

MICROSAR DCM

Technical Reference

Ford

Version 7.1

Authors Mishel Shishmanyan, Patrick Rieder, Vitalij Krieger,
Thomas Dedler, Alexander Ditte, Savas Ates

Status Released

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 2
based on template version 5.0.0

Document Information

History

Author Date Version Remarks

Thomas Dedler,
Mishel Shishmanyan

2012-08-15 1.00.00 Initial version

Mishel Shishmanyan 2012-09-21 1.01.00 Added:

5.19 ReadDataByPeriodicIdentifier ($2A)

5.22 InputOutputControlByIdentifier ($2F)

6.5.2.7 ReturnControlToECU()

6.5.2.8 ResetToDefault()

6.5.2.9 FreezeCurrentState()

6.5.2.10 ShortTermAdjustment()

9.8 How to Jump into the FBL from Service
DiagnosticSessionControl ($10)

9.10 How to Put DCM in a Non-Default Session at
ECU Power-On

Modified:

Table 6-80 DataServices_<DataName>

Table 3-4 DET Service IDs

Mishel Shishmanyan 2012-12-12 1.02.00 Added:

5.15 ReadMemoryByAddress ($23)

5.20 DynamicallyDefineDataIdentifier ($2C)

5.24 WriteMemoryByAddress ($3D)

Table 6-43 Dcm_ReadMemory()

Table 6-44 Dcm_WriteMemory()

Modified:

Table 6-50 ConditionCheckRead(),

Table 6-53 ReadDataLength(),

Table 6-54 WriteData() (dynamic length),

Table 6-55 WriteData() (static length),

Table 6-56 ReturnControlToECU(),

Table 6-57 ResetToDefault(),

Table 6-58 FreezeCurrentState(),

Table 6-59 ShortTermAdjustment() -“OpStatus”-
parameter availability limitation

Table 6-38 <Module>_<DiagnosticService>()

Table 6-39
 <Module>_<DiagnosticService>_<SubService>()

Mishel Shishmanyan 2013-04-17 1.03.00 No changes

Mishel Shishmanyan 2013-06-28 1.04.00 Added:

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 3
based on template version 5.0.0

Chapters for OBD service 0x01- 0x0A.

6.6.1.2.6 DtrServices

6.6.1.2.7 RequestControlServices_<TIDName>

6.6.1.2.8 InfotypeServices_<VEHINFODATA>

9.11 How to Support Calibrateable Configuration
Parameters

Modified:

Table 3-2 Not supported AUTOSAR standard
conform features

– Removed not supported OBD.

Table 8-3 Limitations to AUTOSAR

– Removed not supported OBD.

Mishel Shishmanyan 2013-08-20 1.05.00 Added:

6.6.1.2.9 CallbackDCMRequestServices_<SWC>

9.12 How and When to Configure Multiple Protocols

8.1 Deviations

– Added deviation to
CallbackDCMRequestServices_<SWC>
service port.

Table 8-3 Limitations to AUTOSAR

– Added maximum number of supported
protocols.

– Added maximum number of concurrent client
diagnostic connections.

Modified:

5.14 ReadDataByIdentifier ($22)

5.22 InputOutputControlByIdentifier ($2F)

– Modified configuration and implementation
aspects.

Table 6-85 DtrServices_<MIDName>_<TIDName>

Table 6-86 RequestControlServices_<TIDName>

– Changed port names according to AR DCM
SWS.

Table 6-87 InfotypeServices_<VEHINFODATA>

– Editorial change.

Table 8-3 Limitations to AUTOSAR

– Removed not supported multi-protocol.

– Removed not supported multiple buffers.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 4
based on template version 5.0.0

Thomas Dedler,

Mishel Shishmanyan

2013-09-17 2.00.00

Modified:

8.1 Deviations

– Removed deviations for DID and RID
signals.

3.1 Features

– Removed not supported multi-protocol.

– Removed not supported multiple buffers.

6.5.2.12 Start(), 6.5.2.13 Stop(), 6.5.2.14
RequestResults()

– Changed function signatures and
descriptions

5.22 InputOutputControlByIdentifier ($2F)

– More details on how optional CEM is
supported by DCM.

6.5.2.10 ShortTermAdjustment()

– Removed statement that CEM is included in
the controlOptionRecord.

Mishel Shishmanyan 2014-01-14 2.01.00 Added:

9.13 How to Select DEM-DCM Interface Version

9.14 How to Support OBD and UDS over a Single
Client Connection

9.15 How to Use a User Configuration File

9.16 How to Know When the Security Access Level
Changes

Modified:

3.4.1 Split Task Functions

– Added configuration aspects.

Table 4-3 Compiler abstraction and memory
mapping

– Added calibration parameter memory
sections.

5.11 EcuReset ($11)

– Added clarification for request rejection while
waiting for reset execution.

5.13 ReadDiagnosticInformation ($19)

– Added support of new sub-functions 0x17-
0x19.

5.19 ReadDataByPeriodicIdentifier ($2A)

– Added feature stop periodic reading on
changed state.

5.20 DynamicallyDefineDataIdentifier ($2C)

– Added feature clear DDID on changed state.

Mishel Shishmanyan, 2014-04-14 2.02.00 Added:

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 5
based on template version 5.0.0

Patrick Rieder 9.17 How to Deal with the PduR AR version

Modified:

Figure 2-2 Interfaces to adjacent modules of the
DCM

– NvM added to figure

3.4.1 Split Task Functions

– Reworked chapter

– Added support by configuration tool

5.14.4 Configuration Aspects

– Added information about NvRam signal
configuration

5.21.4 Configuration Aspects

– Added information about NvRam signal
configuration

6.3 Services used by DCM

– Added NvM services used by the DCM

6.4.3.2.1 Dcm_StartOfReception(), 6.4.3.2.3
Dcm_TpRxIndication(), 6.4.3.2.5
Dcm_TpTxConfirmation()

– New version of the APIs for AR 4.1.2 PduR
added

8.3 Limitations

– Shared signals between DIDs not supported

Mishel Shishmanyan 2014-10-08 3.00.00 Added:

5.16 ReadScalingDataByIdentifier ($24)

6.5.2.11 GetScalingInformation()

6.6.2 Managed Mode Declaration Groups

9.18 Post-build Support

10 Troubleshooting

Modified:

4.1.2 Dynamic Files

– Added post-build data files

– Added SWC template file

Table 4-3 Compiler abstraction and memory
mapping

– Added post-build data memory mapping

Figure 4-1 Include structure

– Added post-build configuration and other
BSW headers files

5.11 EcuReset ($11)

– Sub-functions are now allowed to be user
defined.

5.13 ReadDiagnosticInformation ($19)

– Added new implementation aspect.

6.6.1.2.1 DataServices_<DataName>

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 6
based on template version 5.0.0

– Added new port operation
GetScalingInformation()

8.3 Limitations

– Added limitation for support of DIDranges

6.2.1.1 Dcm_Init()

7.1 Configuration Variants

– Added new post-build variants

9.16 How to Know When the Security Access Level
Changes

– Added link to the corresponding mode
declaration group.

Mishel Shishmanyan,
Vitalij Krieger,
Thomas Dedler

2015-01-13 3.01.00 Added:

6.5.2.24 IsDidAvailable()

6.5.2.25 ReadDidData()

6.5.2.26 WriteDidData()

9.19 Handling with DID Ranges

9.20 How to Support DID 0xF186

Modified:

5.14.4, 5.23

– Removed WWH-OBD only DIDs/RIDs from
examples.

6.3 Services used by DCM

– AR3 support added

6.4.2 ComM, 6.4.3 PduR

– AR3 support added

8.3 Limitations

– Removed limitation for not supported DID
ranges.

– Added limitation for DidRanges.

9.17 How to Deal with the PduR AR version

– Added AR 3.x compliance aspect

Table 8-2 Additions/ Extensions to AUTOSAR

– Added AR 3.x integration

Vitalij Krieger,

Mishel Shishmanyan

2015-02-06 4.00.00 Added:

6.2.1.6 Dcm_InitMemory()

6.2.3.1 Dcm_GetTesterSourceAddress()

6.4.4 CanTp

6.5.1.8<Diagnostic Session Change Notification
Callback>

6.5.1.9<Security Access Change Notification
Callback>

9.21 How to Suppress Responses to Functional
Addressed Requests

9.22 How to Support Interruption on Requests with
Foreign N_TA

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 7
based on template version 5.0.0

9.23 How to Know When the Diagnostic Session
Changes

Modified:

Minor editorial changes

Table 4-3 Compiler abstraction and memory
mapping

– Added DCM_VAR_INIT memory section.

9.17 How to Deal with the PduR AR version

– PduR 4.0.1 added

6.2.1.5 Dcm_GetVersionInfo()

– Specified the digit format of the module’s
version information.

Figure 4-1 Include structure

– New include structure

4.1.1 Static Files

– New files introduced

4.2 Include Structure

– New include structure

5.17.4 Configuration Aspects

– Added support for single/multiple instace
attempt counter, delay timer.

9.16 How to Know When the Security Access Level
Changes

– Added new notification type

Alexander Ditte,
Mishel Shishmanyan

2015-05-04 4.01.00 Added:

6.2.2.5 Dcm_GetSecurityLevelFixedBytes()

6.4.3.1.1 Dcm_TriggerTransmit()

6.4.3.2.6 Dcm_TxConfirmation()

6.5.2.27 GetSecurityAttemptCounter()

6.5.2.28 SetSecurityAttemptCounter()

9.24 How to Save RAM using Paged-Buffer for
Large DIDs

9.25 How to Get Security-Access Level Specific
Fixed Byte Values

9.26 How to Extend the Diag Keep Alive Time
during Diagnostics

9.27 How to Recover DCM State Context on ECU
Reset/ Power On

Modified:

Global minor editorial changes

Table 5-26 Service $19: Supported subservices

– Added sub-function 0x42

5.10.4 Configuration Aspects

– Added session specific timings aspect

5.11 EcuReset ($11)

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 8
based on template version 5.0.0

– Added note for resetting to default session if
needed.

5.17 SecurityAccess ($27)

– Additions for the new features listed related
to this service

5.18.4 Configuration Aspects;

5.13.4 Configuration Aspects

– Added a hint for external sub-function
implementation.

5.22.4 Configuration Aspects

– Removed limitation to static length IO DID
for service 0x2F.

5.26.4 Configuration Aspects

– Added missing related configuration
parameters

Table 6-79 DCMServices

– Added new operation

Table 3-4 DET Service IDs

– Completed API list

– Names converted to hyperlinks for
convenience

Mishel Shishmanyan 2015-11-12 5.00.00 Added:

6.2.3.2 Dcm_ProcessVirtualRequest()

6.2.3.3 Dcm_SetSecurityLevel()

6.2.2.6 Dcm_SetActiveDiagnostic()

6.5.1.11 Dcm_FilterDidLookUpResult

6.5.1.12 Dcm_FilterRidLookUpResult

9.28 How to Define a Diagnostic Connection without
USDT Responses

9.29 How to Handle Multiple Diagnostic Service
Variants

Modified:

Minor editorial changes

5 Diagnostic Service Implementation

– Modified introduction on how to read each
diagnostic service sub-chapter.

– Added information for the supported types of
diagnostic service processor
implementations for all services.

5.17 SecurityAccess ($27)

– Added external service implementation
aspect.

9.11.1 OBD Calibration

– Added information about feature
configuration.

5.22 InputOutputControlByIdentifier ($2F)

– More events monitored for automatic IO DID

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 9
based on template version 5.0.0

resetting.

Table 3-4 DET Service IDs

– Added missing DET SIDs

6.5.2.24 IsDidAvailable()

– Removed limitation of synchronous usage.

Table 4-3 Compiler abstraction and memory
mapping

– Added DCM_VAR_INIT memory section for
32bit data.

Mishel Shishmanyan 2016-03-01 5.01.00 Added:

6.2.2.7 Dcm_GetRequestKind()

Modified:

Minor editorial changes.

Table 9-10

– Added details for “RID operation”.

Table 6-79 DCMServices

– Corrected supported return error codes

– Added new operations

5.22 InputOutputControlByIdentifier ($2F)

6.5.2.7 ReturnControlToECU()

6.5.2.8 ResetToDefault()

6.5.2.9 FreezeCurrentState()

6.5.2.10 ShortTermAdjustment()

– Reworked for support of bitmapped IO DIDs.

Table 3-4 DET Service IDs

– Added new services

8.2 Additions/ Extensions

– Added multi byte external CEMR handling

8.3 Limitations

– Removed limitation for API IsDidAvailable()

Mishel Shishmanyan 2016-04-29 5.02.00

Modified:

Minor editorial changes.

Mishel Shishmanyan 2016-07-05 7.00.00 Added:

9.30 How to Switch Between OBD DTR Support by
DCM and DEM

9.31 How to Enable Support of OBD VIDs with
Dynamic Length

10.2 Code Generation Time Messages

Modified:

Minor editorial changes.

5.8.4 Configuration Aspects

– Reordered FAQ and added variable data
size specific hints.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 10
based on template version 5.0.0

Table 6-20 Services used by the DCM

– Updated used DEM API.

5.14.4 Configuration Aspects

– Added configuration aspects for OBD MID
DIDs.

5.18.4 Configuration Aspects

– Added FAQ for “AllNetworks” parameter.

6.5.2.22 GetInfotypeValueData()

– Added AR4.2.2 compatibility.

9.18.1.2 Diagnostic Services Part

– Enabled PBS for diagnostic service.

Table 10-1 Compile time error messages

– Added new messages.

Table 8-1 Deviations to AUTOSAR

– Removed deviation to AR for suppression of
NRC 0x7E and 0x7F, since AR 4.2.2 now
does require this behavior.

Mishel Shishmanyan 2016-09-22 7.01.00 Added:

9.32 How to setup DCM for Sender-Receiver
Communication

9.33 How to Support Routine Info Byte with UDS

Modified:

Replaced all used DCM_E_OK / DCM_E_NOT_OK
to E_OK resp. E_NOT_OK as per [1].

- Note: This is not an API change, since the
DCM_E_* symbols have identical values
with the standard E_*. You can still use the
DCM_E_* ones in your application, if
preffered.

9.1 How to Reduce RAM Usage

– Added information regarding DCM buffer
size recommendations integrated in the
Configuration 5 tool.

6.5.2.22 GetInfotypeValueData()

– Corrected OpStatus parameter description.

11.2 Abbreviations

– Added “C/S” and “S/R”.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 11
based on template version 5.0.0

Reference Documents

No. Source Title Version

[1] AUTOSAR AUTOSAR_SWS_DiagnosticCommunicationManager.pdf V4.2.2

[2] AUTOSAR AUTOSAR_SWS_DevelopmentErrorTracer.pdf V3.2.0

[3] AUTOSAR AUTOSAR_SWS_DiagnosticEventManager.pdf V4.2.0

[4] AUTOSAR AUTOSAR_BasicSoftwareModules.pdf V1.0.0

[5] ISO ISO 14229-1 UDS 2013

[6] ISO ISO 15031-5 OBD 2004

[7] ISO ISO 27145-2 WWH-OBD CDD Emissions 2009

[8] ISO ISO 27145-3 WWH-OBD CMD 2009

[9] V Vector TechnicalReference_PostBuildSelectable.pdf See delivery

[10] Vector TechnicalReference_IdentityManager.pdf See delivery

[11] Vector TechnicalReference_Dem.pdf See delivery

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Caution
This symbol calls your attention to warnings.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 12
based on template version 5.0.0

Contents

1 Component History .. 26

2 Introduction... 28

2.1 How to Read This Document ... 28

2.1.1 DCM Integration and Basic Operation .. 28

2.1.2 Diagnostic Service Documentation ... 28

2.1.3 API Definitions ... 29

2.1.4 DCM Configuration Parameter Descriptions 29

2.2 Architecture Overview .. 30

3 Functional Description ... 32

3.1 Features .. 32

3.2 Initialization .. 33

3.3 States .. 33

3.4 Main Functions .. 33

3.4.1 Split Task Functions ... 33

3.4.1.1 Functionality .. 33

3.4.1.2 Configuration Aspects .. 34

3.4.1.3 Integration Aspects .. 34

3.5 Error Handling .. 34

3.5.1 Development Error Reporting ... 34

3.5.2 Production Code Error Reporting ... 36

4 Integration ... 37

4.1 Scope of Delivery ... 37

4.1.1 Static Files ... 37

4.1.2 Dynamic Files .. 38

4.2 Include Structure .. 39

4.3 Compiler Abstraction and Memory Mapping ... 39

4.4 Critical Sections ... 41

4.5 Considerations Using Request- and ResponseData Pointers in a Call-back 41

5 Diagnostic Service Implementation... 42

5.1 RequestCurrentPowertrainDiagnosticData ($01).. 43

5.1.1 Functionality ... 43

5.1.2 Required Interfaces .. 43

5.1.3 Implementation Aspects ... 43

5.1.4 Configuration Aspects .. 43

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 13
based on template version 5.0.0

5.2 RequestPowertrainFreezeFrameData ($02) ... 45

5.2.1 Functionality ... 45

5.2.2 Required Interfaces .. 45

5.2.3 Implementation Aspects ... 45

5.2.4 Configuration Aspects .. 45

5.3 RequestEmissionRelatedDTC ($03) .. 47

5.3.1 Functionality ... 47

5.3.2 Required Interfaces .. 47

5.3.3 Implementation Aspects ... 47

5.3.4 Configuration Aspects .. 47

5.4 ClearEmissionRelatedDTC ($04) ... 48

5.4.1 Functionality ... 48

5.4.2 Required Interfaces .. 48

5.4.3 Implementation Aspects ... 48

5.4.4 Configuration Aspects .. 48

5.5 RequestOnBoardMonitorTestResults ($06) .. 49

5.5.1 Functionality ... 49

5.5.2 Required Interfaces .. 49

5.5.3 Implementation Aspects ... 49

5.5.4 Configuration Aspects .. 50

5.6 RequestEmissionRelatedDTCsDetectedDuringCurrentOrLastDrivingCycle
($07) .. 51

5.6.1 Functionality ... 51

5.6.2 Required Interfaces .. 51

5.6.3 Implementation Aspects ... 51

5.6.4 Configuration Aspects .. 51

5.7 RequestControlOfOnBoardSystemTestOrComponent ($08) 52

5.7.1 Functionality ... 52

5.7.2 Required Interfaces .. 52

5.7.3 Implementation Aspects ... 52

5.7.4 Configuration Aspects .. 52

5.8 RequestVehicleInformation ($09) ... 54

5.8.1 Functionality ... 54

5.8.2 Required Interfaces .. 54

5.8.3 Implementation Aspects ... 54

5.8.4 Configuration Aspects .. 54

5.9 RequestEmissionRelatedDTCsWithPermanentStatus ($0A) 56

5.9.1 Functionality ... 56

5.9.2 Required Interfaces .. 56

5.9.3 Implementation Aspects ... 56

5.9.4 Configuration Aspects .. 56

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 14
based on template version 5.0.0

5.10 DiagnosticSessionControl ($10) ... 57

5.10.1 Functionality ... 57

5.10.2 Required Interfaces .. 57

5.10.3 Implementation Aspects ... 57

5.10.4 Configuration Aspects .. 57

5.11 EcuReset ($11) .. 59

5.11.1 Functionality ... 59

5.11.2 Required Interfaces .. 59

5.11.3 Implementation Aspects ... 59

5.11.4 Configuration Aspects .. 60

5.12 ClearDiagnosticInformation ($14) ... 61

5.12.1 Functionality ... 61

5.12.2 Required Interfaces .. 61

5.12.3 Implementation Aspects ... 61

5.12.4 Configuration Aspects .. 61

5.13 ReadDiagnosticInformation ($19) ... 62

5.13.1 Functionality ... 62

5.13.2 Required Interfaces .. 62

5.13.3 Implementation Aspects ... 62

5.13.3.1 Reporting Stored DTC Environment Data 63

5.13.4 Configuration Aspects .. 63

5.14 ReadDataByIdentifier ($22) .. 65

5.14.1 Functionality ... 65

5.14.2 Required Interfaces .. 65

5.14.3 Implementation Aspects ... 65

5.14.4 Configuration Aspects .. 66

5.15 ReadMemoryByAddress ($23) ... 68

5.15.1 Functionality ... 68

5.15.2 Required Interfaces .. 68

5.15.3 Implementation Aspects ... 68

5.15.4 Configuration Aspects .. 69

5.16 ReadScalingDataByIdentifier ($24) .. 69

5.16.1 Functionality ... 69

5.16.2 Required Interfaces .. 69

5.16.3 Implementation Aspects ... 69

5.16.4 Configuration Aspects .. 70

5.17 SecurityAccess ($27) ... 71

5.17.1 Functionality ... 71

5.17.2 Required Interfaces .. 71

5.17.3 Implementation Aspects ... 71

5.17.4 Configuration Aspects .. 72

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 15
based on template version 5.0.0

5.18 CommunicationControl ($28) ... 74

5.18.1 Functionality ... 74

5.18.2 Required Interfaces .. 74

5.18.3 Implementation Aspects ... 74

5.18.4 Configuration Aspects .. 75

5.19 ReadDataByPeriodicIdentifier ($2A)... 76

5.19.1 Functionality ... 76

5.19.2 Required Interfaces .. 76

5.19.3 Implementation Aspects ... 76

5.19.4 Configuration Aspects .. 77

5.20 DynamicallyDefineDataIdentifier ($2C) .. 79

5.20.1 Functionality ... 79

5.20.2 Required Interfaces .. 79

5.20.3 Implementation Aspects ... 79

5.20.4 Configuration Aspects .. 80

5.21 WriteDataByIdentifier ($2E).. 82

5.21.1 Functionality ... 82

5.21.2 Required Interfaces .. 82

5.21.3 Implementation Aspects ... 82

5.21.4 Configuration Aspects .. 83

5.22 InputOutputControlByIdentifier ($2F).. 84

5.22.1 Functionality ... 84

5.22.2 Required Interfaces .. 84

5.22.3 Implementation Aspects ... 84

5.22.4 Configuration Aspects .. 86

5.23 RoutineControl ($31) .. 88

5.23.1 Functionality ... 88

5.23.2 Required Interfaces .. 88

5.23.3 Implementation Aspects ... 88

5.23.4 Configuration Aspects .. 88

5.24 WriteMemoryByAddress ($3D) ... 90

5.24.1 Functionality ... 90

5.24.2 Required Interfaces .. 90

5.24.3 Implementation Aspects ... 90

5.24.4 Configuration Aspects .. 91

5.25 TesterPresent ($3E) ... 92

5.25.1 Functionality ... 92

5.25.2 Required Interfaces .. 92

5.25.3 Implementation Aspects ... 92

5.25.4 Configuration Aspects .. 93

5.26 ControlDTCSetting ($85) .. 94

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 16
based on template version 5.0.0

5.26.1 Functionality ... 94

5.26.2 Required Interfaces .. 94

5.26.3 Implementation Aspects ... 94

5.26.4 Configuration Aspects .. 94

6 API Description ... 96

6.1 Type Definitions ... 96

6.1.1 Dcm_ProtocolType ... 96

6.1.2 Dcm_RecoveryInfoType ... 96

6.2 Services provided by DCM ... 98

6.2.1 Administrative .. 98

6.2.1.1 Dcm_Init() .. 98

6.2.1.2 Dcm_MainFunction() .. 98

6.2.1.3 Dcm_MainFunctionTimer() ... 99

6.2.1.4 Dcm_MainFunctionWorker() .. 100

6.2.1.5 Dcm_GetVersionInfo() ... 100

6.2.1.6 Dcm_InitMemory() ... 101

6.2.1.7 Dcm_ProvideRecoveryStates() 102

6.2.2 SWC .. 102

6.2.2.1 Dcm_GetActiveProtocol() .. 102

6.2.2.2 Dcm_GetSecurityLevel() .. 103

6.2.2.3 Dcm_GetSesCtrlType() .. 104

6.2.2.4 Dcm_ResetToDefaultSession() 104

6.2.2.5 Dcm_GetSecurityLevelFixedBytes() 105

6.2.2.6 Dcm_SetActiveDiagnostic() ... 106

6.2.2.7 Dcm_GetRequestKind() ... 107

6.2.3 General Purpose .. 108

6.2.3.1 Dcm_GetTesterSourceAddress() 108

6.2.3.2 Dcm_ProcessVirtualRequest() 109

6.2.3.3 Dcm_SetSecurityLevel() .. 110

6.3 Services used by DCM.. 111

6.4 Callback Functions ... 112

6.4.1 <Module> ... 112

6.4.1.1 Dcm_ExternalProcessingDone() 112

6.4.1.2 Dcm_ExternalSetNegResponse() 113

6.4.2 ComM .. 113

6.4.2.1 Dcm_ComM_NoComModeEntered() 113

6.4.2.2 Dcm_ComM_SilentComModeEntered() 114

6.4.2.3 Dcm_ComM_FullComModeEntered() 114

6.4.3 PduR .. 115

6.4.3.1 All AUTOSAR Versions .. 115

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 17
based on template version 5.0.0

6.4.3.1.1 Dcm_TriggerTransmit() 115

6.4.3.2 AUTOSAR 4 .. 116

6.4.3.2.1 Dcm_StartOfReception() 116

6.4.3.2.2 Dcm_CopyRxData() 116

6.4.3.2.3 Dcm_TpRxIndication() 118

6.4.3.2.4 Dcm_CopyTxData() 119

6.4.3.2.5 Dcm_TpTxConfirmation() 120

6.4.3.2.6 Dcm_TxConfirmation() 121

6.4.3.3 AUTOSAR 3 .. 122

6.4.3.3.1 Dcm_ProvideRxBuffer() 122

6.4.3.3.2 Dcm_RxIndication() 123

6.4.3.3.3 Dcm_ProvideTxBuffer() 124

6.4.3.3.4 Dcm_TxConfirmation() 125

6.4.4 CanTp .. 126

6.4.4.1 Dcm_OnRequestDetection() .. 126

6.5 Configurable Interfaces .. 126

6.5.1 Callout Functions ... 126

6.5.1.1 <Module>_<DiagnosticService>() 127

6.5.1.2 <Module>_<DiagnosticService>_<SubService>() 128

6.5.1.3 Dcm_SetProgConditions() ... 129

6.5.1.4 Dcm_GetProgConditions() ... 130

6.5.1.5 Dcm_Confirmation() ... 131

6.5.1.6 Dcm_ReadMemory() .. 132

6.5.1.7 Dcm_WriteMemory() .. 133

6.5.1.8 <Diagnostic Session Change Notification Callback> 134

6.5.1.9 <Security Access Change Notification Callback> 135

6.5.1.10 Dcm_GetRecoveryStates() .. 136

6.5.1.11 Dcm_FilterDidLookUpResult .. 137

6.5.1.12 Dcm_FilterRidLookUpResult .. 138

6.5.2 Required Port Operation Functions .. 139

6.5.2.1 ConditionCheckRead() ... 139

6.5.2.2 ReadData() (asynchronous) ... 140

6.5.2.3 ReadData() (synchronous) ... 140

6.5.2.4 ReadDataLength() ... 141

6.5.2.5 WriteData() (dynamic length) 142

6.5.2.6 WriteData() (static length) .. 143

6.5.2.7 ReturnControlToECU() ... 144

6.5.2.8 ResetToDefault() .. 145

6.5.2.9 FreezeCurrentState() ... 146

6.5.2.10 ShortTermAdjustment() .. 147

6.5.2.11 GetScalingInformation() ... 148

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 18
based on template version 5.0.0

6.5.2.12 Start() .. 149

6.5.2.13 Stop() ... 150

6.5.2.14 RequestResults() ... 151

6.5.2.15 GetSeed() (with SADR) .. 152

6.5.2.16 GetSeed() (without SADR) ... 153

6.5.2.17 CompareKey() ... 154

6.5.2.18 Indication() ... 155

6.5.2.19 Confirmation() .. 156

6.5.2.20 GetDTRValue() .. 157

6.5.2.21 RequestControl() ... 158

6.5.2.22 GetInfotypeValueData().. 159

6.5.2.23 StartProtocol() .. 160

6.5.2.24 IsDidAvailable() .. 161

6.5.2.25 ReadDidData() ... 162

6.5.2.26 WriteDidData() ... 163

6.5.2.27 GetSecurityAttemptCounter() 164

6.5.2.28 SetSecurityAttemptCounter() 165

6.5.2.29 ReadData() (paged-data-reading) 166

6.6 Service Ports ... 166

6.6.1 Client-Server Interface ... 166

6.6.1.1 Provide Ports on DCM Side ... 166

6.6.1.1.1 DCMServices ... 167

6.6.1.2 Require Ports on DCM Side ... 167

6.6.1.2.1 DataServices_<DataName> 168

6.6.1.2.2 RoutineServices_<RoutineName> 168

6.6.1.2.3 SecurityAccess_<SecurityLevelName> 168

6.6.1.2.4
ServiceRequestManufacturerNotification_<SWC> 169

6.6.1.2.5
 . ServiceRequestSupplierNotification_<SWC> 169

6.6.1.2.6 DtrServices_<MIDName>_<TIDName> ... 169

6.6.1.2.7 RequestControlServices_<TIDName> 169

6.6.1.2.8 InfotypeServices_<VEHINFODATA> 169

6.6.1.2.9 CallbackDCMRequestServices_<SWC> .. 169

6.6.1.2.10
 DataServices_DIDRange_<RangeName> 170

6.6.2 Managed Mode Declaration Groups ... 170

6.6.2.1 DcmDiagnosticSessionControl 170

6.6.2.2 DcmCommunicationControl_<ComM_CHANNEL_SNV>171

6.6.2.3 DcmEcuReset .. 172

6.6.2.4 DcmModeRapidPowerShutDown 173

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 19
based on template version 5.0.0

6.6.2.5 DcmControlDTCSetting ... 173

6.6.2.6 DcmSecurityAccess ... 174

7 Configuration .. 175

7.1 Configuration Variants .. 175

7.2 Configurable Attributes ... 175

8 AUTOSAR Standard Compliance... 176

8.1 Deviations .. 176

8.2 Additions/ Extensions ... 177

8.3 Limitations.. 178

9 Using the DCM .. 179

9.1 How to Reduce RAM Usage .. 179

9.2 How to Reduce DCM Main-Function Run Time Usage 181

9.3 How to Force DCM to not Respond on Requests with Response SIDs 182

9.4 How to Handle Multiple Diagnostic Clients Simultaneously 183

9.5 How to Restrict a Diagnostic Service Execution by a Condition 183

9.6 How to Get Notified on a Diagnostic Service Execution Start and End 184

9.7 How to Limit the Diagnostic Service Processing Time 184

9.8 How to Jump into the FBL from Service DiagnosticSessionControl ($10) 185

9.9 The HIS Compliant Jump into FBL ... 185

9.9.1 The HIS Alternative Jump into FBL .. 185

9.10 How to Put DCM in a Non-Default Session at ECU Power-On 185

9.11 How to Support Calibrateable Configuration Parameters 186

9.11.1 OBD Calibration ... 187

9.11.1.1 Calibration of Supported OBD Services 187

9.11.1.2 Calibration of Supported OBD Parameter Identifier 188

9.12 How and When to Configure Multiple Protocols ... 191

9.12.1 Diagnostic Client(s) Processing Prioritization 191

9.12.2 Client Specific Diagnostic Application Timings 195

9.12.3 Diagnostic Service Firewall .. 195

9.13 How to Select DEM-DCM Interface Version ... 196

9.14 How to Support OBD and UDS over a Single Client Connection 196

9.15 How to Use a User Configuration File .. 197

9.16 How to Know When the Security Access Level Changes 197

9.16.1 Invoking a Mode Switch ... 198

9.16.2 Calling a Function Implemented Within a CDD Module 198

9.17 How to Deal with the PduR AR version .. 199

9.17.1 AUTOSAR 3 Environment .. 199

9.17.2 AUTOSAR 4 Environment .. 199

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 20
based on template version 5.0.0

9.18 Post-build Support ... 199

9.18.1 Post-build Variance Level ... 199

9.18.1.1 Communication Part .. 200

9.18.1.2 Diagnostic Services Part .. 200

9.18.1.2.1 Handling of State Execution
Preconditions of Variant Diagnostic
Entities ... 203

9.18.2 Initialization .. 205

9.18.2.1 Error Detection and Handling 205

9.18.3 Post-build Variants ... 206

9.18.3.1 Post-build selectable .. 206

9.18.3.2 Post-build loadable .. 206

9.18.3.3 Post-build loadable selectable 206

9.18.3.4 Post-build deleteable ... 207

9.19 Handling with DID Ranges ... 207

9.19.1 Introduction .. 207

9.19.2 Implementation Limitations... 207

9.19.3 Configuration Aspects .. 208

9.20 How to Support DID 0xF186 .. 208

9.21 How to Suppress Responses to Functional Addressed Requests 209

9.22 How to Support Interruption on Requests with Foreign N_TA 209

9.23 How to Know When the Diagnostic Session Changes 210

9.24 How to Save RAM using Paged-Buffer for Large DIDs................................... 210

9.24.1 Introduction .. 210

9.24.2 Functionality ... 211

9.24.3 Implementation Limitations... 212

9.24.4 Usage .. 212

9.24.4.1 Straightforward DID Paged-Data Reading 213

9.24.4.2 Error Handling During DID Paged-Data Reading 213

9.24.5 Configuration Aspects .. 217

9.25 How to Get Security-Access Level Specific Fixed Byte Values 218

9.25.1 Introduction .. 218

9.25.2 Usage .. 219

9.25.3 Configuration Aspects .. 219

9.26 How to Extend the Diag Keep Alive Time during Diagnostics 219

9.26.1 Problem Description ... 219

9.26.2 Configuration Aspects .. 220

9.27 How to Recover DCM State Context on ECU Reset/ Power On 220

9.27.1 Introduction .. 220

9.27.2 Functionality ... 220

9.27.3 Configuration Aspect .. 221

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 21
based on template version 5.0.0

9.28 How to Define a Diagnostic Connection without USDT Responses 221

9.29 How to Handle Multiple Diagnostic Service Variants 221

9.29.1 Introduction .. 221

9.29.2 Filtering Level Availability and the Corresponding Filtering Tools 222

9.29.3 Filtering OBD Objects .. 223

9.29.3.1 Suggested Preparation Methodology for Filtering
Process of OBD Objects .. 224

9.30 How to Switch Between OBD DTR Support by DCM and DEM 224

9.30.1 Implementation Particularities and Limitations................................ 224

9.30.2 Configuration Aspect .. 225

9.31 How to Enable Support of OBD VIDs with Dynamic Length 225

9.31.1 Implementation Limitations... 225

9.32 How to setup DCM for Sender-Receiver Communication 226

9.32.1 Implementation Limitations... 226

9.32.2 Application usage Scenario .. 227

9.32.3 Configuration Aspects .. 228

9.33 How to Support Routine Info Byte with UDS RIDs.. 229

9.33.1 Introduction .. 229

9.33.2 Configuration Aspects .. 229

10 Troubleshooting ... 230

10.1 Compile Error Messages .. 230

10.2 Code Generation Time Messages .. 231

11 Glossary and Abbreviations .. 234

11.1 Glossary .. 234

11.2 Abbreviations ... 234

12 Contact .. 236

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 22
based on template version 5.0.0

Illustrations

Figure 2-1 AUTOSAR 4.2 Architecture Overview ... 30
Figure 2-2 Interfaces to adjacent modules of the DCM .. 31
Figure 4-1 Include structure ... 39
Figure 9-1 Straightforward DID paged-data reading ... 213
Figure 9-2 DID paged-data reading cancelled due to TP layer transmission abortion215
Figure 9-3 Protocol preemption during DID paged-data access 216
Figure 9-4 RCR-RP limit reached during DID paged-data access 217

Tables

Table 1-1 Component history.. 27
Table 3-1 Supported AUTOSAR standard conform features 32
Table 3-2 Not supported AUTOSAR standard conform features 32
Table 3-3 Features provided beyond the AUTOSAR standard 33
Table 3-4 DET Service IDs ... 36
Table 3-5 Errors reported to DET ... 36
Table 4-1 Static files ... 37
Table 4-2 Generated files ... 38
Table 4-3 Compiler abstraction and memory mapping .. 40
Table 5-1 Service $01: Implementation types ... 43
Table 5-2 Service $01: Supported subservices ... 43
Table 5-3 Service $02: Implementation types ... 45
Table 5-4 Service $02: Supported subservices ... 45
Table 5-5 Service $03: Implementation types ... 47
Table 5-6 Service $03: Supported subservices ... 47
Table 5-7 Service $04: Implementation types ... 48
Table 5-8 Service $04: Supported subservices ... 48
Table 5-9 Service $06: Implementation types ... 49
Table 5-10 Service $06: Supported subservices ... 49
Table 5-11 Service $07: Implementation types ... 51
Table 5-12 Service $07: Supported subservices ... 51
Table 5-13 Service $08: Implementation types ... 52
Table 5-14 Service $08: Supported subservices ... 52
Table 5-15 Service $09: Implementation types ... 54
Table 5-16 Service $09: Supported subservices ... 54
Table 5-17 Service $0A: Implementation types ... 56
Table 5-18 Service $0A: Supported subservices .. 56
Table 5-19 Service $10: Implementation types ... 57
Table 5-20 Service $10: Supported subservices ... 57
Table 5-21 Service $11: Implementation types ... 59
Table 5-22 Service $11: Supported subservices ... 60
Table 5-23 Service $14: Implementation types ... 61
Table 5-24 Service $14: Supported subservices ... 61
Table 5-25 Service $19: Implementation types ... 62
Table 5-26 Service $19: Supported subservices ... 62
Table 5-27 Service $22: Implementation types ... 65
Table 5-28 Service $22: Supported subservices ... 65
Table 5-29 Service $23: Implementation types ... 68
Table 5-30 Service $23: Supported subservices ... 68
Table 5-31 Service $24: Implementation types ... 69
Table 5-32 Service $24: Supported subservices ... 69

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 23
based on template version 5.0.0

Table 5-33 Service $27: Implementation types ... 71
Table 5-34 Service $27: Supported subservices ... 71
Table 5-35 Service $28: Implementation types ... 74
Table 5-36 Service $28: Supported subservices ... 74
Table 5-37 Service $2A: Implementation types ... 76
Table 5-38 Service $2A: Supported subservices .. 76
Table 5-39 Service $2C: Implementation types .. 79
Table 5-40 Service $2C: Supported subservices .. 79
Table 5-41 Service $2E: Implementation types ... 82
Table 5-42 Service $2E: Supported subservices .. 82
Table 5-43 Service $2F: Implementation types ... 84
Table 5-44 Service $2F: Supported subservices .. 84
Table 5-45 Service $31: Implementation types ... 88
Table 5-46 Service $31: Supported subservices ... 88
Table 5-47 Service $3D: Implementation types .. 90
Table 5-48 Service $3D: Supported subservices .. 90
Table 5-49 Service $3E: Implementation types ... 92
Table 5-50 Service $3E: Supported subservices .. 92
Table 5-51 Service $85: Implementation types ... 94
Table 5-52 Service $85: Supported subservices ... 94
Table 6-1 Dcm_ProtocolType ... 96
Table 6-2 Dcm_RecoveryInfoType ... 97
Table 6-3 Dcm_Init() ... 98
Table 6-4 Dcm_MainFunction() .. 99
Table 6-5 Dcm_MainFunctionTimer() ... 99
Table 6-6 Dcm_MainFunctionWorker() ... 100
Table 6-7 Dcm_GetVersionInfo() .. 100
Table 6-8 Dcm_InitMemory() .. 101
Table 6-9 Dcm_ProvideRecoveryStates() ... 102
Table 6-10 Dcm_GetActiveProtocol() ... 103
Table 6-11 Dcm_GetSecurityLevel() ... 103
Table 6-12 Dcm_GetSesCtrlType() ... 104
Table 6-13 Dcm_ResetToDefaultSession() ... 104
Table 6-14 Dcm_GetSecurityLevelFixedBytes() ... 105
Table 6-15 Dcm_SetActiveDiagnostic() .. 106
Table 6-16 Dcm_GetRequestKind() .. 107
Table 6-17 Dcm_GetTesterSourceAddress() .. 108
Table 6-18 Dcm_ProcessVirtualRequest() .. 109
Table 6-19 Dcm_SetSecurityLevel() ... 110
Table 6-20 Services used by the DCM ... 112
Table 6-21 Dcm_ExternalProcessingDone() ... 113
Table 6-22 Dcm_ExternalSetNegResponse() ... 113
Table 6-23 Dcm_ComM_NoComModeEntered() .. 114
Table 6-24 Dcm_ComM_SilentComModeEntered() .. 114
Table 6-25 Dcm_ComM_FullComModeEntered() ... 115
Table 6-26 Dcm_TriggerTransmit () .. 116
Table 6-27 Dcm_StartOfReception() .. 116
Table 6-28 Dcm_CopyRxData() .. 117
Table 6-29 Dcm_TpRxIndication() .. 118
Table 6-30 Dcm_CopyTxData() .. 119
Table 6-31 Dcm_TpTxConfirmation().. 120
Table 6-32 Dcm_TxConfirmation() .. 121
Table 6-33 Dcm_ProvideRxBuffer () ... 122
Table 6-34 Dcm_RxIndication() .. 123

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 24
based on template version 5.0.0

Table 6-35 Dcm_ProvideTxBuffer () ... 124
Table 6-36 Dcm_TxConfirmation() .. 125
Table 6-37 Dcm_ OnRequestDetection() .. 126
Table 6-38 <Module>_<DiagnosticService>() ... 127
Table 6-39 <Module>_<DiagnosticService>_<SubService>() 128
Table 6-40 Dcm_SetProgConditions() .. 129
Table 6-41 Dcm_GetProgConditions() .. 130
Table 6-42 Dcm_Confirmation() .. 131
Table 6-43 Dcm_ReadMemory() .. 132
Table 6-44 Dcm_WriteMemory() ... 133
Table 6-45 < Diagnostic Session Change Notification Callback > 134
Table 6-46 <Security Access Change Notification Callback> 135
Table 6-47 Dcm_GetRecoveryStates() ... 136
Table 6-48 Dcm_FilterDidLookUpResult ... 137
Table 6-49 Dcm_FilterRidLookUpResult ... 138
Table 6-50 ConditionCheckRead() ... 139
Table 6-51 ReadData() (asynchronous) .. 140
Table 6-52 ReadData() (synchronous) .. 140
Table 6-53 ReadDataLength() .. 141
Table 6-54 WriteData() (dynamic length) .. 142
Table 6-55 WriteData() (static length) ... 143
Table 6-56 ReturnControlToECU() .. 144
Table 6-57 ResetToDefault() ... 145
Table 6-58 FreezeCurrentState() .. 146
Table 6-59 ShortTermAdjustment() ... 147
Table 6-60 GetScalingInformation() .. 148
Table 6-61 Start() ... 149
Table 6-62 Stop() ... 151
Table 6-63 RequestResults() .. 152
Table 6-64 GetSeed() (with SADR) .. 152
Table 6-65 GetSeed() (without SADR) .. 153
Table 6-66 CompareKey() .. 154
Table 6-67 Indication() .. 155
Table 6-68 Confirmation() ... 156
Table 6-69 GetDTRValue() ... 157
Table 6-70 RequestControl() .. 158
Table 6-71 GetInfotypeValueData() .. 159
Table 6-72 StartProtocol() .. 160
Table 6-73 IsDidAvailable () ... 161
Table 6-74 ReadDidData() .. 162
Table 6-75 WriteDidData() .. 163
Table 6-76 GetSecurityAttemptCounter () ... 164
Table 6-77 SetSecurityAttemptCounter () ... 165
Table 6-78 ReadData() (paged-data-reading) ... 166
Table 6-79 DCMServices .. 167
Table 6-80 DataServices_<DataName> ... 168
Table 6-81 RoutineServices_<RoutineName> .. 168
Table 6-82 SecurityAccess_<SecurityLevelName> .. 168
Table 6-83 ServiceRequestManufacturerNotification_<SWC> 169
Table 6-84 ServiceRequestSupplierNotification_<SWC> .. 169
Table 6-85 DtrServices_<MIDName>_<TIDName> .. 169
Table 6-86 RequestControlServices_<TIDName> .. 169
Table 6-87 InfotypeServices_<VEHINFODATA> .. 169
Table 6-88 CallbackDCMRequestServices_<SWC > .. 170

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 25
based on template version 5.0.0

Table 6-89 DataServices_DIDRange_<RangeName> .. 170
Table 6-90 ModeDeclarationGroups managed by DCM ... 170
Table 6-91 DcmDiagnosticSessionControl callouts... 170
Table 6-92 DcmDiagnosticSessionControl modes .. 171
Table 6-93 DcmCommunicationControl _<ComM_CHANNEL_SNV> callouts 171
Table 6-94 DcmCommunicationControl_<ComM_CHANNEL_SNV> modes 172
Table 6-95 DcmEcuReset callouts .. 172
Table 6-96 DcmEcuReset modes ... 172
Table 6-97 DcmModeRapidPowerShutDown callouts ... 173
Table 6-98 DcmModeRapidPowerShutDown modes .. 173
Table 6-99 DcmControlDTCSetting callouts ... 173
Table 6-100 DcmControlDTCSetting modes ... 173
Table 6-101 DcmSecurityAccess callouts ... 174
Table 6-102 DcmSecurityAccess modes .. 174
Table 8-1 Deviations to AUTOSAR ... 176
Table 8-2 Additions/ Extensions to AUTOSAR .. 177
Table 8-3 Limitations to AUTOSAR ... 178
Table 9-1 Diagnostic services with non-trivial DCM Buffer size estimation

calculation method .. 180
Table 9-2 Initialization of the Dcm_ProgConditionsType for non-default session

activation at ECU power-on .. 186
Table 9-3 Calibrateable OBD “availability parameter identifier” values 189
Table 9-4 Color legend to the protocol prioritization matrixes 192
Table 9-5 Protocol prioritization during default session ... 193
Table 9-6 Protocol prioritization during non-default session 194
Table 9-7 Post-build configuration rules on invariant DCM parameters 203
Table 9-8 Error Codes possible during Post-Build initialization failure 205
Table 9-9 Filtering level availability ... 222
Table 9-10 Filter diagnostic objects and the corresponding filtering APIs / Callbacks 223
Table 10-1 Compile time error messages ... 231
Table 10-2 Code Generation Time Messages ... 233
Table 11-1 Glossary ... 234
Table 11-2 Abbreviations .. 235

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 26
based on template version 5.0.0

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

1.0.0 Initial Version

1.1.0 Added support for diagnostic services:

ReadDataByPeriodicIdentifier ($2A)

InputOutputControlByIdentifier ($2F)

1.2.0 Added support for diagnostic service:

DynamicallyDefineDataIdentifier ($2C)

Changed DataServices_<DataName> to have either all synchronous or
asynchronous operations.

