include» Ly
| 1 Ly !
| [|:
| [
AN AR
| 11
!
Platform_Typesh Tyl !
atiom_LypEs Compiler.h : : [b :
1 i
: : : : : Zinclude»—' P!
| | P!
. [
«include» : : [[:
\ bt | : 1y
| |
[: : e - «include»— =~~~ = 11 : !
AN : : I !
11 b = —«include» ! : Il :
Compiler_Cfg.h 11 : | | : : |
[|
(BN
[: L — — —include» — = o P!
[«include» |
P! rn
1! e
! r
! b
P e e «include»™ =) : !
1 = — «include»- | |
i '
11 |
|
| —_——= |
| «include» «includey = = = = — — J |
| |
| |
| |
| |
| |
| |
L «include» = T = RANISYAMORI Ko — = —m——— T Tt T -
«include»
Figure 4-1 Include structure
© 2016 Vector Informatik GmbH Version 6.09.00 41

based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

4.3 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions — the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following table contains the memory section names and the compiler abstraction
definitions defined for the CAN Interface and illustrates their assignment among each
other.

Compiler Abstraction
Definitions

Memory Mapping
Sections

CANIF_VAR_ZEROINIT
CANIF_VAR_INIT
CANIF_VAR_NOINIT
CANIF_CONST
CANIF_PBCFG
CANIF_CODE
CANIF_APPL_CODE
CANIF_APPL_VAR
CANIF_APPL_PBCFG

CANIF_START_SEC_CODE
CANIF_STOP_SEC_CODE
CANIF_START_SEC_PBCFG
CANIF_STOP_SEC_PBCFG
CANIF_START_SEC_CONST_8BIT
CANIF_STOP_SEC_CONST_8BIT
CANIF_START_SEC_CONST_32BIT
CANIF_STOP_SEC_CONST_32BIT
CANIF_START_SEC_CONST_UNSPECIFIED
CANIF_STOP_SEC_CONST_UNSPECIFIED
CANIF_START_SEC_VAR_NOINIT_UNSPECIFIED
CANIF_STOP_SEC_VAR_NOINIT_UNSPECIFIED
CANIF_START_SEC_VAR_ZERO_INIT_UNSPECIFIED
CANIF_STOP_SEC_VAR_ZERO_INIT_UNSPECIFIED
CANIF_START_SEC_VAR_INIT_UNSPECIFIED
CANIF_STOP_SEC_VAR_INIT_UNSPECIFIED

CANIF_START_SEC_VAR_PBCFG
CANIF_STOP_SEC_VAR_PBCFG

Table 4-3 ~ Compiler abstraction and memory mapping

The Compiler Abstraction Definitions CANIF APPL CODE, CANIF APPL VAR and
CANIF APPL PBCFG are used to address code, variables and constants which are
declared by other modules and used by the CAN Interface.

These definitions are not mapped by the CAN Interface but by the memory mapping
realized in the CAN Driver, CAN Transceiver Driver, PDU Router, Network management,
Transport Protocol Layer, ECU State Manager and the CAN State manager.

© 2016 Vector Informatik GmbH Version 6.09.00 42
based on template version 2.10.0

CANIF_VAR_PBCFG

VECTOR > Technical Reference CAN Interface

5 Configuration

The CAN Interface is configured with DaVinci Configurator 5. Please refer to the help
which can be found in the GUI of the configurator and to the descriptions of attributes in
BSWMD file of CAN Interface.

5.1 Configuration of Post-Build

The configuration of post-build loadable is described in
TechnicalReference PostBuildLoadable.pdf.

© 2016 Vector Informatik GmbH Version 6.09.00 43
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6 API Description

6.1 Services provided by the CAN Interface
6.1.1 Canlf_GetVersioninfo

Prototype

void CanIf GetVersionInfo(Std VersionInfoType *VersionInfo);

Parameter

VersionInfo Pointer to the structure including the version information.

Return code

Functional Description

Canlf_GetVersionInfo() returns version information, vendor ID and AUTOSAR module ID of the component.
The versions are BCD-coded.

Particularities and Limitations

The function is only available if enabled at Pre-compile time (CANIF VERSION INFO API = STD ON)

Table 6-1 API Canlf_GetVersionInfo

6.1.2 Canlf_Init
Prototype

void CanIf Init(const CanIf ConfigType *ConfigPtr)
Parameter

ConfigPtr Pointer to the structure including configuration data.

Return code

Functional Description

This function initializes global CAN Interface variables during ECU start-up.

Particularities and Limitations

This API has to be called during start-up before any CAN communication. Can_Init () has to be executed
successfully.

Table 6-2 API Canlf_Init

© 2016 Vector Informatik GmbH Version 6.09.00 44
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.3 Canlf_SetControllerMode

Prototype

Std ReturnType CanIf SetControllerMode (uint8 ControllerId,
CanIf ControllerModeType ControllerMode)

Parameter

ControllerId The Controller to change mode.
ControllerMode Mode request.

