

MICROSAR CAN State Manager

Technical Reference

Version 2.9.0

Authors Mark A. Fingerle

Status Released

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 2
based on template version 5.0.0

Document Information

History

Author Date Version Remarks

Mark A. Fingerle 2012-08-08 2.0.0 Creation from scratch

Mark A. Fingerle 2012-10-23 2.1.0 ESCAN00062053 Interface to provide
internal bus-off recovery level 3.8, Table
3-4, 5.1, 5.2.13

ESCAN00062050 Instruction order for
transition to no communication Figure 3-3
Figure 3-5

Update state machine pictures Figure 3-1,
Figure 3-2, Figure 3-4

Mark A. Fingerle 2013-05-03 2.2.0 ESCAN00065274 Trigger CanIf PduMode
wake up filter in PN use case 6.2.6

Remove chapter “4.2 Include Structure”
and “4.3 Compiler Abstraction and Memory
Mapping”

Mark A. Fingerle 2013-06-13 2.3.0 ESCAN00068036 SetEcuPassive 0,
5.2.14, 6.2.7 ESCAN00068039
PreventBusSleepAtStartUp 3.13, 5.2.15,
6.2.8

Mark A. Fingerle 2013-08-13 2.4.0 ESCAN00069109 3.11 Baud Rate
Adaption

ESCAN00068797 3.14 BusOff Recovery
Notifications

Mark A. Fingerle 2014-10-13 2.5.0 ESCAN00076768 Post-Build Selectable
(Identity Manager) support 6.2.9

ESCAN00076224 Add APIs to Assist EcuM
Wakeup Validation 3.15, 5.2.11, 5.2.12

ESCAN00079340 Description BCD-coded
return-value of GetVersionInfo()

AUTOSAR deviation 6.1

Mark A. Fingerle 2015-11-13 2.6.0 ESCAN00086062 3.10 Swift Tx Timeout
Exception

Mark A. Fingerle 2016-01-13 2.7.0 ESCAN00088643 Extended RAM Check
5.2.2, 5.2.16, 5.2.17, 5.4.8, 5.4.9, 5.5.1,
5.5.2, 5.5.3, 5.5.4

Mark A. Fingerle 2016-05-13 2.8.0 ESCAN00090185 Wakeup validation fail
(Start/Stop wakeup sources); Wakeup
validation must not be used with
asynchronous Trcv (SPI) 5.2.11 5.2.12

ESCAN00090829 Improve description how
to redirect "Error Reporting APIs" 3.17.1,
3.17.2

Mark A. Fingerle 2016-08-01 2.9.0 ESCAN00091303 6.2.13 Expanded Tx
Timeout Exception Handling

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 3
based on template version 5.0.0

Reference Documents

No. Source Title Version

[1] AUTOSAR Specification of CAN State Manager 2.2.0

[2] AUTOSAR Specification of Development Error Tracer 3.2.0

[3] AUTOSAR Specification of Diagnostics Event Manager 4.2.0

[4] AUTOSAR List of Basic Software Modules 1.6.0

[5] AUTOSAR Specification of CAN Interface 5.0.0

[6] AUTOSAR Specification of Communication Manager 4.0.0

[7] AUTOSAR Specification of Basic Software Mode Manager 1.2.0

Scope of the Document

This technical reference describes the general use of the CAN State Manager basis
software. All aspects which are CAN controller specific are described in the technical
reference of the CAN Interface, which is also part of the delivery.

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 4
based on template version 5.0.0

Contents

1 Component History .. 9

2 Introduction... 10

2.1 Architecture Overview .. 10

3 Functional Description ... 12

3.1 Features .. 12

3.2 Initialization .. 13

3.3 State Machine .. 13

3.3.1 Mode Request Indication and Repetition .. 14

3.3.2 Communication Mode Request Change (During Pending Mode
Indication or Running Bus-Off Recovery) ... 14

3.3.3 CANSM_NO_COMMUNICATION to
CANSM_FULL_COMMUNICATION ... 15

3.3.4 CANSM_FULL_COMMUNICATION to
CANSM_SILENT_COMMUNICATION ... 16

3.3.5 CANSM_SILENT_COMMUNICATION ... 16

3.3.6 CANSM_SILENT_COMMUNICATION to
CANSM_FULL_COMMUNICATION ... 16

3.3.7 Transition to CANSM_NO_COMMUNICATION 17

3.4 Bus-Off Recovery ... 18

3.5 Main Function .. 19

3.6 Communication Modes .. 19

3.7 Communication Mode Polling... 19

3.8 Bus-off Level Polling .. 19

3.9 Partial Networking .. 19

3.10 Tx Timeout Exception .. 21

3.11 Baud Rate Adaption ... 21

3.12 ECU Passive Mode .. 22

3.13 PreventBusSleepAtStartUp .. 22

3.14 BusOff Recovery Notifications Extension of Tx Offline Duration 23

3.15 Wake-up Validation Assistance .. 23

3.16 Start/Stop Wake-up Sources .. 23

3.16.1 Normal Behavior .. 23

3.16.2 Usage .. 24

3.16.3 Exceptional Behavior ... 24

3.16.4 Potential Effect ... 24

3.16.4.1 Start of the Wakeup Sources Fail 24

3.16.4.2 Stop of the Wakeup Sources Fail 24

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 5
based on template version 5.0.0

3.16.5 Countermeasures .. 25

3.17 Error Handling .. 26

3.17.1 Development Error Reporting ... 26

3.17.2 Production Code Error Reporting ... 27

4 Integration ... 29

4.1 Scope of Delivery ... 29

4.1.1 Static Files ... 29

4.1.2 Dynamic Files .. 29

4.2 Critical Sections ... 30

5 API Description ... 32

5.1 Type Definitions ... 32

5.2 Services Provided by CanSM... 32

5.2.1 CanSM_InitMemory ... 32

5.2.2 CanSM_PreInit ... 33

5.2.3 CanSM_Init .. 33

5.2.4 CanSM_MainFunction .. 34

5.2.5 CanSM_RequestComMode ... 34

5.2.6 CanSM_GetCurrentComMode ... 35

5.2.7 CanSM_GetVersionInfo ... 35

5.2.8 CanSM_CheckBaudrate .. 36

5.2.9 CanSM_ChangeBaudrate .. 36

5.2.10 CanSM_SetBaudrate ... 37

5.2.11 CanSM_StartWakeupSources .. 38

5.2.12 CanSM_StopWakeupSources .. 38

5.2.13 CanSM_CheckBorLevel ... 39

5.2.14 CanSM_SetEcuPassive ... 39

5.2.15 CanSM_PreventBusSleepAtStartUp .. 40

5.2.16 CanSM_RamCheckStatus ... 40

5.2.17 CanSM_RamCheckEnableMailbox .. 41

5.3 Services Used by CanSM .. 41

5.4 Callback Functions ... 42

5.4.1 CanSM_ControllerBusOff ... 42

5.4.2 CanSM_ControllerModeIndication .. 43

5.4.3 CanSM_TransceiverModeIndication ... 43

5.4.4 CanSM_ClearTrcvWufFlagIndication ... 44

5.4.5 CanSM_CheckTransceiverWakeFlagIndication 44

5.4.6 CanSM_ConfirmPnAvailability.. 45

5.4.7 CanSM_TxTimeoutException ... 45

5.4.8 CanSM_RamCheckCorruptMailbox ... 46

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 6
based on template version 5.0.0

5.4.9 CanSM_RamCheckCorruptController .. 46

5.5 Callout Functions ... 47

5.5.1 Appl_CanSM_RamCheckStart ... 47

5.5.2 Appl_CanSM_RamCheckCorruptController 47

5.5.3 Appl_CanSM_RamCheckCorruptMailbox .. 48

5.5.4 Appl_CanSM_RamCheckFinished ... 48

6 AUTOSAR Standard Compliance... 50

6.1 Deviations .. 50

6.1.1 Communication mode requests are acceped if possible 50

6.2 Additions/ Extensions ... 50

6.2.1 API CanSM_InitMemory() .. 50

6.2.2 No Mode Notification During CanSM_Init ... 50

6.2.3 Configuration Options .. 50

6.2.4 Additional Bus-Off Recovery in State Silent...................................... 50

6.2.5 API CanSM_CheckBorLevel() .. 50

6.2.6 Partial Network Wake Up Filter .. 50

6.2.7 ECU Passive Mode .. 50

6.2.8 PreventBusSleepAtStartUp .. 50

6.2.9 Post-Build Selectable (Identity Manager) ... 50

6.2.10 APIs to Assist EcuM Wakeup Validation ... 51

6.2.11 Swift or Large Tx Timeout Exception handling 51

6.2.12 Extended RAM Check .. 51

6.3 Limitations.. 51

6.3.1 Controllers ... 51

6.3.2 Configuration Class .. 51

7 Glossary and Abbreviations .. 52

7.1 Glossary .. 52

7.2 Abbreviations ... 52

8 Contact .. 53

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 7
based on template version 5.0.0

Illustration List

Figure 2-1 AUTOSAR architecture ... 10
Figure 2-2 Interfaces to adjacent modules of the CanSM ... 11
Figure 3-1 CanSM state machine .. 14
Figure 3-2 Sub state transition to CANSM_FULL_COMMUNICATION 15
Figure 3-3 Sub state transition to CANSM_NO_COMMUNICATION 17
Figure 3-4 CanSM sub-state bus-off recovery .. 18
Figure 3-5 Sub state Partial Network transition to CANSM_NO_COMMUNICATION . 20