1.3.0 Minor improvements

1.4.0 Support for OBD2 protocol diagnostic services

1.5.0 Support for multi-protocol use cases and protocol prioritization

Support resetting of IO control operation at session change/protocol
preemption.

Support for IO control actual data reporting in the positive response of
SID 0x2F.

Support for optional ConditionCheckRead() DataServices operation

2.0.0 Support for signal interfaces (C/S) for DIDs and RIDs.

Extended run time limitation (How to Reduce DCM Main-Function Run
Time Usage).

2.1.0 Support for DEM AR 4.1.2 API

Automatic clear of DDID definition on DCM session/security level change

Automatic stop of PDID reading on DCM session/security level change

Optional SWC notification on security access level change

2.2.0 Support NvRam signal access for DIDs

Support for PduR AR4.1.2 API

3.0.0 Support for diagnostic service ReadScalingDataByIdentifier ($24)

Support for post-build selectable, loadable, selectable-loadable, deletable
for the communication part of DCM.

3.1.0 Support of DID ranges

Support for AR3 interfaces (PduR, ComM etc.)

4.0.0 Support of response suppression on functional addressed requests

Support of interruption by service request with foreign N_TA

New include structure and module refactoring

Additional notification on diagnostic session and security access level
state transitions.

4.1.0 Support of session specific P2/P2Star timings (5.10.4 Configuration
Aspects).

Non-volatile storage of security access failed attempts (SecurityAccess

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 27
based on template version 5.0.0

Component Version New Features

($27)).

Configurable security level specific fixed bytes to support application
seed/key calculation (see 9.25 How to Get Security-Access Level Specific
Fixed Byte Values).

Support for paged-buffer reading of DIDs over service
ReadDataByIdentifier ($22).

Selectable C/S or direct function-calls for service 0x27 application
callbacks.

Extensible Keep-Alive time period (see 9.26 How to Extend the Diag
Keep Alive Time during Diagnostics)

DCM state recovery on reset /power on (9.27 How to Recover DCM State
Context on ECU Reset/ Power)

5.0.0 Service InputOutputControlByIdentifier ($2F) has now improved auto-
resetting functionality on any diagnostic state change.

Service TesterPresent ($3E) can be handled within the application. Refer
to its chapter to get information on any limitations.

Support of diagnostic connections without response (see 9.28 How to
Define a Diagnostic Connection without USDT Responses)

Support of diagnostic service variant-handling using application help (see
9.29 How to Handle Multiple Diagnostic Service Variants)

5.1.0 The request status/kind of a DCM diagnostic client can be acquired at any
time, using new provided service API Dcm_GetRequestKind().

Support for bitmapped IO DIDs with CEMR in service
InputOutputControlByIdentifier ($2F).

5.2.0 Minor improvements.

7.0.0 Variant handling for the DCM Diagnostic Services Part.

Improved AR 4.2.2 compatibility regarding:

- How to Switch Between OBD DTR Support by DCM and DEM

- How to Enable Support of OBD VIDs with Dynamic Length

- API Dcm_ReadMemory() resp. Dcm_WriteMemory().

7.1.0 Automatic reporting of RoutineInfoByte parameter in UDS RIDs (see 9.33
How to Support Routine Info Byte with UDS RIDs)

TBD

Table 1-1 Component history

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 28
based on template version 5.0.0

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module DCM as specified in [1].

Supported AUTOSAR Release*: 4

Supported Configuration Variants: pre-compile, post-build loadable, post-build selectable

Vendor ID: DCM_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: DCM_MODULE_ID 53 decimal

(according to ref. [4])

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

The Autosar DCM is a software component that
- handles the diagnostic communication between the tester and the ECUs

application;
- analyzes and interprets the diagnostic communication protocol UDS based on ISO

14229 ([5]);
- implements the handling of all UDS services, providing abstract interface to the

application by hiding all protocol specifics;
- provides a built in handling of the fault memory manager (DEM) data acquisition;
- provides service execution precondition validation and state management such as

o diagnostic sessions and security access verification;
o custom ECU mode condition verification (e.g. vehicle speed, etc.)

2.1 How to Read This Document

Here are defined some general rules on how to read this document.

2.1.1 DCM Integration and Basic Operation

We recommend starting with the chapter 4 Integration. It will help you to bind the DCM
component into your project and to learn about its integration specific requirements. Once
the code binding is finished in your project, please go on with the Functional Description
chapter to learn about how to operate the DCM.

2.1.2 Diagnostic Service Documentation

Once the DCM is integrated into your project, you will need to know how each diagnostic
service, your ECU has to support, is to be configured, implemented and handled by DCM
and your application. For learning that, please refer to chapter 5 Diagnostic Service
Implementation.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 29
based on template version 5.0.0

2.1.3 API Definitions

You can any time directly refer to a DCM provided/required service or callout description
once you have started the DCM application implementation, by searching for the function
name in this document. But the usual way is to start with the usage context of the concrete
function you are looking for:

> the diagnostic service it is bound to (look into the corresponding Diagnostic Service
Implementation sub-chapter).

> a special feature it serves (look into the corresponding Using the DCM “how to…” sub-
chapter)

2.1.4 DCM Configuration Parameter Descriptions

This document contains many references to DCM configuration parameters. The goal of
this document is not to describe the parameters in detail, but to show you which
parameters are bound to which diagnostic services or features. All those parameter
references are given as full path links within the DCM Configurator 5 GCE for faster
location of the concrete parameter. Once you have followed such a link in the Configurator
5 tool, please read the description information bound to the parameter. Follow any
dependency links from this description to learn more about what additionally shall be
configured in order to get a fully functioning configuration.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 30
based on template version 5.0.0

2.2 Architecture Overview

The following figure shows where the DCM is located in the AUTOSAR architecture.

Figure 2-1 AUTOSAR 4.2 Architecture Overview

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 31
based on template version 5.0.0

The next figure shows the interfaces to adjacent modules of the DCM. These interfaces
are described in chapter 5.

Figure 2-2 Interfaces to adjacent modules of the DCM

Applications do not access the services of the BSW modules directly. They use the service
ports provided by the BSW modules via the RTE. The service ports provided by the DCM
are listed in chapter 6.5.2.1 based on their definition in [1]. In some cases where the DCM
requires a call out extension, the DCM calls a CDD module directly through the Dcm_Cdd
interface.

 cmp Architecture

Dem
Dcm

Det

PduR

ComM

Rte

BswM

SchM

Nv M

EcuM

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 32
based on template version 5.0.0

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
DCM.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

 Table 3-1 Supported AUTOSAR standard conform features

 Table 3-2 Not supported AUTOSAR standard conform features

For further information of not supported features see also chapter 8.

Vector Informatik provides further DCM functionality beyond the AUTOSAR standard. The
corresponding features are listed in the table

 Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

MICROSAR Identity Manager using Post-Build Selectable

All features not listed in Table 3-2 Not supported AUTOSAR standard conform features are to be
considered as supported.

Table 3-1 Supported AUTOSAR standard conform features

The following features specified in [1] are not supported:

Not Supported AUTOSAR Standard Conform Features

No link time configuration support.

No post-build support on diagnostic services (only communication). Though an alternative
solution is provided (see 9.29)

Table 3-2 Not supported AUTOSAR standard conform features

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

Possibility to avoid high CPU load peaks:

How to Reduce DCM Main-Function Run Time Usage

Optimized multi-client communication support:

How to Handle Multiple Diagnostic Clients Simultaneously

Run time optimized DCM DEM interface for low CPU load.

Native AR 4.0.3 and AR 4.1.2 DEM API version support.

Support for sub-functions 0x17, 0x18 and 0x19 of service ReadDiagnosticInformation ($19)
according to [5].

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 33
based on template version 5.0.0

Features Provided Beyond The AUTOSAR Standard

Optional notification on security access level change

Extensible keep-alive time period: How to Extend the Diag Keep Alive Time during Diagnostics

Recovery of DCM states over reset /power down: How to Recover DCM State Context on ECU
Reset/ Power

Table 3-3 Features provided beyond the AUTOSAR standard

3.2 Initialization

At ECU power-on boot (or any reset situation) DCM must be initialized by calling the API
Dcm_Init().

3.3 States

DCM manages currently the following state machines:

- Diagnostic session states (managed by service DiagnosticSessionControl ($10))

- Security access states (managed by service SecurityAccess ($27))

- ECU Communication activity (managed by the ComM)

- DTC setting allowance (managed by the Dem)

3.4 Main Functions

In order to function properly, the Dcm_MainFunction() must be called periodically in the
configured time period.

To specify the DCM task cycle time, set up the configuration parameter:

/Dcm/DcmConfigSet/DcmGeneral/DcmTaskTime

3.4.1 Split Task Functions

3.4.1.1 Functionality

Dcm_MainFunction() is only a container function that calls the two functions
Dcm_MainFunctionTimer() and Dcm_MainFunctionWorker(). Of these two, only the
Dcm_MainFunctionTimer() depends on a stable cycle time. If you find it difficult to run the
Dcm_MainFunction() on a high priority task to ensure the timing behavior, you can
optionally call these two functions instead of Dcm_MainFunction().

This allows you to run the Dcm_MainFunctionTimer() on a higher priority task to guarantee
the UDS timing requirements e.g. sending of NRC ‘RequestCorrectlyRecieved-
ResponsePending’.

Please note, both the Dcm_MainFunctionWorker() and Dcm_MainFunctionTimer() are
optimized for short run time, so this option is usually not necessary.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 34
based on template version 5.0.0

3.4.1.2 Configuration Aspects

Per default DCM has only one Dcm_MainFunction() i.e. has no split tasks as specified in
[1]. In order to enable split task usage in DCM, you have to set up DCM in the
configuration tool as follows:

> Activate main-function task splitting via parameter:
/Dcm/DcmConfigSet/DcmGeneral/DcmSplitTasksEnabled

> Both Dcm_MainFunctionTimer() and Dcm_MainFunctionWorker() will be scheduled for
the time period specified by: /Dcm/DcmConfigSet/DcmGeneral/DcmTaskTime

> Optionally you can specify different scheduling time for the
Dcm_MainFunctionWorker() using parameter:
/Dcm/DcmConfigSet/DcmGeneral/DcmMainFunctionWorkerTaskTime

3.4.1.3 Integration Aspects

Both main-functions are automatically registered for scheduling in SchM component via
SWC-template, but still they have no assigned task priority relation. As the
Dcm_MainFunctionTimer() handles the real-time aspect of the DCM component, it must be
running under high OS task priority. The Dcm_MainFunctionWorker() shall be assigned to
an OS task that has a lower or equal priority compared to the Dcm_MainFunctionTimer()’s
task.

Caution

> Do not assign the Dcm_MainFunctionWorker() on a higher priority task than the
Dcm_MainFunctionTimer(), especially not if your OS supports task preemption.

> You need both Dcm_MainFunctionWorker() and Dcm_MainFunctionTimer() (unless
you use the Dcm_MainFunction()).

3.5 Error Handling

3.5.1 Development Error Reporting

By default, development errors are reported to the DET using the service

Det_ReportError() as specified in [2], if development error reporting is enabled (i.e.

pre-compile parameter DCM_DEV_ERROR_DETECT==STD_ON).

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature

as the service Det_ReportError().

The reported DCM ID is 53.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 35
based on template version 5.0.0

The reported service IDs identify the services which are described in 6.2. The following
table presents the service IDs and the related services:

Service ID Service

0x00 Dcm_StartOfReception()

0x01 Dcm_Init()

0x02 Dcm_CopyRxData() (AR4) / Dcm_ProvideRxBuffer() (AR3)

0x03 Dcm_TpRxIndication() (AR4) / Dcm_RxIndication() (AR3)

0x04 Dcm_CopyTxData() (AR4) / Dcm_ProvideTxBuffer() (AR3)

0x05 Dcm_TpTxConfirmation() (AR4) / Dcm_TxConfirmation() (AR3)

0x06 Dcm_GetSesCtrlType()

0x0D Dcm_GetSecurityLevel()

0x0F Dcm_GetActiveProtocol()

0x21 Dcm_ComM_NoComModeEntered()

0x22 Dcm_ComM_SilentComModeEntered()

0x23 Dcm_ComM_FullComModeEntered()

0x24 Dcm_GetVersionInfo()

0x25 Dcm_MainFunction()

0x2A Dcm_ResetToDefaultSession()

0x30 Dcm_ExternalSetNegResponse()

0x31 Dcm_ExternalProcessingDone()

0x32 <Module>_<DiagnosticService>()

0x34 ReadData() (synchronous)

0x3B ReadData() (asynchronous)

0x3F IsDidAvailable()

0x40 ReadDidData()

0x41 WriteDidData()

0x44 GetSeed() (with SADR)

0x45 GetSeed() (without SADR)

0x47 CompareKey()

0x56 Dcm_SetActiveDiagnostic()

0x59 GetSecurityAttemptCounter()

0x5A SetSecurityAttemptCounter()

0x60 GetInfotypeValueData()

0xA0 Depricated from DCM 5.00.00 and mapped to “DCM internal function”.

DCM internal diagnostic service processor

0xA1 Dcm_TxConfirmation()

0xA2 Dcm_TriggerTransmit()

0xA3 Dcm_ProvideRecoveryStates()

0xA4 Dcm_OnRequestDetection()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 36
based on template version 5.0.0

Service ID Service

0xA6 Dcm_GetTesterSourceAddress()

0xA7 Dcm_GetSecurityLevelFixedBytes()

0xA8 Dcm_ProcessVirtualRequest()

0xA9 Dcm_SetSecurityLevel()

0xAA ReadData() (paged-data-reading)

0xAB Dcm_GetRequestKind()

0xF0 DCM internal function

Table 3-4 DET Service IDs

The errors reported to DET are described in the following table:

Error Code Description

0x01 DCM_E_INTERFACE_TIMEOUT Timeout during interaction with other module

0x02 DCM_E_INTERFACE_RETURN_VALUE Return value of called API is out of range

0x03 DCM_E_INTERFACE_BUFFER_OVERFLOW Boundary check of provided buffers fails

0x05 DCM_E_UNINIT Executing program code before the DCM is
initialized

0x06 DCM_E_PARAM API call with invalid parameter value

0x07 DCM_E_PARAM_POINTER API call with invalid/null pointer parameter

0x40 DCM_E_ILLEGAL_STATE Internal DCM error, reaching an unexpected
state

0x41 DCM_E_INVALID_CONFIG Inconsistent configuration

Table 3-5 Errors reported to DET

3.5.2 Production Code Error Reporting

Production code related errors are not supported by DCM.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 37
based on template version 5.0.0

4 Integration

This chapter gives necessary information for the integration of the MICROSAR DCM into
an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the DCM contains the files which are described in the chapters 4.1.1 and
4.1.2:

4.1.1 Static Files

File Name Source
Code
Delivery

Object
Code
Delivery

Description

Dcm.c


This is the implementation source file of the DCM
(delivered only for the “pre-compile” variant).

Dcm_Ext.c


This is the implementation source file of the DCM
with Autosar extensions (delivered only for the “pre-
compile” variant).

Dcm.h



This is the header file containing the APIs of DCM.
This is the only file that has to be included by
the application if an interaction with DCM is
needed.

Dcm_Int.h



This is the header file containing internal APIs of
DCM between the core- and extension parts.

This file must not be included by any other
source file except of the DCM own ones.

Dcm_Cbk.h


This file contains all function prototypes of APIs
called by other BSW-C (i.e. Pdu-R, ComM, etc.).

Dcm_Types.h


This file contains all data types that shall be visible
to the other components interacting with DCM.

Dcm_Core.h

Dcm_CoreInt.h
Dcm_CoreCbk.h

Dcm_CoreTypes.h



All these files belong to the DCM core part.

None of these files must be included by an
external source code.

Dcm_Ext.h

Dcm_ExtInt.h
Dcm_ExtCbk.h

Dcm_ExtTypes.h



All these files belong to the DCM extension part.

None of these files must be included by an
external source code.

Dcm_bswmd.arxml


This file contains all DCM configuration parameters’
definitions.

Table 4-1 Static files

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 38
based on template version 5.0.0

4.1.2 Dynamic Files

The dynamic files are generated by the Configurator 5 generation tool.

File Name Description

Dcm_Cfg.h This file contains all pre-compile configuration settings of DCM (e.g.
switches, constants, etc.).

Dcm_Lcfg.c This file contains the link-time parameterization of DCM.

Dcm_Lcfg.h This file contains all link-time parameters declarations and type definitions.

Dcm_PBcfg.c This file contains all post-build loadable parameterization of DCM.

Dcm_PBcfg.h This file contains all post-build loadable parameters declarations and type
definitions.

Rte_Dcm.h This file will be generated by the RTE.

Rte_Dcm_Type.h This file will be generated by the RTE.

Dcm_swc.arxml This AUTOSAR xml file is used for the configuration of the Rte. It contains
the information to get prototypes of callback functions offered by other
components.

Table 4-2 Generated files

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 39
based on template version 5.0.0

4.2 Include Structure

Figure 4-1 Include structure

4.3 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants, calibrate-able memory section) are
declared by compiler independent definitions – the compiler abstraction definitions. Each
compiler abstraction definition is assigned to a memory section.

The following table contains the memory section names and the compiler abstraction
definitions of the DCM and illustrates their assignment among each other.

Compiler Abstraction

Definitions

Memory Mapping

Sections

D
C

M
_
C

O
N

S
T

D
C

M
_
C

A
L

_
P

R
M

D
C

M
_
C

O
D

E

D
C

M
_

V
A

R
_
N

O
IN

IT

D
C

M
_

V
A

R
_
IN

IT

D
C

M
_

A
P

P
L

_
C

O
D

E

D
C

M
_

A
P

P
L

_
D

A
T
A

D
C

M
_
C

A
L

L
O

U
T

_
C

O
D

E

D
C

M
_

A
P

P
L

_
C

O
N

S
T

D
C

M
_

V
A

R
_
P

B
C

F
G

D
C

M
_

P
B

C
F

G

DCM_START_SEC_CONST_8

DCM_STOP_SEC_CONST_8


 class Include Structure

Dcm.c

Dcm_Ext.c

Dcm.h

Dcm_Ext.h

Dcm_Core.h

Dcm_Types.hDcm_Cbk.h

Dcm_ExtTypes.hDcm_ExtCbk.h

Dcm_CoreCbk.h Dcm_CoreTypes.h

Dcm_Extension

AR Dcm Facade

Dcm_Core

Dcm_LCfg.h Dcm_PBCfg.hDcm_LCfg.cDcm_PBCfg.c

ComStack_Types.h

Dcm_ExtInt.h

Dcm_CoreInt.h

AR BSW

Environment

AR BSW

Environment

AR BSW Environment

<AR_BSW_MIP>.h

Rte_Dcm_Type.h

Dcm_Cfg.h

Dcm Configuration

Dcm_Int

5

«include»

2

«include»

«include»

1

«include»

2

«include»

0..1

«include»

5

«include»

1

«include»

4

«include»

2

«include»

1

«include»

4

«include»

1

«include»

1

«include»

2

«include»3

«include»

1

«include»

2

«include»

3

«include»

«include»«include»

2

«include»

3

«include»

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 40
based on template version 5.0.0

DCM_START_SEC_CONST_16

DCM_STOP_SEC_CONST_16


DCM_START_SEC_CONST_32

DCM_STOP_SEC_CONST_32


DCM_START_SEC_CONST_UNSPECIFIED

DCM_STOP_SEC_CONST_UNSPECIFIED


DCM_START_SEC_CALIB_8

DCM_STOP_SEC_CALIB_8
 

DCM_START_SEC_CALIB_16

DCM_STOP_SEC_CALIB_16
 

DCM_START_SEC_CALIB_32

DCM_STOP_SEC_CALIB_32
 

DCM_START_SEC_CALIB_UNSPECIFIED

DCM_STOP_SEC_CALIB_UNSPECIFIED
 

DCM_START_SEC_VAR_INIT_8

DCM_STOP_SEC_VAR_INIT_8
 

DCM_START_SEC_VAR_NOINIT_8

DCM_STOP_SEC_VAR_NOINIT_8
 

DCM_START_SEC_VAR_NOINIT_16

DCM_STOP_SEC_VAR_NOINIT_16
 

DCM_START_SEC_VAR_INIT_32

DCM_STOP_SEC_VAR_INIT_32
 

DCM_START_SEC_VAR_NOINIT_32

DCM_STOP_SEC_VAR_NOINIT_32
 

DCM_START_SEC_VAR_NOINIT_UNSPECIFIED

DCM_STOP_SEC_VAR_NOINIT_UNSPECIFIED
 

DCM_START_SEC_CODE

DCM_STOP_SEC_CODE
 

DCM_START_SEC_CALLOUT_CODE

DCM_STOP_SEC_CALLOUT_CODE
 

DCM_START_SEC_APPL_CODE

DCM_STOP_SEC_APPL_CODE
 

DCM_START_SEC_VAR_PBCFG

DCM_STOP_SEC_VAR_PBCFG



DCM_START_SEC_PBCFG

DCM_STOP_SEC_PBCFG



Table 4-3 Compiler abstraction and memory mapping

The compiler abstraction definitions of DCM_APPL_DATA and DCM_APPL_CONST refer
to any RAM resp. ROM section defined by any external to DCM software module. This can
be either BSW component or application data storage.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 41
based on template version 5.0.0

The DCM_APPL_CODE and DCM_CALLOUT_CODE definitions also refer to an external
code section relative to DCM. These are memory locations, where the application code is
placed. The difference between these two sections is that an application code in
CALLOUT section is a DCM functionality extension (e.g. a complex device driver) and not
a component in the matter of providing server application specific data or functionality (i.e.
via RTE).

4.4 Critical Sections

To protect internal data structures against modifications that will lead to data corruption,
the DCM uses “Critical Sections” for blocking concurrent access, such as from lower
transport layer and from the Dcm_MainFunction().

The only method that DCM uses to handle the critical sections is:

 AUTOSAR Schedule Manager (SchM_Dcm.h is included)

Caution
You must take special care that the SchM implementing the critical section is already
started before the DCM is run.

You have to map the DCM critical sections to the appropriate resource locking method.
DCM supports only the DCM_EXCLUSIVE_AREA_0 and it shall be always mapped to

global interrupt disabling, since DCM has always very short time critical sections. The
real critical section duration depends on the performance of the controller used in your
system, but the DCM critical section design restricts the code within to very few
instructions and in very rear cases contains (internal) function calls, which usually are in-
lined.

4.5 Considerations Using Request- and ResponseData Pointers in a Call-back

DCM is a half-duplex communication module and for memory usage optimization a single
buffer is used for both request and response data. Therefore if a call-back function
contains both “ResponseData” and “RequestData” pointers, they may point to different
addresses, but these are still memory locations within the same diagnostic buffer. So if you
start writing the response data, you probably will overwrite the request data. If the request
data is still needed, while writing the response data, you will have to store it into temporary
RAM location in your application software, before starting the write process.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 42
based on template version 5.0.0

5 Diagnostic Service Implementation

The main goal of the DCM is to handle the diagnostic protocol services, defined by [5]. The
only task the application has is to provide the required data, to write new data into its
memory, access IO ports, etc. All these application tasks are ECU specific and have no
dependency to the used diagnostic protocol.

The following chapters describe each diagnostic service that the DCM handles, including
implementation and configuration aspects.

Each chapter provides tables that give an overview over the following information:

 Which implementation types of that diagnostic service are supported;

 If the service is internally handled, which subservices are supported and how they are
or can be implemented.

For each of the about classifications the following implementation types are used:

> internal only = by DCM;

> external only = by application;

> internal or external = implemented by DCM, but can be overridden by application;

> not allowed = cannot be configured at all.

FAQ
If you miss a diagnostic service in the following chapter, it does only mean that the
DCM does not provide any predefined implementation for it, but you can define it in
Configurator 5 and handle it within your application. If you try to specify an invalid
service identifier, the Configurator 5 will notify you about that and will deny the service
definition.

FAQ
If not other stated every service that can be overridden by an application service
handler may not have configured sub-services, but actually the application
implementation of these services still can handle any by itself.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 43
based on template version 5.0.0

5.1 RequestCurrentPowertrainDiagnosticData ($01)

5.1.1 Functionality

This is a legislated OBD service that delivers some current values of ECU parameters.

5.1.2 Required Interfaces

 If service handled by DCM:

> DataServices_<DataName>

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.1.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-1 Service $01: Implementation types

Implementation

Subservice ID in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-2 Service $01: Supported subservices

This service is fully implemented by DCM.

5.1.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

> All to be supported PIDs shall be defined within the following container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspPid

> For each PID to be supported by this service, the following parameter has to be set to
either SERVICE_01 or SERVICE 01_02:
/Dcm/DcmConfigSet/DcmDsp/DcmDspPid/DcmDspPidService

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 44
based on template version 5.0.0

> The data content of a PID shall be defined in the container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspPid/DcmDspPidData

> The access type to the data content of a PID can be defined in the container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspPid/DcmDspPidData/DcmDspPidService01

FAQ
There shall be no “availability ID” (i.e. 0x00, 0x20, 0x40 …, 0xE0) explicitly defined in
the DCM configuration! All these IDs will be automatically calculated during the code
generation process and supported by the DCM code.

FAQ
If any of the service’s PIDs shall be also readable by the corresponding UDS service
(i.e. ReadDataByIdentifier ($22) DIDs 0xF400 – 0xF4FF), the corresponding DIDs,
including the “availability DIDs” shall be explicitly defined within the DCM
configuration. This is required in order to support the optional read access condition
checks on a DID operation.

Refer to ReadDataByIdentifier ($22) for more details about OBD DID configuration
particularities.

Note
For all PIDs implemented by the DEM, the according DEM APIs (e.g.
Dem_DcmReadDataOfPID01) must be entered for the configuration parameter

Dcm/DcmConfigSet/DcmDsp/DcmDspPid/DcmDspPidData/DcmDspPidService
01/DcmDspPidDataReadFnc

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 45
based on template version 5.0.0

5.2 RequestPowertrainFreezeFrameData ($02)

5.2.1 Functionality

This is a legislated OBD service that delivers the contents of the OBD Freeze Frame,
which consists of ECU parameter values stored by the fault memory module.

5.2.2 Required Interfaces

 If service handled by DCM:

> Refer to chapter 6.3 Services used by DCM for the DEM component.

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.2.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-3 Service $02: Implementation types

Implementation

Subservice ID in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-4 Service $02: Supported subservices

This service is fully implemented by DCM.

5.2.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

> All to be supported PIDs shall be defined within the following container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspPid

> For each PID to be supported by this service, the following parameter has to be set to
either SERVICE_02 or SERVICE 01_02:
/Dcm/DcmConfigSet/DcmDsp/DcmDspPid/DcmDspPidService

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 46
based on template version 5.0.0

FAQ
There shall be no “availability ID” (i.e. 0x00, 0x20, 0x40 …, 0xE0) explicitly defined in
the DCM configuration! All these IDs will be automatically calculated during the code
generation process and supported by the DCM code.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 47
based on template version 5.0.0

5.3 RequestEmissionRelatedDTC ($03)

5.3.1 Functionality

This is a legislated OBD service that delivers all DTCs with status “confirmed”.

5.3.2 Required Interfaces

 If service handled by DCM:

> Refer to chapter 6.3 Services used by DCM for the DEM component.

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.3.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-5 Service $03: Implementation types

Implementation

Subservice ID in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-6 Service $03: Supported subservices

This service is fully implemented by DCM.

5.3.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 48
based on template version 5.0.0

5.4 ClearEmissionRelatedDTC ($04)

5.4.1 Functionality

This is a legislated OBD service that clears all emission related DTCs.

5.4.2 Required Interfaces

 If service handled by DCM:

> Refer to chapter 6.3 Services used by DCM for the DEM component.

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.4.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-7 Service $04: Implementation types

Implementation

Subservice ID

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-8 Service $04: Supported subservices

This service is fully implemented by DCM.

5.4.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 49
based on template version 5.0.0

5.5 RequestOnBoardMonitorTestResults ($06)

5.5.1 Functionality

This is a legislated OBD service that delivers monitor specific test results.

5.5.2 Required Interfaces

 If service handled by DCM:

> DtrServices (if no OBD DTR support by DEM)

> Refer to chapter 6.3 Services used by DCM for the DEM component (if OBD DTR is
supported by DEM).

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.5.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-9 Service $06: Implementation types

Implementation

Subservice ID in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-10 Service $06: Supported subservices

This service is fully implemented by DCM.

Caution
Depending on the DEM SWS AR version and setup, the OBDMID configuration and
data handling is either implemented by DCM or DEM.

Please refer to the configuration aspects in the following chapters for more details:

> 5.5.4 Configuration Aspects

> 9.30 How to Switch Between OBD DTR Support by DCM and DEM

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 50
based on template version 5.0.0

5.5.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

> If the OBDMID configuration and data handling is to be supported by DEM, the
following parameters will not be required, resp. will be ignored during the DCM
configuration code generation.

> All to be supported MIDs shall be defined within the following container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspTestResultByObdmid/DcmDspTestResultObd
midTid

> For each MID to be supported by this service, the corresponding TIDs shall be
associated:
/Dcm/DcmConfigSet/DcmDsp/DcmDspTestResultByObdmid/DcmDspTestResultObd
midTid/DcmDspTestResultObdmidTids

> The access type to the data content of a MIDTID can be defined in the container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspTestResultByObdmid/DcmDspTestResultObd
midTid/DcmDspTestResultObdmidTids/DcmDspTestResultObdmidTidUsePort

FAQ
There shall be no “availability ID” (i.e. 0x00, 0x20, 0x40 …, 0xE0) explicitly defined in
the DCM configuration! All these IDs will be automatically calculated during the code
generation process and supported by the DCM code.

FAQ
If any of the service’s MIDs shall be also readable by the corresponding UDS service
(i.e. ReadDataByIdentifier ($22) DIDs 0xF600 – 0xF6FF), the corresponding DIDs,
including the “availability DIDs” shall be explicitly defined within the DCM
configuration. This is required in order to support the optional read access condition
checks on a DID operation.

Refer to ReadDataByIdentifier ($22) for more details about OBD DID configuration
particularities.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 51
based on template version 5.0.0

5.6 RequestEmissionRelatedDTCsDetectedDuringCurrentOrLastDrivingCycle
($07)

5.6.1 Functionality

This is a legislated OBD service that delivers all DTCs with status “pending”.

5.6.2 Required Interfaces

 If service handled by DCM:

> Refer to chapter 6.3 Services used by DCM for the DEM component.

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.6.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-11 Service $07: Implementation types

Implementation

Subservice ID in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-12 Service $07: Supported subservices

This service is fully implemented by DCM.

5.6.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 52
based on template version 5.0.0

5.7 RequestControlOfOnBoardSystemTestOrComponent ($08)

5.7.1 Functionality

This is a legislated OBD service that starts a routine within the ECU.

5.7.2 Required Interfaces

 If service handled by DCM:

> RequestControlServices_<TIDName>

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.7.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-13 Service $08: Implementation types

Implementation

Subservice ID

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-14 Service $08: Supported subservices

This service is fully implemented by DCM.

5.7.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

> Each to be supported TIDs shall be defined in a container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspRequestControl

> The request data content size of a TID shall be defined in the container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspRequestControl/DcmDspRequestControlInBuff
erSize

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 53
based on template version 5.0.0

> The response data content size of a TID shall be defined in the container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspRequestControl/DcmDspRequestControlOutBuf
ferSize

> The access type to the data content of a PID can be defined in the container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspRequestControl/DcmDspRequestControlUsePo
rt

FAQ
There shall be no “availability ID” (i.e. 0x00, 0x20, 0x40 …, 0xE0) explicitly defined in
the DCM configuration! All these IDs will be automatically calculated during the code
generation process and supported by the DCM code.

FAQ
If any of the service’s PIDs shall be also readable by the corresponding UDS service
(i.e. RoutineControl ($31) DIDs 0xE000 – 0xE0FF), the corresponding RIDs, including
the “availability RIDs” shall be explicitly defined within the DCM configuration. This is
required in order to support the optional control access condition checks on a RID.

Refer to RoutineControl ($31) for more details about OBD RID configuration
particularities.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 54
based on template version 5.0.0

5.8 RequestVehicleInformation ($09)

5.8.1 Functionality

This is a legislated OBD service that delivers some vehicle identification information.

5.8.2 Required Interfaces

 If service handled by DCM:

> InfotypeServices_<VEHINFODATA>

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.8.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-15 Service $09: Implementation types

Implementation

Subservice ID in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-16 Service $09: Supported subservices

This service is fully implemented by DCM.

5.8.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

> Each to be supported VID shall be defined in a container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspVehInfo

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 55
based on template version 5.0.0

FAQ
There shall be no “availability ID” (i.e. 0x00, 0x20, 0x40 …, 0xE0) explicitly defined in
the DCM configuration! All these IDs will be automatically calculated during the code
generation process and supported by the DCM code.

FAQ
If any of the service’s MIDs shall be also readable by the corresponding UDS service
(i.e. ReadDataByIdentifier ($22) DIDs 0xF800 – 0xF8FF), the corresponding DIDs,
including the “availability DIDs” shall be explicitly defined within the DCM
configuration. This is required in order to support the optional read access condition
checks on a DID operation.

Refer to ReadDataByIdentifier ($22) for more details about OBD DID configuration
particularities.

> The data content of a VID shall be defined in the container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspVehInfo/DcmDspVehInfoData

FAQ
In case the OBD VID data length shall be variable, the configuration parameter
/Dcm/DcmConfigSet/DcmDsp/DcmDspVehInfo/DcmDspVehInfoData/DcmDspVehInfoD
ataSize will specify the maximum data size of the VID. This value will be passed as an
input to the API GetInfotypeValueData().

> The access type to the data content of a VID can be defined in the container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspVehInfo/DcmDspVehInfoData/DcmDspVehInfo
DataUsePort

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 56
based on template version 5.0.0

5.9 RequestEmissionRelatedDTCsWithPermanentStatus ($0A)

5.9.1 Functionality

This is a legislated OBD service that delivers all DTCs with status “permanent”.

5.9.2 Required Interfaces

 If service handled by DCM:

> Refer to chapter 6.3 Services used by DCM for the DEM component.

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.9.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-17 Service $0A: Implementation types

Implementation

Subservice ID in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-18 Service $0A: Supported subservices

This service is fully implemented by DCM.

5.9.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 57
based on template version 5.0.0

5.10 DiagnosticSessionControl ($10)

5.10.1 Functionality

This service manages the diagnostic session state in the ECU.

5.10.2 Required Interfaces

> DcmDiagnosticSessionControl

5.10.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-19 Service $10: Implementation types

Implementation

Subservice ID

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

0x00 

0x01 

0x02 

0x03 

0x04 … 0x7E 

0x7F … 0xFF 

Table 5-20 Service $10: Supported subservices

This service is fully implemented by DCM.

5.10.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 58
based on template version 5.0.0

Caution
This service is mandatory and therefore may not be missing in the configuration and
cannot be overridden by an application implementation.

> All to be supported sub-functions shall be defined within the above defined service
container as sub-service containers:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService/DcmDsdSubSer
vice

> For each defined sub-function there shall be a corresponding session level defined:
/Dcm/DcmConfigSet/DcmDsp/DcmDspSession

For each session, there must be also defined the P2/P2Start timings:
/Dcm/DcmConfigSet/DcmDsp/DcmDspSession/DcmDspSessionRow/DcmDspSession
P2ServerMax and
/Dcm/DcmConfigSet/DcmDsp/DcmDspSession/DcmDspSessionRow/DcmDspSession
P2StarServerMax

FAQ
The P2/P2Start timings above will be reported to the diagnostic client within the
positive response of this service. These timings will apply as long as the DCM is in the
corresponding session. DCM is designed to send the RCR-RP not later than the
configured P2/P2Star time. Depending on the project integration specifics and main-
functions scheduling of the communication stack (interfaces, transport layers, etc.) it
may lead to a delayed RCR-RP responses and failing compliance tests. Still, you have
to opportunity to adjust the DCM internal timer values by specifying a diagnostic
protocol specific (i.e. UDS and OBD may have different adjustments) timing
corrections. Please refer to the following parameters in the DCM configuration:
/Dcm/DcmConfigSet/DcmDsl/DcmDslProtocol/DcmDslProtocolRow/DcmTimStrP2Serv
erAdjust and
/Dcm/DcmConfigSet/DcmDsl/DcmDslProtocol/DcmDslProtocolRow/DcmTimStrP2Star
ServerAdjust

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 59
based on template version 5.0.0

5.11 EcuReset ($11)

5.11.1 Functionality

This service implementation provides the reset functionality within the ECU.

Note
Once one of the following reset modes: HardReset, SoftReset and KeyOnOffReset is
being requested, after sending the positive response resp. finishing service processing
without positive response, DCM will not accept any further diagnostic request until the
ECU is reset or Dcm_ResetToDefaultSession() is called. The communication reaction
(reject or ignore new request) is dependent on the DCM configuration (see below).

FAQ
In some cases it is required not to perform a real reset of the ECU, but only to switch
into the default session and reset all active diagnostic jobs. If this kind of reset
implementation is required, then the application shall just call the
Dcm_ResetToDefaultSession() provided port operation once the Mode_Switch
operation for the DcmEcuReset mode declaration group is triggered.

5.11.2 Required Interfaces

 If service handled by DCM:

> DcmEcuReset

> DcmModeRapidPowerShutDown

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.11.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-21 Service $11: Implementation types

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 60
based on template version 5.0.0

Implementation

Subservice ID

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

0x00 

0x01 

0x02 

0x03 

0x04 

0x05 

0x06 … 0x7E 

0x7F … 0xFF 

Table 5-22 Service $11: Supported subservices

All in Table 5-22 Service $11: Supported subservices sub-functions marked as internally
handled by DCM are fully implemented and no application interaction is necessary.

