

AUTOSAR MCAL R4.0.3
User's Manual

FLS Driver Component Ver.1.0.2

Embedded User’s Manual

 Target Device:

RH850/P1x-C

All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.

website (http://www.renesas.com).

www.renesas.com Rev.1.00 Feb 2017

http://www.renesas.com/
http://www.renesas.com/

2

3

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation

of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the

circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all

liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or

information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes

involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas

Electronics products or technical information described in this document, including but not limited to, the product data,

drawing, chart, program, algorithm, application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property

rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in

part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising

from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality".

The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated

below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio

and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and

industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale

communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct

threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause

serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key

plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not

intended by Renesas Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals,

application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and

ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings,

operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any

and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond

such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products,

semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions

under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please

ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire,

and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for

hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate

treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your

products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please

evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental

compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the

inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and

use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics

disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and

regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose

manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use

Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use,

stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or

missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the

development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international

peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies

to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will

engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or

technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by

the governments of the countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or

violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics

harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third

party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written

consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this

document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its

majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

4

5

Abbreviations and Acronyms

Abbreviation / Acronym Description

ANSI American National Standards Institute

API Application Programming Interface

AUTOSAR AUTomotive Open System ARchitecture

BSW Basic SoftWare

DEM Diagnostic Event Manager

DET/Det Development Error Tracer

ECU Electronic Control Unit

EEPROM Electrically Erasable Programmable Read Only Memory

FDL Data Flash Library

FLS FLaSh Driver

GNU GNU’s Not Unix

HW HardWare

ID/Id Identifier

MCAL Microcontroller Abstraction Layer

NA Not Applicable

RAM Random Access Memory

ROM Read Only Memory

RTE Run Time Environment

SCHM/SchM Scheduler Manager

SW SoftWare

Definitions

Term Represented by

Sl. No. Serial Number

6

7

Table Of Contents

Chapter 1 Introduction... 11

1.1 Document Overview ... 12

Chapter 2 Reference Documents .. 15

Chapter 3 Integration And Build Process .. 17

3.1. FLS Driver Component Make file .. 17

3.1.1. Folder Structure ... 17

Chapter 4 Forethoughts .. 19

4.1. General ... 19

4.2. Preconditions .. 21

4.3. Data Consistency .. 23

4.4. Deviation List .. 25

4.5. User mode and supervisor mode .. 26

Chapter 5 Architecture Details .. 29

Chapter 6 Registers Details ... 35

Chapter 7 Interaction Between The User And FLS Driver
Component .. 39

7.1. Services Provided By FLS Driver Component To The User ... 39

Chapter 8 FLS Component Header And Source File Description 41

Chapter 9 Generation Tool Guide ... 45

Chapter 10 Application Programming Interface 47

10.1. Imported Types ... 47

10.1.1. Standard Types .. 47

10.1.2. Other Module Types ... 47

10.2. Type Definitions .. 47

10.3. Function Definitions ... 49

Chapter 11 Development And Production Errors 51

11.1. FLS Driver Component Development Errors ... 51

11.2. FLS Driver Component Production Errors ... 52

Chapter 12 Memory Organization .. 55

Chapter 13 P1x-C Specific Information ... 57

13.1. Sample Application... 57

13.1.1. Sample Application Structure ... 57

13.1.2. Building Sample Application .. 59

13.1.2.1. Configuration Example... 59

8

13.1.2.2. Debugging The Sample Application .. 59

13.2. Memory And Throughput ... 60

13.2.1. ROM/RAM Usage .. 60

13.2.2. Stack Depth... 61

13.2.3. Throughput Details .. 61

Chapter 14 Release Details .. 63

9

List Of Figures

Figure 1-1 System Overview of FLS Driver Component in AUTOSAR MCAL Layer 11
Figure 1-2 System Overview of AUTOSAR Architecture .. 12
Figure 5-1 FLS Driver Component Architecture .. 29
Figure 5-2 Component Overview of FLS Driver Component ... 30
Figure 12-1 FLS Driver Component Memory Organization ... 55
Figure 13-1 Overview Of FLS Driver Sample Application ... 57

List Of Tables

Table 4-1 FLS Driver Protected Resources List ... 24
Table 4-2 FLS Driver Component Deviation List .. 25
Table 4-3 User mode and Supervisor mode details when Data Flash enabled 26
Table 6-1 Register Details .. 35
Table 8-1 Description Of The FLS Driver Component Files ... 42
Table 10-1 Fls_ConfigType .. 47
Table 10-2 Fls_AddressType ... 48
Table 10-3 Fls_LengthType ... 48
Table 10-4 Function Definitions .. 49
Table 11-1 DET Errors Of FLS Driver Component .. 51
Table 11-2 DEM Errors of FLS Driver Component .. 52
Table 13-1 ROM/RAM Details with DET .. 60
Table 13-2 ROM/RAM Details without DET ... 61
Table 13-3 Throughput Details Of The APIs .. 61

10

Introduction Chapter 1

11

F
L
S

 D
riv

e
r

D
IO

D

IO
 D

riv
e

r

A
D

C

A
D

C
 D

rive
r

P
W

M

P
 W

M
 D

riv
e

r

IC
U

IC

U
 D

riv
e

r

F
le

x
R

a
y
 D

riv
er

C
A

N

C
A

N
 D

rive
r

L
IN

 o
 r

S
C

I
L
IN

 D
riv

e
r

S
P

I H
a

n
dle

rD
rive

r
r

S
P

I

E
E

P
R

O

M

In
te

rn
a
l E

E
P

R
O

M
 D

riv
e

r

F
L

A
S

H

In
te

rn
a

l F
las

h

D
riv

e
r

E
x
t. B

U
S

E

xternal F
las

h
 D

riv
e

r

R
A

 M
 T

e
s
t

C
o
re

 T
e

s
t

M
C

U

P
o
w

e
r

&
 C

lo
c
k

U
n
it

M
C

U
 D

riv
e

r

W
a
tc

h
d

o
g
 D

riv
er

G
P

T
 D

riv
e

r
G

P
T

W
D

T

 Chapter 1 Introduction

The purpose of this document is to describe the information related to FLS

Driver Component for Renesas P1x-C microcontrollers.

This document shall be used as reference by the users of FLS Driver

Component. The system overview of complete AUTOSAR architecture is

shown in the below Figure:

Microcontroller Drivers Memory Drivers Communication Drivers I/O Drivers

Micro-

controller

Figure 1-1 System Overview of FLS Driver Component in AUTOSAR MCAL Layer

The FLS Driver Component is part of BSW which is accessible by RTE.

This RTE is a middle ware layer providing communication services for the

application software and thereby it is possible to map the application

software components between different ECUs.

The RTE provides the encapsulation of Hardware channels and basic

services to the Application Software Components. So it is possible to map

the Application Software-Components between different ECUs.

The Basic Software Modules are located below the RTE. The Basic

Software itself is divided into the subgroups: System Services, Memory,

Communication and IO Hardware-Abstraction. The Complex Drivers are

also located below the RTE. Among others, the Operating System (OS), the

Watchdog manager and the Diagnostic services are located in the System

Services subgroup. The Memory subgroup contains modules to provide

access to the non-volatile memories, namely Flash and EEPROM. Here the

flash operation will be handled by flash driver.

On board Device Abstraction provides an interface to physical values for

AUTOSAR software components. It abstracts the physical origin of signals

(their paths to the hardware FLSs) and normalizes the signals with respect

to their physical appearance. The microcontroller driver provides services

for basic microcontroller initialization, power down functionality, reset and

microcontroller specific functions required from the upper layers.

Chapter 1 Introduction

12

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

FLS Driver

Microcontroller

Figure 1-2 System Overview of AUTOSAR Architecture

The FLS application software components are located at the top and can

gain access to the rest of the ECU and also to other ECUs only through the

RTE. This RTE is a middleware layer providing communication services for

the application software and thereby it is possible to map the application

software components between different ECUs.

This FLS Software Module is located below the RTE. The FLS Component

APIs are directly invoked by the application or RTE. The FLS Component is

responsible for erase/write/read/compare data on the data flash memory.

The FLS component perform the activities like accessing and programming

the on-chip data flash hardware.

The FLS Component layer comprises of API for erase/write data to on-chip

data flash memory of the device. The FLS Component conforms to the

AUTOSAR standard and is implemented mapping to the AUTOSAR FLS

Software Specification.

The functional parameters of FLS software components are statically

configurable to fit as far as possible to the real needs of each ECU.

1.1 Document Overview

The document has been segmented for easy reference. The table below

provides user with an overview of the contents of each section:

Section Contents

Section1 (Introduction) This section provides an introduction and overview of FLS Driver

Component.

Section 2 (Reference Documents) This section lists the documents referred for developing this document.

Section 3 (Integration And Build

Process)
This section explains the folder structure, Make file structure for FLS

Driver Component. This section also explains about the Make file

descriptions, Integration of FLS Driver Component with other

components, building the FLS Driver Component along with a sample

application.

Introduction Chapter 1

13

Section Contents

Section 4 (Forethoughts) This section provides brief information about the FLS Driver Component,

the preconditions that should be known to the user before it is used,

diagnostic channel, limit check feature, sample and hold feature,

conversion time and stabilization time, DMA and ISR operations, data

consistency details, deviation list and user mode and supervisor mode.

Section 5 (Architecture Details) This section describes the layered architectural details of the FLS Driver

Component.

Section 6 (Registers Details) This section describes the register details of FLS Driver Component.

Section 7 (Interaction between

The User And FLS Driver

Component)

This section describes interaction of the FLS Driver Component with the

upper layers.

Section 8 (FLS Driver Component

Header And Source File

Description)

This section provides information about the FLS Driver Component

source files is mentioned. This section also contains the brief note on the

tool generated output file.

Section 9 (Generation Tool Guide) This section provides information on the FLS Driver Component Code

Generation Tool.

Section 10 (Application

Programming Interface)
This section explains all the APIs provided by the FLS Driver

Component.

Section 11 (Development And

Production Errors)
This section lists the DET and DEM errors.

Section 12 (Memory

Organization)
This section provides the typical memory organization, which must be

met for proper functioning of component.

