RENESAS

-
o
9
ﬁ\l
7
<
O
S
=
QO

AUTOSAR MCAL R4.0.3
User's Manual

FLS Driver Component Ver.1.0.2

Embedded User’s Manual

Target Device:
RH850/P1x-C

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
www.renesas.com Rev.1.00 Feb 2017

http://www.renesas.com/
http://www.renesas.com/

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation
of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the
circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all
liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or
information.

Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes
involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas
Electronics products or technical information described in this document, including but not limited to, the product data,
drawing, chart, program, algorithm, application examples.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property
rights of Renesas Electronics or others.

You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in
part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising
from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality".
The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated
below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio
and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and
industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale
communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct
threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause
serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key
plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses
incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not
intended by Renesas Electronics.

When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals,
application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and
ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings,
operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any
and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond
such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products,
semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions
under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please
ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire,
and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for
hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate
treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your
products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please
evaluate the safety of the final products or systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the
inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and
use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics
disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and
regulations.

Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use
Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use,
stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or
missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the
development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international
peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies
to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will
engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or
technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by
the governments of the countries asserting jurisdiction over the parties or transactions.

Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or
violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics
harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third
party.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written
consent of Renesas Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its

majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

3

Abbreviations and Acronyms

Abbreviation / Acronym

Description

ANSI American National Standards Institute
API Application Programming Interface
AUTOSAR AUTomotive Open System ARchitecture
BSW Basic SoftWare
DEM Diagnostic Event Manager
DET/Det Development Error Tracer
ECU Electronic Control Unit
EEPROM Electrically Erasable Programmable Read Only Memory
FDL Data Flash Library
FLS FLaSh Driver
GNU GNU'’s Not Unix
HW HardWare
ID/Id Identifier
MCAL Microcontroller Abstraction Layer
NA Not Applicable
RAM Random Access Memory
ROM Read Only Memory
RTE Run Time Environment
SCHM/SchM Scheduler Manager
SW SoftWare
Definitions
Term Represented by
Sl. No. Serial Number

Table Of Contents

Chapter 1 INtrodUCtiON........coiiiiice e e 11
1.1 DOCUMENT OVEIVIEW ...eeiiiiiiiiiee ettt ettt ettt ettt skt e sk bt e s asb e e e s aabb e e e s anbne e e e annneeas 12
Chapter 2 Reference DOCUMENTSiveiiiiiiciiiii e 15
Chapter 3 Integration And Build Processcccoooiiiiiiiiiciineennn, 17
3.1. FLS Driver Component Make fil@ ... e e 17
3.1.1. FOIAEI SETUCTUTE .. 17
Chapter 4 Forethoughts ..o 19
4.1. (T L= | PP P PP PTPPP 19
4.2. PrECONAITIONS ..ottt ekttt e s bbbt e e bbb e e s aabb e e e s nanneeas 21
4.3. [Tz L= B O o g E=T 1= (= o oY 23
4.4. DEVIATION LIST .oeiiiiiiieitiiie ettt ettt s e e n e 25
4.5, User mode and SUPEIVISOT MOGEcouuiiiiiiiiiieiiiiie ettt ettt et e e e e e sabn e e snnneeas 26
Chapter 5 Architecture DetailS..........ccooiiiiiiiiiciiii e 29
Chapter 6 Registers Details.........ccooeiviiiiiiiiiie e 35
Chapter 7 Interaction Between The User And FLS Driver
(7o) 0] 0 ToT o 1=] o | P 39
7.1. Services Provided By FLS Driver Component To The USer..........ccccceeveiiiiee e, 39
Chapter 8 FLS Component Header And Source File Description 41
Chapter 9 Generation Tool GUIAEcouoveiiiiiiiiii e 45
Chapter 10 Application Programming Interface...........ccccoocceveeeen, 47
10.1. [g] oXoT g (=T B VA 0= 1S PP UOPPRPP a7
O T A S =T g Lo = 1o B I8/ o L= S PP PRR a7
O @ g =T g 1Y/ o Yo LU =T 1Y L= 47
10.2. YA LT D L] 1 LT o 1 47
10.3. FUNCHION DEFINITIONS ittt e e enneeeas 49
Chapter 11 Development And Production Errors........cccccevvvvvvneennee, 51
11.1. FLS Driver Component DevelopmMeENt ErTOrS ...t a e 51
11.2. FLS Driver Component Production EFTOrS.........ueeiiiiiiiiiiiiiee e 52
Chapter 12 Memory OrganiZationueeveeereiiiieeeeeiiineeeeeeiine e 55
Chapter 13 P1x-C Specific Informationcccceevveiviiiiiiiieieeiiieeee, 57
13.1. SAMPIE APPIICALION ...eiiieiii et 57
13.1.1. Sample Application SEFUCTUEciiiiiii e 57
13.1.2. Building Sample APPliCAtioNooiiiiiiiiii e 59
13.1.2.1. Configuration EXampPle........ccocuviiiiiiie e 59

13.1.2.2. Debugging The Sample Applicationccccceeeeeiiiiiiiiieeee e, 59

13.2. Memory ANd ThrOUGNPUL ... e e e s s srnrre e e e e e e e eaans 60
13.2.1. ROM/RAM USBQEcciiiiiiiieiiii it stee it se et sire e e e nnn e snneesnee e 60
13.2.2. SEACK DEPIN .ottt 61
13.2.3. Throughput DELAIISeeiiiiiiiieiieiee e 61

Chapter 14 Release DetailScoooevuiiiiiiiiiiiii e 63

Figure 1-1
Figure 1-2
Figure 5-1
Figure 5-2
Figure 12-1
Figure 13-1

Table 4-1
Table 4-2
Table 4-3
Table 6-1
Table 8-1
Table 10-1
Table 10-2
Table 10-3
Table 10-4
Table 11-1
Table 11-2
Table 13-1
Table 13-2
Table 13-3

List Of Figures

System Overview of FLS Driver Component in AUTOSAR MCAL Layer............ 11
System Overview of AUTOSAR ArchiteCtureccccoceveeeii i, 12
FLS Driver Component ArChitE@CtUIeveveeiiiiiiiiiieee e et e e e e e e e 29
Component Overview of FLS Driver COMPONENt........cccccveeeeeiiiiiiieeeeee e sciiieeeeen 30
FLS Driver Component Memory Organizationc..cooveccvreeeeeeessiiiininneeeeessnnnns 55
Overview Of FLS Driver Sample AppliCationcccceeviiieeiniieee e 57

List Of Tables

FLS Driver Protected RESOUICES LiSt........cccoiiiiiiiiiiiiiiiiiiiiiiieiee e 24
FLS Driver Component Deviation LiSt...........cceveiiiiiiiiiiie e 25
User mode and Supervisor mode details when Data Flash enabled................... 26
REQISTEr DELAIISeeiiiiieiii e 35
Description Of The FLS Driver Component FileS.........ccccveiiiiiiiiiieeeiniieee e, 42
FIS _ CONTIGTYPE .ttt 47
FIS_AQArESSTYPE ...eeiiiiiiiie ittt ettt e et e e s nanneeas 48
e S =T o 1 118/ 1= 48
FUNCLON DeiINItIONS.....cooi it e e 49
DET Errors Of FLS Driver COMPONENTuuuvvuieieiiiuieinininieinrernininnninnernrnnnnn. 51
DEM Errors of FLS Driver COMPONENTuuvvuiuirieieininininieinrninirinnninennnennnnn. 52
ROM/RAM Details With DETccciiuiiiiiiiiiieiiiieee s e snnaee e snenee s 60
ROM/RAM Details WIthOUE DETccoiiiiiieiiiiiieiiiiie e sieee e 61
Throughput Details Of The APIScooiiiiiiii e 61

10

Introduction

Chapter 1

Chapter 1

Introduction

The purpose of this document is to describe the information related to FLS
Driver Component for Renesas P1x-C microcontrollers.

