VECTOR >

MICROSAR CAN Transport Layer

Technical Reference

Version 3.00.01

Authors Thomas Dedler, Anthony Thomas

Status Released

VECTOR > Technical Reference MICROSAR CAN Transport Layer

Document Information

History
Author Date |Version Remarks
Thomas Dedler 2012-07-11 1.00.00 Initial version
Thomas Dedler 2012-11-26 1.01.00 Synchronous transmission feature removed
Thomas Dedler 2013-04-15 1.02.00 > Configuration Hint chapter added

> Description of Post-Build Loadable
Thomas Dedler 2013-08-26 1.03.00 > Limitations of Single Channel Optimization

added
> Limitation of data length parameter added
> Dcm OnRequestDetection feature removed

Thomas Dedler 2014-04-10 1.04.00 > Synchronous / Asynchronous Transmission
AR4.1.2 PduR API support

SingleChannel optimization removed
Support of CAN-FD added
Application callbacks changed
Postbuild-Build Selectable

Missing description of CanTp_InitMemory()
added

> Reentrancy of CanTp_GetVersionInfo()
corrected

V

Thomas Dedler 2014-08-22 2.00.00

vV V. V V

Thomas Dedler 2015-01-12 2.01.00

V

> Minor clarifications in regarding CAN-FD
Thomas Dedler 2015-07-01 2.02.00 > Separation Time by Application

> Dynamic BS feature description adapted
according to latest ISO specification

Thomas Dedler 2015-12-11 3.00.00 > (QObsolete features removed:

\Y

Notification of Failed Cancellations

> Ignore FC with invalid flow status

> Ignore FC with reserved STmin

> Ignore CF with wrong sequence number

> Clarification of performance parameter
configuration

> Rework of Critical Section chapter
> Hint for DET configuration added
Anthony Thomas 2016-08-05 3.00.01

\Y

Updated document template

> Documented features, deviations and
extensions properly.

© 2016 Vector Informatik GmbH Version 3.00.01 2
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

Reference Documents

m Source Title Version

[1] AUTOSAR AUTOSAR_SWS_CANTransportLayer.pdf 4.0.0
[2] AUTOSAR AUTOSAR_SWS_CANInterface.pdf 5.0.0
[8] AUTOSAR AUTOSAR_SWS_PDUROouter.pdf 3.2.0
[4] ISO /ISO/TF2/: ISO FDIS 15765-2; Road vehicles — 2015
Diagnostics on CAN — Part 2: Network layer services
[5] AUTOSAR AUTOSAR _SWS DevelopmentErrorTracer.pdf 3.2.0
[6] Vector TechnicalReference_Asr_Dbg.pdf 1.0.0
[71 Vector TechnicalReference_PostBuildLoadable.pdf 1.2.0
[8] Vector TechnicalReference_ldentityManager.pdf 1.0.0
[9] Vector TechnicalReference_Det.pdf 204
© 2016 Vector Informatik GmbH Version 3.00.01 3

based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

Caution

n We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Caution
This symbol calls your attention to warnings.

© 2016 Vector Informatik GmbH Version 3.00.01 4
based on template version 5.7.1

VECTOR >

Technical Reference MICROSAR CAN Transport Layer

Contents
1 Component HIStOrY ... e 10
2 INtrodUCION..... ..o e 1
2.1 ArchiteCture OVEIVIEWiiii e 12
3 Functional DeSCriptioncooiiiiiiiiiii e 14
3.1 == (U] = S 14
3.1.1 D=3V E= (10 I Y 14
3.1.2 Additions/ EXIENSIONS........cccovviiiiiiiiiiiii 15
3.1.21 Split CanTp_MainFunction...........cccoooeeiviiiiiiiiiiiieeeeeeeees 15
3.1.2.2 Notification of Failed Buffer Request..............ccccoevnnnnnn. 15
3.1.2.3 Handling of FC Frames with a Reserved STmin 15
3.1.24 Dynamic and Static BlockSize and STmin 16
3.1.2.5 Dynamic Channel Assignmentccccceeeiiiiiiiiiiiiinnnnnn. 16
3.1.2.6 Single Buffer Optimization...........ccccccvvviiiiiiiiiiiiiiiiinnn, 16
3.1.2.7 Transmit QUEUEuuiii i e e 17
3.1.2.8 Asynchronous and Synchronous behavior of
CanTp_Transmit........ccceeiiiiiiiiiiiicen e, 18
3.1.29 Support of PduR Interface according to AUTOSAR
g 18
3.1.2.10 CAN-FD Support....cccoooieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 19
3.1.2.10.1 CAN Messages with more than 8 Byte....... 19
3.1.2.10.2 CAN-FD Frame Padding.........cccccvvvvvevennnn. 20
3.1.2.10.3 Segmented Messages with more than
4095 BYte oo 20
3.1.2.11 Separation Time by Application............cccccovvveevriiiiiinnnnnn. 21
3.2 LIMIEAtIONS. .. e 22
3.2.1 Memory OptimiZationuuuueeuieeiiiiiiiiiiii e 22
3.2.2 Channel ASSIgNMENt ... 22
3.2.3 Channel AdAresSingccoooeeeeeieieeeee e 22
3.2.4 Data Length Parameter...............uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiieee 23
3.3 INIGTALIZALION .. e 23
3.4 = (=Y 23
3.5 Main FUNCLIONS ... e e e e e e e e eaanees 24
3.6 Error Handling.........oooo i 24
3.6.1 Development Error Reporting.........ooovvieeiiiiinieeeeece e, 24
3.6.1.1 Parameter Checking ..., 28
3.6.2 Production Code Error Reportingcoooouuviiiieiiiiiiiiiiiieeeeee e 28
3.7 (07 aF= T 0 =T 181V o T [29
© 2016 Vector Informatik GmbH Version 3.00.01 5

based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

3.8 ConNection ChanNEIS.........ooviiiiiiii e e e e e eeeees 29
3.9 CoNNECLION TIMINGS ©.uuuiiieeii e e e e e e e e e e e e e e eaaeeannnes 30
3.9.1 Timing Parameters.........oooon 30
3.9.2 Timing Considerations and Jitter..............cooovviiiiiiii e, 31
3.9.21 JIHET e 31
3.9.2.2 Separation TiIMe........ouuiiiiiiiiic e 31
3.9.2.3 Implementation of N _Br.......ccccooooeiiiiiiiiii e, 32
4 Nt gratioN 33
4.1 SCOPE Of DEIIVEIY ... e 33
4.1.1 StatiC FileS ..o 33
41.2 DYNa@mIC FlESuuuiiiiiiiiiiiiiiiiii e 33
4.2 INCIUAE STTUCKUIE ... 34
4.3 Compiler Abstraction and Memory Mapping........ccovvvvuviiinineeeeeieiiciene e eeeeeeeees 35
4.3.1 Memory mapping FUIES.........ccouui i 35
4.4 Critical SECHONS ... 36
4.5 Buffer Configuration ... 36
451 Constant BIOCK SizZeouviiiiiiiiiiii e 36
4.5.2 ZEr0 BIOCK SiZE....coiieeiiie e 37
453 p4 =T (o T AT o I = RSP 37
4.5.4 A=) (o SN 1 1o TP 37
B API DESCIIPLION... ..o 38
5.1 Services provided BY CanTpuuecoi i 38
5.1.1 CanTp_INItMEMOIY.......coeieeeee e 38
51.2 (0= 10 1 I o N [1 (TR 39
51.3 CanTp_ShUutdOWN() ...cooeeeeeeeeeeeeee e 39
51.4 CanTp_MainFUuNCON() ..ocooeeeeeeee e 40
51.5 CanTp_MainFunCloNRX() «.oooeeeeeeeeee e 40
5.1.6 CanTp_MainFunClONTX() «.ooooeeeeeeeee e 41
51.7 CanTp_GetVersionInfo()cooeeeeeeeeeeeee e 41
51.8 CanTP_TransSmit() ..ocoeeeeeeeeeeeeeee e 42
51.9 CanTp_CancelRECEIVE()cooeeeeieeee e 43
5.1.10 CanTp_CancelTransSmit()cccurrmrriieeriiiiiiiiie e 44
5.1.11 CanTp_ChangeParameter()..........cccuuvriiiieiiiiiiiiiiiieeee e 45
5112 CanTp_ReadParameter()...........cccuuuuumummmmmmmiiiiiiiiiiiiiiiiiiiiiiiiennennnnnnens 46
5.2 Services USed DY CanTP . ..cooii i 47
5.3 Callback FUNCHONS.......coiiiiiieeece e e e e e e aaaees 48
5.3.1 CanTp_RXINAICAtION() ...cooeeeeeeee e 48
5.3.2 CanTp_TXConfirmation()........ccouuiiuiiiiiiieee e 48
5.3.3 CanTp_StopSeparationTime().......cooeeeeeeeeeeeeeeeeeeee e 49

© 2016 Vector Informatik GmbH Version 3.00.01 6

based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.4 Configurable INterfaces..............uuuuiiiiiiiiiiii 49

5.4.1 Appl_StartSeparationTime()........uuviiiiiieiiieee e 49

542 Notification FUNCLONS..........cooviiiiiii e 50

54.21 Appl_CanTpRxSFIndication()cccccvveieiiieerriiiiiiinn. 50

5422 Appl_CanTpRxFFIndication()...........cccuvvveiiiieeiriiiiiiinnnnn. 50

54.2.3 Appl_CanTpRxCFIndication()cceevvriiiieeeniiieiiiinnn. 51

5424 Appl_CanTpFrameTransmission ()cccceeeeeeevvveiivnnnnnn. 51

54.25 Appl_CanTpFrameTxConfirmation ()c.cceevvveeevennnnnn. 52

6 CoNfigUIration ..o e 53

6.1 Configuration Variants.................uueeiiiiiiiiiiiii 53

6.2 Configuration of POSt-BUilduuuiiiiiiiiiiiiiiiiiiiiiiieees 53

6.3 Additional Configuration Hints...........cccooiiiiiiiii e 54

6.3.1 Canlf TX BUFferingccoooeeeeeeeeeeeeeee e 54

6.3.2 ISO Performance Requirementsoouviiiiiiiieeiiiciiiiicie e, 54

7 Glossary and Abbreviationsuuuiiiiiiiiiiiiiiiii 55

7.1 L] (0TS N 55

7.2 ADDIEVIAtIoNSee e e 57

L. T 0«] 1| - T PP 59
© 2016 Vector Informatik GmbH Version 3.00.01 7

based on template version 5.7.1

VECTOR >

lllustrations

Figure 2-1
Figure 2-2
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 4-1

Tables

Table 1-1
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 4-1
Table 4-2
Table 4-3
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 5-11
Table 5-12
Table 5-13
Table 5-14
Table 5-15
Table 5-16
Table 5-17
Table 5-18
Table 5-19
Table 5-20
Table 5-21
Table 5-22
Table 6-1
Table 7-1
Table 7-2