Tables

Table 1-1 Component history.. 9
Table 3-1 Supported AUTOSAR standard conform features 12
Table 3-2 Not supported AUTOSAR standard conform features 12
Table 3-3 Features provided beyond the AUTOSAR standard 13
Table 3-4 Service IDs ... 27
Table 3-5 Errors reported to DET ... 27
Table 3-6 Errors reported to DEM ... 28
Table 4-1 Static files ... 29
Table 4-2 Generated files ... 30
Table 5-1 Type definitions ... 32
Table 5-2 CanSM_InitMemory .. 33
Table 5-3 CanSM_PreInit ... 33
Table 5-4 CanSM_Init ... 34
Table 5-5 CanSM_MainFunction .. 34
Table 5-6 CanSM_RequestComMode .. 35
Table 5-7 CanSM_GetCurrentComMode .. 35
Table 5-8 CanSM_GetVersionInfo .. 36
Table 5-9 CanSM_CheckBaudrate ... 36
Table 5-10 CanSM_ChangeBaudrate ... 37
Table 5-11 CanSM_SetBaudrate .. 37
Table 5-12 CanSM_StartWakeupSources .. 38
Table 5-13 CanSM_StopWakeupSources .. 39
Table 5-14 CanSM_CheckBorLevel ... 39
Table 5-15 CanSM_SetEcuPassive .. 40
Table 5-16 CanSM_PreventBusSleepAtStartUp ... 40
Table 5-17 CanSM_RamCheckStatus .. 41
Table 5-18 CanSM_RamCheckEnableMailbox ... 41
Table 5-19 Services used by the CanSM .. 42
Table 5-20 CanSM_ControllerBusOff ... 43
Table 5-21 CanSM_ControllerModeIndication .. 43
Table 5-22 CanSM_TransceiverModeIndication ... 44
Table 5-23 CanSM_ClearTrcvWufFlagIndication .. 44
Table 5-24 CanSM_CheckTransceiverWakeFlagIndication .. 45
Table 5-25 CanSM_ConfirmPnAvailability .. 45
Table 5-26 CanSM_TxTimeoutException ... 46
Table 5-27 CanSM_RamCheckCorruptMailbox .. 46
Table 5-28 CanSM_RamCheckCorruptController ... 47
Table 5-29 Appl_CanSM_RamCheckStart ... 47
Table 5-30 Appl_CanSM_RamCheckCorruptController .. 48
Table 5-31 Appl_CanSM_RamCheckCorruptMailbox ... 48
Table 5-32 Appl_CanSM_RamCheckFinished .. 49

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 8
based on template version 5.0.0

Table 7-1 Glossary ... 52
Table 7-2 Abbreviations .. 52

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 9
based on template version 5.0.0

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

2.0.0 Creation according to AUTOSAR 4.0.3

5.1.0 Extended RAM Check

Table 1-1 Component history

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 10
based on template version 5.0.0

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module CanSM as specified in [1].

Supported AUTOSAR Release*: 4

Supported Configuration Variants: pre-compile, Post-Build Selectable

Vendor ID: CANSM_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: CANSM_MODULE_ID 140 decimal

(according to ref. [4])

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

The CAN State Manager (CanSM) realizes a software layer between the Communication
Manager (ComM) and the CAN Interface (CanIf). The CanSM handles the startup and
shutdown of the communication of a CAN network. The CAN State Manager maps the
CAN State Manager states to the states of the ComM and causes the necessary actions to
change the CAN State Manager state to those requested by the ComM. The main function
of the CAN State Manager is called cyclically by the Schedule Manager (SchM).

2.1 Architecture Overview

The following figure shows where the CanSM is located in the AUTOSAR architecture.

Figure 2-1 AUTOSAR architecture

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 11
based on template version 5.0.0

The next figure shows the interfaces to adjacent modules of the CanSM. These interfaces
are described in chapter 5.

Figure 2-2 Interfaces to adjacent modules of the CanSM

Applications do not access the services of the BSW modules directly.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 12
based on template version 5.0.0

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
CanSM.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

> Table 3-1 Supported AUTOSAR standard conform features

> Table 3-2 Not supported AUTOSAR standard conform features

For further information of not supported features see also chapter 6.

Vector Informatik provides further CanSM functionality beyond the AUTOSAR standard.
The corresponding features are listed in the table

> Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

Translation of network communication mode requests

Output of current network communication modes (Polling and Callback)

Control of peripherals (CAN Transceivers, CAN Controllers)

Control of PDU mode

Handle the network mode via a separate state machine per network

Bus error management: Bus-off recovery via a separate state machine per network

Change Baud Rate handling

Tx Timeout Exception handling

Error classification, detection and notification

Enable and disable development and production error detection

Table 3-1 Supported AUTOSAR standard conform features

The following features specified in [1] are not supported:

Category Description ASR
Version

Functional Several controllers per network. 4.0.3

Config Change networks and controllers via Post-build configuration. 4.0.3

Config Configuration variants “link-time”. 4.0.3

Table 3-2 Not supported AUTOSAR standard conform features

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 13
based on template version 5.0.0

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

Deactivate the DEM at pre-compile time, like DET.

Changes of the communication mode are possible even during a pending mode indication.

Handling of bus-off events which occurs after CANSM_FULL_COMMUNNICATION has been left.

Interface to provide internal bus-off recovery level; CanSM_CheckBorLevel()

PduMode wake up filter in PN use case

Execute transition from SILENT to FULL within RequestComMode

ECU active/passive mode functionality

Prevent the bus sleep state of the CanIf, CanDrv and CanTrcv at CanSM initialization for the
given CAN network handle

MICROSAR Identity Manager using Post-Build Selectable

Extended RAM Check

Table 3-3 Features provided beyond the AUTOSAR standard

3.2 Initialization

Some embedded targets do not initialize RAM to zero during start-up. Therefore some
variables have to be initialized explicitly if they need a specific value before the

initialization function CanSM_Init is called. This is done by the function

CanSM_InitMemory. The function initializes the CanSM variables and sets the state to

‘not initialized’. The function has to be called before the initialization function CanSM_Init.

After that, the initialization CanSM_Init has to be triggered and the CAN State Manager

will set the internal used variables to their start values to ensure a deterministic behavior of
the state machines.

Info
The CanSM initializes the CAN channel into the state NO COMMUNICATION. This
means, the CAN modules (CanIf, CanDrv and CanTrcv) are set into the corresponding
state for NO COMMUNCIATION (bus sleep). During this transition, detected wake-up
reasons, inside the CAN modules, are cleared.

This leads to the behavior that wake-up events, which are triggered by the CAN bus,
cannot be detected and/or validated during the initialization phase.

If the detection/validation of the wake up information is necessary for the ECU then the
CanSM API CanSM_PreventBusSleepAtStartUp() can be used to prevent the bus
sleep mode at start up for the above listed CAN modules.

3.3 State Machine

The CanSM functionality cannot be used before the API function CanSM_Init has been

called. If the CanSM_Init function is executed successfully the CanSM starts the

transition to the state CANSM_NO_COMMUNNICATION.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 14
based on template version 5.0.0

Figure 3-1 CanSM state machine

3.3.1 Mode Request Indication and Repetition

If the CanSM triggers the transceiver or the controller, the CanSM waits for the
corresponding indication that the requested mode is reached. If the function call returns
E_NOT_OK and the corresponding indication is missing, the CanSM repeats the request
in the next main cycle. The CanSM repeats a controller/transceiver mode request also if
the correct mode indication is not received within the

CanSMModeRequestRepetitionTime.

Each repetition is counted and if the amount exceeds the value

CanSMModeRequestRepetitionMax, the counter is reset, the Det will be informed with

E_MODE_REQUEST_TIMEOUT and the CanSM performs the transition to

CANSM_NO_COMMUNICATION. The repetition counter is also reset if the desired final state

is reached.

3.3.2 Communication Mode Request Change (During Pending Mode Indication or
Running Bus-Off Recovery)

If the state machine reachs a sub state and a changed mode request is present, the state
machine changes immediately the “current direction” to reach the desired communication
mode. The CanSM ensures that the controller and transceiver are set to the corresponding
mode. Therefore the CanSM performs always the whole sub-state machine, so if e.g. a

stm CANSM_BSM

PowerOff

CANSM_BSM_S_NOCOM

CANSM_BSM_S_SILENTCOM

A

CANSM_BSM_S_NOT_INITIALIZED

CANSM_BSM_S_FULLCOM

CANSM_BSM_S_PRE_NOCOM

CANSM_BSM_S_PRE_FULLCOM

PowerOn

T_FULL_COM_MODE_REQUEST

T_FULL_COM_MODE_REQUEST

/E_SILENT_TO_FULL_COM

T_NO_COM_MODE_REQUEST

/E_PRE_NO_COM

CanSM_Init

/E_PRE_NO_COM

/E_NOCOM

/E_FULLCOM

T_NO_COM_MODE_REQUEST

T_NO_COM_MODE_REQUEST,

T_SILENT_COM_MODE_REQUEST

/E_FULL_TO_SILENT_COM

T_FULL_COM_MODE_REQUEST

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 15
based on template version 5.0.0

startup is skipped by a NoCom request the CanSM changes the controller mode, too, even

if it has not been changed and it is still STOPPED.

Exception:

COMM_SILENT_COMMUNICATION request can NOT be requested if

 The transition (from SILENT or after initialization) to CANSM_NO_COMMUNNICATION has

been started

 The CanSM is in state CANSM_SILENT_COMMUNNICATION

 The CanSM is in state CANSM_NO_COMMUNNICATION

3.3.3 CANSM_NO_COMMUNICATION to CANSM_FULL_COMMUNICATION

Figure 3-2 Sub state transition to CANSM_FULL_COMMUNICATION

In this state there is no communication on the CAN channel. When full communication is

requested the CanSM sets the transceiver mode to NORMAL and the controller mode to

stm CANSM_BSM_S_PRE_FULLCOM

CANSM_BSM_S_PRE_FULLCOM

S_TRCV_NORMAL

+ do / DO_SET_TRCV_MODE_NORMAL

S_CC_STOPPED

+ do / DO_SET_CC_MODE_STOPPED

S_CC_STARTED

+ do / DO_SET_CC_MODE_STARTED

ExitPoint

To

FULLCOM

EntryPoint

S_TRCV_NORMAL_WAIT

S_CC_STOPPED_WAIT

S_CC_STARTED_WAIT

ExitPoint

T_CC_STARTED_INDICATED
T_CC_STARTED_TIMEOUT

T_CC_STOPPED_INDICATED

T_CC_STOPPED_TIMEOUT

T_TRCV_NORMAL_TIMEOUT

T_TRCV_NORMAL_INDICATED

T_CC_STARTED_INDICATED

T_REPEAT_MAX

[G_TRCV_NORMAL_E_OK]

[G_CC_STARTED_E_OK]

[G_CC_STOPPED_E_OK]

T_REPEAT_MAX

T_CC_STOPPED_INDICATED

T_TRCV_NORMAL_INDICATED

T_REPEAT_MAX

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 16
based on template version 5.0.0

STARTED (via STOPPED). In case of a successful transition the CanSM sets the Rx and Tx

Pdu Mode to ONLINE, informs the ComM (see [6]) and the BswM (see [7]) about the new

communication state and starts the “ensure timer”. If the CanSMBorTimeTxEnsured

lapse without a bus-off indication the CanSM informs the Dem that no bus-off is present.
Alternatively to the “ensure timer” the CanSM may poll the TxState to decide that no bus-

off is present if CanSMBorTxConfirmationPolling is activated.