This document shall be used as reference by the users of FLS Driver
Component. The system overview of complete AUTOSAR architecture is
shown in the below Figure:

Microcontroller Drivers Memory Drivers Communication Drivers 1/0 Drivers
1 1 — 1 [— — — — — — — r—
— =1
El 5]
s : || g i
(0] =S <) > = — o o) —_ o) > sl
511 2|18]]¢ EllzIE]]m AEIEE: I
o @ < il T =] z & < O o
ol 8 o g(12] = al||o 2 o o=
Slloll2]]8 SIE R g2l 2| o 22125
128 * SIE M IE SRR sl &]|a]|e]]®
B) o 5 @
o s @
ol
e —] S— —d —_—] e I S
Micro-
® g Y T m
of s llcog = = - m nwl|lleS 0 oll 2|l = o
= el Z 9
3| g |zgio| controller o || Bl=%) | 8|82 £ 2llg|8| 3
Figure 1-1 System Overview of FLS Driver Component in AUTOSAR MCAL Layer

The FLS Driver Component is part of BSW which is accessible by RTE.
This RTE is a middle ware layer providing communication services for the
application software and thereby it is possible to map the application
software components between different ECUs.

The RTE provides the encapsulation of Hardware channels and basic
services to the Application Software Components. So it is possible to map
the Application Software-Components between different ECUs.

The Basic Software Modules are located below the RTE. The Basic
Software itself is divided into the subgroups: System Services, Memory,
Communication and 10 Hardware-Abstraction. The Complex Drivers are
also located below the RTE. Among others, the Operating System (OS), the
Watchdog manager and the Diagnostic services are located in the System
Services subgroup. The Memory subgroup contains modules to provide
access to the non-volatile memories, namely Flash and EEPROM. Here the
flash operation will be handled by flash driver.

On board Device Abstraction provides an interface to physical values for
AUTOSAR software components. It abstracts the physical origin of signals
(their paths to the hardware FLSs) and normalizes the signals with respect
to their physical appearance. The microcontroller driver provides services
for basic microcontroller initialization, power down functionality, reset and
microcontroller specific functions required from the upper layers.

11

Chapter 1

Introduction

12

Figure 1-2

1.1

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

FLS Driver

Microcontroller

System Overview of AUTOSAR Architecture

The FLS application software components are located at the top and can
gain access to the rest of the ECU and also to other ECUs only through the
RTE. This RTE is a middleware layer providing communication services for
the application software and thereby it is possible to map the application
software components between different ECUs.

This FLS Software Module is located below the RTE. The FLS Component
APIs are directly invoked by the application or RTE. The FLS Component is
responsible for erase/write/read/compare data on the data flash memory.

The FLS component perform the activities like accessing and programming
the on-chip data flash hardware.

The FLS Component layer comprises of API for erase/write data to on-chip
data flash memory of the device. The FLS Component conforms to the
AUTOSAR standard and is implemented mapping to the AUTOSAR FLS
Software Specification.

The functional parameters of FLS software components are statically
configurable to fit as far as possible to the real needs of each ECU.

Document Overview

The document has been segmented for easy reference. The table below
provides user with an overview of the contents of each section:

Section

Contents

Sectionl (Introduction)

This section provides an introduction and overview of FLS Driver
Component.

Section 2 (Reference Documents) | This section lists the documents referred for developing this document.

Process)

Section 3 (Integration And Build This section explains the folder structure, Make file structure for FLS

Driver Component. This section also explains about the Make file
descriptions, Integration of FLS Driver Component with other
components, building the FLS Driver Component along with a sample
application.

Introduction

Chapter 1

Section

Contents

Section 4 (Forethoughts)

This section provides brief information about the FLS Driver Component,
the preconditions that should be known to the user before it is used,
diagnostic channel, limit check feature, sample and hold feature,
conversion time and stabilization time, DMA and ISR operations, data
consistency details, deviation list and user mode and supervisor mode.

Section 5 (Architecture Details)

This section describes the layered architectural details of the FLS Driver
Component.

Section 6 (Registers Details)

This section describes the register details of FLS Driver Component.

Section 7 (Interaction between
The User And FLS Driver
Component)

This section describes interaction of the FLS Driver Component with the
upper layers.

Section 8 (FLS Driver Component
Header And Source File
Description)

This section provides information about the FLS Driver Component
source files is mentioned. This section also contains the brief note on the
tool generated output file.

Section 9 (Generation Tool Guide)

This section provides information on the FLS Driver Component Code
Generation Tool.

Section 10 (Application
Programming Interface)

This section explains all the APIs provided by the FLS Driver
Component.

Section 11 (Development And
Production Errors)

This section lists the DET and DEM errors.

Section 12 (Memory
Organization)

This section provides the typical memory organization, which must be
met for proper functioning of component.

Section 13 (P1x-C Specific
Information)

This section provides the P1x-C Specific Information.

Section 14 (Release Details)

This section provides release details with version name and base
version.

13

Chapter 1

Introduction

14

Reference Documents Chapter 2
Chapter 2 Reference Documents
Sl. No. Title Version
1. RH850/P1H-C Document User’s Manual: Hardware 1.0
(r01uh0517€j0100_rh850p1x-c_Open.pdf)
2. Autosar R4.0 3.20
Specification of FLS Driver (AUTOSAR_SWS_FlashDriver.pdf)
3. AUTOSAR BUGZILLA (http://www.autosar.org/bugzilla) -
Note: AUTOSAR BUGZILLA is a database, which contains concerns raised
against information present in AUTOSAR Specifications.
4. Specification of Compiler Abstraction 3.2.0
(AUTOSAR_SWS_CompilerAbstraction.pdf)
5. Specification of Memory Mapping 1.4.0
(AUTOSAR_SWS_MemoryMapping.pdf)
6. Specification of Platform Types 250
(AUTOSAR_SWS_PlatformTypes.pdf)

15

http://www.autosar.org/bugzilla

Chapter 2

Reference Documents

16

Integration and Build Process Chapter 3

Chapter 3

Remark

3.1.

Integration and Build Process

In this section the folder structure of the FLS Driver Component is explained.
Description of the Make files along with samples is provided in this section.

The details about the C Source and Header files that are generated by the
FLS Driver Generation Tool are mentioned in the “R20UT3642EJ0100 -
AUTOSAR.pdf”.

FLS Driver Component Make file

The Make file provided with the FLS Driver Component consists of the GNU
Make compatible script to build the FLS Driver Component in case of any
change in the configuration. This can be used in the upper level Make file (of
the application) to link and build the final application executable.

3.1.1.Folder Structure

The files are organized in the following folders:

Remark Trailing slash ‘\’ at the end indicates a folder

X1X\common_platform\modules\fls\src\FlIs.c
\FIs_Internal.c
\FIs_Ram.c
\FIs_Version.c

\FIs_Private_Fcu.c

X1X\common_platform\modules\fls\include\Fls.h
\FIs_Debug.h
\FIs_Internal.h
\FIs_PBTypes.h
\FIs_Ram.h
\FIs_Types.h
\FIs_Version.h

\FIs_Private_Fcu.h

\FIs_RegWrite.h

X1X\ P1x-C
\modules\fls\sample_application\<SubVariant>\make\<Complier>
\App_FLS_P1X-C_Sample.mak

X1X\P1x-C\modules\fls\sample_application\make\
<Complier>\App_FLS P1x-C_Sample.ld

X1X\P1x-C\modules\fls\Sample_application\<SubVariant>\obj

17

Chapter 3

Integration and Build Process

18

Note:

X1X\P1x-C\modules\fls\generator\R403_FLS P1x-C_BSWMDT.arxml.

X1X\P1x-C\modules\fls\user _manual
(User manuals will be available in this folder)
1. <Complier> can be ghs.

2. <AUTOSAR _version> should be 4.0.3.
3. <SubVariant> can be P1H-C, P1H-CE, P1M-C.

Forethoughts

Chapter 4

Chapter 4

4.1.

Forethoughts

General

Following information will aid the user to use the FLS Driver Component
software efficiently:

AUTOSAR FLS driver supports Data Flash access only. Code Flash
access is out of scope.

The start-up code is ECU specific. FLS Driver Component does not
implement the start-up code.

Example code mentioned in this document shall be taken only as
a reference for implementation.

All development errors will be reported to DET by using the API
Det_ReportError provided by DET.

All production errors will be reported to DEM by using the API
Dem_ReportErrorStatus provided by DEM.