© 2016 Vector Informatik GmbH

Technical Reference MICROSAR CAN Transport Layer

AUTOSAR 4.x Architecture OVErvieWccuuiiiiiieiiieiiiiiieee e 12
Interfaces to adjacent modules of the CanTp.....ccccocovvviiiiiieii e, 13
Sequence Diagram: Asynchronous Transmissioncc...coevvvvvviviieineeenn., 18
Sequence Diagram: Synchronous Transmission..........cccooveevvveveiiiiiinneeenn. 18
Separation Time by Application.............oooiiiiiiiii e, 21
Channel Assignment for N-SDUs and N-PDUs............cccooooiiviiiiiiiiiiennneee, 22
CanTp internal States..........ooouiiiiiii e 24
ConNNECHION TIMINGuuiiiiiiiiiiiiii e 30
Include StruCture ..o 34
ComponNent HISTOMYuuuiiiiiiiiiiiiiii e 10
Supported AUTOSAR standard conform features...........cccooeeeviiiiieninnnnnnn. 14
Not supported AUTOSAR standard conform features..............cccccceeee. 14
Features provided beyond the AUTOSAR standard................ccevvveennen. 15
PduR API changes between AR4.0.3 and 4.1.2ovviviieiiiiiiiiiiniiiiinnnns 19
SEIVICE IDS ..ttt nnnnes 25
Errors reported t0 DETovniiiiii e e 26
Development Error Reporting: Assignment of checks to services 28
Connection Timing Parameters...............uuuiiiiiiiiiiiiiiiiiiiiiiieeeees 30
Examples for requested and observed separation times........................... 32
STALIC fIlES ..ttt anne 33
Generated fileSuuueii i 33
Compiler abstraction and memory mapping...........ccvveeeiiieeeeieveiiiieneeeenan, 35
CanTp_INIEMEMOIY ... e 38
CaNTP_INIE(). ettt 39
CanTP_SHULAOWN().....uuuuiiiiiiiiiiiiiiii e 39
(07 1ol I oY 1Y/ F=T1 0 U Yo (o o T 40
CanTp_MainFUNCHONRX()uuuuururiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 40
CanTp_MainFUNCHONTX() ...vuvuuuuruniniiiiiiiiiiiiiiiiiiiiiiieeeeeeeees 41
CanTp_GetVersionINfo()...........uuuruurrmmmiiiiiiiiiiiiiiiiiiiireeeeeeeeeeeeeeeeeeeenee 41
(07 10 I I o T I =10 <0 11 (T 42
CanTp_CanCelRECEIVE()uuuuuururiiiiiiiiiiiiiiiiiiiiiiiiiiii e 43
CanTp_CancelTranSmit().........uuuuuuuuuummmnniniiiiiineieiieneineeeneeeeeeeeeneeraereeeeee 44
CanTp_ChangeParameter()uuuuuummummmmmmiiiiiiiiiiiiiiiiiieeiiineeeinennnneennne 45
CanTp_ReadParameter()uuuuuummimmiiiiiiiiiiiiiiiiiiiiiiiieeeeeees 46
Services used by the CanTP........uuuuuiiiiiiiiiiiiiiiiiii e 47
CanTp_RXINAICAtION()uvveuuniniiiiiiiiiiiiiiiiiii e eeeeeeeeeeeeennes 48
CanTp_TXCoNFIrmMation()uuuumummmmiiiiiiiiiiiiiiiiiie e 48
CanTp_StopSeparatioNTiMeE()uuuuummimmmmiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeees 49
Appl_StartSeparationTime().......ccevvriiiiiiii e 49
Appl_CanTpRXSFINdication()covvvrviieiiiieeeeee 50
Appl_CanTpRXFFINdication() ... 50
Appl_CanTpRXCFIndication()cccvvvviiiiiiiiiieeeeeeee 51
Appl_CanTpFrameTransmisSion ()couvvveiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 51
Appl_CanTpFrameTransmission () ... 52
Example for typical timing parameter specification...............cccccvvveeennen. 54
GIOSSANY ..ttt 57
ADDIreVIatioNS ... oo 58

Version 3.00.01
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

© 2016 Vector Informatik GmbH Version 3.00.01 9
based on template version 5.7.1

VECTOR D>

Technical Reference MICROSAR CAN Transport Layer

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

1.00
1.01
1.02

2.00
2.01
2.02

3.00

3.01
3.02

4.00
4.01
4.02

Table 1-1 Component History

© 2016 Vector Informatik GmbH

Initial implementation of CanTp according to AR4.0.3

Synchronous transmission feature removed due to PduR compatibility
Debugging Concept

Post-Build Loadable

Generator changed to Java7

Generator framework supports AR4.1.2 schema

Synchronous transmission re-introduced (now supported by PduR)
Support for AR4.1.2 PduR APIs

Post-Build Selectable
CAN-FD support

SafeBSW Step |

SafeBSW Step |l
Separation Time by Application

SafeBSW Step |l
SafeBSW Step IV
First SafeBSW release

Version 3.00.01 10
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module CanTp as specified in [1].

Supported AUTOSAR Release: 4
Supported Configuration Variants: pre-compile, post-build-loadable, post-build-selectable
Vendor ID: CANTP_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: CANTP_MODULE_ID 35 decimal
(according to ref. [1])

According to AUTOSAR basic software architecture, CanTp provides services for
> Segmentation of data in transmit direction

> Reassembly of data in receive direction
> Control of data flow

> Detection of errors in segmentation sessions

AUTOSAR module specifications are based on existing standards. Thus this AUTOSAR
CAN Transport Layer specification is based on the international standard ISO 15765 which
is the most widespread standard in the automotive domain.

ISO 15765 contains four sections and describes two applicable CAN Transport Layer
specifications: ISO 15765-2 for OEM enhanced diagnostics (see [4]) and ISO 15765-4 for
OBD diagnostics. Concerning the transport layer, ISO 15765-4 (the section of ISO 15765
which also covers the data link layer and the physical layer) is in accordance with ISO
15765-2 with some restrictions/additions. In order that there is no incompatibility problem
between ISO 15765-2 and ISO 15765-4, differences will be solved by the CAN Transport
Layer configuration.

Although the CAN transport protocol is mainly used for vehicle diagnostic systems, its
design also incorporates requirements from other CAN based systems employing
transport layer protocols.

© 2016 Vector Informatik GmbH Version 3.00.01 11
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

2.1 Architecture Overview

The following figure shows where the CanTp is located in the AUTOSAR architecture.

RTE
= [0]
BSWM comM [pouM InNM [PDUR | [oionwas | [caLcrny
COMM SENT'
CRY (SW)
= J1939TP LINXCP? FRXCP ETHXCP
e CANXCP LINTP FRTP SOAD/DOIP
S LINNM FRARTP TLS
ALlelele CANNM LINSM FRNM TCPIP! 5CC
Bl CANSM LINIF FRSM ETHSM XML Security
CANIF FRIF ETHIF

CANTRCV I FRTRCV I

DRVEXT? LINTRCV

ADCDRV DIODRV FLSDRV GPTDRV LINDRV PWMDRV SPIDRV
CANDRV EEPDRV FLSTST ICUDRV MCUDRV RAMTST

WDGDRV
CORTST ETHDRV FRDRV IICDRV' PORTDRV CRY (HW)'

ETHTRCV

Vector Standard Softw 3rd Party Software " Available extensions for AUTOSAR
FeiersRandand e o ? Includes EXTADC, EEPEXT, FLSEXT, and
WDGEXT

Figure 2-1 AUTOSAR 4.x Architecture Overview

© 2016 Vector Informatik GmbH Version 3.00.01 12
based on template version 5.7.1

VECTOR >

Technical Reference MICROSAR CAN Transport Layer

The next figure shows the interfaces to adjacent modules of the CanTp. These interfaces

are described in chapter 5.

cmp Interfaces Overview /

SchMm
o o
= =
c c
] <
(8] o
6| o

X
< u
i}
2| =
ey
[&]
S »n
(7]

9

PduR

pRxIndication

PduR_CanT

O

O
O
ol

O
ou

pTxConfirmation
pStartOfReception
pCopyRxData
pCopyTxData

PduR_CanT

PduR_CanT
PduR_CanT
PduR_CanT;

CanTp_Transmit
CanTp_ChangeParameter
CanTp_ReadParameter
CanTp_CancelTransmit

e
e
e
L ©

O

O

CanTp_Init/ CanTp_Shutdown

CanTp_GetVersioninfo

CanTp_MainFunction

EcuM

I-n-_ul CanTp_CancelReceive

CanTp

0N

Canlf_CancelTransmit

Canlf Transmit

(O CanTp_RxIndication
EI (O CanTp_TxConfirmation

Canlf

(@)

portError

Det_Re

Det

Figure 2-2 Interfaces to adjacent modules of the CanTp

© 2016 Vector Informatik GmbH

Version 3.00.01
based on template version 5.7.1

13

VECTOR > Technical Reference MICROSAR CAN Transport Layer

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
CanTp.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

> Table 3-1 Supported AUTOSAR standard conform features
> Table 3-2 Not supported AUTOSAR standard conform features

Vector Informatik provides further CanTp functionality beyond the AUTOSAR standard.
The corresponding features are listed in the table

> Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

Segmented and unsegmented data transmission

Segmented and unsegmented data reception

Control of data flow

Supervision of timeouts

Detection of errors during segemented communication
Transmission cancellation

Reception cancellation

Post-Build Loadable

MICROSAR Identity Manager using Post-Build Selectable

Table 3-1 Supported AUTOSAR standard conform features

3.1.1 Deviations
The following features specified in [1] are not or only partly supported:

Category Description ASR
Version

Functional 8.3.4 CanTp_Transmit: For robustness reasons (e.g. in case of delayed 4.0.3
buffer provision), the CanTp internally stores the frames to be transmitted.

API 8.3.2 CanTp_ GetVersioninfo: The function is always implemented as a 4.0.3
regular function.

Table 3-2 Not supported AUTOSAR standard conform features

© 2016 Vector Informatik GmbH Version 3.00.01 14
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

3.1.2 Additions/ Extensions
The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard ‘

Split MainFunction

Notification of Failed Buffer Request

Handling of FC Frames with a Reserved STmin
Dynamic Channel Assignment

Single Buffer Optimization

Transmit Queue

Synchronous Transmission

CAN-FD Support

Separation Time by Application

Table 3-3 Features provided beyond the AUTOSAR standard

3.1.2.1 Split CanTp_MainFunction

In extension to the CanTp SWS [1] the Vector CanTp supports two additional API functions
(CanTp MainFunctionRx and CanTp MainFunctionTx) in case a split main function
is configured. These additional functions can be used instead of the original AUTOSAR
CanTp MainFunction API (which is still supported) to optimize the calling sequence of
incoming requests and their responses.

Configuration attribute: CanTpEnableSplitMainFunction

3.1.2.2 Notification of Failed Buffer Request

If the call to CanTpStartOfReception returns BUFREQ_E NOT _OK or
BUFREQ_E_OVFL, according to AUTOSAR the connection shall be terminated.
Additionally each terminated reception shall be notified to the upper layer. However, in the
mentioned case the upper layer already rejected the reception by returning an invalid
buffer status. Therefore no additional notification by the CanTp may be required.

In the Vector CanTp, this behavior is configurable. If the related switch is activated, the
notification is only performed if at least one valid buffer (BUFREQ_OK or
BUFREQ_E_BUSY) have been provided.

Configuration attribute: CanTpOnlyNotifylnformedAppl

3.1.2.3 Handling of FC Frames with a Reserved STmin

When using the standard implementation according to ISO 157675-2, the CanTp must
accept reserved STmin values (0x80 ... OxFO, OxFA ... OxFF); the connection is then
processed with the slowest value for STmin (127msec).

In the CanTp, it can be configured to cancel the transmission instead.

© 2016 Vector Informatik GmbH Version 3.00.01 15
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

Configuration attribute: CanTpRejectFcWithReservedStMin

3.1.2.4 Dynamic and Static BlockSize and STmin

In AUTOSAR 4 and in older ISO specifications, the block size and the STmin values of the
first Flow Control shall be used throughout the whole connection (CANTPO067).