Section 13 (P1x-C Specific

Information)
This section provides the P1x-C Specific Information.

Section 14 (Release Details) This section provides release details with version name and base

version.

Chapter 1 Introduction

14

Reference Documents Chapter 2

15

Chapter 2 Reference Documents

Sl. No. Title Version

1. RH850/P1H-C Document User’s Manual: Hardware
 (r01uh0517ej0100_rh850p1x-c_Open.pdf)

 1.0

2. Autosar R4.0

Specification of FLS Driver (AUTOSAR_SWS_FlashDriver.pdf)
 3.2.0

3. AUTOSAR BUGZILLA (http://www.autosar.org/bugzilla)

Note: AUTOSAR BUGZILLA is a database, which contains concerns raised

against information present in AUTOSAR Specifications.

 -

4. Specification of Compiler Abstraction

 (AUTOSAR_SWS_CompilerAbstraction.pdf)

 3.2.0

5. Specification of Memory Mapping

 (AUTOSAR_SWS_MemoryMapping.pdf)

 1.4.0

6. Specification of Platform Types

 (AUTOSAR_SWS_PlatformTypes.pdf)

 2.5.0

http://www.autosar.org/bugzilla

Chapter 2 Reference Documents

16

 Integration and Build Process Chapter 3

17

Chapter 3 Integration and Build Process

In this section the folder structure of the FLS Driver Component is explained.

Description of the Make files along with samples is provided in this section.

Remark The details about the C Source and Header files that are generated by the

FLS Driver Generation Tool are mentioned in the “R20UT3642EJ0100 -

AUTOSAR.pdf”.

3.1. FLS Driver Component Make file

The Make file provided with the FLS Driver Component consists of the GNU

Make compatible script to build the FLS Driver Component in case of any

change in the configuration. This can be used in the upper level Make file (of

the application) to link and build the final application executable.

3.1.1. Folder Structure

The files are organized in the following folders:

Remark Trailing slash ‘\’ at the end indicates a folder

X1X\common_platform\modules\fls\src\Fls.c

\Fls_Internal.c

\Fls_Ram.c

\Fls_Version.c

\Fls_Private_Fcu.c

X1X\common_platform\modules\fls\include\Fls.h

\Fls_Debug.h

\Fls_Internal.h

\Fls_PBTypes.h

\Fls_Ram.h

\Fls_Types.h

\Fls_Version.h

\Fls_Private_Fcu.h

\Fls_RegWrite.h

 X1X\ P1x-C
 \modules\fls\sample_application\<SubVariant>\make\<Complier>

\App_FLS_P1X-C_Sample.mak

 X1X\P1x-C\modules\fls\sample_application\make\

 <Complier>\App_FLS_P1x-C_Sample.ld

 X1X\P1x-C\modules\fls\Sample_application\<SubVariant>\obj

 Chapter 3 Integration and Build Process

18

 X1X\P1x-C\modules\fls\generator\R403_FLS_P1x-C_BSWMDT.arxml.

 X1X\P1x-C\modules\fls\user_manual

(User manuals will be available in this folder)

 Note: 1. <Complier> can be ghs.
 2. <AUTOSAR_version> should be 4.0.3.
 3. <SubVariant> can be P1H-C, P1H-CE, P1M-C.

 Forethoughts Chapter 4

19

Chapter 4 Forethoughts

4.1. General

Following information will aid the user to use the FLS Driver Component
software efficiently:
• AUTOSAR FLS driver supports Data Flash access only. Code Flash

access is out of scope.
• The start-up code is ECU specific. FLS Driver Component does not

implement the start-up code.
• Example code mentioned in this document shall be taken only as

a reference for implementation.
• All development errors will be reported to DET by using the API

Det_ReportError provided by DET.
• All production errors will be reported to DEM by using the API

Dem_ReportErrorStatus provided by DEM.
• The FLS Driver Component developed supports only on-chip ROM and

no external devices are considered. Hence the parameters related to
external devices are ignored by the Generation Tool.

• The FLS Driver Component does not provide functionalities for setting of
protection flags, boot cluster size, swapping of boot block and flashing of
boot block and they are out of scope for FLS Driver Component
implementations.

• The FLS Driver Component’s job processing function (Fls_MainFunction)
is a polled function.

• The configurations provided for fast mode write operation is ignored by
the Generation Tool and only configurations for normal mode operations
and fast mode read operation are accepted.

• Fls_Init API shall enable the flash memory erase/write protection
settings if it is supported by hardware. Before the flash operation
protection shall be disabled and after the completion of job, protection
shall be again enabled.

• The Fls_Erase API computes the sectors that need to be erased based
on the provided target address and length. When DET is enabled the
error will be reported if the length of the bytes to be erased is not in
multiples of flash sector size.

• Fls_SetMode API sets the flash driver operation mode (FAST Mode/SLOW
Mode) for read operation. This API allows the user to read more number of
bytes during run time if in case the default mode is configured as
‘MEMIF_MODE_FAST’. Fls_SetMode API is not applicable for
Erase/Write/Blank Check operations, because underlying hardware does
not support it.

• In a single cycle of Fls_MainFunction API, the maximum number of bytes
processed for the fast read command and normal read depends on the
configuration of parameters ‘FlsMaxReadNormalMode’(if default mode is
MEMIF_MODE_SLOW) and ‘FlsMaxReadFastMode’(if default mode is
MEMIF_MODE_FAST).

• Maximum value of ‘FlsMaxReadNormalMode’ parameter specifies the
size of a temporary buffer in RAM which is used when
Fls_ReadImmediate and Fls_Compare APIs are called. The resulting
RAM consumption has to be considered.

• In a single cycle of Fls_MainFunction call, FLS driver performs write
operation for 4 bytes, or blank check operation for 4 bytes, or erase
operation for 64 bytes.

• The length of the data that has to be programmed on to the flash should
be in multiples of flash page. The FLS Driver Component does not pad
bytes if the length is not in multiples of flash page. It is the responsibility
of the application to pad bytes such that the length of the data is in
multiples of flash page.

• Erase, Write, Read and Blank check jobs are initiated within the

Chapter 4 Forethoughts

20

corresponding APIs itself. Fls_MainFunction API shall act as a checker
function and it shall check whether the job is completed and initiate the
next round of job cycle if the job is not completed.

• The normal write verification using the direct memory read access is
performed when DET is enabled.

• The processing of blank check operation is applicable for Data flash
only.

• During activation of flash environment (in Fls_Init), the access to Code
flash is not possible. Hence the user should ensure that all the
application and supporting components code that needs to be executed
during flash operation need to locate in RAM.

• The device supports servicing of interrupts during self-programming.
During activation of flash environment (in Fls_Init), the interrupt vector
address in the flash will not be available. The interrupt vectors can be
relocated to RAM during flash programming. For details please refer
Exception Handling Address Switching Function in the according device
CPU user manual.

• The FLS Driver Component can invoke user configurable call-back
notification functions. However, the implementation of the call back
functions is the responsibility of the upper layer.

• The parameter ‘FlsCallCycle’ shall be used for timeout implementation.
The Erase, Write and BlankCheck timeout count values shall be
generated based on FlsCallCycle and hardware specific atomic
operations’ time (‘FlsEraseTime’, ‘FlsWriteTime’ and
‘FlsBlankCheckTime’).To report timeout, ‘FlsTimeOutMonitoring’
parameter needs to be configured as TRUE’. In case if the parameter
‘FlsDevErrorDetect’ is also enabled, time out DET shall be reported.The
‘FlsCallCycle’ parameter shall be configured by the user correctly.
Incorrect value may lead to reporting of timeout DET by
Fls_MainFunction.

• User application shall not program Code Flash in the application mode.

Code Flash shall only be programmed in safe environment in the boot

mode. User application shall not write safety related data into Code Flash

or Data Flash during driving cycle for safety critical applications.

• There are two possible errors that can be detected by ECC are Single-bit
errors (SED) and Double-bit errors (DED). The ECC error notification
feature is incorporated in Read functionality only. So whenever the read
is initiated this feature will be enabled always and only notifying to the
upper layer happens via configurable notification functions. The
configuration of single bit and double bit error notification function
parameters are user selectable. The error notification functions for both
single bit and double bit ECC error report are configurable with
parameters from configuration.
The parameters are:
FlsEccSedNotification: This parameter mapped to Single-bit error (SED)
notification routine provided by some upper layer module.
FlsEccDedNotification: This parameter mapped to Double-bit error
(DED) notification routine provided by some upper layer module. The
Double bit error is reported to DEM in addition to notification functions.

• Data Flash Memory Read Cycle Setting Register (EEPRDCYCL) is used to
specify the number of wait cycles to be inserted when reading the data in
the data flash. The initial value of the register is taken by default. If required
user application shall set this register as per P1x-C device user manual.

• The file Interrupt_VectorTable.c provided is just a Demo and not all
interrupts will be mapped in this file. So the user has to update the
Interrupt_VectorTable.c as per his configuration.

• The accesses to HW registers is possible only in the low level driver layer.
The user shall never write or read directly from any register, but shall use
the AUTOSAR standard API provided by the MCAL.

 Forethoughts Chapter 4

21

• Fls_Read API performs the reading of the flash memory with a blank check
operation before read but Fls_ReadImmediate performs the reading of the
flash memory without a blank check operation before read.

• Fls_BlankCheck API used to perform the blank check of flash memory
before reading the flash memory, Fls_Suspend API performs the suspend
of the ongoing write, read or erase job, Fls_Resume API resumes the
suspended job.

• The time-out implementation for erase/write operations will not done by
FLS module and it needs to be carried out by the upper layer.

FLS Timeout Monitoring
• The configuration parameter FlsTimeoutMonitoring in the FlsGeneral

container can be used to enable/disable the timeout supervision for FLS
driver independent of DET settings.

• Only when FlsTimeoutMonitoring is set to TRUE and DET is switched
ON, a DET error FLS_E_TIMEOUT will be reported in case of detection of
a timeout error.