The FLS Driver Component developed supports only on-chip ROM and
no external devices are considered. Hence the parameters related to
external devices are ignored by the Generation Tool.

The FLS Driver Component does not provide functionalities for setting of
protection flags, boot cluster size, swapping of boot block and flashing of
boot block and they are out of scope for FLS Driver Component
implementations.

The FLS Driver Component’s job processing function (Fls_MainFunction)
is a polled function.

The configurations provided for fast mode write operation is ignored by
the Generation Tool and only configurations for normal mode operations
and fast mode read operation are accepted.

Fis_Init APl shall enable the flash memory erase/write protection
settings if it is supported by hardware. Before the flash operation
protection shall be disabled and after the completion of job, protection
shall be again enabled.

The FlIs_Erase APl computes the sectors that need to be erased based
on the provided target address and length. When DET is enabled the
error will be reported if the length of the bytes to be erased is not in
multiples of flash sector size.

Fls_SetMode API sets the flash driver operation mode (FAST Mode/SLOW
Mode) for read operation. This API allows the user to read more number of
bytes during run time if in case the default mode is configured as
‘MEMIF_MODE_FAST'. FIs_SetMode API is not applicable for
Erase/Write/Blank Check operations, because underlying hardware does
not support it.

In a single cycle of FIs_MainFunction API, the maximum number of bytes
processed for the fast read command and normal read depends on the
configuration of parameters ‘FisMaxReadNormalMode'(if default mode is
MEMIF_MODE_SLOW) and ‘FIsMaxReadFastMode’(if default mode is
MEMIF_MODE_FAST).

Maximum value of ‘FlsMaxReadNormalMode’ parameter specifies the
size of a temporary buffer in RAM which is used when
Fls_Readlmmediate and FIs_Compare APIs are called. The resulting
RAM consumption has to be considered.

In a single cycle of FIs_MainFunction call, FLS driver performs write
operation for 4 bytes, or blank check operation for 4 bytes, or erase
operation for 64 bytes.

The length of the data that has to be programmed on to the flash should
be in multiples of flash page. The FLS Driver Component does not pad
bytes if the length is not in multiples of flash page. It is the responsibility
of the application to pad bytes such that the length of the data is in
multiples of flash page.

Erase, Write, Read and Blank check jobs are initiated within the

19

Chapter 4

Forethoughts

20

corresponding APIs itself. FIs_MainFunction API shall act as a checker
function and it shall check whether the job is completed and initiate the
next round of job cycle if the job is not completed.

The normal write verification using the direct memory read access is
performed when DET is enabled.

The processing of blank check operation is applicable for Data flash
only.

During activation of flash environment (in Fls_Init), the access to Code
flash is not possible. Hence the user should ensure that all the
application and supporting components code that needs to be executed
during flash operation need to locate in RAM.

The device supports servicing of interrupts during self-programming.
During activation of flash environment (in Fls_Init), the interrupt vector
address in the flash will not be available. The interrupt vectors can be
relocated to RAM during flash programming. For details please refer
Exception Handling Address Switching Function in the according device
CPU user manual.

The FLS Driver Component can invoke user configurable call-back
notification functions. However, the implementation of the call back
functions is the responsibility of the upper layer.

The parameter ‘FlsCallCycle’ shall be used for timeout implementation.
The Erase, Write and BlankCheck timeout count values shall be
generated based on FlsCallCycle and hardware specific atomic
operations’ time (‘FIsEraseTime’, ‘FIsWriteTime’ and
‘FlsBlankCheckTime’).To report timeout, ‘FlsTimeOutMonitoring’
parameter needs to be configured as TRUE'. In case if the parameter
‘FlIsDevErrorDetect’ is also enabled, time out DET shall be reported.The
‘FlsCallCycle’ parameter shall be configured by the user correctly.
Incorrect value may lead to reporting of timeout DET by
Fls_MainFunction.

User application shall not program Code Flash in the application mode.
Code Flash shall only be programmed in safe environment in the boot
mode. User application shall not write safety related data into Code Flash

or Data Flash during driving cycle for safety critical applications.

There are two possible errors that can be detected by ECC are Single-bit
errors (SED) and Double-bit errors (DED). The ECC error notification
feature is incorporated in Read functionality only. So whenever the read
is initiated this feature will be enabled always and only notifying to the
upper layer happens via configurable notification functions. The
configuration of single bit and double bit error notification function
parameters are user selectable. The error notification functions for both
single bit and double bit ECC error report are configurable with
parameters from configuration.

The parameters are:

FIsEccSedNotification: This parameter mapped to Single-bit error (SED)
notification routine provided by some upper layer module.
FIsEccDedNotification: This parameter mapped to Double-bit error
(DED) notification routine provided by some upper layer module. The
Double bit error is reported to DEM in addition to notification functions.
Data Flash Memory Read Cycle Setting Register (EEPRDCYCL) is used to
specify the number of wait cycles to be inserted when reading the data in
the data flash. The initial value of the register is taken by default. If required
user application shall set this register as per P1x-C device user manual.
The file Interrupt_VectorTable.c provided is just a Demo and not all
interrupts will be mapped in this file. So the user has to update the
Interrupt_VectorTable.c as per his configuration.
The accesses to HW registers is possible only in the low level driver layer.
The user shall never write or read directly from any register, but shall use
the AUTOSAR standard API provided by the MCAL.

Forethoughts

Chapter 4

4.2.

Fls_Read API performs the reading of the flash memory with a blank check
operation before read but FIs_Readlmmediate performs the reading of the
flash memory without a blank check operation before read.

Fils_BlankCheck API used to perform the blank check of flash memory
before reading the flash memory, Fis_Suspend API performs the suspend
of the ongoing write, read or erase job, FIs_Resume API resumes the
suspended job.

The time-out implementation for erase/write operations will not done by
FLS module and it needs to be carried out by the upper layer.

FLS Timeout Monitoring

The configuration parameter FlsTimeoutMonitoring in the FIsGeneral
container can be used to enable/disable the timeout supervision for FLS
driver independent of DET settings.

Only when FlsTimeoutMonitoring is set to TRUE and DET is switched

ON, a DET error FLS_E_TIMEOUT will be reported in case of detection of

a timeout error.

In order to perform timeout monitoring/supervision on flash operations,

the following configuration parameters should be used properly according

to use-cases.

» In the polling mode of FLS, the parameter FlsCallCycle shall be
configured to specify the cycle time of calls of the FLS main function
(in seconds). The timeout count values are calculated internally based
on the CPU frequency for the respective flash operations, i.e., erase,
write, blank check, etc.

» In the interrupt mode of FLS, the parameter FIsTimeOutCountValue
shall be configured to directly specify the timeout count value required
for erase, write and blank check operations.

» Fls_MainFunction is crucial for timeout supervision. The call
frequency of Fls_MainFunction shall be handled properly in the upper
layer software to be in line with the FLS module configuration.

Note: since read, read immediate, compare operations are not supported
in FLS interrupt mode, only the parameter FIsCallCycle is used to
calculate timeout count values for them irrespective of interrupt or polling
mode. For write, erase, blank check operations, FlsCallCycle is used in
the polling mode of FLS, while FIsTimeOutCountValue is used in the
interrupt mode of FLS.

In FlsGeneral container the configuration parameter FlsLoopCount is

used to avoid the risk of endless loops in the FLS driver. FlIsLoopCount is

always used in the implementation, hence it is not dependent on the
parameter FlsTimeoutMonitoring

Preconditions

Following preconditions have to be adhered by the user, for proper
functioning of the FLS Driver Component:

The user should ensure that FLS Driver Component API requests are
invoked in the correct and expected sequence and with correct input
arguments.

Correct frequency configuration is essential for Flash programming quality
and stability. Wrong configuration could lead to loss of data retention or
Flash operation fail. The limits for CPU frequency are device dependent.
Please refer to the respective device user manuals for correct range. If the
CPU frequency is a fractional value, round up the value to the nearest
integer. Do not change power mode (voltage or CPU clock) while FLS is
performing a Data Flash operation. If power mode must change the user
can:

Wait until operations are no longer busy or Cancel the ongoing operation
and reinitialize the FLS module with proper CPU frequency value.