ISO 15765-2:20215 ([4]) supports both dynamic and static flow control parameters. In the
CanTp, the desired behavior can be configured as follows:

> For Rx connections, the block size can be configured to be constant until the end of
the reception. It is then calculated once after receiving the FF, based on the configured
maximum block size and the available buffer (default). When using the alternative
behavior, the block size is re-calculated whenever a Flow Control have to be
transmitted. For STmin, always the configured value is used.
Configuration attribute: CanTpEnableConstantBS

> For Tx connections it can be configured if the CanTp shall either evaluate only the first
or all Flow Control frames.
Configuration attribute: CanTpUseOnlyFirstFc

3.1.2.5 Dynamic Channel Assignment

According to AUTOSAR, each N-SDU shall be assigned statically to one connection
channel. Since not always all N-SDUs need to be processed simultaneously, the CanTp
provides the possibility to limit the number of channels that can be used in parallel. In this
case, N-SDUs are dynamically assigned to a channel during runtime. If no channel is
available, the reception / transmission is rejected.

This reduces resource consumption, as the memory needed to handle reception or
transmission is shared between multiple N-SDUs. However, it adds a little runtime
overhead for channel management.

Configuration attribute: CanTpDynamicChannelAssignment

3.1.2.6 Single Buffer Optimization

According to AUTOSAR, the CanTp must include a handling for segmented receive
buffers, i.e. it is allowed that CanTpStartOfReception returns a smaller buffer than
overall data length specified in the first frame. The CanTp will then request an additional
buffer during reception.

For diagnostic applications, often only one buffer is provided at the beginning where its
size is sufficient to store the complete message. Therefore no additional buffer must be
requested by the CanTp.

If it can be ensured that always only one single buffer is used, the CanTp provides a
configuration switch to remove the code to handle segmented buffers. This will reduce size
and runtime.

Configuration attributes: CanTpOptimizeSingleRxBuffer

© 2016 Vector Informatik GmbH Version 3.00.01 16
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

3.1.2.7 Transmit Queue

If an N-PDU is used by different connections and more than one connection requests the
Canlf to transmit this N-PDU at the same time, the subsequent TxConfirmation cannot be
uniquely assigned to the correct connection.

There may be two reasons why an N-PDU is used by different connections:

> Achannel is configured as full duplex: the conflict occurs here if the Rx connection
tries to transmit an FC while the Tx connection is transmitting SF, FF or CFs.

> extended or mixed11 addressing is used: then one N-PDU can be used by multiple
channels, as the addressing information is part of the protocol data. However, this
protocol data is not available when the TxConfirmation is processed.

Currently AUTOSAR does not describe how to handle these cases. By default the CanTp
tracks for each N-PDU if a transmission is in progress or not. If a channel tries to transmit
an N-PDU that is in use by another N-SDU, the request is rejected and the respective
channel will retry transmission on task level.

However, the more often such conflicts occur (e.g. if many N-SDUs with extended
addressing use the same N-PDU), the higher is the risk of sporadically unexpected
behavior like connection timeouts due to the delay caused by the retry on task level. To
eliminate this risk and to optimize the throughput performance, the CanTp can be
configured to queue the transmit requests to the Canlf. Entries in the queue are
transmitted as soon as the transmission of the previous N-PDU is completed.

The main drawback of this feature is increased memory consumption.
Configuration attributes: CanTpEnableTransmitQueue

Note
ﬂ The default transmit queue size is 4. To set a different queue size, the following line
must be added to a user config file:

#define CANTP TX QUEUE SIZE <new size>

Please note that due to implementation reasons, only queue sizes with a power of two
are allowed (2, 4, 8, 16...).

© 2016 Vector Informatik GmbH Version 3.00.01 17
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

3.1.2.8 Asynchronous and Synchronous behavior of CanTp_Transmit

By default, the APl CanTp_Transmit is asynchronous. This means it only prepares the
connection, while the request for the payload data to the upper layer and the transmission
of the first CAN frame will be done during the next task cycle.

Canlf CanTp PduR

T
|
[CanTp_Transmit()

)

|
! PduR_CanTpCopy TxData() -
Canlf_Transmit() LJ

Qe ——
A
-t --0---

Figure 3-1 Sequence Diagram: Asynchronous Transmission

The CanTp can be configured to make CanTp_Transmit synchronous. Then the payload
request to the upper layer and the transmit request to the Canlf are done in the context of
CanTp_Transmit. This will slightly improve transmission speed, but requires also that the
upper layer is able to handle calls to the CopyTxData function before CanTp_Transmit
returns.

Canlf CanTp PduR

A

CanTp_Transmit() |

PduR_CanTpCopy TxData()

T

|

|

| |

|

|

! Canlf_Transnmit() j’l
H L)

I I

I I

A

Figure 3-2 Sequence Diagram: Synchronous Transmission

Configuration attributes: CanTpEnableSynchronousTransmit

3.1.2.9 Support of PduR Interface according to AUTOSAR 4.1.2

Although the CanTp is not yet fully compliant with AUTOSAR 4.1.2, it already supports the
PduR API signatures according to the updated revision.

The following changes have been made by AUTOSAR in the interface between CanTp
and PduR:

> PduR CanTpStartOfReception: pointer to PdulnfoType as additional parameter
added for meta data support (currently not supported by CanTp; will be set to NULL)

> PduR CanTpRxIndication, PAduR CanTpTxConfirmation: type of the Result
parameter changed from NotifResultType to Std_ReturnType

© 2016 Vector Informatik GmbH Version 3.00.01 18
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

PduR API Changes

AUTOSAR 4.0.3

BufReq ReturnType PduR CanTpStartOfReception(PduldType id,
PdulengthType TpSdulength,
PdulengthType* bufferSizePtr);

void PduR_CanTpRxIndication(PduldType CanTpRxPduld,
NotifResultType Result);

void PduR_CanTpTxConfirmation(PduldType CanTpTxPduld,
NotifResultType Result);

AUTOSAR 4.1.2

BufReq ReturnType PduR_CanTpStartOfReception(PduIldType id,
PduInfoType * PdulnfoPtr,
PdulLengthType TpSdulength,
PdulengthType* bufferSizePtr);

void PduR_CanTpRxIndication(PduldType CanTpRxPduld,
Std ReturnType Result);

void PduR_CanTpTxConfirmation (PduldType CanTpTxPduld,
Std ReturnType Result);

Table 3-4 PduR API changes between AR4.0.3 and 4.1.2

With a Vector PduR, the DaVinci Configurator Pro 5 will automatically detect the PduR
version and activate the appropriate API signature.

With a Non-Vector PduR in the stack, the AUTOSAR version must be set by providing one
of the following definitions (e.g. via compiler config):

AUTOSAR 4.0.3: #define MSR PDUR API AR VERSION 0x403
AUTOSAR 4.1.2: #define MSR PDUR API AR VERSION 0x412

3.1.2.10 CAN-FD Support

The CanTp supports the ISO 15765-2:2015, which not only introduces CAN-FD frames
with more than 8 byte payload, but also supports segmented transfers with more than
4095 byte.

3.1.2.10.1 CAN Messages with more than 8 Byte

CAN-FD frames support a higher bit rate in the data field of a CAN frame, as well as a
maximum length of up to 64 byte per frame. For the CanTp behavior, only the data length
is relevant, CAN-FD frames with only 8 byte are treated the same way as classic CAN
frames.

The maximum possible CAN DLC is configured by the PduLength parameter of a global
PDU in the ECUC:

/EcuC/EcucPduCollection/Pdu/PdulLength
To use CAN-FD for an N-SDU, all of the following configuration settings are required:

© 2016 Vector Informatik GmbH Version 3.00.01 19
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

> CanTpRxNPduRef / CanTpTxNPduRef must reference a global PDU with a
PdulLength > 8

> CanTpRxTaType / CanTpTxTaType must be set to CANTP CANFD FUNCTIONAL Of
CANTP CANFD PHYSICAL

> The global switch CanTpFlexibleDataRateSupport must be enabled

The flow control N-PDU references are not taken into account, as these frames always
need less than 8 byte. It does not affect the CanTp behavior whether if they are configured
in the Canlf as CAN-FD or as classic CAN.

Reference
For restrictions of the N-PDU usage on a channel, please also refer to chapter 3.2.2.

3.1.2.10.2 CAN-FD Frame Padding

With CAN-FD, not all DLCs between 8 and 64 are valid. A CanTp frame must always be
padded to the next valid DLC. The byte value which is used to fill up the frame is either
random or user defined, depending on the following configuration parameters:

CanTp/CanTpGeneral/CanTpHavePaddingByte
CanTp/CanTpGeneral/CanTpPaddingByte

The PaddingActivation setting, which can be configured globally and N-SDU specific, only
applies for frames which require a DLC less than 8 byte.

E Example
> |f a CanTp CAN-FD frame (PCI + payload) needs 6 byte, it is padded to 8 byte if
padding is active, but left at 6 byte if padding is disabled.

> Ifa CanTp CAN-FD frame (PCI + payload) needs 21 byte, it is always extended to
24 byte, which is the next valid CAN-FD length

3.1.2.10.3 Segmented Messages with more than 4095 Byte

ISO15765-2:2015 also introduced an extended first frame definition (in the following
referred to as “long first frame”; LFF), which uses a data length of 32 bit. For backward
compatibility, LFFs are only used if the overall message length is above 4095 byte.
Otherwise, the standard first frame format with 12 bit data length is used.

As the LFF does not depend on the length of the used N-PDUs, it can also be used with
classic CAN frames. However, for ISO compatibility it is recommended to enable this
functionality when using CAN-FD.

Configuration attribute: CanTpSupportLongFirstFrames

© 2016 Vector Informatik GmbH Version 3.00.01 20
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

Caution

In the ECUC module, the type of the global PduLength can be configured:
/EcuC/EcucPduCollection/PduLengthTypeEnum

To use the full 32 bit data length of the LFF, it must be set to UINT32.

If set to UINT16, the maximum data length will be limited to 65535 byte and the CanTp
will reject received LFFs with a longer data length.

For transmission requests, an overrun can’t be detected by the CanTp as the compiler
will already truncate the data length passed to CanTp_Transmit.

3.1.2.11 Separation Time by Application

The accuracy of the STmin calculated by the CanTp depends on its task cycle. If STmin
values are required which are in the range or below the CanTp task cycle time, this may
not be acceptable.

One solution may be to reduce the task cycle time. However, this is usually not satisfying
since it produces too high CPU load. An external timer (like in the OS or in hardware) can
be an alternative.

For this, the CanTp provides an optional call-out which notifies the application whenever
STmin need to be started. By the return value of the notification function, the application
can indicate whether to do STmin handling by itself, or leave it to the CanTp.

If the application accepts to handle the separation time, it has to set up a timer and call
CanTp StopSeparationTime () when the timer expired. This will trigger the
transmission of the next CF.

It is allowed to call CanTp StopSeparationTime () anytime between the call to
Appl StartSeparationTime () and before the end of the configured N_Cs time. Only
if N_Cs expires and the call-back has not been called yet, the CanTp will send the next CF
by itself to fulfill the ISO15765-2 performance requirement (see 3.9.2.2). Calling
CanTp StopSeparationTime () afterwards has no effect.

Appl_ StartSeparationTime () CanTp_StopSeparationTime ()
4

v

CF CF R

0 N_Cs separation time

Figure 3-3 Separation Time by Application

To activate the feature, the call-out function name must be specified in the config tool:
CanTp/CanTpGeneral/CanTpApplSTminStartFunction

© 2016 Vector Informatik GmbH Version 3.00.01 21
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

3.2 Limitations

3.2.1 Memory Optimization
Memory optimization by the linker via data scattering:

Some linkers allow filling the “holes” caused by padding with some “foreign” data. Since
the generation tool cannot be aware of “foreign” data, such optimizations must be
disabled.

