VECTOR >

MICROSAR CAN State Manager

Technical Reference

Version 2.9.0

Authors Mark A. Fingerle

Status Released

VECTOR D>

Document Information

History

Technical Reference MICROSAR CAN State Manager

Author______[Date __[Version _Remarks

Mark A. Fingerle

2012-08-08

2.0.0

Creation from scratch

Mark A. Fingerle

2012-10-23

2.1.0

ESCANO00062053 Interface to provide
internal bus-off recovery level 3.8, Table
3-4,5.1,5.2.13

ESCANO00062050 Instruction order for
transition to no communication Figure 3-3
Figure 3-5

Update state machine pictures Figure 3-1,
Figure 3-2, Figure 3-4

Mark A. Fingerle

2013-05-03

2.2.0

ESCANO00065274 Trigger Canlf PduMode
wake up filter in PN use case 6.2.6
Remove chapter “4.2 Include Structure”
and “4.3 Compiler Abstraction and Memory
Mapping”

Mark A. Fingerle

2013-06-13

2.3.0

ESCANO00068036 SetEcuPassive 0,
5.2.14, 6.2.7 ESCAN00068039
PreventBusSleepAtStartUp 3.13, 5.2.15,
6.2.8

Mark A. Fingerle

2013-08-13

24.0

ESCANO00069109 3.11 Baud Rate
Adaption

ESCANO00068797 3.14 BusOff Recovery
Notifications

Mark A. Fingerle

2014-10-13

2.5.0

ESCAN00076768 Post-Build Selectable
(Identity Manager) support 6.2.9

ESCANO00076224 Add APlIs to Assist EcuM
Wakeup Validation 3.15, 5.2.11, 5.2.12

ESCANO00079340 Description BCD-coded
return-value of GetVersionInfo()

AUTOSAR deviation 6.1

Mark A. Fingerle

2015-11-13

26.0

ESCANO00086062 3.10 Swift Tx Timeout
Exception

Mark A. Fingerle

2016-01-13

2.7.0

ESCAN00088643 Extended RAM Check
5.2.2,5.2.16,5.2.17,5.4.8,5.4.9,5.5.1,
552,553,554

Mark A. Fingerle

2016-05-13

2.8.0

ESCANO00090185 Wakeup validation fail
(Start/Stop wakeup sources); Wakeup
validation must not be used with
asynchronous Trcv (SPI) 5.2.11 5.2.12
ESCANO00090829 Improve description how
to redirect "Error Reporting APIs" 3.17.1,
3.17.2

Mark A. Fingerle

2016-08-01

29.0

ESCAN00091303 6.2.13 Expanded Tx
Timeout Exception Handling

© 2016 Vector Informatik GmbH

Version 2.9.0

based on template version 5.0.0

VECTOR D>

Technical Reference MICROSAR CAN State Manager

Reference Documents

No Souce _TWe _ _ ___ _______________\Version

[1]
[2]
[3]
[4]
[5]
[6]
[7]

AUTOSAR
AUTOSAR
AUTOSAR
AUTOSAR
AUTOSAR
AUTOSAR
AUTOSAR

Specification of CAN State Manager
Specification of Development Error Tracer
Specification of Diagnostics Event Manager
List of Basic Software Modules

Specification of CAN Interface

Specification of Communication Manager
Specification of Basic Software Mode Manager

Scope of the Document

This technical reference describes the general use of the CAN State Manager basis
software. All aspects which are CAN controller specific are described in the technical

reference of the CAN Interface, which is also part of the delivery.

© 2016 Vector Informatik GmbH

Caution

2.2.0
3.2.0
4.2.0
1.6.0
5.0.0
4.0.0
1.2.0

We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your

company is expressly restricted to the configuration you have specified in the

questionnaire.

Version 2.9.0
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

Contents
1 Component HISTOrY ... e a e e aaaees 9
2 INtrodUCION..... ..o e 10
2.1 ArchiteCture OVEIVIEWuiii i 10
3 Functional DeSCriptioncooiiiiiiiiiii e 12
3.1 == (U] = S 12
3.2 INItialiZation ..., 13
3.3 State MaACKINEeuiiiiiiiiiiii bbb rnne 13
3.3.1 Mode Request Indication and Repetition.............cvveeiiiiiiniiiiiinnnnnn. 14
3.3.2 Communication Mode Request Change (During Pending Mode
Indication or Running Bus-Off Recovery)cccccccoviiiiiiiiiiiiiiiinnnnn. 14
3.3.3 CANSM_NO_COMMUNICATION to
CANSM_FULL_COMMUNICATIONcooiiiiieieeeeeeeeeeeeeeeeeeeeeeeee, 15
3.34 CANSM_FULL_COMMUNICATION to
CANSM_SILENT_COMMUNICATIONccooeiiiieieieeeeeeeeeeeeeeeeee, 16
3.3.5 CANSM_SILENT_COMMUNICATIONccooiiiiiiieieieeeeeeeeeeeeeeeeeee, 16
3.3.6 CANSM_SILENT_COMMUNICATION to
CANSM_FULL_COMMUNICATIONccooiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee, 16
3.3.7 Transition to CANSM_NO_COMMUNICATION............cceeeeeeeeeeenn. 17
3.4 BUS-Off RECOVEIY....cciiiiiii ittt e e e et e e e e e e eaaees 18
3.5 Main FUNCHON ... e e e e et e e e e e e eeaenes 19
3.6 Communication MOAESoeuiiiiii e e e aaaees 19
3.7 Communication Mode POIlING...........uuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeineeeeeeeeeeeeeeeee 19
3.8 Bus-Off Level POIlINGooviiiiiiiiiiiiiiiiiieieeeeeeeeeeee e 19
3.9 Partial NetWOrKingooouueeiii e 19
1 T O B I [=Y o 0 (o7 =T o]) I 21
3.11 Baud Rate Adaplionoooiiiiiiiii e 21
3.12 ECU PaSSIVE MOGE........uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiitaaeeeisieeseseasasesassssssessseesnnnnsensnnnnes 22
3.13 PreventBusSIeepAtStartUp ..o 22
3.14 BusOff Recovery Notifications Extension of Tx Offline Duration....................... 23
3.15 Wake-up Validation ASSIStanCeccooiiiiiiiiiiii e 23
3.16 Start/Stop WaKe-Up SOUICES........uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiebieeeeeeeeeeeeeeenee 23
3.16.1 Normal Behavior ... 23
3.16.2 US@QE ..ot 24
3.16.3 Exceptional BENAVIONuuiiieieeees 24
3.16.4 Potential EffeCt...........uuuuiiiiiiiiiiiiiiiiii e 24
3.16.4.1 Start of the Wakeup Sources Fail..............ccooeeeeeeeeeeen. 24
3.16.4.2 Stop of the Wakeup Sources Fail ..., 24
© 2016 Vector Informatik GmbH Version 2.9.0 4

based on template version 5.0.0

VECTOR >

Technical Reference MICROSAR CAN State Manager

3.16.5 COUNEIMEASUIES ...ouvviiiii e et e e e e a e e e e e e eeneees 25
317 Error HandliNg.......oooouiiiii et aane 26
3.17.1 Development Error Reporting.........ooovvvveiiiiiiiieeeeeeecee e 26
3.17.2 Production Code Error Reportingc.ooouuviiiiiiiiiiiiiiiiceie e, 27
4 INtegration ..o e 29
4.1 SCOPE OF DEIIVEIY ... e e e e e aaaees 29
411 StAtIC FIleS e 29
41.2 DYNamIC FlESuuuiiiiiiiiiiiiiii e 29
4.2 (@7 1 (Ter= | I ST=Tex (0] 1 N 30
B API DESCIIPLION... .o 32
5.1 TYPE DEfiNItIONS ... 32
5.2 Services Provided by CanSM.............uuuuiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeneeenees 32
5.2.1 CanSM_INItMEMOIYccoieiiiiei e 32
5.2.2 CanSM _Prelnit.. ... 33
5.2.3 CanNSIM Nt ... 33
524 CanSM_MainFuncCtion...........cccceiiiiiiiiicice e 34
525 CanSM_RequestComMOdeccovvvieiiiiiiie e 34
5.2.6 CanSM_GetCurrentComModeoovvviiiiiiiiiiieecee e 35
5.2.7 CanSM_GetVersionInfocceeiiiiiiiiicce e, 35
528 CanSM_CheckBaudrateccccooevviviieiiiiiiii e 36
5.2.9 CanSM_ChangeBaudrateccooooeeiiiiiieee 36
5210 CanSM SetBaudratecoovviiiiiiiiiiiic e 37
5.2.11 CanSM_StartWakeupSOUrCeS.ccovvvuiviieiie e 38
5212 CanSM_StopWakeUpSOUICES.......cciiieieiiiiiiiiiiiei e eee et e e eeeanns 38
5213 CanSM_CheckBOrLevel...........ciiiiiiiiiiiiiicie e, 39
5214 CanSM_SetECUPASSIVEcoeviiiiiiii e 39
5.2.15 CanSM_PreventBusSleepAtStartUpcccceeeeiiiiiiiiiiiicii e, 40
5216 CanSM_RamCheckStatuscccoviiiiiiiiiiiiiiiii e 40
5.2.17 CanSM_RamCheckEnableMailboXcccceeeiiiiiiiiiiiiiiiiiii e 41
5.3 Services Used by CanSIMuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieenneeeaeeeeeeeeeeeneneeeeenne 41
5.4 Callback FUNCHONS.ot e e e e e e eaaees 42
5.4.1 CanSM_ControllerBusOff.......ccooiiiiiieeeeeeeeee e, 42
542 CanSM_ControllerModelndication.............ccccoeeeeeeiiiiiieeeeeeeeeeee, 43
54.3 CanSM_TransceiverModelndication..............ccooeeviiiiii, 43
54.4 CanSM_ClearTrcvWufFlagIndicationcccccvvieiiiiiiniiiiiiieeeen. 44
54.5 CanSM_CheckTransceiverWakeFlagindication................ccoeeeeee. 44
5.4.6 CanSM_ConfirmPnAvailability............coooiiiii, 45
547 CanSM_TxXTimeoUtEXception........ccooeeeeeieeieeeeeeeeeeeeeeeeeeeeeeeeee e, 45
54.8 CanSM_RamCheckCorruptMailboXccooeveiiiiiiii, 46
© 2016 Vector Informatik GmbH Version 2.9.0 5