Caution
If any of the service’s sub-functions 0x01-0x05 are implemented externally (user
defined implementation), the corresponding mode switches (if required) shall be
triggered by the user implementation.

The mode declaration groups (DcmEcuReset and DcmModeRapidPowerShutDown)
will exist only if at least one of the corresponding sub-functions is still handled by DCM.

5.11.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> All to be supported sub-functions shall be defined within the above defined service
container as sub-service containers:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService/DcmDsdSubSer
vice

> If sub-function 0x04 is to be supported, additionally the following parameter shall be
configured: /Dcm/DcmConfigSet/DcmDsp/DcmDspPowerDownTime

> If one of the following sub-functions: 0x01-0x03 is to be supported, the DCM will either
reject by NRC 0x21 or ignore any request received while waiting for the reset
execution accomplishment. The concrete reaction depends on the setting:
/Dcm/DcmConfigSet/DcmDsl/DcmDslDiagResp/DcmDslDiagRespOnSecondDeclined
Request (refer also to 9.4 How to Handle Multiple Diagnostic Clients Simultaneously).

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 61
based on template version 5.0.0

5.12 ClearDiagnosticInformation ($14)

5.12.1 Functionality

This service clears the stored fault memory content.

5.12.2 Required Interfaces

 If service handled by DCM:

> Refer to chapter 6.3 Services used by DCM for the DEM component.

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.12.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-23 Service $14: Implementation types

Implementation

Subservice ID in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-24 Service $14: Supported subservices

This service is fully implemented by DCM.

5.12.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 62
based on template version 5.0.0

5.13 ReadDiagnosticInformation ($19)

5.13.1 Functionality

This service reads the stored fault memory information using the DEM data access API.

5.13.2 Required Interfaces

 If service handled by DCM:

> Refer to chapter 6.3 Services used by DCM for the DEM component.

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.13.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-25 Service $19: Implementation types

Implementation

Subservice ID

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

0x00 

0x01 … 0x15 

0x16 

0x17 … 0x19 

0x1A … 0x41 

0x42 

0x43 … 0x7E 

0x7F … 0xFF 

Table 5-26 Service $19: Supported subservices

All above sub-functions marked as internally handled by DCM are fully implemented and
no application interaction is necessary.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 63
based on template version 5.0.0

FAQ
All WWH-OBD only related sub-functions (e.g. 0x42) will be internally handled in DCM
only with a valid WWH-OBD license. Otherwise must be implemented within an
external CDD module.

5.13.3.1 Reporting Stored DTC Environment Data

For all snapshot and extended data record sub-functions, DCM module requires additional
input from the ECU configuration. In order to be able to report properly all related record
numbers when the records masks 0xFF or 0xFE are requested, the DCM configuration
has been extended by a new parameter hierarchy:

/Dcm/DcmConfigSet/DcmDsp/DcmDspFaultMemory/DcmDspFaultMemoryRecords.

These new parameters allow DEM configuration independent parameterization of DCM.

More details about them follow in next chapter and in the online help of each parameter
under this container.

Note
If you use this DCM module together with the MICROSAR DEM, it is not necessary to
use or change this configuration. DCM will automatically take the DEM settings
regarding the supported record numbers.

5.13.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> All to be supported sub-functions shall be defined within the above defined service
container as sub-service containers:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService/DcmDsdSubSer
vice

FAQ
For all user defined sub-functions (marked as “external only” in Table 5-26 Service
$19: Supported subservices) the sub-function specific request length check shall be
performed by the corresponding sub-function processor implementation. This may lead
to a deviation of the defined in [5] NRC prioritization on a double error (i.e. wrong
security access level and invalid sub-function length). Currently this is unavoidable
since [1] does not provide a request length configuration option on sub-service level.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 64
based on template version 5.0.0

> If one of the sub-functions 0x17-0x19 shall be supported, a MemoryIdentifier is
optionally possible to be specified:
/Dcm/DcmConfigSet/DcmDsp/DcmDspFaultMemory/DcmDspFaultMemoryUserMemor
yIdInfo/DcmDspFaultMemoryUserMemoryId. For more details please refer to the
parameter’s online help within the configuration tool.

> If a non-MICROSAR DEM is used together with DCM and one of the stored DTC
environment data reporting sub-functions of this diagnostic service is to be supported,
all related record ranges shall be specified in the ECUC under the following container:

/Dcm/DcmConfigSet/DcmDsp/DcmDspFaultMemory/DcmDspFaultMemoryRecords

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 65
based on template version 5.0.0

5.14 ReadDataByIdentifier ($22)

5.14.1 Functionality

This service provides read access to data structures within the ECU, marked by an
identifier (DID).

The tester may simultaneously access multiple DIDs in a single request. The maximum
allowed DID list length is configurable (refer to 5.14.4 Configuration Aspects for more
details).

5.14.2 Required Interfaces

 If service handled by DCM:

> DataServices_<DataName>

> DataServices_DIDRange_<RangeName>

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.14.3 Implementation Aspects

Implementation

Protocol Level in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-27 Service $22: Implementation types

Implementation

Subservice ID in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-28 Service $22: Supported subservices

The protocol handling of this service is fully implemented by DCM. The data reported by
each DID will be provided by the application via service calls or call outs.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 66
based on template version 5.0.0

Caution
If you intend using DID ranges, please read carefully chapter 9.19 Handling with DID
Ranges to learn important particularities.

FAQ
In case very large DID data has to be carried out from the application an optimized
data reading process can be used to save RAM. For details please refer to 9.24 How to
Save RAM using Paged-Buffer for Large DIDs.

5.14.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

> All to be supported readable DIDs shall be defined within the following container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDid

> The read operation over a DID is defined by:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidAccess/DcmDspDidRead

> The maximum number of simultaneously requested DIDs shall be defined by:
/Dcm/DcmConfigSet/DcmDsp/DcmDspMaxDidToRead

> For each DID data signal the corresponding container shall be configured
/Dcm/DcmConfigSet/DcmDsp/DcmDspData.

> The check condition read operation is optional and if not used can be deactivated via:
/Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataConditionCheckReadFncUs
ed

> For NvRam signal access select the value USE_BLOCK_ID in the container
/Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataUsePort

> A NvRam block Id has to be referenced:
/Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataBlockIdRef

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 67
based on template version 5.0.0

FAQ
Particularities for OBD DIDs (i.e. all within [0xF400-0xF8FF]):

- If DEM handles DTR values, please consider also chapter 9.30 How to Switch
Between OBD DTR Support by DCM and DEM for information on the DIDs.

- Any OBD availability DID (e.g. 0xF400, 0xF420, 0xF600, 0xF620, 0xF880,
0xF8E0, etc.) will always be implemented by DCM. They will return the
corresponding DID availability mask value as described in [6].

- Every DID in the OBD range that covers a corresponding OBD PID, MID or VID,
shall not contain any data definition. The concrete data will be read out by DCM
directly using the corresponding OBD service data access method. For such
DIDs, there also will be no RTE DataServices port or callback generated.

- Any OBD DID, that neither is an availability DID, nor covers any existing OBD
PID, MID or VID, will be handled as a generic DID and shall be configured
regularly.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 68
based on template version 5.0.0

5.15 ReadMemoryByAddress ($23)

5.15.1 Functionality

This service provides direct read access to the physical memory of the ECU. All readable
memory areas and their access preconditions are to be configured as documented in
5.15.4 Configuration Aspects.

5.15.2 Required Interfaces

 If service handled by DCM:

> Dcm_ReadMemory()

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.15.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-29 Service $23: Implementation types

Implementation

Subservice ID

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-30 Service $23: Supported subservices

The protocol handling of this service is fully implemented by DCM. This includes:

> Validating and evaluating the ALFID byte;

> Parsing the requested memory address and size parameters;

> Validating the requested memory block against the DCM memory configuration:

> Supported requested memory area by the ECU;

> Memory area access preconditions (e.g. security access, mode rules).

The memory access will then be provided by the application via a call out.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 69
based on template version 5.0.0

FAQ
All readable memory ranges will be considered during the definition of a DDID with
DynamicallyDefineDataIdentifier ($2C).

5.15.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

> All to be supported readable memory ranges shall be defined within the following
container: /Dcm/DcmConfigSet/DcmDsp/DcmDspMemory

5.16 ReadScalingDataByIdentifier ($24)

5.16.1 Functionality

This service provides read access to scaling information of each data within a DID.

5.16.2 Required Interfaces

 If service handled by DCM:

> DataServices_<DataName>

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.16.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-31 Service $24: Implementation types

Implementation

Subservice ID

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-32 Service $24: Supported subservices

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 70
based on template version 5.0.0

The protocol handling of this service is fully implemented by DCM. The data reported by
each DID will be provided by the application via service calls or call outs.

FAQ
AUTOSAR does not provide a means for specifying session, security or mode rule
restrictions on scaling information operation per DID. Thus the only way to limit the
access to the scaling data is by limiting the access to the whole service $24 under the
corresponding parameter (e.g. DcmDsdSidTabSecurityLevelRef) in
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

5.16.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

> All to be supported scaling DIDs shall be defined within the following container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDid

> For each DID data signal the corresponding container shall be configured
/Dcm/DcmConfigSet/DcmDsp/DcmDspData.

> For each DID data signal the corresponding container shall be configured in its scaling
size: /Dcm/DcmConfigSet/DcmDsp/DcmDspDataInfo/DcmDspDataScalingInfoSize

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 71
based on template version 5.0.0

5.17 SecurityAccess ($27)

5.17.1 Functionality

This service manages the security level of the ECU used to constrain the diagnostic
access to critical services like writing data in restricted areas.

5.17.2 Required Interfaces

The following interfaces must be available when service $27 is used:

 If service handled by DCM:

> SecurityAccess_<SecurityLevelName>

 If service handled by the application:

> <Module>_<DiagnosticService>()

> Dcm_SetSecurityLevel()

5.17.3 Implementation Aspects

Implementation

Protocol Level in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-33 Service $27: Implementation types

Implementation

Subservice ID in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

0x00 

0x01 … 0x7D 

0x7E … 0xFF 

Table 5-34 Service $27: Supported subservices

By default this service is fully implemented by DCM. If the internal implementation is used,
the following specifics have to be considered:

If the ECU shall support “failed attempt monitoring”, it can be chosen between two
strategies on how to avoid brute-force-attack bypass via ECU reset.

> Dynamic power-on delay time management:

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 72
based on template version 5.0.0

The attempt counter shall be stored by the application (e.g. into a NvM block), so at
next ECU power on/reset event its value can be recovered.

> Static power-on delay management:

The attempt counter will not be stored into the NvM (by the application), but instead
DCM will use the “delay time on boot” setting to insert a penalty time at each power
on cycle, regardless of the last attempt counter state. This means that even if during
the last power-on cycle there was no failed attempt, the ECU will not accept any
request for service 0x27 for that level, having set up “delay time on power on”.

Please, refer the configuration related chapter below to find the corresponding DCM
settings that affect the brute-force-attack bypass strategy.

MICROSAR DCM provides an optional extension of the security access level configuration
if some fixed bytes for the seed/key value calculation are needed. For details, please refer
to chapter 9.25 How to Get Security-Access Level Specific Fixed Byte Values.

5.17.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> All to be supported sub-functions shall be defined within the above defined service
container as sub-service containers:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService/DcmDsdSubSer
vice

> There shall always be a pair of sub-functions per security level (e.g. 0x01 for “get
seed” and 0x02 for the corresponding “send key” sub-function).

> For each pair there shall always be a corresponding security level defined:
/Dcm/DcmConfigSet/DcmDsp/DcmDspSecurity/DcmDspSecurityRow

> If a notification on a security access level state change is required, the option
described in 9.16 How to Know When the Security Access Level Changes shall be
enabled.

> Specify whether a single (shared among all security levels) or multiple (per security
level) instances of the attempt counter shall be supported:
/Dcm/DcmConfigSet/DcmDsp/DcmDspSecurity/DcmDspSecuritySingleInstanceAttemp
tMonitor

> Specify whether a single (shared among all security levels) or multiple (per security
level) instances of the delay timer shall be supported:
/Dcm/DcmConfigSet/DcmDsp/DcmDspSecurity/DcmDspSecuritySingleInstanceDelayT
imer

> Specify whether a non-volatile storage of the attempt counter is required for a certain
level:
/Dcm/DcmConfigSet/DcmDsp/DcmDspSecurity/DcmDspSecurityRow/DcmDspSecurity
AttemptCounterEnabled

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 73
based on template version 5.0.0

> Specify whether an unconditional delay timer start is required for a certain level:
/Dcm/DcmConfigSet/DcmDsp/DcmDspSecurity/DcmDspSecurityRow/DcmDspSecurity
DelayTimeOnBoot

FAQ
You can only choose to have either DcmDspSecurityAttemptCounterEnabled or
DcmDspSecurityDelayTimeOnBoot. Both settings cannot be combined.

> The access type to the security level specific operations can be defined using the
following parameter:
/Dcm/DcmConfigSet/DcmDsp/DcmDspSecurity/DcmDspSecurityRow/DcmDspSecurity
UsePort

> Specify the attempt counter/timer recovery replacement strategy, in case the last
stored attempt counter value is no more readable:

/Dcm/DcmConfigSet/DcmDsp/DcmDspSecurity/DcmDspSecurityRow/DcmDspSecurity
DelayTimeOnFailedGetAttemptCounter

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 74
based on template version 5.0.0

5.18 CommunicationControl ($28)

5.18.1 Functionality

This service manages the communication state of both reception and transmission path of
the ECU.

5.18.2 Required Interfaces

 If service handled by DCM:

> Refer to chapter 6.3 Services used by DCM for the BswM component.

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.18.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-35 Service $28: Implementation types

Implementation

Subservice ID

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

0x00 … 0x03 

0x04 … 0x05 

0x06 … 0x3F 

0x40 … 0x7E 

0x7F … 0xFF 

Table 5-36 Service $28: Supported subservices

This service is fully implemented by DCM with the following limitations:

For the sub-network id parameter only the values “CurrentSubNetwork” and
“AllSubNetworks” are supported. The third type: “SpecificSubNetworkId” is currently not
supported.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 75
based on template version 5.0.0

5.18.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> All to be supported sub-functions shall be defined within the above defined service
container as sub-service containers:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService/DcmDsdSubSer
vice

FAQ
For all user defined sub-functions (marked as “external only” in Table 5-36 Service
$28: Supported subservices) the sub-function specific request length check shall be
performed by the corresponding sub-function processor implementation. This may lead
to a deviation of the defined in [5] NRC prioritization on a double error (i.e. wrong
security access level and invalid sub-function length). Currently this is unavoidable
since [1] does not provide a request length configuration option on sub-service level.

> All other for this service relevant properties shall be configured under:
/Dcm/DcmConfigSet/DcmDsp/DcmDspComControl

FAQ
It is important that if UDS parameter “CommunicationType” 0x0X (AllNetworks) shall be
supported by DCM, that the corresponding channels are configured appropriately
under the following configuration containers:
/Dcm/DcmConfigSet/DcmDsp/DcmDspComControl/DcmDspComControlAllChannel

> In case DCM shall monitor any critical condition under which this service shall no
longer be active, put a reference to that condition using parameter:
/Dcm/DcmConfigSet/DcmDsp/DcmDspComControl/DcmDspComControlSetting/DcmD
spComControlCommunicationReEnableModeRuleRef

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 76
based on template version 5.0.0

5.19 ReadDataByPeriodicIdentifier ($2A)

5.19.1 Functionality

This service provides read access to data structures within the ECU, marked by a periodic
identifier (PDID). These are all DIDs in range [$F200 – $F2FF].

The tester may schedule multiple PDIDs in a single request. The maximum allowed PDID
list length is configurable (refer to 5.19.4 Configuration Aspects).

Optionally, DCM is able to stop automatically the periodic transmission of any scheduled
PDID that cannot be accessed any more, after a diagnostic session/security access level
changes. Refer to 5.19.4 Configuration Aspects for details about this setting.

FAQ
Only periodic responses of type 2 (UUDT) are supported, as the latest versions of [5]
require.

5.19.2 Required Interfaces

 If service handled by DCM:

> DataServices_<DataName>

> DataServices_DIDRange_<RangeName>

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.19.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-37 Service $2A: Implementation types

Implementation

Subservice ID

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-38 Service $2A: Supported subservices

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 77
based on template version 5.0.0

The protocol handling and the PDID read job scheduling of this service is fully
implemented by DCM. The data reported by each DID will be provided by the application
via service calls or call outs.

Caution
If you intend using DID ranges, please read carefully chapter 9.19 Handling with DID
Ranges to learn important particularities.

5.19.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container. The
scheduling rates to be supported are specified by the corresponding rate time
configuration parameter. Example for “SlowRate”:
/Dcm/DcmConfigSet/DcmDsp/DcmDspPeriodicTransmission/DcmDspPeriodicTransmi
ssionSlowRate

> All to be supported readable PDIDs shall be defined within the following container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDid. The only allowed DID numbers are within
the range [$F200-$F2FF].

> The read operation over a PDID is defined by:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidAccess/DcmDspDidRead

> The maximum number of simultaneously requested PDIDs shall be defined by:
/Dcm/DcmConfigSet/DcmDsp/DcmDspMaxDidToRead

> The maximum number of simultaneously schedulable PDIDs shall be defined by:
/Dcm/DcmConfigSet/DcmDsp/DcmDspPeriodicDidTransmission/DcmDspMaxPeriodic
DidScheduler

> There shall be at least one DCM periodic connection (at least once client supports
periodic responses), referred by a corresponding tester main connection. For that
purpose configure:

> Define the clients periodic connection with one or multiple PDUs of the UUDT
messages to be sent within the protocol container:
/Dcm/DcmConfigSet/DcmDsl/DcmDslProtocol/DcmDslProtocolRow/DcmDslConnecti
on/DcmDslPeriodicTransmission

> Refer the above created connection from the clients main connection located in the
same protocol container:
/Dcm/DcmConfigSet/DcmDsl/DcmDslProtocol/DcmDslProtocolRow/DcmDslConnecti
on/DcmDslMainConnection/DcmDslPeriodicTranmissionConRef

> If it is required that DCM shall stop automatically any PDID which is no more
supported in the active diagnostic session/security level the following parameter shall
be enabled:

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 78
based on template version 5.0.0

/Dcm/DcmConfigSet/DcmDsp/DcmDspPeriodicDidTransmission/DcmDspPeriodicDid
StopOnStateChange

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 79
based on template version 5.0.0

5.20 DynamicallyDefineDataIdentifier ($2C)

5.20.1 Functionality

This service is used to define new abstract data structures (DIDs) that refer to other
statically configured DIDs or memory areas. The newly defined data structures are
accessible for reading only through their assigned DDID (DynamicDID).

Optionally, DCM is able to clear automatically any already defined DDID that cannot be
accessed any more, after a diagnostic session/security access level changes. This also
implies that a periodic DDID will be also removed from the periodic scheduler
(ReadDataByPeriodicIdentifier ($2A)). Refer to 5.20.4 Configuration Aspects for details
about this setting.

5.20.2 Required Interfaces

 If service handled by DCM:

> No additional interfaces are required for this service, since it is completely handled
within the DCM.

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.20.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-39 Service $2C: Implementation types

Implementation

Subservice ID

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

0x01 

0x02 

0x03 

0x04 … 0xFF 

Table 5-40 Service $2C: Supported subservices

This service is fully implemented by DCM corresponding to the [5].

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 80
based on template version 5.0.0

Caution
If you intend using DID ranges, please read carefully chapter 9.19 Handling with DID
Ranges to learn important particularities.

5.20.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> All to be supported sub-functions shall be defined within the above defined service
container as sub-service containers:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService/DcmDsdSubSer
vice

> If this service is to be used, there shall be at least one DID in the DCM configuration,
determined as a DDID by the parameter:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidDynamicallyDefined

> If the objects (DIDs or memory areas) referenced by a DDID shall be validated against
session, security and mode-rule preconditions each time the DDID is to be read:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidDynamicallyDefined

> DCM verifies always the session, security and mode-rule preconditions of a DDID
when it is requested by a diagnostic client. You can configure DCM additionally to
check also the objects (DIDs or memory areas) referenced by a DDID against their
preconditions by parameter:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDDDidCheckPerSourceDid

> You can configure DCM to execute all in a DDID contained DID’s
ConditionCheckRead() operations when the DDID is requested by diagnostic client:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDDDidCheckConditionReadPerSourceDid

> If it is required DCM to clear automatically any no more supported in the active
diagnostic session/security level DDID (and stop it from periodic reading), the
parameter shall be enabled:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDDDidClearOnStateChange

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 81
based on template version 5.0.0

FAQ
Enabling DcmDspDDDidClearOnStateChange does imply that any DDID access
precondition evaluation for reading it once (ReadDataByIdentifier ($22)) or periodically
(ReadDataByPeriodicIdentifier ($2A)) will not be performed. The reason is that once
there is a change of the current diagnostic session/security access level, the DDID will
no more exist and the ECU will reject any read request for it by NRC 0x31
(RequestOutOfRange). Combining this feature together with
DcmDspDDDidCheckPerSourceDid increases the overall run time usage but also the
access precondition dependent level safety.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 82
based on template version 5.0.0

5.21 WriteDataByIdentifier ($2E)

5.21.1 Functionality

This service provides write access to predefined and marked by identifier data structures
within the ECU.

5.21.2 Required Interfaces

 If service handled by DCM:

> DataServices_<DataName>

> DataServices_DIDRange_<RangeName>

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.21.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-41 Service $2E: Implementation types

Implementation

Subservice ID in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-42 Service $2E: Supported subservices

The protocol handling of this service is fully implemented by DCM. The functionality for
writing the data of each DID will be provided by the application via service calls or call
outs.

Caution
If you intend using DID ranges, please read carefully chapter 9.19 Handling with DID
Ranges to learn important particularities.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 83
based on template version 5.0.0

5.21.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

> All to be supported writeable DIDs shall be defined within the following container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDid

> The write operation over a DID is defined by:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidAccess/DcmDspDidWrite

> For each DID data signal the corresponding container shall be configured
/Dcm/DcmConfigSet/DcmDsp/DcmDspData.

> For NvRam signal access select the value USE_BLOCK_ID in the container
/Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataUsePort

> A NvRam block Id has to be referenced:
/Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataBlockIdRef

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 84
based on template version 5.0.0

5.22 InputOutputControlByIdentifier ($2F)

5.22.1 Functionality

This service provides IO control access to predefined and marked by identifier IO
structures (ports) within the ECU.

5.22.2 Required Interfaces

 If service handled by DCM:

> DataServices_<DataName>

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.22.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-43 Service $2F: Implementation types

Implementation

Subservice ID

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-44 Service $2F: Supported subservices

The protocol handling of this service is fully implemented by DCM. The control functionality
over the corresponding IO port will be performed by the application via service calls or call
outs.

DCM monitors all IO DIDs put under control, once a requested IO control operation other
than ReturnControlToECU() was successfully executed. This allows DCM to automatically
reset the IO DID operations, calling their the ReturnControlToECU() operations once one
of the following events occurs:

> A state transition to the Default diagnostic session;

> A state transition to any diagnostic session, where the monitored IO DID is not
supported;

> A state transition to any security level, where the monitored IO DID is not supported;

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 85
based on template version 5.0.0

FAQ
If an IO DID is configured not to support operation ReturnControlToECU(), the
automatic resetting of this IO DID is not supported. The application shall catch the
mode switch for DcmDiagnosticSessionControl and reset this IO DID by itself.

Caution
Although it is allowed to have an asynchronous IO DID “DataServices_<DataName>”
service port, it is not allowed to implement the “ReturnControlToECU()” operation of
this port as asynchronous. This is because the transition to the default session is a
synchronous operation and cannot be delayed.

If the DET support in DCM is enabled and you have implemented the
“ReturnControlToECU()” operation to return DCM_E_PENDING, then this will cause a
DET report.

IO DID Data Handling in DCM and Application
According to [5] there are two types of IO DIDs: packeted and bitmapped. The difference is
the size of the IO signals addressed by an IO DID:

> Packeted: Each data element within the IO DID can be of any size.

> Bitmapped: Each data element within the IO DID has a size of a single bit.

For C/S DID data access, DCM is able to address only at least a whole byte element. So
there are two scenarios in using IO DIDs in DCM also regarding the CEMR:

> Packeted IO DID with all signals which have a size of a multiple of eight bits

> Bitmapped IO DID or IO DID where the signal size is not a multiple of eight bits

These two scenarios are described in details in the next paragraphs.

Packeted IO DID with all signals which have a size of a multiple of eight bits

If the IO DID has multiple data signals, the DCM can automatically derive an appropriate
CEMR for this DID as specified in [5]. Then at run time during processing a valid request of
this service, the DCM will call only the service ports of the IO DID that are enabled in the
requested CEMR. To learn about how the automatic CEMR derivation can be enabled
resp. disabled, please refer to 5.22.4 Configuration Aspects and the detailed parameter
description in the configuration tool.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 86
based on template version 5.0.0

FAQ
The CEM has only effect on the requested IO control operation. The returned data in
the positive response will contain all IO DID data independently of the CEM value.

Bitmapped IO DID or IO DID where the signal size is not a multiple of eight bits

If the IO DID shall contain only single bit information or in general any data element of size
not filling a complete byte, word etc., then such an IO DID must be represented by a single
data object, which combines all the IO signals, including any reserved gaps in between or
at the end of the DID.

If this DID shall support in addition also the CEMR, then it shall be specified to support the
CEMR as a one handled by the application. To learn about how to specify an externally
handled CEMR, please refer to 5.22.4 Configuration Aspects and the detailed parameter
description in the configuration tool.

5.22.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

> All to be supported writeable DIDs shall be defined within the following container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDid

> Which IO operation is supported by the IO DID is defined within the container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidAccess/DcmDspDidControl
. There you have to create the operation corresponding sub-containers like:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidAccess/DcmDspDidControl
/DcmDspDidShortTermAdjustment

> For each DID data signal the corresponding container shall be configured
/Dcm/DcmConfigSet/DcmDsp/DcmDspData.

> Whether the IO DID shall support CEMR and which kind of CEMR (internal/external)
handling is required, can be specified using parameter:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidAccess/DcmDspDidControl
/DcmDspDidControlMask

> If a CEMR handled by the application shall be supported, its size shall be specified by
the parameter:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidIoEnableMaskSize.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 87
based on template version 5.0.0

FAQ
Particularities of an IO DID configuration:

> If the IO DID has read operation (i.e. accessible via ReadDataByIdentifier ($22)) the
positive response to this service will return the actual IO data immediately after the
request IO control operation was successfully applied. Otherwise no response data
will be returned.

> An IO DID with read operation shall never has “ConditionCheckRead()” operation.
For details, please refer to 5.14.4 Configuration Aspects of service
ReadDataByIdentifier ($22). The reason for that requirement is that the read
operation is executed always after the IO control operation is applied. Once it is
applied, the read operation must succeed and return the actual data. Otherwise the
IO control operation has to be undone and the response will be a negative one,
which contradicts the IO control definition.

> If an IO DID has more than one data signal, DCM will automatically enable the
“enable mask record” support for this DID (AR 4.0.3 requirement). But if you have
configured only one signal for an IO DID and that signal actually represents all IO
signals that the concrete IO DID indeed represents (e.g. for optimization purposes
combined into one byte stream), then you have to use the
/Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidAccess/DcmDspDidContr
ol/DcmDspDidControlMask and
/Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidIoEnableMaskSize
parameter in order to configured appropriate enable mask records size.

> An externally handled CEMR is passed to the application (refer to the corresponding
operations of DataServices_<DataName> C/S interface) in exactly the same form
as it was located in the request message: always aligned with the MSB of the
function argument:

> For 8, 16 and 32bit CEMRs, the corresponding uint8/16/32 data type will be used

as <ControlMaskType> to transfer the value to the application. It represents

directly the CEMR from the request, starting with the MSB for the very first data
element in the IO DID.

> For a 24bit CEMR, DCM transfers the CEMR to the application using the uint32

data type for the <ControlMaskType>. In this case, in order to keep the bit

scanning algorithm in the application consistent (i.e. shift left and extract bit) once
again the MSB (and not bit 23 of the function argument value represents the very
first data element).

> For CEMRs with more than 32bits, the ControlMask function argument points to
the first byte (MSB) of the requested CEMR using a uint8 data pointer (uint8*) as

<ControlMaskType>.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 88
based on template version 5.0.0

5.23 RoutineControl ($31)

5.23.1 Functionality

This service provides direct access to routines within the ECUs (e.g. self-test, control of
peripheries, etc.).

5.23.2 Required Interfaces

 If service handled by DCM:

> RoutineServices_<RoutineName>

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.23.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-45 Service $31: Implementation types

Implementation

Subservice ID

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-46 Service $31: Supported subservices

The protocol handling of this service is fully implemented by DCM, except the sub-function
execution sequence validation (e.g. prior executing “stop” or “request results” there shall
be send a “start” command).

Those sequence rules may not apply to all routines. Instead the application can implement
an own state machine to model the running state of each routine. If the service execution
order is not correct, the appropriate NRC (i.e. 0x24) can be returned back from the
corresponding service port, implemented by the application.

5.23.4 Configuration Aspects

The following configuration parameter shall be considered for the proper DCM function on
this service.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 89
based on template version 5.0.0

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined under the service container;

> All to be supported RIDs shall be defined within the following container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine

> The sub-function to be supported by a RID is to be specified within the concrete RID
container (sub-function “start” is always available):
/Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine

FAQ
Particularities for OBD RIDs (i.e. all within [0xE000-0xE1FF]):

- Any OBD availability RID (e.g. 0xE000, 0xE020, 0xE100, 0xE1A0, etc.) will
always be implemented by DCM. They will return the corresponding RID
availability mask value as described in [6].

- Every RID in the OBD range that covers a corresponding OBD TID, shall not
contain any data definition. The concrete data will be processed out by DCM
directly using the corresponding OBD TID service data access method. For
such RIDs, there also will be no RTE RoutineServices port or callback
generated.

- Only “StartRoutine” operation is to be used on OBD RIDs, since [6] does not
define any other operation over a RID.

- Any OBD RID, that neither is an availability RID, nor covers any existing OBD
TID, will be handled as a generic RID and shall be configured regularly.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 90
based on template version 5.0.0

5.24 WriteMemoryByAddress ($3D)

5.24.1 Functionality

This service provides direct write access to the physical memory of the ECU. All writeable
memory areas and their access preconditions are to be configured as documented in
5.15.4 Configuration Aspects.

5.24.2 Required Interfaces

 If service handled by DCM:

> Dcm_WriteMemory()

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.24.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-47 Service $3D: Implementation types

Implementation

Subservice ID in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

all 

Table 5-48 Service $3D: Supported subservices

The protocol handling of this service is fully implemented by DCM. This includes:

> Validating and evaluating the ALFID byte;

> Parsing the requested memory address and size parameters;

> Validating the requested memory block against the DCM memory configuration:

> Supported requested memory area by the ECU;

> Memory area access preconditions (e.g. security access, mode rules).

The memory access will then be provided by the application via a call out.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 91
based on template version 5.0.0

5.24.4 Configuration Aspects

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> No sub-functions shall be defined within the above defined service container;

> All to be supported writeable memory ranges shall be defined within the following
container: /Dcm/DcmConfigSet/DcmDsp/DcmDspMemory

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 92
based on template version 5.0.0

5.25 TesterPresent ($3E)

5.25.1 Functionality

This service is only used for keeping the current diagnostic state in the ECU active.
Otherwise on lack of diagnostic communication, the ECU will reset all temporary activated
states and functionalities (e.g. diagnostic session, security access, routine execution, etc.)

5.25.2 Required Interfaces

 If service handled by DCM:

> No interfaces required for this services.

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.25.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-49 Service $3E: Implementation types

Implementation

Subservice ID

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

0x00 

0x01 … 0xFF 

Table 5-50 Service $3E: Supported subservices

This service is fully implemented by DCM, but can be also handled by the application.

Caution
If you intend to handle this service within your application, please be aware that the
application callback will be called for any request for this service except the
“functionally requested 0x3E 0x80”! The latter is always handled within DCM.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 93
based on template version 5.0.0

5.25.4 Configuration Aspects

The following configuration parameter shall be considered for the proper DCM function on
this service.

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

> All to be supported sub-functions shall be defined within the above defined service
container as sub-service containers:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService/DcmDsdSubSer
vice

Caution
This service is mandatory and therefore may not be missing in the configuration and
cannot be overridden by an application implementation.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 94
based on template version 5.0.0

5.26 ControlDTCSetting ($85)

5.26.1 Functionality

This service manipulates the setting of the DTC in the ECU to avoid unnecessary fault
memory entries (i.e. while the communication is disabled).

5.26.2 Required Interfaces

 If service handled by DCM:

> Refer to chapter 6.3 Services used by DCM for the DEM component.

 If service handled by the application:

> <Module>_<DiagnosticService>()

5.26.3 Implementation Aspects

Implementation

Protocol Level

in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

ServiceID 

SubServiceID 

Table 5-51 Service $85: Implementation types

Implementation

Subservice ID in
te

rn
a
l
o
n

ly

in
te

rn
a
l
o
r

e
x
te

rn
a
l

e
x
te

rn
a
l
o
n

ly

n
o
t
a

llo
w

e
d

0x00 

0x01 … 0x02 

0x03 … 0xFF 

Table 5-52 Service $85: Supported subservices

This service is completely implemented by DCM.

5.26.4 Configuration Aspects

The following configuration parameter shall be considered for the proper DCM function on
this service.

> This service shall be defined in the configuration tool:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 95
based on template version 5.0.0

> All to be supported sub-functions shall be defined within the above defined service
container as sub-service containers:
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService/DcmDsdSubSer
vice

> If DCM shall accept also a DTC group as a request parameter for this service, please
enable the following option:
/Dcm/DcmConfigSet/DcmDsp/DcmDspControlDTCSetting/DcmSupportDTCSettingCo
ntrolOptionRecord

> In case DCM shall monitor any critical condition under which this service shall no
longer be active, put a reference to that condition using parameter:
/Dcm/DcmConfigSet/DcmDsp/DcmDspControlDTCSetting/DcmDspControlDTCSetting
ReEnableModeRuleRef

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 96
based on template version 5.0.0

6 API Description

For an interfaces overview please see Figure 2-2.

6.1 Type Definitions

All types not described here are defined by the DCM as described in [1].

6.1.1 Dcm_ProtocolType

Type Name C-Type Description Value Range

Dcm_ProtocolType c-type Specifies the currently
active protocol in
DCM.

[0x00-0x0B]U[0xF0-0xFE]

These values are defined in [1].

DCM_NO_ACTIVE_PROTOCOL (0x0C)

No protocol has been activated yet.

Table 6-1 Dcm_ProtocolType

6.1.2 Dcm_RecoveryInfoType

Struct Element Name C-Type Description Value Range

CommControlState uint8 [M]
(typically)

List of all DCM ComControl
related (internal handle, no
ComM SNV representation)
channels with value equal to
the corresponding
enumeration type.

Exist-Condition:
CommunicationControl ($28)
is supported in DCM.

DCM_ENABLE_RX_TX_NORM_NM

 - DCM will not perform any

CommunicationControl
operation.

Any other- DCM will

perform the corresponding
CommunicationControl
operation on the
corresponding channel.

ComMChannelState Boolean
[N]

List of all DCM related
(internal handle, no ComM
SNV representation)
channels.

If a non-default session shall
be started, this list has to
exist in order to start up all
affected ComM channels.

[X] = FALSE – DCM will

leave the ComM channel in
its default state.

[X] = TRUE – DCM will

activate the ComM on that
channel.

ControlDTCSettingDT
CGroup

uint32 Optional parameter in case
service ControlDTCSetting
($85) is enabled in DCM and
supports DTC group
parameter.

<DTCgroup> - The DTC

group that shall be used for
the ControlDTCSetting API in
DEM.

ControlDTCSettingDis
abled

boolean The new ControlDTCSetting
state.

Exist-Condition:

FALSE – DCM will not call

the ControlDTCSetting DEM
API.

TRUE -

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 97
based on template version 5.0.0

Struct Element Name C-Type Description Value Range

ControlDTCSetting ($85) is
enabled in DCM

DCM will perform a
ControlDTCSetting operation
for “disabling DTC” as for an
external diagnostic request
for ControlDTCSetting ($85).

SessionLevel uint8
(typically)

New diagnostic session.

Note: This is not the session
level as defined by AR. It is
DCM internal value.

0 – DCM will stay in the

default session.

Any other valid value

DCM will perform a session
transition as if the
corresponding request has
been received.

SecurityLevel uint8
(typically)

New security level.

Note: This is not the security
level as defined by AR. It is
DCM internal value.

Exist-Condition:

If SecurityAccess ($27) is
supported in DCM.

0 – DCM will stay in the

locked state.

Any other valid value

DCM will perform a security
level transition as if the
corresponding request has
been received.

SessionConnection uint8
(typically)

Transfers the client
connection ID (internal DCM
value) that has started the
non-default session.

Exist-Condition:

Only if non-default session
protection against other
clients is required.

Any value – Proper

connection ID on the last
client started the non-default
session.

Signature uint32

Magic number for data
consistency check between
stored and to be recovered
data block.

A configuration dependent
value.

Table 6-2 Dcm_RecoveryInfoType

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 98
based on template version 5.0.0

6.2 Services provided by DCM

6.2.1 Administrative

6.2.1.1 Dcm_Init()

Prototype

void Dcm_Init (Dcm_ConfigType * ConfigPtr)

Parameter

ConfigPtr The parameter specifies the configuration root the DCM shall use for this
power on cycle.

In case of pre-compile configuration – this parameter shall be NULL_PTR. If
any other address is used, it will have no effect.

In case of post-build selectable:

- more than one variant is configured – the pointer shall be the address
of one of the generated variant structures in Dcm_Lcfg.c

- only one variant is available – DCM is technically put into pre-compile
mode (see above)

In case of post-build loadable always a valid pointer to the root DCM structure
shall be passed.

In case of post-build selectable loadable always a valid pointer to the variant
root structure shall be passed.

Return code

void N/A

Functional Description

Service for basic initialization of DCM module.

In all cases where this API does expect a non-null pointer argument, a validation of the passed argument is
performed. For details on that topic, please refere to 9.18.2.1 Error Detection and Handling

Particularities and Limitations

> ServiceID = 0x01

> This function is not reentrant.

> This function is synchronous.

Table 6-3 Dcm_Init()

6.2.1.2 Dcm_MainFunction()

Prototype

void Dcm_MainFunction (void)

Parameter

N/A N/A

Return code

void N/A

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 99
based on template version 5.0.0

Functional Description

This service is used for processing the tasks of the main loop.

Particularities and Limitations

> ServiceID = 37

> This function is not reentrant.

> This function is synchronous.

Table 6-4 Dcm_MainFunction()

6.2.1.3 Dcm_MainFunctionTimer()

Prototype

void Dcm_MainFunctionTimer (void)

Parameter

N/A N/A

Return code

void N/A

Functional Description

This service is used for time critical tasks (high priority task).

Particularities and Limitations

> ServiceID = 37

> This function is not reentrant.

> This function is synchronous.

Table 6-5 Dcm_MainFunctionTimer()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 100
based on template version 5.0.0

6.2.1.4 Dcm_MainFunctionWorker()

Prototype

void Dcm_MainFunctionWorker (void)

Parameter

N/A N/A

Return code

void N/A

Functional Description

This service is used for diagnostic service processing (low priority task).

Note: All application call outs the DCM executes are performed only from within this task.

Particularities and Limitations

> ServiceID = 37

> This function is not reentrant.

> This function is synchronous.

Table 6-6 Dcm_MainFunctionWorker()

6.2.1.5 Dcm_GetVersionInfo()

Prototype

void Dcm_GetVersionInfo (Std_VersionInfoType* versionInfo)

Parameter

versionInfo Pointer to where to store the version information of this module.

Return code

void N/A

Functional Description

Returns the version information of the used DCM implementation.

Note:

Starting with DCM 4.00.00, the version information is decimal coded.

Particularities and Limitations

> ServiceID = 0x24

> This function is reentrant.

> This function is synchronous.

Table 6-7 Dcm_GetVersionInfo()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 101
based on template version 5.0.0

6.2.1.6 Dcm_InitMemory()

Prototype

void Dcm_InitMemory (void)

Parameter

- -

Return code

void N/A

Functional Description

Service to initialize module global variables at power up. This function initializes the variables in
DCM_VAR_INIT_* (refer to 4.3 Compiler Abstraction and Memory Mapping)

sections and shall be used in case they are not initialized by the startup code.

Particularities and Limitations

> This function must be called prior to Dcm_Init().

> This function is not reentrant.

> This function is synchronous.

Table 6-8 Dcm_InitMemory()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 102
based on template version 5.0.0

6.2.1.7 Dcm_ProvideRecoveryStates()

Prototype

Std_ReturnType Dcm_ProvideRecoveryStates (Dcm_RecoveryInfoType* RecoveryInfo)

Parameter

RecoveryInfo Contains all the information that has to be stored for later recovery.

Return code

Std_ReturnType E_OK: Recovery info could be retrieved and now can be stored.

E_NOT_OK: Some error occurred during state retrieval. Provided data is
invalid and shall not be stored.

Functional Description

This API shall be called by the DCM application right before performing the reset operation.

For details on the usage of this API, please refer chapter 9.27 How to Recover DCM State Context on ECU
Reset/ Power On.

Note:

- Once this API is called, the states may change due to external events (e.g. session timeout).
Therefore always perform this call right before executing the reset or within the context of a
diagnostic service processing (i.e. before the final response is sent).

For details on the recovered information, please refer the data type definition: Dcm_RecoveryInfoType.

Particularities and Limitations

> ServiceID = 0xA3

> This function is not reentrant.

> This function is synchronous.

Table 6-9 Dcm_ProvideRecoveryStates()

6.2.2 SWC

6.2.2.1 Dcm_GetActiveProtocol()

Prototype

Std_ReturnType Dcm_GetActiveProtocol (Dcm_ProtocolType* ActiveProtocol)

Parameter

ActiveProtocol Currently active protocol type

Return code

Std_ReturnType E_OK: this value is always returned.

Functional Description

This function returns the active protocol Id.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 103
based on template version 5.0.0

Particularities and Limitations

> ServiceID = 0x0F

> This function is reentrant.