• In order to perform timeout monitoring/supervision on flash operations,
the following configuration parameters should be used properly according
to use-cases.
 In the polling mode of FLS, the parameter FlsCallCycle shall be

configured to specify the cycle time of calls of the FLS main function
(in seconds). The timeout count values are calculated internally based
on the CPU frequency for the respective flash operations, i.e., erase,
write, blank check, etc.

 In the interrupt mode of FLS, the parameter FlsTimeOutCountValue
shall be configured to directly specify the timeout count value required
for erase, write and blank check operations.

 Fls_MainFunction is crucial for timeout supervision. The call
frequency of Fls_MainFunction shall be handled properly in the upper
layer software to be in line with the FLS module configuration.

Note: since read, read immediate, compare operations are not supported
in FLS interrupt mode, only the parameter FlsCallCycle is used to
calculate timeout count values for them irrespective of interrupt or polling
mode. For write, erase, blank check operations, FlsCallCycle is used in
the polling mode of FLS, while FlsTimeOutCountValue is used in the
interrupt mode of FLS.
In FlsGeneral container the configuration parameter FlsLoopCount is
used to avoid the risk of endless loops in the FLS driver. FlsLoopCount is
always used in the implementation, hence it is not dependent on the
parameter FlsTimeoutMonitoring

4.2. Preconditions
Following preconditions have to be adhered by the user, for proper
functioning of the FLS Driver Component:

• The user should ensure that FLS Driver Component API requests are
invoked in the correct and expected sequence and with correct input
arguments.

• Correct frequency configuration is essential for Flash programming quality
and stability. Wrong configuration could lead to loss of data retention or
Flash operation fail. The limits for CPU frequency are device dependent.
Please refer to the respective device user manuals for correct range. If the
CPU frequency is a fractional value, round up the value to the nearest
integer. Do not change power mode (voltage or CPU clock) while FLS is
performing a Data Flash operation. If power mode must change the user
can:

• Wait until operations are no longer busy or Cancel the ongoing operation

and reinitialize the FLS module with proper CPU frequency value.
• A blank check pass does not confirm that it is possible to write to this word

(4 Bytes). Also partly written/erased words may have a blank check pass

Chapter 4 Forethoughts

22

but write is not allowed under this condition. A blank check fail does not
confirm a stable read value. Even though parts of a word are at least partly
written, random read data are still possible, so are ECC error indications
for single error corrections and double error detection.

• Due to RV40 Flash technology, hardware will implicitly reject the write
operation if the target Flash cells are not blank (a kind of "overwriting
guard"). Writing to non-blank Flash cells will result in write error.

• Due to the above shown limitations the information which can be given by
Fls_BlankCheck, either passing or failing, is limited. It cannot be used to
determine the current state of a flash cell in a meaning full way without
additional information obtained by other means. The blank check should
only be used to confirm or check some flow status but should not be used
to determine if a flash cell can be read or written. FLS055 from AUTOSAR
Specification of Flash Driver are not fulfilled here because blank check
itself is not able to identify erasure state of flash cell which is ready for write
operation. Please refer to application note document "RV40F DataFlash
Usage" for more details about blank check and usage hints.

• In case of Flash modification operation (Erase/Write) interruption due to
e.g. power failure, reset etc., the electrical conditions of the affected Flash
range (Flash block on erase, Flash write unit on Write) get undefined. It is
impossible to give a statement on the read value after the interruption.
Thus, the resulting read value is not reliable; the electrical margin for the
specified data retention may not be given. In such case, erase and re-write
the affected Flash block(s) to ensure data integrity and retention.

• Fls_Cancel will stop the Flash programming hardware synchronously, thus,
the ongoing Flash modification operation (Erase/Write) will be interrupted.
This can result in undefined state of Flash block(s) the same way as
general interruptions mentioned above.

• Data Flash on RH850 devices is made with differential cells for storage.
This means that reading erased but non-programmed Data Flash areas
directly (bypassing FLS) will produce undefined data with a tendency to the
previously written data, and it will most probably cause ECC error
exceptions. To avoid this exceptions, use FLS read APIs.

• It is not possible to modify the Code Flash in parallel to a modification of
the Data Flash or vice versa due to shared hardware resources.

• Fls_Init function temporarily disables Code Flash. During this time, since
the Code Flash is not available, the FLS code is executed from internal
RAM (allocated space on stack). Please ensure that: (1) User application
code execution is done from other locations than Code Flash (e.g. internal

• RAM). (2) No access to Code Flash is allowed, e.g. by jump to
interrupt/exception functions, direct Code Flash read/execution from the
CPU, DMA accesses to Code Flash.

• Data Flash blocks are aligned to 64 bytes and Data Flash words are
aligned to 4 bytes. RH850 devices also add alignment restrictions for types
larger than 8 bits. Please refer to device hardware manual for details.

• Validation of input parameters is done only when the static configuration
parameter FLS_DEV_ERROR_DETECT is enabled. Application should
ensure that the right parameters are passed while invoking the APIs when
FLS_DEV_ERROR_DETECT is disabled.

• A mismatch in the version numbers will result in compilation error. Ensure
that the correct versions of the header and the source files are used.

• The files Fls_Cfg.h, Fls_Cbk.h and Fls_PBcfg.c generated using FLS
Generation Tool have to be linked along with FLS Driver Component
source files.

• The FLS Driver Component needs to be initialized by calling Fls_Init before
calling any other Fls functions.

• Values for production code Event Ids should be assigned externally by the
configuration of the DEM.

• Fls_Init shall do verification of ECC control registers, so as to ensure ECC
1-bit error detection and correction, ECC 2-bit error detection are enabled
for data flash before initialization of FCU. If the user configurable ECC

 Forethoughts Chapter 4

23

check for FACI is enabled and if the verification of FACI ECC register fails,
DEM error FLS_E_ECC_FAILED shall be reported.

• The Fls_MainFunction should be invoked regularly by the Basic Scheduler.
Though not specified by AUTOSAR, calling Fls_MainFunction by polling
mechanism is also possible. Ensure that the FLS Driver Component is
initialized before enabling the invocation of this scheduled function to avoid
reporting of a DET error when enabled.

• Fls_ReadImmediate API should not be used to read blank cells. User
application shall handle the errors associated with blank cell read using
Fls_ReadImmediate API.

• Calling FLS functions, especially Cancel/Suspend/Resume/MainFunction
APIs by a higher priority ISR must be prevented by upper layer to avoid
possible re-entrancy issue.

• Interrupt mode supports Erase, Write, and Blank Check operations only.

• Writing the same area more than once is prohibited. To write again the
flash memory area where data has already been written to, user shall
erase the corresponding area in advance.

• If a cancel request is accepted, during an ongoing write or erase operation
and a previous operation is already suspended, then both operations will
be cancelled.

• Cancel and suspend/resume operations are not allowed in case of two
instances of FLS Driver Component as the effect is not evaluated.

• All functions are not re-entrant. So, re-entrant calls of any not re-entrant
function must be avoided.

• Suspend operation shall not be performed in between atomic operations of
the job. i.e, in between 64 bytes of erase and 4 bytes of write, suspension
is not possible. The job can be suspended only after completion of one
atomic operation.

• It is not always possible to nest suspend and/or stand-by.
• E.g: Any operation ► suspend ► suspend – is not possible.
• Any operation ► stand-by ► stand-by – is not possible.
• Any operation ► stand-by ► suspend – is not possible.
• Write or Erase ► suspend ► Erase operation – is not possible
• Write operation ► suspend ► other Write operation – is not possible
• Any operation ► suspend ► other operation ► suspend–isn’t possible
• When an erase job is suspended, calling a write job at the same address of

that of erase job and then resuming the previously suspended erase job
shall report DET indicating failure of erase verification.

• Any internal error occurred due to hardware failure during mode switching
or issuing forced stop command shall set the driver status to UNINIT and
job status to JOB_FAILED.

• The user shall configure the exact Module Short Name Fls in
configurations as specified in config.xml file and the same shall be given in
command line.

• The user should configure FACIn Unit properly to avoid hardware resource
conflict.

• FLS initialization failure may happen in the system runtime due to transient
hardware faults. The User shall enable DET in order to get FLS_E_UNINIT
in case of initialization failure. If Fls_GetStatus API is used, upper layer can
use this API to get MEMIF_UNINIT in case of initialization failure.

4.3. Data Consistency

To support the reentrancy and interrupt services, the FLS Software

component will ensure the data consistency while accessing their own RAM

storage or hardware registers.

#define FLS_ENTER_CRITICAL_SECTION (Exclusive_Area)

SchM_Enter_Fls_##Exclusive_Area()

#define FLS_EXIT_CRITICAL_SECTION (Exclusive_Area)

Chapter 4 Forethoughts

24

SchM_Exit_Fls_##Exclusive_Area()

The following exclusive areas along with scheduler services are used to

provide data integrity for shared resources:

• FLS_DRIVERSTATE_DATA_PROTECTION

• FLS_REGISTER_PROTECTION

• FLS_CODE_FLASH_DISABLED

These functions can be disabled by disabling the configuration parameter

‘FlsCriticalSectionProtection’.

Table 4-1 FLS Driver Protected Resources List

API Name Exclusive Area Type Protected

Resources

Fls_Init FLS_REGISTER_PROTECTION

HW Registers:
FRAMMCR
FCURAME
FPCKAR

FLS_CODE_FLASH_DISABLED

Firmware storage
area switching is
protected

Fls_Erase FLS_REGISTER_PROTECTION

HW Registers:
FSADDR
FEADDR

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected :

Fls_GstVar.GulJob

StartAddress

Fls_GstVar.GulJob

EndAddress

Fls_Write FLS_REGISTER_PROTECTION

HW Registers:
FSADDR
FEADDR

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected :

Fls_GstVar.GulJob

StartAddress

Fls_GstVar.GulJob

EndAddress

Fls_MainFunction FLS_REGISTER_PROTECTION

HW Registers:

DFERSTC
DFERSTR
DFERRINT

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected :

Fls_GstVar.GulJob

StartAddress

Fls_GstVar.pBuffer

Address

Fls_Resume FLS_REGISTER_PROTECTION

HW Registers:

DFERSTC

DFERSTR

DFERRINT

Fls_Read FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected :

Fls_GstVar.GulRea

dAddress

 Forethoughts Chapter 4

25

API Name Exclusive Area Type Protected

Resources

Fls_Compare FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected during

compare operation :

Fls_GstVar.GulReq

uestedLength

Fls_GstVar.GucOffs

et

Fls_GstVar.GulRea

dAddress

Fls_GstVar.pTemp

BufferAddress

Fls_GstVar.pBuffer

Address

Fls_GstVar.GulCurr

entLength

Fls_GstVar.GucGe

nCommand

Fls_GenState

Fls_GenJobResult

Fls_Cancel FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected during

cancel operation :

Fls_GenState

Fls_GenJobResult

Fls_GstVar.GucGe

nCommand

Fls_BlankCheck FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected during

blank check

operation :

Fls_GstVar.GucGe

nCommand

Fls_GenJobResult

Fls_GenState

Fls_ReadImmediate FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is

protected during

read immediate

operation :

Fls_GstVar.GulRea

dAddress

Note:
The highest measured duration of a critical section was 140.725 micro seconds
measured for Fls_Init API.