3.2.2 Channel Assignment

In the Vector CanTp, a channel always consists of at most one Rx N-SDU and one Tx N-
SDU. Furthermore, to each channel at most one Rx N-PDU and one Tx N-PDU is
assigned. These N-PDUs are shared between the two N-SDUs as shown in Figure 3-4.

As with CAN-FD an N-PDU can either be CAN2.0 or CAN-FD but not both, this implies
that you have to use a CAN-FD Flow Control if the SFs / FFs / CFs of the opposite
direction use CAN-FD. Otherwise you will need separate channels for the Rx and Tx N-
SDUs.

PduR

f }

CANTPfiirfi”j
SF SF

FC CF

f |

CANIF

Figure 3-4 Channel Assignment for N-SDUs and N-PDUs

While each N-SDU represents a CanTp connection, the N-PDUs identify the CAN frames
that are transmitted and received via the Canlf.

With Standard addressing, each N-PDU can only be assigned to one channel. With
extended and mixed11 addressing, an N-PDU may be used on multiple channels, but only
with different address information (N_TA/ N_AE).

3.2.3 Channel Addressing
Usage of different addressing within the same channel is not allowed.

The addressing format — CANTP_STANDARD, CANTP_EXTENDED or CANTP_MIXED11
— must be identical for each pair of Rx/Tx N-SDUs assigned to the same channel.

© 2016 Vector Informatik GmbH Version 3.00.01 22
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

3.2.4 Data Length Parameter

According to the AUTOSAR BSWMD specification, each N-SDU has a Data Length
parameter (CanTpRxDI, CanTpTxDI). However, it is not clearly specified if this data length
applies to the N-SDU (complete message length) or to the N-PDU (CAN message data
length). As furthermore the parameters are anyway deprecated in AR 4.1.1 (see also
AUTOSAR RFC 53101), they are no longer evaluated by the CanTp.

For compatibility reasons, the parameters are part of the ECUC file, but their values have
no effect.

3.3 Initialization

The API function CanTp Init () uses the given configuration set to initialize all global
variables of the CAN Transport Layer and brings it to the state Idle, where reception and
transmission tasks can be started.

3.4 States

The CanTp module has two internal states, CANTP_OFF and CANTP ON. After power up,
the CanTp is in the CANTP OFF state. In this state no communication tasks can be
performed.

The CanTp changes to the internal state CANTP ON when it has been successfully
initialized. Segmentation and reassembly tasks are only performed when the module is in
this state. After initialization, all transport protocol connections are in a sub-state of
CANTP_ON, in which neither transmission nor reception is in progress (CANTP RX IDLE
and CANTP_ TX IDLE).

If called when the CanTp module is in the global state CANTP ON, the function
CanTp_Init returns the module to state Idle and all current connections are terminated .

The function CanTp Shutdown stops the CanTp module properly and sets the global
state to CANTP_OFF.

© 2016 Vector Informatik GmbH Version 3.00.01 23
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

stm CanTp /
CANTP_OFF
. PowerUp PowerDown
. PowerDown
CanTp_lInit
CanTp_Shutdown
e CANTP_ON N\
[Rx Connection Channel]
CANTP_RX_IDLE \ [Receive NPdu] / CANTP_RX_PROCESSING
[Reception finished]
Init / K
[Tx Connection Channel]
CANTP_TX_IDLE [Transmit NSdu] /”CANTP_TX_PROCESSING
[Transmission finished]
Init

Figure 3-5 CanTp internal states

35 Main Functions

The CanTp_MainFunction controls the timing behavior of the CanTp and performs all
tasks that have to be done cyclically.

Especially for the calculation of the different timings (delays, timeouts) it is important to call
the main function periodically with the time interval that have been configured with the
‘CanTpMainFunctionPeriod’ parameter in the generation tool.

It is also possible to separate the main function into Rx and Tx, e.g. to optimize the
throughput (see chapter 3.1.2.1 for details).

3.6 Error Handling

3.6.1 Development Error Reporting

By default, development errors are reported to the DET using the service
Det ReportError () as specified in [5], if development error reporting is enabled (i.e.
pre-compile parameter CANTP_DEV_ERROR _DETECT==STD_ON).

© 2016 Vector Informatik GmbH Version 3.00.01 24
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature
as the service Det ReportError ().

The reported CanTp ID is 35.

The reported service IDs identifies the services which are described in 5.1. The following
table presents the service IDs and the related services. Services marked with an asterisk
(*) are internal service IDs:

ServicelD _|Serviee

0x01 CanTp_lInit

0x02 CanTp_Shutdown

0x03 CanTp_Transmit

0x04 CanTp_RxIndication

0x05 CanTp_TxConfirmation
0x06 CanTp_MainFunction
0x07 CanTp_GetVersionInfo
0x08 CanTp_CancelTransmit
0x09 CanTp_CancelReceive
O0x0A CanTp_ChangeParameter
0x0B CanTp_ReadParameter
0x20* CanTp_MainFunctionRx
0x21* CanTp_MainFunctionTx
0x30* CanTp_RxGetBuffer
0x31* CanTp_TxGetBuffer

0x32* CanTp_RxTransmitFrame
0x33* CanTp_TxTransmitFrame
0x34* CanTp_RxInit

0x35* CanTp_TxInit

0x36* CanTp_StopSeparationTimer

Table 3-5 Service IDs

The errors reported to DET are described in the following table. Errors marked with an
asterisk (*) are Vector specific:

Error Code

0x01 CANTP_E_PARAM_CONFIG API called with wrong parameters
0x02 CANTP_E_PARAM_ID API called with wrong parameters
0x03 CANTP_E_PARAM_POINTER API called with wrong parameters
0x20 CANTP_E_UNINIT API service used without module initialization
0x30 CANTP_E_INVALID_TX_ID Invalid Transmit N-PDU identifier
0x40 CANTP_E_INVALID RX_ID Invalid Receive N-PDU identifier
© 2016 Vector Informatik GmbH Version 3.00.01 25

based on template version 5.7.1

VECTOR D>

Error Code

0x50
0x60
0x70
0x80
0x90

0xAO0

0xBO
0xB1
0xB2
0xB3
0xCO
0xC1
0xC2
0xC3
0xC4
0xC5
0xC6
0xC7
0xDO
0xD1
0xD2
0xD3
0xD4
0xD5
0xD6
0xD7

Table 3-6

CANTP_E_INVALID_TX_BUFFER
CANTP_E_INVALID_RX_BUFFER
CANTP_E_INVALID_TX_LENGTH
CANTP_E_INVALID_RX_LENGTH
CANTP_E_INVALID_TA TYPE

CANTP_E_OPER_NOT_SUPPORTED

CANTP_E_COM
CANTP_E_INVALID_RX_STATE*
CANTP_E_INVALID_TX_STATE*
CANTP_E_INVALID_FRAME_TYPE*
CANTP_E_RX_COM
CANTP_E_RX_TIMEOUT_AR*
CANTP_E_RX_TIMEOUT BR*
CANTP_E_RX_TIMEOUT_CR*
CANTP_E_RX_INVALID_SN*
CANTP_E_RX_WFTMAX*
CANTP_E_RX_RESTART*
CANTP_E_RX_TRANSMIT_ERROR*
CANTP_E_TX_COM
CANTP_E_TX_TIMEOUT_AS*
CANTP_E_TX_TIMEOUT_BS*
CANTP_E_TX_TIMEOUT_CS*
CANTP_E_TX_FC_OVFL*
CANTP_E_TX_INVALID_FS*
CANTP_E_TX_RES_STMIN*
CANTP_E_TX_TRANSMIT_ERROR*

Errors reported to DET

© 2016 Vector Informatik GmbH

Technical Reference MICROSAR CAN Transport Layer

Invalid Transmit buffer provided
Invalid Receive buffer provided
Invalid data length of the transmit N-PDU
Invalid data length of the receive N-PDU

Functional FF received, or transmission request for
a functional N-SDU with SF data length

Requested operation is currently not available (e.g.
cancel a transmission that is not in progress)

Implementation specific error

Rx state machine is in an invalid state

Tx state machine is in an invalid state

An invalid frame type occurred

General reception error

N_Ar timeout occurred

N_Br timeout occurred

N_Cr timeout occurred

CF with invalid sequence number received

Max. number of wait frames transmitted
Connection terminate due to new SF/FF reception
Transmission of a flow control frame failed
General transmission error

N_As timeout occurred

N_Bs timeout occurred

N_Cs timeout occurred

FC.OVFL received

FC with invalid flow status received

FC with reserved STmin received, but not allowed
Transmission of a frame failed

Version 3.00.01 26

based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

FAQ: How to avoid DET errors for failed CanTp communication?

AUTOSAR specifies that the CanTp shall not only report a DET for typical integration
errors, but also for communication errors like timeouts. Although sometimes helpful, in
most cases this is not desired.

To suppress reporting a DET error for all erroneously terminated connections, filters
with the following parameters have to be configured in the DET module:

> moduleld = 0x23
> instanceld = 0x00
> apild = 0x34 and 0x35
> errorld = OxFF

Please note that the filtering mechanism is a Vector specific feature, which is described
in more detail in the Vector DET Technical Reference.

When using other DET implementations, these errors can be filtered in a DET callout
which abandons further DET processing and continues the CanTp code.

© 2016 Vector Informatik GmbH Version 3.00.01 27

based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

3.6.1.1 Parameter Checking

AUTOSAR requires that API functions check the validity of their parameters. The checks in
Table 3-7 are internal parameter checks of the API functions. These checks are for
development error reporting and can be en-/disabled via the configuration parameter
CanTp DEV ERROR DETECT.

The following table shows the parameter checks performed by the CanTp services. For
parameter checks marked with an asterisk (*), only the error reporting can be deactivated.
The check will also be performed if development error reporting is disabled.

Check =
T T 3 i
=] S =] o hel
o 5 kS = o i)
(Q (%) D>E o é c
Sl ez 2 :
. © 9
Service I(—% I(—% I(—% < c £ 5 - g
S 8 §8 8 8 8 & & =2
CanTp_RxIndication u u
CanTp_CancelReceive m*
CanTp_ChangeParameter m* s m
CanTp_ReadParameter m* s m
CanTp_Transmit m* =
CanTp_CancelTransmit m*
CanTp_TxConfirmation u
CanTp_GetVersioninfo u
CanTp_StopSeparationTime m*

Table 3-7 Development Error Reporting: Assignment of checks to services

3.6.2 Production Code Error Reporting
In AR4, the CanTp reports no production errors to the Diagnostic Event Manager.

© 2016 Vector Informatik GmbH Version 3.00.01 28
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

3.7 Channel Mode

In the configuration tool, two connections can be grouped to one logical channel (see also
3.2.2).

For each of these logical channels it can be configured if the channel is half or full duplex.

> Half Duplex: only the Rx or the Tx N-SDU of a channel can be active at a time. A
connection which is started while the opposite direction is being processed will be
rejected.

> Full Duplex: bidirectional communication is possible at any time.

When only one N-SDU is configured for a channel, the channel mode parameter has no
effect.

3.8 Connection Channels

A connection channel represents an internal path for transmission or reception of an N-
SDU during runtime. It uses its own resources such as internal buffer, timer or state
machine. Therefore, each connection channel is independent from the others. The
connection channels are only for CanTp internal use and not accessible externally.