Return code

Std_ReturnType Returns whether the state transition was successful.

Functional Description

Request the mode of the specified channel. Supported modes: CANIF CS SLEEP, CANIF CS STOPPED,
CANIF CS STARTED.

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-3 API Canlf_SetControllerMode

6.1.4 Canlf_GetControllerMode

Prototype

Std ReturnType CanIf GetControllerMode (uint8 ControllerId,
CanIf ControllerModeType *ControllerModePtr)

Parameter

ControllerId Request mode of specified Controller.
ControllerModePtr Pointer to data type the information is stored in.

Return code

Std ReturnType Returns whether the state request was successful or not.

Functional Description

Acquire the current controller mode of the specified channel

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-4 API Canlf_GetControllerMode

© 2016 Vector Informatik GmbH Version 6.09.00 45
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.5 Canlf_Transmit

Prototype

Std ReturnType CanIf Transmit (PduldType CanTxPduld, const PdulnfoType
*PduInfoPtr)

Parameter

CanTxPduld Handle of the Tx PDU which will be transmitted.
PduIndoPtr Pointer to a struct containing the properties of the Tx PDU.

Return code

Std ReturnType Returns if the transmit request was accepted.

Functional Description
Requests the transmission of the specified Tx PDU.
Particularities and Limitations

CAN Interface has to be initialized.

Table 6-5 API Canlf_Transmit

6.1.6 Canlf_TxConfirmation

Prototype
void CanIf TxConfirmation (PduldType CanTxPduld)

Parameter

CanTxPduld ID of the successfully transmitted PDU.

Return code

Functional Description

Confirms the successful transmission of a Tx PDU

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-6 API Canlf_TxConfirmation

© 2016 Vector Informatik GmbH Version 6.09.00 46
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.7 Canlf_RxIndication

Prototype

void CanIf RxIndication(CanIf HwHandleType Hrh, Can_ IdType CanId, uint8 CanDlc,
const uint8 *CanSduPtr)

Parameter
Hrh

Hardware handle the PDU was received in.

CanId CAN identifier of the received PDU.
CanDlc Data length code of the received PDU.
CanSduPtr Pointer to hardware or temporary buffer containing the data of the received

PDU.

Return code

Functional Description
The CAN Driver notifies the CAN Interface about a received Rx PDU.

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-7 API Canlf_RxIndication

6.1.8 Canlf_ControllerBusOff

Prototype
void CanIf ControllerBusOff (uint8 Controller)

Parameter

Controller Affected controller.

Return code

Functional Description

Indicates a BusOff for the specified controller to the CAN Interface.
Particularities and Limitations

CAN Interface has to be initialized.

Table 6-8 API Canlf_ControllerBusOff

© 2016 Vector Informatik GmbH Version 6.09.00 47
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.9 Canlf_SetPduMode

Prototype

Std ReturnType CanIf SetPduMode (uint8 ControllerId, CanIf PduSetModeType
PduModeRequest)

Parameter

ControllerId Controller which will be affected by the new Pdu mode.
PduModeRequest Requested Pdu mode

Return code

Std ReturnType Returns whether the state request was successful.

Functional Description

Change mode for specified controller. Possible states are:

CANIF SET OFFLINE,

CANIF SET RX OFFLINE,
CANIF SET RX ONLINE,

CANIF SET TX OFFLINE,
CANIF SET TX ONLINE,
CANIF SET ONLINE,

CANIF SET TX OFFLINE ACTIVE

Particularities and Limitations

CAN Interface has to be initialized. Controller has to be in state CANIF CS STARTED.

Table 6-9 API Canlf_SetPduMode

6.1.10 Canlf_GetPduMode

Prototype

Std ReturnType CanIf GetPduMode (uint8 ControllerId, CanIf PduGetModeType *
PduModePtr)

Parameter

ControllerId Request mode of the specified Controller.
PduModePtr Pointer to a data buffer the current mode will be stored in.

Return code

Std_ReturnType Returns whether the request of the current state was successful.

Functional Description

Request the current mode of the specified controller.

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-10 API Canlf_GetPduMode

© 2016 Vector Informatik GmbH Version 6.09.00 48
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.11 Canlf_InitMemory
Prototype

void CanIf InitMemory (void)

Parameter

Return code

Functional Description
Initializes global RAM variables, which have to be available before any call to the Canlif API.

Particularities and Limitations

May only be called once before CanIf Init ().

Table 6-11 API Canlf_InitMemory

6.1.12 Canlf_CancelTxConfirmation

Prototype

void CanIf CancelTxconfirmation (PduldType CanTxPduld, const Can PduType
*PduInfoPtr)
Parameter

CanTxPduld Handle of the Tx PDU which was cancelled.
PduInfoPtr Contains information about cancelled PDU

Return code

Functional Description
Called by the CAN Driver to notify the CAN Interface about a cancelled PDU which has to be re-queued.