A blank check pass does not confirm that it is possible to write to this word
(4 Bytes). Also partly written/erased words may have a blank check pass

21

Chapter 4

Forethoughts

22

but write is not allowed under this condition. A blank check fail does not
confirm a stable read value. Even though parts of a word are at least partly
written, random read data are still possible, so are ECC error indications
for single error corrections and double error detection.

Due to RV40 Flash technology, hardware will implicitly reject the write
operation if the target Flash cells are not blank (a kind of "overwriting
guard"). Writing to non-blank Flash cells will result in write error.

Due to the above shown limitations the information which can be given by
FIs_BlankCheck, either passing or failing, is limited. It cannot be used to
determine the current state of a flash cell in a meaning full way without
additional information obtained by other means. The blank check should
only be used to confirm or check some flow status but should not be used
to determine if a flash cell can be read or written. FLS055 from AUTOSAR
Specification of Flash Driver are not fulfilled here because blank check
itself is not able to identify erasure state of flash cell which is ready for write
operation. Please refer to application note document "RV40F DataFlash
Usage" for more details about blank check and usage hints.

In case of Flash modification operation (Erase/Write) interruption due to
e.g. power failure, reset etc., the electrical conditions of the affected Flash
range (Flash block on erase, Flash write unit on Write) get undefined. It is
impossible to give a statement on the read value after the interruption.
Thus, the resulting read value is not reliable; the electrical margin for the
specified data retention may not be given. In such case, erase and re-write
the affected Flash block(s) to ensure data integrity and retention.
FIs_Cancel will stop the Flash programming hardware synchronously, thus,
the ongoing Flash modification operation (Erase/Write) will be interrupted.
This can result in undefined state of Flash block(s) the same way as
general interruptions mentioned above.

Data Flash on RH850 devices is made with differential cells for storage.
This means that reading erased but non-programmed Data Flash areas
directly (bypassing FLS) will produce undefined data with a tendency to the
previously written data, and it will most probably cause ECC error
exceptions. To avoid this exceptions, use FLS read APIs.

It is not possible to modify the Code Flash in parallel to a modification of
the Data Flash or vice versa due to shared hardware resources.

FIs_Init function temporarily disables Code Flash. During this time, since
the Code Flash is not available, the FLS code is executed from internal
RAM (allocated space on stack). Please ensure that: (1) User application
code execution is done from other locations than Code Flash (e.g. internal
RAM). (2) No access to Code Flash is allowed, e.g. by jump to
interrupt/exception functions, direct Code Flash read/execution from the
CPU, DMA accesses to Code Flash.

Data Flash blocks are aligned to 64 bytes and Data Flash words are
aligned to 4 bytes. RH850 devices also add alignment restrictions for types
larger than 8 bits. Please refer to device hardware manual for details.
Validation of input parameters is done only when the static configuration
parameter FLS _DEV_ERROR_DETECT is enabled. Application should
ensure that the right parameters are passed while invoking the APIs when
FLS_DEV_ERROR_DETECT is disabled.

A mismatch in the version numbers will result in compilation error. Ensure
that the correct versions of the header and the source files are used.

The files FIs_Cfg.h, Fls Cbk.h and Fls PBcfg.c generated using FLS
Generation Tool have to be linked along with FLS Driver Component
source files.

The FLS Driver Component needs to be initialized by calling Fls_Init before
calling any other Fls functions.

Values for production code Event Ids should be assigned externally by the
configuration of the DEM.

Fis_Init shall do verification of ECC control registers, so as to ensure ECC
1-bit error detection and correction, ECC 2-bit error detection are enabled
for data flash before initialization of FCU. If the user configurable ECC

Forethoughts

Chapter 4

4.3.

check for FACI is enabled and if the verification of FACI ECC register fails,
DEM error FLS_E_ECC_FAILED shall be reported.

The Fls_MainFunction should be invoked regularly by the Basic Scheduler.
Though not specified by AUTOSAR, calling Fls_MainFunction by polling
mechanism is also possible. Ensure that the FLS Driver Component is
initialized before enabling the invocation of this scheduled function to avoid
reporting of a DET error when enabled.

Fls_Readlmmediate API should not be used to read blank cells. User
application shall handle the errors associated with blank cell read using
Fls_Readlmmediate API.

Calling FLS functions, especially Cancel/Suspend/Resume/MainFunction
APIs by a higher priority ISR must be prevented by upper layer to avoid
possible re-entrancy issue.

Interrupt mode supports Erase, Write, and Blank Check operations only.
Writing the same area more than once is prohibited. To write again the
flash memory area where data has already been written to, user shall
erase the corresponding area in advance.

If a cancel request is accepted, during an ongoing write or erase operation
and a previous operation is already suspended, then both operations will
be cancelled.

Cancel and suspend/resume operations are not allowed in case of two
instances of FLS Driver Component as the effect is not evaluated.

All functions are not re-entrant. So, re-entrant calls of any not re-entrant
function must be avoided.

Suspend operation shall not be performed in between atomic operations of
the job. i.e, in between 64 bytes of erase and 4 bytes of write, suspension
is not possible. The job can be suspended only after completion of one
atomic operation.

It is not always possible to nest suspend and/or stand-by.

E.g: Any operation » suspend » suspend — is not possible.

Any operation » stand-by » stand-by — is not possible.

Any operation » stand-by » suspend — is not possible.

Write or Erase » suspend » Erase operation — is not possible

Write operation » suspend » other Write operation — is not possible

Any operation » suspend P other operation » suspend—isn’t possible
When an erase job is suspended, calling a write job at the same address of
that of erase job and then resuming the previously suspended erase job
shall report DET indicating failure of erase verification.

Any internal error occurred due to hardware failure during mode switching
or issuing forced stop command shall set the driver status to UNINIT and
job status to JOB_FAILED.

The user shall configure the exact Module Short Name FlIs in
configurations as specified in config.xml file and the same shall be given in
command line.

The user should configure FACIn Unit properly to avoid hardware resource
conflict.

FLS initialization failure may happen in the system runtime due to transient
hardware faults. The User shall enable DET in order to get FLS_E_UNINIT
in case of initialization failure. If FIs_GetStatus API is used, upper layer can
use this API to get MEMIF_UNINIT in case of initialization failure.

Data Consistency

To support the reentrancy and interrupt services, the FLS Software
component will ensure the data consistency while accessing their own RAM
storage or hardware registers.

#define FLS_ENTER_CRITICAL_SECTION (Exclusive_Area)
SchM_Enter_Fls_##Exclusive_Area()

#define FLS_EXIT_CRITICAL_SECTION (Exclusive_Area)

Chapter 4

Forethoughts

24

SchM_Exit_Fls_##Exclusive_Area()

The following exclusive areas along with scheduler services are used to
provide data integrity for shared resources:

* FLS_DRIVERSTATE_DATA_PROTECTION
* FLS_REGISTER_PROTECTION
* FLS_CODE_FLASH_DISABLED

These functions can be disabled by disabling the configuration parameter
‘FlsCriticalSectionProtection’.