By default, each N-SDU is statically linked to one connection channel (exception: dynamic
channel assignment is used; see 3.1.2.5).

The CanTp is able to manage several connections for different N-SDUs simultaneously.
However it is not possible to handle two receptions or two transmissions with the same N-
SDU identifier in parallel.

If a new FF / SF is received for an already active N-SDU, the connection is terminated and
restarted.

If a new transmission request is started for an already active N-SDU, the request is
rejected. If it is required to start a new transmission before the previous one is finished, the
active connection must first be terminated by using the transmit cancellation function (see
5.1.10 CanTp_CancelTransmit()).

© 2016 Vector Informatik GmbH Version 3.00.01 29
based on template version 5.7.1

VECTOR D>

3.9
3.9.1

Connection Timings
Timing Parameters

Technical Reference MICROSAR CAN Transport Layer

The ISO specifies several protocol timing parameters for receiver and transmitter side. The
following figure shall give an overview which timeouts exist and when they are applied.

CanTp_Transmit

PduR_CanTpCopyTxData

PduR_CanTpTxConfirmation <

CanTp_Transmit »

PduR_CanTpCopyTxData

PduR_CanTpCopyTxData

PduR_CanTpCopyTxData

PduR_CanTpCopyTxData <

PduR_CanTpTxConfirmation <

Figure 3-6 Connection Timing

Transmitter Receiver
: N_Cs
N_As SF\
lN Br -
= >
. NGs
N_As FF\
i I N_Br -
N_Bs
- FC.CTS N_Ar
/ 3 —
. NGs
< N_Cr
N_As CF\ _
. NGCs i -
< N_Cr
N_As CF\ _|
i IN_Br "
N_Bs
- FC.WAIT N_Ar
— Yo >
N_Br —»
N_Bs 3 >
FC.CTS N_Ar
N_Cs
N_Cr
N_As CF\ _

PduR _CanTpStartOfReception
PduR_CanTpCopyRxData

PduR CanTpRxIndication

PduR CanTpStartOfReception
PduR_CanTpCopyRxData

PduR_CanTpCopyRxData

PduR_CanTpCopyRxData

PduR_CanTpCopyRxData
PduR_CanTpCopyRxData
PduR_CanTpCopyRxData

PduR_CanTpCopyRxData
PduR CanTpRxIndication

Timeout |Descripton

Transmission
N_As
N_Bs
N_Cs
Reception
N_Ar
N_Br

Timeout when waiting for a Flow Control

or Timeout when waiting after SF reception for a buffer

N_Cr

Table 3-8

© 2016 Vector Informatik GmbH

Connection Timing Parameters

Timeout when waiting for next CF

Version 3.00.01

based on template version 5.7.1

Timeout when waiting for the TxConfirmation of a transmitted SF, FF, or CF

Time until next CF has to be transmitted, or timeout when waiting a buffer

Timeout when waiting for the TxConfirmation of a transmitted FC
Time before the transmission of the next FC (see 3.9.2.3)

30

VECTOR > Technical Reference MICROSAR CAN Transport Layer

3.9.2 Timing Considerations and Jitter

3.9.2.1 Jitter

The time base for all timeout parameters is the main function period of the CanTp.
Because the starting point of each timeout may be located sometime between two main
function calls, a jitter of up to one task cycle can occur and must be taken into account.

The CanTp tries to compensate this by adding one task cycle to the configured timings, so
the observed timings can be longer, but will never be shorter than configured.

3.9.2.2 Separation Time

ISO 15765-2 specifies two timing parameters which determine the time between the
transmissions of two consecutive frames.

STmin is the minimum separation time, which is provided by the receiver. If the transmitter
sends the CFs faster than requested, there is no guarantee that the receiver of the
segmented data transmission will correctly receive and process all frames. Another
purpose of STmin is to reduce the bus load produced by CanTp communication.

N_Cs is the maximum separation time, after which the transmission of the next CF has to
be started. If the delay is longer than N_Cs, the receiver side may detect an N_Cr timeout.

Caution

n In case of a conflict between the configured N_Cs and the requested STmin (N_Cs <
STmin), the CanTp will transmit the next CF after the end of N_Cs and therefore violate
STmin.

Basically, for STmin the same provisions regarding jitter are made as for all other timings
(see 3.9.2.1). However, some STmin specific characteristics apply here:

> in burst mode (STmin = 0) the CFs are sent as fast as possible, i.e. from the context of
the TxConfirmaton of the previous CF. The observed separation time then only
depends on the bus load.

> when a microsecond STmin is requested (OxF1...0xF9) the CF is always sent on the
next task. No additional task cycle is added. Therefore if the bus load is very high and
the TxConfirmation is delayed too long, the observed separation time might
sporadically be above the given value.

> when STmin supervision is done not internally but by the application (see 3.1.2.11),
the CanTp only transmits the CF by itself in case N_Cs expires.

© 2016 Vector Informatik GmbH Version 3.00.01 31
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

m FAQ: Why is the observed STmin so much longer than the requested STmin?

Because of the jitter, the CanTp always adds one task cycle to the requested STmin in
order to guarantee that the time between two CFs is never below STmin. When the
task cycle time is higher than STmin, this may lead to unexpected high separation
times (see Table 3-9).

Requested STmin |Observed ST (5ms cyle time) Observed ST (10ms cyle time)

Oms (burst) as fast as possible as fast as possible
100us < 5ms < 10ms

1ms 5...10ms 10...20ms

5ms 5...10ms 10...20ms

6ms 10...15ms 10...20ms

10ms 10...15ms 10...20ms

11ms 15...20ms 20...30ms

Table 3-9 Examples for requested and observed separation times

3.9.2.3 Implementation of N_Br
The ISO 157675-2 defines the parameter N_Br as follows:

N_Br: Time until transmission of the next Flow Control N_PDU

Since N_Br is only a performance parameter and no timeout that must be applied in case
of erroneous behavior, it can be seen as the maximum time after which a Flow Control has
to be transmitted. Considering this, the following behavior has been implemented in the
CanTp:

> After the reception of a First Frame, the first Flow Control is transmitted immediately
(N_Br =0ms).

> After the reception of the last Consecutive Frame in a block, the next Flow Control is
transmitted immediately (N_Br = Oms).

> After FC.WAIT, the subsequent FC.CTS is transmitted as soon as sufficient buffer is
provided. If no buffer is provided, the next FC.WAIT is transmitted after N_Br.

Note
ﬂ The flow status (CTS, WAIT, OVFL) depends on the result of the buffer provision.

FC.WAIT is sent if the buffer is temporarily unavailable or too small. In this case the
receiver will continue to send FC.WAIT until the buffer status changes or the maximum
number of wait frames (configuration parameter WFTmax) is reached.

© 2016 Vector Informatik GmbH Version 3.00.01 32
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

4 Integration

This chapter gives necessary information for the integration of the MICROSAR CanTp into
an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the CanTp contains the files which are described in the chapters 4.1.1 and
4.1.2:

411 Static Files

File Name Source Object Description

Code Code

Delivery Delivery
CanTp.c u Source file of the CanTp
CanTp.h u Header file of the CanTp
CanTp_Cbk.h u Header file with CanTp callback function prototypes
CanTp_Types.h u Header file with global CanTp type definitions.
CanTp_Priv.h u Header file with internal CanTp definitions.
CanTp.lib u Library of the CanTp

Table 4-1 Static files

4.1.2 Dynamic Files
The dynamic files are generated by the configuration.

File Name Description

CanTp_Cfg.h This is the generated header file of CanTp containing pre-compile switches
and providing symbolic defines.

CanTp_Cfg.c This is the generated source file of CanTp containing pre-compile-time
configurable parameters

CanTp_Lcfg.h This is the generated header file of CanTp containing link-time configurable
symbols

CanTp_Lcfg.c This is the generated source file of CanTp containing link-time configurable
parameters

CanTp_PBcfg.c This is the generated source file of CanTp containing post-build-time
configurable parameters

CanTp_PBcfg.c This is the generated source file of CanTp containing post-build-time

configurable parameters

Table 4-2 Generated files

© 2016 Vector Informatik GmbH Version 3.00.01 33
based on template version 5.7.1

VECTOR D>

Technical Reference MICROSAR CAN Transport Layer

4.2 Include Structure
MemMap.h
7
CANTP -
S N
b
[-
«include»
CanTp_Priv.h P —] SchM_CanTp.h
)_| o 1 _=
<; - s - -
cinclude» — AN _|~ ~«include»
‘ CanTp.c _ 1
|- ~«nclude» - - “cinclude» — — _ SN cantl
nif.
CanTp_Cbk.h N~
| N ~o
: N o «includey -
N : S N AN
N \ N N\
\ | «includey
\ | R PduR_CanTp.h
\ | AN
\ | N N
\ .
«include» :
CanTp_Lcfg.c | —— — => CanTp_Lcfg.h \ I
«include» \ | EcuM _Error.h
\ |
V\ ~ \ |
S \ l
«includey»
~
N N &> [N
CanTp_PBcfg.c| — — — =>{CanTp_PBcfgh<s — = — —— — — CanTph [——-|— ~ngludey _ _ _ = Det.h
«include» «include»
b
b
-~
b . N
«include» «include»
N Z
CanTp_Cfg.c | ———=> CanTp_Cfgh [<T—-———-—-—-—— CanTp_Types.h
«include» «include»
\ /
\ /
\ /
\ /
«include» «include»
\ /
\ /
\ /
omStackTypes.
Figure 4-1 Include structure
Note

The only files that need to be included by other modules and software components are

CanTp.h and CanTp Cbk.h. These files contain all definitions and inclusions required
to use the CanTp.

© 2016 Vector Informatik GmbH

Version 3.00.01
based on template version 5.7.1

34

VECTOR > Technical Reference MICROSAR CAN Transport Layer

4.3 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions — the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following table contains the memory section names and the compiler abstraction
definitions of the CanTp and illustrates their assignment among each other.

Compiler Abstraction
Definitions

CANTP_PBCFG

CANTP_APPL_DATA

Memory Mapping
Sections

CANTP_VAR_NOINIT
CANTP_VAR_INIT
CANTP_VAR_PBCFG

CANTP_CODE

CANTP_START_SEC_CODE
CANTP_STOP_SEC_CODE

CANTP_START_SEC_VAR_NOINIT_8BIT
CANTP_START_SEC_VAR_NOINIT_8BIT
CANTP_START_SEC_VAR_INIT_UNSPECIFIED
CANTP_STOP_SEC_VAR_INIT_UNSPECIFIED
CANTP_START_SEC_PBCFG
CANTP_STOP_SEC_PBCFG
CANTP_START_SEC_VAR_PBCFG
CANTP_STOP_SEC_VAR_PBCFG

Table 4-3 Compiler abstraction and memory mapping

4.3.1 Memory mapping rules

Due to reuse of existing code, some pointers in the CanTp may point to variables of
different memory classes. Therefore it must be ensured that the following compiler
abstraction definitions are mapped to compatible memory sections:

> CANTP_VAR_PBCFG and CANTP_APPL_DATA
> CANTP_VAR_PBCFG and PDUR_APPL_DATA

© 2016 Vector Informatik GmbH Version 3.00.01 35
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

4.4 Critical Sections

The synchronization mechanism defined by AUTOSAR covers the entering and leaving of
so called critical sections. Different critical sections can be handled by using different so
called “Exclusive Areas”.