Particularities and Limitations

Only available if CANTF_TRANSMIT CANCELLATION = STD ON is set.

Table 6-12 API Canlf_CancelTxConfirmation

© 2016 Vector Informatik GmbH Version 6.09.00 49
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.13 Canlf_SetTrcvMode
Prototype

StdReturnType CanIf SetTrcvMode (uint8 Transceiverld, CanTrcv_TrcvModeType
TransceiverMode)

Parameter

TransceiverId Address the transceiver by a transceiver index.
TransceiverMode Requested mode transition

Return code

Std ReturnType Returns whether the state transition was successful.

Functional Description
Called by an upper layer to set the transceiver to another mode.
Particularities and Limitations

Only available if transceiver handling is activated at configuration time.
(CANIF TRCV_HANDLING = STD ON)

Table 6-13 APl Canlf_SetTrcvMode

6.1.14 Canlf_GetTrcvMode
Prototype

StdReturnType CanIf GetTrcvMode (CanTrcv_ TrcvModeType *TransceiverModePtr, uint8
TransceiverId)

Parameter
TransceiverId Address the transceiver by a transceiver index.
TransceiverModePtr Pointer to a buffer where current transceiver mode can be stored in.

Return code

Std ReturnType Returns whether the request of the current transceiver mode was
successful.

Functional Description

Called by an upper layer to request the current mode of the transceiver.

Particularities and Limitations

Only available if transceiver handling is activated at configuration time.
(CANIF TRCV_HANDLING = STD ON)

Table 6-14 API Canlf_GetTrcvMode

© 2016 Vector Informatik GmbH Version 6.09.00 50
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.15 Canlf_GetTrcvWakeupReason
Prototype

StdReturnType CanIf GetTrcvWakeupReason (uint8 Transceiverld,
CanIf TrcvWakeupReasonType *TrcvWuReasonPtr)
Parameter

TransceiverId Address the transceiver by a transceiver index.

TrcvWuReasonPtr Pointer to a buffer where the transceiver’s wake up reason can be stored
in.

Return code

Std_ReturnType Returns whether the request of the wake up reason was successful.

Functional Description
Called by an upper layer to request the wake up reason stored in the transceiver.

Particularities and Limitations

Only available if transceiver handling is activated at configuration time.
(CANIF TRCV_HANDLING = STD ON)

Table 6-15 API Canlf_GetTrcvWakeupReason

6.1.16 Canlf_SetTrcvWakeupMode
Prototype

StdReturnType CanIf SetTrcvWakeupMode (uint8 TransceiverId,
CanTrcv_TrcvWakeupModeType TrcvWakeupMode)

Parameter

TransceiverId Address the transceiver by a transceiver index.
TrcvWakeupMode Enable, disable or clear notification for wake up events.

Return code

Returns whether the requested mode was set successfully.

Functional Description

Called by an upper layer to enable, disable or clear the wake up event notification of the transceiver.

Particularities and Limitations

Only available if transceiver handling is activated at configuration time.
(CANIF TRCV_HANDLING = STD ON)

Table 6-16 API Canlf_SetTrcvWakeupMode

© 2016 Vector Informatik GmbH Version 6.09.00 51
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.17 Canlf_CheckWakeup

Prototype
Std ReturnType CanIf CheckWakeup (EcuM WakeupSourceType WakeupSource)

Parameter

WakeupSource Wakeup source which identifies the possible wakeup source (Transceiver /

CAN Controller)

Return code

Std ReturnType Returns whether the request to the Transceiver/ CAN Controller was
successful.

Functional Description

Called by an upper layer to check if a transceiver or CAN controller recently raised a wakeup.

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-17 API Canlf_CheckWakeup

6.1.18 Canlf_CheckValidation

Prototype
Std ReturnType CanIf CheckValidation (EcuM WakeupSourceType WakeupSource)

Parameter

WakeupSource Wakeup source which identifies the possible wakeup source (Transceiver /
CAN Controller)

Return code
Std_ReturnType Returns whether the requested mode was set successfully.

Functional Description

Called by an upper layer to check if a Rx message was received after a wake up occurred from one of the
supported sources.

If a message was received between the call of CanIf CheckWakeup and CanIf CheckValidation the
configurable EcuM call back function EcuM ValidationWakeupEvent is called from the context of
this function.

Particularities and Limitations

CAN Interface has to be initialized.
Canlf_CheckWakeup has to be called before and a wake up event has to be detected.
CAN Interface has to be set to CANIF CS STARTED mode before a validation is possible.