Table 4-1 FLS Driver Protected Resources List

APl Name Exclusive Area Type Protected
Resources

HW Registers:
Fls_lInit FLS_REGISTER_PROTECTION FRAMMCR
FCURAME
FPCKAR

Firmware storage
FLS_CODE_FLASH_DISABLED area switching is
protected

HW Registers:
Fls_Erase FLS_REGISTER_PROTECTION FSADDR
FEADDR

Driver state data is
FLS_DRIVERSTATE_DATA_PROTECTION | protected :
Fls_GstVar.GulJob
StartAddress
Fls_GstVar.GulJob
EndAddress

HW Registers:
Fls_Write FLS_REGISTER_PROTECTION FSADDR
FEADDR

Driver state data is
FLS_DRIVERSTATE_DATA_PROTECTION | protected :
Fls_GstVar.GulJob
StartAddress
Fls_GstVar.GulJob
EndAddress

HW Registers:

Fls MainFunction FLS_REGISTER_PROTECTION DFERSTC

a DFERSTR
DFERRINT

Driver state data is
FLS_DRIVERSTATE_DATA_PROTECTION | protected :
Fls_GstVar.GulJob
StartAddress
Fls_GstVar.pBuffer
Address

HW Registers:
Fls_Resume FLS_REGISTER_PROTECTION DFERSTC
DFERSTR
DFERRINT

Driver state data is
Fls_Read FLS_DRIVERSTATE_DATA_PROTECTION protected:

B Fls_GstVar.GulRea
dAddress

Forethoughts

Chapter 4

APl Name

Exclusive Area Type

Protected
Resources

Fls_Compare

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is
protected during
compare operation :
Fls_GstVar.GulReq
uestedLength
Fls_GstVar.GucOffs
et
Fls_GstVar.GulRea
dAddress
Fls_GstVar.pTemp
BufferAddress
Fls_GstVar.pBuffer
Address
Fls_GstVar.GulCurr
entLength
Fls_GstVar.GucGe
nCommand
Fls_GenState
FIs_GenJobResult

Fls_Cancel

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is
protected during
cancel operation :
Fls_GenState
Fls_GenJobResult
Fls_GstVar.GucGe
nCommand

Fls_BlankCheck

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is
protected during
blank check
operation :
Fls_GstVar.GucGe
nCommand
FIs_GenJobResult
Fls_GenState

Fls_Readlmmediate

FLS_DRIVERSTATE_DATA_PROTECTION

Driver state data is
protected during
read immediate
operation :
Fls_GstVar.GulRea
dAddress

Note:

The highest measured duration of a critical section was 140.725 micro seconds
measured for Fls_Init API.

4.4. Deviation List
Table 4-2 FLS Driver Component Deviation List
Sl. No. | Description AUTQSAR
Bugzilla
1. The fast mode parameters ‘FIsMaxReadFastMode’ and -
‘FIsMaxWriteFastMode’ of the container ‘FIsConfigSet are unused.
2. The parameters ‘FlIsAcLoadOnJobStart’ and ‘FlsUselnterrupts’ of the | -
container ‘FlsGeneral’ is unused.
3. The parameters ‘FlsDefaultMode’ and ‘FlsProtection’, FIsAcWrite’ and -
‘FIsAcErase’ of the container ‘FIsConfigSet’ are unused.

25

Chapter 4 Forethoughts

4, The parameters ‘FlsAcLocationErase’, ‘FIsAcLocationWrite’, -
‘FIsAcSizeErase’ and ‘FIsAcSizeWrite’ of the container
‘FIsPublishedInformation’ are unused.

5. The component will support only the on-chip flash memory. External
flash is not in the scope of this implementation.

6. FLS_E_READ_FAILED_DED error code will be reported to DEM if
read job is failed when double bit ECC error is generated.

7. FLS201_Conf from AUTOSAR Specification of Flash Driver is not
fulfilled here because FlsSectorList is limited to one sector with fixed
sector size. User shall not configure multiple sectors. Since data flash
is a monolithic on-chip NV memory with homogeneous block size, it is
not required to have multiple sectors with the same sector sizes.
Important is that FLS driver shall support possible usage of "user pool"
(private data flash area that cannot be accessed by FLS driver). This
can be done by proper configuration of FlsSectorStartaddress and
FIsNumberOfSectors.

8. FLS272, FLS359, FLS360 and FLS361 from AUTOSAR Specification
of Flash Driver are not fulfiled here because timeout monitoring can
be configured independent of DET setting. However only when both
timeout monitoring and DET are enabled, FLS_E_TIMEOUT will be
reported in case of detected timeout error.

9. The timeout monitoring can be configured independent of DET setting
in FLS. FLS272, FLS359, FLS360, FLS361 can only be fulfilled, when
both timeout monitoring and DET are enabled, i.e., FLS_E_TIMEOUT
will be reported for the respective flash operations in case of detected
timeout error.

4.5. User mode and supervisor mode

The below table specifies the APIs which can run in user mode, supervisor
mode or both modes

Table 4-3 User mode and Supervisor mode details when Data Flash enabled

SI. No API Name User Mode| Supervisor | Known limitation in User
Mode mode
1 - X The Fls_lInit is failing in User

mode. This is because inside
Fls_Init function STSR
instruction (to store contents
of system register) is called
Fls Init for storing contents of

- ICCTRL (instruction cache
control) to system register.
Since the ICCTRL have the
access permission in only
supervisor mode, Fls_Init
fails in user mode.

2 Fls_Read X X -
3 Fls_SetMode X X -
4 Fls_Write X X -
5 Fls_Cancel X X -
6 Fls_GetStatus X X -
7 Fls_GetJobResult X X -
8 Fls_Erase X X -

26

Forethoughts

Chapter 4

SI. No APl Name User Mode| Supervisor | Known limitation in User

Mode mode
9 Fls_Compare X X -
10 Fls_GetVersioninfo X X -
11 Fls_MainFunction X X -
12 Fls_BlankCheck X X -
13 Fls_Readlmmediate X X -
14 Fls_Suspend X X -
15 Fls_Resume X X

Note: Implementation of critical section is not dependent on MCAL. Hence critical

section is not considered to the entries for user mode in the above table.

27

Chapter 4

Forethoughts

28

Architecture Details

Chapter 5

Chapter 5

Architecture Detalls

The FLS Software architecture is shown in the following figure. The FLS user
shall directly use the APIs to configure and execute the FLS conversions:

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

FLS Driver

Microcontroller

Figure 5-1 FLS Driver Component Architecture

The basic architecture of the FLS Driver Component is illustrated in the

following Figure:

29

Chapter 5

Architecture Details

Application Layer

30

The internal architecture of FLS Driver Component is shown in the above

Fls_SetMode Fls_GetVersion Fls_Read Hs_Conpare FIs_GetJobResult Fls_Write
Info Fls_GetStatus Fls_Cancel
FIs_Res)
v FIs_Sus ume Fls_Init FIs_Bla Fls_MainFun Fls_Rea Fls_Erase
pend nkChec dion dimmed
Sets k iate
Flash
Driver’s \ 4 A \ 4
i A 4 L
O;,z/zlerz;tlo Returns Compare v v Fls_lInitiate
n Moade version Fls_Process bytes in WriteJob()
informat Read() buffer with Returns Fls_Proces
: flash the status/r sCancel()
on memory esult
4 A 4 \ 4
v Resumes Fls_Initi v Perfor Fls_Ini
Suspend previously Fls_Fcu it&? IaE | performs the ms fast tiateEr
on- suspended Init() N ec job processing read aseJob(
going job ob() of erase, operati)
i write, read and on.
compare jobs.
FLS Driver Layer
v v v v v \ 4 v
Microcontroller
Figure 5-2 Component Overview of FLS Driver Component

figure. The FLS Driver Component Software Component provides services for
the following processes:

The FLS Driver Component is divided into the following sub modules based on
the functionality required:

* Initialization
* FErasing the flash memory
* Writing to the flash memory
* Reading the flash memory

* Fast Read to the application memory without performing blank check

* Validating contents of flash memory
* Cancellation of Request
* Reading result and status information
* Module version information

* Blank check of flash memory

* Job Processing
* FlIs_Suspend suspends the ongoing job.
* Fls_Resume performs the resume of previous suspended job.

Architecture Details

Chapter 5

Initialization

The initialization sub-module provides the service for initialization of the flash
driver and initializes the global variables used by the FLS Component. FCU
initialization API initializes FCU Global Variable Structure and prepares the
environment. After that firmware code is copied to the RAM and FACI
frequency is set. The function also resets the FCU and initialize the hardware
registers to default values.

The API related to this sub-module is FIs_lInit.

Flash Memory Erasing Module

This sub-module provides the service for erasing the blocks of the flash
memory.

The request will be processed by the job processing function
FIs_MainFunction. The First round of erase operation is initiated from within the
API itself. Fls_MainFunction is then called to erase the remaining requested
data flash memory blocks. The job is processed till the requested numbers of
blocks are erased in the flash memory. Blank Check shall be done to ensure
that the blocks are completely erased.

The API related to this sub-module is FIs_Erase.

Flash Memory Reading Module

This sub-module provides the service for reading the contents of the flash
memory. The request will be processed by the job processing function
Fls_MainFunction.