4.4. Deviation List

Table 4-2 FLS Driver Component Deviation List

Sl. No.

Description AUTOSAR

Bugzilla

1. The fast mode parameters ‘FlsMaxReadFastMode’ and

‘FlsMaxWriteFastMode’ of the container ‘FlsConfigSet are unused.
-

2. The parameters ‘FlsAcLoadOnJobStart’ and ‘FlsUseInterrupts’ of the
container ‘FlsGeneral’ is unused.

-

3. The parameters ‘FlsDefaultMode’ and ‘FlsProtection’, FlsAcWrite’ and
‘FlsAcErase’ of the container ‘FlsConfigSet’ are unused.

-

Chapter 4 Forethoughts

26

4. The parameters ‘FlsAcLocationErase’, ‘FlsAcLocationWrite’,
‘FlsAcSizeErase’ and ‘FlsAcSizeWrite’ of the container
‘FlsPublishedInformation’ are unused.

-

5. The component will support only the on-chip flash memory. External
flash is not in the scope of this implementation.

-

6. FLS_E_READ_FAILED_DED error code will be reported to DEM if

read job is failed when double bit ECC error is generated.
-

7. FLS201_Conf from AUTOSAR Specification of Flash Driver is not

fulfilled here because FlsSectorList is limited to one sector with fixed

sector size. User shall not configure multiple sectors. Since data flash

is a monolithic on-chip NV memory with homogeneous block size, it is

not required to have multiple sectors with the same sector sizes.

Important is that FLS driver shall support possible usage of "user pool"

(private data flash area that cannot be accessed by FLS driver). This

can be done by proper configuration of FlsSectorStartaddress and

FlsNumberOfSectors.

-

8. FLS272, FLS359, FLS360 and FLS361 from AUTOSAR Specification

of Flash Driver are not fulfilled here because timeout monitoring can

be configured independent of DET setting. However only when both

timeout monitoring and DET are enabled, FLS_E_TIMEOUT will be

reported in case of detected timeout error.

9. The timeout monitoring can be configured independent of DET setting

in FLS. FLS272, FLS359, FLS360, FLS361 can only be fulfilled, when

both timeout monitoring and DET are enabled, i.e., FLS_E_TIMEOUT

will be reported for the respective flash operations in case of detected

timeout error.

4.5. User mode and supervisor mode

The below table specifies the APIs which can run in user mode, supervisor
mode or both modes

Table 4-3 User mode and Supervisor mode details when Data Flash enabled

Sl. No API Name User Mode Supervisor
Mode

Known limitation in User
mode

1

Fls_Init

- x The Fls_Init is failing in User

mode. This is because inside

Fls_Init function STSR

instruction (to store contents

of system register) is called

for storing contents of

ICCTRL (instruction cache

control) to system register.

Since the ICCTRL have the

access permission in only

supervisor mode, Fls_Init

fails in user mode.

2 Fls_Read x x -

3 Fls_SetMode x x -

4 Fls_Write x x -

5 Fls_Cancel x x -

6 Fls_GetStatus x x -

7 Fls_GetJobResult x x -

8 Fls_Erase x x -

 Forethoughts Chapter 4

27

Sl. No API Name User Mode Supervisor
Mode

Known limitation in User
mode

9 Fls_Compare x x -

10 Fls_GetVersionInfo x x -

11 Fls_MainFunction x x -

12 Fls_BlankCheck x x -

13 Fls_ReadImmediate x x -

14 Fls_Suspend x x -

15 Fls_Resume x x

Note: Implementation of critical section is not dependent on MCAL. Hence critical

section is not considered to the entries for user mode in the above table.

Chapter 4 Forethoughts

28

 Architecture Details Chapter 5

29

Chapter 5 Architecture Details

The FLS Software architecture is shown in the following figure. The FLS user
shall directly use the APIs to configure and execute the FLS conversions:

Application Layer

AUTOSAR RTE

System Services

 On board Device Abstraction

FLS Driver

Microcontroller

Figure 5-1 FLS Driver Component Architecture

The basic architecture of the FLS Driver Component is illustrated in the

following Figure:

 Chapter 5 Architecture Details

30

Application Layer

Figure 5-2 Component Overview of FLS Driver Component

The internal architecture of FLS Driver Component is shown in the above

figure. The FLS Driver Component Software Component provides services for

the following processes:

The FLS Driver Component is divided into the following sub modules based on

the functionality required:

• Initialization
• Erasing the flash memory
• Writing to the flash memory
• Reading the flash memory
• Fast Read to the application memory without performing blank check
• Validating contents of flash memory
• Cancellation of Request
• Reading result and status information
• Module version information
• Blank check of flash memory
• Job Processing
• Fls_Suspend suspends the ongoing job.
• Fls_Resume performs the resume of previous suspended job.

Fls_SetMode

Fls_Rea

dImmed

iate

Fls_MainFun

ction
Fls_Bla

nkChec

k

Fls_Erase Fls_Init

Fls_GetVersion

Info

Fls_Res

ume
Fls_Sus

pend

Fls_Read Fls_Compare Fls_GetJobResult

Fls_GetStatus Fls_Cancel

Fls_Write

Suspend
on-

going

flash job

Returns

version

informat

ion

Resumes
previously

suspended

job

Fls_Process

Read()

Fls_Fcu

Init()

Compare

bytes in

buffer with

flash

memory

Fls_Initi
ateBlan

kCheckJ

ob()

Returns

the status/r

esult

performs the
job processing

of erase,

write, read and

compare jobs.

Fls_Proces

sCancel()

Perfor

ms fast

read
operati

on.

Fls_Initiate

WriteJob()

Fls_Ini

tiateEr

aseJob(

)

Sets
Flash

Driver’s

Operatio

n Mode

FLS Driver Layer

Microcontroller

Application Layer

 Architecture Details Chapter 5

31

Initialization

The initialization sub-module provides the service for initialization of the flash
driver and initializes the global variables used by the FLS Component. FCU
initialization API initializes FCU Global Variable Structure and prepares the
environment. After that firmware code is copied to the RAM and FACI
frequency is set. The function also resets the FCU and initialize the hardware

registers to default values.

The API related to this sub-module is Fls_Init.

Flash Memory Erasing Module

This sub-module provides the service for erasing the blocks of the flash
memory.
The request will be processed by the job processing function
Fls_MainFunction. The First round of erase operation is initiated from within the
API itself. Fls_MainFunction is then called to erase the remaining requested
data flash memory blocks. The job is processed till the requested numbers of
blocks are erased in the flash memory. Blank Check shall be done to ensure
that the blocks are completely erased.

The API related to this sub-module is Fls_Erase.

Flash Memory Reading Module

This sub-module provides the service for reading the contents of the flash
memory. The request will be processed by the job processing function
Fls_MainFunction.
In this job processing function, blank check for the specified words shall be
performed first. If the cell is blank then the application buffer shall be filled with
the value specified by the parameter ‘FlsErasedValue’. If the cell is not blank
then reading of the specified words from the Flash memory shall be performed.
This sub-module reads the specified number of words from consecutive Flash
addresses starting at the specified address and writes it into a buffer. Read
operation shall be initiated within the sub-module itself. Single cycle of
Fls_MainFunction shall read the maximum number of bytes configured
depending on the parameters ‘FlsMaxReadNormalMode’(if default mode is
MEMIF_MODE_SLOW) and ‘FlsMaxReadFastMode’(if default mode is
MEMIF_MODE_FAST). The job is processed till the requested bytes of length
are copied into the application buffer.

The API related to this sub-module is Fls_Read.

Flash Memory Writing Module

This sub-module provides the service for writing to the flash memory.

The request shall be processed by the job processing function
Fls_MainFunction. In this job processing function, the writing of specified
number of data bytes from buffer to flash memory shall be performed. The
function writes the specified number of words from buffer to consecutive Flash
addresses starting at the specified address. Single cycle of Fls_MainFunction
shall write 4 bytes of data from target buffer to flash addresses. The job is
processed till the requested number of bytes is written to the flash memory
The API related to this sub-module is Fls_Write.

Flash Memory Contents Validating Module

This sub-module provides the service for comparing the contents of the flash
memory with the application buffer.
The request shall be processed by the job processing function
Fls_MainFunction.

Chapter 5 Architecture Details

32

This sub-module shall read the defined number of words in flash and store it in
the temporary buffer. Then actual data in application buffer shall be compared
with data in temporary buffer. Here data shall be compared in terms of bytes.
Single cycle of Fls_MainFunction shall read the data from the flash memory
depending on configuration of parameter ‘FlsMaxReadNormalMode’ for data
flash. The job is processed till the requested number of bytes are read and
compared with the application buffer.

The API related to this sub-module is Fls_Compare.

Request Set Mode Module

This sub-module sets the flash driver operation mode.

The API related to this sub-module is Fls_SetMode.

Request Cancellation Module

This sub-module provides the service for canceling an ongoing memory
request.

After aborting the current ongoing memory operations this sub- module
prepares internal variables to accept the next Read/Write/Erase/ Compare
command. The cancel request will be synchronous and a new job can be
requested immediately after the return from this function. A suspended job is
also cancelled.

The API related to this sub-module is Fls_Cancel.