Table 6-18 API Canlf_CheckValidation

© 2016 Vector Informatik GmbH Version 6.09.00 52
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.19 Canlf_ResetBusOffStart

Prototype
void CanIf ResetBusOffStart (uint8 ControllerId)

Parameter

ControllerId Recover bus off for the specified controller

Return code

Functional Description

Initiates the bus off recovery for a specified channel.
Acallto CanIf ResetBusOffEnd () has to follow on task level.

Particularities and Limitations

Non-Autosar compliant API function which has to be enabled by defining CANIF BUSOFF RECOVERY API
= STD_ON

Table 6-19 API Canlf_ResetBusOffStart

6.1.20 Canlf_ResetBusOffEnd

Prototype
void CanIf ResetBusOffEnd(uint8 ControllerId)

Parameter

ControllerId Recover bus off for the specified controller

Return code

Functional Description

Finishes the bus off recovery for a specified channel.
Acallto CanIf ResetBusOffStart () has to be executed before.

Particularities and Limitations

Non-Autosar compliant API function which has to be enabled by defining
CANIF BUSOFF RECOVERY API = STD ON

The function has to be called on task level.

Table 6-20 API Canlf_ResetBusOffEnd

© 2016 Vector Informatik GmbH Version 6.09.00 53
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.21 Canlf_CancelTransmit

Prototype
void CanIf CancelTransmit (PduldType CanTxPdulId)

Parameter

CanTxPduld Pduld of the message which has to be cancelled

Return code

Functional Description
Initiates the cancellation / suppression of the confirmation of a Tx message.

Particularities and Limitations

CAN Interface has to be initialized.

AUTOSAR only defines a dummy function. For MICROSAR this function has the functionality to cancel an
ordered Tx PDU. This API is provided only in case of CANIF CANCEL SUPPORT API = STD ON.

Table 6-21 API Canlf_CancelTransmit

6.1.22 Canlf_CancelTxNotification

Prototype

void CanIf CancelTxNotification (PduldType Pduld, CanIf CancelResultType
IsCancelled)

Parameter

PdulId Id of the Tx message which was cancelled
IsCancelled Parameter currently not evaluated.

Return code

Functional Description

Called by the CAN Driver to notify about a cancelled message. No confirmation is raised for this message.
Particularities and Limitations

CAN Interface has to be initialized.

Non-AUTOSAR compliant API function which is enabled in case of
CANIF CANCEL SUPPORT API = STD ON.

Table 6-22 AP Canlf_CancelTxNotification

© 2016 Vector Informatik GmbH Version 6.09.00 54
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.23 Canlf_SetDynamicTxld

Prototype
void CanIf SetDynamicTxId(PduldType CanTxPduld, Can_ IdType CanId)

Parameter

CanTxPduld PDU ID of the Tx message
CanId CAN ID of the messageParameter

Return code

Functional Description
Called by the application to set the CAN Id of the corresponding Tx PDU.

Particularities and Limitations

CAN Interface has to be initialized.
Shall not be interrupted by a call of CanIf Transmit () for the same Tx PDU.

Table 6-23 APl Canlf_SetDynamicTxId

6.1.24 Canlf_ControllerModelndication
Prototype

void CanIf ControllerModeIndication(uint8 Controller, CanIf ControllerModeType
ControllerMode)

Parameter

Controller Channel where the mode transition happened
ControllerMode Controller mode to which the CAN controller transitioned

Return code

Functional Description

Called by the CAN driver to notify about successful controller mode transition

Particularities and Limitations

CAN Interface has to be initialized.

Table 6-24 API Canlf_ControllerModelndication

© 2016 Vector Informatik GmbH Version 6.09.00 55
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.25 Canlf_TrcvModelndication
Prototype

void CanIf TrcvModeIndication (uint8 TransceiverId, CanTrcv_TrcvModeType
TransceiverMode)

Parameter

TransceiverId Transceiver where the mode transition happened
TransceiverMode Transceiver mode to which the transceiver transitioned

Return code

Functional Description
Called by the transceiver driver to notify about successful transceiver mode transition
Particularities and Limitations

CAN Interface has to be initialized.

Table 6-25 API Canlf_TrcvModelndication
6.1.26 Canlf_ConfirmPnAvailability
Prototype

void CanIf ConfirmPnAvailability(uint8 TransceiverId)

Parameter

CAN transceiver, which was checked for PN availability

Return code

Functional Description

This service indicates that the transceiver is running in PN communication mode

Particularities and Limitations

This APl is only available in case of CANIF PN TRCV HANDLING = STD ON.

Table 6-26 API Canlf_ConfirmPnAvailability

© 2016 Vector Informatik GmbH Version 6.09.00 56
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.27 Canlf_ClearTrcvWufFlagindication

Prototype

void CanIf ClearTrcvWufFlagIndication(uint8 TransceiverId)

Parameter

CAN transceiver, for which the APl was called

Return code

Functional Description
This service indicates that the transceiver has cleared the WufFlag.