> This function is synchronous.

Table 6-10 Dcm_GetActiveProtocol()

6.2.2.2 Dcm_GetSecurityLevel()

Prototype

Std_ReturnType Dcm_GetSecurityLevel (Dcm_SecLevelType* SecLevel)

Parameter

SecLevel Active Security Level (see definition of Dcm_SecLevelType for values).

Return code

Std_ReturnType E_OK: this value is always returned.

Functional Description

This function provides the active security level value.

Particularities and Limitations

> ServiceID = 0x0D

> This function is reentrant.

> This function is synchronous.

Table 6-11 Dcm_GetSecurityLevel()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 104
based on template version 5.0.0

6.2.2.3 Dcm_GetSesCtrlType()

Prototype

Std_ReturnType Dcm_GetSesCtrlType (Dcm_SesCtrlType* SesCtrlType)

Parameter

SesCtrlType Active Session Control Type (see definition of Dcm_SesCtrlType for values).

Return code

Std_ReturnType E_OK: this value is always returned.

Functional Description

This function provides the active session control type value.

Particularities and Limitations

> ServiceID = 0x06

> This function is reentrant.

> This function is synchronous.

Table 6-12 Dcm_GetSesCtrlType()

6.2.2.4 Dcm_ResetToDefaultSession()

Prototype

Std_ReturnType Dcm_ResetToDefaultSession (void)

Parameter

N/A N/A

Return code

Std_ReturnType E_OK: this value is always returned.

Functional Description

The call to this function allows the application to reset the current session to Default session.

Example: Automatic termination of an extended diagnostic session upon exceeding of a speed limit.

Note: The time between the function call and the termination of the session depends on the current DCM
state. The minimum time to be expected is one DCM task cycle. If this service is called while the DCM is
processing a diagnostic request, the session termination will be postponed till the end of this service
processing, to avoid unpredictable behavior.

Particularities and Limitations

> ServiceID = 0x2A

> This function is reentrant.

> This function is synchronous.

Table 6-13 Dcm_ResetToDefaultSession()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 105
based on template version 5.0.0

6.2.2.5 Dcm_GetSecurityLevelFixedBytes()

Prototype

Std_ReturnType Dcm_GetSecurityLevelFixedBytes (Dcm_SecLevelType secLevel, uint8*
fixedBytes, uint8* bufferSize)

Parameter

secLevel The security parameter, which fixed bytes are requested.

fixedBytes Pointer to the buffer where the fixed bytes will be copied to.

bufferSize IN: specifies the available size of the provided buffer

OUT: returns the number of copied fixed bytes, resp. number of required bytes
in order to copy the complete set (in case of returned
DCM_E_BUFFERTOOLOW)

Return code

Std_ReturnType E_OK: If the fixed bytes of the requested security level have been copied. For

levels without fixed bytes, nothing will be copied, and the bufferSize

parameter will be 0.

DCM_E_BUFFERTOOLOW: If the level has fixed bytes, but the provided

buffer is too small to fit them. The bufferSize will return the required buffer

size.

E_NOT_OK: If an invalid/unsupported security level or the “locked” level is
passed to this API.

Functional Description

By calling this API the application gets access to the fixed bytes set associated with the security-access
level (i.e. any generated by the RTE DCM_SEC_LEV_XXX value) passed as selector.

This API can be called at any time, but the most applicable situation is from within any of the GetSeed()
or/and CompareKey() C/S callbacks.

The implementation of the above callbacks shall be aware of passing the correct security-access level
value that corresponds to its C/S port prototype. Otherwise the wrong values will be reported back.

Particularities and Limitations

> ServiceID = 0xA7

> This function is reentrant.

> This function is synchronous.

> Available only if at least one security level was configured provide fixed bytes information.

Table 6-14 Dcm_GetSecurityLevelFixedBytes()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 106
based on template version 5.0.0

6.2.2.6 Dcm_SetActiveDiagnostic()

Prototype

Std_ReturnType Dcm_SetActiveDiagnostic(boolean active)

Parameter

active Represents the type of DCM interaction with ComM:

- TRUE: DCM shall call the ComM_DCM_ActiveDiagnostic

as required by see [1].

- FALSE: DCM shall not call the ComM_DCM_ActiveDiagnostic

anymore.

Return code

Std_ReturnType E_OK: This code is always returned even if the action could not be executed
due to:

- invalid value of active;

- not initialized DCM.

Functional Description

This API shall be called by the application in cases where the sleep-prevention managed by DCM is no
more desirable.

Particularities and Limitations

> ServiceID = 0x56

> This function is reentrant.

> This function is synchronous.

Table 6-15 Dcm_SetActiveDiagnostic()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 107
based on template version 5.0.0

6.2.2.7 Dcm_GetRequestKind()

Prototype

Std_ReturnType Dcm_GetRequestKind(uint16 TesterSourceAddress,

 Dcm_RequestKindType* RequestKind)

Parameter

TesterSourceAddress The source address of the tester which request kind status will be reported.

RequestKind Returns the current request kind of the given diagnostic client:

- DCM_REQ_KIND_NONE: currently no request is in processing for
this client

- DCM_REQ_KIND_EXTERNAL: an externally sent request for this
client is in progress (i.e. reception/processing/transmission)

- DCM_REQ_KIND_ROE: it is a STRT of RoE is in progress for this
client

Return code

Std_ReturnType E_OK: the TesterSourceAddress has a valid value

E_NOT_OK: an error occurred or the TesterSourceAddress has no valid

value

Functional Description

This API can be called by the application at any time and from any context if information is required
regarding the processing status of a certain diagnostic client.

Typically this API can be used from within a ServiceRequestManufacturerNotification_<SWC> or
ServiceRequestSupplierNotification_<SWC>, where the tester source address is passed as an argument,
to get not only the request type (functional or physical) but also the kind of the request (internal/external).

Additionally using the provided API Dcm_GetTesterSourceAddress(), the application may get the client
request kind also from a known valid DcmRxPduId.

Particularities and Limitations

> ServiceID = 0xAB

> This function is reentrant.

> This function is synchronous.

Table 6-16 Dcm_GetRequestKind()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 108
based on template version 5.0.0

6.2.3 General Purpose

6.2.3.1 Dcm_GetTesterSourceAddress()

Prototype

Std_ReturnType Dcm_GetTesterSourceAddress (PduIdType DcmRxPduId

 ,uint16* TesterSourceAddress)

Parameter

DcmRxPduId Specifies the DCM RxPduId for which the tester source address shall be read
out.

TesterSourceAddress Will contain the configured tester source address of the DCM RxPduId.

Return code

Std_ReturnType E_OK: the TesterSourceAddress has a valid value

E_NOT_OK: an error occurred, the TesterSourceAddress has no valid

value

Functional Description

This API can be used to access the configured tester source address parameter to a specific DCM main-
connection, identified by the DCM RxPduId.

Usually this API is used in a project specific switch between software contexts (i.e. application and boot
loader) where the request is received in one context (e.g. application) and the response is sent from the
other context (e.g. boot loader) or vice versa.

Particularities and Limitations

> ServiceID = 0xA6

> This function is reentrant.

> This function is synchronous.

Table 6-17 Dcm_GetTesterSourceAddress()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 109
based on template version 5.0.0

6.2.3.2 Dcm_ProcessVirtualRequest()

Prototype

Std_ReturnType Dcm_ProcessVirtualRequest (PduIdType RxPduId

 ,Dcm_MsgType Data

 ,PduLengthType Length)

Parameter

RxPduId The DcmPduId (physical or functional) of the diagnostic client this virtual
request represents. The response of this request will later be forwarded to this
client.

Data Pointer to the buffer where the complete diagnostic request incl. SID is
located.

Length The length of the diagnostic request located in the Data buffer.

Return code

Std_ReturnType E_OK: The request has been accepted.

E_NOT_OK: The request was not accepted. Possible reasons:

- DCM is already busy with another client, resp. the RxPduId is from a
low priority client.

- Invalid RxPduId, too long request or NULL_PTR for Data location
passed to the API.

Functional Description

This is a generic API that can be used by the application (CDD) to send a virtual request to the ECU which
response will be sent to a concrete diagnostic client.

Typical use-case of this API is an application implementation for service 0x86 (ResponseOnEvent).

This API can be called from any context (ISR, TASK, etc.). Just when called from an ISR and the request
contains lots of data, the interrupt latency can be significantly affected.

Particularities and Limitations

> ServiceID = 0xA8

> This function is reentrant.

> This function is synchronous.

Table 6-18 Dcm_ProcessVirtualRequest()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 110
based on template version 5.0.0

6.2.3.3 Dcm_SetSecurityLevel()

Prototype

Std_ReturnType Dcm_SetSecurityLevel (Dcm_SecLevelType SecLevel)

Parameter

SecLevel Active Security Level (see definition of Dcm_SecLevelType for values).

Return code

Std_ReturnType E_OK: State change has been performed.

E_NOT_OK: State change failed. Possible reasons:

- wrong/invalid security level;

- called while DCM is busy with a diagnostic request;

- called from wrong task context (not from Dcm_MainFunctionWorker);

Functional Description

This API shall be called by the application when service SecurityAccess ($27) is supported in the ECU but
not handled in DCM. In this case DCM will be able to switch only to the LOCKED security level when
performing a diagnostic session transition. In order to unlock the ECU in any other security level the
application shall trigger the security access state transitions by calling this API with the appropriate value.

Within this API call, DCM will perform the same RTE interaction as if the security state handling was done
by itself. For that reason this API must be called only from within the Dcm_MainFunction(Worker) context.
The best place for this call is either the callback function for SecurityAccess ($27) or a Confirmation() if
configured.

Particularities and Limitations

> ServiceID = 0xA9

> This function is not reentrant.

> This function is synchronous.

> Available only if service SecurityAccess ($27) is supported in the ECU but handled within the DCM
application.

Table 6-19 Dcm_SetSecurityLevel()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 111
based on template version 5.0.0

6.3 Services used by DCM

In the following table services provided by other components, which are used by the DCM,
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Component API

Dem Dem_DcmCancelOperation

Dem_[Dcm]EnableDTCRecordUpdate

Dem_[Dcm]DisableDTCRecordUpdate

Dem_[Dcm]SetFreezeFrameRecordFilter

Dem_GetFreezeFrameDataByRecord / Dem_DcmGetOBDFreezeFrameData

Dem_[Dcm]GetDTCStatusAvailabilityMask

Dem_[Dcm]SetDTCFilter

Dem_[Dcm]GetNextFilteredRecord

Dem_[Dcm]GetNextFilteredDTCAndSeverity

Dem_[Dcm]GetNextFilteredDTCAndFDC

Dem_[Dcm]GetNextFilteredDTC

Dem_[Dcm]GetExtendedDataRecordByDTC

Dem_[Dcm]GetFreezeFrameDataByDTC

Dem_[Dcm]GetNumberOfFilteredDTC

Dem_[Dcm]GetSeverityOfDTC

Dem_[Dcm]GetFunctionalUnitOfDTC

Dem_[Dcm]GetStatusOfDTC

Dem_[Dcm]GetSizeOfExtendedDataRecordByDTC

Dem_[Dcm]GetSizeOfFreezeFrameByDTC

Dem_[Dcm]GetTranslationType

Dem_[Dcm]GetDTCByOccurrenceTime

Dem_[Dcm]DisableDTCSetting

Dem_[Dcm]EnableDTCSetting

Dem_[Dcm]GetDTCOfOBDFreezeFrame

Dem_[Dcm]ReadDataOfOBDFreezeFrame

Dem_DcmGetAvailableOBDMIDs

Dem_DcmGetNumTIDsOfOBDMID

Dem_DcmGetDTRData

BswM For AUTOSAR 4.x Environment

BswM_Dcm_CommunicationMode_CurrentState

BswM_Dcm_ApplicationUpdated

For AUTOSAR 3.x Environment

BswM_Dcm_RequestCommunicationMode

Det Det_ReportError

ComM ComM_DCM_ActiveDiagnostic

ComM_DCM_InactiveDiagnostic

PduR PduR_DcmTransmit

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 112
based on template version 5.0.0

Component API

SchM For AUTOSAR 4.x Environment

SchM_Enter_Dcm_DCM_EXCLUSIVE_AREA_0

SchM_Exit_Dcm_DCM_EXCLUSIVE_AREA_0

For AUTOSAR 3.x Environment

SchM_Enter_Dcm

SchM_Exit_Dcm

NvM NvM_ReadBlock

NvM_WriteBlock

NvM_CancelJobs

NvM_SetBlockLockStatus

NvM_GetErrorStatus

NvM_GetDcmBlockId

EcuM EcuM_BswErrorHook

Table 6-20 Services used by the DCM

6.4 Callback Functions

This chapter describes the callback functions that are implemented by the DCM and can
be invoked by other modules. The prototypes of the callback functions are provided in the

header file Dcm_Cbk.h by the DCM.

6.4.1 <Module>

The following callbacks are to be used from the module that implements the callouts:

> <Module>_<DiagnosticService>()

> <Module>_<DiagnosticService>_<SubService>()

6.4.1.1 Dcm_ExternalProcessingDone()

Prototype

void Dcm_ExternalProcessingDone (Dcm_MsgContextType* pMsgContext)

Parameter

pMsgContext Message-related information for one diagnostic protocol identifier.

Return code

void N/A

Functional Description

Used by service interpreter outside of DCM to indicate that the current diagnostic service processing is
finished and (if required) a final response can be sent.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 113
based on template version 5.0.0

Particularities and Limitations

> ServiceID = 0x31

> This function is not reentrant.

> This function is synchronous.

Table 6-21 Dcm_ExternalProcessingDone()

6.4.1.2 Dcm_ExternalSetNegResponse()

Prototype

void Dcm_ExternalSetNegResponse (Dcm_MsgContextType* pMsgContext,
Dcm_NegativeResponseCodeType ErrorCode)

Parameter

pMsgContext Message-related information for one diagnostic protocol identifier.

ErrorCode Contains the NRC to be returned to the diagnostic client.

Return code

void N/A

Functional Description

Used by service interpreter outside of DCM to indicate that a the final response shall be a negative one.
Dcm_ExternalSetNegResponse will not finalize the response processing.

Particularities and Limitations

> ServiceID = 0x30

> This function is not reentrant.

> This function is synchronous.

Table 6-22 Dcm_ExternalSetNegResponse()

6.4.2 ComM

The DCM supports the ComM interface according to AR3 and AR4. By default, AR4 is
used. AR3 is only available in deliveries which are preconfigured accordingly.

6.4.2.1 Dcm_ComM_NoComModeEntered()

Prototype

ComM AR 4.x.x

void Dcm_ComM_NoComModeEntered (uint8 NetworkId)

ComM AR 3.x.x

void Dcm_ComM_NoComModeEntered (void)

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 114
based on template version 5.0.0

Parameter

NetworkId Identifier of the network concerned by the mode change.

Return code

void N/A

Functional Description

This call informs the DCM module about a ComM mode change to COMM_NO_COMMUNICATION.

Particularities and Limitations

> ServiceID = 0x21

> This function is reentrant.

> This function is synchronous.

Table 6-23 Dcm_ComM_NoComModeEntered()

6.4.2.2 Dcm_ComM_SilentComModeEntered()

Prototype

ComM AR 4.x.x

void Dcm_ComM_SilentComModeEntered (uint8 NetworkId)

ComM AR 3.x.x

void Dcm_ComM_SilentComModeEntered (void)

Parameter

NetworkId Identifier of the network concerned by the mode change.

Return code

void N/A

Functional Description

This call informs the DCM module about a ComM mode change to COMM_SILENT_COMMUNICATION.

Particularities and Limitations

> ServiceID = 0x22

> This function is reentrant.

> This function is synchronous.

Table 6-24 Dcm_ComM_SilentComModeEntered()

6.4.2.3 Dcm_ComM_FullComModeEntered()

Prototype

ComM AR 4.x.x

void Dcm_ComM_FullComModeEntered (uint8 NetworkId)

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 115
based on template version 5.0.0

ComM AR 3.x.x

void Dcm_ComM_FullComModeEntered (void)

Parameter

NetworkId Identifier of the network concerned by the mode change.

Return code

void N/A

Functional Description

This call informs the DCM module about a ComM mode change to COMM_FULL_COMMUNICATION.

Particularities and Limitations

> ServiceID = 0x23

> This function is reentrant.

> This function is synchronous.

Table 6-25 Dcm_ComM_FullComModeEntered()

6.4.3 PduR

The DCM supports different versions of the PduR interface. For details regarding the
configuration, please refer to chapter 9.17 How to Deal with the PduR AR version.

6.4.3.1 All AUTOSAR Versions

6.4.3.1.1 Dcm_TriggerTransmit()

Prototype

Std_ReturnType Dcm_TriggerTransmit (PduIdType DcmTxPduId, PduInfoType* Info)

Parameter

DcmTxPduId ID of DCM I-PDU that has been transmitted.

Range: 0..(maximum number of I-PDU IDs transmitted by DCM) - 1

Info Pointer to the data buffer where to be transmitted data shall be copied to.

Return code

Std_ReturnType E_OK: If data has been copied.

E_NOT_OK: In case of any error detected within this API.

Functional Description

This is called by the PduR to get any data to be transmitted to a lower layer with timed triggered
transmission (i.e. FlexRay).

Particularities and Limitations

> ServiceID = 0xA2

> This function is reentrant.

> This function is synchronous.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 116
based on template version 5.0.0

Table 6-26 Dcm_TriggerTransmit ()

6.4.3.2 AUTOSAR 4

6.4.3.2.1 Dcm_StartOfReception()

Prototype

PduR AR 4.0.3 (DCM Version >= 1.00.00)

BufReq_ReturnType Dcm_StartOfReception (PduIdType DcmRxPduId, PduLengthType
TpSduLength, PduLengthType* RxBufferSizePtr)

PduR AR 4.1.2 (DCM Version >= 2.02.00)

BufReq_ReturnType Dcm_StartOfReception (PduIdType DcmRxPduId, PduInfoType*
info, PduLengthType TpSduLength, PduLengthType* RxBufferSizePtr)

Parameter

DcmRxPduId Identifies the DCM data to be received. This information is used within the
DCM to distinguish two or more receptions at the same time.

info Pointer to a structure containing content and length of the first frame or single
frame including MetaData.

TpSduLength This length identifies the overall number of bytes to be received.

RxBufferSizePtr Length of the available buffer.

Return code

BufReq_ReturnType BUFREQ_OK: The diagnostic request will be accepted.

BUFREQ_E_NOT_OK: The diagnostic request will not be accepted at all (i.e.
no free buffer or processing context).

BUFREQ_E_OVFL: The diagnostic request could be accepted, but it will not fit
the configured buffer and therefore is rejected.

Functional Description

Called once to initialize the reception of a diagnostic request.

Particularities and Limitations

> ServiceID = 0x00

> This function is reentrant.

> This function is synchronous.

> The prototype of the API depends on the AR version of the PduR (please refer to chapter 9.17 How to
Deal with the PduR AR version).

Table 6-27 Dcm_StartOfReception()

6.4.3.2.2 Dcm_CopyRxData()

Prototype

BufReq_ReturnType Dcm_CopyRxData (PduIdType DcmRxPduId, PduInfoType*
PduInfoPtr, PduLengthType* RxBufferSizePtr)

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 117
based on template version 5.0.0

Parameter

DcmRxPduId Identifies the DCM data to be received. This information is used within the
DCM to distinguish two or more receptions at the same time.

PduInfoPtr Pointer to a PduInfoType which indicates the number of bytes to be copied
(SduLength) and the location of the source data (SduDataPtr).

An SduLength of 0 is possible in order to poll the available receive buffer size.
In this case no data are to be copied and PduInfoPtr might be invalid.

RxBufferSizePtr Remaining free place in receive buffer after completion of this call.

Return code

BufReq_ReturnType BUFREQ_OK: Data has been copied to the receive buffer completely as
requested.

BUFREQ_E_NOT_OK: Data has not been copied. Request failed.

Functional Description

Called once upon reception of each segment. Within this call, the received data is copied from the receive
TP buffer to the DCM receive buffer.

The API might only be called with an SduLength greater 0 if the RxBufferSizePtr returned by the previous
API call indicates sufficient receive buffer (SduLength <= RxBufferSizePtr).

The function must only be called if the connection has been accepted by an initial call to
Dcm_StartOfReception.

Particularities and Limitations

> ServiceID = 0x02

> Reentrant for different PduIds. Non reentrant for the same PduId.

> This function is synchronous.

Table 6-28 Dcm_CopyRxData()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 118
based on template version 5.0.0

6.4.3.2.3 Dcm_TpRxIndication()

Prototype

PduR AR 4.0.3 (DCM Version >= 1.00.00)

void Dcm_TpRxIndication (PduIdType DcmRxPduId, NotifResultType Result)

PduR AR 4.1.2 (DCM Version >= 2.02.00)

void Dcm_TpRxIndication (PduIdType DcmRxPduId, Std_ReturnType Result)

Parameter

DcmRxPduId ID of DCM I-PDU that has been received. Identifies the data that has been
received.

Range: 0..(maximum number of I-PDU IDs received by DCM) – 1

Result PduR AR 4.0.3:

NTFRSLT_OK: The complete N-PDU has been received and is stored in the
receive buffer.

any other value: The N_PDU has not been received; the receive buffer can be
unlocked by the DCM.

PduR AR 4.1.2:

E_OK: the complete N-PDU has been received and is stored in the

receive buffer

E_NOT_OK: the N_PDU has not been received properly, DCM

should prepare for a new reception.

Return code

void N/A

Functional Description

This is called by the PduR to indicate the completion of a reception.

Particularities and Limitations

> ServiceID = 0x03

> This function is reentrant.

> This function is synchronous.

> The prototype of the API depends on the AR version of the PduR (please refer to chapter 9.17 How to
Deal with the PduR AR version).

Table 6-29 Dcm_TpRxIndication()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 119
based on template version 5.0.0

6.4.3.2.4 Dcm_CopyTxData()

Prototype

BufReq_ReturnType Dcm_CopyTxData (PduIdType DcmTxPduId, PduInfoType*
PduInfoPtr, RetryInfoType* RetryInfoPtr, PduLengthType* TxDataCntPtr)

Parameter

DcmTxPduId Identifies the DCM data to be sent. This information is used to derive the PCI
information within the transport protocol. The value has to be same as in the
according service call PduR_DcmTransmit().

PduInfoPtr Pointer to a PduInfoType, which indicates the number of bytes to be copied
(SduLength) and the location where the data have to be copied to
(SduDataPtr).

An SduLength of 0 is possible in order to poll the available transmit data
count. In this case no data are to be copied and SduDataPtr might be invalid.

RetryInfoPtr If the transmitted TP I-PDU does not support the retry feature a NULL_PTR
can be provided. This indicates that the copied transmit data can be removed
from the buffer after it has been copied.

TxDataCntPtr Remaining Tx data after completion of this call.

Return code

BufReq_ReturnType BUFREQ_OK: Data has been copied to the transmit buffer completely as
requested.

BUFREQ_E_NOT_OK: Data has not been copied. Request failed, in case the
corresponding I-PDU was stopped.

BUFREQ_E_BUSY: There is temporarily not enough data to be transmitted.
Retry later.

Functional Description

At invocation of Dcm_CopyTxData the DCM module copies the requested transmit data with ID PduId from
its internal transmit buffer to the location specified by the PduInfoPtr. The function Dcm_CopyTxData also
calculates and sets the TxDataCntPtr to the amount of remaining bytes for the transmission of this data.

If RetryInfoPtr is NULL_PTR or if TpDataState is equal to TP_DATACONF, the DCM shall always copy the
next fragment of data to the SduDataPtr.

No TpDataState other than TP_DATACONF is supported by the current DCM implementation.

Particularities and Limitations

> ServiceID = 0x04

> Reentrant for different PduIds. Non reentrant for the same PduId.

> This function is synchronous.

Table 6-30 Dcm_CopyTxData()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 120
based on template version 5.0.0

6.4.3.2.5 Dcm_TpTxConfirmation()

Prototype

PduR AR 4.0.3 (DCM Version >= 1.00.00)

void Dcm_TpTxConfirmation (PduIdType DcmTxPduId, NotifResultType Result)

PduR AR 4.1.2 (DCM Version >= 2.02.00)

void Dcm_TpTxConfirmation (PduIdType DcmTxPduId, Std_ReturnType Result)

Parameter

DcmTxPduId ID of DCM I-PDU that has been transmitted.

Range: 0..(maximum number of I-PDU IDs transmitted by DCM) – 1

Result PduR AR 4.0.3:

NTFRSLT_OK if the complete N-PDU has been transmitted.

any other value: an error occurred during transmission, the DCM can unlock
the transmit buffer.

PduR AR 4.1.2:

E_OK: the complete N-PDU has been transmitted.

E_NOT_OK: an error occurred during transmission, the DCM can

unlock the transmit buffer

Return code

void N/A

Functional Description

This is called by the PduR to confirm an end of transport protocol (e.g. CanTp) transmission.

Particularities and Limitations

> ServiceID = 0x05

> This function is reentrant.

> This function is synchronous.

> The prototype of the API depends on the AR version of the PduR (please refer to chapter 9.17 How to
Deal with the PduR AR version).

Table 6-31 Dcm_TpTxConfirmation()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 121
based on template version 5.0.0

6.4.3.2.6 Dcm_TxConfirmation()

Prototype

void Dcm_TxConfirmation (PduIdType DcmTxPduId)

Parameter

DcmTxPduId ID of DCM I-PDU that has been transmitted.

Range: 0..(maximum number of I-PDU IDs transmitted by DCM) – 1

Return code

void N/A

Functional Description

This is called by the PduR to confirm an end of interface (e.g. CanIf) transmission.

Particularities and Limitations

> ServiceID = 0xA1

> This function is reentrant.

> This function is synchronous.

Table 6-32 Dcm_TxConfirmation()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 122
based on template version 5.0.0

6.4.3.3 AUTOSAR 3

6.4.3.3.1 Dcm_ProvideRxBuffer()

Prototype

BufReq_ReturnType Dcm_ProvideRxBuffer (PduIdType DcmRxPduId, PduLengthType
TpSduLength, PduInfoType** PduInfoPtr)

Parameter

DcmRxPduId Identifies the DCM data to be received. This information is used within the
DCM to distinguish two or more receptions at the same time.

TpSduLength The overall length of the message being received.

PduInfoPtr Pointer to pointer to PduInfoType containing data pointer and length of a
receive buffer, which is provided by the DCM.

Note that certain TP's will put an initial value inside the length buffer, which is
the minimal size of the RxBuffer. This value is ignored by the DCM.

Return code

BufReq_ReturnType BUFREQ_OK: buffer has been successfully provided.

BUFREQ_E_OVFL: no buffer provided, available buffer is too small.

BUFREQ_E_NOT_OK: no buffer provided, request failed.

Functional Description

Called at least once upon reception by a lower layer TP to request a buffer, where the received data will be
stored.

When called multiple times, the DCM expects that the previously provided buffer has been filled up
completely.

Particularities and Limitations

> ServiceID = 0x02

> Reentrant for different PduIds. Non reentrant for the same PduId.

> This function is synchronous.

Table 6-33 Dcm_ProvideRxBuffer ()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 123
based on template version 5.0.0

6.4.3.3.2 Dcm_RxIndication()

Prototype

void Dcm_RxIndication (PduIdType DcmRxPduId, NotifResultType Result)

Parameter

DcmRxPduId ID of DCM I-PDU that has been received. Identifies the data that has been
received.

Range: 0..(maximum number of I-PDU IDs received by DCM) – 1

Result NTFRSLT_OK: The complete I-PDU has been received and is stored in the
receive buffer.

any other value: The I-PDU has not been received; the receive buffer can be
unlocked by the DCM.

Return code

void N/A

Functional Description

This is called by the PduR to indicate the completion of a reception.

Particularities and Limitations

> ServiceID = 0x03

> This function is reentrant.

> This function is synchronous.

Table 6-34 Dcm_RxIndication()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 124
based on template version 5.0.0

6.4.3.3.3 Dcm_ProvideTxBuffer()

Prototype

BufReq_ReturnType Dcm_ProvideTxBuffer (PduIdType DcmTxPduId, PduInfoType**
PduInfoPtr, PduLengthType Length)

Parameter

DcmTxPduId Identifies the DCM data to be sent. This information is used to derive the PCI
information within the transport protocol. The value has to be same as in the
according service call PduR_DcmTransmit().

PduInfoPtr Pointer to pointer to PduInfoStructure containing data pointer and length of a
transmit buffer which is provided by the DCM.

Length Minimum buffer size requested by the lower layer.

A length of zero indicates that the length of the buffer can be of arbitrary size
(larger than zero). The Length parameter is expected by DCM to be always
zero.

Return code

BufReq_ReturnType BUFREQ_OK: buffer has been successfully provided.

BUFREQ_E_NOT_OK: no buffer provided, request failed.

BUFREQ_E_BUSY: There is temporarily not enough data to be transmitted.
Retry later.

Functional Description

Called by a lower layer TP to request a buffer with data to be transmitted.

Particularities and Limitations

> ServiceID = 0x04

> Reentrant for different PduIds. Non reentrant for the same PduId.

> This function is synchronous.

Table 6-35 Dcm_ProvideTxBuffer ()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 125
based on template version 5.0.0

6.4.3.3.4 Dcm_TxConfirmation()

Prototype

void Dcm_TxConfirmation (PduIdType DcmTxPduId, NotifResultType Result)

Parameter

DcmTxPduId ID of DCM I-PDU that has been transmitted.

Range: 0..(maximum number of I-PDU IDs transmitted by DCM) – 1

Result NTFRSLT_OK if the complete I-PDU has been transmitted.

any other value: an error occurred during transmission, the DCM can unlock
the transmit buffer.

Return code

void N/A

Functional Description

This is called by the PduR to confirm an end of transmission.

Particularities and Limitations

> ServiceID = 0x05

> This function is reentrant.

> This function is synchronous.

Table 6-36 Dcm_TxConfirmation()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 126
based on template version 5.0.0

6.4.4 CanTp

6.4.4.1 Dcm_OnRequestDetection()

Prototype

void Dcm_OnRequestDetection (PduIdType canTpRxPduId, uint8 tpAddrExtension)

Parameter

canTpRxPduId Represents the CanIf to CanTp RxPduId of the request.

tpAddrExtension Defines the address extension byte value of the message.

Return code

void N/A

Functional Description

This API will be called by the CanTp each time a new TP CAN frame of type first-frame or single-frame is
received. The DCM will check whether this CAN message applies to any DCM connection (i.e. the CAN
message is one of the DCM clients’ physical requests). If so, any ongoing diagnostic (request/response)
transmission over this client connection will be terminated. Additionally if there is service processing in
progress, it will be terminated too.

Particularities and Limitations

> ServiceID = 0xA4

> This function is reentrant.

> This function is synchronous.

> This function is only available if DCM shall support Mixed11 addressing CanTp connections.

Table 6-37 Dcm_ OnRequestDetection()

6.5 Configurable Interfaces

6.5.1 Callout Functions

At its configurable interfaces the DCM defines callout functions. The declarations of the
callout functions are provided by the BSW module, i.e. the DCM. It is the integrator's task
to provide the corresponding function definitions. The definitions of the callouts can be
adjusted to the system's needs. The DCM callout function declarations are described in
the following tables:

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 127
based on template version 5.0.0

6.5.1.1 <Module>_<DiagnosticService>()

Prototype

Std_ReturnType <Module>_<DiagnosticService> (Dcm_OpStatusType OpStatus,
Dcm_MsgContextType* pMsgContext)

Parameter

OpStatus DCM_INITIAL: All In-parameters are valid.

DCM_PENDING: All parameters are still valid. This is the subsequent function
calls after DCM_E_PENDING has been returned.

DCM_CANCEL: All In-parameters are still valid, but since this call is a final
one it must be used to finalize any pending activities only.

DCM_FORCE_RCRRP_OK: (Vendor extension) The enforced RCR-RP
transmission has finished with success.

DCM_FORCE_RCRRP_NOT_OK: (Vendor extension) The enforced RCR-RP
transmission has failed

pMsgContext Message-related information for one diagnostic protocol identifier. The
pointers in pMsgContext points behind the SID.

Return code

Std_ReturnType E_OK: Request was successful.

DCM_E_PENDING: Request is not yet finished.

DCM_E_FORCE_RCRRP: (Vendor extension) Forces a RCR-RP response.
The call out will called again once the response is sent. The OpStatus
parameter will contain the transmission result.

DCM_E_PROCESSINGDONE: (Vendor extension): Can be returned instead
of calling Dcm_ProcessingDone for the current pMsgContext. Saves
application code and stack usage.

Functional Description

DCM calls a function of this kind as soon as a supported diagnostic service, configured to be handled by a
CDD, is received. All of the relevant diagnostic request parameter information is forwarded by DCM through
the pMsgContext function parameter.

The concrete name of the callout is defined by the configuration parameter
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService/DcmDsdSidTabFnc.

Particularities and Limitations

> ServiceID = 0x32

> This function is reentrant.

> This function is asynchronous.

Table 6-38 <Module>_<DiagnosticService>()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 128
based on template version 5.0.0

6.5.1.2 <Module>_<DiagnosticService>_<SubService>()

Prototype

Std_ReturnType <Module>_<DiagnosticService>_<SubService> (Dcm_OpStatusType
OpStatus, Dcm_MsgContextType* pMsgContext)

Parameter

OpStatus DCM_INITIAL: All In-parameters are valid.

DCM_PENDING: All parameters are still valid. This is the subsequent function
calls after DCM_E_PENDING has been returned.

DCM_CANCEL: All In-parameters are still valid, but since this call is a final
one it must be used to finalize any pending activities only.

DCM_FORCE_RCRRP_OK: (Vendor extension) The enforced RCR-RP
transmission has finished with success.

DCM_FORCE_RCRRP_NOT_OK: (Vendor extension) The enforced RCR-RP
transmission has failed.

pMsgContext Message-related information for one diagnostic protocol sub-function identifier.
The pointer in pMsgContext points behind the sub-function.

Return code

Std_ReturnType E_OK: Request was successful.

DCM_E_PENDING: Request is not yet finished.

DCM_E_FORCE_RCRRP: (Vendor extension) Forces a RCR-RP response.
The call out will called again once the response is sent. The OpStatus
parameter will contain the transmission result.

DCM_E_PROCESSINGDONE: (Vendor extension): Can be returned instead
of calling Dcm_ProcessingDone for the current pMsgContext. Saves
application code and stack usage.

Functional Description

DCM calls a function of this kind as soon as a supported diagnostic sub-service, configured to be handled
by a CDD, is received. All of the relevant diagnostic request parameter information is forwarded by DCM
through the pMsgContext function parameter.

The concrete name of the callout is defined by the configuration parameter
/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable/DcmDsdService/DcmDsdSubService/DcmDsdSubSer
viceFnc.

Particularities and Limitations

> ServiceID = 0x33

> This function is reentrant.

> This function is asynchronous.

Table 6-39 <Module>_<DiagnosticService>_<SubService>()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 129
based on template version 5.0.0

6.5.1.3 Dcm_SetProgConditions()

Prototype

Std_ReturnType Dcm_SetProgConditions (Dcm_ProgConditionsType * ProgConditions)

Parameter

ProgConditions Conditions on which the jump to bootloader has been requested.

Return code

Std_ReturnType E_OK: Conditions have correctly been set.

E_NOT_OK: Conditions cannot be set.

DCM_E_PENDING: Conditions set is in progress, a further call to this API is
needed to end the setting.

Functional Description

The Dcm_SetProgConditions callout allows the integrator to store relevant information prior jumping to
bootloader. The context parameters are defined in Dcm_ProgConditionsType.

Particularities and Limitations

> ServiceID = N/A

> This function is not reentrant.

> This function is asynchronous.

Table 6-40 Dcm_SetProgConditions()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 130
based on template version 5.0.0

6.5.1.4 Dcm_GetProgConditions()

Prototype

Dcm_EcuStartModeType Dcm_GetProgConditions (Dcm_ProgConditionsType *
ProgConditions)

Parameter

ProgConditions Conditions on which the jump from the bootloader has been requested.

Return code

Dcm_EcuStartModeType DCM_COLD_START: The ECU starts normally.

DCM_WARM_START: The ECU starts from a bootloader jump. The function
parameter values will be evaluated for further processing.

Functional Description

The Dcm_GetProgConditions callout is called upon DCM initialization and allows determining if a response
($50 or $51) has to be sent depending on request within the bootloader. The context parameters are
defined in Dcm_ProgConditionsType.

Particularities and Limitations

> ServiceID = N/A

> This function is not reentrant.

> This function is synchronous.

Table 6-41 Dcm_GetProgConditions()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 131
based on template version 5.0.0

6.5.1.5 Dcm_Confirmation()

Prototype

void Dcm_Confirmation (Dcm_IdContextType idContext, PduIdType dcmRxPduId,
Dcm_ConfirmationStatusType status)

Parameter

idContext Current context identifier which can be used to retrieve the relation between
request and confirmation.

Within the confirmation, the Dcm_MsgContext is no more available, so the
idContext can be used to represent this relation.

The idContext is also part of the Dcm_MsgContext

dcmRxPduId DcmRxPduId on which the request was received. The source of the request
can have consequences for message processing.

status Status indication about confirmation (differentiate failure indication and normal
confirmation) / The parameter "Result" of "Dcm_TxConfirmation" shall be
forwarded to status depending if a positive or negative responses was sent
before.

Return code

void N/A

Functional Description

This function confirms the successful transmission or a transmission error of a diagnostic service. The
idContext and the dcmRxPduId are required to identify the message which was processed. If there was no
response for this request, this call out is invoked at service processing finish.

Note: This call out is invoked only then when a DCM internal or external <Module>_<DiagnosticService>
service handler has been executed.

Particularities and Limitations

> ServiceID = 41

> Not Reentrant

> This function is synchronous.

Table 6-42 Dcm_Confirmation()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 132
based on template version 5.0.0

6.5.1.6 Dcm_ReadMemory()

Prototype

Dcm_ReturnReadMemoryType Dcm_ReadMemory (Dcm_OpStatusType OpStatus, uint8
MemoryIdentifier, uint32 MemoryAddress, uint32 MemorySize, uint8* MemoryData [,

Dcm_NegativeResponseCodeType* ErrorCode])

Parameter

OpStatus DCM_INITIAL: All In-parameters are valid.

DCM_PENDING: All parameters are still valid. This is the subsequent function
calls after DCM_E_PENDING has been returned.

DCM_CANCEL: All In-parameters are still valid, but since this call is a final
one it must be used to finalize any pending activities only.

DCM_FORCE_RCRRP_OK: (Vendor extension) The enforced RCR-RP
transmission has finished with success.

DCM_FORCE_RCRRP_NOT_OK: (Vendor extension) The enforced RCR-RP
transmission has failed.

MemoryIdentifier MemoryIdentifier Identifier of the Memory Block (e.g. used if memory section
distinguishing is needed)

Note: If it's not used this parameter shall be set to 0.

MemoryAddress Starting address of server memory from which data is to be retrieved.

MemorySize Number of bytes in the MemoryData

MemoryData Data read (Points to the diagnostic buffer in DCM).

ErrorCode Optional parameter. Exists only in AR 4.2.2 or later enabled DCMs.

If written by the application, a specific NRC will be sent back. This NRC is
evaluated only in case DCM_READ_FAILED is returned.

Return code

Dcm_ReturnReadMemory

Type

DCM_READ_OK: read was successful

DCM_READ_FAILED: read was not successful

DCM_READ_PENDING: read is not yet finished

DCM_READ_FORCE_RCRRP: enforce RCR-RP transmission (vendor
extension)

Functional Description

The Dcm_ReadMemory callout is used to request memory data identified by the parameter
memoryAddress and memorySize from the UDS request message. This service is needed for the
implementation of UDS services:

- ReadMemoryByAddress ($23)

- ReadDataByIdentifier ($22) (in case of Dynamical DID defined by memory address)

- ReadDataByPeriodicIdentifier ($2A) (in case of Dynamical DID defined by memory address)

Particularities and Limitations

> ServiceID = 0x26

> This function is not reentrant.

> This function is asynchronous.

Table 6-43 Dcm_ReadMemory()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 133
based on template version 5.0.0

6.5.1.7 Dcm_WriteMemory()

Prototype

Dcm_ReturnWriteMemoryType Dcm_WriteMemory (Dcm_OpStatusType OpStatus, uint8
MemoryIdentifier, uint32 MemoryAddress, uint32 MemorySize, uint8* MemoryData[,

Dcm_NegativeResponseCodeType* ErrorCode])

Parameter

OpStatus DCM_INITIAL: All In-parameters are valid.

DCM_PENDING: All parameters are still valid. This is the subsequent function
calls after DCM_E_PENDING has been returned.

DCM_CANCEL: All In-parameters are still valid, but since this call is a final
one it must be used to finalize any pending activities only.

DCM_FORCE_RCRRP_OK: (Vendor extension) The enforced RCR-RP
transmission has finished with success.

DCM_FORCE_RCRRP_NOT_OK: (Vendor extension) The enforced RCR-RP
transmission has failed.

MemoryIdentifier MemoryIdentifier Identifier of the Memory Block (e.g. used if memory section
distinguishing is needed)

Note: If it's not used this parameter shall be set to 0.

MemoryAddress Starting address of server memory where the data is to be written.

MemorySize Number of bytes in the MemoryData

MemoryData Data to be written (Points to the diagnostic buffer in DCM).

ErrorCode Optional parameter. Exists only in AR 4.2.2 or later enabled DCMs.

If written by the application, a specific NRC will be sent back. This NRC is
evaluated only in case DCM_WRITE_FAILED is returned.

Return code

Dcm_ReturnWriteMemor

yType

DCM_WRITE_OK: write was successful

DCM_WRITE_FAILED: write was not successful

DCM_WRITE_PENDING: write is not yet finished

DCM_WRITE_FORCE_RCRRP: enforce RCR-RP transmission (vendor
extension)

Functional Description

The Dcm_WriteMemory callout is used to write memory data identified by the parameter memoryAddress
and memorySize. This service is needed for the implementation of UDS services :

- WriteMemoryByAddress ($3D)

Particularities and Limitations

> ServiceID = 0x27

> This function is not reentrant.

> This function is asynchronous.