CanTp supports only one exclusive area (CANTP_EXCLUSIVE_AREA_0), which can be
entered from task and interrupt level. It protects all internal state data against unintended
modification due to concurrent access and is entered from the following APIs:

> CanTp_RxIndication

> CanTp_TxConfirmation

> CanTp_Transmit

> CanTp_ChangeParameter

> CanTp_CancelReceive

> CanTp_CancelTransmit

> CanTp_StopSeparationTime
> CanTp_MainFunction

The exclusive area must lock the interrupts from all bus systems which may affect CanTp
operation. So while in CAN-only systems, locking the CAN interrupts is sufficent, e.g. in an
ECU which does CAN-FlexRay routing, also the FlexRay interrupts have to be locked.

4.5 Buffer Configuration

The CanTp is able to work with segmented reception buffers, i.e. usually it is not
necessary to provide a buffer with size of the complete message to be received.

Basically it is sufficient to provide a buffer which is large enough to store the payload of all
CFs within a block. The CanTp will adjust the block size and flow status parameters in the
FC frames according to the currently available buffer to control the reception data flow. A
new buffer is requested before the start of a new block, i.e. when an FC.CTS is sent.

However, some configuration options limit the reception control capabilities of the CanTp.
This must be taken into account during configuration of the buffer size in an upper layer
module (e.g. in the PduR when using high level routing).

45.1 Constant Block Size

If the CanTp is not allowed to change the block size during reception (see also 3.1.2.4),
the buffer size which is reported to the CanTp upon request at the end of a block should
also not change after the first FC.CTS has been transmitted. Otherwise the CanTp will
transmit an FC.WAIT until enough buffer is available, which will unnecessarily delay the
reception.

© 2016 Vector Informatik GmbH Version 3.00.01 36
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

452 Zero Block Size

If the Block Size is configured as zero, an FC is only allowed after FF reception. If once a
FC.CTS is transmitted, the CanTp has no possibility to delay the reception if the upper
layer runs out of buffer. The CanTp will try to get more buffer between two CFs while
waiting for STmin, but for better robustness it is recommended to use BS = 0 only if a full
buffer is available. Otherwise the connection will be terminated with an error if the CanTp
is still waiting for a buffer when the next CF is received.

453 Zero WFTmax

A WFTmax value of zero does suppress the transmission of FC.WAIT, i.e. the CanTp is not
allowed to delay reception. If nevertheless a situation occurs where an FC.WAIT is
needed, the connection will be terminated. Therefore, similar to the case with constant
block size, it is important to provide always enough buffer for one complete block or (if
block size is not constant) for at least one CF.

454 Zero STmin

With a STmin of zero, each CF is transmitted immediately after the previous CF. This
eliminates the possibility of a buffer request between two CFs in case of BS = 0. If such a
situation nevertheless occurs, the connection will be erroneously terminated on reception
of the next CF.

Therefore it is highly recommended to provide always a full buffer when BS = 0 and STmin
= 0 are used.

© 2016 Vector Informatik GmbH Version 3.00.01 37
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5 API Description

For an interfaces overview please see Figure 2-2.

5.1 Services provided by CanTp
5.1.1 CanTp_InitMemory

Prototype

void CanTp_InitMemory (void)

Parameter

N/A N/A
Return code

Void N/A

Functional Description

Service to initialize module global variables at power up. This function initializes the variables in *_INIT_*
sections and should be used in case they are not initialized by the startup code.

Particularities and Limitations

> This function must be called prior to CanTp_Init
> This function can be called from any context.

> This function is non-reentrant.

> This function is synchronous.

Table 5-1 CanTp_InitMemory

© 2016 Vector Informatik GmbH Version 3.00.01 38
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.1.2 CanTp_lInit()
Prototype

void CanTp_Init (const CanTp ConfigType* CfgPtr)

Parameter

CfgPtr Pointer to the CanTp post-build configuration data.

In configurations supporting multiple variants or post-build, a #define with a
config pointer for each available configuration set is generated.

In simple precompile configurations, the parameter is not used by the CanTp
and can be set to NULL.

Return code
Void N/A

Functional Description

This function initializes the CanTp module.

Particularities and Limitations

> This function can be called from any context.
> This function is non-reentrant.
> This function is synchronous.

Table 5-2 CanTp_lInit()

5.1.3 CanTp_Shutdown()
Prototype

void CanTp_Shutdown (void)
Parameter
N/A N/A

Return code
Void N/A

Functional Description

This function is called to shut down the CanTp module.

Particularities and Limitations

> This function can be called from any context.
> This function is non-reentrant.
> This function is synchronous.

Table 5-3 CanTp_Shutdown()

© 2016 Vector Informatik GmbH Version 3.00.01 39
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.1.4 CanTp_MainFunction()
Prototype

void CanTp_MainFunction (void)
Parameter
N/A N/A

Return code
void N/A

Functional Description

The main function for scheduling the CanTp.

Particularities and Limitations

> This function can be called from any context.
> This function is non-reentrant.
> This function is synchronous.

Table 5-4 CanTp_MainFunction()

5.1.5 CanTp_MainFunctionRx()
Prototype

void CanTp_MainFunctionRx (void)
Parameter
N/A N/A

Return code
void N/A

Functional Description

The main function for scheduling the receive channels of the CanTp. This function is only available if the
split MainFunction feature is activated

Particularities and Limitations

> This function can be called from any context.
This function is non-reentrant.
This function is synchronous.

vV V V

This APl is optional and can be deactivated (see 3.1.2.1)
Compiler switch: CANTP_RXTX_MAINFUNCTION_API
Configuration attribute: CanTpEnableSplitMainFunction

Table 5-5 CanTp_MainFunctionRx()

© 2016 Vector Informatik GmbH Version 3.00.01 40
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.1.6 CanTp_MainFunctionTx()
Prototype

void CanTp_MainFunctionTx (void)
Parameter
N/A N/A

Return code
void N/A

Functional Description

The main function for scheduling the transmit channels of the CanTp. This function is only available if the
split MainFunction feature is activated

Particularities and Limitations

> This function can be called from any context.
This function is non-reentrant.
This function is synchronous.

vV V V

This APl is optional and can be deactivated (see 3.1.2.1)
Compiler switch: CANTP_RXTX_MAINFUNCTION_API
Configuration attribute: CanTpEnableSplitMainFunction

Table 5-6 CanTp_MainFunctionTx()

5.1.7 CanTp_GetVersioninfo()
Prototype

void CanTp_GetVersionInfo (Std VersionInfoType* versioninfo)

Parameter

versioninfo reference to a variable where to store the version information of the CanTp
Return code
void N/A

Functional Description

This function returns the version information of the CanTp module.
The version information includes: Module Id, Vendor Id and Vendor specific version numbers.
The version numbers are BCD-coded.

Particularities and Limitations

> This function can be called from any context.
This function is reentrant.
This function is synchronous.

vV V V

This APl is optional and can be deactivated
Compiler switch: CANTP_VERSION_INFO_API
Configuration attribute: CanTpVersionInfoApi

Table 5-7 CanTp_GetVersioninfo()

© 2016 Vector Informatik GmbH Version 3.00.01 41
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.1.8 CanTp_Transmit()
Prototype

Std ReturnType CanTp_Transmit (PduldType CanTpTxSduld, const PdulnfoType*
CanTpTxInfoPtr)

Parameter

CanTpTxSduld Unique CanTp identifier of the N-SDU to be transmitted.
Range: 0..(maximum number of Tx N-SDU IDs) - 1

CanTpTxInfoPtr This reference to a PdulnfoType structure contains the length to be
transmitted (SduLength) and a data pointer (SduDataPointer). Only the
Sdulength is used by CanTp_Transmit. The data to be transmitted is
requested separately by the CanTp. Thereto the function
PduR_CanTpCopyTxData is used.

Return code

Std ReturnType E_OK: The transmit request has been started successfully

E_NOT_OK: The request cannot be started (e.g. a transmit request is in
progress with the same N-SDU identifier)

Functional Description

This service is used to request the transfer of segmented data.

If data length is less than 7 or 6, depending on the addressing format (standard, extended. mixed11), a SF
N-PDU is sent. Otherwise, if data length is greater than 7 or 6, a multiple frame transmission session is
initiated.

When the transmit request has been completed, the CanTp notifies the upper layer by calling the
PduR_CanTpTxConfirmation callback function.

Also, if an error occurred (overflow, timeout etc.), the transmit request is aborted and the
PduR_CanTpTxConfirmation callback is called with the appropriate error result value.

Particularities and Limitations

> This function can be called from any context.
> This function is reentrant.

> This function can be configured to be synchronous or asynchronous (see 0).

Table 5-8 CanTp_Transmit()

© 2016 Vector Informatik GmbH Version 3.00.01 42
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.1.9 CanTp_CancelReceive()
Prototype

Std ReturnType CanTp_CancelReceive (PduldType CanTpRxSduld)

Parameter

CanTpRxSduld Identifier of the Rx N-SDU, for which a reception shall be cancelled.
Range: 0..(maximum number of Rx N-SDU IDs) - 1

Return code

Std _ReturnType E_OK: Cancellation request of the specified N-SDU is accepted.

E_NOT_OK: Cancellation request is rejected; the reason can be that the
request is issued for an N-SDU that is not segmented or that is not in the
reception process.

Functional Description

This service is used to cancel the ongoing reception of an N-SDU.

Particularities and Limitations

> This function can be called from any context.
This function is non-reentrant.
This function is synchronous.

vV V V

This APl is optional and can be deactivated
Compiler switch: CANTP_RC
Configuration attribute: CanTpRc

Table 5-9 CanTp_CancelReceive()

© 2016 Vector Informatik GmbH Version 3.00.01 43
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.1.10 CanTp_CancelTransmit()
Prototype

Std ReturnType CanTp_CancelTransmit (PduldType CanTpTxSduld)

Parameter

CanTpTxSduld Identifier of the Tx N-SDU, for which a transmission shall be cancelled.
Range: 0..(maximum number of Tx N-SDU IDs) - 1

Return code

Std _ReturnType E_OK: Cancellation request of the specified N-SDU is accepted.

E_NOT_OK: Cancellation request is rejected; the reason can be that request
is issued for an N-SDU that is not segmented, request is issued after the last
CF has been requested for transmission or cancellation is not possible for the
related N-SDU due to configuration.

Functional Description

This service is used to cancel the ongoing transmission of an N-SDU.

Particularities and Limitations

> This function can be called from any context.
This function is non-reentrant.
This function is synchronous.

vV V V

This APl is optional and can be deactivated
Compiler switch: CANTP_TC
Configuration attribute: CanTpTc

Table 5-10 CanTp_CancelTransmit()

© 2016 Vector Informatik GmbH Version 3.00.01 44
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.1.11 CanTp_ChangeParameter()
Prototype

Std ReturnType CanTp_ChangeParameter (PduldType id, TPParameterType parameter,
uintlé value)

id Identifier of the Rx N-SDU, for which a parameter shall be changed.

Range: 0..(maximum number of Rx N-SDU IDs) - 1
parameter Parameter type of which the value has to be changes (TP_BS or TP_STMIN).
value The new value of the parameter.

Return code

Std _ReturnType E_OK: request is accepted.
E_NOT_OK: request is not accepted.

Functional Description

This service is used to request the change of reception parameters BS and STmin for a specified N-SDU.
Modification of parameters is only allowed if currently no reception for the respective N-SDU is in progress.

Particularities and Limitations

> This function can be called from any context.
This function is non-reentrant.