Particularities and Limitations

CanIf Init () has already been called and all transceiver driver have been initialized.
This APl is only available in case of CANIF PN TRCV HANDLING = STD ON.

Table 6-27 API Canlf_ClearTrcvWufFlagIndication

6.1.28 Canlf_CheckTrcvWakeFlagindication
Prototype

void CanIf CheckTrcvWakeFlagIndication(uint8 TransceiverId)

Parameter

CAN transceiver, for which the APl was called

Return code

Functional Description

This service indicates the reason for the wake up that the CAN transceiver has detected

CanIf Init () has already been called and all transceiver driver have been initialized.
This APl is only available in case of CANIF PN TRCV_HANDLING = STD ON.

Table 6-28 API Canlf_CheckTrcvWakeFlagIndication

© 2016 Vector Informatik GmbH Version 6.09.00 57
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.29 Canlf_SetBaudrate
Prototype

Std ReturnType CanIf SetBaudrate (uint8 ControllerId, uintl6 BaudRateConfigID)

Parameter
ControllerId Abstracted Canlf Controllerld which is assigned to a CAN
BaudRateConfigID References a baud rate configuration by ID

Return code

E OK Service request accepted, baudrate change started.
E NOT OK Service request not accepted.

Functional Description

This service shall set the baud rate configuration of the CAN controller.

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of
CANIF SET BAUDRATE API = STD ON.

Table 6-29 API Canlf_SetBaudrate

6.1.30 Canlf_ChangeBaudrate

Prototype

Std ReturnType CanIf ChangeBaudrate (uint8 ControllerId, const uintl6 Baudrate)
Parameter

ControllerId The Controller the Baudrate shall be changed for

Baudrate Baudrate to which shall be changed

Return code

E OK Service request accepted, change started
E NOT OK Service request not accepted

Functional Description

This service changes the baudrate of the CAN controller

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of
CANIF CHANGE BAUDRATE SUPPORT = STD ON.

Table 6-30 API Canlf_ChangeBaudrate

© 2016 Vector Informatik GmbH Version 6.09.00 58
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.31 Canlf_ChangeBaudrate

Prototype

Std ReturnType CanIf ChangeBaudrate (uint8 ControllerId, const uintl6 Baudrate)
Parameter

ControllerId The Controller the Baudrate shall be changed for

Baudrate Baudrate to which shall be changed

E OK Service request accepted, change started

E NOT OK Service request not accepted

Functional Description

This service changes the baudrate of the CAN controller

Particularities and Limitations

CAN Interface has to be initialized. This APl is provided in case of
CANIF CHANGE BAUDRATE SUPPORT = STD ON.

Table 6-31 API Canlf_ChangeBaudrate

6.1.32 Canlf_GetTxConfirmationState
Prototype
CanIf NotifStatusType CanIf GetTxConfirmationState (uint8 ControllerId)

Parameter
ControllerId Controller to be checked

Return code

CANIF NO NOTIFICATION No transmit event occurred for requested CAN Controller
CANIF_TX_ RX NOTIFICATION The CAN Controller has successfully transmitted any message

Functional Description

This service reports, if any TX confirmation has been done for the whole CAN controller since the last CAN
controller start.

Particularities and Limitations

CAN Interface has to be initialized. This APl is provided in case of
CANIF PUBLIC TX CONFIRM POLLING SUPPORT = STD ON.

Table 6-32 APl Canlf_GetTxConfirmationState

© 2016 Vector Informatik GmbH Version 6.09.00 59
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.33 Canlf_SetAddressTableEntry

Prototype

void CanIf SetAddressTableEntry (uint8 ControllerId, uint8 intAddr, uint8
busAddr)

Parameter

ControllerId The channel at which a J1939 address shall be set.
intAddr J1939 internal address.
busAddr J1939 bus address.

Return code

Functional Description

The service will be called to describe the relation between internal and external ID. Only used in J1939
environment.

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of
CANIF J1939 DYN ADDR SUPPORT != CANIF J1939 DYN ADDR DISABLED.

Table 6-33 API Canlf_SetAddressTableEntry

6.1.34 Canlf_ResetAddressTableEntry

Prototype
void CanIf ResetAddressTableEntry (uint8 ControllerId, uint8 intAddr)

Parameter

ControllerId The channel at which a J1939 internal address shall be reset.
intAddr J1939 internal address.

Return code

Functional Description

The service will be called to reset the relation between internal and external ID. Only used in J1939
environment.

Particularities and Limitations

CAN Interface has to be initialized. This APl is provided in case of
CANIF J1939 DYN ADDR SUPPORT != CANIF J1939 DYN ADDR DISABLED.

Table 6-34 APl Canlf_ResetAddressTableEntry

© 2016 Vector Informatik GmbH Version 6.09.00 60
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.35 Canlf_RamCheckExecute

Prototype
void CanIf RamCheckExecute (uint8 ControllerId)

Parameter

ControllerId The CAN-channel for which the RAM-check shall be executed.