Table 6-44 Dcm_WriteMemory()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 134
based on template version 5.0.0

6.5.1.8 <Diagnostic Session Change Notification Callback>

Prototype

void <Diagnostic Session Change Callback> (Dcm_SesCtrlType formerSesCtrlId,
Dcm_SesCtrlType newSesCtrlId)

Parameter

formerSesCtrlId Specifies the former diagnostic session ID (transition’s source state)

newSesCtrlId Specifies the new diagnostic session ID (transition’s target state)

Return code

- -

Functional Description

Any configured function of this kind will be called at a diagnostic session state transition.

Note:

The function argument values have the same definition as the ones returned by the API
Dcm_GetSesCtrlType().

Please refer also to 9.23 How to Know When the Diagnostic Session Changes for more details on how to
configure such a callback and when it will be called.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

Table 6-45 < Diagnostic Session Change Notification Callback >

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 135
based on template version 5.0.0

6.5.1.9 <Security Access Change Notification Callback>

Prototype

void <Security Access Change Callback> (Dcm_SecLevelType formerSecLevelId,
Dcm_SecLevelType newSecLevelId)

Parameter

formerSecLevelId Specifies the former security access level ID (transition’s source state)

newSecLevelId Specifies the new security access level ID (transition’s target state)

Return code

- -

Functional Description

Any configured function of this kind will be called at a security access level state transition.

Note:

The function argument values have the same definition as the ones returned by the API
Dcm_GetSecurityLevel().

Please refer also to 9.16.2 Calling a Function Implemented Within a CDD Module for more details on how
to configure such a callback and when it will be called.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

Table 6-46 <Security Access Change Notification Callback>

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 136
based on template version 5.0.0

6.5.1.10 Dcm_GetRecoveryStates()

Prototype

Std_ReturnType Dcm_GetRecoveryStates (Dcm_RecoveryInfoType* RecoveryInfo)

Parameter

RecoveryInfo Contains all the information that has to be recovered.

Return code

Std_ReturnType E_OK: Recovery info is available and valid, process it.

DCM_E_PENDING: Recovery info not yet available, call again.

E_NOT_OK: No information to be recovered or result reading failed. DCM will
continue with the default initialized states.

Functional Description

This API will be called by DCM within the first Dcm_MainFunction() call right after the call of Dcm_Init().

For details on the usage of this API, please refer chapter 9.27 How to Recover DCM State Context on ECU
Reset/ Power On.

Note:

- If no recovery of any state is needed (default startup of DCM), then the return value shall always be
E_NOT_OK.

- Before this API is called, DCM will lock any external connections until the result is processed. This
is required in order to be able to switch into a consistent state without any influence from outside.

- For details on the recovered information, please refer the data type definition:
Dcm_RecoveryInfoType.

Particularities and Limitations

> ServiceID = 0xA5

> This function is not reentrant.

> This function is asynchronous.

Table 6-47 Dcm_GetRecoveryStates()

Caution
It is not intended to use Dcm_GetRecoveryStates() as a standalone API. The data it
transfers depends on the DCM implementation version. For optimization reasons, the
data structure uses internal data representation and not any official DCM AR APIs (e.g.
macros for session and security access, or communication channel SNVs). Thus, it
shall be used only if the information provider (Dcm_ProvideRecoveryStates()) has been
used.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 137
based on template version 5.0.0

6.5.1.11 Dcm_FilterDidLookUpResult

Prototype

Std_ReturnType Dcm_FilterDidLookUpResult(Dcm_OpStatusType OpStatus, uint16 Did,

Dcm_DidOpType DidOperation)

Parameter

OpStatus Status of the current operation.

Did Data Identifier to be filtered.

DidOperation DCM_DID_OP_READ: Available for services 0x22, 0x2A.

DCM_DID_OP_WRITE: Available for service 0x2E.

DCM_DID_OP_IO: Available for service 0x2F.

DCM_DID_OP_SCALINGINFO: Available for service 0x24.

DCM_DID_OP_DEFINE: Available for service 0x2C.

Return code

Std_ReturnType E_OK: The DID is (still) active.

DCM_E_PENDING: The DID validation needs more time. Call this API again.

E_NOT_OK: The DID is not active.

Functional Description

This API will be called by DCM to check whether a particular combination of a DID and a DID operation is
still supported. The return of that API is E_OK if that DID is active for the provided DID operation. This API
is used in the filtering feature described in 9.29 How to Handle Multiple Diagnostic Service Variants.

Particularities and Limitations

> This function is not reentrant.

> This function is asynchronous.

Table 6-48 Dcm_FilterDidLookUpResult

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 138
based on template version 5.0.0

6.5.1.12 Dcm_FilterRidLookUpResult

Prototype

Std_ReturnType Dcm_FilterRidLookUpResult(Dcm_OpStatusType OpStatus, uint16 Rid)

Parameter

OpStatus Status of the current operation.

Rid Routine Identifier to be filtered.

Return code

Std_ReturnType E_OK: The RID is (still) active.

DCM_E_PENDING: The RID validation needs more time. Call this API again.

E_NOT_OK: The RID is not active.

Functional Description

This API will be called by DCM to check whether a particular RID is still supported. The return of that API is
E_OK if that RID is active. This API is used in the filtering feature illustrated in 9.29 How to Handle Multiple
Diagnostic Service Variants.

Particularities and Limitations

> This function is not reentrant.

> This function is asynchronous.

Table 6-49 Dcm_FilterRidLookUpResult

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 139
based on template version 5.0.0

6.5.2 Required Port Operation Functions

6.5.2.1 ConditionCheckRead()

Prototype

Std_ReturnType ConditionCheckRead (Dcm_OpStatusType OpStatus,
Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

OpStatus Status of the current operation.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed. A concrete NRC shall be set, otherwise
the DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application, if the conditions to read a data element are
correct.

Particularities and Limitations

> ServiceID = 0x37

> This function is not reentrant.

> This function is synchronous.

> The “OpStatus” parameter is only available if DcmDspDataUsePort is set to
USE_DATA_ASYNCH_CLIENT_SERVER/ USE_DATA_ASYNCH_FNC.

Table 6-50 ConditionCheckRead()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 140
based on template version 5.0.0

6.5.2.2 ReadData() (asynchronous)

Prototype

Std_ReturnType ReadData (Dcm_OpStatusType OpStatus, uint8* Data)

Parameter

OpStatus Status of the current operation.

Data Buffer where the read data shall be copied.

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed. The DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to get a data value of a DID/PID if
DcmDspDataUsePort is set to USE_DATA_ASYNCH_CLIENT_SERVER/ USE_DATA_ASYNCH_FNC.

Particularities and Limitations

> ServiceID = 0x3B

> This function is not reentrant.

> This function is synchronous.

Table 6-51 ReadData() (asynchronous)

6.5.2.3 ReadData() (synchronous)

Prototype

Std_ReturnType ReadData (uint8* Data)

Parameter

Data Buffer where the read data shall be copied.

Return code

Std_ReturnType E_OK: The operation is finished

E_NOT_OK: The operation has failed. The DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to get a data value of a DID/PID if
DcmDspDataUsePort is set to USE_DATA_SYNCH_CLIENT_SERVER/ USE_DATA_ASYNCH_FNC.

Particularities and Limitations

> ServiceID = 0x34

> This function is not reentrant.

> This function is synchronous.

Table 6-52 ReadData() (synchronous)

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 141
based on template version 5.0.0

6.5.2.4 ReadDataLength()

Prototype

Std_ReturnType ReadDataLength (Dcm_OpStatusType OpStatus, uint16* DataLength)

Parameter

OpStatus Status of the current operation.

DataLength Length of the data to be read.

Return code

Std_ReturnType E_OK: The operation is finished

E_NOT_OK: The operation has failed. The DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to return the data length of a data element.

Note: This callout type is available only if the DID has dynamic length.

Particularities and Limitations

> ServiceID = 0x36

> This function is not reentrant.

> This function is synchronous.

> The “OpStatus” parameter is only available if DcmDspDataUsePort is set to
USE_DATA_ASYNCH_CLIENT_SERVER/ USE_DATA_ASYNCH_FNC.

Table 6-53 ReadDataLength()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 142
based on template version 5.0.0

6.5.2.5 WriteData() (dynamic length)

Prototype

Std_ReturnType WriteData (uint8* Data, uint16 DataLength, Dcm_OpStatusType
OpStatus, Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

Data Buffer containing the data to be written.

DataLength Length of the data to be written.

OpStatus Status of the current operation.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed. A concrete NRC shall be set, otherwise
the DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to set the data value of a DID.

Note: This callout type is available only if the DID has dynamic length.

Particularities and Limitations

> ServiceID = 0x3E

> This function is not reentrant.

> This function is synchronous.

> The “OpStatus” parameter is only available if DcmDspDataUsePort is set to
USE_DATA_ASYNCH_CLIENT_SERVER/ USE_DATA_ASYNCH_FNC.

Table 6-54 WriteData() (dynamic length)

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 143
based on template version 5.0.0

6.5.2.6 WriteData() (static length)

Prototype

Std_ReturnType WriteData (uint8* Data, Dcm_OpStatusType OpStatus,
Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

Data Buffer containing the data to be written.

OpStatus Status of the current operation.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed. A concrete NRC shall be set, otherwise
the DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to set the data value of a DID.

Note: This callout type is available only if the DID has constant length.

Particularities and Limitations

> ServiceID = 0x35

> This function is not reentrant.

> This function is synchronous.

> The “OpStatus” parameter is only available if DcmDspDataUsePort is set to
USE_DATA_ASYNCH_CLIENT_SERVER/ USE_DATA_ASYNCH_FNC.

Table 6-55 WriteData() (static length)

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 144
based on template version 5.0.0

6.5.2.7 ReturnControlToECU()

Prototype

Std_ReturnType ReturnControlToECU (Dcm_OpStatusType OpStatus, <ControlMaskType>
ControlMask, Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

OpStatus Status of the current operation.

ControlMask Contains/points to the CEMR from request or equals 0xF..F (all signals) on
lost session/security permissions.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK).

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: This return value is not allowed to be used!

E_NOT_OK: The operation has failed. A concrete NRC shall be set, otherwise
the DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to return control of an IOControl back to the
ECU.

For details about the usage of the ControlMask parameter and the possible ControlMaskTypes, please
refer to chapter 5.22.3 Implementation Aspects of InputOutputControlByIdentifier ($2F).

Particularities and Limitations

> ServiceID = 0x39

> This function is not reentrant.

> This function is synchronous.

> The “OpStatus” parameter is only available if DcmDspDataUsePort is set to
USE_DATA_ASYNCH_CLIENT_SERVER/ USE_DATA_ASYNCH_FNC.

> The DCM_E_PENDING return value is not allowed to be used due to the fact that this operation shall
always be executed synchronously. Refer to 5.22.3 Implementation Aspects of
InputOutputControlByIdentifier ($2F) for details.

> The “ControlMask” parameter is only available if DcmDspDidControlMask is set to
“DCM_CONTROLMASK_EXTERNAL”.

Table 6-56 ReturnControlToECU()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 145
based on template version 5.0.0

6.5.2.8 ResetToDefault()

Prototype

Std_ReturnType ResetToDefault (Dcm_OpStatusType OpStatus, <ControlMaskType>
ControlMask, Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

OpStatus Status of the current operation.

ControlMask Contains/points to the CEMR from request.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed. A concrete NRC shall be set, otherwise
the DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to reset an IOControl to default value.

For details about the usage of the ControlMask parameter and the possible ControlMaskTypes, please
refer to chapter 5.22.3 Implementation Aspects of InputOutputControlByIdentifier ($2F).

Particularities and Limitations

> ServiceID = 0x3C

> This function is not reentrant.

> This function is synchronous.

> The “OpStatus” parameter is only available if DcmDspDataUsePort is set to
USE_DATA_ASYNCH_CLIENT_SERVER/ USE_DATA_ASYNCH_FNC.

> The “ControlMask” parameter is only available if DcmDspDidControlMask is set to
“DCM_CONTROLMASK_EXTERNAL”.

Table 6-57 ResetToDefault()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 146
based on template version 5.0.0

6.5.2.9 FreezeCurrentState()

Prototype

Std_ReturnType FreezeCurrentState (Dcm_OpStatusType OpStatus, <ControlMaskType>
ControlMask, Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

OpStatus Status of the current operation.

ControlMask Contains/points to the CEMR from request.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed. A concrete NRC shall be set, otherwise
the DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to freeze the current state of an IOControl.

For details about the usage of the ControlMask parameter and the possible ControlMaskTypes, please
refer to chapter 5.22.3 Implementation Aspects of InputOutputControlByIdentifier ($2F).

Particularities and Limitations

> ServiceID = 0x3A

> Not Reentrant

> This function is synchronous.

> The “OpStatus” parameter is only available if DcmDspDataUsePort is set to
USE_DATA_ASYNCH_CLIENT_SERVER/ USE_DATA_ASYNCH_FNC.

> The “ControlMask” parameter is only available if DcmDspDidControlMask is set to
“DCM_CONTROLMASK_EXTERNAL”.

Table 6-58 FreezeCurrentState()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 147
based on template version 5.0.0

6.5.2.10 ShortTermAdjustment()

Prototype

Std_ReturnType ShortTermAdjustment (uint8* ControlOptionRecord,
Dcm_OpStatusType OpStatus, <ControlMaskType> ControlMask,

Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

ControlOptionRecord Control option parameter for the adjustment request.

OpStatus Status of the current operation.

ControlMask Contains/points to the CEMR from request.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed. A concrete NRC shall be set, otherwise
the DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to adjust the IO signal.

For details about the usage of the ControlMask parameter and the possible ControlMaskTypes, please
refer to chapter 5.22.3 Implementation Aspects of InputOutputControlByIdentifier ($2F).

Particularities and Limitations

> ServiceID = 0x3D

> This function is not reentrant.

> This function is synchronous.

> The “OpStatus” parameter is only available if DcmDspDataUsePort is set to
USE_DATA_ASYNCH_CLIENT_SERVER/ USE_DATA_ASYNCH_FNC.

> The “ControlMask” parameter is only available if DcmDspDidControlMask is set to
“DCM_CONTROLMASK_EXTERNAL”.

Table 6-59 ShortTermAdjustment()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 148
based on template version 5.0.0

6.5.2.11 GetScalingInformation()

Prototype

Std_ReturnType GetScalingInformation(Dcm_OpStatusType OpStatus, uint8*
ScalingInfo, Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

OpStatus Status of the current operation.

ScalingInfo Buffer where the read scaling info data shall be copied.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed. A concrete NRC shall be set, otherwise
the DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to read the scaling information of the
corresponding data signal.

Particularities and Limitations

> ServiceID = 0x38

> This function is not reentrant.

> This function is synchronous.

> The “OpStatus” parameter is only available if DcmDspDataUsePort is set to
USE_DATA_ASYNCH_CLIENT_SERVER/ USE_DATA_ASYNCH_FNC.

Table 6-60 GetScalingInformation()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 149
based on template version 5.0.0

6.5.2.12 Start()

Prototype

Std_ReturnType Start ([<DataType> <ReqSignalName>,] Dcm_OpStatusType OpStatus,

 [<DataType> <ResSignalName>,] [uint16(*) DataLength,]

 Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

<ReqSignalName> Optional list of parameters.

Exists only if at least one request signal is defined in the configuration for this
RID operation.

For each signal there will be a dedicated function parameter of the data type
derived from the configuration. The parameter name is the same as the ECUC
data container name.

OpStatus Status of the current operation.

<ResSignalName> Optional list of parameters.

Exists only if at least one response signal is defined in the configuration for
this RID operation.

For each signal there will be a dedicated function parameter of the data type
derived from the configuration. The parameter name is the same as the ECUC
data container name.

DataLength Optional parameter. Exists only if either the last request or response signal
has dynamic length.

As IN parameter contains the current request length (for dynamic length RID
requests).

As OUT parameter shall return the actual response length (for dynamic length
RID responses).

The DCM will ignore the returned value on RIDs with static response length.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

DCM_E_FORCE_RCRRP: Forces a RCR-RP response. The service port will
be called again once the RCR-RP response is sent. The OpStatus parameter
will contain the transmission result.

E_NOT_OK: The operation has failed. A concrete NRC shall be set, otherwise
the DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to start a RID execution.

Particularities and Limitations

> ServiceID = N/A

> This function is synchronous.

Table 6-61 Start()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 150
based on template version 5.0.0

6.5.2.13 Stop()

Prototype

Std_ReturnType Stop ([<DataType> <ReqSignalName>,] Dcm_OpStatusType OpStatus,

 [<DataType> <ResSignalName>,] [uint16(*) DataLength,]

 Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

<ReqSignalName> Optional list of parameters.

Exists only if at least one request signal is defined in the configuration for this
RID operation.

For each signal there will be a dedicated function parameter of the data type
derived from the configuration. The parameter name is the same as the ECUC
data container name.

OpStatus Status of the current operation.

<ResSignalName> Optional list of parameters.

Exists only if at least one response signal is defined in the configuration for
this RID operation.

For each signal there will be a dedicated function parameter of the data type
derived from the configuration. The parameter name is the same as the ECUC
data container name.

DataLength Optional parameter. Exists only if either the last request or response signal
has dynamic length.

As IN parameter contains the current request length (for dynamic length RID
requests).

As OUT parameter shall return the actual response length (for dynamic length
RID responses).

The DCM will ignore the returned value on RIDs with static response length.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

DCM_E_FORCE_RCRRP: Forces a RCR-RP response. The service port will
be called again once the RCR-RP response is sent. The OpStatus parameter
will contain the transmission result.

E_NOT_OK: The operation has failed. A concrete NRC shall be set, otherwise
the DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to stop an already started RID execution.

Note: The DCM will call this function even if the concrete RID was not started yet. The application shall take
care about correct sequence execution.

Particularities and Limitations

> ServiceID = N/A

> Not Reentrant

> This function is synchronous.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 151
based on template version 5.0.0

Table 6-62 Stop()

6.5.2.14 RequestResults()

Prototype

Std_ReturnType RequestResults (

 [<DataType> <ReqSignalName>,] Dcm_OpStatusType OpStatus,

 [<DataType> <ResSignalName>,] [uint16(*) DataLength,]

 Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

<ReqSignalName> Optional list of parameters.

Exists only if at least one request signal is defined in the configuration for this
RID operation.

For each signal there will be a dedicated function parameter of the data type
derived from the configuration. The parameter name is the same as the ECUC
data container name.

OpStatus Status of the current operation.

<ResSignalName> Optional list of parameters.

Exists only if at least one response signal is defined in the configuration for
this RID operation.

For each signal there will be a dedicated function parameter of the data type
derived from the configuration. The parameter name is the same as the ECUC
data container name.

DataLength Optional parameter. Exists only if either the last request or response signal
has dynamic length.

As IN parameter contains the current request length (for dynamic length RID
requests).

As OUT parameter shall return the actual response length (for dynamic length
RID responses).

The DCM will ignore the returned value on RIDs with static response length.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

DCM_E_FORCE_RCRRP: Forces a RCR-RP response. The service port will
be called again once the RCR-RP response is sent. The OpStatus parameter
will contain the transmission result.

E_NOT_OK: The operation has failed. A concrete NRC shall be set, otherwise
the DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to read the routine result of a stopped RID
execution.

Particularities and Limitations

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 152
based on template version 5.0.0

> ServiceID = N/A

> Not Reentrant

> This function is synchronous.

Table 6-63 RequestResults()

6.5.2.15 GetSeed() (with SADR)

Prototype

Std_ReturnType GetSeed (uint8* SecurityAccessDataRecord, Dcm_OpStatusType
OpStatus, uint8* Seed, Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

Seed Points to the response seed data.

SecurityAccessDataRe

cord

Points to the request data. If the current security access level does not have
any request data, the pointer is still valid (points behind the sub-function byte).

OpStatus Status of the current operation.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed. A concrete NRC shall be set, otherwise
the DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to provide a security level specific seed.

Particularities and Limitations

> ServiceID = 0x44

> Not Reentrant

> This function is synchronous.

Table 6-64 GetSeed() (with SADR)

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 153
based on template version 5.0.0

6.5.2.16 GetSeed() (without SADR)

Prototype

Std_ReturnType GetSeed (Dcm_OpStatusType OpStatus, uint8* Seed,
Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

Seed Points to the response seed data.

OpStatus Status of the current operation.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed. A concrete NRC shall be set, otherwise
the DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to provide a security level specific seed.

Particularities and Limitations

> ServiceID = 0x45

> Not Reentrant

> This function is synchronous.

Table 6-65 GetSeed() (without SADR)

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 154
based on template version 5.0.0

6.5.2.17 CompareKey()

Prototype

Std_ReturnType CompareKey (uint8* Key, Dcm_OpStatusType OpStatus [,
Dcm_NegativeResponseCodeType* ErrorCode])

Parameter

Key Points to the requested key.

OpStatus Status of the current operation.

ErrorCode Optional parameter. Exists only in AR 4.2.1 or later enabled DCMs

If written by the application, a specific NRC will be sent back. This NRC is
evaluated only in case E_NOT_OK is returned.

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

DCM_E_COMPARE_KEY_FAILED: The received key is not a valid one. NRC
0x35/0x36 will be send accordingly.

E_NOT_OK: The operation has failed. A concrete NRC shall be set. Otherwise
the DCM sends NRC 0x35/0x36 as for return value
DCM_E_COMPARE_KEY_FAILED

Functional Description

This function is a request from the DCM to the application to verify the requested security access level
specific key.

Particularities and Limitations

> ServiceID = 0x47

> Not Reentrant

> This function is synchronous.

Table 6-66 CompareKey()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 155
based on template version 5.0.0

6.5.2.18 Indication()

Prototype

Std_ReturnType Indication (uint8 SID, uint8* RequestData, uint16 DataSize,
uint8 ReqType, uint16 SourceAddress, Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

SID Contains the diagnostic service Id.

RequestData Points to the request data. Points behind the service Id byte.

DataSize Specifies the requested data length (without the SID byte).

ReqType Specifies the diagnostic request type: 0 - physical request, 1 - functional
request.

SourceAddress Contains the diagnostic client source address.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_REQUEST_NOT_ACCEPTED: The diagnostic service shall not be
processed. No response will be sent.

E_NOT_OK: The operation has failed. A concrete NRC shall be set, otherwise
the DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to validate the received diagnostic service,
additionally to the DCM internal validation.

Particularities and Limitations

> ServiceID = N/A

> Not Reentrant

> This function is synchronous.

Table 6-67 Indication()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 156
based on template version 5.0.0

6.5.2.19 Confirmation()

Prototype

Std_ReturnType Confirmation (uint8 SID, uint8 ReqType, uint16 SourceAddress,
Dcm_ConfirmationStatusType ConfirmationStatus)

Parameter

SID Contains the diagnostic service Id.

ReqType Specifies the diagnostic request type: 0 - physical request, 1 - functional
request.

SourceAddress Contains the diagnostic client source address.

ConfirmationStatus Contains the response transmission resp. diagnostic response type.

Return code

Std_ReturnType E_OK: The operation is finished.

E_NOT_OK: The operation has failed. Has no effect on DCM.

Functional Description

This function is a notification from the DCM to the application that a diagnostic service processing is
finished.

Particularities and Limitations

> ServiceID = N/A

> Not Reentrant

> This function is synchronous.

Table 6-68 Confirmation()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 157
based on template version 5.0.0

6.5.2.20 GetDTRValue()

Prototype

Std_ReturnType GetDTRValue (Dcm_OpStatusType OpStatus, uint16* Testval, uint16*
MinLimit, uint16* MaxLimit, DTRStatusType * Status)

Parameter

OpStatus Status of the current operation. Since the operation is synchronous, only
possible value is DCM_INITIAL.

Testval Returns the current test value.

MinLimit Returns the minimum limit.

MaxLimit Returns the maximum limit.

Status Returns the TID status:

- DCM_DTRSTATUS_VISIBLE: all returned values are valid.

- DCM_DTRSTATUS_INVISIBLE: all returned values are invalid.

Return code

Std_ReturnType E_OK: The operation is finished

E_NOT_OK: The operation has failed, DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to report the corresponding MID test data. If the
data is currently not available the Status parameter shall be set to INVISIBLE. DCM will send to the tester
zero values.

Particularities and Limitations

> ServiceID = N/A

> This function is synchronous.

Table 6-69 GetDTRValue()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 158
based on template version 5.0.0

6.5.2.21 RequestControl()

Prototype

Std_ReturnType RequestControl (uint8* OutBuffer, uint8* InBuffer)

Parameter

OutBuffer Points to the response routine control data. If the current TID does not have
any data, the pointer is still valid (points behind the TID parameter).

InBuffer Points to the request routine control data. If the current TID does not have any
data, the pointer is still valid (points behind the TID parameter).

Return code

Std_ReturnType E_OK: The operation is finished

E_NOT_OK: The operation has failed, DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to start a TID execution.

Particularities and Limitations

> ServiceID = N/A

> This function is synchronous.

Table 6-70 RequestControl()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 159
based on template version 5.0.0

6.5.2.22 GetInfotypeValueData()

Prototype

Std_ReturnType GetInfotypeValueData (Dcm_OpStatusType OpStatus, uint8*
DataValueBuffer [, uint8* DataValueBufferSize])

Parameter

OpStatus Status of the current operation.

DataValueBuffer Points to the response of the VID data.

DataValueBufferSize Optional parameter. Exists only in AR 4.2.2 or later enabled DCMs.

The input value is the total/maximum size of the VID data (incl. NODI) in
bytes, configured in DCMs ECUC file (refer to 5.8.4).

The output value is the current size of the VID data (incl. NODI) in bytes,
returned by the application.

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed, DCM sends NRC 0x22.

Functional Description

This function is a request from the DCM to the application to read the corresponding vehicle information. As
long as the data is temporarily not available, the DCM_E_PENDING code shall be returned. Once the data
is available, the E_OK shall be used to acknowledge that.

The returned data size (via DataValueBufferSize) shall always be less or equal to the value passed by

DCM as input.

Refer to chapter 9.31 How to Enable Support of OBD VIDs with Dynamic Length for details.

Particularities and Limitations

> ServiceID = 0x60 (introduced first with AR 4.3.0 DCM SWS)

> This function is asynchronous.

Table 6-71 GetInfotypeValueData()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 160
based on template version 5.0.0

6.5.2.23 StartProtocol()

Prototype

Std_ReturnType StartProtocol (Dcm_ProtocolType ProtocolID)

Parameter

ProtocolID Specifies the protocol ID of the new protocol to be started.

Return code

Std_ReturnType E_OK: The protocol switch is allowed.

DCM_E_PROTOCOL_NOT_ALLOWED: The old protocol shall not be stopped
and the new one is not accepted, DCM sends NRC 0x22 to the new request.

E_NOT_OK: Same as DCM_E_PROTOCOL_NOT_ALLOWED.

Functional Description

This function is a request from the DCM to the application to get permission for switching to a new protocol.
It is called each time a request from a diagnostic client belonging to a protocol other than the currently
active one is received or for the very first diagnostic request (i.e. switches from no active protocol to any
other supported one).

Particularities and Limitations

> ServiceID = N/A

> This function is synchronous.

Table 6-72 StartProtocol()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 161
based on template version 5.0.0

6.5.2.24 IsDidAvailable()

Prototype

Std_ReturnType IsDidAvailable (uint16 DID, Dcm_OpStatusType OpStatus,
Dcm_DidSupportedType* supported)

Parameter

DID The DID to be checked for active in the current range.

OpStatus Status of the current operation.

supported Returns the information whether the DID is a supported one:

DCM_DID_SUPPORTED: requested DID is a valid one;

DCM_DID_NOT_SUPPORTED: requested DID is not a valid one;

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed. The DCM will treat the DID as
unsupported one.

Functional Description

This function is a request from the DCM to the application to get information whether the requested DID,
from a supported DID range is really a valid one or not.

Note: This operation is only available if the corresponding DID range has been specified to have gaps (i.e.
not all DIDs within the range are valid ones).

Particularities and Limitations

> ServiceID = 0x3F

> This function is not reentrant.

> This function is asynchronous.

Table 6-73 IsDidAvailable ()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 162
based on template version 5.0.0

6.5.2.25 ReadDidData()

Prototype

Std_ReturnType ReadDidData (uint16 DID, uint8* Data, Dcm_OpStatusType OpStatus,
uint16* DataLength, Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

DID The DID which data will be read.

Data Buffer where the read data shall be copied.

OpStatus Status of the current operation.

DataLength Actual length of the read data.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed. The DCM sends NRC 0x22, if
ErrorCode is not set.

Functional Description

This function is a request from the DCM to the application to get the data of a concrete DID within a DID
range.

Particularities and Limitations

> ServiceID = 0x40

> This function is not reentrant.

> This function is synchronous.

Table 6-74 ReadDidData()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 163
based on template version 5.0.0

6.5.2.26 WriteDidData()

Prototype

Std_ReturnType WriteDidData (uint16 DID, uint8* Data, Dcm_OpStatusType
OpStatus, uint16* DataLength, Dcm_NegativeResponseCodeType* ErrorCode)

Parameter

DID The DID which data will be written.

Data Buffer where the requested data shall be copied from.

OpStatus Status of the current operation.

DataLength Actual length of the data to be written.

ErrorCode NRC to be sent in the negative response in case of failure (E_NOT_OK)

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed. The DCM sends NRC 0x22, if
ErrorCode is not set.

Functional Description

This function is a request from the DCM to the application to write the requested data of a concrete DID
within a DID range.

Particularities and Limitations

> ServiceID = 0x41

> This function is not reentrant.

> This function is synchronous.

Table 6-75 WriteDidData()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 164
based on template version 5.0.0

6.5.2.27 GetSecurityAttemptCounter()

Prototype

Std_ReturnType GetSecurityAttemptCounter(Dcm_OpStatusType OpStatus, uint8*
AttemptCounter)

Parameter

OpStatus Status of the current operation.

AttemptCounter Contains the stored attempt-counter value.

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed. The counter value will be assumed to
be zero. Note: The delay-timer could be started, depending on the
configuration (see below).

Functional Description

Once DCM is initialized, DCM requests this function per security level to get the stored attempt-counter
value prior last power-down/reset event.

Particularities and Limitations

> ServiceID = 0x59

> Not Reentrant

> This function is asynchronous.

> Exists for a certain security level only if the security row „DcmDspSecurityAttemptCounterEnabled”
specific parameter is enabled and the security level supports brute-force-attack prevention (i.e. delay
counter/timer).

Table 6-76 GetSecurityAttemptCounter ()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 165
based on template version 5.0.0

6.5.2.28 SetSecurityAttemptCounter()

Prototype

Std_ReturnType SetSecurityAttemptCounter(Dcm_OpStatusType OpStatus, uint8
AttemptCounter)

Parameter

OpStatus Status of the current operation.

AttemptCounter Contains the current attempt-counter value.

Return code

Std_ReturnType E_OK: The operation is finished

DCM_E_PENDING: The operation is not yet finished.

E_NOT_OK: The operation has failed.

Functional Description

Each time the corresponding security level counter value is changes, DCM will first notify the application
calling this API to store the new value prior giving any result to the diagnostic client.

Note:

DCM cannot provide any failed-write counter behavior replacement. It is up to the application to provide at
next GetSecurityAttemptCounter() call an appropriate counter value, resp. just E_NOT_OK. If this API fails
to store the current counter value, the NRC sent back is still one of the appropriate ones 0x35 or 0x36.

Particularities and Limitations

> ServiceID = 0x5A

> Not Reentrant

> This function is asynchronous.

> Exists for a certain security level only if the security row „DcmDspSecurityAttemptCounterEnabled”
specific parameter is enabled and the security level supports brute-force-attack prevention (i.e. delay
counter/timer).

Table 6-77 SetSecurityAttemptCounter ()

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 166
based on template version 5.0.0

6.5.2.29 ReadData() (paged-data-reading)

Prototype

Std_ReturnType ReadData (Dcm_OpStatusType OpStatus, uint8* Data, uint16*
DataLength)

Parameter

OpStatus Status of the current operation.

Data Buffer where the read data shall be copied.

DataLength As IN parameter contains the currently available buffer size.

As OUT parameter shall return the actual data chunk length.

Return code

Std_ReturnType E_OK: The operation is finished, all data chunks are copied

DCM_E_PENDING: Current data chunk read operation is not yet finished.

E_NOT_OK: The operation has failed.

DCM_E_BUFFERTOOLOW: There was more data to be copied, but the

provided buffer was not big enough to fit all of them. The DataLength

parameter contains the amount of currently copied data.

Functional Description

This function is a request from the DCM to the application to get a data value of a DID if
DcmDspDataUsePort is set to USE_PAGED_DATA_ASYNCH_CLIENT_SERVER/
USE_PAGED_DATA_ASYNCH_FNC.

For details on this API usage, please refer to chapter 9.24 How to Save RAM using Paged-Buffer for Large
DIDs.

Particularities and Limitations

> ServiceID = 0xA3

> This function is not reentrant.

> This function is synchronous.

Table 6-78 ReadData() (paged-data-reading)

6.6 Service Ports

6.6.1 Client-Server Interface

A client server interface is related to a Provide Port at the server side and a Require Port
at client side.

6.6.1.1 Provide Ports on DCM Side

At the Provide Ports of the DCM the API functions described in 6.2 are available as
Runnable Entities. The Runnable Entities are invoked via Operations. The mapping from a
SWC client call to an Operation is performed by the RTE. In this mapping the RTE adds
Port Defined Argument Values to the client call of the SWC, if configured.

The following sub-chapters present the Provide Ports defined for the DCM and the
Operations defined for the Provide Ports, the API functions related to the Operations and
the Port Defined Argument Values to be added by the RTE.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 167
based on template version 5.0.0

6.6.1.1.1 DCMServices

Operation API Function Arguments

GetActiveProtocol Dcm_GetActiveProtocol() OUT Dcm_ProtocolType
ActiveProtocol, ERR{E_OK}

GetSesCtrlType Dcm_GetSesCtrlType() OUT Dcm_SesCtrlType SesCtrlType,
ERR{E_OK}

GetSecurityLevel Dcm_GetSecurityLevel() OUT Dcm_SecLevelType SecLevel,
ERR{E_OK}

ResetToDefaultSession Dcm_ResetToDefaultSession() ERR{E_OK}

GetSecurityLevelFixedBytes Dcm_GetSecurityLevelFixedBytes() IN Dcm_SecLevelType secLevel,

OUT uint8 fixedBytes,

INOUT uint8 bufferSize

ERR{E_NOT_OK,
DCM_E_BUFFERTOOLOW}

SetActiveDiagnostic Dcm_SetActiveDiagnostic() boolean Active,

ERR{E_OK}

GetRequestKind Dcm_GetRequestKind() IN uint16 TesterSourceAddress,

OUT Dcm_RequestKindType
RequestKind,

ERR{E_NOT_OK}

Table 6-79 DCMServices

6.6.1.2 Require Ports on DCM Side

At its Require Ports the DCM calls Operations. These Operations have to be provided by
the SWCs by means of Runnable Entities. These Runnable Entities implement the
callback functions expected by the DCM.

The following sub-chapters present the Require Ports defined for the DCM, the Operations
that are called from the DCM and the related Notifications, which are described in chapter
6.4.4.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 168
based on template version 5.0.0

6.6.1.2.1 DataServices_<DataName>

Operation Callout

ConditionCheckRead()

Rte_Call_DataServices_<DataName>_<Operation>

ReadData() (synchronous) /
ReadData() (asynchronous) /

ReadData() (paged-data-reading)

ReadDataLength()

WriteData() (static length) /
WriteData() (dynamic length)

ReturnControlToECU()

ResetToDefault()

FreezeCurrentState()

ShortTermAdjustment()

GetScalingInformation()

Table 6-80 DataServices_<DataName>

6.6.1.2.2 RoutineServices_<RoutineName>

Operation Callout

Start()

Rte_Call_RoutineServices_<RoutineName>_<Operation>

Stop()

RequestResults()

Table 6-81 RoutineServices_<RoutineName>

6.6.1.2.3 SecurityAccess_<SecurityLevelName>

Operation Callout

GetSeed() (with SADR) /
GetSeed() (without SADR)

Rte_Call_SecurityAccess_<SecurityLevelName>_<Operation>

CompareKey()

GetSecurityAttemptCounter()

SetSecurityAttemptCounter()

Table 6-82 SecurityAccess_<SecurityLevelName>

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 169
based on template version 5.0.0

6.6.1.2.4 ServiceRequestManufacturerNotification_<SWC>

Operation Callout

Indication()

Rte_Call_ServiceRequestManufacturerNotification_<SWC>_<Operation>
Confirmation()

Table 6-83 ServiceRequestManufacturerNotification_<SWC>

6.6.1.2.5 ServiceRequestSupplierNotification_<SWC>

Operation Callout

Indication()

Rte_Call_ServiceRequestSupplierNotification_<SWC>_<Operation>
Confirmation()

Table 6-84 ServiceRequestSupplierNotification_<SWC>

6.6.1.2.6 DtrServices_<MIDName>_<TIDName>

Operation Callout

GetDTRValue() Rte_Call_DtrServices_<MIDName>_<TIDName>_<Operation>

Table 6-85 DtrServices_<MIDName>_<TIDName>

6.6.1.2.7 RequestControlServices_<TIDName>

Operation Callout

RequestControl() Rte_Call_RequestControlServices_<TIDName>_<Operation>

Table 6-86 RequestControlServices_<TIDName>

6.6.1.2.8 InfotypeServices_<VEHINFODATA>

Operation Callout

GetInfotypeValueData() Rte_Call_InfotypeServices_<VEHINFODATA>_<Operation>

Table 6-87 InfotypeServices_<VEHINFODATA>

6.6.1.2.9 CallbackDCMRequestServices_<SWC>

Operation Callout

StartProtocol() Rte_Call_CallbackDCMRequestServices_<SWC>_<Operation>

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 170
based on template version 5.0.0

Table 6-88 CallbackDCMRequestServices_<SWC >

6.6.1.2.10 DataServices_DIDRange_<RangeName>

Operation Callout

IsDidAvailable()

Rte_Call_DataServices_DIDRange_<RangeName>_<Operation>
ReadDidData()

WriteDidData()

Table 6-89 DataServices_DIDRange_<RangeName>

6.6.2 Managed Mode Declaration Groups

DCM is a mode manager of the following modes.

ModeDeclarationGroup Description

DcmDiagnosticSessionControl Represents the diagnostic sessions from the
DCM configuration.

DcmCommunicationControl_<ComM_CHANNEL
_SNV>

For each ComM channel, there is a mode
declaration group that represents the
communication state of the channel.

DcmEcuReset Represents the normal ECU reset modes.

DcmModeRapidPowerShutDown Represents the extended ECU reset modes.

DcmControlDTCSetting Represents the DTC setting state.

DcmSecurityAccess Represents the security access level from the
DCM configuration.

Table 6-90 ModeDeclarationGroups managed by DCM

6.6.2.1 DcmDiagnosticSessionControl

Callout Description

Rte_Switch_Dcm_DcmDiagnosticSessionControl_
DcmDiagnosticSessionControl

Called each time a session change occurs. This
call is only a notification and has no effect on any
DCM diagnostic service processing.

Invoked by DiagnosticSessionControl ($10) or S3
timeout.

Table 6-91 DcmDiagnosticSessionControl callouts

Mode Description

DefaultSession Represents the UDS Default session (initial
state).

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 171
based on template version 5.0.0

Mode Description

ProgrammingSession Represents the UDS Programming session.

ExtendedSession Represents the UDS Extended session.

</Dcm/DcmConfigSet/DcmDsp/DcmDspSession/
DcmDspSessionRow> container‘s short-name

Any user defined session.

Table 6-92 DcmDiagnosticSessionControl modes

6.6.2.2 DcmCommunicationControl_<ComM_CHANNEL_SNV>

Callout Description

Rte_Switch_Dcm_DcmCommunicationControl_<C
omMChannelSNV>_
Dcm_DcmCommunicationControl_<ComMChannel
SNV>

Called each time a communication state change
on the corresponding channel occurs. This call is
only a notification and has no effect on any DCM
diagnostic service processing.

Invoked by service CommunicationControl ($28)
or DiagnosticSessionControl ($10) or S3 timeout.

Table 6-93 DcmCommunicationControl _<ComM_CHANNEL_SNV> callouts

Mode Description

DCM_ENABLE_RX_TX_NORM Reception and transmission of application
messages is enabled (initial state).

DCM_ENABLE_RX_DISABLE_TX_NORM Reception of application messages is enabled
but their transmission is disabled.

DCM_DISABLE_RX_ENABLE_TX_NORM Reception of application messages is disabled
but their transmission is enabled.

DCM_DISABLE_RX_TX_NORMAL Reception and transmission of application
messages is disabled.

DCM_ENABLE_RX_TX_NM Reception and transmission of network
management messages is enabled.

DCM_ENABLE_RX_DISABLE_TX_NM Reception of network management messages
is enabled but their transmission is disabled.

DCM_DISABLE_RX_ENABLE_TX_NM Reception of network management messages
is disabled but their transmission is enabled.

DCM_DISABLE_RX_TX_NM Reception and transmission of network
management messages is disabled.

DCM_ENABLE_RX_TX_NORM_NM Reception and transmission of application and
network management messages is enabled.

DCM_ENABLE_RX_DISABLE_TX_NORM_NM Reception of application and network
management messages is enabled but their
transmission is disabled.

DCM_DISABLE_RX_ENABLE_TX_NORM_NM Reception of application and network
management messages is disabled but their
transmission is enabled.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 172
based on template version 5.0.0

Mode Description

DCM_DISABLE_RX_TX_NORM_NM Reception and transmission of application and
network management messages is disabled.

Table 6-94 DcmCommunicationControl_<ComM_CHANNEL_SNV> modes

6.6.2.3 DcmEcuReset

Callout Description

Rte_Switch_Dcm_DcmEcuReset_DcmEcuReset Called each time a power down state change
occurs. This call is a notification but has effect
on the DCM diagnostic service EcuReset ($11)
EcuReset ($11) or DiagnosticSessionControl
($10) processing.

Invoked by EcuReset ($11) or
DiagnosticSessionControl ($10) for bootloader
related sessions.

Rte_SwitchAck_Dcm_DcmEcuReset_DcmEcuReset Called after the Switch API is called to get the
mode transition acknowledged prior continuing
with the EXECUTE mode switch.