based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

549 CanSM_RamCheckCorruptControllercccvvevviiiiiiiieeirreeiiinnn, 46

5.5 (0= 1| (o013 U] o3 110 1S N 47

5.5.1 Appl_CanSM_RamCheckStart............ccvveeiiiiiiiiicee e 47

55.2 Appl_CanSM_RamCheckCorruptControllerccccccveiiiieeenininnn, 47

55.3 Appl_CanSM_RamCheckCorruptMailboxccceevvviiiiieiieeniinnnn, 48

554 Appl_CanSM_RamCheckFinished...........ccccooooiiiiiiiiiiiiiee e, 48

6 AUTOSAR Standard Compliance..................ooiiiiiiiiiiiiicee e 50

6.1 DeViatioNSccooiiiie 50

6.1.1 Communication mode requests are acceped if possible................... 50

6.2 AditioNS/ EXIENSIONS....ceiiiiiiii i 50

6.2.1 APl CanSM_INItMEMOIY() ...cevvvvviiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeee e 50

6.2.2 No Mode Noaotification During CanSM _Init............cccccoieeiiiiiniinnnn. 50

6.2.3 Configuration OPtIONSccooeiieieee e 50

6.2.4 Additional Bus-Off Recovery in State Silent............cccccocviiiiiiinnn, 50

6.2.5 API CanSM_CheckBorLevel().......ceeeieeeeiiieiiiiiiei e 50

6.2.6 Partial Network Wake Up Filteroooiveiiiiiiiiice e, 50

6.2.7 ECU Passive MOGEuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinineinenennnnnnenennnnnnne 50

6.2.8 PreventBusSleepAtStartUpccoovvevviiieeiiiii e 50

6.2.9 Post-Build Selectable (Identity Manager)ccccccvviiiiiiiiiiiiinnnnnns 50

6.2.10 APIs to Assist EcuM Wakeup Validation................ccccoei i, 51

6.2.11 Swift or Large Tx Timeout Exception handling..............ccoooeeeeeeeee. 51

6.2.12 Extended RAM ChECK..........uuuuummmiiiiiiiiiiiiiiiiiiiiiiiiiiiieinnnnnnnnnnnnnnnnnnnne 51

6.3 LIMIEAtIONS. .. e eaaee 51

6.3.1 (07] a1 1 o] | [=7 =R 51

6.3.2 Configuration Class........coooiiieiieiee e 51

7 Glossary and Abbreviations ... 52

71 L€ [0 1ST 7= | Y PSSR 52

7.2 ADDIEVIAtioNSe e 52

- T 0« 3| - T P 53
© 2016 Vector Informatik GmbH Version 2.9.0 6

based on template version 5.0.0

VECTOR >

Technical Reference MICROSAR CAN State Manager

lllustration List

Figure 2-1
Figure 2-2
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5

Tables

Table 1-1
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 4-1
Table 4-2
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 5-11
Table 5-12
Table 5-13
Table 5-14
Table 5-15
Table 5-16
Table 5-17
Table 5-18
Table 5-19
Table 5-20
Table 5-21
Table 5-22
Table 5-23
Table 5-24
Table 5-25
Table 5-26
Table 5-27
Table 5-28
Table 5-29
Table 5-30
Table 5-31
Table 5-32

© 2016 Vector Informatik GmbH

AUTOSAR architeCture.........ccoooveiiiiii e, 10
Interfaces to adjacent modules of the CanSM............ccccccvviieii e, 11
CanSM state Machingcoouuii i 14
Sub state transition to CANSM_FULL_COMMUNICATIONccccvvnnne 15
Sub state transition to CANSM_NO_COMMUNICATION..........ccccoeeeeeee. 17
CanSM sub-state bus-Off reCOVEry...........cveiiiiiiiiiic e, 18

Sub state Partial Network transition to CANSM_NO_COMMUNICATION. 20

Component NISTOrY........ccoiiiii e 9
Supported AUTOSAR standard conform features..............cooovvvviiiiennnenn, 12
Not supported AUTOSAR standard conform featurescccovveeenenn. 12
Features provided beyond the AUTOSAR standard..............cccoevvvveennnnn. 13
R T= YT 1 L 27
Errors reported t0 DETcovnniiiii e e 27
Errors reported t0 DEM.........oooiiiiiiii e 28
STALIC fIlES ..ttt 29
Generated fileSuuuuiiiiiiiiiiiii e 30
Type definitioNS. ... 32
CanSM_INIIMEMIOIY ...t 33
CanSM _Prelnit 33
CanNSM _INIt. ..o 34
CanSM_MainFUNCLONoouiiiiiii e 34
CanSM_RequestComMOde.........ccoooeeiiiiiiiiiiiii e 35
CanSM_GetCurrentComMOde..........cccovviiiiiiiiiiiececeeee e 35
CanSM_GetVersionInfoouuuiiiii e 36
CanSM_CheckBaudratecccoeiieeiiiiiiiiicc e 36
CanSM_ChangeBaudrate.................uuuuuiiiiiimiiiiiiiiiiiiiiiiiiiieeeieeeenneennnes 37
CanSM_SetBaudrate...........oouuiiiiiiiieieee e 37
CanSM_StartWakeupSOUICEScocovvveiiiiiiiee et 38
CanSM_StopWaKEUPSOUICESccoeeeiiiiiiiiiiee e 39
CanSM_ChecCkBOrLeveluuiiiiiiiiiiiecie e 39
CanSM_SetECUPASSIVE..........cuueiiii i 40
CanSM_PreventBusSleepAtStartUp........cccccceeviiiiiiiiiiiiii e, 40
CanSM_RamCheckStatus........cccoiiiiiiiiiiiiice e 41
CanSM_RamCheckEnableMailboX.............ceiiiiiiiiiiiiiiiiec e 41
Services used by the CanSM.............uuuuiiiiiiiiiiiiiiiiieneae 42
CanSM_ControllerBusOff ... 43
CanSM_ControllerModelndicationcccoviiiiiiiiiiiiiii e, 43
CanSM_TransceiverModelndicationuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieenns 44
CanSM_ClearTrevWufFlagIndicationcceveviiiiiiiiiiiiieeeee 44
CanSM_CheckTransceiverWakeFlaglndicationccccociiiiniiiinnee, 45
CanSM_ConfirmPnAvailabilityuueuiiiiiiiiiiiiiiiiies 45
CanSM_TXTIMEOUtEXCEPLIONuuuiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeenes 46
CanSM_RamCheckCorruptMailboXuuuuemmmiiimiiiiiiiiiiiiiiiiiiiiiiiiiinnnnnns 46
CanSM_RamCheckCorruptController...................uuuueiiimiiiiiiiiiiiiiiiiiiiiinnnnns 47
Appl_CanSM_RamCheckStartcccccciiiiii 47
Appl_CanSM_RamCheckCorruptController.............ccccccvvvvivviiiiiiiiiieieenn, 48
Appl_CanSM_RamCheckCorruptMailboXcccvvviiiiiiiiiiiiiiiiiiii, 48
Appl_CanSM_RamCheckFinished.............cccccccoiiiiiii 49

Version 2.9.0
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

Table 7-1 (€] [0 1T-7= Y 52
Table 7-2 Y2 o] o1 (=\Y/ = 1 [0 o 1= TP 52
© 2016 Vector Informatik GmbH Version 2.9.0 8

based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version | New Features

2.0.0 Creation according to AUTOSAR 4.0.3
51.0 Extended RAM Check

Table 1-1 Component history

© 2016 Vector Informatik GmbH Version 2.9.0 9
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module CanSM as specified in [1].

Supported AUTOSAR Release*: 4
Supported Configuration Variants: pre-compile, Post-Build Selectable
Vendor ID: CANSM_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: CANSM_MODULE_ID 140 decimal

(according to ref. [4])
* For the precise AUTOSAR Release 4.x please see the release specific documentation.

The CAN State Manager (CanSM) realizes a software layer between the Communication
Manager (ComM) and the CAN Interface (Canlf). The CanSM handles the startup and
shutdown of the communication of a CAN network. The CAN State Manager maps the
CAN State Manager states to the states of the ComM and causes the necessary actions to
change the CAN State Manager state to those requested by the ComM. The main function
of the CAN State Manager is called cyclically by the Schedule Manager (SchM).

2.1 Architecture Overview
The following figure shows where the CanSM is located in the AUTOSAR architecture.

E2E Protection Tl
et Application
E2E SCHM MICROSAR RTE
s 2 oom MICROSAR COM
= B oM IPDUM NM PDUR
STBM = DEM
(=]
o
@a (7] sz E Gt = =
= g Z e J1939TP e FRXCP fHCP p =)
= g O o = CANXCP FRTP s 2 10TF g
2 % z Z oo P = = = & = & 10HWAB "
o @
S = S - g5 E cantp oz LINNM Z FRIsoTP EIPBASE?] = =
= s = pe— = & 4 S g S s = =
S £ Ds 2 CANM S ey 5 FRWM E uomm 2]
= WOGM = = Hocansu | = FRSM ETHSM E
FEE LINIF Network =
WDGIF Xcp CANIF FRIF ETHIF Thices
il MICROSAR CAL MICROSAR EXT
5 > > >
= = = > =
=T EPzzgzprzizzgziEiMPEieziE §E2E oz
8§ £ £ 2 5§ Z 232 gk 3/8 3z :c2kKPE =5 8 z £z EE
2 § § B8 8 B =2 = & g &8 g 8 2 2 2 = £ & = & S 858 & B
Microcontroller
. . ! Available extensions for AUTOSAR
Standard Software Projects and Services 3rd Party Software 2 Includes all required modules according to RFC
* Includes EEPEXT, FLSEXT, and WDGEXT
Figure 2-1 AUTOSAR architecture
© 2016 Vector Informatik GmbH Version 2.9.0 10

based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

The next figure shows the interfaces to adjacent modules of the CanSM. These interfaces
are described in chapter 5.

gl g] gl &] g] il

amadulas wridulds amodulés amodul g amadulés amadules
ComM::ComM OO EcuM -Ecuk=c SchM::SchM Eswi: Bawhd Dem::Dem Deat::Det
| I |
R . I [I
realize i i i
1 I |
! I | 8
angalizen
-mnl’lﬁ;mhla: woptionals PR ' +optionals argalizes
ComM_BusSM | | !
:rh | | |
I
]
] Baadd_CanSM_CumreniState
I
] CanSM_ComM CanSk_Init CanSM J'T"- Dem_ReponEmorStalus Dut_RaporEmor
emandatonys |
1 1 I I
] afgalizes | I
i I EFealizes E | iZa e xmam*alnryx -mam*alu:-ry: ¢ﬂ:llllFlﬂa|!
] I
1 | 1 I
amadules
Can5M
T T T
I 1 |
I 1 1
amanlli.a:nr.-- angalizes aopinals Nmnnﬁlilnwn wrid|ize angalizar
I |
I |
I |
I 1
i CanSM_Cbk Canli_ChangeBaudmbe |, CanSM_TxTimeoutExceplion Can5M_ChangeBaudrate
i A
I |
I |
I |
Canlf_CanSm i sreaizas Canim_ConfirmPrAvadlabdlity |
I |
EFRANIDS soonfigurables wrealzes aophpnals
' : g]
amodules emodules D.mmuﬁunlfm.
Canif::Canlf CanMm:-:Canhm :

Figure 2-2 Interfaces to adjacent modules of the CanSM

Applications do not access the services of the BSW modules directly.

© 2016 Vector Informatik GmbH Version 2.9.0 1
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
CanSM.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

> Table 3-1 Supported AUTOSAR standard conform features
> Table 3-2 Not supported AUTOSAR standard conform features

For further information of not supported features see also chapter 6.

Vector Informatik provides further CanSM functionality beyond the AUTOSAR standard.
The corresponding features are listed in the table

> Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

Translation of network communication mode requests

Output of current network communication modes (Polling and Callback)

Control of peripherals (CAN Transceivers, CAN Controllers)

Control of PDU mode

Handle the network mode via a separate state machine per network

Bus error management: Bus-off recovery via a separate state machine per network
Change Baud Rate handling

Tx Timeout Exception handling

Error classification, detection and notification

Enable and disable development and production error detection

Table 3-1 Supported AUTOSAR standard conform features

The following features specified in [1] are not supported:

Category Description ASR
Version
Functional Several controllers per network. 4.0.3
Config Change networks and controllers via Post-build configuration. 4.0.3
Config Configuration variants “link-time”. 4.0.3

Table 3-2 Not supported AUTOSAR standard conform features

© 2016 Vector Informatik GmbH Version 2.9.0 12
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard ‘

Deactivate the DEM at pre-compile time, like DET.

Changes of the communication mode are possible even during a pending mode indication.
Handling of bus-off events which occurs after CANSM FULL COMMUNNICATION has been left.
Interface to provide internal bus-off recovery level; CanSM_CheckBorLevel()

PduMode wake up filter in PN use case

Execute transition from SILENT to FULL within RequestComMode

ECU active/passive mode functionality

Prevent the bus sleep state of the Canlf, CanDrv and CanTrcv at CanSM initialization for the
given CAN network handle

MICROSAR Identity Manager using Post-Build Selectable
Extended RAM Check

Table 3-3 Features provided beyond the AUTOSAR standard

3.2 Initialization

Some embedded targets do not initialize RAM to zero during start-up. Therefore some
variables have to be initialized explicitly if they need a specific value before the
initialization function CansM Init is «called. This is done by the function
CanSM InitMemory. The function initializes the CanSM variables and sets the state to
‘not initialized’. The function has to be called before the initialization function CansM_Init.