Caution
This chapter describes only the normal shutdown. In case a partial network is activated
the CanSM performs an alternative sequence which is described in chapter 3.9.

3.3.4 CANSM_FULL_COMMUNICATION to CANSM_SILENT_COMMUNICATION

As long as full communication is requested the CanSM stays in this state, otherwise the
CanSM switches to silent mode and stops the Tx PDU mode. In case of a successful
transition the CanSM notifies the ComM and BswM about the

CANSM_SILENT_COMMUNICATION communication state.

3.3.5 CANSM_SILENT_COMMUNICATION

The state represents the prepare bus sleep phase of the network. The node is still able to
receive CAN messages but does not transmit them.

3.3.6 CANSM_SILENT_COMMUNICATION to CANSM_FULL_COMMUNICATION

According to the requested communication mode the CanSM switches back to

CANSM_FULL_COMMUNNICATION, starts the Tx PDU mode and notifies the ComM and

BswM about the new communication state.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 17
based on template version 5.0.0

3.3.7 Transition to CANSM_NO_COMMUNICATION

Figure 3-3 Sub state transition to CANSM_NO_COMMUNICATION

The CanSM informs the BswM about the communication CANSM_NO_COMMUNICATION

immediately if the transition shutdown process has been started. According to the

requested communication mode the CanSM switches to CANSM_NO_COMMUNICATION.

Then the CanSM sets the controller to SLEEP (via STOPPED) and the transceiver to

STANDBY (via NORMAL). In case of a successful transition the CanSM informs the ComM

about the new communication state (if this transition is executed in the call context of

stm CANSM_BSM_DeinitPnNotSupported

CANSM_BSM_DeinitPnNotSupported

CANSM_BSM_DeinitPnNotSupportedProceed

S_CC_SLEEP

+ do / DO_SET_CC_MODE_SLEEP

S_CC_STOPPED

+ do / DO_SET_CC_MODE_STOPPED

S_TRCV_NORMAL

+ do / DO_SET_TRCV_MODE_NORMAL

S_TRCV_STANDBY

+ do / DO_SET_TRCV_MODE_STANDBY

EntryPoint

ExitPoint

S_CC_STOPPED_WAIT

S_CC_SLEEP_WAIT

S_TRCV_NORMAL_WAIT

S_TRCV_STANDBY_WAIT

T_TRCV_STANDBY_INDICATED

T_TRCV_STANDBY_INDICATED

T_TRCV_NORMAL_INDICATED

T_TRCV_NORMAL_TIMEOUT

T_CC_SLEEP_INDICATED

T_CC_SLEEP_TIMEOUT

T_CC_STOPPED_TIMEOUT

CANSM_BSM_T_TRCV_STANDBY_TIMOUT

T_REPEAT_MAX

[G_TRCV_STANDBY_E_OK]

[G_TRCV_NORMAL_E_OK]
T_TRCV_NORMAL_INDICATED

T_CC_STOPPED_INDICATED

[CANSM_BSM_G_CC_STOPPED_E_OK]

T_CC_SLEEP_INDICATED
[G_CC_SLEEP_E_OK]

T_CC_STOPPED_INDICATED

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 18
based on template version 5.0.0

CanSM_Init the ComM and BswM functions are not called because these modules will

be initialized after the CanSM).

3.4 Bus-Off Recovery

Figure 3-4 CanSM sub-state bus-off recovery

In case bus-off is indicated the CanSM informs the Dem (E_BUSOFF and

EVENT_STATUS_PREFAILED), the ComM (SILENT) and BswM (BUSOFF). In the next

step the CanSM restarts the controller to STARTED mode. If the according mode indication

is received the CanSM sets the Rx Pdu Mode to ONLINE and Tx Pdu Mode to OFFLINE

and starts the bus-off timer. If the CanSMBorTimeL1 (or CanSMBorTimeL2 if the bus-off

count is equal or greater than CanSMBorCounterL1ToL2) elapse CanSM reactivates the

Tx path of the channel again, informs the ComM (FULL) and BswM (FULL) and starts the

“ensure timer”. If the CanSMBorTimeTxEnsured timer has elapsed without a bus-off

indication the CanSM informs the Dem, otherwise the next bus-off recovery sequence is
started. The “ensure timer” can also substituted by polling the TxState if

CanSMBorTxConfirmationPolling is activated as mentioned above.

stm CANSM_BSM_S_FULLCOM

CANSM_BSM_S_FULLCOM

S_RESTART_CC

+ do / DO_SET_CC_MODE_STARTED

S_TX_OFF

S_BUS_OFF_CHECK,

S_NO_BUS_OFF

EntryPoint

CANSM_BSM_S_RESTART_CC_WAIT

ExitPoint

T_REPEAT_MAX

[G_RESTART_CC_E_OK]

[G_TX_ON]

/E_TX_ON

[G_BUS_OFF_PASSIVE]

/E_BUS_OFF_PASSIVE

T_RESTART_CC_INDICATED

/E_TX_OFF

T_RESTART_CC_TIMEOUT

T_BUS_OFF

/E_BUS_OFF

[ComModeRequest

NoCom or Silent]

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 19
based on template version 5.0.0

Note
The indicated Dem event does not instantly lead to a DTC due to the EventStatus pre-
failed. The mechanism to qualify the event as failed has to be configured within the
DEM [3].

3.5 Main Function

The CanSM has one main function which has to be called cyclically by the SchM. The
main function triggers a state transition in case of a received mode indication or if a timer
elapses.

3.6 Communication Modes

The ComM collects the communication requests from the SWC and from the network.
Accordingly the ComM calculates the needed communication mode and requests this from

the CAN State Manager via the function CanSM_RequestComMode.

3.7 Communication Mode Polling

The ComM is informed about every mode change by the CAN State Manager via the

callback function ComM_BusSM_ModeIndication.

Additional the ComM may request the communication mode which is currently active by

calling the API function CanSM_GetCurrentComMode. The CAN State Manager will

deliver the communication mode to the pointer passed as a function parameter.

3.8 Bus-off Level Polling

The current bus-off level can be determinate by calling the API function

CanSM_CheckBorLevel. The CanSM will deliver the bus-off level (CANSM_BOR_NONE,

CANSM_BOR_LEVEL1 or CANSM_BOR_LEVEL2) to the pointer passed as a function

parameter.

3.9 Partial Networking

If Partial Networking for a CAN channel is activated the CAN transceiver can only be
woken up by a specified CAN Message. Also the Network Management will ignore NM
messages which do not belong to the Partial Network and the CanSM will perform an
alternative shutdown sequence.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 20
based on template version 5.0.0

Figure 3-5 Sub state Partial Network transition to CANSM_NO_COMMUNICATION

stm CANSM_BSM_DeinitPnSupported

CANSM_BSM_DeinitPnSupported

CANSM_BSM_DeinitPnSupportedProceed

EntryPointExitPoint

S_PN_CLEAR_WUF

+ do / DO_CLEAR_TRCV_WUF

S_PN_CLEAR_WUF_WAIT

S_PN_CC_STOPPED

+ do / DO_SET_CC_MODE_STOPPED

S_CC_STOPPED_WAIT

S_TRCV_STANDBY

+ do / DO_SET_TRCV_MODE_STANDBY

S_TRCV_STANDBY_WAIT

S_CC_SLEEP

+ do / DO_SET_CC_MODE_SLEEP

S_CC_SLEEP_WAIT

S_CHECK_WFLAG_IN_CC_SLEEP

+ do / DO_CHECK_WFLAG

S_CHECK_WUF_IN_CC_SLEEP_WAIT

S_CHECK_WFLAG_IN_NOT_CC_SLEEP

+ do / DO_CHECK_WFLAG

S_CHECK_WUF_IN_NOT_CC_SLEEP_WAIT

S_TRCV_NORMAL

+ do / DO_SET_TRCV_MODE_NORMAL

S_TRCV_NORMAL_WAIT

Junction

[G_CC_SLEEP_E_OK]

T_TRCV_NORMAL_TIMEOUT

T_TRCV_NORMAL_INDICATED

[G_TRCV_NORMAL_E_OK]

T_TRCV_NORMAL_INDICATED

T_CHECK_WFLAG_INDICATED

T_CHECK_WFLAG_TIMEOUT

T_CHECK_WFLAG_INDICATED

[G_CHECK_WFLAG_E_OK]

T_CHECK_WFLAG_TIMEOUT

T_CHECK_WFLAG_INDICATED

T_CHECK_WFLAG_INDICATED

[G_CHECK_WFLAG_E_OK]

CANSM_BSM_T_CC_SLEEP_TIMEOUT

T_CC_STOPPED_INDICATED

[G_PN_CLEAR_WUF_E_OK]

T_CLEAR_WUF_INDICATED
T_CLEAR_WUF_TIMEOUT

T_CLEAR_WUF_INDICATED

T_CC_SLEEP_INDICATED

[G_CC_STOPPED_E_OK]

T_CC_SLEEP_INDICATED

T_CC_STOPPED_TIMEOUT

T_TRCV_STANDBY_INDICATED

[G_TRCV_STANDBY_E_OK]

T_TRCV_STANDBY_INDICATED

T_TRCV_STANDBY_TIMOUT

T_REPEAT_MAX

T_CC_STOPPED_INDICATED

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 21
based on template version 5.0.0

If the feature has been enabled globally (at pre-compile time) and on the desired channel,
the CanSM first resets the current available wake-up information in the transceiver, before

the transceiver is set to STANDBY and the controller to SLEEP. If this is done, the CanSM

triggers the function CanIf_CheckTrcvWakeFlag to handle a wake-up which might have

occurred during the shutdown. If an API call does not deliver the expected reaction it will
called again as described in chapter 3.3, subchapter “Mode Request Indication and

Repetition”. But the absence of the controller STOPPED indication has an exceptional

nature and does not lead to a repetition. Instead of the repetition the

CheckTrcvWakeFlag will be triggered and the whole shutdown sequence will be

repeated from start after the CanSM_CheckTransceiverWakeFlagIndication has

been received.