Result Reading and Status Information Providing Module

This sub-module provides the services for getting the current status of the

module or results of the initiated job request or the response to previously

issued command and return the current status of the current job execution.

The APIs related to this sub-module are Fls_GetStatus, Fls_GetJobResult.

Software Component Version Info Module

This module provides API for reading Module Id, Vendor Id and vendor

specific version numbers.

The API related to this sub-module is Fls_GetVersionInfo.

Job Processing Module

The command requests are always processed by the main function that is

invoked cyclically by the scheduler. This function will perform the status

check while processing the flash operations requests. This API derives the

internal driver status. Completion of the flash operation needs to be checked

in order to continue the reprogramming flow. A Time-out feature is available

with the help of time-out counter operation in this API.

The API related to this sub-module is Fls_MainFunction.

Flash Memory Blank Check Module

This sub-module provides the service for performing blank check of the flash
memory words. The request shall be processed by the job processing function
Fls_MainFunction. This function is invoked to perform the blank check of the

 Architecture Details Chapter 5

33

single word. The job is processed till the requested numbers of words are
performed with the blank check in the flash memory.

The API related to this sub-module is Fls_BlankCheck.

Flash Memory Fast Read Module

This sub-module provides the service for reading the contents of the flash
memory. The request shall be processed by the job processing function
Fls_MainFunction. This function reads the specified number of words from
consecutive Flash addresses starting at the specified address and writes it into
a buffer. Single cycle of Fls_MainFunction, shall read the data from the data
flash memory. The data from flash memory (source address) is read to the data
buffer (Target address) of application without performing blank check before
read. The job is processed till the requested bytes of length are copied into the
application buffer.

The API related to this sub-module is Fls_ReadImmediate.

Job Suspend Module

This sub-module provides the service of suspending the ongoing job. The
driver goes into idle state after the job is suspended. Fls_Suspend is
asynchronous API. Fls_Suspend shall reject any unacceptable request of
suspension such as issuing suspend request for operations other than erase
and write and if no ongoing job is present.

The API related to this sub-module is Fls_Suspend.

Job Resume Module

This sub-module provides the service for performing the resume of the
previous suspended job. Fls_Resume is synchronous API. Fls_Resume
acknowledges the resume request and it returns immediately.

The API related to this sub-module is Fls_Resume.

Chapter 5 Architecture Details

34

Register Details Chapter 6

35

Chapter 6 Registers Details

This section describes the register details of FLS Driver Component.

Table 6-1 Register Details

API Name
Registers
Used

Register
Access
8/16/32
bits

Register
Access
R/W/RW

Config
Paramet
er

Macro/Variable

Fls_Init FSADDR 32 RW - LulStartAddr

FLS_FCU_ADDR_REG_RES
ET

FEADDR 32 RW - LulEndAddr

FLS_FCU_ADDR_REG_RES
ET

FSTATR 32 R - LulRegValue

LulReturnValue

FENTRYR 16 RW - LddMode

FLS_FCU_REGBIT_FENTRY
_KEY

LusModeRegVal

FASTAT 8 RW - FLS_FCU_REGBIT_FASTAT_
CMDLK

FCURAME 16 RW - FLS_FCU_REGBIT_FCURAM
E_FCRME

FLS_FCU_REGBIT_FCURAM
E_KEY

FLS_FCU_REGBIT_FCURAM
E_RESET

FLS_FCU_REGBIT_FCURAM
E_FRAMTRAN

FRAMMCR 16 RW - FLS_FCU_REGBIT_FRAMMC
R_DUAL

FPCKAR 16 RW - FLS_FCU_REGBIT_FPCKAR
_KEY

LusFaciFreq

FRTEINT 8 RW - FLS_FACI_FRTEINT_RESET
_VAL

FCUFAREA 8 RW - LucModeVal

ICCTRL 32 RW - FLS_FCU_SYSTEM_REGIST
ER_ICCTRL

CDBCR 32 RW - FLS_FCU_SYSTEM_REGIST
ER_CDBCR

DFECCCTL 16 RW - FLS_DFECCCTL_RESET_VA
L

DFERRINT 8 RW - FLS_ DFERRINT
_RESET_VAL

DFTSTCTL 16 RW - FLS_ DFTSTCTL
_RESET_VAL

FHVE3 8 RW -

FLS_FLASH_PROTECTION_
OFF

FLS_FLASH_PROTECTION_
ON

FHVE15 8 RW -

FLS_FLASH_PROTECTION_
OFF

FLS_FLASH_PROTECTION_
ON

Chapter 6 Registers Details

36

API Name
Registers

Used

Register
Access
8/16/32

bits

Register
Access
R/W/RW

Config
Param

eter

Macro/Variable

Fls_MainFunction

FSADDR 32 RW -
LulCurrentStartAddr
FLS_FCU_ADDR_REG_RESET

FEADDR 32 RW -

LulCurrentStartAddr +
FLS_FCU_WRITE_SIZE) -
FLS_FCU_ONE
FLS_FCU_ADDR_REG_RESET

FSTATR 32 R -
LulRegValue
LulReturnValue

FENTRYR 16 RW -
LddMode
FLS_FCU_REGBIT_FENTRY_KEY
LusModeRegVal

FBCSTAT 8 R - LulRegValue

FHVE3 8 RW -
FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

FHVE15 8 RW -
FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

 Fls_Resume

FSADDR 32 RW -
LulCurrentStartAddr
FLS_FCU_ADDR_REG_RESET

FEADDR 32 RW -

LulCurrentStartAddr +
FLS_FCU_WRITE_SIZE) -
FLS_FCU_ONE
FLS_FCU_ADDR_REG_RESET

FSTATR 32 R -
LulRegValue
LulReturnValue

FENTRYR 16 RW -
LddMode
FLS_FCU_REGBIT_FENTRY_KEY
LusModeRegVal

FHVE3 8 RW -
FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

FHVE15 8 RW -
FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

Fls_Cancel FENTRYR 16 RW - LddMode

FLS_FCU_REGBIT_FENTRY_KEY

LusModeRegVal

FASTAT 8 RW - FLS_FCU_REGBIT_FASTAT_CMDLK

FSTATR 32 R - LulReturnValue

Fls_Read - - - - -

Fls_Compare - - - - -

Fls_ReadImmediat
e

- - - - -

Register Details Chapter 6

37

API Name
Registers

Used

Register
Access
8/16/32

bits

Register
Access
R/W/RW

Config
Param

eter

Macro/Variable

Fls_Erase

FSADDR 32 RW -
LulCurrentStartAddr
FLS_FCU_ADDR_REG_RESET
LulStartAddr

FEADDR 32 RW -
LulCurrentEndAddr
FLS_FCU_ADDR_REG_RESET
LulEndAddr

FSTATR 32 R - LulRegValue LulReturnValue

FENTRYR 16 RW -
LddMode
FLS_FCU_REGBIT_FENTRY_KEY
LusModeRegVal

FHVE3 8 RW -
FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

FHVE15 8 RW -
FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

Fls_Write

FSADDR 32 RW -
LulCurrentStartAddr
FLS_FCU_ADDR_REG_RESET

FEADDR 32 RW -

LulCurrentStartAddr +
FLS_FCU_WRITE_SIZE) -
FLS_FCU_ONE
FLS_FCU_ADDR_REG_RESET

FSTATR 32 R -
LulRegValue
LulReturnValue

FENTRYR 16 RW -
LddMode
FLS_FCU_REGBIT_FENTRY_KEY
LusModeRegVal

FHVE3 8 RW -

FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

FHVE15 8 RW -

FLS_FLASH_PROTECTION_OFF
FLS_FLASH_PROTECTION_ON

Fls_BlankCheck

FSADDR 32 RW - LulStartAddr

FEADDR 32 RW - LulEndAddr

FSTATR 32 R -
LulReturnValue
LulRegValue

FBCSTAT 8 R - LulRegValue

FENTRYR 16 RW -
LddMode
FLS_FCU_REGBIT_FENTRY_KEY
LusModeRegVal

FHVE3 8 RW -
FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

FHVE15 8 RW -
FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

Fls_GetStatus - - - - -

Fls_GetJobResult - - - - -

Fls_Suspend - - - - -

Fls_GetVersionInf
o

- - - - -

Chapter 6 Registers Details

38

Interaction Between The User and FLS Driver Component Chapter 7

39

Chapter 7 Interaction Between The User and FLS
Driver Component

The details of the services supported by the FLS Driver Component to the

upper layers users and the mapping of the channels to the hardware units is

provided in the following sections:

7.1. Services Provided By FLS Driver Component To The
User

The FLS Driver Component provides the following functions to upper layers:

• Writing contents to data flash memory

• Erase flash memory sectors

• Read flash contents to the application memory

• Validate flash contents comparing with the application memory

• Cancel the ongoing erase, write, read or compare requests.

• Read the result of the last job

• Read the status of the FLS Driver Component.

• Flash Memory Blank Checking Module

• Flash Memory Immediate Reading Module

• Fls_Suspend suspends the on-going job.

• Fls_Resume performs the resume of previous suspended job.

Caution:

• If other software components in BSW are accessing data flash or FACI
registers, then the synchronization between FLS and other software
components shall be handled by user application to ensure data
consistency.

• Please pay attention that many FLS APIs are non-reentrant. This means it

is not allowed to call a non-reentrant API function from a different program
context (e.g. interrupt service routines, other threads) while another or the
same non-reentrant API function is already running.
In particular, when calling Fls_MainFunction, user application shall avoid
collision with other non-reentrant FLS APIs.

Chapter 7 Interaction Between The User and FLS Driver Component

40

FLS Component Header and Source File Description Chapter 8

41

Chapter 8 FLS Component Header and Source File
 Description

This section explains the FLS Driver Component’s C Source and C Header

files. These files have to be included in the project application while integrating

with other modules.