After that, the initialization CansSM Init has to be triggered and the CAN State Manager
will set the internal used variables to their start values to ensure a deterministic behavior of
the state machines.

Info

ﬂ The CanSM initializes the CAN channel into the state NO COMMUNICATION. This
means, the CAN modules (Canlf, CanDrv and CanTrcv) are set into the corresponding
state for NO COMMUNCIATION (bus sleep). During this transition, detected wake-up
reasons, inside the CAN modules, are cleared.

This leads to the behavior that wake-up events, which are triggered by the CAN bus,
cannot be detected and/or validated during the initialization phase.

If the detection/validation of the wake up information is necessary for the ECU then the
CanSM API CanSM_PreventBusSleepAtStartUp() can be used to prevent the bus
sleep mode at start up for the above listed CAN modules.

3.3 State Machine

The CanSM functionality cannot be used before the API function CansM Init has been
called. If the CansM Init function is executed successfully the CanSM starts the
transition to the state CANSM NO COMMUNNICATION.

© 2016 Vector Informatik GmbH Version 2.9.0 13
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

stm CANSM_BSM

CANSM_BSM_S_FULLCOM

oo
I
T_NO_COM_MODE_REQUEST,
T_SILENT_COM_MODE_REQUEST
JE_FULL_TO_SILENT_COM T_FULL_COM_MODE_REQUEST
/E_SILENT_TO_FULL_COM
I /E_FULLCOM

CANSM_BSM_S_SILENTCOM

CANSM_BSM_S_PRE_FULLCOM o
T_NO_COM_MODE_REQUEST

/E_PRE_NO_COM
T_NO_COM_MODE_REQUEST
/

T_FULL_COM_MODE_REQUEST

(CANSM_BSM_S_PRE_NOCOM)
o CcanSM_nit /E_NOCOM
/E_PRE_NO_COM

PowerOn
PowerOff

T_FULL_COM_MODE_REQUEST

CANSM_BSM_S_NOT _INITIALIZED CANSM_BSM_S_NOCOM

Figure 3-1 CanSM state machine

3.3.1 Mode Request Indication and Repetition

If the CanSM triggers the transceiver or the controller, the CanSM waits for the
corresponding indication that the requested mode is reached. If the function call returns
E_NOT_OK and the corresponding indication is missing, the CanSM repeats the request
in the next main cycle. The CanSM repeats a controller/transceiver mode request also if
the correct mode indication is not received within the
CanSMModeRequestRepetitionTime.

Each repetiton is counted and if the amount exceeds the value
CanSMModeRequestRepetitionMax, the counter is reset, the Det will be informed with
E_MODE REQUEST TIMEOUT and the CanSM performs the transition to
CANSM_NO_COMMUNICATION. The repetition counter is also reset if the desired final state
is reached.

3.3.2 Communication Mode Request Change (During Pending Mode Indication or
Running Bus-Off Recovery)

If the state machine reachs a sub state and a changed mode request is present, the state
machine changes immediately the “current direction” to reach the desired communication
mode. The CanSM ensures that the controller and transceiver are set to the corresponding
mode. Therefore the CanSM performs always the whole sub-state machine, so if e.g. a

© 2016 Vector Informatik GmbH Version 2.9.0 14
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

startup is skipped by a NoCom request the CanSM changes the controller mode, too, even
if it has not been changed and it is still STOPPED.

Exception:
COMM SILENT COMMUNICATION requestcan NOT be requested if

= The transition (from SILENT or after initialization) to CANSM NO COMMUNNICATION has
been started

= The CanSMis in state CANSM_SILENT COMMUNNICATION
= The CanSMis in state CANSM NO COMMUNNICATION
3.3.3 CANSM_NO_COMMUNICATION to CANSM_FULL_COMMUNICATION

stm CANSM_BSM_S_PRE_FULLCOM/

4 CANSM_BSM_S_PRE_FULLCOM N\

O / S _TRCV_NORMAL]

+ do/DO_SET_TRCV_MODE_NORMAL

T
[G.T RCV_I\@RMAL_E_OK]

T_TRCV_NORMAL_TIMEOUT

(S_TRCV_NORMAL_WAIT)

T_TRCV_NORMAL_INDICATEDED

EntryPoint

T_REPEAT_MAX

S_CC_STOPPED

T_REPEAT_MAX

t do / DOisETicciMODEisTOPPa
|
[G_CC_STOPPED_E_OK]
W T_CC_STOPPED_TIMEOUT

C S_CC_STOPPED WAIT)

= I

-) T_CC_STOPPED_INDICATEDED

ExitPoint = =
T_REPEAT_MAX S _CC_STARTED

+ do/DO_SET_CC_MODE_STARTED
ExitPoint k /
To u
FULLCOM ‘ [G_CC_STARTED_E_OK]
\l/ T_CC_STARTED_TIMEOUT
< T_CC_STARTED_INDICATED !
@eT_CC_STARTED_INDICATED{ S_CC_STARTED_WAII)

- S

Figure 3-2 Sub state transition to CANSM_FULL_COMMUNICATION

In this state there is no communication on the CAN channel. When full communication is
requested the CanSM sets the transceiver mode to NORMAL and the controller mode to

© 2016 Vector Informatik GmbH Version 2.9.0 15
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

STARTED (via STOPPED). In case of a successful transition the CanSM sets the Rx and Tx
Pdu Mode to ONLINE, informs the ComM (see [6]) and the BswM (see [7]) about the new
communication state and starts the “ensure timer”. If the CanSMBorTimeTxEnsured
lapse without a bus-off indication the CanSM informs the Dem that no bus-off is present.
Alternatively to the “ensure timer” the CanSM may poll the TxState to decide that no bus-
off is present if CanSMBorTxConfirmationPolling is activated.

Caution
n This chapter describes only the normal shutdown. In case a partial network is activated
the CanSM performs an alternative sequence which is described in chapter 3.9.

3.34 CANSM_FULL_COMMUNICATION to CANSM_SILENT_COMMUNICATION

As long as full communication is requested the CanSM stays in this state, otherwise the
CanSM switches to silent mode and stops the Tx PDU mode. In case of a successful
transiton the CanSM notifies the ComM and BswM about the
CANSM_SILENT COMMUNICATION communication state.

3.3.5 CANSM_SILENT_COMMUNICATION

The state represents the prepare bus sleep phase of the network. The node is still able to
receive CAN messages but does not transmit them.

3.3.6 CANSM_SILENT_COMMUNICATION to CANSM_FULL_COMMUNICATION

According to the requested communication mode the CanSM switches back to
CANSM FULL COMMUNNICATION, starts the Tx PDU mode and notifies the ComM and
BswM about the new communication state.

© 2016 Vector Informatik GmbH Version 2.9.0 16
based on template version 5.0.0

VECTOR >

3.3.7 Transition to CANSM _

Technical Reference MICROSAR CAN State Manager

NO_COMMUNICATION

stm CANSM_BSM_DeinitPnNotSupported /

-

CANSM_BSM_DeinitPnNotSupported

-

CANSM_BSM_DeinitPnNotSupportedProceed

S

~

S_CC_STOPPED

O

\¢_do/DO_SET_CC_MODE_STOPPED

Entry4}vint

T_REPEAT_M
T_CC_STOPPED_

| 4\
_CIC_S ©) ED_ IMEOU

P

NDICATED

S_CC_STOPPED_WAIT

T_CC_STOPPED_INDICATED

S

~

S_CC_SLEEP

k do/DO_SET_CC_MODE_SLEEP

T_CC_SLEEP_INDICATED

T_CC_SLEEP_TIMEOUT

D

[
| [G_CC_SLEEP_E_OK]

C

S_CC_SLEEP_WAIT

T_CC_SLEEP_INDICATED

S

S_TRCV_NORMAL

k do/DO_SET_TRCV_MODE_NORMAL

T_TRCV_NORMAL_

T_TRCV_NORMAL_TIMEOUT

P

[
| [G_TRCV_NORMAL_E_OK]

INDICATED

T_TRCV_NORMAL_INDICATED

S_TRCV_NORMAL_WAIT

-

S_TRCV_STANDBY

k do/DO_SET_TRCV_MODE_STANDBY

T_TRCV_STANDBY_

S
J
i

CANSM_BSM_T_TRCV_STANDBY_TIMO

I
| [G_TRCV_STANDBY_E_OK]
uT

INDICATED
e S_TRCV_STANDBY_ WAIT
N

R=

ExitPoint

.

T_TRCV_STANDBY_INDICATED

.

-

S

Figure 3-3 Sub state transition to CANSM_NO_COMMUNICATION

The CanSM informs the BswM about the communication CANSM NO COMMUNICATION

immediately if the transition

shutdown process has been started. According to the

requested communication mode the CanSM switches to CANSM NO COMMUNICATION.
Then the CanSM sets the controller to SLEEP (via STOPPED) and the transceiver to
STANDBY (via NORMAL). In case of a successful transition the CanSM informs the ComM
about the new communication state (if this transition is executed in the call context of

© 2016 Vector Informatik GmbH

Version 2.9.0 17

based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

CansM Init the ComM and BswM functions are not called because these modules will
be initialized after the CanSM).

3.4 Bus-Off Recovery

stm CANSM_BSM_S_FULLCOM/

f CANSM_BSM_S_FULLCOM \
(S_TX_OFF \ [G_TX_ON]
/ JE_TX_ON

T_RESTART_CC_INDICATED SELELISHE LT Chls

[E_TX_OFF /\. S_NO_BUS_OFF
I

éNSM_BSM_S_RESTART_CC_W@ T_BUS_OFF

, /E_BUS_OFF

T_RESTART_CC_TIMEOUT /]\ [G_BUS_OFF_PASSIVE]
[G_RESTART CC_E 0K /E_BUS_OFF_PASSIVE

/ S_RESTART CC N\

EntryPoint
+ do/DO_SET_CC_MODE_STARTED

- J

T_REPEAT_MAX [ComModeRequest
NoCom or Silent]

ExitPoint

Figure 3-4 CanSM sub-state bus-off recovery

In case bus-off is indicated the CanSM informs the Dem (E _BUSOFF and
EVENT STATUS PREFAILED), the ComM (SILENT) and BswM (BUSOFF). In the next
step the CanSM restarts the controller to STARTED mode. If the according mode indication
is received the CanSM sets the Rx Pdu Mode to ONLINE and Tx Pdu Mode to OFFLINE
and starts the bus-off timer. If the CanSMBorTimeL1 (or CanSMBorTimeL?2 if the bus-off
count is equal or greater than CansSMBorCounterL1ToL2) elapse CanSM reactivates the
Tx path of the channel again, informs the ComM (FULL) and BswM (FULL) and starts the
‘ensure timer”. If the CanSMBorTimeTxEnsured timer has elapsed without a bus-off
indication the CanSM informs the Dem, otherwise the next bus-off recovery sequence is
started. The “ensure timer’ can also substituted by polling the TxState if
CanSMBorTxConfirmationPolling is activated as mentioned above.

© 2016 Vector Informatik GmbH Version 2.9.0 18
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

Note

ﬂ The indicated Dem event does not instantly lead to a DTC due to the EventStatus pre-
failed. The mechanism to qualify the event as failed has to be configured within the
DEM [3].

35 Main Function

The CanSM has one main function which has to be called cyclically by the SchM. The
main function triggers a state transition in case of a received mode indication or if a timer
elapses.