3.10 Tx Timeout Exception

If the CanSM gets the CanSM_TxTimeoutException notification the CanSM performs

the transition to CANSM_NO_COMMUNICATION, except bus-off is active. In this case the

CanSM_TxTimeoutException notification will be ignored because it is quite likely a

“false report” due to the TxOffline phase and the communication will work again after that
and if not, the “Tx Timeout Exception” will be indicated by the CanNm again anyway.

If a “Tx Timeout Exception” handling is running any incoming communication mode

request will be postponed until CANSM_NO_COMMUNICATION has been reached. After that

the transition to CANSM_FULL_COMMUNICATION will be started if the last requested

communication mode was COMM_FULL_COMMUNICATION or

COMM_SILENT_COMMUNICATION.

In addition the CanSM provides an abbreviated recovery mechanism. If the feature

CanSMSwiftTxTimeoutRecovery is activated, only the conroller is set to STOPPED and back

to STARTED, instead of executing the entire shutdown and start up sequence. If it was not

successful to set the controller back to STARTED within the first try the CanSM indicates

COMM_SILENT_COMMUNICATION to the ComM and CANSM_BSWM_NO_COMMUNICATION to the BswM
and executes the stanard repetition mechanism to reach the needed controller mode.

3.11 Baud Rate Adaption

The adaption of the baud rate is started by calling the function CanSM_SetBaudrate (or

CanSM_ChangeBaudrate). A Baud Rate Change is only possible if the communication

state is COMM_FULL_COMMUNICATION and no bus-off is present (validated by “Tx ensured

time” or “Tx Confirmation”).

When the Baud Rate Change has been accepted the CanSM informs the BswM

(CHANGE_BAUDRATE), set the PDU mode to OFFLINE and the controller mode to

STOPPED. After the controller mode STOPPED is reached the CanSM informs the ComM

(NoCom) and lead the driver to set the new baud rate. Then the controller mode will be set

back to STARTED. After the controller mode STARTED is reached the CanSM set the PDU

mode to ONLINE.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 22
based on template version 5.0.0

Note

The feature is intended to be used by the Dcm module.

Caution

The CanSM_ChangeBaudrate API is deprecated. So it is recommended to use the

CanSM_SetBaudrate API instead.

CanSM_SetBaudrate API and CanSM_ChangeBaudrate API cannot be

provided simultaneously.

If CanSM_ChangeBaudrate API is used nevertheless the desired baud rate has to be

validated via the function CanSM_CheckBaudrate before the function

CanSM_ChangeBaudrate will be called.

3.12 ECU Passive Mode

After the initialization of the CanSM the ECU mode is active per default. The ECU mode is
the same for each CAN channel.

The CanSM can be instructed to handle the passive or active mode, globally for all
channels via the API CanSM_SetEcuPassive(). The mode stays until a new request is
issued or a (re-)initialization of the CanSM happens.

In passive mode the CanSM sets the Tx PDU mode to OFFLINE_ACTIVE instead to
ONLINE (3.3.6, 3.3.3). If the ECU mode switches from passive to active the CanSM
switches the Tx PDU modes which are in OFFLINE_ACTIVE to ONLINE.

During a bus-off recovery phase the modification of the Tx PDU mode is postponed until
the bus-off recovery phase has been finished (Ch 3.4, Figure 3-4 E_TX_ON).

3.13 PreventBusSleepAtStartUp

If the feature is enabled within the configuration tool the function
CanSM_PreventBusSleepAtStartUp() becomes available. The function, if called before the
initialization, causes the CanSM to skip the initial transition of the according CAN channel.
Usually the CanSM sets the controller to sleep mode and the transceiver to standby during
the initialization.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 23
based on template version 5.0.0

Note
The CanSM expects that a FULL_COMMUNICATION request follows after the function
has been used and so the CanSM performs no further actions.

Caution
If CanSM_PreventBusSleepAtStartUp() is used the CanDrv and CanTrcv stay in their
initial state and so usually no CAN wake-ups are possible.

3.14 BusOff Recovery Notifications Extension of Tx Offline Duration

The feature gives the application the possibility to react on an active bus-off. If the feature
is activated the CanSM triggers the “bus-off begin indication function” immediately, each
time the CanSM is informed about a bus-off. The second parameter of the function can be

used to extend the “bus-off recovery time” (TxOffline) (from 0 up to 153ms which is the

maximum value needed by the J1939Nm).

When the CanSM enters the state S_BUS_OFF_CHECK, the Tx path is restarted. The

communication should work again and the CanSM informs the application via the “bus-off
end indication function”. The according channel can be identified via the network handle,
which is the first parameter of both functions.

The name of the indication functions can be set within the configuration tool. If the
indication function is not needed delete the function name (empty string) or delete the
parameter. Both functions can be (de)activated separately.

If J1939Nm is used, both the begin (J1939Nm_GetBusOffDelay) and end

(J1939Nm_BusOffEnd) indications are required.

3.15 Wake-up Validation Assistance

3.16 Start/Stop Wake-up Sources

With the new APIs (5.2.11, 5.2.12) the CanSM can be used, to start and stop the wake-up
sources, to enable the wake-up validation. Thus it can be avoided that the EcuM callout
starts the wake-up sources while the CanSM performs the transition to no communication
or the EcuM callout stops the wake-up sources while the CanSM performs the transition to
full communication.

3.16.1 Normal Behavior

Usually the CanSM is informed about the start of the wake-up validation sequence (via

5.2.11) within the state CANSM_NO_COMMUNICATION. In this case the CanSM sets the

CAN controller to STARTED and the CAN transceiver to NORMAL. If the validation is
successful it will be finished by a full communication request, then the Pdu mode is set to
ONLINE and the ComM and the BswM are notified with the corresponding full
communication indication.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 24
based on template version 5.0.0

The validation is also finished if the wake-up has not been determined as valid within the
specified validation time. Then the CanSM is informed by the according API (5.2.12) and
the CanSM switches the controller back to SLEEP and the CAN transceiver to STANDBY.
If a validation sequence is started while the CanSM performs a transition to

CANSM_NO_COMMUNICATION, the current transition to CANSM_NO_COMMUNICATION will

be canceled.

3.16.2 Usage

To use the wake-up validation assistance of the CanSM, remove the “set controller mode”
and “set transceiver mode” functions from the EcuM wake-up sources callouts, call

CanSM_StartWakeupSources instead within the EcuM callout

EcuM_StartWakeupSources and the CanSM_StopWakeupSources within the EcuM

callout EcuM_StopWakeupSources. Pay also attention to 4.2.

3.16.3 Exceptional Behavior

The change of the CAN HW mode could be disturbed and is not possible within the HW
loop timeout. Especially the change of the controller mode may fail due to message
reception, dominant voltage level or electromagnetic interference.

If any transceiver or controller mode change returns E_NOT_OK any further actions will be
omitted and the CanSM will return E_NOT_OK too; except if the set controller mode to
SLEEP is answered with E_NOT_OK. In this case CanSM triggers a new wake-up by the
EcuM, which will start a new wake-up validation sequence. So no further exceptional

actions are necessary and the CanSM StopWakeupSources returns E_OK.

In case the CanSM returns an E_NOT_OK the CanTrcv/CanDrv are in “undefined” state so
it is most likely not possible to react on any event on the CAN bus respectively no Rx, no
Tx or no wake-up is possible which can lead to the effects described in the following
chapter.

3.16.4 Potential Effect

3.16.4.1 Start of the Wakeup Sources Fail

Because of the disturbance during the mode change the CAN HW (controller and/or
transceiver) might be in an undefined state and is probably not able to react on incoming
messages. Messages on the bus are lost, until a new wake-up is possible, after the

validation timeout elapses and a successful call of StopWakeupSources.

3.16.4.2 Stop of the Wakeup Sources Fail

Because of the disturbance during the mode change the CAN HW (controller and/or
transceiver) might be in an undefined state. Probably the CAN wake-up will not work and
the ECU is not able to react on Rx messages on the affected CAN bus.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 25
based on template version 5.0.0

Caution
The EcuM may perform a state change to stop/sleep in the same

EcuM_MainFunction() cycle where EcuM_StopWakeupSources() is called. So it

is possible that the ECU stays in low power mode and cannot be woken up again
(internal/external wake-up or wake-up by CAN).

3.16.5 Countermeasures

> A short disturbance can probably be resolved by calling Start-/StopWakeupSources()
within the current call context again.

> As a second approach the return value of StartWakeupSources could be ignored. As a
result the validation time elapses, the wake-up sources are stopped and a new wake-
up interrupt triggers the validation again, if the CAN communication is still running. As
a drawback, the ECU cannot participate in the CAN communication during this period
and therefore is not recommended for time critical systems.

> Furthermore, the validation procedure can be bypassed altogether. Instead of calling

CanIf_CheckValidation(), the wake-up can be validated "manually" by calling

EcuM_ValidateWakeupEvent() directly. As a result, normal CAN communication is

started on the channel.

Note: This may also lead to a wake-up of other ECUs on the affected CAN channel,
due to the electromagnetic interference, because of inhibited wake-up validation.

> If the StopWakeupSources() fails the validation sequence could be restarted again

“manually” via EcuM_SetWakeupEvent() call. The ECU can react faster to a

potential running CAN communication, under the assumption that the

StartWakeupSources() will be executed successfully. Alternatively it is possible to

initiate an ECU reset. The whole CAN stack becomes reinitialized by the BSW
modules from scratch.

Note
The appropriate solution depends highly on the type of the ECU and on the
requirements which have to be fulfilled by the ECU.

Caution

If any one of the functions CanSM_StartWakeupSources() 5.2.11 or

CanSM_StopWakeupSources 5.2.12 returns a failure (i.e. returns E_NOT_OK) the

application has to perform an ECU dependent error handling.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 26
based on template version 5.0.0

Note
Wakeup validation does not work with asynchronous hardware e.g. partial network
transceiver.