The C header file generated by FLS Software Generation Tool:

For only Data Flash access

• Fls_Cbk.h

• Fls_Cfg.h

• Fls_Hardware.h

The C source file generated by FLS Driver Generation Tool:

• Fls_PBcfg.c

• Fls_Hardware.c

The FLS Driver Component C header files:

• Fls.h

• Fls_Debug.h

• Fls_Internal.h

• Fls_Types.h

• Fls_PBTypes.h

• Fls_Version.h

• Fls_Ram.h

• Fls_Private_Fcu.h

• Fls_RegWrite.h

The FLS Driver Component source files:

• Fls.c

• Fls_Internal.c

• Fls_Ram.c

• Fls_Version.c

• Fls_Private_Fcu.c

The Stub C header files:

• Compiler.h

• Compiler_Cfg.h

• MemMap.h

• Platform_Types.h

Chapter 8 FLS Component Header and Source File Description

42

• SchM_Fls.h

• Dem.h

• Dem_Cfg.h

• Dem_IntErrId.h

• Det.h

• rh850_Types.h

• Std_Types.h

• MemIf.h

• Os.h

• MemIf_Types.h

• Rte.h

The description of the FLS Driver Component files is provided in the table below:

Table 8-1 Description Of The FLS Driver Component Files

File Details

Fls_Cfg.h This file is generated by the FLS Software Generation Tool for various FLS

Driver Component pre-compile time parameters. The macros and the

parameters generated will vary with respect to the configuration in the input ECU

Configuration description file. This file also contains the handles for Fls Pin

configuration set.

Fls_Cbk.h This file contains declarations of notification functions to be used by the

application. The notification function name can be configured.

Fls_Hardware.h

This file contains the #define macros for the hardware registers to be used by the

driver.

Fls_PBcfg.c This file contains post-build configuration data. The structures related to

FLS Initialization are provided in this file. Data structures will vary with

respect to parameters configured.

Fls_Hardware.c

This file contains the reference objects for the structures of hardware

register which is defined in device header file.

Fls.h This file provides extern declarations for all the FLS Driver Component APIs. This

file provides service Ids of APIs, DET Error codes and type definitions for FLS

Software initialization structure. This header file shall be included in other

modules to use the features of FLS Driver Component.

Fls_Debug.h This file provides Provision of global variables for debugging purpose.

Fls_Internal.h This file contains the prototypes for internal functions of Flash Wrapper

Component.

Fls_Types.h This file contains the common macro definitions and the data types

required internally by the FLS software component.

Fls_Ram.h This file contains the extern declarations for the global variables that are defined

in Fls_Ram.c file and the version information of the file.

FLS Component Header and Source File Description Chapter 8

43

File Details

Fls_Version.h This file contains the macros of AUTOSAR version numbers of all modules that

are interfaced to FLS.

Fls_Private_Fcu.h

This file contains API Declarations of Flash Control Unit specific functions.

Fls_RegWrite.h This file is to have macro definitions for the registers write and verification.

Fls.c This file contains the implementation of all APIs.

Fls_Ram.c This file contains the global variables used by FLS Driver Component.

Fls_Internal.c This file contains the Internal functions implementations of flash wrapper

component.

Fls_Private_Fcu.c

This file contains FCU related API implementations.

Fls_Version.c This file contains the code for checking version of all modules that are interfaced
to FLS.

Compiler.h Provides compiler specific (non-ANSI) keywords. All mappings of keywords,

which are not standardized, and/or compiler specific are placed and organized in

this compiler specific header.

Compiler_Cfg.h This file contains the memory and pointer classes.

MemMap.h This file allows to map variables, constants and code of modules to

individual memory sections. Memory mapping can be modified as per ECU

specific needs.

Platform_Types.h This file provides provision for defining platform and compiler dependent types.

Fls_PBTypes.h This file contains the type definitions of post build parameters. It also contains

the macros used by the FLS Driver Component.

SchM_Fls.h This file is a stub for Fls SchM Component

Dem.h This file is a stub for DEM Component

Dem_Cfg.h This file contains the stub values for Dem_Cfg.h

Dem_IntErrId.h This file is a stub for DEM Component

Det.h This file is a stub for DET Component

rh850_Types.h This file provides macros to perform supervisor mode (SV) write enabled Register

ICxxx and IMR register writing using OR/AND/Direct operation.

Std_Types.h This file is a stub file which contains the standard type definitions.

MemIf.h This file is a stub for MEMIF Module

MemIf_Types.h This file is a stub for MemIf component.

Os.h This file is a stub for Os Component

Rte.h This file is a stub for Rte Component

Chapter 8 FLS Component Header and Source File Description

44

Generation Tool Guide Chapter 9

45

Chapter 9 Generation Tool Guide

For information on the FLS Driver Code Generation Tool, please refer

R20UT3642EJ0100-AUTOSAR.pdf” document.

Chapter 9 Generation Tool Guide

46

Application Programming Interface Chapter 10

47

Chapter 10 Application Programming Interface

This section explains the Data types and APIs provided by the FLS Driver

Component to the Upper layers.

10.1. Imported Types

This section explains the Data types imported by the FLS Driver Component

and lists its dependency on other modules.

10.1.1. Standard Types

In this section all types included from the Std_Types.h are
listed:

• Std_VersionInfoType

10.1.2. Other Module Types

In this section all types included from the Dem.h are listed.

• Dem_EventIdType

• Dem_EventStatusType

• Memif_JobResultType

• Memif_StatusType

10.2. Type Definitions

This section explains the type definitions of FLS Driver Component according

to AUTOSAR Specification.

Table 10-1 Fls_ConfigType

Name: Fls_ConfigType

Type: Structure

Type Name Explanation

unit32 ulStartOfDbToc Database start value

void* pJobEndNotificationPointer Pointer to job end
callback notification

void* pJobErrorNotificationPointer Pointer to job error
callback notification

void* pEccSEDNotificationPointer Pointer to ECC SED
callback notification

void* pEccDEDNotificationPointer Pointer to ECC DED
callback notification

uint32 ulFlsSlowModeMaxReadByt
es

Maximum number of
Read bytes in Normal
Mode

uint32 ulFlsFastModeMaxReadByt
es

Maximum number of
Read bytes in fast
Mode

Chapter 10 Application Programming Interface

48

uint16* pFlEndImrAddress Address for error
IMR registers

uint16 usFlEndImrMask Mask for IMR
register

Element:

volatile Fls_FACIRegType pFACIRegPtr Base Address for
FACI Registers

volatile Fls_ECCRegType pECCRegPtr Base Address for
ECC Registers

MemIfModeType ddDefaultMode Default Mode value

Description:
Structure to hold the flash driver configuration set. The contents of the initialisation data
structure are specific to the flash memory hardware

Table 10-2 Fls_AddressType

Name: Fls_AddressType

Type: uint

 Range:

Range:

8/16/32 bits
Size depends on target platform and flash
device.

 Description: Used as address offset from the configured flash base address to access a certain
flash memory area.

Table 10-3 Fls_LengthType

Name: Fls_LengthType

Type: uint

 Range:

Same as Fls_AddressType

Shall be the same type as
Fls_AddressType because of arithmetic
operations. Size depends on target
platform and flash device.

 Description: Specifies the number of bytes to read/write/erase/compare.

Application Programming Interface Chapter 10

49

10.3. Function Definitions

Table 10-4 Function Definitions

Sl. No API’s

1. Fls_Init

2. Fls_Erase

3. Fls_Write

4. Fls_Cancel

5. Fls_GetStatus

6. Fls_GetJobResult

7. Fls_Read

8. Fls_Compare

9. Fls_SetMode

10. Fls_GetVersionInfo

11. Fls_MainFunction

12. Fls_BlankCheck

13. Fls_ReadImmediate

14. Fls_Suspend

15. Fls_Resume

Chapter 10 Application Programming Interface

50

Development and Production Errors Chapter 11

51

Chapter 11 Development and Production Errors

In this section the development errors that are reported by the FLS Driver

Component are tabulated. The development errors will be reported only when

the pre compiler option FlsDevErrorDetect is enabled in the configuration.

The production code errors are not supported by FLS Driver Component.

11.1. FLS Driver Component Development Errors

The following table contains the DET errors that are reported by FLS Driver

Component. These errors are reported to Development Error Tracer Module

when the FLS Driver Component APIs are invoked with wrong input

parameters or without initialization of the driver.

Table 11-1 DET Errors Of FLS Driver Component

Sl. No. 1

Error Code FLS_E_UNINIT

Related API(s) Fls_Erase, Fls_Write, Fls_Read, Fls_Compare, Fls_Cancel,

Fls_GetStatus, Fls_GetJobResult, Fls_MainFunction, Fls_Init,

Fls_ReadImmediate, Fls_BlankCheck, Fls_Suspend,

Fls_Resume

Source of Error When the API service is invoked before initialization.

Sl. No. 2

Error Code FLS_E_PARAM_ADDRESS

Related API(s) Fls_Erase, Fls_Write, Fls_Read, Fls_Compare, Fls_ReadImmediate,
Fls_BlankCheck

Source of Error When the API service is invoked with a wrong address.

Sl. No. 3

Error Code FLS_E_PARAM_LENGTH

Related API(s) Fls_Erase, Fls_Write, Fls_Read, Fls_Compare, Fls_ReadImmediate,
Fls_BlankCheck

Source of Error When the API service is invoked with a wrong length.

Sl. No. 4

Error Code FLS_E_PARAM_DATA

Related API(s) Fls_Write, Fls_Read, Fls_Compare, Fls_ReadImmediate

Source of Error When the API service is invoked with a NULL buffer address.

Sl. No. 5

Error Code FLS_E_BUSY

Related API(s) Fls_Init, Fls_Erase, Fls_Write, Fls_Read, Fls_Compare,

Fls_SetMode , Fls_ReadImmediate, Fls_BlankCheck

Source of Error When the API service is invoked when the driver is still busy.

 Sl. No. 6

Error Code FLS_E_VERIFY_ERASE_FAILED
Related API(s) Fls_MainFunction

 Source of Error When the erase verification fails.

Chapter 11 Development and Production Errors

52

Sl. No. 7

Error Code FLS_E_VERIFY_WRITE_FAILED

Related API(s) Fls_MainFunction

Source of Error When the write verification fails.

Sl. No. 8

Error Code FLS_E_PARAM_CONFIG

Related API(s) Fls_Init

Source of Error API initialization service invoked with wrong parameter.