3.6 Communication Modes

The ComM collects the communication requests from the SWC and from the network.
Accordingly the ComM calculates the needed communication mode and requests this from
the CAN State Manager via the function CanSM RequestComMode.

3.7 Communication Mode Polling

The ComM is informed about every mode change by the CAN State Manager via the
callback function ComM BusSM ModeIndication.

Additional the ComM may request the communication mode which is currently active by
calling the API function CanSM GetCurrentComMode. The CAN State Manager will
deliver the communication mode to the pointer passed as a function parameter.

3.8 Bus-off Level Polling

The current bus-off level can be determinate by calling the API function
CanSM CheckBorLevel. The CanSM will deliver the bus-off level (CANSM BOR_NONE,
CANSM BOR_LEVEL1 or CANSM BOR LEVEL2) to the pointer passed as a function
parameter.

3.9 Partial Networking

If Partial Networking for a CAN channel is activated the CAN transceiver can only be
woken up by a specified CAN Message. Also the Network Management will ignore NM
messages which do not belong to the Partial Network and the CanSM will perform an
alternative shutdown sequence.

© 2016 Vector Informatik GmbH Version 2.9.0 19
based on template version 5.0.0

VECTOR >

Technical Reference MICROSAR CAN State Manager

stm CANSM_BSM_DeinitPnSupported /

-

CANSM_BSM_DeinitPnSupported \

-

CANSM_BSM_DeinitPnSupportedProceed \

S

S_PN_CLEAR_WUF

& do / DO_CLEAR_TRCV_WUF

L/

T
[G_PN_CLEAR_WUF_E_OK]

T_CLEAR_WUF_TIMEOUT

T_CLEAR_WUF_INDICATED (

S_PN_CLEAR_WUF_WAIT)

T_CLEAR_WUF_INDICATED

S_PN_CC_STOPPED

~

k do / DO_SET_CC_MODE_STOPPED

[G_CC_STOPPED_E_OK]

e

T_CC_STOPPED_TIMEOUT

S_CC_STOPPED_WAIT)

T_CC_STOPPED_INDICATED

T_CC_STOPPED_INDICATED

S_TRCV_NORMAL

k do / DO_SET_TRCV_MODE_NORMAL

)

T
[G_TRCV_NORMAL_E_OK]

T_TRCV_NORMAL_INDICATED'

S_TRCV_NORMAL_WAIT

T_TRCV_NORMAL_TIMEOUT

I
T_TRCV_NORMAL_INDICATED

V

S_TRCV_STANDBY

k do / DO_SET_TRCV_MODE_STANDBY

)

[G_TRCV_STANDBY_E_OK]

T_TRCV_STANDBY_TIMOUT

(S_TRCV_STANDBY_WAIT)

T_TRCV_STANDBY_INDICATED

T_TRCV_STANDBY_INDICATED

~

S CC SLEEP
k tlo / DO_SET_CC_MODE_S{ o5) T_CHECK_WFLAG_INDICATED
[G_CC_SLEEP_E_OK]
T_CC_SLEEP_INDICATED (S_CC_SLEEP_WAIT)
T_CC_SLEEP_INDICATED CANSM_BSM TI CC_SLEEP_TIMEOUT

S CHECK WFLAG IN CC SLEEP

\ / S_CHECK _WFLAG_IN_NOT CC SLEEP \

k do / DO_CHECK_WFLAG

T_CHECK_WFLAG_TIMEOUT

[
[G_CHECK_WFLAG_E_OK] [G_CHECK_WFLAG_E_OK]

) k do / DO_CHECK_WFLAG

T_CHECK_WFLAG_TIMEOUT

S_CHECK_WUF_| N_CC_SLEEP_WAIT)

éCHECK_WUF_I N_NOT_CC_SLEEP_WAD

T7CHECK7WFLA|GJ NDICATED

T_CHECK_WFLAG_INDICATED Junction /

T_CHECK_WFLAG_INDICATED

\ ExitPoint

T_REPEAT_MAX

O

EntryPoint /

Figure 3-5 Sub state Partial Network transition to CANSM_NO_COMMUNICATION

© 2016 Vector Informatik GmbH

Version 2.9.0 20

based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

If the feature has been enabled globally (at pre-compile time) and on the desired channel,
the CanSM first resets the current available wake-up information in the transceiver, before
the transceiver is set to STANDBY and the controller to SLEEP. If this is done, the CanSM
triggers the function CanIf CheckTrcvWakeFlag to handle a wake-up which might have
occurred during the shutdown. If an API call does not deliver the expected reaction it will
called again as described in chapter 3.3, subchapter “Mode Request Indication and
Repetition”. But the absence of the controller STOPPED indication has an exceptional
nature and does not lead to a repetition. Instead of the repetition the
CheckTrcviWakeFlag will be triggered and the whole shutdown sequence will be
repeated from start after the CanSM CheckTransceiverWakeFlagIndication has
been received.

3.10 Tx Timeout Exception

If the CanSM gets the CanSM TxTimeoutException notification the CanSM performs
the transition to CANSM NO_ COMMUNICATION, except bus-off is active. In this case the
CanSM TxTimeoutException notification will be ignored because it is quite likely a
“false report” due to the TxOffline phase and the communication will work again after that
and if not, the “Tx Timeout Exception” will be indicated by the CanNm again anyway.

If a “Tx Timeout Exception” handling is running any incoming communication mode
request will be postponed until CANSM NO COMMUNICATION has been reached. After that
the transition to CANSM FULL COMMUNICATION will be started if the last requested
communication mode was COMM_FULL_COMMUNICATION or
COMM SILENT COMMUNICATION.

In addition the CanSM provides an abbreviated recovery mechanism. If the feature
cansMSwiftTxTimeoutRecovery iS activated, only the conroller is set to STOPPED and back
to STARTED, instead of executing the entire shutdown and start up sequence. If it was not
successful to set the controller back to STARTED within the first try the CanSM indicates
coMM SILENT coMMUNICATION to the ComM and cansu BswM No coMMUuNICATION to the BswM
and executes the stanard repetition mechanism to reach the needed controller mode.

3.11 Baud Rate Adaption

The adaption of the baud rate is started by calling the function CansM SetBaudrate (or
CanSM ChangeBaudrate) . A Baud Rate Change is only possible if the communication
state is COMM FULL COMMUNICATION and no bus-off is present (validated by “Tx ensured
time” or “Tx Confirmation”).

When the Baud Rate Change has been accepted the CanSM informs the BswM
(CHANGE_BAUDRATE), set the PDU mode to OFFLINE and the controller mode to
STOPPED. After the controller mode STOPPED is reached the CanSM informs the ComM
(NoCom) and lead the driver to set the new baud rate. Then the controller mode will be set
back to STARTED. After the controller mode STARTED is reached the CanSM set the PDU
mode to ONLINE.

© 2016 Vector Informatik GmbH Version 2.9.0 21
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

Note
ﬂ The feature is intended to be used by the Dcm module.

Caution
n The CanSM ChangeBaudrate APl is deprecated. So it is recommended to use the
CanSM_SetBaudrate APl instead.

CanSM SetBaudrate APland CanSM ChangeBaudrate API cannot be
provided simultaneously.

If CanSM ChangeBaudrate APl is used nevertheless the desired baud rate has to be
validated via the function CansM CheckBaudrate before the function
CanSM ChangeBaudrate will be called.

3.12 ECU Passive Mode

After the initialization of the CanSM the ECU mode is active per default. The ECU mode is
the same for each CAN channel.

The CanSM can be instructed to handle the passive or active mode, globally for all
channels via the APl CanSM_SetEcuPassive(). The mode stays until a new request is
issued or a (re-)initialization of the CanSM happens.

In passive mode the CanSM sets the Tx PDU mode to OFFLINE_ACTIVE instead to
ONLINE (3.3.6, 3.3.3). If the ECU mode switches from passive to active the CanSM
switches the Tx PDU modes which are in OFFLINE_ACTIVE to ONLINE.

During a bus-off recovery phase the modification of the Tx PDU mode is postponed until
the bus-off recovery phase has been finished (Ch 3.4, Figure 3-4 E_TX_ON).

3.13 PreventBusSleepAtStartUp

If the feature is enabled within the configuration tool the function
CanSM_PreventBusSleepAtStartUp() becomes available. The function, if called before the
initialization, causes the CanSM to skip the initial transition of the according CAN channel.
Usually the CanSM sets the controller to sleep mode and the transceiver to standby during
the initialization.

© 2016 Vector Informatik GmbH Version 2.9.0 22
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

Note
ﬂ The CanSM expects that a FULL_COMMUNICATION request follows after the function
has been used and so the CanSM performs no further actions.

Caution
n If CanSM_PreventBusSleepAtStartUp() is used the CanDrv and CanTrcv stay in their
initial state and so usually no CAN wake-ups are possible.

3.14 BusOff Recovery Notifications Extension of Tx Offline Duration

The feature gives the application the possibility to react on an active bus-off. If the feature
is activated the CanSM triggers the “bus-off begin indication function” immediately, each
time the CanSM is informed about a bus-off. The second parameter of the function can be
used to extend the “bus-off recovery time” (Tx0ff1ine) (from O up to 153ms which is the
maximum value needed by the J1939Nm).

When the CanSM enters the state S BUS OFF CHECK, the Tx path is restarted. The
communication should work again and the CanSM informs the application via the “bus-off
end indication function”. The according channel can be identified via the network handle,
which is the first parameter of both functions.

The name of the indication functions can be set within the configuration tool. If the
indication function is not needed delete the function name (empty string) or delete the
parameter. Both functions can be (de)activated separately.

If J1939Nm is used, both the begin (J1939Nm GetBusOffDelay) and end
(J1939Nm BusOffEnd) indications are required.

3.15 Wake-up Validation Assistance

3.16 Start/Stop Wake-up Sources

With the new APIs (5.2.11, 5.2.12) the CanSM can be used, to start and stop the wake-up
sources, to enable the wake-up validation. Thus it can be avoided that the EcuM callout
starts the wake-up sources while the CanSM performs the transition to no communication
or the EcuM callout stops the wake-up sources while the CanSM performs the transition to
full communication.

3.16.1 Normal Behavior

Usually the CanSM is informed about the start of the wake-up validation sequence (via
5.2.11) within the state CANSM_ NO COMMUNICATION. In this case the CanSM sets the
CAN controller to STARTED and the CAN transceiver to NORMAL. If the validation is
successful it will be finished by a full communication request, then the Pdu mode is set to
ONLINE and the ComM and the BswM are notified with the corresponding full
communication indication.

© 2016 Vector Informatik GmbH Version 2.9.0 23
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

The validation is also finished if the wake-up has not been determined as valid within the
specified validation time. Then the CanSM is informed by the according API (5.2.12) and
the CanSM switches the controller back to SLEEP and the CAN transceiver to STANDBY.
If a validation sequence is started while the CanSM performs a transition to
CANSM NO COMMUNICATION, the current transition to CANSM NO COMMUNICATION will
be canceled.

3.16.2 Usage

To use the wake-up validation assistance of the CanSM, remove the “set controller mode”
and “set transceiver mode” functions from the EcuM wake-up sources callouts, call
CanSM StartWakeupSources instead within the EcuM callout
EcuM StartWakeupSources and the CanSM StopWakeupSources within the EcuM
callout EcuM StopWakeupSources. Pay also attention to 4.2.

3.16.3 Exceptional Behavior

The change of the CAN HW mode could be disturbed and is not possible within the HW
loop timeout. Especially the change of the controller mode may fail due to message
reception, dominant voltage level or electromagnetic interference.