In this job processing function, blank check for the specified words shall be
performed first. If the cell is blank then the application buffer shall be filled with
the value specified by the parameter ‘FIsErasedValue'. If the cell is not blank
then reading of the specified words from the Flash memory shall be performed.
This sub-module reads the specified number of words from consecutive Flash
addresses starting at the specified address and writes it into a buffer. Read
operation shall be initiated within the sub-module itself. Single cycle of
Fls_MainFunction shall read the maximum number of bytes configured
depending on the parameters ‘FlsMaxReadNormalMode’(if default mode is
MEMIF_MODE_SLOW) and ‘FlsMaxReadFastMode’(if default mode is
MEMIF_MODE_FAST). The job is processed till the requested bytes of length
are copied into the application buffer.

The API related to this sub-module is FIs_Read.

Flash Memory Writing Module

This sub-module provides the service for writing to the flash memory.

The request shall be processed by the job processing function
Fls_MainFunction. In this job processing function, the writing of specified
number of data bytes from buffer to flash memory shall be performed. The
function writes the specified number of words from buffer to consecutive Flash
addresses starting at the specified address. Single cycle of Fls_MainFunction
shall write 4 bytes of data from target buffer to flash addresses. The job is
processed till the requested number of bytes is written to the flash memory
The API related to this sub-module is Fls_Write.

Flash Memory Contents Validating Module

This sub-module provides the service for comparing the contents of the flash
memory with the application buffer.

The request shall be processed by the job processing function
Fls_MainFunction.

31

Chapter 5

Architecture Details

32

This sub-module shall read the defined number of words in flash and store it in
the temporary buffer. Then actual data in application buffer shall be compared
with data in temporary buffer. Here data shall be compared in terms of bytes.
Single cycle of Fls_MainFunction shall read the data from the flash memory
depending on configuration of parameter ‘FisMaxReadNormalMode’ for data
flash. The job is processed till the requested number of bytes are read and
compared with the application buffer.

The API related to this sub-module is FIs_Compare.
Request Set Mode Module

This sub-module sets the flash driver operation mode.
The API related to this sub-module is FIs_SetMode.

Request Cancellation Module

This sub-module provides the service for canceling an ongoing memory
request.

After aborting the current ongoing memory operations this sub- module
prepares internal variables to accept the next Read/Write/Erase/ Compare
command. The cancel request will be synchronous and a new job can be
requested immediately after the return from this function. A suspended job is
also cancelled.

The API related to this sub-module is FIs_Cancel.

Result Reading and Status Information Providing Module

This sub-module provides the services for getting the current status of the
module or results of the initiated job request or the response to previously
issued command and return the current status of the current job execution.

The APIs related to this sub-module are Fls_GetStatus, FIs_GetJobResult.

Software Component Version Info Module

This module provides API for reading Module Id, Vendor Id and vendor
specific version numbers.

The API related to this sub-module is Fls_GetVersionInfo.

Job Processing Module

The command requests are always processed by the main function that is
invoked cyclically by the scheduler. This function will perform the status
check while processing the flash operations requests. This API derives the
internal driver status. Completion of the flash operation needs to be checked
in order to continue the reprogramming flow. A Time-out feature is available
with the help of time-out counter operation in this API.

The API related to this sub-module is Fls_MainFunction.
Flash Memory Blank Check Module
This sub-module provides the service for performing blank check of the flash

memory words. The request shall be processed by the job processing function
Fls_MainFunction. This function is invoked to perform the blank check of the

Architecture Details

Chapter 5

single word. The job is processed till the requested numbers of words are
performed with the blank check in the flash memory.

The API related to this sub-module is Fls_BlankCheck.
Flash Memory Fast Read Module

This sub-module provides the service for reading the contents of the flash
memory. The request shall be processed by the job processing function
Fls_MainFunction. This function reads the specified number of words from
consecutive Flash addresses starting at the specified address and writes it into
a buffer. Single cycle of FIs_MainFunction, shall read the data from the data
flash memory. The data from flash memory (source address) is read to the data
buffer (Target address) of application without performing blank check before
read. The job is processed till the requested bytes of length are copied into the
application buffer.

The API related to this sub-module is FIs_Readlmmediate.

Job Suspend Module

This sub-module provides the service of suspending the ongoing job. The
driver goes into idle state after the job is suspended. Fls_Suspend is
asynchronous API. FIs_Suspend shall reject any unacceptable request of
suspension such as issuing suspend request for operations other than erase
and write and if no ongoing job is present.

The API related to this sub-module is FIs_Suspend.

Job Resume Module

This sub-module provides the service for performing the resume of the
previous suspended job. FIs Resume is synchronous APIl. Fls_Resume

acknowledges the resume request and it returns immediately.

The API related to this sub-module is Fls_Resume.

33

Chapter 5

Architecture Details

34

Register Details

Chapter 6

Chapter 6

Registers Details

This section describes the register details of FLS Driver Component.

Table 6-1 Register Details
e Eegister iegister Config Nariab|
egisters ccess ccess Macro/Variable
APl Name Used 8/16/32 | RM/Rw | Paramet
bits e
Fls_Init FSADDR 32 RW - LulStartAddr

FLS_FCU_ADDR_REG_RES
ET

FEADDR 32 RW - LulEndAddr
FLS_FCU_ADDR_REG_RES
ET

FSTATR 32 R - LulRegValue
LulReturnValue

FENTRYR 16 RW - LddMode
FLS_FCU_REGBIT_FENTRY
_KEY
LusModeRegVal

FASTAT 8 RW - FLS_FCU_REGBIT_FASTAT_
CMDLK

FCURAME 16 RW - FLS FCU_REGBIT_FCURAM
E_FCRME
FLS_FCU_REGBIT_FCURAM
E_KEY
FLS_FCU_REGBIT_FCURAM
E_RESET
FLS_FCU_REGBIT_FCURAM
E FRAMTRAN

FRAMMCR 16 RW - FLS FCU_REGBIT_FRAMMC
R DUAL

FPCKAR 16 RW - FLS FCU_REGBIT_FPCKAR
_KEY
LusFaciFreq

FRTEINT 8 RW - FLS_FACI_FRTEINT_RESET
_VAL

FCUFAREA | 8 RW - LucModeVal

ICCTRL 32 RW - FLS_FCU_SYSTEM_REGIST
ER_ICCTRL

CDBCR 32 RW - FLS FCU_SYSTEM_REGIST
ER_CDBCR

DFECCCTL 16 RW - FLS_DFECCCTL_RESET_VA
L

DFERRINT 8 RW - FLS_ DFERRINT
_RESET VAL

DFTSTCTL 16 RW - FLS_ DFTSTCTL
RESET VAL
FLS_FLASH_PROTECTION_

FHVE3 8 RW - OFF
FLS_FLASH_PROTECTION_
ON
FLS_FLASH_PROTECTION_

FHVE15 8 RW - OFF

FLS_FLASH_PROTECTION_
ON

35

Chapter 6

Registers Details

Register | Register Config
Registers Access Access Macro/Variable
ARNENTLS Used 8/16/32 | RM/RW | Param
bits T
LulCurrentStartAddr
FSADDR 32 RW) FLS_FCU_ADDR_REG_RESET
LulCurrentStartAddr +
FLS_FCU_WRITE_SIZE) -
FEADDR 32 RW - FLS_FCU_ONE
FLS FCU ADDR REG_RESET
LulRegValue
) , FSTATR 32 R) LulReturnValue
Fls_MainFunction
LddMode
FENTRYR | 16 RW - FLS FCU_REGBIT_FENTRY_KEY
LusModeRegVal
FBCSTAT | 8 R - LulRegValue
FLS FLASH_PROTECTION_OFF
FHVES 8 RW i FLS FLASH PROTECTION ON
FLS FLASH_PROTECTION_OFF
FHVELS 8 RW i FLS FLASH PROTECTION ON
LulCurrentStartAddr
FSADDR 32 RW) FLS FCU ADDR REG RESET
LulCurrentStartAddr +
FLS_FCU_WRITE_SIZE) -
FEADDR 32 RW - FLS_FCU_ONE
FLS FCU ADDR REG RESET
LulRegValue
Fls Resume FSTATR 32 R) LulReturnValue
_ LddMode
FENTRYR | 16 RW - FLS_FCU_REGBIT_FENTRY_KEY
LusModeRegVal
FLS FLASH PROTECTION_OFF
FHVES3 8 RW i FLS FLASH PROTECTION ON
FLS FLASH PROTECTION_OFF
FHVELS 8 RW i FLS FLASH PROTECTION ON
Fls_Cancel FENTRYR | 16 RW - LddMode
FLS_FCU_REGBIT_FENTRY_KEY
LusModeRegVal
FASTAT 8 RW - FLS_FCU_REGBIT_FASTAT_CMDLK
FSTATR 32 R - LulReturnValue
FIs_Read - - - - -
Fls_Compare - - - - -
Fls_Readimmediat i)) i i
e