Invoked by EcuReset ($11) or
DiagnosticSessionControl ($10) for bootloader
related sessions

Table 6-95 DcmEcuReset callouts

Mode Description

NONE No reset (initial state)

HARD Hard reset target request (service 0x11 0x01)

KEYONOFF KeyOnOff reset target request (service 0x11
0x02)

SOFT Soft reset target request (service 0x11 0x03)

JUMPTOBOOTLOADER Jump to bootloader reset target request
(service 0x10 0x02 or any session with jump
boot support)

JUMPTOSYSSUPPLIERBOOTLOADER Jump to system supplier bootloader reset
target request (service 0x10 0x02 or any
session with jump boot support)

EXECUTE Commits an already made reset target
request.

Table 6-96 DcmEcuReset modes

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 173
based on template version 5.0.0

6.6.2.4 DcmModeRapidPowerShutDown

Callout Description

Rte_Switch_DcmModeRapidPowerShutDown_Dcm
ModeRapidPowerShutDown

Called each time a power down state change
occurs. This call is a notification but has effect
on the DCM diagnostic service EcuReset ($11)
processing.

Invoked by EcuReset ($11)

Rte_SwitchAck_DcmModeRapidPowerShutDown_D
cmModeRapidPowerShutDown

Called after the Switch API is called to get the
mode transition acknowledged prior continuing
with the EXECUTE mode switch.

Invoked by EcuReset ($11)

Table 6-97 DcmModeRapidPowerShutDown callouts

Mode Description

ENABLE_RAPIDPOWERSHUTDOWN Rapid shutdown is enabled (initial state) or
Rapid shutdown is disabled (Service 0x11
0x04)

DISABLE_RAPIDPOWERSHUTDOWN Rapid shutdown is disabled (Service 0x11
0x05)

Table 6-98 DcmModeRapidPowerShutDown modes

6.6.2.5 DcmControlDTCSetting

Callout Description

Rte_Switch_Dcm_DcmControlDtcSetting_DcmCon
trolDtcSetting

Called each time a DTC setting state change
occurs. This call is only a notification and has no
effect on any DCM diagnostic service processing.

Invoked by ControlDTCSetting ($85),
DiagnosticSessionControl ($10) or S3 timeout.

Table 6-99 DcmControlDTCSetting callouts

Mode Description

ENABLEDTCSETTING DTC setting is enabled (initial state service
0x85 0x01 or DiagnosticSessionControl ($10)
or S3 timeout)

DISABLEDTCSETTING DTC setting is disabled (service 0x85 0x02)

Table 6-100 DcmControlDTCSetting modes

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 174
based on template version 5.0.0

6.6.2.6 DcmSecurityAccess

FAQ
This mode declaration group is vendor specific one and only available under certain
circumstances. Please refer to chapter 9.16 How to Know When the Security Access
Level Changes for more details.

Callout Description

Rte_Switch_Dcm_DcmSecurityAccess_DcmSecuri
tyAccess

Called each time a security access level change
occurs. This call is only a notification and has no
effect on any DCM diagnostic service processing.

Invoked by SecurityAccess ($27) or
DiagnosticSessionControl ($10) or S3 timeout.

Table 6-101 DcmSecurityAccess callouts

Mode Description

LockedLevel Represents the UDS locked level (initial
state).

</Dcm/DcmConfigSet/DcmDsp/DcmDspSecurity/
DcmDspSecurityRow > container‘s short-name

Any user defined security access level.

Table 6-102 DcmSecurityAccess modes

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 175
based on template version 5.0.0

7 Configuration

7.1 Configuration Variants

The DCM supports the configuration variants

 VARIANT-PRE-COMPILE

 VARIANT-POST-BUILD-SELECTABLE

 VARIANT-POST-BUILD-LOADABLE

 VARIANT-POST-BUILD-LOADABLE-SELECTABLE

The configuration classes of the DCM parameters depend on the supported configuration
variants. For their definitions please see the Dcm_bswmd.arxml file.

7.2 Configurable Attributes

The description of each configurable option is described within its online help in the
Configurator 5 tool.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 176
based on template version 5.0.0

8 AUTOSAR Standard Compliance

8.1 Deviations

Deviation Statement

CallbackDCMRequestServices_<SWC> Operation StopProtocol not supported since
not fully specified in AR 4.0.3 SWS DCM what
a protocol stop really does. Instead a single
protocol switch point is realized by
StartProtocol().

Table 8-1 Deviations to AUTOSAR

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 177
based on template version 5.0.0

8.2 Additions/ Extensions

Additions/Extensions Statement

DCM CPU peak load reduction support. See 9.2

RAM and run time optimization parameters for
multi-client support

See 9.4

Optimized DCM DEM iterator DCM internal design.

Calibrateable configuration parameters See 9.11

Used definition for no active protocol (DCM SWS
AR 4.1.1): DCM_NO_ACTIVE_PROTOCOL

Required since before the very first diagnostic
request is received, there is no active protocol
assigned in DCM. But at the same time the
Dcm_GetActiveProtocol() shall return a valid
value.

Support for DEM AR 4.1.2 API See 9.13

Combined OBD and UDS protocols over a single
client connection

See 9.14

Support for sub-functions 0x17, 0x18 and 0x19
of service Id 0x19.

See ReadDiagnosticInformation ($19)

Notification on security access level state
change

See 9.16

Integration within an AR 3.x environment DCM will be delivered in a preconfigured state
for interaction with BSWs implemented on the
basis of the corresponding AR3 SWS.

Suppression on functional addressed requests See 9.21

Support of paged-buffer data access on DID
signals

See 9.24

Configurable Security-Access level specific fixed
bytes

See 9.25

Extensible keep-alive time period See 9.26

DCM state recovery on reset /power on See 9.27

Alternative solution for diagnostic service variant
handling

See 9.29

Support for externally handled CEMR with more
than four byte control mask.

According to see [1], a CEMR can be only up
to four bytes in size. MICROSAR DCM
extends the SWS by allowing also any size of
CEMR. Refer to
InputOutputControlByIdentifier ($2F) for
details.

Table 8-2 Additions/ Extensions to AUTOSAR

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 178
based on template version 5.0.0

8.3 Limitations

Limitation Statement

OEM specific RoE support. Due to insufficient specification in the DCM
SWS, the RoE support can only be
implemented for specific OEM requirements.

Support of up to 32 protocols Required due to optimized implementation of
service to protocol mapping.

Support of up to 32 concurrent client
connections

Required due to optimized implementation of
concurrent request processing.

Sharing of signals between DIDs not supported Required due to the inability to differentiate
between the callers of a signal (e.g. service
0x22 and 0x2A).

Table 8-3 Limitations to AUTOSAR

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 179
based on template version 5.0.0

9 Using the DCM

This chapter shall give some examples and hints, how to handle common use cases of the
DCM.

9.1 How to Reduce RAM Usage

All diagnostic services in DCM have a constant length so the DCM integrator person can
perform a static buffer pre-calculation for finding the optimal buffer size.

Starting with DCM 7.01.00, Configurator 5 provides a means to estimate each DCM buffer
size, depending on the configured diagnostic services, accessible via this buffer. The
buffer-to-service relation is determined by the DCM protocol configuration entity that refers
to a certain diagnostic service table.

Caution
Depending on the DCM configuration the calculated buffer sizes are either precise or
just estimated values. The calculation algorithm has the goal to assure the minimum
value required so that each service, related to the validated buffer, can be requested
and processed in its simplest form (e.g. on multiple DID reading, that at least one DID
can be read). The worst case could also be calculated, but it will require too much RAM
to be reserved unnecessarily (e.g. it is not considered to be possible to read N-times
the largest DID with a single diagnostic request).

There are two calculation steps:

> The first one verifies that the validated buffer must be set at least to the proposed
value (Error Message). Otherwise runtime errors may occur.

> The second one verifies whether with the currently set buffer size the DCM will be
able to execute the diagnostic service or will ignore the request resp. send negative
responses due to a lack of enough buffer space (Warning Message).

The buffer size calculation considers only diagnostic (sub-)services, that are internally
handled by DCM. Once a diagnostic (sub-)service is redirected to an application
handler, it will be excluded from the buffer size calculation. This is always the case
regardless of the fact if the given diagnostic service was/is completely configured in the
ECUC file (e.g. all related DIDs are available).

In Table 9-1 Diagnostic services with non-trivial DCM Buffer size estimation calculation
method you can find information about the exactness of the buffer size calculation for each
diagnostic services DCM can handle. From this table there are excluded all diagnostic
services that have a trivial calculation formula (e.g. DiagnosticSessionControl ($10)) or
could only be implemented by the application (i.e. non-UDS user-defined diagnostic
services or UDS services for which the DCM does not have any configuration details in
order to make a meaningfull estimation).

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 180
based on template version 5.0.0

Diagnostic Service Buffer Size Calculation Type

 Request Response

RequestCurrentPowertrainDiagnosticData ($01) Precise Precise
1

RequestPowertrainFreezeFrameData ($02) Precise Precise
2

RequestEmissionRelatedDTC ($03) Precise Not estimated
3

RequestOnBoardMonitorTestResults ($06) Precise Precise
4

RequestEmissionRelatedDTCsDetectedDuringCurrentOrLa
stDrivingCycle ($07)

Precise Not estimated
3

RequestControlOfOnBoardSystemTestOrComponent ($08) Precise Precise

RequestVehicleInformation ($09) Precise Precise

RequestEmissionRelatedDTCsWithPermanentStatus ($0A) Precise Not estimated
3

ReadDiagnosticInformation ($19) Precise Precise
5

Not estimated
3

ReadDataByIdentifier ($22) Precise
6
 Minimum estimation

7

ReadMemoryByAddress ($23) Precise
8
 Minimum estimation

9

ReadScalingDataByIdentifier ($24) Precise Precise

SecurityAccess ($27) Precise Precise

ReadDataByPeriodicIdentifier ($2A) Precise
6
 Precise

10

DynamicallyDefineDataIdentifier ($2C) Minimum estimation
11

 Precise

WriteDataByIdentifier ($2E) Precise Precise

InputOutputControlByIdentifier ($2F) Precise Precise

RoutineControl ($31) Precise Precise

WriteMemoryByAddress ($3D) Minimum estimation
9
 Precise

8

ControlDTCSetting ($85) Precise Precise

Table 9-1 Diagnostic services with non-trivial DCM Buffer size estimation calculation method

1
 Based on worst case: “response for six times the largest PID”.

2
 Only if all PIDs accessible via this service have configured PID data size (usually not set, since the DEM

implements the PID data retrieval).
3
 Usually the paged-buffer response will be used, so the final response length is not that much relevant.

4
 Only if DCM knows the OBDMID configuration (refer to 9.30 How to Switch Between OBD DTR Support by

DCM and DEM). Otherwise only the worst case for “SupportedID” OBD MID will be considered.
5
 For all sub-functions with constant length (i.e. 0x01, 0x07, 0x09, 0x0B-0x0E, 0x11 and 0x12).

6
 It is considered that multiple-DIDs can be requested as per ECUC configuration. Refer to the service

configuration chapter for details on the maximum number of DID that can be requested simultaneously in a
single message.
7
 It is guaranteed that the largest configured not dynamically definable DID with no paged-buffer response

can be read at least in a single DID request. Note: The (WWH-)OBD DIDs are not considered as in „
1
“.

8
 The configured ALFIDs are taken into account for this estimation. If no specifc ALFID(s) specified, the worst

case (0x44 or 0x45 in case of MID usage) will be considered.
9
 It is guaranteed that at least one memory byte can be transfered.

10
 UUDT buffer size is not considered here. Only the USDT request/response messages.

11
 It is guaranteed that at least one source item (DID or memory block) can be requested for the

corresponding definition function. Subfunction „clear“ is of course precisly calculated.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 181
based on template version 5.0.0

In some special cases like:

> Reading fault memory data:

> ReadDiagnosticInformation ($19)

> RequestEmissionRelatedDTC ($03)

> RequestEmissionRelatedDTCsDetectedDuringCurrentOrLastDrivingCycle ($07)

> RequestEmissionRelatedDTCsWithPermanentStatus ($0A)

> Reading multiple DIDs in a single request:

> ReadDataByIdentifier ($22)

the required buffer size cannot be estimated or a pessimistic prediction will be applied in
order to guarantee the ECU will always respond.

For the first case (Reading fault memory data), the DCM offers the option to enable
response paged buffer handling, that may reduce the overall required buffer by DCM.
Enabling this option will lead to an increased code ROM usage in DCM due to the added
functionality.

Note
It is recommended always to keep the paged buffer option in DCM enabled to avoid
situations where the tester would not be able to get a positive response when reading
the fault memory content.

To enable the paged buffer handling in DCM for “Reading fault memory data”, just set the
configuration parameter to TRUE:

/Dcm/DcmConfigSet/DcmPageBufferCfg/DcmPagedBufferEnabled

The situation is different for the “Reading multiple DIDs in a single request” case with
standard AUTOSAR approach. In case the tester requests reading more data as the
response buffer can handle, the DCM will respond with NRC 0x14 (ResponseTooLong) to
avoid buffer overflow. The tester shall then use single-DID requests to get the data.

Using the MSR DCM, you have still an option that will allow you to save RAM also for
multiple- or single-DID reading when the DIDs are too large even for a single-DID request.
Please refer to 9.24 How to Save RAM using Paged-Buffer for Large DIDs for details on
this usage.

9.2 How to Reduce DCM Main-Function Run Time Usage

The DCM is designed and optimized for best possible response performance. This means
the DCM main function will perform as much as possible operations per single activation in
order to keep the P2 timings requirements. Additional the DCM internal code is optimized
for short run time in order to lower the CPU burden during the many operations performed
within a single DCM main function activation. But in cases where other BSWs are intensely

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 182
based on template version 5.0.0

involved in the service processing, such as the DEM during reading the fault memory
information, the DCM can no more guarantee for total short run time execution. Therefore,
the DCM offers a configuration option that may reduce the CPU peak load by limiting the
number of iterations of an external BSW API.

After introducing the signal level access on DID data, the CPU peak load can be
significantly affected also by services other than ReadDiagnosticInformation ($19). Such
services are:
> ReadDataByIdentifier ($22)

> ReadDataByPeriodicIdentifier ($2A)

> DynamicallyDefineDataIdentifier ($2C)

Any of these allows multiple DIDs in a single request, that, depending on the total number
of DIDs in a request and the corresponding number of signals in a single DID, can lead to
really long execution times of the Dcm_MainFunction().

To enable the run time limitation in DCM set up the configuration parameter:
/Dcm/DcmConfigSet/DcmGeneral/DcmMaxNumberIterationsPerTask

FAQ
There is no recommended default value for this parameter. It shall be measured during
the integration by testing the worst case of the above mentioned diagnostic services.

Please note that a too low value of this parameter will lower the CPU usage to a
minimum, but will lead to long processing times of a diagnostic request. RCR-RP
responses will be always sent, since the P2 times expire after a few
Dcm_MainFunction() iterations. A compromise between performance and CPU usage
can be found using the Split Task Functions concept. Using this approach, the worker
task will be called more often than the timer task. This will help to achieve less CPU
load per task activation and at the same time more work done per unit of a real time.

9.3 How to Force DCM to not Respond on Requests with Response SIDs

Generally the DCM will replay to any physical addressed not supported service identifier
with a negative response: NRC 0x11 (ServiceNotSupported). This includes also all service
identifier from the diagnostic response Id range [0x40, 0x7F]U[0xC0, 0xFF]. In some cases
it is not allowed to reply to any request service Id from this range.

To specify whether DCM shall reply to any diagnostic response Id or not, set up the
configuration parameter: /Dcm/DcmConfigSet/DcmGeneral/DcmRespondAllRequest.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 183
based on template version 5.0.0

9.4 How to Handle Multiple Diagnostic Clients Simultaneously

The DCM is a single instance component. This means that once a diagnostic client has
sent a request, the server (DCM) is busy until the processing of that request is finished.
While busy, the DCM cannot handle in parallel other clients’ requests. In such a situation
the second client will not get a response.

If it is required to send always a response to a parallel client request, the DCM offers an
option to send NRC 0x21 (BusyRepeatRequest) to any additional request to the main one.

To specify the DCM behavior on a multiple client environment, set up the configuration
parameter:
/Dcm/DcmConfigSet/DcmDsl/DcmDslDiagResp/DcmDslDiagRespOnSecondDeclinedReq
uest

Since there will be reserved RAM for each client the DCM shall be able to communicate
with, the DCM RAM usage may increase drastically for large number of configured DCM
connections.. Also the DCM main function run time, needed to process all parallel
connections, may increase significantly. In the practice, even if the DCM is configured to
communicate with many clients, it is not necessary that all of them will send request to the
same server at the same time. To optimize the RAM and run time resource usage of DCM,
there is configuration option provided that limits the amount of in parallel handled
diagnostic clients:
/Dcm/DcmConfigSet/DcmDsl/DcmDslDiagResp/DcmDslDiagRespMaxNumOfDeclinedReq
uests

9.5 How to Restrict a Diagnostic Service Execution by a Condition

On a reception of a validly formatted diagnostic request DCM evaluates also with it
associated diagnostic session and security access restrictions, defined in Configurator 5.

In case of not matching required states, the DCM automatically rejects the request with the
appropriate NRC.

Additionally, DCM can be configured to consider any ECU specific states, related to a
concrete diagnostic execution. These states are the so called modes that can either be
managed by any BSW, including DCM or a SWC. You can simply define a condition made
of such a mode and create a rule that will be later used by a diagnostic service, sub-
service, DID, RID, etc. as a processing restriction.

An example of a use case using mode rules is service DiagnosticSessionControl ($10). If
you need to restrict session activation by an ECU condition, you have to model this
condition in your SWC and make a reference between the diagnostic session sub-service
you want to restrict and a mode rule that uses this mode in a logical expression.

To configure any processing conditions and rule, refer to the configuration container in
Configurator 5: /Dcm/DcmConfigSet/DcmProcessingConditions

Later, you can reference these rules from the corresponding diagnostic processing object
as an additional restriction to the diagnostic session and security access conditions.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 184
based on template version 5.0.0

9.6 How to Get Notified on a Diagnostic Service Execution Start and End

Usually the DCM validates the requested services without involving the application, only
using the configuration parameters. In some cases the DCM application may need to know
about a diagnostic services execution start and when it is finished. Additionally the
application may need to restrict globally the processing of all or just some diagnostic
services.

For all the above mentioned use cases, the DCM offers two kinds of application notification
groups:

> Manufacturer diagnostic service notification

> System supplier diagnostic service notification

Each of them supports a list of one or more request indication and response confirmation
notification function pairs that will be called on request reception resp. service processing
finishing time.

The differences between these two kinds of notifications are described in within the
corresponding API documentation:

 ServiceRequestManufacturerNotification_<SWC>

 ServiceRequestSupplierNotification_<SWC>

To set up a manufacturer diagnostic service notification, add a configuration container in
the Configurator 5:

/Dcm/DcmConfigSet/DcmDsl/DcmDslServiceRequestManufacturerNotification

To set up a system supplier diagnostic service notification, add a configuration container in
the Configurator 5:

/Dcm/DcmConfigSet/DcmDsl/DcmDslServiceRequestSupplierNotification

FAQ
If you have already specified long lists of notifications and want just temporary to
disable the usage of a certain kind of notifications (e.g. disable all manufacturer
notifications), you don’t need to delete the lists. Just disable the usage of the
notification kind by setting up the corresponding DCM configuration parameter:

/Dcm/DcmConfigSet/DcmGeneral/DcmRequestManufacturerNotificationEnabled

/Dcm/DcmConfigSet/DcmGeneral/ DcmRequestSupplierNotificationEnabled

9.7 How to Limit the Diagnostic Service Processing Time

In general there is no limitation of a diagnostic service processing time. If the DCM
application needs longer time before it can return the final request result i.e. waiting for a
response from an external ECU or during heavy NvM usage from other components, the
DCM monitors the diagnostic P2 times and keeps the diagnostic client notified about the
final response delay. This behavior fully complies with the ISO UDS specification.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 185
based on template version 5.0.0

In some cases, usually required by the car manufacturer, the DCM shall not wait endlessly
for the final operation result, but instead it will have a configured service processing
deadline. If such time monitoring is required, the time limit shall be set high enough, to
avoid abortion of a long service execution. In such a situation the DCM will decouple the
application, take over the service processing and finalize it with a specific NRC (usually
0x10 (GeneralReject)). In that way the diagnostic client will be notified about this critical
situation and it will be given the opportunity to send a reset command to the server to
reinitialize the ECU, since obviously the software is no more in a reliable state.

To enable the application reaction deadline monitoring, set up the DCM configuration
parameter:
/Dcm/DcmConfigSet/DcmDsl/DcmDslDiagResp/DcmDslDiagRespMaxNumRespPend

9.8 How to Jump into the FBL from Service DiagnosticSessionControl ($10)

The DCM provides means for transitions into the FBL from the ECU’s application software.
You can specify in the DCM configuration on which diagnostic session request this
transition shall occur by the following parameter type:

/Dcm/DcmConfigSet/DcmDsp/DcmDspSession/DcmDspSessionRow/DcmDspSessionFor
Boot

9.9 The HIS Compliant Jump into FBL

By default if a diagnostic request for SID $10 with a session Id configured for boot loader
activation is received by the ECU, the DCM stores all necessary information for the FBL
(via callout Dcm_SetProgConditions())and resets the ECU without sending the final
positive response to the request. This will be done by the FBL after the reset. Additionally,
to avoid P2 time violation during the transition (reset) phase, the DCM can be configured
to send a RCR-RP response prior resetting the ECU. For that purpose the DCM
configuration parameter shall be set accordingly:

/Dcm/DcmConfigSet/DcmDsl/DcmDslProtocol/DcmDslProtocolRow/DcmSendRespPendO
nTransToBoot

9.9.1 The HIS Alternative Jump into FBL

In some cases and depending on the FBL used in the ECU it may not be possible to send
a final response from the FBL. In that case the DCM within the ECUs application software
shall first send the final positive response to the diagnostic client and then jump into the
FBL. To achieve this behavior, you have to set the following DCM configuration parameter
to TRUE:

/Dcm/DcmConfigSet/DcmGeneral/DcmResetToFblAfterSessionFinalResposeEnabled

9.10 How to Put DCM in a Non-Default Session at ECU Power-On

The DCM supports also the HIS compliant transition from FBL into the application
software, where the positive response is to be sent after the transition is accomplished.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 186
based on template version 5.0.0

These usually are responses for diagnostic services that cause a reset in the FBL during
the reprogramming process: $10 $01 and $11 $01.

This mechanism can be used to instruct DCM to enter in a non-default session, using
appropriate combination of the parameter values returned by the
Dcm_GetProgConditions(). The callout shall return the value DCM_WARM_START to
notify DCM that the out-parameters are valid and shall be evaluated. The correct values
during this operation are defined below:

Member of the Dcm_ProgConditionsType
parameter

Value

TesterSourceAddr Contains the Id of a tester that communications
with the ECU over the communication bus shall be
kept awaken while the non-default session is
active. The tester Ids are assigned to each DCM
connection in Configurator 5:
/Dcm/DcmConfigSet/DcmDsl/DcmDslProtocol/Dc
mDslProtocolRow/DcmDslConnection/DcmDslMai
nConnection/DcmDslProtocolRxTesterSourceAddr

ProtocolId Not evaluated.

Sid $10

SubFuncId The Id of the session to be activated [$02 -$7E].
Must be a supported session within the DCM
configuration (refer to
5.10DiagnosticSessionControl ($10) for details).

ReprogrammingRequest FALSE (Not evaluated.)

ApplUpdated FALSE

ResponseRequired FALSE

Table 9-2 Initialization of the Dcm_ProgConditionsType for non-default session activation at ECU power-on

9.11 How to Support Calibrateable Configuration Parameters

Vector DCM provides a limited functionality for configuration calibration. The following
chapters describe which DCM objects are possible to be calibrated after ECU
programming.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 187
based on template version 5.0.0

9.11.1 OBD Calibration

FAQ
This feature is first supported in DCM 1.04.00.

In order to activate it, please use the following DCM ECUC parameter:

/Dcm/DcmConfigSet/DcmGeneral/DcmCalibrationOfObdIdsEnabled

DCM implementation is prepared for post-programming calibration regarding the OBD
supported services and their sub-service parameters. With these calibration abilities you
can only disable or re-enable an already configured and supported OBD service and/or
any of its sub-service parameters. The following calibration levels are supported in DCM:

> Deactivate/Re-activate an OBD diagnostic service or complete disabling of OBD
support;

> Deactivate/Re-activate specific OBD related parameter identifiers

> For [6]: PIDs/MIDs/TIDs/VIDs

> For OBD in UDS resp. [7] and [8]:

> DIDs in range 0xF400-0xF8FF

> RIDs in range 0xE000-0xE1FF

9.11.1.1 Calibration of Supported OBD Services

DCM supports this level of calibration only in connection with the How to Get Notified on a
Diagnostic Service Execution Start and End feature. It is recommended to use the
ServiceRequestManufacturerNotification_<SWC> notification in order to block as early as
possible any not supported OBD service identifiers.

Caution
Do not block any UDS OBD services: 0x22 and 0x31. These services are shared
between OBD and the UDS protocol. In case OBD or/and the UDS OBD parameters
shall be disabled, please refer to the chapter 9.11.1.2 Calibration of Supported OBD
Parameter Identifier to disable only the affected sub-service parameters.

The diagnostic service level filtering is completely handled by the application
implementation. This can be achieved by a calibrateable filter object that will be evaluated
within the diagnostic request indication function. This application call shall behave
depending on the filter state as follows:
> Any OBD service(s) is (are) disabled: set the ErrorPtr function parameter to NRC

0x11 (SNS) and return the value DCM_E_NOT to DCM. On functional requests there
will be no response sent back.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 188
based on template version 5.0.0

> Any OBD service(s) shall be re-enabled: just return the value E_OK to DCM.

FAQ
Filtering the OBD services on SID level within the
ServiceRequestManufacturerNotification_<SWC> will avoid the diagnostic session
transition into the default session, required on an OBD request. This is especially
useful when the OBD support shall be completely disabled, and the ECU shall behave
as if it is a general UDS ECU.

9.11.1.2 Calibration of Supported OBD Parameter Identifier

Due to the OBD protocol specifics, the filtering of single OBD related parameter identifier is
completely handled within the DCM. The application shall implement only the write
operation onto the calibrateable DCM configuration objects described in Table 9-3
 Calibrateable OBD “availability parameter identifier” values.

There are two types of OBD parameter identifiers:

> Availability Parameter Identifier (APID):

> For [6]: 0x00, 0x20, 0x40, … 0xE0

> For OBD in UDS resp. [7] and [8]: 0xZZ00, 0xZZ20, 0xZZ40, … 0xZZE0, where ZZ
stays for:

> DIDs: any value in range 0xF4-0xF8

> RIDs: any value in range 0xE0-0xE1.

> Data Parameter Identifier (DPID): any other parameter identifiers

The first type reports to the requester a bit map of the corresponding “data parameter
identifiers” supported by the ECU. These bitmap values always have to be consistent with
the real ECU “data parameter identifier” availability configuration. To guarantee this
consistency and simplify the calibration process, DCM uses calibrateable bitmaps for each
“availability parameter identifier” that shall be supported.

The following table shows the overview of all OBD diagnostic service dependent
calibrateable symbols:

Diagnostic
Service ID

Table Name Availability Condition

0x01 dcmCfg_Svc01SupportedIdMask[n] 1) If SID 0x01 is to be supported.

0x02 dcmCfg_Svc02SupportedIdMask[8] 2) If SID 0x02 is to be supported

0x06 dcmCfg_Svc06SupportedIdMask[n] 1) If SID 0x06 is to be supported.

0x08 dcmCfg_Svc08SupportedIdMask[n] 1) If SID 0x08 is to be supported.

0x09 dcmCfg_Svc09SupportedIdMask[n] 1) If SID 0x09 is to be supported.

0x22 dcmCfg_Svc22SupportedIdMask[n] 3) If SID 0x22 with any OBD DIDs is

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 189
based on template version 5.0.0

Diagnostic
Service ID

Table Name Availability Condition

to be supported.

0x31 dcmCfg_Svc31SupportedIdMask[n] 4) If SID 0x31 with any OBD RIDs is
to be supported.

Table 9-3 Calibrateable OBD “availability parameter identifier” values

1) n = total number of APIDs for this service.

2) always contains all possible APIDs.

3) n = total number of APIDs for the whole range of OBD DIDs [0xF400-0xF8FF].

4) n = total number of APIDs for the whole range of OBD RIDs [0xE000-0xE1FF].

All the above table symbols have a 32bit value according to [6] that represents the bitmap
for the corresponding parameter identifier range, defined by the APID. The only identifier
not available in these bitmaps is the APID 0x00, since this one shall be always supported if
the corresponding OBD diagnostic service is to be supported. For example if SID 0x02 is
to be supported, then PID 0x00 must exist in order SID 0x02 to be able to report the
complete parameter identifier support list. Due to the differences between the two byte
UDS OBD DIDs/RIDs and their single byte OBD equivalence, the following shall be
considered for their calibration:
> If an OBD parameter identifier is to be disabled, its corresponding APID bit value in

the bitmap shall be reset. For the two types of parameter identifiers this means:

> For an APID:

> All bits in the corresponding service table shall be reset as follows:

 All APIDs below the one to be disabled shall reset bit 0.

 The APID to be disabled and the greater ones shall have zero mask value.

Example: for SID 0x02 APID 0x40 shall be disabled:

dcmCfg_Svc02SupportedIdMask [4] =

{

 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX0b /* APID 0x00*/

 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX0b /* APID 0x20*/

 0000 0000 0000 0000 0000 0000 0000 0000b /* APID 0x40*/

 0000 0000 0000 0000 0000 0000 0000 0000b /* APID 0x60*/

};

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 190
based on template version 5.0.0

Note
Disabling APID 0x00 would mean that the corresponding OBD diagnostic service is not
available. Therefore actually the SID level filtering described in 9.11.1.1 Calibration of
Supported OBD Services shall apply.

> For a DPID: The corresponding APID table entry (table index = DPID / 32) bitmap

value shall be changed (reset bit number [DPID % 32]).

Example: If PID 0x51 of SID 0x02 shall be disabled, then the value shall be:

dcmCfg_Svc02SupportedIdMask [4] =

{

 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX1b /* APID 0x00*/

 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX1b /* APID 0x20*/

 XXXX XXXX XXXX XXX0 XXXX XXXX XXXX XXX1b /* APID 0x40*/

 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX0b /* APID 0x60*/

};

> If a UDS OBD parameter identifier is to be disabled, its corresponding APID bit value

in the bitmap shall be reset. Here are the same rules as for the single byte OBD APIDs
to apply, but only within a concrete OBD DID type (i.e. 0xF4XX, 0xF6XX, etc.).

Example: If PID 0xF600 for SID 0x22 shall be disabled, then the value shall be:

dcmCfg_Svc22SupportedIdMask[x] =

{

 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX1b /* APID 0xF400*/

 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX0b /* APID 0xF420*/

 0000 0000 0000 0000 0000 0000 0000 0000b /* APID 0xF600*/

 0000 0000 0000 0000 0000 0000 0000 0000b /* APID 0xF620*/

 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXX0b /* APID 0xF800*/

};

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 191
based on template version 5.0.0

Caution
DCM will react just as proper as the calibrated values are. This means that the
generator of the calibration values is responsible for the correctness of the DCM
configuration. Therefore the following points have to be considered during the new
bitmap values’ generation:

> The APID concatenation has to be taken into account - see examples above how bit
0 of the corresponding APID masks changes.

> It is not possible to enable any APID or DPID that didn’t exist in the initial DCM
configuration. If the newly generated calibration value sets a bit in a bitmap, which
was not set in the initial configuration, DCM will report the calibrated APID value. But
once the tester tries to read the DPID, corresponding to the wrongly set bit in the
APID, DCM will react according to its initial configuration state – the DPID is not
supported.

> If the OBD functionality shall be completely disabled, then:

> The OBD services have to be filtered as described in 9.11.1.1 Calibration of
Supported OBD Services.

> The UDS OBD DIDs/RIDs shall be disabled by resetting all APID specific bitmap
values.

Any faulty calibration will not cause any damage to the ECU or its software, but will
lead to OBD diagnostic protocol violations.

9.12 How and When to Configure Multiple Protocols

DCM provides means for supporting multiple diagnostic protocols in one configuration.
There are several use cases, where multiple protocols shall be used in need of:

> Diagnostic Client(s) Processing Prioritization

> Client Specific Diagnostic Application Timings

> Diagnostic Service Firewall

Please refer to the corresponding use case chapter below for details. Please note that all
these use cases can also be combined.

9.12.1 Diagnostic Client(s) Processing Prioritization

If one or more diagnostic clients shall have privileged access over other clients (e.g. OBD2
client is more important than an OEM service tool), then all clients shall be grouped
according to their priority. These groups are called in the DCM configuration “protocols”
(/Dcm/DcmConfigSet/DcmDsl/DcmDslProtocol/DcmDslProtocolRow). Each protocol
possesses a priority property (DcmDslProtocolPriority) that determines the group
importance. Please refer to the online help of this setting for more details about it.

Once all clients that will communicate with the ECU were classified upon their importance,
their connections

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 192
based on template version 5.0.0

(/Dcm/DcmConfigSet/DcmDsl/DcmDslProtocol/DcmDslProtocolRow/DcmDslConnection/D
cmDslMainConnection) have to be assigned to the corresponding protocol.

FAQ
It is important to know, that in case of protocol prioritization needed, each protocol
available in the DCM configuration shall refer to a dedicated diagnostic buffer. If two
or more protocols do share the same buffer, no concurrent reception of diagnostic
requests will be possible for clients assigned to these protocols. Only in case a non-
default session is already started and the ECU is currently not processing any request,
will give a client with higher priority the opportunity to get access over the ECU (please
refer to Table 9-6 Protocol prioritization during non-default session).

Having specified the diagnostic protocols with their tester connections, corresponding
buffers and priority, your ECU is ready to handle privileged requests.

Under the assumption that for all requests the activation of the new protocol is accepted
(StartProtocol() returns E_OK), the handling of higher priority clients to lower priority ones
(and vice versa) in DCM in different diagnostic sessions is shown in the matrixes below.
The most important situations that can occur between two concurrent clients are focused
by dedicated colors. Please, refer to Table 9-4 Color legend to the protocol prioritization
matrixes for detailed explanation.

Color Meaning

Blue Focuses on the different behavior for a lower or equal priority client when the ECU is
in the default or in a non-default session.

Green Focuses on the situations where a lower or equal priority client will get a NRC 0x21.

Orange Focuses on the situations where an active job of a client will be interrupted by a
higher priority client.

Grey A situation that can never occur due to reactions in the preceded cases.

Table 9-4 Color legend to the protocol prioritization matrixes

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 193
based on template version 5.0.0

Hi-Prio
Client (A)

Idle Rx Ongoing Rx End
Service

Processing Tx Ongoing

Tx End
(Post-

Processing)
Lo-Prio
Client (B)

Idle
Receive
request (A).

Start service
processing
(A).

Continue
service
processing (A).

Continue
response
transmission
(A).

Do post-
processing
(A).

Rx Ongoing
Receive request
(B).

Receive both
requests.

Start service
processing
(A), continue
reception (B).

Continue
service
processing (A),
continue
reception (B).

Continue
response
transmission
(A), continue
reception (B).

Do post-
processing
(A), continue
reception (B).

Rx End
Start service
processing (B).

Continue
reception (A),
start service
processing
(B).

Start service
processing
(A), send NRC

0x21
3)

 (B).

Continue
service
processing (A),
send NRC

0x21
3)

 (B).

Continue
response
transmission
(A), send

NRC 0x21
3)

(B).

Do post-
processing
(A), start
service
processing
(B).

Service
Processing

Continue
service
processing (B).

Continue
reception (A),
continue
service
processing
(B).

Interrupt
service

processing
1)

(B), do post

processing
2)

(B), start
service
processing
(A). N/A N/A N/A

Tx Ongoing

Continue
response
transmission
(B).

Continue
reception (A),
continue
response
transmission
(B).

Interrupt
response
transmission
(B),
do post

processing
2)

(B),
start service
processing
(A). N/A N/A N/A

Tx End
(Post-
Processing)

Do post-
processing (B).

Do post-
processing
(B), continue
reception (A).

Do post-
processing
(B), start
service
processing
(A). N/A N/A N/A

Table 9-5 Protocol prioritization during default session

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 194
based on template version 5.0.0

Hi-Prio
Client (A)

Idle Rx Ongoing Rx End
Service

Processing Tx Ongoing

Tx End
(Post-

Processing)
Lo-Prio
Client (B)

Idle
Receive
request (A).

Start service
processing
(A).

Continue
service
processing (A).

Continue
response
transmission
(A).

Do post-
processing
(A).

Rx Ongoing

Receive request

(B)
 4)

.
Receive both
requests.

Start service
processing
(A), continue
reception (B).

Continue
service
processing (A),
continue
reception (B).

Continue
response
transmission
(A), continue
reception (B).

Do post-
processing
(A), continue
reception (B).

Rx End

Send NRC

0x21
3)

 (B).

Continue
reception (A),
start service
processing
(B).

Start service
processing
(A), send NRC

0x21
3)

 (B).

Continue
service
processing (A),
send NRC

0x21
3)

 (B).

Continue
response
transmission
(A), send

NRC 0x21
3)

(B).

Do post-
processing
(A), start
service
processing
(B).

Service
Processing N/A

Continue
reception (A),
continue
service
processing
(B).

Interrupt
service

processing
1)

(B), do post

processing
2)

(B), start
service
processing
(A). N/A N/A N/A

Tx Ongoing N/A

Continue
reception (A),
continue
response
transmission
(B).

Interrupt
response
transmission
(B),
do post

processing
2)

(B),
start service
processing
(A). N/A N/A N/A

Tx End
(Post-
Processing) N/A

Do post-
processing
(B), continue
reception (A).

Do post-
processing
(B), start
service
processing
(A). N/A N/A N/A

Table 9-6 Protocol prioritization during non-default session

1) If an operation is ongoing (i.e. any callout with an OpStatus parameter that already
has been called with OpStatus == DCM_INITIAL), then this operation is called for a
last time with OpStatus == DCM_CANCEL to stop any further job execution.

2) In case of interruption all configured confirmation functions (i.e.
ServiceRequestManufacturerNotification_<SWC>,
ServiceRequestSupplierNotification_<SWC>) will be called to finalize the jobs e.g.
releasing semaphores, resources, etc. The confirmation status will be negative.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 195
based on template version 5.0.0

3) NRC 0x21 will be sent only if configured (refer to 9.4 How to Handle Multiple
Diagnostic Clients Simultaneously). Otherwise there will be no response at all.

4) The low priority request reception will be granted only if there shall be NRC 0x21 to
be sent back (see 3)). Otherwise there will be no response at all on single frame
request, or FC.OVFW in case of a multi-frame request.

9.12.2 Client Specific Diagnostic Application Timings

If the ECU shall be able to communicate with clients that have the same importance, but
some of the clients are connected to it via bus systems that cannot guarantee the default
P2 timings, then these clients can be assigned to a dedicated protocol. The new protocol
shall fulfill the following requirements:

> share the same diagnostic service table (same services are accessible);

> have the same priority in order to avoid any protocol preemption;

> share the same buffer

Only the protocol specific P2 and P2Star specific parameters:

> /Dcm/DcmConfigSet/DcmDsl/DcmDslProtocol/DcmDslProtocolRow/DcmTimStrP2Serv
erAdjust

> /Dcm/DcmConfigSet/DcmDsl/DcmDslProtocol/DcmDslProtocolRow/DcmTimStrP2Star
ServerAdjust

shall be specified so that the RCR-RP messages can be sent in time to the corresponding
clients.

9.12.3 Diagnostic Service Firewall

If the ECU shall allow only limited diagnostic service access to certain diagnostic clients,
then the multi-protocol feature can be used to specify that.

FAQ
Diagnostic service firewalling support is limited to service identifier level. This means,
that you can specify whether a service is visible to a client or not, but cannot hide
specific sub-functions, DIDs, RIDs, etc. of a service. This also implies that if a
diagnostic service with a given SID is available in more than one diagnostic
service table; all of its corresponding properties must be identical in all
instances of this service. For example: it is not possible to specify different session
and security access execution precondition for the same SID in different tables.

Each protocol refers to a specific diagnostic service table

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 196
based on template version 5.0.0

(/Dcm/DcmConfigSet/DcmDsl/DcmDslProtocol/DcmDslProtocolRow/DcmDslProtocolSIDT
able) that contains all services visible to this protocol. So in case an OBD2 tester shall only
be able to access the OBD2 services (SID 0x01-0x0A), and the service tester shall be able
to access all UDS services and additionally ClearEmissionRelatedDTC ($04), then the
DCM configuration shall look like as follows:

 There shall be two diagnostic service tables
(/Dcm/DcmConfigSet/DcmDsd/DcmDsdServiceTable):

> One for the UDS services and the SID 0x04;

> One for all OBD2 services (incl. SID 0x04);

 There shall be two diagnostic protocols such as:

> The “service tool“ one:

> shall refer to the UDS service table;

> shall contain only the service tester connection

> The OBD2 one:

> shall refer to the OBD2 service table;

> shall contain only the OBD2 tester connection

In such a configuration the UDS tester will always get NRC 0x11 (ServiceNotSupported) if
any OBD2 request other than 0x04 is addressed physically. The OBD2 tester will never get
access to the UDS services – will get either NRC 0x11 (peer-to-peer communication) or no
response (on functionally addressed requests).

9.13 How to Select DEM-DCM Interface Version

DCM is now (since version 2.01.00) capable of supporting both native DEM AR 4.0.3 and
newer AR 4.1.2 API. The API version selection is not performed automatically, since there
is not always a DEM available in the ECU configuration, but indeed there is one used in
the software. Therefore a vendor specific configuration parameter for DEM API version
selection is introduced:/Dcm/DcmConfigSet/DcmGeneral/DcmDemApiVersion. For more
details, please refer to the online help of this parameter.