If any transceiver or controller mode change returns E_NOT_OK any further actions will be
omitted and the CanSM will return E_NOT_OK too; except if the set controller mode to
SLEEP is answered with E_NOT_OK. In this case CanSM triggers a new wake-up by the
EcuM, which will start a new wake-up validation sequence. So no further exceptional
actions are necessary and the CanSM StopWakeupSources returns E_OK.

In case the CanSM returns an E_NOT_OK the CanTrcv/CanDrv are in “undefined” state so
it is most likely not possible to react on any event on the CAN bus respectively no Rx, no
Tx or no wake-up is possible which can lead to the effects described in the following
chapter.

3.16.4 Potential Effect

3.16.4.1 Start of the Wakeup Sources Falil

Because of the disturbance during the mode change the CAN HW (controller and/or
transceiver) might be in an undefined state and is probably not able to react on incoming
messages. Messages on the bus are lost, until a new wake-up is possible, after the
validation timeout elapses and a successful call of StopWakeupSources.

3.16.4.2 Stop of the Wakeup Sources Fail

Because of the disturbance during the mode change the CAN HW (controller and/or
transceiver) might be in an undefined state. Probably the CAN wake-up will not work and
the ECU is not able to react on Rx messages on the affected CAN bus.

© 2016 Vector Informatik GmbH Version 2.9.0 24
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

Caution

The EcuM may perform a state change to stop/sleep in the same
EcuM MainFunction () cycle where EcuM StopWakeupSources () is called. So it
is possible that the ECU stays in low power mode and cannot be woken up again
(internal/external wake-up or wake-up by CAN).

3.16.5 Countermeasures

> Ashort disturbance can probably be resolved by calling Start-/StopWakeupSources()
within the current call context again.

> As a second approach the return value of StartWakeupSources could be ignored. As a
result the validation time elapses, the wake-up sources are stopped and a new wake-
up interrupt triggers the validation again, if the CAN communication is still running. As
a drawback, the ECU cannot participate in the CAN communication during this period
and therefore is not recommended for time critical systems.

> Furthermore, the validation procedure can be bypassed altogether. Instead of calling
CanIf CheckvValidation (), the wake-up can be validated "manually” by calling
EcuM ValidateWakeupEvent () directly. As a result, normal CAN communication is
started on the channel.

Note: This may also lead to a wake-up of other ECUs on the affected CAN channel,
due to the electromagnetic interference, because of inhibited wake-up validation.

> |fthe StopWakeupSources () fails the validation sequence could be restarted again
“manually” via EcuM_SetWakeupEvent () call. The ECU can react faster to a
potential running CAN communication, under the assumption that the
StartWakeupSources () will be executed successfully. Alternatively it is possible to
initiate an ECU reset. The whole CAN stack becomes reinitialized by the BSW
modules from scratch.

Note
ﬂ The appropriate solution depends highly on the type of the ECU and on the
requirements which have to be fulfilled by the ECU.

n Caution
If any one of the functions CanSM_StartWakeupSources () 5.2.11 or
CanSM StopWakeupSources 5.2.12 returns a failure (i.e. returns E_NOT OK) the
application has to perform an ECU dependent error handling.

© 2016 Vector Informatik GmbH Version 2.9.0 25
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

Note
Wakeup validation does not work with asynchronous hardware e.g. partial network
transceiver.

3.17 Error Handling

3.17.1 Development Error Reporting

By default, development errors are reported to the DET using the service
Det ReportError () as specified in [2], if development error reporting is enabled (i.e.
pre-compile parameter CANSM_DEV_ERROR _DETECT == STD_ON).

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature
as the service Det ReportError (). The redirection of the function name has to be done
via “User Config File”.

The reported CanSM ID is 140.

The reported service IDs identify the services which are described in 5.2. The following
table presents the service IDs and the related services:

Service ID | Service

0x00 CanSM Init

0x01 CanSM GetVersionInfo

0x02 CanSM RequestComMode

0x03 CanSM GetCurrentComMode

0x04 CanSM ControllerBusOff

0x05 CanSM MainFunction

0x06 CanSM ConfirmPnAvailability

0x07 CanSM ControllerModeIndication

0x08 CanSM ClearTrcvWufFlagIndication

0x09 CanSM TransceiverModelIndication

0x0A CanSM CheckTransceiverWakeFlagIndication
0x0B CanSM TxTimeoutException

0x0C CanSM CheckBaudrate

0x0E CanSM ChangeBaudrate

0x0D CanSM SetBaudrate

0xOF CanSM CheckBorLevel

0x40 CanSM_ PreventBusSleepAtStartUp

© 2016 Vector Informatik GmbH Version 2.9.0 26

based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

Service ID | Service

0x20u CanSM_ StartWakeupSources
0x21u CanSM_ StopWakeupSources

Table 3-4 Service IDs

The errors reported to DET are described in the following table:

Error Code Description

0x01 CANSM E_UNINIT API service used without having called
the initialization function.
0x02 CANSM_E_PARAM POINTER API service called with invalid pointer in

parameter list
0x03 CANSM E INVALID NETWORK HANDLE API service called with wrong network

handle parameter, which is not
configured in the CanSM configuration.

0x04 CANSM E_PARAM CONTROLLER API service called with wrong controller
index.
0x05 CANSM E PARAM TRANSCEIVER APl service called with wrong

transceiver index.
0x06 CANSM E BUSOFF RECOVERY ACTIVE API network mode request called during
not finished bus-off recovery

0x07 CANSM _E_WAIT_ MODE_INDICATION API network mode request called during
pending indication
0x08 CANSM E INVALID COMM REQUEST API network mode request called with

invalid communication mode request
e.g. SILENT requested in state NoCom.

0x09 CANSM E_PARAM INVALID BAUDRATE API change baud rate called with invalid

baud rate i.e. the requested baud rate is
not equal to the remembered, valid

baud rate of the last
CanSM_CheckBaudrate call.
OxOA CANSM E MODE REQUEST TIMEOUT APl set transceiver/controller mode

request for a network failed more often
as allowed by configuration.

O0x0B CANSM E INITIALIZED API service used after the initialization
function.

Table 3-5 Errors reported to DET

3.17.2 Production Code Error Reporting

By default, production code related errors are reported to the DEM using the service
Dem ReportErrorStatus () as specified in [3], if production error reporting is enabled
(i.e. pre-compile parameter CANSM PROD_ERROR_DETECT == STD ON).

If another module is used for production code error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature

© 2016 Vector Informatik GmbH Version 2.9.0 27
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

as the service Dem ReportErrorStatus (). The redirection of the function name has to
be done via “User Config File”.

The errors reported to DEM are described in the following table:

Error Code Description

CANSM_E_BUSOFF_NETWORK_<X> The CAN State Manager reports to the DEM a network
specific bus-off event each time the bus-off could be
recovered or the bus-off could not be recovered within the
specified tries.

Table 3-6 Errors reported to DEM

© 2016 Vector Informatik GmbH Version 2.9.0 28
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

4 Integration

This chapter gives necessary information for the integration of the MICROSAR CanSM
into an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the CanSM contains the files which are described in the chapters 4.1.1 and
4.1.2:

411 Static Files

File Name Source Description
Code
Delivery |Delivery
CanSM.c This is the source file of the CanSM. It contains the
u implementation of the main functionality (not available
if libraries are delivered).
CanSM.h This is the main header file of the CAN State Manager
u u which provides the “defines”, function prototypes and
types of the CAN State Manager.
CanSM_BswM.h This header exports the
u u CanSM_BswMCurrentStateType, Which is dedicated to
the BswM module.
CanSM_Cbk.h This is the callback header file that declares the
u u notification functions which inform the CanSM about
the transceiver or controller changes.
CanSM_ComM.h This is a header file of the CAN State Manager which
u u is the specific interface for the ComM to the services of

the CAN State Manager.

CanSM_Dcm.h . . This header exports the set/Check/ChangeBaudrate
interfaces, which are dedicated to the Dcm module.
CanSM_EcuM.h This header exports the Init/InitMemory interfaces,
u u which are used to (pre)initialize the CAN state
manager.
CanSM_TxTime The header provide the callback function
outException.h u u CanSM_TxTimeoutException as optional interface (if

PN is active) to the CanNm.

Table 4-1 Static files

4.1.2 Dynamic Files
The dynamic files are generated by the configuration tool DaVinci Configurator.

File Name Description

CanSM_Cfg.h Configuration header file which is generated. It contains pre-compile switches,
which enable/disable features, type definitions and constant values.

CanSM_Lcfg.c Configuration source file. It contains configuration parameter which may be
changed at link time.

© 2016 Vector Informatik GmbH Version 2.9.0 29
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

File Name Description

CanSM_PBcfg.c Configuration source file. It contains for example timer variable values or
channel configuration parameter. It contains configuration parameter which
may be changed after link time.

Table 4-2 Generated files

4.2 Critical Sections

Critical sections are handled by the BSW Scheduler. The intention of the following critical
sections is to block the interrupt of CanSM functions (with a higher priority).

> The CANSM EXCLUSIVE AREA 1 has to be used if it is possible that the function
CanSM MainFunction () may be interrupted by any of the functions

> CanSM RequestComMode ()

> CanSM ControllerBusOff ()

> CanSM TxTimeoutException ()
> CanSM SetEcuPassive ()

> CanSM StopWakeupSources ()

> CanSM StartWakeupSources() .

> The CANSM EXCLUSIVE AREA 2 has to be used if it is possible that the function
CanSM_RequestComMode () may be interrupted by any of the functions

> CanSM MainFunction ()

> CanSM ControllerModeIndication ()

> CanSM TransceiverModeIndication()

> CanSM ClearTrcvWufFlagIndication ()

> CanSM CheckTransceiverWakeFlagIndication ()
> CanSM TxTimeoutException ()

> CanSM SetEcuPassive ()

> CanSM StopWakeupSources ()

> CanSM StartWakeupSources ().

> The CANSM EXCLUSIVE AREA 3 has to be used if it is possible that the function
CanSM ControllerBusOff () may be interrupted by any of the functions

> CanSM RequestComMode ()
> CanSM ControllerBusOff ()

> CanSM TxTimeoutException ().

© 2016 Vector Informatik GmbH Version 2.9.0 30
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

The intention of the following critical sections is to avoid a change of the CAN controller or
transceiver mode during shutdown of the CAN communication when the CanSM performs
the transition to from Silent Communication to No Communication.

> The CANSM EXCLUSIVE AREA 4 has to be used if it is possible that one of functions

CanSM MainFunction () or CanSM RequestComMode () may be interrupted by a
CAN event.

1. By CAN Wake Up Interrupt
2. By CAN Wake Up Polling
3. By CAN Bus-Off (Can error)

> The CANSM EXCLUSIVE AREA 5 has to be used if it is possible that one of the
functions CanSM SetEcuPassive () Of CanSM StartWakeupSources () Of
CanSM StopWakeupSources () may be interrupted by any of the functions

> CanSM RequestComMode ()
> CanSM MainFunction() .

> Oritis possible that the function CanSM ControllerModeIndication () may be
interrupted by the function

> CanSM SetEcuPassive() .

© 2016 Vector Informatik GmbH Version 2.9.0 31
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

5 API Description

For an interfaces overview please see Figure 2-2.