Return code

Functional Description

This service requests an underlying CAN-channel to execute the RAM-check of CAN-controller-
HW-registers.

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of
CANIF EXTENDED RAM CHECK SUPPORT == STD ON.

Table 6-35 API Canlf_RamCheckExecute

6.1.36 Canlf _RamCheckEnableMailbox

Prototype

void CanIf RamCheckEnableMailbox (uint8 ControllerId, CanIf HwHandleType
HwHandle)

Parameter

ControllerId The CAN-channel to which the mailbox (<HwHandle>) belongs to.
HwHandle The mailbox which shall be enabled.

Return code

Functional Description

This service requests an underlying CAN-channel to enable a mailbox.

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of
CANIF EXTENDED RAM CHECK SUPPORT == STD ON.

Table 6-36 API Canlf_RamCheckEnableMailbox

© 2016 Vector Informatik GmbH Version 6.09.00 61
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.37 Canlf _RamCheckEnableController

Prototype
void CanIf RamCheckEnableController (uint8 ControllerId)

Parameter

ControllerId The CAN-channel which shall be enabled.

Return code

Functional Description
This service requests to enable an underlying CAN-channel.

Particularities and Limitations

CAN Interface has to be initialized. This API is provided in case of
CANIF EXTENDED RAM CHECK SUPPORT == STD_ ON.

Table 6-37 API Canlf_RamCheckEnableController

6.1.38 Canlf_RamCheckCorruptMailbox
Prototype

void CanIf RamCheckCorruptMailbox (uint8 ControllerId, CanIf HwHandleType
HwHandle)

Parameter

ControllerId The CAN-channel to which the corrupt mailbox (<HwHandle>) belongs to.
HwHandle The corrupt mailbox.

Return code

Functional Description

This service indicates about a corrupt mailbox.

Particularities and Limitations

This service may be used also if CAN Interface is NOT initialized. This APl is provided in case of
CANIF EXTENDED RAM CHECK SUPPORT == STD ON.

Table 6-38 API Canlf_RamCheckCorruptMailbox

© 2016 Vector Informatik GmbH Version 6.09.00 62
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.1.39 Canlf_RamCheckCorruptController

Prototype
void CanIf RamCheckCorruptController (uint8 ControllerId)

Parameter

ControllerId The corrupt CAN-channel.

Return code

Functional Description
This service indicates about a corrupt CAN-channel.

Particularities and Limitations

This service may be used also if CAN Interface is NOT initialized. This API is provided in case of
CANIF EXTENDED RAM CHECK SUPPORT == STD_ ON.

Table 6-39 API Canlf_RamCheckCorruptController

6.1.40 Canlf_SetPduReceptionMode

Prototype

Std ReturnType CanIf SetPduReceptionMode (PduldType id, CanIf ReceptionModeType
mode)

id The identifier of Rx-PDU whose reception mode shall be changed.
mode The reception mode which shall be set. Following reception modes are
possible:

1) CANIF RMT IGNORE CONTINUE: In case of a match the received
Rx-PDU is not forwarded to configured upper layer and the search for a
potential match continues.

2) CANIF RMT RECEIVE STOP: In case of a match the received
Rx-PDU is forwarded to configured upper layer.

Return code

E OK Service request accepted, reception mode was changed
E_NOT_OK Service request not accepted, reception mode was not changed

Functional Description

Via this API the reception mode of a Rx-PDU can be set.

Particularities and Limitations

CAN Interface has to be initialized. During the initialization the reception mode of all affected Rx-PDUs is set
to CANIF RMT RECEIVE_ STOP. This APl is provided in case of

CANIF SET PDU RECEPTION MODE SUPPORT == STD ON.

Table 6-40 API Canlf_SetPduReceptionMode

© 2016 Vector Informatik GmbH Version 6.09.00 63
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

6.2 Callout Functions
6.2.1 EcuM_BswErrorHook

Prototype
void EcuM BswErrorHook (uintl6 CanIfModuleId, uint8 CanIfInstanceld)

CanIfModuleId Contains the CANIF MODULE_ID (60) as defined by AUTOSAR.
CanIfInstanceld For the Canlf only one instance is available, so this value is always zero.

Return code

None

Functional Description

Called once by the Canlf during the initialization phase to indicate one of the following possible errors:
- Abort initialization as generator is not compatible

Particularities and Limitations

None

Call Context

This function is called in context of CanIf Init ().

Table 6-41 EcuM_BswErrorHook

6.2.2 Canlf_RxIndicationSubDataChecksumRxVerify

Prototype

Std ReturnType CanIf RxIndicationSubDataChecksumRxVerify (PduldType
CanIfRxPduld, Can IdType CanId, uint8 CanDlc, const uint8 *CanSduPtr)

CanIfRxPduld Canlf-internal unique handle 1D of Rx-PDU
CanId CAN identifier of received Rx-PDU
CanDlc Data length of received Rx-PDU
CanSduPtr Pointer to data of received Rx-PDU

Return code

E OK Verification of checksum passed. In this case the Rx-PDU is forwarded to upper layer.