9.14 How to Support OBD and UDS over a Single Client Connection

Usually if an ECU shall support OBD communication capabilities (i.e. OBD2 diagnostic
protocol), it shall have a dedicated connection to an OBD tester. This allows
protocol/diagnostic client prioritization (refer to 9.12 How and When to Configure Multiple
Protocols) and guaranteed OBD task handling. Nevertheless there are requirements on
supporting both UDS and OBD over a shared diagnostic connection. In this case, no client
prioritization can take place, but still the ECU shall reset any short term changes caused
by an UDS tester right before. This task is automatically performed by DCM. Once a

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 197
based on template version 5.0.0

functionally requested OBD service is received (regardless of whether it is supported or
not by the current ECU configuration), the ECU will enter the default session, just before
the OBD request evaluation and execution starts. This automatic switch is only possible if
all conditions below are fulfilled:

- There is at least one OBD service (i.e. SID in range [0x00-0x0F]) configured for
DCM (as an internal or external service processor implementation).

- There is exactly one diagnostic connection configured in DCM. If there are two or
more connections, please use the multi-protocol prioritization mechanism with
shared diagnostic buffers instead (refer to 9.12 How and When to Configure
Multiple Protocols).

9.15 How to Use a User Configuration File

DCM has an advanced code configuration and code generation tool that completely sets
up the module. However, in exceptional cases there is a need to complete or override
some of the generated parameters. Most common such cases are workarounds for issues
found after product’s release.

Caution
User configuration file content must either be described in this manual or agreed by the
Vector Informatik company prior using it in production code.

A user configuration file has no specific name. It can be any text file form e.g. Dcm.cfg. In
order to use already created user configuration file within the DCM’s code generation
process, you have to specify the full path to this file here:

/Dcm/DcmConfigSet/DcmGeneral/DcmUserConfigFile

9.16 How to Know When the Security Access Level Changes

There are situations where the ECU shall cancel all by the tester activated functions, when
they were secured and the security level changes. In some cases the DCM is able to
handle this internally:

> ReadDataByPeriodicIdentifier ($2A)

> DynamicallyDefineDataIdentifier ($2C)

For other diagnostic services, such as

> InputOutputControlByIdentifier ($2F) (will be automatically reset by DCM only on

(re-)entering default session)

> RoutineControl ($31)

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 198
based on template version 5.0.0

this task has to be performed by the application. For that purpose, the DCM can notify the
application in several ways each time the security level performs a non-self-state-
transition. An example for such a transition is “Level 1 -> Locked”, but not “Locked-
>Locked”. The latter occurs when the default session has been re-activated.

The possible notifications are:

> Invoking a Mode Switch

> Calling a Function Implemented Within a CDD Module

Using these indications the application may stop any running background routines that are
secured.

FAQ
A security access level change can be triggered by any of the following events:

- Any diagnostic session change caused by:

- Service DiagnosticSessionControl ($10);

- TesterPresent Timeout;

- Protocol Preemption;

- A successfully processed security unlocking sequence with service
SecurityAccess ($27)

9.16.1 Invoking a Mode Switch

Whether the DCM shall notify about security access change using a mode switch, you can
specify by configuration parameter:

/Dcm/DcmConfigSet/DcmGeneral/DcmSecurityLevelChangeNotificationEnabled

In case of state change, the DCM will invoke a mode switch for the mode declaration
group DcmSecurityAccess.

9.16.2 Calling a Function Implemented Within a CDD Module

Whether the DCM shall notify about security access changes using simple function calls,
you can specify by using configuration containers:

/Dcm/DcmConfigSet/DcmDsp/DcmDspSecurity/DcmDspSecurityCallback

For each callback you need, a dedicated container of the above type shall be configured
for DCM. The parameter
/Dcm/DcmConfigSet/DcmDsp/DcmDspSecurity/DcmDspSecurityCallback/DcmDspSecurit
yCallbackFnc will specify the function you want to be called by DCM. All these functions
will have the prototype defined in chapter 6.5.1.9 <Security Access Change Notification
Callback>.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 199
based on template version 5.0.0

9.17 How to Deal with the PduR AR version

The DCM supports the interface to the PduR according to AR 3.x, AR 4.0.1, AR 4.0.3 and
AR 4.1.2. Depending on the AR major version there are different configuration strategies.

9.17.1 AUTOSAR 3 Environment

If DCM shall interact with a PduR from an AR3 stack, then the delivery containing this
DCM is already properly pre-configured. You cannot switch to any other PduR AR version.

9.17.2 AUTOSAR 4 Environment

For PduRs from AR 4.x stack, the concrete AR version is automatically derived from the
PduR BSWMD file.

However, it is possible to enforce a specific AR version during integration by defining

MSR_PDUR_API_AR_VERSION in the file Compiler_Cfg.h.

Example: The PduR AR version is set to 4.0.3:

#define MSR_PDUR_API_AR_VERSION 0x403

For a detailed description of the PduR APIs, please refer to chapter 6.4.3 PduR.

9.18 Post-build Support

The DCM is optionally capable of flexible configuration selection at run time. The following
post-build variants are supported:

> variant switching at run-time - Post-build selectable

> variant calibration - Post-build loadable

> combination of both - Post-build loadable selectable

Note
Please refer to the basic software module description (Dcm_bswmd.arxml) file
accompanying your delivery to find which parameters support post-build
parametrization.

This information is also displayed in the DaVinci Configurator 5 tool.

9.18.1 Post-build Variance Level

For all of the above mentioned supported variants, there is certain variance level that is
covered by the module. Since the DCM can be logically divided into two main parts:

> Communication Part

> Diagnostic Services Part

we will define the level of variance for each of them separately.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 200
based on template version 5.0.0

9.18.1.1 Communication Part

DCM’s communication part includes every parameter located under the configuration
container with path /Dcm/Dsl. The few non-post-build capable parameters are defined
within the Dcm_bswmd.arxml file.

In general the communication part of DCM handles configurations with:

> different amount of protocols or/and different protocol properties such as:

> P2/P2 timing adjustments, priorities, buffer assignment, protocol ID, service table
references, etc.;

> different number of connections or/and different connection parameters such as:

> changed diagnostic message identifiers (e.g. multi-ECU use case using the same
ECU for both left and right doors);

> with or without periodic transmission (e.g. when periodic reading is not allowed
within a variant (note: this will be possible once the diagnostic part of DCM
becomes capable of variant switching).

What you cannot change is the number of diagnostic buffers and their size. Since the size
is used for the RTE ports (ServiceRequestManufacturerNotification_<SWC> and
ServiceRequestSupplierNotification_<SWC>) it cannot change after compile time since
RTE is not post-build capable.

9.18.1.2 Diagnostic Services Part

Note
 If you have used the only PBS like option on diagnostic service level, provided in
DCM 5.00.00 and later versions, as an alternative way to handle multiple diagnostic
service variants (described in details in chapter “9.29 How to Handle Multiple
Diagnostic Service Variants”) you may now want to switch to the fully operational PBS
support by DCM described here.

 Since PBL variant handling on diagnostic service is not yet supported, OBD calibration
is still the only way to change variants by calibrating data only operation.

DCM’s diagnostic service part includes every parameter located under the configuration
containers with path /Dcm/Dsd and /Dcm/Dsp.

In general, the PBS support in DCM is limited only to the selection of the following
diagnostic entities per ECU variant:

> Diagnostic Services

> Diagnostic Sub-Services

> DIDs (and their operations)

> RIDs

> Memory Ranges

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 201
based on template version 5.0.0

> OBD PIDs

> OBD MIDs

> OBD TIDs

> OBD VIDs

So, you can only decide whether a certain diagnostic entity is available or not in a certain
ECU variant. This implies that if an entity is available in more than one variant depending
on its type it is not possible to:

> Vary its execution preconditions (i.e. Session and SecurityAccess state references);

> Specify different DID/RID etc. data layout and content;

> Specify variant dependent periodic rates;

> Specify variant dependent scheduler capacity;

> Specify variant RoE events;

> Specify RID specific sub-functions (i.e. disable only the Stop operation for a RID);

> Specify IO DID specific operation (i.e. disable only FreezeCurrentState for an IODID);

> Etc.

Although the Dcm_bswmd.arxml file already limits those ECUC configuration containers
and parameters that are not meant to be variable, there are still some of them that for
specific reasons had to be defined as variant. Here is an abstract list of the
parameter/container kinds that are specified as post-build related, because they can be
absent in a variant, even if they shall not vary in their values:

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 202
based on template version 5.0.0

Rules Description

All the diagnostic entities, listed above as
variant-capable (e.g. DIDs, RIDs, diagnostic
services etc.) that have the same identifier in
the variants they occur shall always have the
same short name.

This is required in order to guarantee that the
corresponding diagnostic entity properties that
are not variable will remain constant in all
variants.

For example, all corresponding containers that
represent a concrete DID must have the same
short name in all variants the DID is available. In
this way, the DID will have the same data layout
in all variants.

Invariant Boolean parameters will be merged
over all variants.

There are some Boolean parameters (e.g.
DcmDspRoeInitOnDSC) that may be missing in a
certain variant (e.g. RoE not supported) thus their
multiplicity or the container they belong to is
specified as post-build capable. The parameter
itself but shall not change its value over all the
variants it applies to.

Depending on the parameter semantic, the final
value for all variants will either be TRUE or
FALSE or last is best.

Invariant Integer parameters will be calculated
over all variants.

There are some Integer parameters (e.g.
DcmDspMaxPeriodicDidToRead) that may be
missing in a certain variant (e.g. where service
ReadDataByIdentifier ($22) is not supported) thus
their multiplicity or the container they belong to is
specified as post-build capable. The parameter
value shall not change its value over all the
variants it applies to.

Depending on the parameter semantic, the final
value for all variants will either be the minimum,
maximum (DcmDspMaxPeriodicDidToRead) or
last is best (DcmDspPowerDownTime).

All configuration entities with execution
preconditions (i.e.
Session/Security/ModeRules) that have the
same identifier in the variants shall have the
same precondition.

For example a diagnostic service shall not vary
its session state dependencies in different
variants.

For details on what shall be considered in case of
execution precondition mismatches, please refer
to chapter 9.18.1.2.1.

OBD related UDS entities are always linked to
their corresponding OBD entities, when such
are available.

MSR DCM always applies UDS-to-OBD
automatic linking for those UDS DIDs and RIDs
that have corresponding OBD PID/MID/TID or
VID.

In the context of multiple variants, there can be
configurations that for example do have only
OBD2 entities (e.g. PIDs) in one variant and OBD
related UDS entities (e.g. DIDs) in another
variant. In this case DCM will still link those
matching UDS and OBD entities as it does in a

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 203
based on template version 5.0.0

single variant configuration. The advantage is –
the application has to implement only one data
provider for the overlapping UDS and OBD
entities.

Table 9-7 Post-build configuration rules on invariant DCM parameters

9.18.1.2.1 Handling of State Execution Preconditions of Variant Diagnostic Entities

The execution preconditions of diagnostic entities are meant to be invariant. Still, there are
some special scenarios that have to be taken into account.

Note
The configuration tool will detect inconsistencies regarding execution preconditions on
related diagnostic entities and warn you with an appropriate message. The message
IDs (DCM05010 - DCM05025) you may get and their explanations are listed in 10.2
Code Generation Time Messages.

Only one kind of diagnostic entity will not be validated upon execution precondition
mismatch: memory ranges.

DCM always calculates an optimized equivalent memory layout, based on the
configured memory ranges and their access type (read/write) related preconditions. If
there are overlapping memory areas with different preconditions, they will be merged
into a corresponding single memory area with new preconditions that allow access to it
under a certain state only if at least one variant resp. overlapping instance within the
same variant allows the access in the given state.

> A diagnostic entity has execution precondition that refers to states not existing in some
variants.

> A special case: The state group (e.g. SecurityAccess) is not available in all variants,
since service SecurityAccess ($27) is not available at all in those variants.

In the described case the affected diagnostic entity will be configured with an empty
list of precondition related states. A list with no state references is always interpreted
as “no execution precondition restrictions”. This of course mismatches the original
semantic of the precondition: “diagnostic entity accessible _only_ in the referenced
state(s)”.

Solution:

Having a diagnostic entity available in a variant where it shall not be executed in any
(remaining) state of a state group sounds implausible. Actually such a diagnostic entity
(e.g. diagnostic service, DID etc.) will never be able to send a positive response and
thus shall not even exist in the affected variant(s).

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 204
based on template version 5.0.0

Example:

Diagnostic service shall be supported only in the programming session. This service is
configured to be available in a variant, where the programming session is not available
at all. As a result the given service shall not exist in the variant too.

What happens if the affected diagnostic entity is not removed from the variant?

DCM will interpret the precondition as “there is no precondition” and will merge these
states over all the variants, allowing the diagnostic entity to be always accessible.

> The execution precondition depends on the preconditions of other related diagnostic
entities.

In order to have a UDS compliant NRC prioritization, the execution preconditions on
diagnostic service level are derived from their sub-service parameters (i.e. sub-
function or parameter identifiers such as DIDs). In other words a diagnostic service
shall be allowed in a specific state if at least one of its sub-service parameters is
allowed in this state.

Example:

For service ReadDataByIdentifier ($22) it is true, that it shall be allowed in the default
session if at least one of the readable DIDs shall be readable in the default session.
Otherwise, the DID specific operation “read” will have a precondition that allows to be
accessed, but any attempt to read the DID will fail, since it will be rejected on higher
processing (diagnostic service) level.

Problem:

The problem the multi-variant handling faces is that if the only DID that has required
service ReadDataByIdentifier ($22) to be accessible in the default session does not
exist in a new variant where other readable DIDs are still available, meaning service
ReadDataByIdentifier ($22) is still required to be available too. This automatically
means that the diagnostic service shall lose its permission to be accessible in the
default session within that variant. Due to the invariance of the diagnostic entity
preconditions (i.e. once allowed and no not allowed), such configurations will cause
warnings to be issued in the configuration tool.

Solution:

There is no real solution for such situations, since the affected service cannot be
removed from the variant. But …

… what would happen in such a configuration?

The ECU will still reject any unsupported in the given state diagnostic entity (in our
example the concrete DID). The only difference will be the NRC sent back by the ECU
when the variant without the readable in the default session DID is active (i.e. instead
of expected NRC 0x7F, 0x31 will be sent). The advantage is that the ECU will have a
constant behavior independent of the active variant and will send the same NRC as in
the variant with the DID readable in the default session.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 205
based on template version 5.0.0

9.18.2 Initialization

All post-build variants have in common that DCM must be first correctly initialized with the
concrete variant. Thus, the variant switching is only possible at run time during the module
initialization phase. For that purpose the DCM API Dcm_Init() has to be called with the
appropriate configuration root pointer. Please refer to the API description for more details.

The configuration pointer is passed by the MICROSAR EcuM based on the post-build
configuration. If no MICROSAR EcuM is used, the procedure of how to find the proper
initialization pointers is out of scope of this document.

9.18.2.1 Error Detection and Handling

The DCM will verify the configuration data before accepting it to initialize the module. If this
verification fails, an EcuM error hook (EcuM_BswErrorHook) is called with an error code
according to Table 9-8.

Error Code Reason

ECUM_BSWERROR_NULLPTR Initialization with a null pointer.

ECUM_BSWERROR_MAGICNUMBER Magic pattern check failed. This pattern is
appended at the end of the initialization root
structure. An error here is a strong indication of
random data, or a major incompatibility
between the code and the configuration data.

ECUM_BSWERROR_COMPATIBILITYVERSION The configuration data was created by an
incompatible generator. This is also tested by
verification of a ‘magic’ pattern, so initialization
with random data can also cause this error
code.

Table 9-8 Error Codes possible during Post-Build initialization failure

If no MICROSAR EcuM is used, this error hooks and the error code constants have to be
provided by the environment. The DCM performs the following verification steps:

1. If the pointer equals NULL_PTR, initialization is rejected.

2. If the initialization structure does not end with the correct magic number it is rejected.

3. If the initialization structure was created by an incompatible generator version it is
rejected (starting magic number check)

Caution
The verification steps performed during initialization are neither intended nor sufficient
to detect corrupted configuration data. They are intended only to detect initialization
with a random pointer, and to reject data created by an incompatible generator version.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 206
based on template version 5.0.0

9.18.3 Post-build Variants

9.18.3.1 Post-build selectable

The MICROSAR Identity Manager (refer to [10]) is an implementation of the AUTOSAR 4
post-build selectable concept. It allows the ECU manufacturer to include several DCM
configurations within one ECU. With post-build selectable and the Identity Manager the
ECU variants are downloaded within the ECUs non-volatile memory (e.g. flash) at ECU
build time. Post-build selectable does not allow modification of DCM aspects after ECU
build time. At the same time, this limitation allows some of the optimization strategies still
to be effective – DCM static code part will be optimized for the variant with maximum
configuration size.

The variant selection is performed at run time by passing the corresponding configuration
root during the module initialization (refer to chapter 9.18.2 Initialization).

9.18.3.2 Post-build loadable

All DCM configuration parameters, that are classified to be post-build selectable, also do
support post-build loadable variant. The differences to the post-build-selectable case are
listed upon their qualification:

> advantages:

> The module’s configuration can be updated after the module’s compile time without
reprogramming the whole ECU software.

> disadvantages:

> Since all of the affected configuration parameters may change after module’s compile
time, the optimization level of the source code is very low.

> Since no maximum configuration size can be pre-calculated, some scalable RAM
blocks are referred not by a direct linker symbol, but through a pointer.

> Only one configuration variant is supported at a time (no variant selection at run time
possible). This disadvantage is avoided if the post-build loadable selectable variant is
chosen instead (refer to chapter 9.18.3.3).

> Greater risks of passing an invalid pointer during module initialization time.

For details about the post-build loadable feature, please refer to [9].

9.18.3.3 Post-build loadable selectable

This variant actually combines both post-build selectable and loadable variants, allowing a
variant selection at run time and at the same time post-build calibration of parameters.

For details on the two mentioned variants, please refer correspondingly to chapters
9.18.3.1 and 9.18.3.2.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 207
based on template version 5.0.0

9.18.3.4 Post-build deleteable

This variant is actually a specific sub-variant of the post-build loadable variants. It allows
deleting of containers that were created at link time, by guaranteeing at the same time the
preservation of other post-build capable parameters’ values. For details about this feature,
refer to the [9].

9.19 Handling with DID Ranges

9.19.1 Introduction

The DIDs in DCM are usually configured in detail: for a concrete DID number, it is
specified the data access type (read, write, etc.), number of data signals the DID contains,
etc. For each data signal it is exactly configured the maximum/concrete length and type of
data acquisition (i.e. RTE C/S port, function call, direct NvM interaction, etc.).

Additionally DCM is able to support a more generic DID access method, using DID ranges.
This method has its advantages and disadvantages:

Advantages:

 You can implement only one service port/function that covers a large group of DIDs
with a similar data access method.

Disadvantages:

 Only read and write operations are allowed when using DID ranges. No IO-control or
scaling information reading is possible.

9.19.2 Implementation Limitations

Current AR DCM SWS ([1]) defines DID range interaction with the application in such a
way that some restrictions must be considered when configuring a DID range.

 DID ranges may not be defined for DIDs 0xF300-0xF3FF (dynamically defined DIDs).

 DID ranges may not be defined for DIDs 0xF400-0xF8FF (OBD/ WWH-OBD DIDs),
when DCM shall handle these on its own.

 If a DID from a DID range shall be included in a dynamically defined DID, the
requested DynamicallyDefineDataIdentifier ($2C) service will validate the source
position and size parameters only upon the configured DID range maximum possible
length (9.19.3 Configuration Aspects). Hence, when the actual length of the DID from
this range is smaller than the maximum length and the stored source position and size
do not match the actual length, the reported data will be fully or partially invalid.

 If a DID from a DID range is used in a multi DID request for service
ReadDataByIdentifier ($22), in order to protect the ECU from out of boundary access
during reading each, DCM will consider at first its maximum length for the total
response length. Later, the application will return the concrete length during reading
DID-Range data, so the positive response will always have the correct length. The only
negative effect is that DCM may reject requests with multiple DIDs that would actually
fit the configured buffer. So choosing values for the maximum DID range length, nearly

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 208
based on template version 5.0.0

equal the size of the diagnostic buffer will mostly fail a multi DID request with a DID
range DID. To avoid such situations, please consider the following guideline:

 Use DID ranges for DIDs that have nearly the same size, which is represented by the
maximum length parameter.

 If not possible to group the DID in the way shown above, try splitting large ranges into
smaller ones in order to have less differences between the shortest and longest DID
of a range.

 Try grouping short DIDs within ranges. If the maximum length of a DID range is far
smaller than the diagnostic buffer, then the multiple DID request limitation will no
longer persist. The best proportion is:

 DCMBufferSize >= DcmDspMaxDidToRead * DcmDspDidRangeMaxDataLength

 The DID range response length calculation limits also the usage of the paged DIDs
(9.24 How to Save RAM using Paged-Buffer for Large DIDs).

 Since DID ranges support read operation, they may be used for periodic reading, but
then the maximum length may not exceed 7 bytes (CAN UUDT reference length).

9.19.3 Configuration Aspects

> If a DID ranges is readable or/and writeable the corresponding UDS services shall be
defined in the configuration tool. Refer to ReadDataByIdentifier ($22) and
WriteDataByIdentifier ($2E) for more information about their configuration aspects.

> Whether a DID range has read or/and write operation, is to be determined via a
corresponding /Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo container (referenced by
/Dcm/DcmConfigSet/DcmDsp/DcmDspDidRange/DcmDspDidRangeInfoRef

Refer to the concrete DID range configuration parameter online help in the configuration
tool for more details about the effect of the parameter value, dependencies to other
configuration parameters or any specific restrictions.

9.20 How to Support DID 0xF186

The ActiveDiagnosticSessionDataIdentifier (0xF186) is used to report the active diagnostic
session within the DCM. If you want DCM to implement the read access to its data, please
follow the configuration steps below:

> A DID shall be defined within the following container:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDid

> Set the identifier of that DID to 0xF186:
/DcmConfigSet/DcmDsp/DcmDspDid/DcmDspDidIdentifier

> Define a read operation for that DID:
/Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidAccess/DcmDspDidRead

> The read function should have the name “Dcm_DidMgr_F186_ReadData”:
/Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataReadFnc

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 209
based on template version 5.0.0

> Select the value USE_DATA_SYNCH_FNC for the following container:
/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataUsePort

> Because only one data byte has to be read the data size should be configured to 8 bit:
/DcmDsp/DcmDspData/DcmDspDataSize

Note
Since this is just a regular DID, that can be used in arbitrary manner, the following has
to be considered if other options related to this DID are set:

> The DID may have also other data signals. If one of them fulfills to the above
conditions, you can still use the DCM’s internal implementation for reporting current
session ID.

> If the DID shall support any other operation than only read (e.g. write), then for the
data signal, that will use the DCM’s internal implementation, the write operation
must be implemented by the application.

> An example for a write functionality: Since DCM does not provide an API for
entering a non-Default session, the only effect such a write function may have is
to put DCM into the default session (refer to Dcm_ResetToDefaultSession())
when the requested value is 0x01. All other values shall be rejected by NRC
0x31.

9.21 How to Suppress Responses to Functional Addressed Requests

Sometimes it may be necessary on a specific connection to suppress all kind of responses
(positive or negative) on functional addressed service requests. This feature will be
automatically activated when Mixed11 addressing (applies to CanTP only) is configured for
that connection. To achieve this, the following addressing type parameter has to be
configured to “DCM_NET_ADDR_MIXED_11”:

/Dcm/DcmConfigSet/DcmDsl/DcmDslProtocol/DcmDslProtocolRow/DcmDslConnection/Dc
mDslMainConnection/DcmDslAddressingType

9.22 How to Support Interruption on Requests with Foreign N_TA

The DCM supports service processing interruption when a request from the same client to
another ECU is detected. This feature is only available for Mixed11 addressing CanTp and
is automatically activated when Mixed11 addressing is configured for that connection.

The addressing type parameter of a connection can be configured here:

/Dcm/DcmConfigSet/DcmDsl/DcmDslProtocol/DcmDslProtocolRow/DcmDslConnection/Dc
mDslMainConnection/DcmDslAddressingType

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 210
based on template version 5.0.0

9.23 How to Know When the Diagnostic Session Changes

There are situations where the ECU shall cancel all by the tester activated functions, when
the diagnostic session changes. In some cases the DCM is able to handle this internally:

> ReadDataByPeriodicIdentifier ($2A)

> DynamicallyDefineDataIdentifier ($2C)

> CommunicationControl ($28)

> ControlDTCSetting ($85)

For other diagnostic services, such as

> InputOutputControlByIdentifier ($2F) (will be automatically reset by DCM only on

(re-)entering default session)

> RoutineControl ($31)

this task has to be performed by the application. For that purpose, DCM already notifies
the application by invoking a mode switch for the mode declaration group
DcmDiagnosticSessionControl.

Additionally for better DCM integration flexibility, there is also another way an application
located in a CDD can be notified – by a simple function call.

Whether the DCM shall notify about diagnostic session changes using simple function
calls, you can specify by using configuration containers:

/Dcm/DcmConfigSet/DcmDsp/DcmDspSession/DcmDspSessionCallback

For each callback you need, a dedicated container of the above type shall be configured
for DCM. The parameter
/Dcm/DcmConfigSet/DcmDsp/DcmDspSession/DcmDspSessionCallback/DcmDspSession
CallbackFnc will specify the function you want to be called by DCM. All these functions will
have the prototype defined in chapter 6.5.1.8 <Diagnostic Session Change Notification
Callback>.

9.24 How to Save RAM using Paged-Buffer for Large DIDs

9.24.1 Introduction

According to all up to now released AUTOSAR DCM SWS documents, the only service
that supports paged-data reading is service ReadDiagnosticInformation ($19).

For any other data access services, i.e. service 0x22 (ReadDataByIdentifier), it is not
possible to implement paged-buffer reading, without the need of fulfilling a lot of conditions
and accepting implementation drawbacks and unnecessary risks.

So if a large amount (measured in hundreds of bytes or even some kilobytes) of data has
to be carried out from the ECU, the DCM shall have at least one buffer that can handle the
entire DID data. To avoid this in most cases unnecessarily RAM resource waste, the

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 211
based on template version 5.0.0

MICROSAR DCM offers a concept for paged-data reading, described in details further
below.

9.24.2 Functionality

In order to provide a user-friendly method for getting data from the application using the
paged-buffer concept, a non-AUTOSAR extension of the already available DataServices
client-server port interface is required: ReadData() (paged-data-reading).

The advantage of this concept is the great flexibility it offers:

> The application has full control of how many bytes to be transferred and for simple
“memory copy only” implementations will be able to optimally fill up the response
transmission buffer.

> Only a single function has to be implemented, that handles the complete data transfer.

> The imported diagnostic description ODX/CDD will not be affected by these changes,
since the ECU project implementer just chooses the kind of the data access, such as it
could be made for direct access to NvM signals.

> If the diagnostic description defines a DID with multiple large signals, for example
four signals with 1000Byte each, for all those signals the new access type can be
used and the DCM can still have a small diagnostic buffer.

> The concept is not defined by AUTOSAR but fits the AUTOSAR conventions.

> Either RTE C/S port or a callback to a complex device driver can be used.

> All DID related ECUC parameters are re-used as long as they are applicable for that
concept.

There are also some possible drawbacks that have to be considered when paged-DID
reading feature is activated:

Reading data using the paged-buffer access, could lead to some unwanted effects:

> Sudden transmission interruptions for multiple DID requests on SID 0x22.

> If the application generally has slow data access, then up to now, without the paged-
data access, it had only caused some RCR-RP responses on the bus. With paged-
buffer enabled read data access, a slow data provision could lead to transmission
abortion by the TP if the N_as/N_cs are significantly shorter than the application data
provision rate.

> Limiting the maximum number of DIDs per service 0x22 request to one will avoid
such interruptions, but may also lead to a major deviation from the OEM diagnostic
requirements.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 212
based on template version 5.0.0

9.24.3 Implementation Limitations

When paged-data access of a DID is intended to be used, there are still some limitations
that have to be considered:

> A DID, whose data shall be read via paged-data access, shall only support read
operation. No paged-data access for writing or I/O control is possible. So only service
0x22 (ReadDataByIdentifier) may use it.

> For DIDs, accessible via service 0x2A (ReadDataByPeriodicIdentifier), paged-data
access shall not be used.

> Since those DIDs (0xF200-0xF2FF) are limited to only 7 bytes of data (on CAN) it
makes also no real sense to apply this concept.

> Paged-data access cannot be used for DIDRanges (see 9.19 Handling with DID
Ranges).

> The support of DIDRanges and the paged-data access DIDs lead to contradictory
concepts regarding the design of service 0x22 processor:

> For paged-data access DID, the length of the DID shall be known prior reading the
data and starting the positive response transmission.

> For DIDRanges due to a lack of appropriate interfaces, the response data length is
first known to DCM after the data reading has finished.

Thus, it is not possible to have both DIDRanges and paged-data access DID within
the same DCM configuration.

> Service 0x2C (DynamicallyDefineDataIdentifier) shall not be supported in DCM
configurations with paged-data access DID.

9.24.4 Usage

From application point of view, paged-data reading concept using the new DataServices
port operation does not differ very much from the AUTOSAR data reading via an
asynchronous port interface.

Any single return value of the new ReadData() (paged-data-reading) is described in details
within its API description table.

For simplification reasons the following pictures show the DCM to application flow reading
a single DID, consisting of a single data signal, that provides its content via paged-data
access. The ReadDataLength() usage in the example is only to show that paged-DID
signals can also have dynamic length.

The following scenarios are covered below:

 Straightforward DID Paged-Data Reading

 Error Handling During DID Paged-Data Reading

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 213
based on template version 5.0.0

9.24.4.1 Straightforward DID Paged-Data Reading

Figure 9-1 Straightforward DID paged-data reading

9.24.4.2 Error Handling During DID Paged-Data Reading

There are certain situations where the paged-data reading can be prematurely aborted:

 sd DID PagedBuffer Normal Flow

Dcm PagedDid_SERVERPduR

loop CopyAv ilableDataChunk to TP

[until a buffer underrun occurs]

Example for source

data temporarily not

available.

loop paged data currently not av ailable

[until other result than DCM_E_PENDING returned]

Example for the last call where all of the data to be transferred are copied to

DCM.

Note: If the data server returns DCM_E_OK, before reaching the

configured/gathered by ReadDataLength operation DID data length, DCM

will invoke DET and cancel the response transmission due to lack on

diagnostic data.

loop copy all left data

[until all data is transfered to TP]

opt gather current data size

[only if the DID data has dynamic length]

Example for data

immediately available

and written into the

paged buffer.

Dcm_TpRxIndication(0x22, PAGED_DID)

Dcm_MainFunctionWorker()

ReadDataLength(DID length) :Std_ReturnType

:DCM_E_OK

ReadData(DCM_INITIAL, Data, AvailableBufferSize) :Std_ReturnType

CopyData()
:DCM_E_BUFFERTOOLOW

PduR_<User:Up>Transmit(Std_ReturnType, PduIdType, PduInfoType*)

:E_OK

Dcm_CopyTxData(BufReq_ReturnType, PduIdType, PduInfoType*, RetryInfoType*, PduLengthType**)

:BUFREQ_OK

Dcm_CopyTxData(BufReq_ReturnType, PduIdType, PduInfoType*, RetryInfoType*, PduLengthType**)

GetNextData()

:BUFREQ_E_BUSY

Dcm_MainFunctionWorker()

ReadData(DCM_PENDING, Data, AvailableBufferSize) :Std_ReturnType

:DCM_E_PENDING

Dcm_CopyTxData(BufReq_ReturnType, PduIdType, PduInfoType*, RetryInfoType*, PduLengthType**)

:BUFREQ_E_BUSY

ReadData(DCM_PENDING, Data, AvailableBufferSize) :Std_ReturnType

:DCM_E_OK

Dcm_CopyTxData(BufReq_ReturnType, PduIdType, PduInfoType*, RetryInfoType*, PduLengthType**)

:BUFREQ_OK

Dcm_TpTxConfirmation(E_OK)

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 214
based on template version 5.0.0

> On response transmission abortion initiated by the TP layer caused by:

> Too slow data provision by the application, which lead to a N_as/N_cs timeout.

> Connection interrupted by the diagnostic client (i.e. no flow-control was sent).

> Other communication bus error has enforced the TP to abort the transmission.

> On protocol preemption via a higher priority client (e.g. OBD vs. UDS);

> On hitting RCR-RP limitation (if configured) caused by:

> Too slow data provision by the application (over several seconds or even minutes).

> Application deadlock that leads to an inability even to initiate the response
transmission.

The figures below depict these situations and how the application is notified about the job
interruption.

The common part is: the ReadData() (paged-data-reading) will be always called with
OpStatus = DCM_CANCEL to notify the application that:

> it can initialize now any internal states (e.g. releasing semaphores),

> this is the last call of this data operation for current diagnostic service processing.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 215
based on template version 5.0.0

Figure 9-2 DID paged-data reading cancelled due to TP layer transmission abortion

 sd DID PagedBuffer Appl Too Slow

Dcm PagedDid_SERVERPduR

loop CopyAv ilableDataChunk to TP

[until a buffer underrun occurs]

Example for source

data temporarily not

available.

loop paged data currently not av ailable

[until other result than DCM_E_PENDING returned]

opt gather current data size

[only if the DID data has dynamic length]

Example for data

immediately available

and written into the

paged buffer.

Example for TP closing the connection due to a N_as/N_cs

timeout detection - the application was not able to provide

sufficient data within the appropriate time.

Dcm_TpRxIndication(0x22, PAGED_DID)

Dcm_MainFunctionWorker()

ReadDataLength(DID length) :Std_ReturnType

:DCM_E_OK

ReadData(DCM_INITIAL, Data, AvailableBufferSize) :Std_ReturnType

CopyData()

:DCM_E_BUFFERTOOLOW

PduR_<User:Up>Transmit(Std_ReturnType, PduIdType, PduInfoType*)

:E_OK

Dcm_CopyTxData(BufReq_ReturnType, PduIdType, PduInfoType*, RetryInfoType*, PduLengthType**)

:BUFREQ_OK

Dcm_CopyTxData(BufReq_ReturnType, PduIdType, PduInfoType*, RetryInfoType*, PduLengthType**)

GetNextData()

:BUFREQ_E_BUSY

Dcm_MainFunctionWorker()

ReadData(DCM_PENDING, Data, AvailableBufferSize) :Std_ReturnType

:DCM_E_PENDING

Dcm_CopyTxData(BufReq_ReturnType, PduIdType, PduInfoType*, RetryInfoType*, PduLengthType**)

:BUFREQ_E_BUSY

Dcm_TpTxConfirmation(E_NOT_OK)

Dcm_MainFunctionWorker()

ReadData(DCM_CANCEL, Data, AvailableBufferSize) :Std_ReturnType

:Don't Care

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 216
based on template version 5.0.0

Figure 9-3 Protocol preemption during DID paged-data access

 sd DID PagedBuffer Premature Job Termination (Protocol Preemption)

Dcm PagedDid_SERVERPduR

loop CopyAv ilableDataChunk to TP

[until a buffer underrun occurs]

Example for source

data temporarily not

available.

loop paged data currently not av ailable

[until other result than DCM_E_PENDING returned]

opt gather current data size

[only if the DID data has dynamic length]

Example for data

immediately available

and written into the

paged buffer.

Example of a protocol

preemption due to a

higher priority

diagnostic client

request reception.

alt Protocol Preemption during reading a paged data

[no additional data from application yet needed]

[waiting for additional data from application]

Dcm_TpRxIndication(0x22, PAGED_DID)

Dcm_MainFunctionWorker()

ReadDataLength(DID length) :Std_ReturnType

:DCM_E_OK

ReadData(DCM_INITIAL, Data, AvailableBufferSize) :Std_ReturnType

CopyData()
:DCM_E_BUFFERTOOLOW

PduR_<User:Up>Transmit(Std_ReturnType, PduIdType, PduInfoType*)

:E_OK

Dcm_CopyTxData(BufReq_ReturnType, PduIdType, PduInfoType*, RetryInfoType*, PduLengthType**)

:BUFREQ_OK

Dcm_CopyTxData(BufReq_ReturnType, PduIdType, PduInfoType*, RetryInfoType*, PduLengthType**)

GetNextData()

:BUFREQ_E_BUSY

Dcm_TpRxIndication(OBD scan tool request)

Dcm_MainFunctionWorker()

ReadData(DCM_CANCEL, Data, AvailableBufferSize) :Std_ReturnType

:Don't Care

Dcm_MainFunctionWorker()

ReadData(DCM_PENDING, Data, AvailableBufferSize) :Std_ReturnType

:DCM_E_PENDING

Dcm_CopyTxData(BufReq_ReturnType, PduIdType, PduInfoType*, RetryInfoType*, PduLengthType**)

:BUFREQ_E_BUSY

Dcm_TpRxIndication(OBD scan tool request)

Dcm_MainFunctionWorker()

ReadData(DCM_CANCEL, Data, AvailableBufferSize) :Std_ReturnType

:Don't Care

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 217
based on template version 5.0.0

Figure 9-4 RCR-RP limit reached during DID paged-data access

9.24.5 Configuration Aspects

Note
The DCM parameter
/Dcm/DcmConfigSet/DcmPageBufferCfg/DcmPagedBufferEnabled has no effect on the
paged-data access of a DID. It affects only the paged-buffer support on service 0x19.
In this way both services (0x19 and 0x22) can be independently configured for using
paged-buffer data reading.

To configure a DID signal for paged-data access, the DCM BSWMD file has to be changed
in the following way:

 sd DID PagedBuffer Premature Job Termination (RCR-RP limit)

Dcm PagedDid_SERVERPduR

opt gather current data size

[only if the DID data has dynamic length]

Example for data

temporarily not

available.

loop Application still cannot prov ide any data

[(result == DCM_E_PENDING) OR (RCR-RP limit reached)]

opt RCR-RP Transmission

[P2/P2Star Timeout]

alt Waiting for the v ery first application data

[RCR-RP limit not reached]

[RCR-RP limit reached]

Dcm_TpRxIndication(0x22, PAGED_DID)

Dcm_MainFunctionWorker()

ReadDataLength(DID length) :Std_ReturnType

:DCM_E_OK

ReadData(DCM_INITIAL, Data, AvailableBufferSize) :Std_ReturnType

CopyData()
:DCM_E_PENDING

Dcm_MainFunctionWorker()

ReadData(DCM_PENDING, Data, AvailableBufferSize) :Std_ReturnType

:DCM_E_PENDING

PduR_<User:Up>Transmit([}x7F 0x22 0x78])

Dcm_MainFunctionWorker()

ReadData(DCM_CANCEL, Data, AvailableBufferSize) :Std_ReturnType

:Don't Care

PduR_<User:Up>Transmit([0x7F 0x22 0x10])

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 218
based on template version 5.0.0

Parameter: /Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataUsePort

was extended by two new values:

> USE_PAGED_DATA_ASYNCH_CLIENT_SERVER – for SWC implementations

> USE_PAGED_DATA_ASYNCH_FNC – for callouts in ComplexDeviceDrivers.

From the parameters and containers already defined by AUTOSAR the following ones are
only allowed to be used in context of a DID with paged-data access:

On DID level:

> /Dcm/DcmConfigSet/DcmDsp/DcmDspDid/DcmDspDidIdentifier

> /Dcm/DcmConfigSet/DcmDsp/DcmDspDid/DcmDspDidUsed

> /Dcm/DcmConfigSet/DcmDsp/DcmDspDid/DcmDspDidInfoRef

> /Dcm/DcmConfigSet/DcmDsp/DcmDspDidInfo/DcmDspDidAccess/DcmDspDidRead
– with all sub-parameters

> /Dcm/DcmConfigSet/DcmDsp/DcmDspDid/DcmDspDidSignal – with all sub-
parameters

On DID Data level:

> /Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataUsePort

> /Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataConditionCheckReadFncUs
ed

> /Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataConditionCheckReadFnc

> /Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataReadFnc

> /Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataSize

> /Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataInfoRef

> /Dcm/DcmConfigSet/DcmDsp/DcmDspDataInfo/DcmDspDataFixedLength

9.25 How to Get Security-Access Level Specific Fixed Byte Values

9.25.1 Introduction

In some ECU projects it is desired, that the some or all security-access level calculation
algorithm shall use additional, level specific fixed bytes set to provide better flexibility and
higher security protection. The latter is guaranteed by the split knowledge between
provided implementation and project specific concrete values calculation.

Additionally, the diagnostic clients shall know these fixed bytes values, so in such cases
these values are located within the diagnostic data exchange document (ODX/CANdela)
imported by the system supplier into the MICROSAR DCM configuration. In that way, both
diagnostic client and server (ECU) have always the correct values.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 219
based on template version 5.0.0

To achieve this goal, MICROSAR DCM extends the AR DCM standard ECUC
configuration model by a new set of parameters (refer to the Configuration Aspects), as
well as a new provided port operation Dcm_GetSecurityLevelFixedBytes().

9.25.2 Usage

Once the fixed bytes are specified for the corresponding security levels, the DCM
application implementer has the opportunity to access them within its software, by using
the newly introduced provided port operation Dcm_GetSecurityLevelFixedBytes().

9.25.3 Configuration Aspects

If a security level shall provide a fixed bytes set to the application, then the following
container shall exist:

> /Dcm/DcmConfigSet/DcmDsp/DcmDspSecurity/DcmDspSecurityRow/DcmDspSecurity
FixedBytes

For each fixed byte value, belonging to the set, an instance of the parameter below shall
be specified:

> /Dcm/DcmConfigSet/DcmDsp/DcmDspSecurity/DcmDspSecurityRow/DcmDspSecurity
FixedBytes/DcmDspSecurityFixedByteValue

FAQ
For the fixed bytes sets definition, the following rules do apply:

- It is allowed to define fixed byte sets only for some security-access levels;

- It is allowed to have security-access level specific set size (e.g. one level with 5
bytes, another with 15);

- The order of creation of each byte value parameter within a set must be the
same as the expected order of the values to be reported later to the application.

9.26 How to Extend the Diag Keep Alive Time during Diagnostics

9.26.1 Problem Description

Per specification (see [1]) DCM shall keep the ECU alive (awaken) for a diagnostics
reason under following circumstences:

> While in the default diagnostic session: as long as there is a diagnostic service in
processing.