5.1 Type Definitions
The types defined by the CanSM are described in this chapter.

Type Name C-Type Value Range

CanSM BswMCurre uint$§ CAN specific CANSM BSWM NO COMMUNICATION
ntstateType communication CANSM BSWM_ SILENT COMMUNICATION

modes / states
notified to the BswM CANSM BSWM FULL_COMMUNICATION

module. CANSM BSWM BUS_OFF
CANSM BSWM CHANGE BAUDRATE

Pointer to the
structure which

CanSM Channel) .
= pointer contains the

ConfigPtrType configuration data
of a CAN channel.
Structure which

CanSM Channel contains the

ConfigType SEruct configuration data

of a CAN channel.
Structure which

CanSM ConfigT .
ans¥_ontig struct contains the global

ype configuration data.
Structure contains
CanSM_Channel . . thevariable values
VarRecordType of a specific CAN
channel.
CanSM BorStat uyints$§ Can specific bus-off CANSM BOR NONE
eType level. CANSM BOR_LEVEL1

CANSM_BOR LEVEL2

Table 5-1 Type definitions

5.2 Services Provided by CanSM
5.2.1 CanSM_InitMemory

Prototype
void CanSM_InitMemory(void)

Parameter

Return code

© 2016 Vector Informatik GmbH Version 2.9.0 32
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

Functional Description
This function initializes the CanSM memory and sets the variable CanSM IsInitializedto FALSE

Particularities and Limitations

m Service ID: see table 'Service IDs'
m Called once at start-up before the initialization function.

Expected Caller Context
m Function is called once before CanSM_ Init

Table 5-2 CanSM_InitMemory

a1
N
N
0O
QO
>
2
<
Y
=
L)
>
—

Prototype
void CanSM PrelInit (const CanSM ConfigType *const ConfigPtr)

Parameter

ConfigPtr [in] Pointer to configuration structure

Return code

void none

Functional Description
Initializes the configuration data component.
Particularities and Limitations

CanSM_InitMemory has been called if CANSM_PREVENT_BUSSLEEP_AT_STARTUP is activated unless
CanSM_EnableSetBusSleep]] is initialized by start up code.

The API is only needed in case of extended RAM check. Otherwise use CanSM_Init without
CanSM_Prelnit.

Configuration Variant(s): CANSM_EXTENDED_RAM_CHECK
Call context

> TASK
> This function is Reentrant

Table 5-3 CanSM_Prelnit

ol
N
w
0
o
=]
2
<
=]

Prototype
void CanSM Init(const CanSM ConfigType* const ConfigPtr)

Parameter

ConfigPtr Pointer to the configuration structure that shall be used for the post-build
parameters.

Return code

w

© 2016 Vector Informatik GmbH Version 2.9.0 3
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

Functional Description

Service for CAN State Manager initialization.

Particularities and Limitations

m Service ID: see table 'Service IDs'
= Non Reentrant

Expected Caller Context
m Called once after startup

Table 5-4 CanSM_lInit

5.2.4 CanSM_MainFunction

Prototype
void CanSM MainFunction(void)

Parameter

Return code

Functional Description

The main function of the CanSM executes asynchron transitions of each network, which is configured for
the CanSM.

Particularities and Limitations

m Service ID: see table 'Service IDs'

m CanSM has to be initialized. Function has to be called cyclically. The cycle time is set in the
configuration tool.

m Non Reentrant
Expected Caller Context

m Cyclic on task level

Table 5-5 CanSM_MainFunction

5.25 CanSM_RequestComMode

Prototype

Std ReturnType CanSM RequestComMode (NetworkHandleType NetworkHandle,
ComM ModeType CanSM RequestedComMMode)

Parameter
NetworkHandle The communication network number belonging to the request.

CanSM_RequestedComMM New desired value of the communication mode.
ode

Return code

ReturnType Returns whether function parameter are valid or not.

© 2016 Vector Informatik GmbH Version 2.9.0 3
based on template version 5.0.0

S

VECTOR > Technical Reference MICROSAR CAN State Manager

Functional Description

The function stores the requested communication mode for the network handle and executes the
corresponding network mode state machine.

Particularities and Limitations

m Service ID: see table 'Service IDs'
m CanSM has to be initialized.
m Reentrant for different CAN networks, not reentrant for the same CAN network

Expected Caller Context
= Function can be called in task and interrupt context.

Table 5-6 CanSM_RequestComMode

5.2.6 CanSM_GetCurrentComMode

Prototype

Std ReturnType CanSM_GetCurrentComMode (NetworkHandleType
NetworkHandle, ComM ModeType* CanSM ComMModePtr)

Parameter
NetworkHandle Index of the network channel.
CanSM_ComMModePtr Pointer where the communication mode information is copied to.

Return code

ReturnType Returns whether function parameter are valid or not.

Functional Description

This service delivers the current communication mode of a CAN network.

Particularities and Limitations

m Service ID: see table 'Service IDs'
m CanSM has to be initialized.

Expected Caller Context
m Function can be called in task and interrupt context.

Table 5-7 CanSM_GetCurrentComMode

5.2.7 CanSM_GetVersioninfo

Prototype
void CanSM_GetVersionInfo(Std VersionInfoType * VersionInfo)

Parameter

VersionInfo Pointer, where to store the version data of the CanSM.

Return code

© 2016 Vector Informatik GmbH Version 2.9.0 3
based on template version 5.0.0

5]

VECTOR > Technical Reference MICROSAR CAN State Manager

Functional Description

This service returns the version information of this module. The version information includes:
- Module Id

- Vendor Id

- Vendor specific version numbers (The versions are BCD-coded).

Particularities and Limitations

m Service ID: see table 'Service IDs'

m The function is only available if enabled at compile time (CANSM_VERSION_INFO_API =
STD_ON)

Expected Caller Context
m Function can be called in task and interrupt context.

Table 5-8 = CanSM_GetVersionInfo

5.2.8 CanSM_CheckBaudrate

Prototype

Std ReturnType CanSM CheckBaudrate (NetworkHandleType
CanSM NetworkHandle, uintl6 CanSM Baudrate)

Parameter
CanSM NetworkHandle The communication network number belonging to the request.

CanSM_Baudrate New desired baud rate.

Return code

ReturnType E_OK: Baudrate supported by all configured CAN controllers of the network
E_NOT_OK: Baudrate not supported / invalid network

Functional Description

This service check, if a certain baud rate is supported by the configured CAN controller of a CAN network.

Particularities and Limitations

Service ID: see table 'Service IDs'

CanSM has to be initialized.

Reentrant for different CAN networks, not reentrant for the same CAN network

Please note that this APl is deprecated and is kept only for backward compatibility reasons
(Substituted by CanSM_SetBaudrate).

Expected Caller Context

m Function can be called in task and interrupt context.

Table 5-9 CanSM_CheckBaudrate

5.2.9 CanSM_ChangeBaudrate

Prototype

Std ReturnType CanSM ChangeBaudrate (NetworkHandleType
CanSM NetworkHandle, uinl6 CanSM Baudrate)

© 2016 Vector Informatik GmbH Version 2.9.0 3
based on template version 5.0.0

o))

VECTOR > Technical Reference MICROSAR CAN State Manager

Parameter

CanSM NetworkHandle The communication network number belonging to the request.

CanSM Baudrate New desired baud rate.

Return code

ReturnType Returns whether function parameter are valid or not.

Functional Description

This service starts a process to change the baud rate for the configured CAN controllers of a certain CAN
network

Particularities and Limitations

Service ID: see table 'Service IDs'

CanSM has to be initialized.

CanSM_CheckBaudrate has to be called first successfully.

Reentrant for different CAN networks, not reentrant for the same CAN network

Please note that this API is deprecated and is kept only for backward compatibility reasons
(Substituted by CanSM_SetBaudrate).

Expected Caller Context

m Function can be called in task and interrupt context.

Table 5-10 CanSM_ChangeBaudrate

a1
N
[EEN
o
0O
Q
>
92
IZ
wn
D
—
w
Q
c
o
=
Q
=1
@D

Prototype

Std ReturnType CanSM SetBaudrate (NetworkHandleType
CanSM NetworkHandle, uinl6 BaudRateConfigID)

Parameter

CanSM NetworkHandle The communication network number belonging to the request.

BaudRateConfigID References a baud rate configuration by ID (see
CanControllerBaudRateConfigID)

Return code

ReturnType E_OK: Service request accepted, setting of (new) baud rate started
E_NOT_OK: Service request not accepted

Functional Description

This service starts a process to change the baud rate for the configured CAN controller of a CAN network.

Particularities and Limitations

m Service ID: see table 'Service IDs'
m CanSM has to be initialized
m Reentrant for different CAN networks, not reentrant for the same CAN network

Expected Caller Context
m Function can be called in task and interrupt context.

Table 5-11 CanSM_SetBaudrate

© 2016 Vector Informatik GmbH Version 2.9.0 3
based on template version 5.0.0

~

VECTOR > Technical Reference MICROSAR CAN State Manager

5.2.11 CanSM_StartWakeupSources
Prototype

Std ReturnType CanSM StartWakeupSources (NetworkHandleType
CanSM NetworkHandle)

Parameter

NetworkHandle Network handle of the wake-up source which should be started

Return code
E OK The CanSM has set the CanTrcv and CanDrv in the required states

E NOT_ OK It was not possible to set the CanTrcv or CanDrv to the required state to
perform the wake-up validation, e.g. because of dominant level on Rx pin. At
this point the CanTrcv or CanDrv are in an “undefined” state. The CanSM itself
does not execute any retry. The application has to perform an ECU dependent
error handling.

Functional Description

This function notifies the CanSM module that the EcuM has received a wake-up event which has to be
validated.

Particularities and Limitations

m CanSM has to be initialized.
m Reentrant for different CAN networks

m Transceiver which work asynchronous must not be used (i.e. Partial network Trcv, SPI Trcy,
Trecv within SBC)

Expected Caller Context
m Function can be called in task context.

Table 5-12 CanSM_StartWakeupSources

5.2.12 CanSM_StopWakeupSources
Prototype

Std ReturnType CanSM StopWakeupSources (NetworkHandleType
CanSM NetworkHandle, EcuM WakeupSourceType WakeupSource)

NetworkHandle The communication network number belonging to the request.
WakeupSource The wake-up source handle of the CAN channel which should be stopped

Return code

E OK The CanSM has set the CanTrcv and CanDrv in the required states or started
a new wakeup.

E NOT OK It was not possible to set the CanTrcv or CanDrv to the required state, e.g.
because of dominant level on Rx pin. At this point the CanTrcv or CanDrv are
in an “undefined” state. The CanSM itself does not execute any retry. The
application has to perform an ECU dependent error handling.

Functional Description

This function notifies the CanSM module that the wake-up has not been determined as valid within the
specified validation time

© 2016 Vector Informatik GmbH Version 2.9.0 3
based on template version 5.0.0

©

VECTOR > Technical Reference MICROSAR CAN State Manager

Particularities and Limitations

m CanSM has to be initialized.
m Reentrant for different CAN networks

= Transceiver which work asynchronous must not be used (i.e. Partial network Trcv, SPI Trcy,
Trecv within SBC)

Expected Caller Context
m Function can be called in task and interrupt context.

Table 5-13 CanSM_StopWakeupSources

5.2.13 CanSM_CheckBorLevel

Prototype

Std ReturnType CanSM CheckBorLevel (const NetworkHandleType
NetworkHandle, const CanSM BorStateType* CanSM BorStatePtr)

NetworkHandle Index of the network channel.
CanSM BorStatePtr Pointer to target variable, which shall be used for the output of the bus-off

recovery level.

Return code

ReturnType E_OK: API request accepted
E_NOT_OK: API request rejected

Functional Description

This service delivers the current bus-off level of a CAN network.

Particularities and Limitations

m Service ID: see table 'Service IDs'
m CanSM has to be initialized.

Expected Caller Context
m Function can be called in task and interrupt context.

Table 5-14 CanSM_CheckBorLevel

5.2.14 CanSM_SetEcuPassive
Prototype

void CanSM SetEcuPassive(boolean CanSM EcuPassiveMode)

Parameter

CanSM_EcuPassiveMode Boolean parameter which switches the ECU mode between active and
passive mode

Return code

© 2016 Vector Informatik GmbH Version 2.9.0 3
based on template version 5.0.0

©

VECTOR > Technical Reference MICROSAR CAN State Manager

Functional Description

The function stores the requested ECU mode until it's modified by the next call of this function. In passive
mode the CanSM sets the Tx PDU mode to OFFLINE_ACTIVE instead to ONLINE.