36

Register Details

Chapter 6

Register | Register Config
Registers Access Access Macro/Variable
API Name Used 8/16/32 | RW/RW | Faram
Vi eter
LulCurrentStartAddr
FSADDR 32 RW - FLS_FCU_ADDR_REG_RESET
LulStartAddr
LulCurrentEndAddr
FEADDR 32 RW - FLS_FCU_ADDR_REG_RESET
LulEndAddr
FSTATR 32 R - LulRegValue LulReturnValue
Fls_Erase
LddMode
FENTRYR 16 RW - FLS_FCU_REGBIT_FENTRY_KEY
LusModeRegVal
FLS_FLASH_PROTECTION_OFF
FHVES 8 RW i FLS_FLASH_PROTECTION_ON
FLS_FLASH_PROTECTION_OFF
FHVELS 8 RW i FLS FLASH PROTECTION_ON
LulCurrentStartAddr
FSADDR 32 RW i FLS_FCU_ADDR_REG_RESET
LulCurrentStartAddr +
FLS_FCU_WRITE_SIZE) -
FEADDR 32 RW - FLS FCU_ONE
FLS FCU ADDR_REG_RESET
LulRegValue
FSTATR 32 R -
Fls_ Write LulReturnValue
LddMode
FENTRYR 16 RW - FLS_FCU_REGBIT_FENTRY_KEY
LusModeRegVal
FLS_FLASH_PROTECTION_OFF
FHVE3 8 RW - FLS_FLASH_PROTECTION_ON
FLS_FLASH_PROTECTION_OFF
FHVE15 8 RW - FLS_FLASH_PROTECTION_ON
FSADDR 32 RW - LulStartAddr
FEADDR 32 RW - LulEndAddr
LulReturnValue
FSTATR 32 R) LulRegValue
FBCSTAT 8 R - LulRegValue
Fls_BlankCheck LddMode
FENTRYR 16 RW - FLS _FCU_REGBIT_FENTRY_KEY
LusModeRegVal
FLS_FLASH_PROTECTION_OFF
FHVES 8 RW) FLS FLASH_PROTECTION_ON
FHVELS 8 RW i FLS_FLASH_PROTECTION_OFF

FLS_FLASH_PROTECTION_ON

Fls_GetStatus

Fls_GetJobResult

Fls_Suspend

Fls_GetVersionInf

0

37

Chapter 6

Registers Details

38

Interaction Between The User and FLS Driver Component

Chapter 7

Chapter 7 Interaction Between The User and FLS
Driver Component

The details of the services supported by the FLS Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

7.1. Services Provided By FLS Driver Component To The
User
The FLS Driver Component provides the following functions to upper layers:
* Writing contents to data flash memory
* Erase flash memory sectors
* Read flash contents to the application memory
* Validate flash contents comparing with the application memory
* Cancel the ongoing erase, write, read or compare requests.
* Read the result of the last job
* Read the status of the FLS Driver Component.
* Flash Memory Blank Checking Module
* Flash Memory Immediate Reading Module
* Fls_Suspend suspends the on-going job.
* FIs_Resume performs the resume of previous suspended job.

Caution:

* If other software components in BSW are accessing data flash or FACI
registers, then the synchronization between FLS and other software
components shall be handled by user application to ensure data
consistency.

* Please pay attention that many FLS APIs are non-reentrant. This means it
is not allowed to call a non-reentrant API function from a different program
context (e.g. interrupt service routines, other threads) while another or the

same non-reentrant API function is already running.

In particular, when calling FIs_MainFunction, user application shall avoid

collision with other non-reentrant FLS APIs.

39

Chapter 7

Interaction Between The User and FLS Driver Component

40

FLS Component Header and Source File Description Chapter 8

Chapter 8 FLS Component Header and Source File
Description

This section explains the FLS Driver Component’s C Source and C Header
files. These files have to be included in the project application while integrating
with other modules.

The C header file generated by FLS Software Generation Tool:

For only Data Flash access
* FIs_Cbk.h
* FIs_Cfg.h

* FIs_Hardware.h

The C source file generated by FLS Driver Generation Tool:

* FIs_PBcfg.c

* FIs_Hardware.c

The FLS Driver Component C header files:
* FIs.h

* FIs_Debug.h

* FlIs_Internal.h

* FIs_Types.h

* FIs_PBTypes.h

* FIs_Version.h

* FIs_Ram.h

* FIs_Private_Fcu.h

* Fls_RegWrite.h

The FLS Driver Component source files:
* FlIs.c

* FlIs_Internal.c

*+ FIs_Ram.c

* FlIs_Version.c

* FIs_Private_Fcu.c

The Stub C header files:
* Compiler.h
» Compiler_Cfg.h
* MemMap.h
* Platform_Types.h
41

Chapter 8

FLS Component Header and Source File Description

SchM_Fls.h
Dem.h
Dem_Cfg.h
Dem_IntErrld.h
Det.h
rh850_Types.h
Std_Types.h
Memlf.h

Os.h
Memlf_Types.h

Rte.h

The description of the FLS Driver Component files is provided in the table below:

Table 8-1

Description Of The FLS Driver Component Files

File

Details

Fls_Cfg.h

This file is generated by the FLS Software Generation Tool for various FLS
Driver Component pre-compile time parameters. The macros and the
parameters generated will vary with respect to the configuration in the input ECU
Configuration description file. This file also contains the handles for FIs Pin
configuration set.

Fls_Cbk.h

This file contains declarations of notification functions to be used by the
application. The notification function name can be configured.

Fls_Hardware.h

This file contains the #define macros for the hardware registers to be used by the
driver.

Fls_PBcfg.c

This file contains post-build configuration data. The structures related to
FLS Initialization are provided in this file. Data structures will vary with
respect to parameters configured.

Fls_Hardware.c

This file contains the reference objects for the structures of hardware
register which is defined in device header file.

Fls.h This file provides extern declarations for all the FLS Driver Component APIs. This
file provides service Ids of APIs, DET Error codes and type definitions for FLS
Software initialization structure. This header file shall be included in other
modules to use the features of FLS Driver Component.

Fls_Debug.h This file provides Provision of global variables for debugging purpose.

Fls_Internal.h

This file contains the prototypes for internal functions of Flash Wrapper
Component.

Fls_Types.h This file contains the common macro definitions and the data types
required internally by the FLS software component.
Fls_Ram.h This file contains the extern declarations for the global variables that are defined

in FIs_Ram.c file and the version information of the file.

42

FLS Component Header and Source File Description

Chapter 8

File

Details

Fls_Version.h

This file contains the macros of AUTOSAR version numbers of all modules that
are interfaced to FLS.

Fls_Private_Fcu.h

This file contains API Declarations of Flash Control Unit specific functions.

Fls_RegWrite.h

This file is to have macro definitions for the registers write and verification.

Fls.c

This file contains the implementation of all APIs.

Fls_Ram.c

This file contains the global variables used by FLS Driver Component.

Fls_Internal.c

This file contains the Internal functions implementations of flash wrapper
component.

Fls_Private_Fcu.c

This file contains FCU related API implementations.

Fls_Version.c

This file contains the code for checking version of all modules that are interfaced
to FLS.

Compiler.h

Provides compiler specific (non-ANSI) keywords. All mappings of keywords,
which are not standardized, and/or compiler specific are placed and organized in
this compiler specific header.

Compiler_Cfg.h

This file contains the memory and pointer classes.

MemMap.h

This file allows to map variables, constants and code of modules to
individual memory sections. Memory mapping can be modified as per ECU
specific needs.