E NOT OK Verification of checksum failed. In this case the Rx-PDU is discarded and NOT
forwarded to upper layer.

Functional Description

API called by Canlf in case of a data checksum PDU was received in order to verify its correctness.

Particularities and Limitations

This APl is called only if CANTF DATA CHECKSUM RX SUPPORT == STD_ON.
Call Context

This function is called in context of CanIf RxIndication().

© 2016 Vector Informatik GmbH Version 6.09.00 6
based on template version 2.10.0

S

VECTOR > Technical Reference CAN Interface

6.2.3 Canlf_TransmitSubDataChecksumTxAppend

Prototype

void CanIf TransmitSubDataChecksumTxAppend (const Can PduType
*txPduInfoPtr, uint8 *txPduDataWithChecksumPtr)

Parameter
txPdulnfoPtr Pointer to Tx-PDU-parameters: CAN identifier, data length, data.

txPduDataWithChecksu Pointer to data buffer where the data of Tx-PDU incl. the checksum shall be
mPtr stored in. The data checksum PDU is transmitted with data stored in this
buffer.

Note: Parameter "txPduDataWithChecksumPtr" may only be written with index
>= (0 and < CANIF_CFG_MAXTXDLC_PLUS_DATACHECKSUM (see file
Canlf_Cfg.h). The length of data can not be changed hence the checksum
must only be added within valid data-length of the Tx-PDU which is given by
range: O - (txPdulnfoPtr->length - 1).

Return code

None

Functional Description

API called by Canlf before transmission of a data checksum Tx-PDU in order to add a checksum to its
data.

Particularities and Limitations

This APl is called only if CANIF DATA CHECKSUM TX SUPPORT == STD_ON.
Call Context

This function is called in context of CanIf Transmit ().

© 2016 Vector Informatik GmbH Version 6.09.00 65
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

7 AUTOSAR Standard Compliance

Following restrictions apply to the current CAN Interface implementation.

7.1 Not supported AUTOSAR features

The following features which are specified by the AUTOSAR CAN Interface SWS ([1]) are
not supported.

7.1.1 Tx notification status

This feature is specified by the requirements: CANIF202, CANIF393, CANIF472,
CANIF331, CANIF391, CANIF334, CANIF335, CANIF609 Conf and CANIF589 Conf.

7.1.2 Rx notification status

This feature is specified by the requirements: CANIF230, CANIF336, CANIF339,
CANIF340, CANIF392, CANIF394, CANIF473, CANIF595_Conf and CANIF608_Conf.

7.1.3 Rx buffer

This feature is specified by the requirements: CANIF194, CANIF198, CANIF199,
CANIF324, CANIF325, CANIF326, CANIF330, CANIF329, CANIF600 Conf and
CANIF607_Conf.

7.2 Deviations

7.2.1 Tx buffer

At least and at most one Tx buffer is supported per each BasicCAN-Tx-PDU. Hence no
configuration can be performed by the user as intended by the attribute
CanIfBufferSize.

7.2.2 Partial networking

Against the requirement CANIF749 the Partial Networking Wakeup Tx Pdu Filter is
enabled only if the PDU mode of CAN Interface is set either to mode
CANIF GET TX ONLINE WU FILTER orto mode CANIF GET ONLINE WU FILTER.

7.2.3 AUTOSAR version check

The CAN Interface does not perform AUTOSAR release version check in accordance with
other modules because the version check is not specified by AUTOSAR clearly.

7.3 Limitations

The priority of a dynamic Tx-PDU is determined from the initial configured CAN identifier
and not from the CAN identifier set by using the APl CanIf SetDynamicTxId().

© 2016 Vector Informatik GmbH Version 6.09.00 66
based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

8 Glossary and Abbreviations

8.1 Glossary

Term Description

DaVinci Configurator 5 Configuration and generation tool for MICROSAR software components

Table 8-1 Glossary

8.2 Abbreviations

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

CanNm CAN Network Manager

CanSM CAN State Manager

CanTp CAN Transport Protocol

CanTrcv CAN Transceiver

CCMSM CAN Interface Controller Mode State Machine (for one controller)
CDD Complex Device Driver

ComM Communication Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

DLC Data Length Code

ECU Electronic Control Unit

EcuM ECU State Manager

FD Flexible Data-rate

FIFO First In First Out

HRH Hardware Receive Handle

HTH Hardware Transmit Handle

HW Hardware

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR

solution)