3.17 Error Handling

3.17.1 Development Error Reporting

By default, development errors are reported to the DET using the service

Det_ReportError() as specified in [2], if development error reporting is enabled (i.e.

pre-compile parameter CANSM_DEV_ERROR_DETECT == STD_ON).

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature

as the service Det_ReportError(). The redirection of the function name has to be done

via “User Config File”.

The reported CanSM ID is 140.

The reported service IDs identify the services which are described in 5.2. The following
table presents the service IDs and the related services:

Service ID Service

0x00 CanSM_Init

0x01 CanSM_GetVersionInfo

0x02 CanSM_RequestComMode

0x03 CanSM_GetCurrentComMode

0x04 CanSM_ControllerBusOff

0x05 CanSM_MainFunction

0x06 CanSM_ConfirmPnAvailability

0x07 CanSM_ControllerModeIndication

0x08 CanSM_ClearTrcvWufFlagIndication

0x09 CanSM_TransceiverModeIndication

0x0A CanSM_CheckTransceiverWakeFlagIndication

0x0B CanSM_TxTimeoutException

0x0C CanSM_CheckBaudrate

0x0E CanSM_ChangeBaudrate

0x0D CanSM_SetBaudrate

0x0F CanSM_CheckBorLevel

0x40 CanSM_PreventBusSleepAtStartUp

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 27
based on template version 5.0.0

Service ID Service

0x20u CanSM_StartWakeupSources

0x21u CanSM_StopWakeupSources

Table 3-4 Service IDs

The errors reported to DET are described in the following table:

Error Code Description

0x01 CANSM_E_UNINIT API service used without having called
the initialization function.

0x02 CANSM_E_PARAM_POINTER API service called with invalid pointer in
parameter list

0x03 CANSM_E_INVALID_NETWORK_HANDLE API service called with wrong network
handle parameter, which is not
configured in the CanSM configuration.

0x04 CANSM_E_PARAM_CONTROLLER API service called with wrong controller
index.

0x05 CANSM_E_PARAM_TRANSCEIVER API service called with wrong
transceiver index.

0x06 CANSM_E_BUSOFF_RECOVERY_ACTIVE API network mode request called during
not finished bus-off recovery

0x07 CANSM_E_WAIT_MODE_INDICATION API network mode request called during
pending indication

0x08 CANSM_E_INVALID_COMM_REQUEST API network mode request called with
invalid communication mode request
e.g. SILENT requested in state NoCom.

0x09 CANSM_E_PARAM_INVALID_BAUDRATE API change baud rate called with invalid
baud rate i.e. the requested baud rate is
not equal to the remembered, valid
baud rate of the last
CanSM_CheckBaudrate call.

0x0A CANSM_E_MODE_REQUEST_TIMEOUT API set transceiver/controller mode
request for a network failed more often
as allowed by configuration.

0x0B CANSM_E_INITIALIZED API service used after the initialization
function.

Table 3-5 Errors reported to DET

3.17.2 Production Code Error Reporting

By default, production code related errors are reported to the DEM using the service

Dem_ReportErrorStatus() as specified in [3], if production error reporting is enabled

(i.e. pre-compile parameter CANSM_PROD_ERROR_DETECT == STD_ON).

If another module is used for production code error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 28
based on template version 5.0.0

as the service Dem_ReportErrorStatus(). The redirection of the function name has to

be done via “User Config File”.

The errors reported to DEM are described in the following table:

Error Code Description

CANSM_E_BUSOFF_NETWORK_<X> The CAN State Manager reports to the DEM a network
specific bus-off event each time the bus-off could be
recovered or the bus-off could not be recovered within the
specified tries.

Table 3-6 Errors reported to DEM

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 29
based on template version 5.0.0

4 Integration

This chapter gives necessary information for the integration of the MICROSAR CanSM
into an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the CanSM contains the files which are described in the chapters 4.1.1 and
4.1.2:

4.1.1 Static Files

File Name Source
Code
Delivery

Object
Code
Delivery

Description

CanSM.c


This is the source file of the CanSM. It contains the
implementation of the main functionality (not available
if libraries are delivered).

CanSM.h
 

This is the main header file of the CAN State Manager
which provides the “defines”, function prototypes and
types of the CAN State Manager.

CanSM_BswM.h
 

This header exports the

CanSM_BswMCurrentStateType, which is dedicated to

the BswM module.

CanSM_Cbk.h
 

This is the callback header file that declares the
notification functions which inform the CanSM about
the transceiver or controller changes.

CanSM_ComM.h
 

This is a header file of the CAN State Manager which
is the specific interface for the ComM to the services of
the CAN State Manager.

CanSM_Dcm.h
 

This header exports the Set/Check/ChangeBaudrate

interfaces, which are dedicated to the Dcm module.

CanSM_EcuM.h
 

This header exports the Init/InitMemory interfaces,

which are used to (pre)initialize the CAN state
manager.

CanSM_TxTime
outException.h  

The header provide the callback function
CanSM_TxTimeoutException as optional interface (if
PN is active) to the CanNm.

Table 4-1 Static files

4.1.2 Dynamic Files

The dynamic files are generated by the configuration tool DaVinci Configurator.

File Name Description

CanSM_Cfg.h Configuration header file which is generated. It contains pre-compile switches,
which enable/disable features, type definitions and constant values.

CanSM_Lcfg.c Configuration source file. It contains configuration parameter which may be
changed at link time.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 30
based on template version 5.0.0

File Name Description

CanSM_PBcfg.c Configuration source file. It contains for example timer variable values or
channel configuration parameter. It contains configuration parameter which
may be changed after link time.

Table 4-2 Generated files

4.2 Critical Sections

Critical sections are handled by the BSW Scheduler. The intention of the following critical
sections is to block the interrupt of CanSM functions (with a higher priority).

> The CANSM_EXCLUSIVE_AREA_1 has to be used if it is possible that the function

CanSM_MainFunction() may be interrupted by any of the functions

> CanSM_RequestComMode()

> CanSM_ControllerBusOff()

> CanSM_TxTimeoutException()

> CanSM_SetEcuPassive()

> CanSM_StopWakeupSources()

> CanSM_StartWakeupSources().

> The CANSM_EXCLUSIVE_AREA_2 has to be used if it is possible that the function

CanSM_RequestComMode() may be interrupted by any of the functions

> CanSM_MainFunction()

> CanSM_ControllerModeIndication()

> CanSM_TransceiverModeIndication()

> CanSM_ClearTrcvWufFlagIndication()

> CanSM_CheckTransceiverWakeFlagIndication()

> CanSM_TxTimeoutException()

> CanSM_SetEcuPassive()

> CanSM_StopWakeupSources()

> CanSM_StartWakeupSources().

> The CANSM_EXCLUSIVE_AREA_3 has to be used if it is possible that the function

CanSM_ControllerBusOff() may be interrupted by any of the functions

> CanSM_RequestComMode()

> CanSM_ControllerBusOff()

> CanSM_TxTimeoutException().

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 31
based on template version 5.0.0

The intention of the following critical sections is to avoid a change of the CAN controller or
transceiver mode during shutdown of the CAN communication when the CanSM performs
the transition to from Silent Communication to No Communication.

> The CANSM_EXCLUSIVE_AREA_4 has to be used if it is possible that one of functions

CanSM_MainFunction() or CanSM_RequestComMode() may be interrupted by a

CAN event.

1. By CAN Wake Up Interrupt

2. By CAN Wake Up Polling

3. By CAN Bus-Off (Can error)

> The CANSM_EXCLUSIVE_AREA_5 has to be used if it is possible that one of the

functions CanSM_SetEcuPassive() or CanSM_StartWakeupSources() or

CanSM_StopWakeupSources() may be interrupted by any of the functions

> CanSM_RequestComMode()

> CanSM_MainFunction().

> Or it is possible that the function CanSM_ControllerModeIndication() may be

interrupted by the function

> CanSM_SetEcuPassive().

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 32
based on template version 5.0.0

5 API Description

For an interfaces overview please see Figure 2-2.

5.1 Type Definitions

The types defined by the CanSM are described in this chapter.

Type Name C-Type Description Value Range

CanSM_BswMCurre

ntStateType

uint8 CAN specific
communication
modes / states
notified to the BswM
module.

CANSM_BSWM_NO_COMMUNICATION

CANSM_BSWM_SILENT_COMMUNICATION

CANSM_BSWM_FULL_COMMUNICATION

CANSM_BSWM_BUS_OFF

CANSM_BSWM_CHANGE_BAUDRATE

CanSM_Channel

ConfigPtrType
pointer

Pointer to the
structure which
contains the
configuration data
of a CAN channel.

CanSM_Channel

ConfigType
struct

Structure which
contains the
configuration data
of a CAN channel.

CanSM_ConfigT

ype
struct

Structure which
contains the global
configuration data.

CanSM_Channel

VarRecordType
struct

Structure contains
the variable values
of a specific CAN
channel.

CanSM_BorStat

eType
uint8 Can specific bus-off

level.

CANSM_BOR_NONE

CANSM_BOR_LEVEL1

CANSM_BOR_LEVEL2

Table 5-1 Type definitions

5.2 Services Provided by CanSM

5.2.1 CanSM_InitMemory

Prototype

void CanSM_InitMemory(void)

Parameter

- -

Return code

- -

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 33
based on template version 5.0.0

Functional Description

This function initializes the CanSM memory and sets the variable CanSM_IsInitialized to FALSE

Particularities and Limitations

 Service ID: see table 'Service IDs'

 Called once at start-up before the initialization function.

Expected Caller Context

 Function is called once before CanSM_Init

 Table 5-2 CanSM_InitMemory

5.2.2 CanSM_PreInit

Prototype

void CanSM_PreInit (const CanSM_ConfigType *const ConfigPtr)

Parameter

ConfigPtr [in] Pointer to configuration structure

Return code

void none

Functional Description

Initializes the configuration data component.

Particularities and Limitations

CanSM_InitMemory has been called if CANSM_PREVENT_BUSSLEEP_AT_STARTUP is activated unless
CanSM_EnableSetBusSleep[] is initialized by start up code.

The API is only needed in case of extended RAM check. Otherwise use CanSM_Init without
CanSM_PreInit.