This function is synchronous.

vV V V

This APl is optional and can be deactivated
Compiler switch: CANTP_ENABLE_CHANGE_PARAM
Configuration attribute: CanTpChangeParameterApi

Table 5-11 CanTp_ChangeParameter()

© 2016 Vector Informatik GmbH Version 3.00.01 45
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.1.12 CanTp_ReadParameter()
Prototype

Std _ReturnType CanTp_ReadParameter (PduldType id, TPParameterType parameter,
uintlé* value)

Parameter

id Identifier of the Rx N-SDU, for which a flow control parameter shall be read.
Range: 0..(maximum number of Rx N-SDU IDs) - 1

parameter Parameter type of which the value has to be read (TP_BS or TP_STMIN).

value Pointer where the parameter value will be stored.

Return code

Std _ReturnType E_OK: request is accepted.
E_NOT_OK: request is not accepted.

Functional Description

This service is used to read the current value of reception parameters BS and STmin for a specified N-
SDU.

Particularities and Limitations

> This function can be called from any context.
This function is non-reentrant.

This function is synchronous.

vV V V

This APl is optional and can be deactivated
Compiler switch: CANTP_ENABLE_READ_ PARAM
Configuration attribute: CanTpReadParameterApi

Table 5-12 CanTp_ReadParameter()

© 2016 Vector Informatik GmbH Version 3.00.01 46
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.2 Services used by CanTp

In the following table services provided by other components, which are used by the
CanTp are listed. For details about prototype and functionality refer to the documentation
of the providing component.

Component API

Canlf Canlf_Transmit
Canlf_CancelTransmit

Det Det_ReportError

EcuM EcuM_BswErrorHook

PduR PduR_CanTpCopyRxData

PduR_CanTpCopyTxData

PduR_CanTpRxIndication

PduR_CanTpStartOfReception

PduR_CanTpTxConfirmation

PduR_CanTpChangeParameterConfirmation
SchM SchM_Enter_CanTp_*

SchM_Exit_ CanTp_*

Table 5-13 Services used by the CanTp

© 2016 Vector Informatik GmbH Version 3.00.01 47
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.3 Callback Functions

This chapter describes the callback functions that are implemented by the CanTp and can
be invoked by other modules. The prototypes of the callback functions are provided in the
header file CanTp_ Cbk.h by the CanTp.

5.3.1 CanTp_RxIndication()
Prototype

void CanTp_RxIndication (PduldType CanTpRxPduld, const PdulnfoType*
CanTpRxPduPtr)

Parameter

CanTpRxPduld Identifier of the Rx N-PDU that have been received.
Range: 0..(maximum number of Rx N-PDU IDs) - 1

CanTpRxPduPtr Reference to structure with the size of the received N-PDU (SduLength) and
to the payload data (SduDataPointer)

Return code
void N/A

Functional Description

This function is called by the CAN Interface after a successful reception of an N-PDU.

Particularities and Limitations

> This function can be called from any context.
> This function is reentrant.
> This function is synchronous.

Table 5-14 CanTp_RxIndication()

5.3.2 CanTp_TxConfirmation()
Prototype

void CanTp_TxConfirmation (PduldType TxPduld)

Parameter

TxPduld Identifier of the Tx N-PDU that have been transmitted successfully.
Range: 0..(maximum number of Tx N-PDU IDs) - 1

Return code
void N/A

Functional Description

This function is called by the CAN Interface to confirm the successful transmission of an N-PDU.

Particularities and Limitations

> This function can be called from any context.
> This function is reentrant.
> This function is synchronous.

Table 5-15 CanTp_TxConfirmation()

© 2016 Vector Informatik GmbH Version 3.00.01 48
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.3.3 CanTp_StopSeparationTime()

Prototype
void CanTp_StopSeparationTime (PduldType CanTpTxSduld)

Parameter

CanTpTxSduld Symbolic name value of the Tx connection

Note: this is the same ID as it has been passed to the application in the
StartSeparationTime call-out.

Return code

Functional Description
Called by the application to trigger transmission of the next CF when its separation timer expired.

Particularities and Limitations

> Feature ,STmin by Application must be active (see 3.1.2.11)

> The request to do the separation time handling must have been accepted by the application (see 5.4.1).
If CanTp_StopSeparationTime() is called before Appl_StartSeparationTime returns (e.g. in case of a fast
timer interrupt), the CanTp assumes a positive result and accepts the function call.

> In the context of this function, the CanTp will request the CF payload from its upper layer and transmit
the next CF

Table 5-16 CanTp_StopSeparationTime()

5.4 Configurable Interfaces
5.4.1 Appl_StartSeparationTime()
Prototype

boolean Appl_ StartSeparationTime (PduldType CanTpTxSduld, uint8 STmin)

CanTpTxSduId Symbolic name value of the Tx connection.
STmin STmin value from the flow control (encoding according to ISO).

Return code

TRUE request to handle Separation Time is accepted by the application

FALSE request to handle Separation Time is rejected and will be done by CanTp

Functional Description

Called by the CanTp to notify the application that a separation timer need to be started.

Particularities and Limitations

> The function is called from the TxConfirmation context

> The actual name of the function is configured by the parameter
‘CanTp/CanTpGeneral/CanTpApplSTminStartFunction’

Table 5-17 Appl_StartSeparationTime()

© 2016 Vector Informatik GmbH Version 3.00.01 4
based on template version 5.7.1

©

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.4.2 Notification Functions

Additional notification callouts can be defined to notify the application about the reception
or transmission of CanTp frames. This may be used for project specific extensions or
workarounds. The function declarations are provided in CanTp Cbk.h. To activate a
callout, an according compiler switch must be defined to STD_ON in a user config file.

5.4.2.1 Appl_CanTpRxSFIndication()
Prototype

void Appl_ CanTpRxSFIndication (PduldType PduRRxPduld,
const PdulnfoType* PdulnfoPtr);

PduRRxPduld Pduld of the connection, which is defined by the PduR; the same Id is passed
to PduR in PduR_CanTpRxIndication().
PdulnfoPtr Reference to structure with the size (SduLength) and the CAN frame content

(SduDataPointer) of the single frame.

Return code

Functional Description

Function is called upon successful reception of a single frame N-PDU before the call of
PduR_CanTpStartOfReception().

Particularities and Limitations
> To activate the callout, CANTP_APPL_RX_ SF_INDICATION must be defined to STD_ON

Table 5-18 Appl_CanTpRxSFIndication()

5.4.2.2 Appl_CanTpRxFFIndication()

Prototype

void Appl_ CanTpRxFFIndication (PduldType PduRRxPduld,
const PduInfoType* PdulnfoPtr);

PduRRxPduld Pduld of the connection, which is defined by the PduR; the same Id is passed
to PduR in PduR_CanTpRxIndication().
PdulnfoPtr Reference to structure with the size (SduLength) and the CAN frame content

(SduDataPointer) of the first frame.
Return code

Functional Description

Function is called upon successful reception of a first frame N-PDU before the call of
PduR_CanTpStartOfReception().

Particularities and Limitations
> To activate the callout, CANTP_APPL_RX_FF_INDICATION must be defined to STD_ON

Table 5-19 Appl_CanTpRxFFIndication()

© 2016 Vector Informatik GmbH Version 3.00.01 5
based on template version 5.7.1

o

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.4.2.3 Appl_CanTpRxCFIndication()
Prototype

void Appl CanTpRxCFIndication (PdulIdType PduRRxPduld,
const PdulnfoType* PdulnfoPtr);

PduRRxPduld Pduld of the connection, which is defined by the PduR; the same Id is passed
to PduR in PduR_CanTpRxIndication().
PdulnfoPtr Reference to structure with the size (SduLength) and the CAN frame content

(SduDataPointer) of the consecutive frame.

Return code

Functional Description

Function is called upon successful reception of a consecutive frame N-PDU before the call of
PduR_CanTpCopyRxData().

Particularities and Limitations
> To activate the callout, CANTP_APPL_RX_ CF_INDICATION must be defined to STD_ON

Table 5-20 Appl_CanTpRxCFIndication()

5.4.2.4 Appl_CanTpFrameTransmission ()

Prototype

void Appl_ CanTFrameTransmission (PduldType CanIfTxPduld,
const PdulnfoType* PdulnfoPtr);

Parameter

CanlfTxPduld Pduld of the transmitted CAN message, which is defined by the Canlf; the
same Id is passed to Canlf_Transmit().

PdulnfoPtr Reference to structure with the size (SduLength) and the content
(SduDataPointer) of the transmitted CAN frame.

Return code

Functional Description

Function is called if transmission of a CanTp N-PDU has successfully been started (Canlf_Transmit() has
been called and returned E_OK).

Particularities and Limitations
> To activate the callout, CANTP_APPL_FRAME_TRANSMISSION must be defined to STD_ON

Table 5-21 Appl_CanTpFrameTransmission ()

© 2016 Vector Informatik GmbH Version 3.00.01 5
based on template version 5.7.1

iy

VECTOR > Technical Reference MICROSAR CAN Transport Layer

5.4.25 Appl_CanTpFrameTxConfirmation ()

Prototype
void Appl_ CanTFrameTxConfirmation (PduIdType CanIfTxPduld);
Parameter

CanlfTxPduld Pduld of the transmitted CAN message, which is defined by the Canlf; the
same Id is passed to Canlf_Transmit().

Return code

Functional Description

Function is called if a CanTp N-PDU has successfully been transmitted (at the beginning of
CanTp_TxConfirmation).

Particularities and Limitations
> To activate the callout, CANTP_APPL_FRAME_CONFIRMATION must be defined to STD_ON

Table 5-22 Appl_CanTpFrameTransmission ()

© 2016 Vector Informatik GmbH Version 3.00.01 52
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

6 Configuration

The CanTp attributes can be configured with the following tool:
> Configuration in DaVinci Configurator Pro 5

6.1 Configuration Variants
The CanTp supports the configuration variant
> VARIANT-PRE-COMPILE

> VARIANT-POST-BUILD-LOADABLE
> VARIANT-POST-BUILD-SELECTABLE

The configuration classes of the CanTp parameters depend on the supported configuration
variants. For their definitions please see the CanTp_bswmd.arxml file.

6.2 Configuration of Post-Build

The configuration of post-build loadable is described in [7].

In the CanTp, the following configuration changes are possible at post-build time:
> Modify timing parameters of existing N-SDUs

> Activate or disable N-PDU padding of existing N-SDUs (padding must have been
globally enabled at pre-compile time)

> Modify flow control parameters of existing Rx N-SDUs (STmin, Block Size, WFTmax)

> Change number of channels (dynamic channel assignment must have been enabled
at pre-compile time, see 3.1.2.5)

> Add new N-SDUs

Existing references to N-PDUs can’t be changed at post-build time. However, when adding
new N-SDUs, N-PDUs configured at pre-compile time can be referenced.

© 2016 Vector Informatik GmbH Version 3.00.01 53
based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

6.3 Additional Configuration Hints

6.3.1 Canlf Tx Buffering

The CanTp does not implement a retry mechanism in case the Canlf is not able to transmit
a TP message. If a call to Canlf_Transmit failed, the connection is terminated.

To avoid unpredictable interruption of active CanTp connections, the Tx buffering feature
must be enabled in the Canlf for systems where high bus load and failed transmissions are
expected.

6.3.2 ISO Performance Requirements

ISO15765-2 defines performance requirements for N_Br and N_Cs (see also 3.9.1), which
frequently leads to confusion. The reason for this is that there is usually no clear distinction
between configured timeouts and the actual timing observed on the bus.

For example, a typical OEM specification may look like that:

N_As 1000ms
N_Ar 1000ms
N_Bs 1000ms
N_Br (N_Br+ N_Ar) < (0,9*N_Bs)
N_Cs (N_Cs + N_As) < (0,9*N_Cr)
N_Cr 1000ms

Table 6-1 Example for typical timing parameter specification

Interpreting all timings as configurable parameters would mean, that only a negative value
can fulfill the specified equation for N_Br and N_Cs.