Sl. No. 9

Error Code FLS_E_TIMEOUT

Related API(s) Fls_MainFunction

Source of Error API service invoked when time out supervision of a write, erase or blank

check job failed

Sl. No. 10

Error Code FLS_E_INVALID_DATABASE

Related API(s) Fls_Init

Source of Error API service Fls_Init called without/with a wrong database is reported

using following error code

Sl. No. 11

Error Code FLS_E_PARAM_POINTER

Related API(s) Fls_GetVersionInfo
Source of Error API service Fls_GetVersionInfo invoked with a null pointer

11.2. FLS Driver Component Production Errors

The following table contains the DEM errors that are reported by FLS Driver

Component. These are the hardware errors reported during runtime.

Table 11-2 DEM Errors of FLS Driver Component

Sl. No. 1

Error Code FLS_E_ERASE_FAILED

Related API(s) Fls_MainFunction

 Source of Error When the Erase API service is invoked and the erase job fails, error will be

reported by the job processing function.

Sl. No. 2

Error Code FLS_E_WRITE_FAILED

Related API(s) Fls_MainFunction

 Source of Error When the Write API service is invoked and the erase job fails, error will be
reported by the job processing function.

Sl. No. 3

Error Code FLS_E_READ_FAILED

Related API(s) Fls_MainFunction

 Source of Error When the Read API service is invoked and the internal reading of the data

flash memory fails, error will be reported by the job processing function.

Development and Production Errors Chapter 11

53

Sl. No. 4

Error Code FLS_E_COMPARE_FAILED

Related API(s) Fls_MainFunction

 Source of Error When the Compare API service is invoked and when the comparison

between the data in the application buffer and the data flash memory fails,

error will be reported by the job processing function.

Sl. No. 5

Error Code FLS_E_READ_FAILED_DED

Related API(s) Fls_MainFunction

 Source of Error During any read operation in the data flash memory, if any double bit error

is detected, error will be reported by the job processing function.

Sl. No. 6

Error Code FLS_E_REG_WRITE_VERIFY

 Related API(s) Fls_Init,Fls_Erase, Fls_Write, Fls_Read, Fls_Compare, Fls_Cancel,
Fls_MainFunction, Fls_ReadImmediate, Fls_BlankCheck, Fls_Suspend,
Fls_Resume

Source of Error If any write operation on the protection register fails, error shall be reported.

Sl. No. 7

Error Code FLS_E_ECC_FAILED

 Related API(s) Fls_Init

Source of Error During initialization, FLS module shall read FRTEINT register and check if any

ECC error has occurred. If any errors are there, DEM shall be reported

Sl. No. 8

Error Code FLS_E_HW_FAILURE

Related API(s) Fls_Init, Fls_Erase, Fls_Write, Fls_Read, Fls_Cancel, Fls_MainFunction,
Fls_BlankCheck, Fls_Suspend,Fls_Resume

Source of Error If any failure has occurred due to mode switch or forced stop or clear status
command processing failure, DEM shall be reported

Chapter 11 Development and Production Errors

54

 Memory Organization Chapter 12

55

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be met for

proper functioning of FLS Driver Component software.

Figure 12-1 FLS Driver Component Memory Organization

FLS Driver code related
to APIs are placed in
this memory.

Segment Name:
FLS_PUBLIC_CODE_ROM

Segment Name:
FLS_PRIVATE_CODE_ROM

Segment Name:

FLS_SAMPLE_CODE_ROM

Segment Name:

FLS_PRIVATE_CODE_RAM

 Segment Name:
 NOINIT_RAM_UNSPECIFIED

Segment Name:
NOINIT_RAM_32BIT

R
A
M
E
K
L
F
E
L
K
F
L
E
K
A
F
L
K
S
E
L
F
K
E
L
1
B
I
T
R
A
M
_
1
B
I
T
R
A
M
_
1
B
I
T

R
A
M
_
1
B
I
T

 X1

 X2

 X3

X4

ROM Section

FLS Driver Component
Object Files

RAM Section

Y1

Y2

 Y3

 Y5

Segment Name:

FLS_CFG_DATA_UNSPECIFIED
Segment Name:
NOINIT_RAM_1BIT

Segment Name:
RAM_1BIT

R
A
M
E
K
L
F
E
L
K
F
L
E
K
A
F
L
K
S
E
L
F
K
E
L
1
B
I
T
R
A
M
_
1
B
I
T
R
A
M
_
1
B
I
T

R
A
M
_
1
B
I
T

 Y4

 Segment Name:
 RAM_UNSPECIFIED

 Y6

Chapter 12 Memory Organization

56

ROM Sections:

FLS_PUBLIC_CODE_ROM (X1): This section consists of FLS Driver

Component APIs and FCL functions that can be located in code memory.

FLS_PRIVATE_CODE_ROM (X2): This section consists of FLS Driver

Component internal functions and scheduler function that can be located in

code memory. This section is copied to RAM by the GHS start-up routines.

FLS_SAMPLE_CODE_ROM (X3): This section needs to be aligned at the

end of FLS code sections in RAM, for exception protection.

FLS_CFG_DATA_UNSPECIFIED (X4): This section consists of FLS Driver

Component database table of contents generated by the FLS Driver

Component Generation Tool.

RAM Sections: Following are the Ram sections mapped.

FLS_PRIVATE_CODE_RAM (Y1): This section in RAM is copied from ROM

section (X1) by the GHS start-up routines.

RAM_1BIT (Y2): This section consists of the global RAM variables of 1-bit size

that are initialized by start-up code and used internally by FLS software

component and other software components. The specific sections of

respective software components will be merged into this RAM section

accordingly.

NOINIT_RAM_32BIT (Y3): This section consists of the global RAM variables

of 32-bit size that are used internally by FLS software component and other

software components. The specific sections of respective software

components will be merged into this RAM section accordingly.

NOINIT_RAM_1BIT (Y4): This section consists of the global RAM variables of
1-bit size that are used internally by FLS software component and other
software components. The specific sections of respective software
components will be merged into this RAM section accordingly.

NOINIT_RAM_UNSPECIFIED (Y5): This section consists of the global RAM
variables that are used internally by FLS software component and other
software components. The specific sections of respective software
components will be merged into this RAM section accordingly.

RAM_UNSPECIFIED (Y6): This section consists of the global RAM variables
that are initialized by start-up code and used internally by FLS software
component and other software components. The specific sections of
respective software components will be merged into this RAM section
accordingly.

P1x-C Specific Information Chapter 13

57

Chapter 13 P1x-C Specific Information

P1x-C supports following devices:

 R7F701370A(CPU1(PE1)),

 R7F701371(CPU1(PE1)),

 R7F701372(CPU1(PE1)),

 R7F701373,

 R701374

13.1. Sample Application

13.1.1. Sample Application Structure

The Sample Application is provided as reference to the user to understand the

method in which the FLS APIs can be invoked from the application. The

Sample Application is provided for three use-cases of only data flash or only

code flash or for both code flash and data flash supported.

G eneric

AU T O SA R T Y P E S CO M P IL E R rh 850
T Y PE S

De v ic e s

Common P1x-C ST U B STUB ST U B ST U B
FLS

Sample

Application

 FLS

Sample

Application

De t

De m

Sc h M
M e m If

Figure 13-1 Overview Of FLS Driver Sample Application

The Sample Application of the P1X-C is available in the path

X1X\P1x-C\modules\fls\sample_application

The Sample Application consists of the following folder structure

X1X\P1x-C\modules\fls\definition\<AUTOSAR_version>\<SubVariant>

 \ R403_FLS_P1X-C.arxml

X1X\P1x-
C\modules\fls\sample_application\<SubVariant>\<AUTOSAR_version>

\src\Fls_PBcfg.c

 \src\Fls_Hardware.c

 \include\Fls_Hardware.h

Chapter 13 P1x-C Specific Information

58

\include\Fls_Cfg.h

 \include\Fls_Cbk.h

\config\App_FLS_ P1x-C_701372_Sample.arxml.

 \config\App_FLS_ P1x-C_701372_Sample.one

 \config\App_FLS_ P1x-C_701372_Sample.html

\config\App_FLS_ P1x-C_701371_Sample.arxml.

 \config\App_FLS_ P1x-C_701371_Sample.one

 \config\App_FLS_ P1x-C_701371_Sample.html

\config\App_FLS_ P1x-C_701373_Sample.arxml.

 \config\App_FLS_ P1x-C_701373_Sample.one

 \config\App_FLS_ P1x-C_701373_Sample.html

\config\App_FLS_ P1x-C_701374_Sample.arxml.

 \config\App_FLS_ P1x-C_701374_Sample.one

 \config\App_FLS_ P1x-C_701374_Sample.html

\config\App_FLS_ P1x-C_701370A_Sample.arxml.

 \config\App_FLS_ P1x-C_701370A_Sample.one

 \config\App_FLS_ P1x-C_701370A_Sample.html

In the Sample Application all the FLS APIs are invoked in the following

sequence:

• The API Fls_GetVersionInfo is invoked to get the version Information of FLS

component with a variable of Std_VersionInfoType type, after the call of this

API the passed parameter will get updated with the FLS Driver Component

version details.

• The API Fls_Init is invoked with config pointer. This API performs the

initialization of the FLS Driver Component. This API initializes all the elements

(Global Variables) of Global structure.

• The API Fls_Erase is invoked to erase one or more complete Flash

Sectors.

• The API Fls_Write is invoked to write the one or more complete flash pages

to the flash device from the application data buffer

• The API Fls_Read is invoked to read the requested length of flash memory

and stores it in the application data buffer.

• The API Fls_Compare is invoked to compare the contents of an area of flash

memory with that of an application data buffer.

• The API Fls_Cancel is invoked to cancel an ongoing flash operations like

read, write, erase or compare job.

• The API Fls_Getstatus returns the FLS module state synchronously.

• The API Fls_GetJobResult returns the result of the last job synchronously.

• The API Fls_Setmode, this API sets the flash driver operation mode.

• The API Fls_Mainfunction is invoked performs processing of the flash

Read, Erase, write or compare jobs. It’s a scheduled function. The
Fls_Mainfunction accepts only read, write, erase or compare job at a time.