Configuration Variant(s): CANSM_EXTENDED_RAM_CHECK

Call context

> TASK

> This function is Reentrant

Table 5-3 CanSM_PreInit

5.2.3 CanSM_Init

Prototype

void CanSM_Init(const CanSM_ConfigType* const ConfigPtr)

Parameter

ConfigPtr Pointer to the configuration structure that shall be used for the post-build
parameters.

Return code

- -

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 34
based on template version 5.0.0

Functional Description

Service for CAN State Manager initialization.

Particularities and Limitations

 Service ID: see table 'Service IDs'

 Non Reentrant

Expected Caller Context

 Called once after startup

Table 5-4 CanSM_Init

5.2.4 CanSM_MainFunction

Prototype

void CanSM_MainFunction(void)

Parameter

- -

Return code

- -

Functional Description

The main function of the CanSM executes asynchron transitions of each network, which is configured for
the CanSM.

Particularities and Limitations

 Service ID: see table 'Service IDs'

 CanSM has to be initialized. Function has to be called cyclically. The cycle time is set in the
configuration tool.

 Non Reentrant

Expected Caller Context

 Cyclic on task level

Table 5-5 CanSM_MainFunction

5.2.5 CanSM_RequestComMode

Prototype

Std_ReturnType CanSM_RequestComMode(NetworkHandleType NetworkHandle,

ComM_ModeType CanSM_RequestedComMMode)

Parameter

NetworkHandle The communication network number belonging to the request.

CanSM_RequestedComMM

ode
New desired value of the communication mode.

Return code

ReturnType Returns whether function parameter are valid or not.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 35
based on template version 5.0.0

Functional Description

The function stores the requested communication mode for the network handle and executes the
corresponding network mode state machine.

Particularities and Limitations

 Service ID: see table 'Service IDs'

 CanSM has to be initialized.

 Reentrant for different CAN networks, not reentrant for the same CAN network

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-6 CanSM_RequestComMode

5.2.6 CanSM_GetCurrentComMode

Prototype

Std_ReturnType CanSM_GetCurrentComMode(NetworkHandleType

NetworkHandle, ComM_ModeType* CanSM_ComMModePtr)

Parameter

NetworkHandle Index of the network channel.

CanSM_ComMModePtr Pointer where the communication mode information is copied to.

Return code

ReturnType Returns whether function parameter are valid or not.

Functional Description

This service delivers the current communication mode of a CAN network.

Particularities and Limitations

 Service ID: see table 'Service IDs'

 CanSM has to be initialized.

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-7 CanSM_GetCurrentComMode

5.2.7 CanSM_GetVersionInfo

Prototype

void CanSM_GetVersionInfo(Std_VersionInfoType * VersionInfo)

Parameter

VersionInfo Pointer, where to store the version data of the CanSM.

Return code

- -

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 36
based on template version 5.0.0

Functional Description

This service returns the version information of this module. The version information includes:

 - Module Id

 - Vendor Id

 - Vendor specific version numbers (The versions are BCD-coded).

Particularities and Limitations

 Service ID: see table 'Service IDs'

 The function is only available if enabled at compile time (CANSM_VERSION_INFO_API =
STD_ON)

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-8 CanSM_GetVersionInfo

5.2.8 CanSM_CheckBaudrate

Prototype

Std_ReturnType CanSM_CheckBaudrate(NetworkHandleType

CanSM_NetworkHandle, uint16 CanSM_Baudrate)

Parameter

CanSM_NetworkHandle The communication network number belonging to the request.

CanSM_Baudrate New desired baud rate.

Return code

ReturnType E_OK: Baudrate supported by all configured CAN controllers of the network

E_NOT_OK: Baudrate not supported / invalid network

Functional Description

This service check, if a certain baud rate is supported by the configured CAN controller of a CAN network.

Particularities and Limitations

 Service ID: see table 'Service IDs'

 CanSM has to be initialized.

 Reentrant for different CAN networks, not reentrant for the same CAN network

 Please note that this API is deprecated and is kept only for backward compatibility reasons
(Substituted by CanSM_SetBaudrate).

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-9 CanSM_CheckBaudrate

5.2.9 CanSM_ChangeBaudrate

Prototype

Std_ReturnType CanSM_ChangeBaudrate(NetworkHandleType

CanSM_NetworkHandle, uin16 CanSM_Baudrate)

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 37
based on template version 5.0.0

Parameter

CanSM_NetworkHandle The communication network number belonging to the request.

CanSM_Baudrate New desired baud rate.

Return code

ReturnType Returns whether function parameter are valid or not.

Functional Description

This service starts a process to change the baud rate for the configured CAN controllers of a certain CAN
network

Particularities and Limitations

 Service ID: see table 'Service IDs'

 CanSM has to be initialized.

 CanSM_CheckBaudrate has to be called first successfully.

 Reentrant for different CAN networks, not reentrant for the same CAN network

 Please note that this API is deprecated and is kept only for backward compatibility reasons
(Substituted by CanSM_SetBaudrate).

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-10 CanSM_ChangeBaudrate

5.2.10 CanSM_SetBaudrate

Prototype

Std_ReturnType CanSM_SetBaudrate(NetworkHandleType

CanSM_NetworkHandle, uin16 BaudRateConfigID)

Parameter

CanSM_NetworkHandle The communication network number belonging to the request.

BaudRateConfigID References a baud rate configuration by ID (see
CanControllerBaudRateConfigID)

Return code

ReturnType E_OK: Service request accepted, setting of (new) baud rate started

E_NOT_OK: Service request not accepted

Functional Description

This service starts a process to change the baud rate for the configured CAN controller of a CAN network.

Particularities and Limitations

 Service ID: see table 'Service IDs'

 CanSM has to be initialized

 Reentrant for different CAN networks, not reentrant for the same CAN network

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-11 CanSM_SetBaudrate

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 38
based on template version 5.0.0

5.2.11 CanSM_StartWakeupSources

Prototype

Std_ReturnType CanSM_StartWakeupSources(NetworkHandleType

CanSM_NetworkHandle)

Parameter

NetworkHandle Network handle of the wake-up source which should be started

Return code

E_OK The CanSM has set the CanTrcv and CanDrv in the required states

E_NOT_OK It was not possible to set the CanTrcv or CanDrv to the required state to
perform the wake-up validation, e.g. because of dominant level on Rx pin. At
this point the CanTrcv or CanDrv are in an “undefined” state. The CanSM itself
does not execute any retry. The application has to perform an ECU dependent
error handling.

Functional Description

This function notifies the CanSM module that the EcuM has received a wake-up event which has to be
validated.

Particularities and Limitations

 CanSM has to be initialized.

 Reentrant for different CAN networks

 Transceiver which work asynchronous must not be used (i.e. Partial network Trcv, SPI Trcv,
Trcv within SBC)

Expected Caller Context

 Function can be called in task context.

Table 5-12 CanSM_StartWakeupSources

5.2.12 CanSM_StopWakeupSources

Prototype

Std_ReturnType CanSM_StopWakeupSources(NetworkHandleType

CanSM_NetworkHandle, EcuM_WakeupSourceType WakeupSource)

Parameter

NetworkHandle The communication network number belonging to the request.

WakeupSource The wake-up source handle of the CAN channel which should be stopped

Return code

E_OK The CanSM has set the CanTrcv and CanDrv in the required states or started
a new wakeup.

E_NOT_OK It was not possible to set the CanTrcv or CanDrv to the required state, e.g.
because of dominant level on Rx pin. At this point the CanTrcv or CanDrv are
in an “undefined” state. The CanSM itself does not execute any retry. The
application has to perform an ECU dependent error handling.

Functional Description

This function notifies the CanSM module that the wake-up has not been determined as valid within the
specified validation time

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 39
based on template version 5.0.0

Particularities and Limitations

 CanSM has to be initialized.

 Reentrant for different CAN networks

 Transceiver which work asynchronous must not be used (i.e. Partial network Trcv, SPI Trcv,
Trcv within SBC)

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-13 CanSM_StopWakeupSources

5.2.13 CanSM_CheckBorLevel

Prototype

Std_ReturnType CanSM_CheckBorLevel(const NetworkHandleType

NetworkHandle, const CanSM_BorStateType* CanSM_BorStatePtr)

Parameter

NetworkHandle Index of the network channel.

CanSM_BorStatePtr Pointer to target variable, which shall be used for the output of the bus-off
recovery level.

Return code

ReturnType E_OK: API request accepted

E_NOT_OK: API request rejected

Functional Description

This service delivers the current bus-off level of a CAN network.

Particularities and Limitations

 Service ID: see table 'Service IDs'

 CanSM has to be initialized.

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-14 CanSM_CheckBorLevel

5.2.14 CanSM_SetEcuPassive

Prototype

void CanSM_SetEcuPassive(boolean CanSM_EcuPassiveMode)

Parameter

CanSM_EcuPassiveMode Boolean parameter which switches the ECU mode between active and
passive mode

Return code

- -

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 40
based on template version 5.0.0

Functional Description

The function stores the requested ECU mode until it’s modified by the next call of this function. In passive
mode the CanSM sets the Tx PDU mode to OFFLINE_ACTIVE instead to ONLINE.

Particularities and Limitations

 CanSM has to be initialized.

 Non Reentrant

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-15 CanSM_SetEcuPassive

5.2.15 CanSM_PreventBusSleepAtStartUp

Prototype

Std_ReturnType CanSM_PreventBusSleepAtStartUp(NetworkHandleType

CanSM_NetworkHandle)

Parameter

CanSM_NetworkHandle communication network handle

Return code

Std_ReturnType Returns whether the network handle is valid and if the function has been
called before or after the initialization.

Functional Description

The function can be used to prevent the bus sleep state of the CanIf, CanDrv and CanTrcv at start up for
the given CAN network handle.

The CanIf, CanDrv and CanTrcv leaves in the corresponding module initialization state.

Particularities and Limitations

 Called at start-up before the CanSM initialization function

 The function must not be used with PostBuildSelecabel configuarions

Expected Caller Context

 Function has to be called before CanSM_Init

Table 5-16 CanSM_PreventBusSleepAtStartUp

5.2.16 CanSM_RamCheckStatus

Prototype

Std_ReturnType CanSM_RamCheckStatus (NetworkHandleType CanSM_NetworkHandle)

Parameter

CanSM_NetworkHandle
[in]

Network handle

Return code

Std_ReturnType CANSM_APPL_RAMCHECK_ENABLE Everything is E_OK
CANSM_APPL_RAMCHECK_DISABLE Communication shall be disabled
CANSM_APPL_RAMCHECK_ENABLE_REPEAT Communication shall be

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 41
based on template version 5.0.0

enabled and the RAM check repeated
CANSM_APPL_RAMCHECK_DISABLE_REPEAT Communication shall be
disabled and the RAM check repeated

E_NOT_OK wrong Parameter

Functional Description

Reports the RAM check status to the ComM.