However, the intent of the requirement is not to specify a concrete value, but to provide a
test criterion for a black box test where e.g. N_Br and N_Ar can’t be measured separately.
So it should be interpreted as follows:

(actual measured time for N_Br + N_Ar) < (0,9 * configured N_Bs timeout)

E FAQ: Which values should be used for the config parameters N_Cs and N_Br?

The CanTp tries to send out frames as fast as possible. N_Cs and N_Br are mainly
used to abort/complete an operation before it is obvious that the performance time can
no longer be fulfilled (see also 3.9.2.2 for N_Cs and 3.9.2.3 for N_Br).

So assuming a typical bus delay far below 100ms, for the example above a good
choice for N_Cs and N_Br would be around 800ms.

© 2016 Vector Informatik GmbH Version 3.00.01 54
based on template version 5.7.1

VECTOR >

Technical Reference MICROSAR CAN Transport Layer

7 Glossary and Abbreviations

7.1 Glossary

Buffer

Callback function

CAN Diriver

CAN message

Channel

Communication
stack

Component

Confirmation

Critical section

Data consistency

Data link layer

A buffer in a memory area normally in the RAM. It is an area that the
application has reserved for data storage.

This is a function provided by an application. E.g. the CAN Driver calls a
callback function to allow the application to control some action, to make
decisions at runtime and to influence the work of the driver.

The CAN Driver encapsulates a specific CAN controller handling. It
consists of algorithms for hardware initialization, CAN message
transmission and reception. The application interface supports both event
and polling notification and WR/RD access to the message buffers.

Frame which is composed of the start-of-frame, arbitration, control, data,
CRC, acknowledge and end-of-frame bit fields.

A channel defines the assignment (1:1) between a physical communication
interface and a physical layer on which different modules are connected to
(either CAN or LIN). 1 channel consists of 1 ... X network(s).

The communication stack consists of the communication configuration and
the communication kernel, a number of adaptive software components that
cover the basic communication requirements in distributed automotive
applications.

CAN Diriver, Network Management ... are software COMPONENTS in
contrast to the expression module, which describes an ECU.

A service primitive defined in the ISO/OSI Reference Model (1ISO 7498).
With the service primitive 'confirmation’ a service provider informs a service
user about the result of a preceding service request of the service user.
Notification by the CAN Driver on asynchronous successful transmission of
a CAN message.

A critical section is a sequence of instructions where mutual exclusion must
be ensured. Such a section is called ‘critical' because shared data is
modified within it.

Data consistency means that the content of a given application message
correlates unambiguously to the operation performed onto the message by
the application. This means that no unforeseen sequence of operations
may alter the content of a message hence rendering a message
inconsistent with respect to its allowed and expected value.

The communication layer which provides services for the transfer of data
link messages. The data link layer consists of the communication hardware
and the communication driver software.

DaVinci Configuration and code generation tool for MICROSAR components
Configurator Pro 5
Deadlock A state in which tasks block one another so that further processing of the
tasks concerned is no longer possible. A deadlock between two tasks
occurs, e.g. if both tasks wait for the reception of a message which is to be
© 2016 Vector Informatik GmbH Version 3.00.01 55

based on template version 5.7.1

VECTOR >

Electronic Control
Unit

Event

Gateway

Indication

Interrupt

Interrupt level

Network

Physical layer
Platform

Post-build

Segmented data
transfer

Software
architecture

Transport Protocol

Technical Reference MICROSAR CAN Transport Layer

sent by the other task before sending its own message.

Also known as ECU. Small embedded computer system consisting of at
least one CPU and corresponding periphery which is placed in one
housing.

An exclusive signal which is assigned to a certain extended task. An event
can be used to send binary information to an extended task. The meaning
of events is defined by the application. Any task can set an event for an
extended task. The event can only be cleared by the task which is
assigned to the event.

A gateway is designed to enable communication between different bus
systems, e.g. from CAN to LIN.

A service primitive defined in the ISO/OSI Reference Model (ISO 7498).
With the service primitive 'indication' a service provider informs a service
user about the occurrence of either an internal event or a service request
issued by another service user. Notification of application in case of events
in the Vector software components, e.g. an asynchronous reception of a
CAN message.

Processor-specific event which can interrupt the execution of a current
program section.

Processing level provided for time-critical activities. To keep the interrupt
latency brief, only absolutely indispensable actions should be effected in
the interrupt service routine, which ensures reception of the interrupt and
trigger its (post) processing within a task. Other processing levels are:
Operating system level and task level.

A network defines the assignment (1:N) between a logical communication
grouping and a physical layer on which different modules are connected to
(either CAN or LIN). One network consists of one channel, Y networks
consists of 1 ... Z channel(s). We say network if we talk about more than
one bus.

An electrical circuit that connects an ECU to a communication media.

The sum of micro controller derivative, communication controller
implementation and compiler is called platform.

This type of configuration is possible after building the software module or
the ECU software. The software may either receive parameters of its
configuration during the download of the complete ECU software resulting
from the linkage of the code, or it may receive its configuration file that can
be downloaded to the ECU separately, avoiding a re-compilation and re-
build of the ECU software modules. In order to make the post-build time re-
configuration possible, the re-configurable parameters shall be stored at a
known memory location of ECU storage area.

See segmented communication

A software architecture is the structure or structures of a system, which
comprises software components, the external visible properties of these
components and the relationships among them.

Some information that must be transferred over the CAN/LIN bus does not
fit into individual message frames because the data length exceeds the
maximum of 8 bytes. In this case, the sender must divide up the data into a
number of messages. Additional information is necessary for the receiver

© 2016 Vector Informatik GmbH Version 3.00.01 56

based on template version 5.7.1

VECTOR > Technical Reference MICROSAR CAN Transport Layer

to put the data together again.

Table 7-1 Glossary

7.2 Abbreviations

AE Address Extension

API Application Programming Interface

AR AUTOSAR

AUTOSAR Automotive Open System Architecture

BS Block Size

BSW Basis Software

BSWMD Basic Software Module Description

CAN Controller Area Network protocol

CAN-FD CAN with Flexible Data Rate

CANTP CAN Transport Layer

CF Consecutive Frame

COM Communication

CTS Clear To Send

DCM Diagnostic Communication Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

DL Data Length

DLC Data Length Code, Number of data bytes of a CAN message
ECU Electronic Control Unit

FC Flow Control

FF First Frame

FS Flow Status Control

HIS Hersteller Initiative Software

ID Identifier

ISO International Standardization Organization

LFF Long First Frame (extended first frame with escape sequence)
LSF Long Single Frame (extended single frame with escape sequence)
MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR

solution)

N Network Layer (used as prefix; e.g. N-PDU or N-SDU)

OBD Undefined

OEM Original Equipment Manufacturer

OS Operating System

OVFLW Overflow
© 2016 Vector Informatik GmbH Version 3.00.01 57

based on template version 5.7.1

VECTOR >

PB
PDU

PDUR

ROM
RFC
RTE
SA
SDU
SF
SN
SRS
ST
Se
SWSs
TA
TP
TPCI
WT

Table 7-2

© 2016 Vector Informatik GmbH

Abbreviations

Technical Reference MICROSAR CAN Transport Layer

Post-Build

Protocol Data Unit

PDU Router

Read-Only Memory

Request For Comment

Runtime Environment

Source Address

Service Data Unit

Single Frame

Sequence Number

Software Requirement Specification
Separation Time

Software Component

Software Specification

Target Address

Transport Protocol

Transport Protocol Control Information
Wait

Version 3.00.01
based on template version 5.7.1

58

VECTOR > Technical Reference MICROSAR CAN Transport Layer

8 Contact

Visit our website for more information on

> News

> Products

> Demo software
> Support

> Training data

> Addresses

www.vector.com

© 2016 Vector Informatik GmbH Version 3.00.01 59
based on template version 5.7.1

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.1.1 Deviations
	3.1.2 Additions/ Extensions
	3.1.2.1 Split CanTp_MainFunction
	3.1.2.2 Notification of Failed Buffer Request
	3.1.2.3 Handling of FC Frames with a Reserved STmin
	3.1.2.4 Dynamic and Static BlockSize and STmin
	3.1.2.5 Dynamic Channel Assignment
	3.1.2.6 Single Buffer Optimization
	3.1.2.7 Transmit Queue
	3.1.2.8 Asynchronous and Synchronous behavior of CanTp_Transmit
	3.1.2.9 Support of PduR Interface according to AUTOSAR 4.1.2
	3.1.2.10 CAN-FD Support
	3.1.2.10.1 CAN Messages with more than 8 Byte
	3.1.2.10.2 CAN-FD Frame Padding
	3.1.2.10.3 Segmented Messages with more than 4095 Byte

	3.1.2.11 Separation Time by Application

	3.2 Limitations
	3.2.1 Memory Optimization
	3.2.2 Channel Assignment
	3.2.3 Channel Addressing
	3.2.4 Data Length Parameter

	3.3 Initialization
	3.4 States
	3.5 Main Functions
	3.6 Error Handling
	3.6.1 Development Error Reporting
	3.6.1.1 Parameter Checking

	3.6.2 Production Code Error Reporting

	3.7 Channel Mode
	3.8 Connection Channels
	3.9 Connection Timings
	3.9.1 Timing Parameters
	3.9.2 Timing Considerations and Jitter
	3.9.2.1 Jitter
	3.9.2.2 Separation Time
	3.9.2.3 Implementation of N_Br

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Include Structure
	4.3 Compiler Abstraction and Memory Mapping
	4.3.1 Memory mapping rules

	4.4 Critical Sections
	4.5 Buffer Configuration
	4.5.1 Constant Block Size
	4.5.2 Zero Block Size
	4.5.3 Zero WFTmax
	4.5.4 Zero STmin

	5 API Description
	5.1 Services provided by CanTp
	5.1.1 CanTp_InitMemory
	5.1.2 CanTp_Init()
	5.1.3 CanTp_Shutdown()
	5.1.4 CanTp_MainFunction()
	5.1.5 CanTp_MainFunctionRx()
	5.1.6 CanTp_MainFunctionTx()
	5.1.7 CanTp_GetVersionInfo()
	5.1.8 CanTp_Transmit()
	5.1.9 CanTp_CancelReceive()
	5.1.10 CanTp_CancelTransmit()
	5.1.11 CanTp_ChangeParameter()
	5.1.12 CanTp_ReadParameter()

	5.2 Services used by CanTp
	5.3 Callback Functions
	5.3.1 CanTp_RxIndication()
	5.3.2 CanTp_TxConfirmation()
	5.3.3 CanTp_StopSeparationTime()

	5.4 Configurable Interfaces
	5.4.1 Appl_StartSeparationTime()
	5.4.2 Notification Functions
	5.4.2.1 Appl_CanTpRxSFIndication()
	5.4.2.2 Appl_CanTpRxFFIndication()
	5.4.2.3 Appl_CanTpRxCFIndication()
	5.4.2.4 Appl_CanTpFrameTransmission ()
	5.4.2.5 Appl_CanTpFrameTxConfirmation ()

	6 Configuration
	6.1 Configuration Variants
	6.2 Configuration of Post-Build
	6.3 Additional Configuration Hints
	6.3.1 CanIf Tx Buffering
	6.3.2 ISO Performance Requirements

	7 Glossary and Abbreviations
	7.1 Glossary
	7.2 Abbreviations

	8 Contact