Particularities and Limitations

m CanSM has to be initialized.

= Non Reentrant

Expected Caller Context

m Function can be called in task and interrupt context.

Table 5-15 CanSM_SetEcuPassive

5.2.15 CanSM_PreventBusSleepAtStartUp

Prototype

Std ReturnType CanSM PreventBusSleepAtStartUp(NetworkHandleType
CanSM NetworkHandle)

Parameter

CanSM_NetworkHandle communication network handle

Return code

Std ReturnType Returns whether the network handle is valid and if the function has been
called before or after the initialization.

Functional Description

The function can be used to prevent the bus sleep state of the Canlf, CanDrv and CanTrcv at start up for
the given CAN network handle.

The Canlf, CanDrv and CanTrcv leaves in the corresponding module initialization state.

Particularities and Limitations

m Called at start-up before the CanSM initialization function
m The function must not be used with PostBuildSelecabel configuarions
Expected Caller Context

m Function has to be called before CanSM_Init

Table 5-16 CanSM_PreventBusSleepAtStartUp

5.2.16 CanSM_RamCheckStatus

Prototype
Std ReturnType CanSM RamCheckStatus (NetworkHandleType CanSM NetworkHandle)

CanSM_NetworkHandle Network handle
[in]

Return code

Std_ReturnType CANSM_APPL_RAMCHECK_ENABLE Everything is E_OK
CANSM_APPL_RAMCHECK_DISABLE Communication shall be disabled
CANSM_APPL_RAMCHECK_ENABLE_REPEAT Communication shall be

© 2016 Vector Informatik GmbH Version 2.9.0 4
based on template version 5.0.0

o

VECTOR > Technical Reference MICROSAR CAN State Manager

enabled and the RAM check repeated
CANSM_APPL_RAMCHECK_DISABLE_REPEAT Communication shall be
disabled and the RAM check repeated

E_NOT_OK wrong Parameter
Functional Description
Reports the RAM check status to the ComM.

Particularities and Limitations

Reports the last RAM check status
Configuration Variant(s): CANSM_EXTENDED_RAM_CHECK

Call context

> ANY
> This function is Synchronous
> This function is Reentrant

Table 5-17 CanSM_RamCheckStatus

5.2.17 CanSM_RamCheckEnableMailbox

Prototype

void CanSM RamCheckEnableMailbox (NetworkHandleType Network, Can HwHandleType
MailBox)

Network [in] network handle
MailBox [in] HW mail box identifier

Return code

void none

Functional Description

Forwards enable mail box.

Particularities and Limitations

If a mail box shall be enabled the information from the application is passed through to the CanDrv via
Canlf.

Configuration Variant(s): CANSM_EXTENDED_RAM_CHECK

Call context

> ANY
> This function is Synchronous
> This function is Reentrant

Table 5-18 CanSM_RamCheckEnableMailbox

5.3 Services Used by CanSM

In the following table services provided by other components, which are used by the
CanSM are listed. For details about prototype and functionality refer to the documentation
of the providing component.

© 2016 Vector Informatik GmbH Version 2.9.0 41
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

Component API

Application Appl_CanSM_RamCheckCorruptController

Application Appl_CanSM_RamCheckCorruptMailbox

Application Appl_CanSM_RamCheckFinished

Application Appl_CanSM_RamCheckStart

BswM BswM_CanSM_CurrentState

Canlf Canlf_SetControllerMode

Canlf Canlf_SetTrcvMode

Canlf Canlf_ChangeBaudrate

Canlf Canlf_SetPduMode

Canlf Canlf_CheckTrcvWakeFlag

Canlf Canlf_ClearTrcvWufFlag

Canlf Canlf_GetTxConfirmationState

Canlf Canlf_RamCheckEnableController

Canlf Canlf_RamCheckEnableMailbox

Canlf Canlf _RamCheckExecute

CanNm CanNm_ConfirmPnAuvailability

DEM Dem_ReportErrorStatus

DET Det_ReportError

ComM ComM_BusSM_Modelndication

SchM SchM_Enter_CanSM_CANSM_EXCLUSIVE_AREA i
fori=1,2,3,4,5

SchM SchM_Exit_ CanSM_CANSM_EXCLUSIVE_AREA i
for i=1,2,3,4,5

Table 5-19 Services used by the CanSM

5.4 Callback Functions

This chapter describes the callback functions that are implemented by the CanSM and can
be invoked by other modules. The prototypes of the callback functions are provided in the
header file CansM Cbk.h by the CanSM.

5.4.1 CanSM_ControllerBusOff

Prototype
void CanSM ControllerBusOff(uint8 CanSM ControllerId)

Parameter

CanSM ControllerId Index of the CAN controller, which detected a bus-off event

Return code

© 2016 Vector Informatik GmbH Version 2.9.0 42
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

Functional Description

The CanSM is notified about a bus-off event on a certain CAN controller with this callback function. The
CanSM uses this information to execute the bus-off recovery for the corresponding controller.

Particularities and Limitations

m CanSM has to be initialized.

Expected Caller Context

= Function can be called in task and interrupt context.

Table 5-20 CanSM_ControllerBusOff

5.4.2 CanSM_ControllerModelndication

Prototype

void CanSM_ControllerModelIndication (uint8 CanSM ControllerId,
CanIf ControllerModeType CanSM ControllerMode)

Parameter

CanSM ControllerId Index of the CAN controller, which detected a bus-off event
CanSM_ControllerMode Notified CAN controller mode

Return code

Functional Description

This callback shall notify the CanSM module about a CAN controller mode change.

Particularities and Limitations

m Service ID: see table 'Service IDs'
m CanSM has to be initialized.

Expected Caller Context
m Function can be called in task and interrupt context.

Table 5-21 CanSM_ControllerModelndication

5.4.3 CanSM_TransceiverModelndication

Prototype

void CanSM TransceiverModelIndication(uint8 CanSM TransceiverId,
CanIf TrcvModeType CanSM TransceiverMode)

Parameter

CanSM TransceiverId Index of the CAN controller, which detected a bus-off event
CanSM_TransceiverMode Notified CAN transceiver mode

Return code

Functional Description

This callback shall notify the CanSM module about a CAN transceiver mode change.

© 2016 Vector Informatik GmbH Version 2.9.0 43
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

Particularities and Limitations

m Service ID: see table 'Service IDs'
m CanSM has to be initialized.

Expected Caller Context
= Function can be called in task and interrupt context.

Table 5-22 CanSM_TransceiverModelndication

5.4.4 CanSM_ClearTrcvWufFlagindication

Prototype
void CanSM _ClearTrcvWufFlagIndication (uint8 CanSM TransceiverId)

Parameter

CanSM TransceiverId The transceiver ID number belonging to the request.

Return code

Functional Description

This call-back function indicates the Canlf_ClearTrcvWufFlag API process end for the notified CAN
Transceiver.

Particularities and Limitations

m Service ID: see table 'Service IDs'
m CanSM has to be initialized.
m Reentrant for different CAN transceivers

Expected Caller Context
m Function can be called in task and interrupt context.

Table 5-23 CanSM_ClearTrcvWufFlaglindication

5.45 CanSM_CheckTransceiverWakeFlagIndication

Prototype

void CanSM_CheckTransceiverWakeFlagIndication (uint8
CanSM TransceiverId)

Parameter
CanSM TransceiverId The transceiver ID number belonging to the request.

Return code

Functional Description

This call-back function indicates the CheckTransceiverWakeFlag API process end for the notified CAN
Transceiver.

© 2016 Vector Informatik GmbH Version 2.9.0 4
based on template version 5.0.0

N

VECTOR > Technical Reference MICROSAR CAN State Manager

Particularities and Limitations

m Service ID: see table 'Service IDs'
m CanSM has to be initialized.
m Reentrant for different CAN transceivers

Expected Caller Context
m Function can be called in task and interrupt context.

Table 5-24 CanSM_CheckTransceiverWakeFlaglndication

5.4.6 CanSM_ConfirmPnAvailability

Prototype
void CanSM ConfirmPnAvailability (uint8 CanSM TransceiverId)

Parameter

CanSM_TransceiverId The transceiver ID number belonging to the request.

Return code

Functional Description

This call-back function indicates that the transceiver is running in PN communication mode. In this case the
CanNm will be informed by calling CanNm_ ConfirmPnAvailability.

Particularities and Limitations

m Service ID: see table 'Service IDs'
m CanSM has to be initialized.
m Reentrant for different CAN transceivers

Expected Caller Context
m Function can be called in task and interrupt context.

Table 5-25 CanSM_ConfirmPnAvailability

5.4.7 CanSM_TxTimeoutException

Prototype
void CanSM TxTimeoutException (NetworkHandleType CanSM NetworkHandle)

Parameter

CanSM NetworkHandle The communication network number belonging to the request.

Return code

Functional Description

This function notifies the CanSM module that the Com has detected a Tx timeout exception, which shall be
recovered by the CanSM module by a re-initialization of the CAN controller.

© 2016 Vector Informatik GmbH Version 2.9.0 4
based on template version 5.0.0

[

VECTOR > Technical Reference MICROSAR CAN State Manager

Particularities and Limitations

m Service ID: see table 'Service IDs'
m CanSM has to be initialized.
m Reentrant for different CAN networks

Expected Caller Context
m Function can be called in task and interrupt context.

Table 5-26 CanSM_TxTimeoutException

5.4.8 CanSM_RamCheckCorruptMailbox

Prototype

void CanSM RamCheckCorruptMailbox (uint8 CanSM ControllerId, Can HwHandleType
MailBox)

CanSM_Controllerld [in] CAN controller index
MailBox [in] Mail box identifier

Return code

void none

Functional Description
Handles the indication of a RAM check error.

Particularities and Limitations

Gets information about RAM check errors. Forwards the information to the application and evaluates HW
register failures

Configuration Variant(s): -

Call context

> ANY
> This function is Reentrant

Table 5-27 CanSM_RamCheckCorruptMailbox

a1
B
©
Q)
QD
5
n
lZ
A
Q
3
@)
>0
D
o
S
Q)
S
c
=
Q)
(@)
2
S
o)

Prototype

void CanSM RamCheckCorruptController (uint8 CanSM ControllerId)
Parameter

CanSM_Controllerld [in] CAN controller index

Return code

void none

Functional Description

Handles the indication of a RAM check error.

Particularities and Limitations

Gets information about RAM check errors. Forwards the information to the application and evaluates HW

© 2016 Vector Informatik GmbH Version 2.9.0 4
based on template version 5.0.0

[«

VECTOR > Technical Reference MICROSAR CAN State Manager

register failures
Configuration Variant(s): -

Call context

> ANY
> This function is Reentrant

Table 5-28 CanSM_RamCheckCorruptController

5.5 Callout Functions
5.5.1 Appl_CanSM_RamCheckStart

Prototype
void Appl_CanSM RamCheckStart (NetworkHandleType CanSM NetworkHandle)

Parameter

CanSM_NetworkHandle network handle
[in]
Return code

void none
Functional Description
Indicates the start of the RAM check.

Particularities and Limitations

Indicates the start of the RAM check.
Configuration Variant(s): CANSM_EXTENDED_RAM_CHECK

Call context

> ANY
> This function is Synchronous
> This function is Reentrant

Table 5-29 Appl_CanSM_RamCheckStart

5.5.2 Appl_CanSM_RamCheckCorruptController

Prototype

void Appl_CanSM RamCheckCorruptController (NetworkHandleType
CanSM _NetworkHandle)

Parameter

CanSM_NetworkHandle network handle
[in]
Return code

void none

Functional Description

Forwards register RAM failures.