Particularities and Limitations

Reports the last RAM check status

Configuration Variant(s): CANSM_EXTENDED_RAM_CHECK

Call context

> ANY
> This function is Synchronous
> This function is Reentrant

Table 5-17 CanSM_RamCheckStatus

5.2.17 CanSM_RamCheckEnableMailbox

Prototype

void CanSM_RamCheckEnableMailbox (NetworkHandleType Network, Can_HwHandleType

MailBox)

Parameter

Network [in] network handle

MailBox [in] HW mail box identifier

Return code

void none

Functional Description

Forwards enable mail box.

Particularities and Limitations

If a mail box shall be enabled the information from the application is passed through to the CanDrv via
CanIf.

Configuration Variant(s): CANSM_EXTENDED_RAM_CHECK

Call context

> ANY
> This function is Synchronous
> This function is Reentrant

Table 5-18 CanSM_RamCheckEnableMailbox

5.3 Services Used by CanSM

In the following table services provided by other components, which are used by the
CanSM are listed. For details about prototype and functionality refer to the documentation
of the providing component.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 42
based on template version 5.0.0

Component API

Application Appl_CanSM_RamCheckCorruptController

Application Appl_CanSM_RamCheckCorruptMailbox

Application Appl_CanSM_RamCheckFinished

Application Appl_CanSM_RamCheckStart

BswM BswM_CanSM_CurrentState

CanIf CanIf_SetControllerMode

CanIf CanIf_SetTrcvMode

CanIf CanIf_ChangeBaudrate

CanIf CanIf_SetPduMode

CanIf CanIf_CheckTrcvWakeFlag

CanIf CanIf_ClearTrcvWufFlag

CanIf CanIf_GetTxConfirmationState

CanIf CanIf_RamCheckEnableController

CanIf CanIf_RamCheckEnableMailbox

CanIf CanIf_RamCheckExecute

CanNm CanNm_ConfirmPnAvailability

DEM Dem_ReportErrorStatus

DET Det_ReportError

ComM ComM_BusSM_ModeIndication

SchM SchM_Enter_CanSM_CANSM_EXCLUSIVE_AREA_i

for i=1,2,3,4,5

SchM SchM_Exit_CanSM_CANSM_EXCLUSIVE_AREA_i

for i=1,2,3,4,5

Table 5-19 Services used by the CanSM

5.4 Callback Functions

This chapter describes the callback functions that are implemented by the CanSM and can
be invoked by other modules. The prototypes of the callback functions are provided in the

header file CanSM_Cbk.h by the CanSM.

5.4.1 CanSM_ControllerBusOff

Prototype

void CanSM_ControllerBusOff(uint8 CanSM_ControllerId)

Parameter

CanSM_ControllerId Index of the CAN controller, which detected a bus-off event

Return code

- -

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 43
based on template version 5.0.0

Functional Description

The CanSM is notified about a bus-off event on a certain CAN controller with this callback function. The
CanSM uses this information to execute the bus-off recovery for the corresponding controller.

Particularities and Limitations

 CanSM has to be initialized.

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-20 CanSM_ControllerBusOff

5.4.2 CanSM_ControllerModeIndication

Prototype

void CanSM_ControllerModeIndication(uint8 CanSM_ControllerId,

CanIf_ControllerModeType CanSM_ControllerMode)

Parameter

CanSM_ControllerId Index of the CAN controller, which detected a bus-off event

CanSM_ControllerMode Notified CAN controller mode

Return code

- -

Functional Description

This callback shall notify the CanSM module about a CAN controller mode change.

Particularities and Limitations

 Service ID: see table 'Service IDs'

 CanSM has to be initialized.

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-21 CanSM_ControllerModeIndication

5.4.3 CanSM_TransceiverModeIndication

Prototype

void CanSM_TransceiverModeIndication(uint8 CanSM_TransceiverId,

CanIf_TrcvModeType CanSM_TransceiverMode)

Parameter

CanSM_TransceiverId Index of the CAN controller, which detected a bus-off event

CanSM_TransceiverMode Notified CAN transceiver mode

Return code

- -

Functional Description

This callback shall notify the CanSM module about a CAN transceiver mode change.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 44
based on template version 5.0.0

Particularities and Limitations

 Service ID: see table 'Service IDs'

 CanSM has to be initialized.

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-22 CanSM_TransceiverModeIndication

5.4.4 CanSM_ClearTrcvWufFlagIndication

Prototype

void CanSM_ClearTrcvWufFlagIndication (uint8 CanSM_TransceiverId)

Parameter

CanSM_TransceiverId The transceiver ID number belonging to the request.

Return code

- -

Functional Description

This call-back function indicates the CanIf_ClearTrcvWufFlag API process end for the notified CAN
Transceiver.

Particularities and Limitations

 Service ID: see table 'Service IDs'

 CanSM has to be initialized.

 Reentrant for different CAN transceivers

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-23 CanSM_ClearTrcvWufFlagIndication

5.4.5 CanSM_CheckTransceiverWakeFlagIndication

Prototype

void CanSM_CheckTransceiverWakeFlagIndication (uint8

CanSM_TransceiverId)

Parameter

CanSM_TransceiverId The transceiver ID number belonging to the request.

Return code

- -

Functional Description

This call-back function indicates the CheckTransceiverWakeFlag API process end for the notified CAN
Transceiver.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 45
based on template version 5.0.0

Particularities and Limitations

 Service ID: see table 'Service IDs'

 CanSM has to be initialized.

 Reentrant for different CAN transceivers

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-24 CanSM_CheckTransceiverWakeFlagIndication

5.4.6 CanSM_ConfirmPnAvailability

Prototype

void CanSM_ConfirmPnAvailability (uint8 CanSM_TransceiverId)

Parameter

CanSM_TransceiverId The transceiver ID number belonging to the request.

Return code

- -

Functional Description

This call-back function indicates that the transceiver is running in PN communication mode. In this case the
CanNm will be informed by calling CanNm_ConfirmPnAvailability.

Particularities and Limitations

 Service ID: see table 'Service IDs'

 CanSM has to be initialized.

 Reentrant for different CAN transceivers

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-25 CanSM_ConfirmPnAvailability

5.4.7 CanSM_TxTimeoutException

Prototype

void CanSM_TxTimeoutException (NetworkHandleType CanSM_NetworkHandle)

Parameter

CanSM_NetworkHandle The communication network number belonging to the request.

Return code

- -

Functional Description

This function notifies the CanSM module that the Com has detected a Tx timeout exception, which shall be
recovered by the CanSM module by a re-initialization of the CAN controller.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 46
based on template version 5.0.0

Particularities and Limitations

 Service ID: see table 'Service IDs'

 CanSM has to be initialized.

 Reentrant for different CAN networks

Expected Caller Context

 Function can be called in task and interrupt context.

Table 5-26 CanSM_TxTimeoutException

5.4.8 CanSM_RamCheckCorruptMailbox

Prototype

void CanSM_RamCheckCorruptMailbox (uint8 CanSM_ControllerId, Can_HwHandleType

MailBox)

Parameter

CanSM_ControllerId [in] CAN controller index

MailBox [in] Mail box identifier

Return code

void none

Functional Description

Handles the indication of a RAM check error.

Particularities and Limitations

Gets information about RAM check errors. Forwards the information to the application and evaluates HW
register failures

Configuration Variant(s): -

Call context

> ANY
> This function is Reentrant

Table 5-27 CanSM_RamCheckCorruptMailbox

5.4.9 CanSM_RamCheckCorruptController

Prototype

void CanSM_RamCheckCorruptController (uint8 CanSM_ControllerId)

Parameter

CanSM_ControllerId [in] CAN controller index

Return code

void none

Functional Description

Handles the indication of a RAM check error.

Particularities and Limitations

Gets information about RAM check errors. Forwards the information to the application and evaluates HW

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 47
based on template version 5.0.0

register failures

Configuration Variant(s): -

Call context

> ANY
> This function is Reentrant

Table 5-28 CanSM_RamCheckCorruptController

5.5 Callout Functions

5.5.1 Appl_CanSM_RamCheckStart

Prototype

void Appl_CanSM_RamCheckStart (NetworkHandleType CanSM_NetworkHandle)

Parameter

CanSM_NetworkHandle
[in]

network handle

Return code

void none

Functional Description

Indicates the start of the RAM check.

Particularities and Limitations

Indicates the start of the RAM check.

Configuration Variant(s): CANSM_EXTENDED_RAM_CHECK

Call context

> ANY
> This function is Synchronous
> This function is Reentrant

Table 5-29 Appl_CanSM_RamCheckStart

5.5.2 Appl_CanSM_RamCheckCorruptController

Prototype

void Appl_CanSM_RamCheckCorruptController (NetworkHandleType

CanSM_NetworkHandle)

Parameter

CanSM_NetworkHandle
[in]

network handle

Return code

void none

Functional Description

Forwards register RAM failures.

Particularities and Limitations

If register RAM failures occurs the information from the CanDrv is passed through the Application.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 48
based on template version 5.0.0

Configuration Variant(s): CANSM_EXTENDED_RAM_CHECK

Call context

> ANY
> This function is Synchronous
> This function is Reentrant

Table 5-30 Appl_CanSM_RamCheckCorruptController

5.5.3 Appl_CanSM_RamCheckCorruptMailbox

Prototype

void Appl_CanSM_RamCheckCorruptMailbox (NetworkHandleType CanSM_NetworkHandle,

Can_HwHandleType MailBox)

Parameter

CanSM_NetworkHandle
[in]

Network handle

Can_HwHandleType [in] HW mail box identifier

Return code

void none

Functional Description

Forwards message box RAM failures.

Particularities and Limitations

If a message box RAM failure occurs the information from the CanDrv is passed through the Application.