• The API Fls_ReadImmediate is invoked for reading of the flash memory. The

data from flash memory (source address) is read to the data buffer (Target

P1x-C Specific Information Chapter 13

59

address) of application without performing blank check before read.

• The API Fls_BlankCheck is invoked to verify whether the memory is properly
erased before doing a write operation.

• The API Fls_Suspend, suspends the on-going job.

• The API Fls_Resume, resumes the previous suspended job.

Remark The API Fls_MainFunction needs to be called in a certain time interval

configured using the parameter "FlsCallCycle". Hence, the sample application

invokes the API ‘Fls_MainFunction’ periodically in a loop with sufficient

software delay. Since neither the interrupt vector table nor the interrupt handler

routines, which are normally located in the flash memory, are accessible while

self-programming is active, the timer interrupt is not used for this purpose. In

order to do so, interrupt acknowledges have to be re-routed to non-flash

memory. This can be achieved by suitably modifying the start-up code to

access the system registers (SW_CFG/SW_BASE respectively EH_CFG/

EH_BASE) to reroute the interrupt vector of the timer interrupt to the RAM

area.

13.1.2. Building Sample Application

13.1.2.1. Configuration Example

This section contains the typical configuration which is used for measuring

RAM/ROM consumption, stack depth and throughput details.

Configuration Details: App_FLS_ P1x-C_<Device_name>_Sample.html

For P1x-C <Device_name> can be 701370A, 701372, 701373, 701374,
701371.

13.1.2.2. Debugging The Sample Application

Remark GNU Make utility version 3.81 or above must be installed and available in the

path as defined by the environment user variable “GNUMAKE” to complete the

build process using the delivered sample files.

Open a Command window and change the current working directory to “make”

directory present as mentioned in below path:

“X1X/P1x-C/common_family/make/<compiler>”

Now execute batch file SampleApp.bat with following parameters:

SampleApp.bat Fls <Device_name>

After this, the tool output files will be generated with the configuration as

mentioned in App_FLS_ P1x-C_<Device_name> _Sample.html file is

available in the path:

“X1X\P1x-
C\modules\fls\sample_application\<SubVariant>\<AUTOSAR_version>\config\

App_FLS_ P1x-C_<Device_name> _Sample.html”

• After this, all the object files, map file and the executable file App_FLS_

P1x-C_<Device_name> _Sample.out will be available in the output folder

(“X1X\P1x-C\modules\fls\sample_application\<SubVariant>\obj\

<Complier>”).

Chapter 13 P1x-C Specific Information

60

• The executable can be loaded into the debugger and the sample application

can be executed.

Remark Executable files with ‘*.out’ extension can be downloaded into the target

hardware with the help of Green Hills debugger.

If any configuration changes (only post-build) are made to the ECU

Configuration Description file

“X1X\P1x-C\modules\fls\sample_application\<SubVariant>

\<AUTOSAR_version>\config\App_FLS_ P1x-C_<Device_name>

_Sample.arxml”

App_FLS_ P1x-C_<Device_name> _Sample.arxml” the database alone can be

generated by using the following commands.

 make –f App_FLS_ P1x-C_<Device_name> _Sample.mak

generate_fls_config

 make –f App_FLS_ P1x-C_<Device_Number>_Sample.mak
App_FLS_ P1x-C_<Device_name>_Sample.run

• After this, a flash able Motorola S-Record file App_FLS_ P1x-

C_<Device_name> _Sample.run is available in the output folder.

 Note 1.For P1x-C <Device_name> can be 701370A, 701371, 701372, 701373,
 701374.
 2. <compiler> for example can be “ghs”.
 3. <SubVariant> can be P1H-C, P1H-CE, P1M-C.

 4. <AUTOSAR_version> can be 4.0.3.

13.2. Memory and Throughput

13.2.1. ROM/RAM Usage

The details of memory usage for the typical configuration, with DET enabled is

provided in this section.

Typical FLS configuration

DET OFF

All other Pre-Compile Settings ON

Number of bytes read in Fls_MainFunction shall be 256 bytes

The Flash erasure for 4 KB(Data Flash).

Table 13-1 ROM/RAM Details with DET

Sl. No. ROM/RAM Segment Name Size in bytes

for 701372

1. ROM FLS_PUBLIC_CODE_ROM

FLS_PRIVATE_CODE_ROM

FLS_CFG_DATA_UNSPECIFIED

ROM.FLS_PRIVATE_CODE_RAM

1780

3820

630

178

P1x-C Specific Information Chapter 13

61

2. RAM FLS_PRIVATE_CODE_RAM

NOINIT_RAM_UNSPECIFIED

NOINIT_RAM_32_BIT

RAM_1_BIT

NOINIT_RAM_1_BIT

RAM_UNSPECIFIED

 178

100

404

2

4

3

The details of memory usage for the typical configuration, with DET disabled is

provided in this section.

Table 13-2 ROM/RAM Details without DET

Sl. No. ROM/RAM Segment Name Size in bytes

for 701372

1. ROM FLS_PUBLIC_CODE_ROM

FLS_PRIVATE_CODE_ROM

FLS_CFG_DATA_UNSPECIFIED

ROM.FLS_PRIVATE_CODE_RAM

1364

3590

 1634

178

2. RAM FLS_PRIVATE_CODE_RAM

NOINIT_RAM_UNSPECIFIED

NOINIT_RAM_32_BIT

RAM_1_BIT

NOINIT_RAM_1_BIT

RAM_UNSPECIFIED

178

100

404

2

3

3

13.2.2. Stack Depth

The worst-case stack depth for FLS Driver Component is 48 bytes.

13.2.3. Throughput Details

The throughput details of the APIs is mentioned below.

 The clock frequency used to measure the throughput is 160 MHz for all

APIs.

Table 13-3 Throughput Details Of The APIs

Sl. No.

API Name
Throughput in

microseconds for

device 701372

Remarks

1. Fls_Init 334.687 -

2. Fls_Erase 2.312 -

3. Fls_Write 2.337 -

4. Fls_Read 0.6 -

Chapter 13 P1x-C Specific Information

62

5. Fls_GetStatus 0.125 -

6. Fls_GetJobResult 0.125 -

7. Fls_Compare 0.575 -

8. Fls_GetVersionInfo 0.125 -

9. Fls_SetMode
0.275

This API does not provide

any functionality
10. Fls_Cancel 0.25 -

11 Fls_ReadImmediate 0.725 -

12. Fls_BlankCheck 2.125 -

13. Fls_Erase Operation 3704.812 -

14. Fls_BlankCheck
Operation

175.37
-

15. Fls_Write Operation

6516.862 -

16. Fls_Read Operation 1328.862 -

17. Fls_ReadImmediate
Operation

43.162
-

18. Fls_Compare
Operation 74.225

-

19. Fls_Suspend 0.237 -

20. Fls_Resume 2.25 -

 Release Details Chapter 14

63

Chapter 14 Release Details

FLS Driver Software

Version: 1.0.2

Chapter 14 Release Details

64

65

Revision History

Sl.No. Description Version Date

1. Initial Version 1.0.0 12-Aug-2015

2. 1. Introduction Updated

2. Chapter 3, Section 3.1.1 updated

3. Chapter 4, Forethoughts updated

4. Chapter 5, Architecture Details updated

5. Chapter 8, FLS Component Header And Source File
Description updated

6. Chapter 11, Table 11.1 and Table 11.2 updated

7. Chapter 12, memory Organization updated

8. Chapter 13, Section 13.2 Sample Application updated

9. Release details updated

10. R number added to User manual

1.0.1 11-May-2016

3. The following changes are made:

 1. In chapter 4, section 4.2 Preconditions points are revised.

 2. Table 4-2 is updated with Known Limitation in User Mode.

 3. Table 4-1 is added to list protected resources in FLS driver.

 4. Chapter 8 is updated with Stub files and Table 8-1 is updated.

 5. In Chapter 6, Table 6-1 is updated with Register Files.

 6. In chapter 13, added references for device 701371.

 7. Chapter 12 and chapter 13.2 are updated with memory sections

 8. In Chapter 4, section 4.3 Data Consistency is updated.

 9. In Chapter 4.4 Deviation list updated.

10. Updated Chapter 13.2.3 added Throughput for main function and
 updated with Fls_BlankCheck, Fls_Suspend, Fls_Resume API
 details in chapter 4.1.

11. Updated Chapter 12 Memory Organization

12. Updated Chapter 6 with details of the register as per individual
 API

 13.Chapter 13, Added Processor name along with Device variants

 14. In section 4.5, Note added.

 15. In Chapter 12 memory organization updated and In chapter
13.2.1 memory usage updated.

16. In chapter 4.1 General section updated with time timeout
monitoring details and chapter 4.4 with timeout monitoring
deviation details.

1.0.2 28-Feb-2017

AUTOSAR MCAL R4.0.3 User's Manual
FLS Driver Component Ver.1.0.2
Embedded User’s Manual

Publication Date: Rev.1.00, February 28, 2017

Published by: Renesas Electronics Corporation

SALES OFFICES http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2006-2017 Renesas Electronics Corporation. All rights reserved.

Colophon 4.1

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3

User's Manual

 R20UT3641EJ0100

	Chapter 1 Introduction
	1.1 Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration and Build Process
	3.1. FLS Driver Component Make file
	3.1.1. Folder Structure

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. Data Consistency
	4.4. Deviation List
	4.5. User mode and supervisor mode

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction Between The User and FLS Driver Component
	7.1. Services Provided By FLS Driver Component To The User

	Chapter 8 FLS Component Header and Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1. Imported Types
	10.1.1. Standard Types
	10.1.2. Other Module Types

	10.2. Type Definitions
	10.3. Function Definitions

	Chapter 11 Development and Production Errors
	11.1. FLS Driver Component Development Errors
	11.2. FLS Driver Component Production Errors

	Chapter 12 Memory Organization
	Chapter 13 P1x-C Specific Information
	13.1. Sample Application
	13.1.1. Sample Application Structure
	13.1.2. Building Sample Application
	13.1.2.1. Configuration Example
	13.1.2.2. Debugging The Sample Application

	13.2. Memory and Throughput
	13.2.1. ROM/RAM Usage
	13.2.2. Stack Depth
	13.2.3. Throughput Details

	Chapter 14 Release Details