Particularities and Limitations

If register RAM failures occurs the information from the CanDrv is passed through the Application.

© 2016 Vector Informatik GmbH Version 2.9.0 4
based on template version 5.0.0

~

VECTOR > Technical Reference MICROSAR CAN State Manager

Configuration Variant(s): CANSM_EXTENDED_RAM_CHECK

Call context

> ANY
> This function is Synchronous
> This function is Reentrant

Table 5-30 Appl_CanSM_RamCheckCorruptController

5.5.3 Appl_CanSM_RamCheckCorruptMailbox

Prototype

void Appl_CanSM RamCheckCorruptMailbox (NetworkHandleType CanSM NetworkHandle,
Can HwHandleType MailBox)

CanSM_NetworkHandle Network handle
[in]

Can_HwHandleType [in] HW mail box identifier

Return code

void none

Functional Description

Forwards message box RAM failures.

Particularities and Limitations
If a message box RAM failure occurs the information from the CanDrv is passed through the Application.
Configuration Variant(s): CANSM_EXTENDED_RAM_CHECK

Call context

> ANY
> This function is Synchronous
> This function is Reentrant

Table 5-31 Appl_CanSM_RamCheckCorruptMailbox

5.5.4 Appl_CanSM_RamCheckFinished

Prototype

Std ReturnType Appl_CanSM RamCheckFinished (NetworkHandleType
CanSM NetworkHandle)

CanSM_NetworkHandle Network handle
[in]

Return code

Std_ReturnType CANSM_APPL_RAMCHECK_ENABLE Everything is E_OK
CANSM_APPL_RAMCHECK_ DISABLE Communication shall be disabled
CANSM_APPL_RAMCHECK ENABLE_REPEAT Communication shall be
enabled and the RAM check repeated
CANSM_APPL_RAMCHECK DISABLE_REPEAT Communication shall be
disabled and the RAM check repeated

© 2016 Vector Informatik GmbH Version 2.9.0 4
based on template version 5.0.0

©

VECTOR > Technical Reference MICROSAR CAN State Manager

Functional Description
Indicates the end of the RAM check.

Particularities and Limitations

The CanDrv has finished the extended RAM check. All potential errors have been reported. The Application
has to specify further actions via return value.

Configuration Variant(s): CANSM_EXTENDED_RAM_CHECK

Call context

> ANY
> This function is Synchronous
> This function is Reentrant

Table 5-32 Appl_CanSM_RamCheckFinished

© 2016 Vector Informatik GmbH Version 2.9.0 49
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

6 AUTOSAR Standard Compliance

6.1 Deviations

6.1.1 Communication mode requests are acceped if possible

The module accepts the communication mode requests even if there is a pending mode
indication. E.g. the CanSM is in state S CC_STARTED WAIT (3.3.3) and gets a
NO_COMMUNICATION request the deinitialization (3.3.7) becomes started.

Det_ReportError with the Errorld parameter CANSM_E_WAIT_MODE_INDICATION is not
used.

6.2 Additions/ Extensions

6.2.1 API CanSM_InitMemory()

This service function was added to be called at “Power On” or after reset to set the global
CanSM state. Afterwards the CanSM can be initialized correctly.

6.2.2 No Mode Notification During CanSM_lInit

The ComM_BusSM_Modelndication and BswM_CanSM_CurrentState are not called
during the transition from CANSM INIT to CANSM NO COMMUNNICATION because the
ComM and BswM become initialized after the CanSM.

6.2.3 Configuration Options

It's possible to (de)activate the DEM at pre-compile time, like DET.

6.2.4 Additional Bus-Off Recovery in State Silent

If bus-off occurs outside the state FULL_COMMUNICATION, the CanSM handles bus-off
and sets the CAN controller mode to STARTED once.

6.2.5 API CanSM_CheckBorLevel()
This service function delivers the current bus-off level of a CAN network.

6.2.6 Partial Network Wake Up Filter

For the partial network use case it has to be ensured that that the first message on the bus
is a wake up message. Therefore the CanSM triggers the PDU Mode

CANIF SET ONLINE WAKF instead canir seT onpLINE. The CanSM feature is automatically
active if the feature is active in the Canlf.

6.2.7 ECU Passive Mode

The passive mode deactivates the Tx part during full communication. The ECU listens
“passively” on all CAN busses.

6.2.8 PreventBusSleepAtStartUp

The additional APl CanSM_PreventBusSleepAtStartUp() allows to skip the initial transition
for the selected channel(s).

6.2.9 Post-Build Selectable (Identity Manager)
The code generator and the static code supports post build selectable configuration.

© 2016 Vector Informatik GmbH Version 2.9.0 50
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

6.2.10 APIs to Assist EcuM Wakeup Validation
The APIs can be used to ensure that the CAN HW is started/online during running wakeup

Validation (chapters 3.15, 3.17.1, 4.2, 5.2.11, 5.2.12).

6.2.11 Swift or Large Tx Timeout Exception handling

The CanSM provides two different versions of Tx Timeout Exception handling. The desired
one can be configured. The new swift version sets the controller to stopped and back to
started instead executing the whole shut down sequence to NoCom.

6.2.12 Extended RAM Check
The CanSM triggers the DrvCan to execute CanSelfDiag (Extended RAM Check).

6.2.13 Expanded Tx Timeout Exception Handling

The CanSM provides the option to configure a callout function which is called at the end of
the timeout exception handling. If a valid function name is configured the CanSM activates
the "expanded" time out exception handling. The "expanded" time out exception handling
is equal to the CanSMSwiftTxTimeoutRecovery followed by the configured end indication.
In addition the CanSM executes the handling also if the Tx timeout exception is indicated
in the states "SILENTCOM" or "BUS_OFF_CHECK".

6.3 Limitations
6.3.1 Controllers
The CanSM supports only one controller per channel.

6.3.2 Configuration Class
Only VARIANT-PRE-COMPILE is supported.

© 2016 Vector Informatik GmbH Version 2.9.0 51
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

7 Glossary and Abbreviations

7.1 Glossary

Term Description

DaVinci Configurator = Generation tool for MICROSAR components

Table 7-1 Glossary

7.2 Abbreviations

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

BswM Basic Software Mode Manager

CAN Controller Area Network

CanDrv CAN Driver

Canlf CAN Interface

CanNm CAN Network Management

CanSM CAN State Manager

CanTrcv CAN Transceiver

Cbk Call-back / call-out notification (functions)

Cfg Configuration

ComM Communication Manager

DEM, Dem Diagnostic Event Manager

DET, Det Development Error Tracer

DTC Diagnostic Trouble Code

ECU Electronic Control Unit

EcuM ECU State Manager

HIS Hersteller Initiative Software

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

PDU Protocol Data Unit

PN Partial Networking

RAM Random Access Memory

SBC System Basis Chip

SchM BSW Scheduler

SPI Serial Peripheral Interface

SWC Software Component

Table 7-2 Abbreviations

© 2016 Vector Informatik GmbH Version 2.9.0 52
based on template version 5.0.0

VECTOR > Technical Reference MICROSAR CAN State Manager

8 Contact

Visit our website for more information on

> News

> Products

> Demo software
> Support

> Training data

> Addresses

www.vector.com

© 2016 Vector Informatik GmbH Version 2.9.0 53
based on template version 5.0.0

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.2 Initialization
	3.3 State Machine
	3.3.1 Mode Request Indication and Repetition
	3.3.2 Communication Mode Request Change (During Pending Mode Indication or Running Bus-Off Recovery)
	3.3.3 CANSM_NO_COMMUNICATION to CANSM_FULL_COMMUNICATION
	3.3.4 CANSM_FULL_COMMUNICATION to CANSM_SILENT_COMMUNICATION
	3.3.5 CANSM_SILENT_COMMUNICATION
	3.3.6 CANSM_SILENT_COMMUNICATION to CANSM_FULL_COMMUNICATION
	3.3.7 Transition to CANSM_NO_COMMUNICATION

	3.4 Bus-Off Recovery
	3.5 Main Function
	3.6 Communication Modes
	3.7 Communication Mode Polling
	3.8 Bus-off Level Polling
	3.9 Partial Networking
	3.10 Tx Timeout Exception
	3.11 Baud Rate Adaption
	3.12 ECU Passive Mode
	3.13 PreventBusSleepAtStartUp
	3.14 BusOff Recovery Notifications Extension of Tx Offline Duration
	3.15 Wake-up Validation Assistance
	3.16 Start/Stop Wake-up Sources
	3.16.1 Normal Behavior
	3.16.2 Usage
	3.16.3 Exceptional Behavior
	3.16.4 Potential Effect
	3.16.4.1 Start of the Wakeup Sources Fail
	3.16.4.2 Stop of the Wakeup Sources Fail

	3.16.5 Countermeasures

	3.17 Error Handling
	3.17.1 Development Error Reporting
	3.17.2 Production Code Error Reporting

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Critical Sections

	5 API Description
	5.1 Type Definitions
	5.2 Services Provided by CanSM
	5.2.1 CanSM_InitMemory
	5.2.2 CanSM_PreInit
	5.2.3 CanSM_Init
	5.2.4 CanSM_MainFunction
	5.2.5 CanSM_RequestComMode
	5.2.6 CanSM_GetCurrentComMode
	5.2.7 CanSM_GetVersionInfo
	5.2.8 CanSM_CheckBaudrate
	5.2.9 CanSM_ChangeBaudrate
	5.2.10 CanSM_SetBaudrate
	5.2.11 CanSM_StartWakeupSources
	5.2.12 CanSM_StopWakeupSources
	5.2.13 CanSM_CheckBorLevel
	5.2.14 CanSM_SetEcuPassive
	5.2.15 CanSM_PreventBusSleepAtStartUp
	5.2.16 CanSM_RamCheckStatus
	5.2.17 CanSM_RamCheckEnableMailbox

	5.3 Services Used by CanSM
	5.4 Callback Functions
	5.4.1 CanSM_ControllerBusOff
	5.4.2 CanSM_ControllerModeIndication
	5.4.3 CanSM_TransceiverModeIndication
	5.4.4 CanSM_ClearTrcvWufFlagIndication
	5.4.5 CanSM_CheckTransceiverWakeFlagIndication
	5.4.6 CanSM_ConfirmPnAvailability
	5.4.7 CanSM_TxTimeoutException
	5.4.8 CanSM_RamCheckCorruptMailbox
	5.4.9 CanSM_RamCheckCorruptController

	5.5 Callout Functions
	5.5.1 Appl_CanSM_RamCheckStart
	5.5.2 Appl_CanSM_RamCheckCorruptController
	5.5.3 Appl_CanSM_RamCheckCorruptMailbox
	5.5.4 Appl_CanSM_RamCheckFinished

	6 AUTOSAR Standard Compliance
	6.1 Deviations
	6.1.1 Communication mode requests are acceped if possible

	6.2 Additions/ Extensions
	6.2.1 API CanSM_InitMemory()
	6.2.2 No Mode Notification During CanSM_Init
	6.2.3 Configuration Options
	6.2.4 Additional Bus-Off Recovery in State Silent
	6.2.5 API CanSM_CheckBorLevel()
	6.2.6 Partial Network Wake Up Filter
	6.2.7 ECU Passive Mode
	6.2.8 PreventBusSleepAtStartUp
	6.2.9 Post-Build Selectable (Identity Manager)
	6.2.10 APIs to Assist EcuM Wakeup Validation
	6.2.11 Swift or Large Tx Timeout Exception handling
	6.2.12 Extended RAM Check
	6.2.13 Expanded Tx Timeout Exception Handling

	6.3 Limitations
	6.3.1 Controllers
	6.3.2 Configuration Class

	7 Glossary and Abbreviations
	7.1 Glossary
	7.2 Abbreviations

	8 Contact