Configuration Variant(s): CANSM_EXTENDED_RAM_CHECK

Call context

> ANY
> This function is Synchronous
> This function is Reentrant

Table 5-31 Appl_CanSM_RamCheckCorruptMailbox

5.5.4 Appl_CanSM_RamCheckFinished

Prototype

Std_ReturnType Appl_CanSM_RamCheckFinished (NetworkHandleType

CanSM_NetworkHandle)

Parameter

CanSM_NetworkHandle
[in]

Network handle

Return code

Std_ReturnType CANSM_APPL_RAMCHECK_ENABLE Everything is E_OK
CANSM_APPL_RAMCHECK_DISABLE Communication shall be disabled
CANSM_APPL_RAMCHECK_ENABLE_REPEAT Communication shall be
enabled and the RAM check repeated
CANSM_APPL_RAMCHECK_DISABLE_REPEAT Communication shall be
disabled and the RAM check repeated

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 49
based on template version 5.0.0

Functional Description

Indicates the end of the RAM check.

Particularities and Limitations

The CanDrv has finished the extended RAM check. All potential errors have been reported. The Application
has to specify further actions via return value.

Configuration Variant(s): CANSM_EXTENDED_RAM_CHECK

Call context

> ANY
> This function is Synchronous
> This function is Reentrant

Table 5-32 Appl_CanSM_RamCheckFinished

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 50
based on template version 5.0.0

6 AUTOSAR Standard Compliance

6.1 Deviations

6.1.1 Communication mode requests are acceped if possible

The module accepts the communication mode requests even if there is a pending mode
indication. E.g. the CanSM is in state S_CC_STARTED_WAIT (3.3.3) and gets a
NO_COMMUNICATION request the deinitialization (3.3.7) becomes started.

Det_ReportError with the ErrorId parameter CANSM_E_WAIT_MODE_INDICATION is not
used.

6.2 Additions/ Extensions

6.2.1 API CanSM_InitMemory()

This service function was added to be called at “Power On” or after reset to set the global
CanSM state. Afterwards the CanSM can be initialized correctly.

6.2.2 No Mode Notification During CanSM_Init

The ComM_BusSM_ModeIndication and BswM_CanSM_CurrentState are not called

during the transition from CANSM_INIT to CANSM_NO_COMMUNNICATION because the

ComM and BswM become initialized after the CanSM.

6.2.3 Configuration Options

It’s possible to (de)activate the DEM at pre-compile time, like DET.

6.2.4 Additional Bus-Off Recovery in State Silent

If bus-off occurs outside the state FULL_COMMUNICATION, the CanSM handles bus-off
and sets the CAN controller mode to STARTED once.

6.2.5 API CanSM_CheckBorLevel()

This service function delivers the current bus-off level of a CAN network.

6.2.6 Partial Network Wake Up Filter

For the partial network use case it has to be ensured that that the first message on the bus
is a wake up message. Therefore the CanSM triggers the PDU Mode

CANIF_SET_ONLINE_WAKF instead CANIF_SET_ONLINE. The CanSM feature is automatically
active if the feature is active in the CanIf.

6.2.7 ECU Passive Mode

The passive mode deactivates the Tx part during full communication. The ECU listens
“passively” on all CAN busses.

6.2.8 PreventBusSleepAtStartUp

The additional API CanSM_PreventBusSleepAtStartUp() allows to skip the initial transition
for the selected channel(s).

6.2.9 Post-Build Selectable (Identity Manager)

The code generator and the static code supports post build selectable configuration.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 51
based on template version 5.0.0

6.2.10 APIs to Assist EcuM Wakeup Validation

The APIs can be used to ensure that the CAN HW is started/online during running wakeup

Validation (chapters 3.15, 3.17.1, 4.2, 5.2.11, 5.2.12).

6.2.11 Swift or Large Tx Timeout Exception handling

The CanSM provides two different versions of Tx Timeout Exception handling. The desired
one can be configured. The new swift version sets the controller to stopped and back to
started instead executing the whole shut down sequence to NoCom.

6.2.12 Extended RAM Check

The CanSM triggers the DrvCan to execute CanSelfDiag (Extended RAM Check).

6.2.13 Expanded Tx Timeout Exception Handling

The CanSM provides the option to configure a callout function which is called at the end of
the timeout exception handling. If a valid function name is configured the CanSM activates
the "expanded" time out exception handling. The "expanded" time out exception handling
is equal to the CanSMSwiftTxTimeoutRecovery followed by the configured end indication.
In addition the CanSM executes the handling also if the Tx timeout exception is indicated
in the states "SILENTCOM" or "BUS_OFF_CHECK".

6.3 Limitations

6.3.1 Controllers

The CanSM supports only one controller per channel.

6.3.2 Configuration Class

Only VARIANT-PRE-COMPILE is supported.

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 52
based on template version 5.0.0

7 Glossary and Abbreviations

7.1 Glossary

Term Description

DaVinci Configurator Generation tool for MICROSAR components

Table 7-1 Glossary

7.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

BswM Basic Software Mode Manager

CAN Controller Area Network

CanDrv CAN Driver

CanIf CAN Interface

CanNm CAN Network Management

CanSM CAN State Manager

CanTrcv CAN Transceiver

Cbk Call-back / call-out notification (functions)

Cfg Configuration

ComM Communication Manager

DEM, Dem Diagnostic Event Manager

DET, Det Development Error Tracer

DTC Diagnostic Trouble Code

ECU Electronic Control Unit

EcuM ECU State Manager

HIS Hersteller Initiative Software

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

PDU Protocol Data Unit

PN Partial Networking

RAM Random Access Memory

SBC System Basis Chip

SchM BSW Scheduler

SPI Serial Peripheral Interface

SWC Software Component

Table 7-2 Abbreviations

Technical Reference MICROSAR CAN State Manager

© 2016 Vector Informatik GmbH Version 2.9.0 53
based on template version 5.0.0

8 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.2 Initialization
	3.3 State Machine
	3.3.1 Mode Request Indication and Repetition
	3.3.2 Communication Mode Request Change (During Pending Mode Indication or Running Bus-Off Recovery)
	3.3.3 CANSM_NO_COMMUNICATION to CANSM_FULL_COMMUNICATION
	3.3.4 CANSM_FULL_COMMUNICATION to CANSM_SILENT_COMMUNICATION
	3.3.5 CANSM_SILENT_COMMUNICATION
	3.3.6 CANSM_SILENT_COMMUNICATION to CANSM_FULL_COMMUNICATION
	3.3.7 Transition to CANSM_NO_COMMUNICATION

	3.4 Bus-Off Recovery
	3.5 Main Function
	3.6 Communication Modes
	3.7 Communication Mode Polling
	3.8 Bus-off Level Polling
	3.9 Partial Networking
	3.10 Tx Timeout Exception
	3.11 Baud Rate Adaption
	3.12 ECU Passive Mode
	3.13 PreventBusSleepAtStartUp
	3.14 BusOff Recovery Notifications Extension of Tx Offline Duration
	3.15 Wake-up Validation Assistance
	3.16 Start/Stop Wake-up Sources
	3.16.1 Normal Behavior
	3.16.2 Usage
	3.16.3 Exceptional Behavior
	3.16.4 Potential Effect
	3.16.4.1 Start of the Wakeup Sources Fail
	3.16.4.2 Stop of the Wakeup Sources Fail

	3.16.5 Countermeasures

	3.17 Error Handling
	3.17.1 Development Error Reporting
	3.17.2 Production Code Error Reporting

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Critical Sections

	5 API Description
	5.1 Type Definitions
	5.2 Services Provided by CanSM
	5.2.1 CanSM_InitMemory
	5.2.2 CanSM_PreInit
	5.2.3 CanSM_Init
	5.2.4 CanSM_MainFunction
	5.2.5 CanSM_RequestComMode
	5.2.6 CanSM_GetCurrentComMode
	5.2.7 CanSM_GetVersionInfo
	5.2.8 CanSM_CheckBaudrate
	5.2.9 CanSM_ChangeBaudrate
	5.2.10 CanSM_SetBaudrate
	5.2.11 CanSM_StartWakeupSources
	5.2.12 CanSM_StopWakeupSources
	5.2.13 CanSM_CheckBorLevel
	5.2.14 CanSM_SetEcuPassive
	5.2.15 CanSM_PreventBusSleepAtStartUp
	5.2.16 CanSM_RamCheckStatus
	5.2.17 CanSM_RamCheckEnableMailbox

	5.3 Services Used by CanSM
	5.4 Callback Functions
	5.4.1 CanSM_ControllerBusOff
	5.4.2 CanSM_ControllerModeIndication
	5.4.3 CanSM_TransceiverModeIndication
	5.4.4 CanSM_ClearTrcvWufFlagIndication
	5.4.5 CanSM_CheckTransceiverWakeFlagIndication
	5.4.6 CanSM_ConfirmPnAvailability
	5.4.7 CanSM_TxTimeoutException
	5.4.8 CanSM_RamCheckCorruptMailbox
	5.4.9 CanSM_RamCheckCorruptController

	5.5 Callout Functions
	5.5.1 Appl_CanSM_RamCheckStart
	5.5.2 Appl_CanSM_RamCheckCorruptController
	5.5.3 Appl_CanSM_RamCheckCorruptMailbox
	5.5.4 Appl_CanSM_RamCheckFinished

	6 AUTOSAR Standard Compliance
	6.1 Deviations
	6.1.1 Communication mode requests are acceped if possible

	6.2 Additions/ Extensions
	6.2.1 API CanSM_InitMemory()
	6.2.2 No Mode Notification During CanSM_Init
	6.2.3 Configuration Options
	6.2.4 Additional Bus-Off Recovery in State Silent
	6.2.5 API CanSM_CheckBorLevel()
	6.2.6 Partial Network Wake Up Filter
	6.2.7 ECU Passive Mode
	6.2.8 PreventBusSleepAtStartUp
	6.2.9 Post-Build Selectable (Identity Manager)
	6.2.10 APIs to Assist EcuM Wakeup Validation
	6.2.11 Swift or Large Tx Timeout Exception handling
	6.2.12 Extended RAM Check
	6.2.13 Expanded Tx Timeout Exception Handling

	6.3 Limitations
	6.3.1 Controllers
	6.3.2 Configuration Class

	7 Glossary and Abbreviations
	7.1 Glossary
	7.2 Abbreviations

	8 Contact