PDU Protocol Data Unit

PduR PDU Router

SchM Schedule Manager

SDU Service Data Unit

SRS Software Requirement Specification

SWC Software Component
© 2016 Vector Informatik GmbH Version 6.09.00 67

based on template version 2.10.0

VECTOR > Technical Reference CAN Interface

SWS Software Specification

Table 8-2 Abbreviations

© 2016 Vector Informatik GmbH Version 6.09.00 68
based on template version 2.10.0

VECTOR >

9 Contact

Visit our website for more information on

News

Products
Demo software
Support
Training data
Addresses

VVVYVVYV

www.vector-informatik.com

© 2016 Vector Informatik GmbH

Version 6.09.00
based on template version 2.10.0

Technical Reference CAN Interface

69

	1 Document Information
	1.1 History
	1.2 Reference Documents

	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Deviations regarding AUTOSAR standard
	3.2 Feature List
	3.3 Initialization
	3.4 Transmission
	3.4.1 Dynamic transmission
	3.4.2 Transmit-buffer
	3.4.3 Multiple Transmit-buffers
	3.4.4 Tx confirmation polling support
	3.4.5 Data checksum Tx

	3.5 Reception
	3.5.1 Ranges
	3.5.2 DLC check
	3.5.3 Data checksum Rx
	3.5.4 Control of reception mode of a Rx-PDU

	3.6 Communication Modes
	3.6.1 Controller Mode
	3.6.2 PDU Mode

	3.7 Polling
	3.8 CAN FD
	3.9 Meta data Rx- / Tx-support
	3.10 J1939 dynamic address support
	3.11 Error Notification
	3.12 Transceiver handling
	3.13 Sleep / WakeUp
	3.14 Bus Off
	3.15 Version Info
	3.16 Partial Networking
	3.17 Services used by the CAN Interface
	3.18 Multiple CAN drivers
	3.19 Extended RAM-check
	3.20 Critical Sections

	4 Integration
	4.1 Files and include structure
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Include Structure
	4.3 Compiler Abstraction and Memory Mapping

	5 Configuration
	5.1 Configuration of Post-Build

	6 API Description
	6.1 Services provided by the CAN Interface
	6.1.1 CanIf_GetVersionInfo
	6.1.2 CanIf_Init
	6.1.3 CanIf_SetControllerMode
	6.1.4 CanIf_GetControllerMode
	6.1.5 CanIf_Transmit
	6.1.6 CanIf_TxConfirmation
	6.1.7 CanIf_RxIndication
	6.1.8 CanIf_ControllerBusOff
	6.1.9 CanIf_SetPduMode
	6.1.10 CanIf_GetPduMode
	6.1.11 CanIf_InitMemory
	6.1.12 CanIf_CancelTxConfirmation
	6.1.13 CanIf_SetTrcvMode
	6.1.14 CanIf_GetTrcvMode
	6.1.15 CanIf_GetTrcvWakeupReason
	6.1.16 CanIf_SetTrcvWakeupMode
	6.1.17 CanIf_CheckWakeup
	6.1.18 CanIf_CheckValidation
	6.1.19 CanIf_ResetBusOffStart
	6.1.20 CanIf_ResetBusOffEnd
	6.1.21 CanIf_CancelTransmit
	6.1.22 CanIf_CancelTxNotification
	6.1.23 CanIf_SetDynamicTxId
	6.1.24 CanIf_ControllerModeIndication
	6.1.25 CanIf_TrcvModeIndication
	6.1.26 CanIf_ConfirmPnAvailability
	6.1.27 CanIf_ClearTrcvWufFlagIndication
	6.1.28 CanIf_CheckTrcvWakeFlagIndication
	6.1.29 CanIf_SetBaudrate
	6.1.30 CanIf_ChangeBaudrate
	6.1.31 CanIf_ChangeBaudrate
	6.1.32 CanIf_GetTxConfirmationState
	6.1.33 CanIf_SetAddressTableEntry
	6.1.34 CanIf_ResetAddressTableEntry
	6.1.35 CanIf_RamCheckExecute
	6.1.36 CanIf_RamCheckEnableMailbox
	6.1.37 CanIf_RamCheckEnableController
	6.1.38 CanIf_RamCheckCorruptMailbox
	6.1.39 CanIf_RamCheckCorruptController
	6.1.40 CanIf_SetPduReceptionMode

	6.2 Callout Functions
	6.2.1 EcuM_BswErrorHook
	6.2.2 CanIf_RxIndicationSubDataChecksumRxVerify
	6.2.3 CanIf_TransmitSubDataChecksumTxAppend

	7 AUTOSAR Standard Compliance
	7.1 Not supported AUTOSAR features
	7.1.1 Tx notification status
	7.1.2 Rx notification status
	7.1.3 Rx buffer

	7.2 Deviations
	7.2.1 Tx buffer
	7.2.2 Partial networking
	7.2.3 AUTOSAR version check

	7.3 Limitations

	8 Glossary and Abbreviations
	8.1 Glossary
	8.2 Abbreviations

	9 Contact