> While in a non-default session: as long as the DCM has not entered the default
session again.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 220
based on template version 5.0.0

In some projects it is required that the ECU shall be kept alive for a certain time period
after the processing of a diagnostic request is finished. This leads to changes in the above
listed situations as follows:

DCM will keep the ECU alive for a diagnostic reason when:

> While in the default diagnostic session:

> as long as there is a diagnostic service in processing

> OR for the time period after the service processing is accomplished until the
configured keep-alive time elapses.

> While in a non-default session:

> as long as the DCM has not entered the default session again

> OR as long as the running keep-alive timer is active. This condition is of course only
applicable if the keep-alive time is configured to a value greater than the S3 time (set
to 5000ms) since the keep-alive timer and the S3 timer are startet at the same time.

9.26.2 Configuration Aspects

If such an extended time period for keep ECU alive is required, then please set up DCM in
the configuration tool by specifying the keep-alive time in parameter:

/Dcm/DcmConfigSet/DcmGeneral/DcmKeepAliveTime

9.27 How to Recover DCM State Context on ECU Reset/ Power On

9.27.1 Introduction

There are situations, where the ECU shall perform reset/power shutdown, but without
losing some DCM internal states. Such states are for example:

> Active diagnostic session;

> Active security access level (if applicable);

> The already managed communication control states (if applicable);

> Active state of control DTC setting (if applicable);

> Active state of any managed by DCM communication channel (DiagActive state)

Since this is not a feature supported by the AR standard per definition it was implemented
in DCM for optional use only (refer to the configuration chapter below).

9.27.2 Functionality

In order to support the state context recovery, DCM has been extended by two new APIs
for providing the data to be recovered on demand (Dcm_ProvideRecoveryStates()) and to
retrieve this data back on each reset /power on phase (Dcm_GetRecoveryStates()).

The data to be transferred is stored in the structure Dcm_RecoveryInfoType.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 221
based on template version 5.0.0

Caution
Please do always use both API to store and restore the context information. Only
compatible versions of this data shall be used. Since the transferred data primarily
consists of DCM internal data representation, it shall not be passed to DCM except if it
was retrieved via the Dcm_ProvideRecoveryStates() API call.

On any state change (recovery data with default state does not have any effect), DCM will
execute all notifications and actions related to that state transition. Due to this, DCM
always executes the recovery process in the best applicable order for dependent states.
For example:

> If security access and session change have to be switched, then first the session
change will apply then the security access level in order not to reset the security level
during the session transition.

> If ControlDTCSetting shall be disabled and CommunicationControl shall apply too,
then first the DTC setting will be disabled, and then the communication channels will
change their states in order to avoid any unnecessary fault memory entries.

9.27.3 Configuration Aspect

If the recovery state feature is required for your project, please change the following
parameter as described in its online help:

/Dcm/DcmConfigSet/DcmGeneral/DcmStateRecoveryAfterResetEnabled

9.28 How to Define a Diagnostic Connection without USDT Responses

Sometimes it may be necessary on a specific connection to suppress all kind of responses
(positive or negative) in general. In order to configure such a connection, you have to
delete the following sub-container of it:

/Dcm/DcmConfigSet/DcmDsl/DcmDslProtocol/DcmDslProtocolRow/DcmDslConnection/Dc
mDslMainConnection/DcmDslProtocolTx

9.29 How to Handle Multiple Diagnostic Service Variants

9.29.1 Introduction

DCM provides a means to execute filtering process on incoming requests at service,
subservice, DID, RID, and DID operation level. For example, if a specific DID is configured
in ECUC to be available for read and write purposes, the user is capable of using DCM
tools to update the configuration at run-time and to make the DID available only for read
purposes. So when a request comes with writing in that specific DID, the request will be
rejected accordingly.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 222
based on template version 5.0.0

9.29.2 Filtering Level Availability and the Corresponding Filtering Tools

In the following two tables, namely, Table 9-9 and Table 9-10, the filtering options available
for each service are illustrated along with the corresponding filtering tools.

Service

Filtering Level

[A
ll]

[0
x
2
2
,

0
x
2
A

,

0
x
2
4
,
0
x
2

C
,
0
x
2

E
,

&
 0

x
2
F

]

[0
x
3
1
]

[0
x
2
3
 &

 0
x
3
D

]

[0
x
0
1
 &

 0
x
0
2

]

[0
x
0
6
]

[0
x
0
8
]

[0
x
0
9
]

Service 

Sub-service (Sub-function) 

DID 

DID Operation 

RID 

RID Operation 

Memory 

Memory Operation 

PID 

MID 

TID 

VID 

Table 9-9 Filtering level availability

In order to get an advantage of DCM extended filtering tools, the extended filtering feature
has to be activated in the configuration tools. Refer to Table 9-10 under column
“Configuration Aspects” for more details.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 223
based on template version 5.0.0

Filtered Diagnostic
Object

Filtering API / Callback Configuration Aspects

Service,

Sub-service (Sub-
function)

Refer to: 6.6.1.2.4
ServiceRequestManufacturerNotific
ation_<SWC>

<Operation> = Indication()

Refer to: 9.6 How to Get Notified on a
Diagnostic Service Execution Start
and End

DID, DID Operation Refer to:

Dcm_FilterDidLookUpResult

/Dcm/DcmConfigSet/DcmDsp/

DcmDspDidLookUpFilterEnabled

RID Refer to:

Dcm_FilterRidLookUpResult

/Dcm/DcmConfigSet/DcmDsp/

DcmDspRidLookUpFilterEnabled

RID Operation Refer to: 6.6.1.2.4
ServiceRequestManufacturerNotific
ation_<SWC>

<Operation> = Indication()

Refer to: 9.6 How to Get Notified on a
Diagnostic Service Execution Start
and End

Memory, Memory
Operation

Refer to: 6.6.1.2.4
ServiceRequestManufacturerNotific
ation_<SWC>

<Operation> = Indication()

Refer to: 9.6 How to Get Notified on a
Diagnostic Service Execution Start
and End

PID Refer to:

9.29.3 Filtering OBD Objects

Refer to:

9.29.3 Filtering OBD Objects MID

TID

VID

Table 9-10 Filter diagnostic objects and the corresponding filtering APIs / Callbacks

FAQ
The filtering process is executed on already defined objects in the compile-time. The
filtering process requires interference from the application. It is not possible that the
application enables features via the filtering process in the run-time that is disabled in
the first place in the compile-time. In case of OBD2, the application risks upon violation
this rule a wrong reported “AvailabilityID” masks by DCM.

9.29.3 Filtering OBD Objects

In order to filter OBD objects and at the same time to report the appropriate “AvailabilityID”
values in the most efficient way, the variant handling on OBD related objects is based on
the feature Calibration of Supported OBD Parameter Identifier (refer to chapter 9.11.1.2).
Since the “calibration” in this case is performed on-board, the calibratable data specified in
the reference chapter shall be located in the volatile memory (RAM). To change the
calibration data memory location, please use the following parameter:

/Dcm/DcmConfigSet/DcmGeneral/DcmCalibrationOfObdIdsMemoryType

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 224
based on template version 5.0.0

The concept requires that the application initializes the calibration data at every ECU
power-on/reset, prior the call of the Dcm_Init() function. For that purpose it is advisable for
the application to keep prepared sets of the calibration data for each variant in its non-
volatile memory and just copy it into the DCM volatile memory variant.

9.29.3.1 Suggested Preparation Methodology for Filtering Process of OBD Objects

In order to get a consistent content of these tables in the fastest way, we suggest you to
follow the steps below:

 Create configurations (ECUC) files with Configurator 5 for each variant you need. You
will need only the configuration part of DCM, and only few mandatory BSWs which
DCM refers to. These references will not be from importance for the purpose of
multiple-variant-handling, so they don’t need to be maintained in future.

 Generate DCM configuration (Dcm_Lcfg.c/.h) for each of those variants.

 Copy the generated tables described in Table 9-3 Calibrateable OBD “availability
parameter identifier” values which exist in Dcm_Lcfg.c to your application.

 Rename the above copied tables according to the variant they belong to for better
identification at the use time.

 If one variant includes one of the above mentioned tables to be copied while the other
does not (OBD service is disabled), make sure to add this table to your configuration
anyway with zero entries.

9.30 How to Switch Between OBD DTR Support by DCM and DEM

Starting with AR version 4.1.1 DCM shall implement OBD MIDTID data retrieval for service
RequestOnBoardMonitorTestResults ($06) not directly from the application, but via a
dedicated DEM API. Still, DCM provides a backward compatibility mode and if configured
accordingly, it will handle the DTR values as before. Reading the following chapters you
will learn more about the impacts the new DTR value reporting implementation may have
on your project. Then, if any choice is possible, you can decide which method you will
prefer to use.

9.30.1 Implementation Particularities and Limitations

Once DCM is configured to provide DTR handling via DEM, any already available MID
resp. MIDTID and MID DID (0xF6XX) in its configuration will be discarded. The
configuration tool will inform you via “information” messages for all ignored related OBD
MID parameters.

This does not mean that you will have to delete all these redundant data. Any available
DID in range 0xF600-0xF6FF will be used as information for the DCM code generator that
it is required a UDS MID mirroring of all of the OBD MIDs. Since DCM does no more know
which are the valid MID DIDs, it catches the whole DID 0xF6XX range for OBD MID
reporting purpose.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 225
based on template version 5.0.0

This implies that:

> The UDS MIDs reported by DCM can only be those defined as MIDs under the DEM
configuration. No application specific DIDs (i.e. some DIDs still to be read via C/S port)
in the above cited range of identifiers is possible to be defined in DCM.

> Due to the DCM internal redirection of the MID DID handling to a DID range handler,
the already known Implementation Limitations on Handling with DID Ranges do apply
in this case too.

9.30.2 Configuration Aspect

Caution
The DCM configuration regarding the OBD MIDTID handling shall always be kept
synchronized with the current DEM configuration.

> In case DCM is used together with the MSR DEM, it will notify you for any
configuration mismatch by a corresponding error message, issued by an error
directive at compile time (refer to Table 10-1 Compile time error messages for
details on each message).

> In case another DEM vendor implementation is provided to the ECU project, a
mismatching configuration between DCM and the DEM will result either in compile
time errors (i.e. missing required DEM APIs) or may lead to an unexpected run time
behavior as a result of the redundant and incompatible DEM and DCM MIDTID
configurations (i.e. DEM does not support a certain MID, TID but DCM does support
it or the DEM defines a different TID list for the same MID used within DCM etc.).

The OBD MIDTID handling is determined by setting the following DCM ECUC parameter
accordingly: /Dcm/DcmConfigSet/DcmGeneral/DcmDtrDataProvisionViaDemEnabled

9.31 How to Enable Support of OBD VIDs with Dynamic Length

Depending on the DCM AR SWS compatibility mode, determined by the project license,
the OBD VIDs will be retrieved from the application resp. DEM using corresponding variant
of the GetInfotypeValueData() API. As you can see, the new API variant unconditionally (a
project license is assumed as a constant property) provides a means for supporting a VID
with variable data size. There is no additional configuration parameter to specify whether a
certain VID shall have a variable length.

9.31.1 Implementation Limitations

While the VID reading via RequestVehicleInformation ($09) is not really affected by the API
change, ReadDataByIdentifier ($22) does require some limitations to be taken into
account, depending on the API variant. These limitations are of course only applicable if
any OBD DIDs in the VID range (0xF800-0xF8FF) are to be supported by DCM.

 The main difference in the usage of both API types is the point in time the DCM will
calculate the final response length. When using API GetInfotypeValueData() in its AR 4.2.2
or newer variant, the final response length will be known to DCM _after_ the VID data is

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 226
based on template version 5.0.0

read. This is the same situation as the one already known from chapter 9.19 Handling with
DID Ranges and therefore the Implementation Limitations regarding the DID length
calculation do apply for these OBD VID DIDs too. Please note, that the maximum DID
length of those DIDs is determined by the corresponding VID data size parameter, as
specified in 5.8.4 Configuration Aspects.

9.32 How to setup DCM for Sender-Receiver Communication

Additionally to the Client-Server Interface type of communication with the application,
starting with DCM 7.00.00 also the Sender-Receiver kind is supported for the following
diagnostic services only:

> Data Identifier (DID) related:

> Read Access:

> ReadDataByIdentifier ($22)

> ReadDataByPeriodicIdentifier ($2A)

> Write Access:

> WriteDataByIdentifier ($2E)

> IO Control:

> InputOutputControlByIdentifier ($2F) (first available in DCM 7.01.00)

The read and write S/R communication can be applied on a single DID data element or for
the whole DID package as a single unit. The latter is required for the NvM SW-C
communication to guarantee that all the data of a single NvM block is written consistently.

9.32.1 Implementation Limitations

When using the DCM S/R communication some limitations and particularities shall be
considered:

> The data element or DID shall have constant length.

> The data element or DID shall represent data that is synchronously accessible (the IO
Control operation is an exception of this rule).

> For the DID related read and write operations, the supported elements’ base data
types are:

> Atomics: (u|s)int(8|16|32)

> Fields: (u|s)int8

> For the DID related IOControl operations, the supported element data types are:

> Atomics: uint(8|16|32)

> Fields: uint8

> CEMR: Limited by AR up to 4 bytes

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 227
based on template version 5.0.0

> If a DID supports any other operation than the above listed (i.e.
GetScalingInformation()), those operations will be treated as if the data element was
specified to have access of kind “SYNCH_FNC”. Therefore a callout will be expected
to be implemented by the application for the affected configuration object.

9.32.2 Application usage Scenario

In order to get S/R IOControl operation working with your application, the following design
aspects shall be considered:

> On diagnostic request for service InputOutputControlByIdentifier ($2F)

On each valid diagnostic request for an IO DID, DCM either delegates the IOControl job to
the corresponding C/S port or performs multiple S/R port operation as a form of
communication with the application. In the latter case if the requested IOControl operation
is “ReturnControlToECU” DCM executes the same sequence of S/R port operations as for
the diagnostic session transition, described in the next section. The only difference is that
not all IO channels of the IO DID will be reset, but only the ones, marked via the CEMR by
the diagnostic client. For any other IOControl operation DCM will perform the following
steps (per IO DID):

> If the operation was “ShortTermAdjustment” the “controlState” data will be updated
with the content of the diagnostic request.

> The “controlEnableMask” will be updated with the content of the diagnostic request
CEMR. (Please, read carefully the specifics of the CEMR handling in the
corresponding chapter InputOutputControlByIdentifier ($2F)).

> At last the “inputOutputControlParameter” will be set to the requested IOControl
operation (e.g. DCM_SHORT_TERM_ADJUSTMENT), indicating that all related to
this operation parameters are already set and the operation can be executed.

> DCM starts waiting for the operation result (IOControlResponse). The wait state
persists as long as the corresponding S/R has not yet been updated by the
application, or DCM reads one of the values DCM_IDLE or
DCM_RESPONSE_PENDING.

> Once DCM reads any other from the above mentioned values (i.e. application has
finished validation of the requested operation), the diagnostic service processing
continues with:

If the result in IOControlResponse was DCM_POSITIVE_RESPONSE:

> The “underControl” will be updated by adding the requested bits from the CEMR.

> The “inputOutputControlParameter” will be set to DCM_IDLE, indicating to the
application that the operation is now accomplished.

> DCM will now call the S/R port of the read operation to return to the client the actual
IO DID values within the positive response.

In any other case for IOControlResponse, DCM will take the value as NRC for the initiated
negative response that will follow.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 228
based on template version 5.0.0

> On diagnostic session transition to a session

Once DCM performs a diagnostic session transitions to the default session or to a non-
default session where an IO DID under control is no longer supported, the
“ReturnControlToECU” operation of the affected DID is executed. For the S/R IOControl
DIDs the following steps will be performed (per IO DID):

> The “underControl” data will be updated with all bits set to zero, indicating no IO
channel of this DID is under control.

> The “controlEnableMask” will be updated with all bits set, indicating all IO DID
channels will be set back to normal mode.

> At last the “inputOutputControlParameter” will be set to 0x00 (i.e.
DCM_RETURN_CONTROL_TO_ECU), indicating that all parameters related to this
operation are already set and the operation can be executed.

Note
Since the IOControl operation “ReturnControlToECU” is a synchronous one that must
always succeed, DCM will not expect any negative or pending response from the
application via the IOControlResponse_<XX> S/R port. This is also the case, when this
operation is executed upon an explicit diagnostic client request.

This implies that the application shall not expect that for “ReturnControlToECU”
the “inputOutputControlParameter” will be set to DCM_IDLE by DCM at a later
point!

9.32.3 Configuration Aspects

> In order to enable S/R communication on DIDs, you have to specify the RTE usage on
the corresponding DID data elements to be SENDER_RECEIVER:

 /Dcm/DcmConfigSet/DcmDsp/DcmDspData/DcmDspDataUsePort

> Additionally, if the S/R communication shall be applied on DID level (i.e. all DID data
elements will be merged into a single data block with the total length of the DID), then
following parameter shall be set accordingly:

 /Dcm/DcmConfigSet/DcmDsp/DcmDspDid/DcmDspDidUsePort

For usage details of these particular parameters, please refer to the Configurator5 online
help.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 229
based on template version 5.0.0

9.33 How to Support Routine Info Byte with UDS RIDs

9.33.1 Introduction

The Routine Info Byte is a manufacturer specific value that is assigned to a routine and
that can be reported to the tester when the diagnostic service RoutineControl ($31) is
requested. The DCM provides a means to report this Routine Info Byte without need of
application intervention.

9.33.2 Configuration Aspects

If the DCM shall report the Routine Info Byte of a routine automatically, specify the value of
the Routine Info Byte using following parameter:

/Dcm/DcmConfigSet/DcmDsp/DcmDspRoutine/DcmDspRoutineInfoByte

For every routine where this parameter is not supported, the application has to provide the
Routine Info Byte if needed.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 230
based on template version 5.0.0

10 Troubleshooting

10.1 Compile Error Messages

This chapter describes the error situations the DCM code checks and catches at compile
time.

Error Message Reason Countermeasure

Service 0x2A is enabled, but
no periodic messages have
been configured for Dcm.
Please, refer to the Dcm
TechRef for SID 0x2A
configuration aspect.

You have activated service

ReadDataByPeriodicIdentifier
($2A) but have no periodic
connection specified.

- Remove the service from the
DCM configuration.

- Check if any available
periodic messages in the
communication layers used by
DCM.

- Check for periodic
connections not automatically
recognized by the configuration
tool.

Vendor specific version
numbers of Dcm.c and Dcm.h
are inconsistent

The Dcm.c and Dcm.h are not
from the same delivery.

- Check for correct sources
resp. re-update the sources
from the delivered package.

Mismatching OEMs between
static and generated code

- Using the DCM code intended
for another OEM.

- Using wrong configuration
tool output for this project.

- Check for correct sources
resp. re-update the sources
from the delivered package.

- Check for using correct
configuration tool generation
output (Dynamic Files).

Unsupported PduR version! Unrecognized/unsupported
PduR version is specified.

Refer to 9.17 How to Deal with
the PduR AR version.

Missing information for the
supported DTC Extended Data
Records! See DCM TechRef!

- The DCM could not retrieve
any extended data record
information from the DEM
module or it is a non-
MICROSAR DEM.

- In a MICROSAR DEM no
extended data records are
defined.

- In a MICROSAR DEM no
DTC refers an extended data
record.

- Refer to 5.13.3.1Reporting
Stored DTC Environment Data
for information about this
configuration.

- Correct the MICROSAR DEM
configuration.

- Remove the corresponding
DCM
ReadDiagnosticInformation
($19) sub-function since
obviously not required when
the DEM does not specify any
records.

Missing information for the
supported DTC Freeze Frame
Records! See DCM TechRef!

- The DCM could not retrieve
any snapshot data record
information from the DEM
module or it is a non-
MICROSAR DEM.

- Refer to 5.13.3.1Reporting
Stored DTC Environment Data
for information about this
configuration.

- Correct the MICROSAR DEM

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 231
based on template version 5.0.0

Error Message Reason Countermeasure

- In a MICROSAR DEM no
snapshot records are defined.

- In a MICROSAR DEM no
DTC refers a snapshot record.

- In a MICROSAR DEM all
DTC has been specified to
have up to zero (0) snapshot
records if calculated snapshot
records are chosen.

configuration.

- Remove the corresponding
DCM
ReadDiagnosticInformation
($19) sub-function since
obviously not required when
the DEM does not specify any
records.

Unknown DEM AR API
interface!

Unrecognized/unsupported
DEM API version is specified.

Refer to 9.13 How to Select
DEM-DCM Interface Version.

Too many system timers! Internal error – DCM design
limits reached.

Try reducing the maximum
number of schedulable DIDs or
number of periodic messages
per connection (refer to
ReadDataByPeriodicIdentifier
($2A))

DCM configured to handle
OBD DID MIDs via DCM
configuration, but MID handling
is done by DEM. This message can be issued

only if MSR DEM is used
together with MSR DCM.

Either the MSR DEM has been
configured to handle OBD
DTRs as per AR 4.2.2, but at
the same time, DCM is
configured to this job too

or vice-versa.

Refer to the 9.30 How to
Switch Between OBD DTR
Support by DCM and DEM for
details on OBD DTR handling
and the configuration aspects.

DCM configured to handle
OBD DID MIDs via DEM
configuration, but no MID
handling is done by DEM.

DCM configured to handle
OBD MIDs via DCM
configuration, but MID handling
is done by DEM.

DCM configured to handle
OBD MIDs via DEM
configuration, but no MID
handling is done by DEM.

DID ranges are not allowed if
any paged DID is configured!

Incompatible features have
been activated.

Refer to 9.24.3 Implementation
Limitations for details on using
paged DIDs.

Paged DIDs are not allowed if
any OBD2 VIDs as per AR4.2.2
are enabled!

Incompatible features have
been activated.

Refer to 9.31.1 Implementation
Limitations for details on using
OBD2 VIDs with AR 4.2.2 API.

Any other message Internal inconsistency
detection.

Contact Vector.

Table 10-1 Compile time error messages

10.2 Code Generation Time Messages

Here are listed only some of the specific error/warning/information messages that may
occur during code generation for MSR DCM.

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 232
based on template version 5.0.0

Message ID Reason Description

DCM05010 The control operation over a DID has
been defined to have different
execution preconditions for the state
group “session” in multiple variants.

Refer to 9.18.1.2.1 Handling of State
Execution Preconditions of Variant
Diagnostic Entities to learn more about
multiple variants and execution
preconditions variance.

DCM05011 The read operation over a DID has
been defined to have different
execution preconditions for the state
group “session” in multiple variants.

DCM05012 The write operation over a DID has
been defined to have different
execution preconditions for the state
group “session” in multiple variants.

DCM05013 An RID has been defined to have
different execution preconditions for
the state group “session” in multiple
variants.

DCM05014 A diagnostic service has been
defined to have different execution
preconditions for the state group
“session” in multiple variants.

DCM05015 A diagnostic sub-service has been
defined to have different execution
preconditions for the state group
“session” in multiple variants.

DCM05020 The control operation over a DID has
been defined to have different
execution preconditions for the state
group “security access” in multiple
variants.

DCM05021 The read operation over a DID has
been defined to have different
execution preconditions for the state
group “security access” in multiple
variants.

DCM05022 The write operation over a DID has
been defined to have different
execution preconditions for the state
group “security access” in multiple
variants.

DCM05023 An RID has been defined to have
different execution preconditions for
the state group “security access” in
multiple variants.

DCM05024 A diagnostic service has been
defined to have different execution
preconditions for the state group
“security access” in multiple variants.

DCM05025 A diagnostic sub-service has been

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 233
based on template version 5.0.0

Message ID Reason Description

defined to have different execution
preconditions for the state group
“security access” in multiple variants.

Table 10-2 Code Generation Time Messages

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 234
based on template version 5.0.0

11 Glossary and Abbreviations

11.1 Glossary

Term Description

Configurator 5 Configuration and generation tool for MICROSAR components

Table 11-1 Glossary

11.2 Abbreviations

Abbreviation Description

ALFID Address and Length Format Identifier

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

C/S Client/Server (Port)

CDD Complex Device Driver

CEM Control Enable Mask

CEMR CEM Record

DCM Diagnostic Communication Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

DDID Dynamic DID

DID Data Identifier

DTR Diagnostic Test Result

ECU Electronic Control Unit

EWT Event Window Time

FC.OVFW Flow Control with status Overflow

FBL Flash Boot Loader

HIS Hersteller Initiative Software

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

MID Monitor Identifier

NRC Negative Response Code

N_TA Node Target Address

OBD2 On Board Diagnostics 2

OCY Operation Cycle

PBS Post Build Selectable (variant handling)

PBL Post Build Loadable (variant handling)

PDID Periodic DID

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 235
based on template version 5.0.0

PID Parameter Identifier

PPort Provide Port

RID Routine Identifier

ROE Response on Event

RPort Require Port

RTE Runtime Environment

S/R Sender/Receiver (Port)

SADR Security Access Data Record

SNS Service Not Supported

SNV Symbolic Name Value

SRS Software Requirement Specification

STRT Service To Respond To

SWC Software Component

SWS Software Specification

TID Test Identifier

VID Vehicle Identification Number

Table 11-2 Abbreviations

Technical Reference MICROSAR DCM

© 2016 Vector Informatik GmbH Version 7.1 236
based on template version 5.0.0

12 Contact

Visit our website for more information on

 News

 Products

 Demo software

 Support

 Training data

 Addresses

www.vector.com

	1 Component History
	2 Introduction
	2.1 How to Read This Document
	2.1.1 DCM Integration and Basic Operation
	2.1.2 Diagnostic Service Documentation
	2.1.3 API Definitions
	2.1.4 DCM Configuration Parameter Descriptions

	2.2 Architecture Overview

	3 Functional Description
	3.1 Features
	3.2 Initialization
	3.3 States
	3.4 Main Functions
	3.4.1 Split Task Functions
	3.4.1.1 Functionality
	3.4.1.2 Configuration Aspects
	3.4.1.3 Integration Aspects

	3.5 Error Handling
	3.5.1 Development Error Reporting
	3.5.2 Production Code Error Reporting

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Include Structure
	4.3 Compiler Abstraction and Memory Mapping
	4.4 Critical Sections
	4.5 Considerations Using Request- and ResponseData Pointers in a Call-back

	5 Diagnostic Service Implementation
	5.1 RequestCurrentPowertrainDiagnosticData ($01)
	5.1.1 Functionality
	5.1.2 Required Interfaces
	5.1.3 Implementation Aspects
	5.1.4 Configuration Aspects

	5.2 RequestPowertrainFreezeFrameData ($02)
	5.2.1 Functionality
	5.2.2 Required Interfaces
	5.2.3 Implementation Aspects
	5.2.4 Configuration Aspects

	5.3 RequestEmissionRelatedDTC ($03)
	5.3.1 Functionality
	5.3.2 Required Interfaces
	5.3.3 Implementation Aspects
	5.3.4 Configuration Aspects

	5.4 ClearEmissionRelatedDTC ($04)
	5.4.1 Functionality
	5.4.2 Required Interfaces
	5.4.3 Implementation Aspects
	5.4.4 Configuration Aspects

	5.5 RequestOnBoardMonitorTestResults ($06)
	5.5.1 Functionality
	5.5.2 Required Interfaces
	5.5.3 Implementation Aspects
	5.5.4 Configuration Aspects

	5.6 RequestEmissionRelatedDTCsDetectedDuringCurrentOrLastDrivingCycle ($07)
	5.6.1 Functionality
	5.6.2 Required Interfaces
	5.6.3 Implementation Aspects
	5.6.4 Configuration Aspects

	5.7 RequestControlOfOnBoardSystemTestOrComponent ($08)
	5.7.1 Functionality
	5.7.2 Required Interfaces
	5.7.3 Implementation Aspects
	5.7.4 Configuration Aspects

	5.8 RequestVehicleInformation ($09)
	5.8.1 Functionality
	5.8.2 Required Interfaces
	5.8.3 Implementation Aspects
	5.8.4 Configuration Aspects

	5.9 RequestEmissionRelatedDTCsWithPermanentStatus ($0A)
	5.9.1 Functionality
	5.9.2 Required Interfaces
	5.9.3 Implementation Aspects
	5.9.4 Configuration Aspects

	5.10 DiagnosticSessionControl ($10)
	5.10.1 Functionality
	5.10.2 Required Interfaces
	5.10.3 Implementation Aspects
	5.10.4 Configuration Aspects

	5.11 EcuReset ($11)
	5.11.1 Functionality
	5.11.2 Required Interfaces
	5.11.3 Implementation Aspects
	5.11.4 Configuration Aspects

	5.12 ClearDiagnosticInformation ($14)
	5.12.1 Functionality
	5.12.2 Required Interfaces
	5.12.3 Implementation Aspects
	5.12.4 Configuration Aspects

	5.13 ReadDiagnosticInformation ($19)
	5.13.1 Functionality
	5.13.2 Required Interfaces
	5.13.3 Implementation Aspects
	5.13.3.1 Reporting Stored DTC Environment Data

	5.13.4 Configuration Aspects

	5.14 ReadDataByIdentifier ($22)
	5.14.1 Functionality
	5.14.2 Required Interfaces
	5.14.3 Implementation Aspects
	5.14.4 Configuration Aspects

	5.15 ReadMemoryByAddress ($23)
	5.15.1 Functionality
	5.15.2 Required Interfaces
	5.15.3 Implementation Aspects
	5.15.4 Configuration Aspects

	5.16 ReadScalingDataByIdentifier ($24)
	5.16.1 Functionality
	5.16.2 Required Interfaces
	5.16.3 Implementation Aspects
	5.16.4 Configuration Aspects

	5.17 SecurityAccess ($27)
	5.17.1 Functionality
	5.17.2 Required Interfaces
	5.17.3 Implementation Aspects
	5.17.4 Configuration Aspects

	5.18 CommunicationControl ($28)
	5.18.1 Functionality
	5.18.2 Required Interfaces
	5.18.3 Implementation Aspects
	5.18.4 Configuration Aspects

	5.19 ReadDataByPeriodicIdentifier ($2A)
	5.19.1 Functionality
	5.19.2 Required Interfaces
	5.19.3 Implementation Aspects
	5.19.4 Configuration Aspects

	5.20 DynamicallyDefineDataIdentifier ($2C)
	5.20.1 Functionality
	5.20.2 Required Interfaces
	5.20.3 Implementation Aspects
	5.20.4 Configuration Aspects

	5.21 WriteDataByIdentifier ($2E)
	5.21.1 Functionality
	5.21.2 Required Interfaces
	5.21.3 Implementation Aspects
	5.21.4 Configuration Aspects

	5.22 InputOutputControlByIdentifier ($2F)
	5.22.1 Functionality
	5.22.2 Required Interfaces
	5.22.3 Implementation Aspects
	5.22.4 Configuration Aspects

	5.23 RoutineControl ($31)
	5.23.1 Functionality
	5.23.2 Required Interfaces
	5.23.3 Implementation Aspects
	5.23.4 Configuration Aspects

	5.24 WriteMemoryByAddress ($3D)
	5.24.1 Functionality
	5.24.2 Required Interfaces
	5.24.3 Implementation Aspects
	5.24.4 Configuration Aspects

	5.25 TesterPresent ($3E)
	5.25.1 Functionality
	5.25.2 Required Interfaces
	5.25.3 Implementation Aspects
	5.25.4 Configuration Aspects

	5.26 ControlDTCSetting ($85)
	5.26.1 Functionality
	5.26.2 Required Interfaces
	5.26.3 Implementation Aspects
	5.26.4 Configuration Aspects

	6 API Description
	6.1 Type Definitions
	6.1.1 Dcm_ProtocolType
	6.1.2 Dcm_RecoveryInfoType

	6.2 Services provided by DCM
	6.2.1 Administrative
	6.2.1.1 Dcm_Init()
	6.2.1.2 Dcm_MainFunction()
	6.2.1.3 Dcm_MainFunctionTimer()
	6.2.1.4 Dcm_MainFunctionWorker()
	6.2.1.5 Dcm_GetVersionInfo()
	6.2.1.6 Dcm_InitMemory()
	6.2.1.7 Dcm_ProvideRecoveryStates()

	6.2.2 SWC
	6.2.2.1 Dcm_GetActiveProtocol()
	6.2.2.2 Dcm_GetSecurityLevel()
	6.2.2.3 Dcm_GetSesCtrlType()
	6.2.2.4 Dcm_ResetToDefaultSession()
	6.2.2.5 Dcm_GetSecurityLevelFixedBytes()
	6.2.2.6 Dcm_SetActiveDiagnostic()
	6.2.2.7 Dcm_GetRequestKind()

	6.2.3 General Purpose
	6.2.3.1 Dcm_GetTesterSourceAddress()
	6.2.3.2 Dcm_ProcessVirtualRequest()
	6.2.3.3 Dcm_SetSecurityLevel()

	6.3 Services used by DCM
	6.4 Callback Functions
	6.4.1 <Module>
	6.4.1.1 Dcm_ExternalProcessingDone()
	6.4.1.2 Dcm_ExternalSetNegResponse()

	6.4.2 ComM
	6.4.2.1 Dcm_ComM_NoComModeEntered()
	6.4.2.2 Dcm_ComM_SilentComModeEntered()
	6.4.2.3 Dcm_ComM_FullComModeEntered()

	6.4.3 PduR
	6.4.3.1 All AUTOSAR Versions
	6.4.3.1.1 Dcm_TriggerTransmit()

	6.4.3.2 AUTOSAR 4
	6.4.3.2.1 Dcm_StartOfReception()
	6.4.3.2.2 Dcm_CopyRxData()
	6.4.3.2.3 Dcm_TpRxIndication()
	6.4.3.2.4 Dcm_CopyTxData()
	6.4.3.2.5 Dcm_TpTxConfirmation()
	6.4.3.2.6 Dcm_TxConfirmation()

	6.4.3.3 AUTOSAR 3
	6.4.3.3.1 Dcm_ProvideRxBuffer()
	6.4.3.3.2 Dcm_RxIndication()
	6.4.3.3.3 Dcm_ProvideTxBuffer()
	6.4.3.3.4 Dcm_TxConfirmation()

	6.4.4 CanTp
	6.4.4.1 Dcm_OnRequestDetection()

	6.5 Configurable Interfaces
	6.5.1 Callout Functions
	6.5.1.1 <Module>_<DiagnosticService>()
	6.5.1.2 <Module>_<DiagnosticService>_<SubService>()
	6.5.1.3 Dcm_SetProgConditions()
	6.5.1.4 Dcm_GetProgConditions()
	6.5.1.5 Dcm_Confirmation()
	6.5.1.6 Dcm_ReadMemory()
	6.5.1.7 Dcm_WriteMemory()
	6.5.1.8 <Diagnostic Session Change Notification Callback>
	6.5.1.9 <Security Access Change Notification Callback>
	6.5.1.10 Dcm_GetRecoveryStates()
	6.5.1.11 Dcm_FilterDidLookUpResult
	6.5.1.12 Dcm_FilterRidLookUpResult

	6.5.2 Required Port Operation Functions
	6.5.2.1 ConditionCheckRead()
	6.5.2.2 ReadData() (asynchronous)
	6.5.2.3 ReadData() (synchronous)
	6.5.2.4 ReadDataLength()
	6.5.2.5 WriteData() (dynamic length)
	6.5.2.6 WriteData() (static length)
	6.5.2.7 ReturnControlToECU()
	6.5.2.8 ResetToDefault()
	6.5.2.9 FreezeCurrentState()
	6.5.2.10 ShortTermAdjustment()
	6.5.2.11 GetScalingInformation()
	6.5.2.12 Start()
	6.5.2.13 Stop()
	6.5.2.14 RequestResults()
	6.5.2.15 GetSeed() (with SADR)
	6.5.2.16 GetSeed() (without SADR)
	6.5.2.17 CompareKey()
	6.5.2.18 Indication()
	6.5.2.19 Confirmation()
	6.5.2.20 GetDTRValue()
	6.5.2.21 RequestControl()
	6.5.2.22 GetInfotypeValueData()
	6.5.2.23 StartProtocol()
	6.5.2.24 IsDidAvailable()
	6.5.2.25 ReadDidData()
	6.5.2.26 WriteDidData()
	6.5.2.27 GetSecurityAttemptCounter()
	6.5.2.28 SetSecurityAttemptCounter()
	6.5.2.29 ReadData() (paged-data-reading)

	6.6 Service Ports
	6.6.1 Client-Server Interface
	6.6.1.1 Provide Ports on DCM Side
	6.6.1.1.1 DCMServices

	6.6.1.2 Require Ports on DCM Side
	6.6.1.2.1 DataServices_<DataName>
	6.6.1.2.2 RoutineServices_<RoutineName>
	6.6.1.2.3 SecurityAccess_<SecurityLevelName>
	6.6.1.2.4 ServiceRequestManufacturerNotification_<SWC>
	6.6.1.2.5 ServiceRequestSupplierNotification_<SWC>
	6.6.1.2.6 DtrServices_<MIDName>_<TIDName>
	6.6.1.2.7 RequestControlServices_<TIDName>
	6.6.1.2.8 InfotypeServices_<VEHINFODATA>
	6.6.1.2.9 CallbackDCMRequestServices_<SWC>
	6.6.1.2.10 DataServices_DIDRange_<RangeName>

	6.6.2 Managed Mode Declaration Groups
	6.6.2.1 DcmDiagnosticSessionControl
	6.6.2.2 DcmCommunicationControl_<ComM_CHANNEL_SNV>
	6.6.2.3 DcmEcuReset
	6.6.2.4 DcmModeRapidPowerShutDown
	6.6.2.5 DcmControlDTCSetting
	6.6.2.6 DcmSecurityAccess

	7 Configuration
	7.1 Configuration Variants
	7.2 Configurable Attributes

	8 AUTOSAR Standard Compliance
	8.1 Deviations
	8.2 Additions/ Extensions
	8.3 Limitations

	9 Using the DCM
	9.1 How to Reduce RAM Usage
	9.2 How to Reduce DCM Main-Function Run Time Usage
	9.3 How to Force DCM to not Respond on Requests with Response SIDs
	9.4 How to Handle Multiple Diagnostic Clients Simultaneously
	9.5 How to Restrict a Diagnostic Service Execution by a Condition
	9.6 How to Get Notified on a Diagnostic Service Execution Start and End
	9.7 How to Limit the Diagnostic Service Processing Time
	9.8 How to Jump into the FBL from Service DiagnosticSessionControl ($10)
	9.9 The HIS Compliant Jump into FBL
	9.9.1 The HIS Alternative Jump into FBL

	9.10 How to Put DCM in a Non-Default Session at ECU Power-On
	9.11 How to Support Calibrateable Configuration Parameters
	9.11.1 OBD Calibration
	9.11.1.1 Calibration of Supported OBD Services
	9.11.1.2 Calibration of Supported OBD Parameter Identifier

	9.12 How and When to Configure Multiple Protocols
	9.12.1 Diagnostic Client(s) Processing Prioritization
	9.12.2 Client Specific Diagnostic Application Timings
	9.12.3 Diagnostic Service Firewall

	9.13 How to Select DEM-DCM Interface Version
	9.14 How to Support OBD and UDS over a Single Client Connection
	9.15 How to Use a User Configuration File
	9.16 How to Know When the Security Access Level Changes
	9.16.1 Invoking a Mode Switch
	9.16.2 Calling a Function Implemented Within a CDD Module

	9.17 How to Deal with the PduR AR version
	9.17.1 AUTOSAR 3 Environment
	9.17.2 AUTOSAR 4 Environment

	9.18 Post-build Support
	9.18.1 Post-build Variance Level
	9.18.1.1 Communication Part
	9.18.1.2 Diagnostic Services Part
	9.18.1.2.1 Handling of State Execution Preconditions of Variant Diagnostic Entities

	9.18.2 Initialization
	9.18.2.1 Error Detection and Handling

	9.18.3 Post-build Variants
	9.18.3.1 Post-build selectable
	9.18.3.2 Post-build loadable
	9.18.3.3 Post-build loadable selectable
	9.18.3.4 Post-build deleteable

	9.19 Handling with DID Ranges
	9.19.1 Introduction
	9.19.2 Implementation Limitations
	9.19.3 Configuration Aspects

	9.20 How to Support DID 0xF186
	9.21 How to Suppress Responses to Functional Addressed Requests
	9.22 How to Support Interruption on Requests with Foreign N_TA
	9.23 How to Know When the Diagnostic Session Changes
	9.24 How to Save RAM using Paged-Buffer for Large DIDs
	9.24.1 Introduction
	9.24.2 Functionality
	9.24.3 Implementation Limitations
	9.24.4 Usage
	9.24.4.1 Straightforward DID Paged-Data Reading
	9.24.4.2 Error Handling During DID Paged-Data Reading

	9.24.5 Configuration Aspects

	9.25 How to Get Security-Access Level Specific Fixed Byte Values
	9.25.1 Introduction
	9.25.2 Usage
	9.25.3 Configuration Aspects

	9.26 How to Extend the Diag Keep Alive Time during Diagnostics
	9.26.1 Problem Description
	9.26.2 Configuration Aspects

	9.27 How to Recover DCM State Context on ECU Reset/ Power On
	9.27.1 Introduction
	9.27.2 Functionality
	9.27.3 Configuration Aspect

	9.28 How to Define a Diagnostic Connection without USDT Responses
	9.29 How to Handle Multiple Diagnostic Service Variants
	9.29.1 Introduction
	9.29.2 Filtering Level Availability and the Corresponding Filtering Tools
	9.29.3 Filtering OBD Objects
	9.29.3.1 Suggested Preparation Methodology for Filtering Process of OBD Objects

	9.30 How to Switch Between OBD DTR Support by DCM and DEM
	9.30.1 Implementation Particularities and Limitations
	9.30.2 Configuration Aspect

	9.31 How to Enable Support of OBD VIDs with Dynamic Length
	9.31.1 Implementation Limitations

	9.32 How to setup DCM for Sender-Receiver Communication
	9.32.1 Implementation Limitations
	9.32.2 Application usage Scenario
	9.32.3 Configuration Aspects

	9.33 How to Support Routine Info Byte with UDS RIDs
	9.33.1 Introduction
	9.33.2 Configuration Aspects

	10 Troubleshooting
	10.1 Compile Error Messages
	10.2 Code Generation Time Messages

	11 Glossary and Abbreviations
	11.1 Glossary
	11.2 Abbreviations

	12 Contact