Platform_Types.h

This file provides provision for defining platform and compiler dependent types.

Fls_PBTypes.h

This file contains the type definitions of post build parameters. It also contains
the macros used by the FLS Driver Component.

SchM_Fls.h This file is a stub for FIs SchM Component
Dem.h This file is a stub for DEM Component
Dem_Cfg.h This file contains the stub values for Dem_Cfg.h

Dem_IntErrid.h

This file is a stub for DEM Component

Det.h

This file is a stub for DET Component

rh850_Types.h

This file provides macros to perform supervisor mode (SV) write enabled Register
ICxxx and IMR register writing using OR/AND/Direct operation.

Std_Types.h

This file is a stub file which contains the standard type definitions.

Memlf.h

This file is a stub for MEMIF Module

Memlf_Types.h

This file is a stub for MemIf component.

Os.h

This file is a stub for Os Component

Rte.h

This file is a stub for Rte Component

43

Chapter 8

FLS Component Header and Source File Description

44

Generation Tool Guide

Chapter 9

Chapter 9

Generation Tool Guide

For information on the FLS Driver Code Generation Tool, please refer
R20UT3642EJ0100-AUTOSAR.pdf’ document.

45

Chapter 9

Generation Tool Guide

46

Application Programming Interface Chapter 10

Chapter 10 Application Programming Interface

This section explains the Data types and APIs provided by the FLS Driver
Component to the Upper layers.

10.1.Imported Types

This section explains the Data types imported by the FLS Driver Component
and lists its dependency on other modules.

10.1.1. Standard Types

In this section all types included from the Std_Types.h are
listed:

» Std_VersionIinfoType

10.1.2. Other Module Types

In this section all types included from the Dem.h are listed.
* Dem_EventldType

* Dem_EventStatusType

* Memif_JobResultType

* Memif_StatusType

10.2.Type Definitions

This section explains the type definitions of FLS Driver Component according
to AUTOSAR Specification.
Table 10-1 FIs_ConfigType

Name: Fls_ConfigType
Type: Structure
Type Name Explanation
unit32 ulStartOfDbToc Database start value
void* pJobEndNotificationPointer | Pointer to job end
callback notification
void* pJobErrorNotificationPointer | Pointer to job error
callback notification
void* pEccSEDNOotificationPointer | Pointer to ECC SED
callback notification
void* pEccDEDNOotificationPointer | Pointer to ECC DED
callback notification
uint32 ulFIsSlowModeMaxReadByt | Maximum number of
es Read bytes in Normal
Mode
uint32 ulFIsFastModeMaxReadByt | Maximum number of
es Read bytes in fast
Mode

47

Chapter 10 Application Programming Interface
uintle* pFIEndimrAddress Address for error
IMR registers
uint1l6 usFIEndimrMask Mask for IMR
register
volatile FIs_FACIRegType pFACIRegPtr Base Address for
FACI Registers
' volatile FIs_ECCRegType pPECCRegPtr Base Address for
Element: ECC Registers
MemlfModeType ddDefaultMode Default Mode value
Lo Structure to hold the flash driver configuration set. The contents of the initialisation data
Description: structure are specific to the flash memory hardware
Table 10-2 Fls_AddressType
Name: Fls_AddressType
Type: uint
Range: Size depends on target platform and flash
8/16/32 bits device.
Description: Used as address offset from the configured flash base address to access a certain
flash memory area.
Table 10-3 Fls_LengthType
Name: Fls_LengthType
Type: uint
Range:
Shall be the same type as
Fls_AddressType because of arithmetic
Same as Fls_AddressType operations. Size depends on target
- platform and flash device.
Description: Specifies the number of bytes to read/write/erase/compare.

48

Application Programming Interface

Chapter 10

10.3.

Function Definitions

Table 10-4 Function Definitions
SI. No AP
1. [Fls_Init
2. | Fls_Erase
3. | FIs_Write
4. | Fls_Cancel
5. | FIs_GetStatus
6. | Fls_GetJobResult
7. | Fls_Read
8. | Fls_Compare
9. | FIs_SetMode
10. | Fls_GetVersioninfo
11. | Fls_MainFunction
12. | FIs_BlankCheck
13. | FIs_Readlmmediate
14. | FIs_Suspend
15. | Fls_Resume

49

Chapter 10

Application Programming Interface

50

Development and Production Errors Chapter 11

Chapter 11 Development and Production Errors

In this section the development errors that are reported by the FLS Driver
Component are tabulated. The development errors will be reported only when
the pre compiler option FIsDevErrorDetect is enabled in the configuration.
The production code errors are not supported by FLS Driver Component.

11.1. FLS Driver Component Development Errors

The following table contains the DET errors that are reported by FLS Driver
Component. These errors are reported to Development Error Tracer Module

when the FLS Driver Component APIs are invoked with wrong input
parameters or without initialization of the driver.

Table 11-1 DET Errors Of FLS Driver Component

Sl. No.

1

Error Code

FLS_E_UNINIT

Related API(s)

Fls_Erase, Fls_Write, FIs_Read, FIs_Compare, Fls_Cancel,
Fls_GetStatus, Fls_GetJobResult, FIs_MainFunction, Fls_Init,
Fls_Readimmediate, FIs_BlankCheck, Fls_Suspend,
Fls_Resume

Source of Error

When the API service is invoked before initialization.

Sl. No.

2

Error Code

FLS_E_PARAM_ADDRESS

Related API(s)

FIs_Erase, Fls_Write, FIs_Read, FIs_Compare, Fls_Readlmmediate,
Fls_BlankCheck

Source of Error

When the API service is invoked with a wrong address.

Sl. No.

3

Error Code

FLS_E_PARAM_LENGTH

Related API(s)

FIs_Erase, FIs_Write, FIs_Read, FIs_Compare, Fls_Readlmmediate,
Fls_BlankCheck

Source of Error

When the API service is invoked with a wrong length.

Sl. No.

4

Error Code

FLS_E_PARAM_DATA

Related API(s)

Fls_Write, FIs_Read, FIs_Compare, Fls_Readlmmediate

Source of Error

When the API service is invoked with a NULL buffer address.

Sl. No.

5

Error Code

FLS_E_BUSY

Related API(s)

Fis_Init, FIs_Erase, Fls_Write, FIs_Read, Fls_Compare,
Fls SetMode , FIls Readlmmediate, FIs BlankCheck

Source of Error

When the API service is invoked when the driver is still busy.

Sl. No.

6

Error Code

FLS_E_VERIFY_ERASE_FAILED

Related API(s)

Fls_MainFunction

Source of Error

When the erase verification fails.

51

Chapter 11

Development and Production Errors

Sl. No.

7

Error Code

FLS_E_VERIFY_WRITE_FAILED

Related API(s)

Fls_MainFunction

Source of Error

When the write verification fails.

Sl. No. 8
Error Code FLS_E_PARAM_CONFIG
Related API(s) Fls_Init

Source of Error

API initialization service invoked with wrong parameter.

Sl. No.

9

Error Code

FLS_E_TIMEOUT

Related API(s)

Fls_MainFunction

Source of Error

API service invoked when time out supervision of a write, erase or blank
check job failed

Sl. No. 10
Error Code FLS_E_INVALID DATABASE
Related API(s) Fls_lInit

Source of Error

API service Fls_lInit called without/with a wrong database is reported
using following error code

Sl. No.

11

Error Code

FLS_E_PARAM_POINTER

Related API(s)

FIs_GetVersioninfo

Source of Error

API service Fls_GetVersionInfo invoked with a null pointer

52

11.2. FLS Driver Component Production Errors

The following table contains the DEM errors that are reported by FLS Driver
Component. These are the hardware errors reported during runtime.

Table 11-2 DEM Errors of FLS Driver Component
Sl. No. 1
Error Code FLS E ERASE_FAILED

Related API(s)

Fls_MainFunction

Source of Error

When the Erase API service is invoked and the erase job fails, error will be
reported by the job processing function.

SI. No.

2

Error Code

FLS_E_WRITE_FAILED

Related API(s)

Fls_MainFunction

Source of Error

When the Write API service is invoked and the erase job fails, error will be
reported by the job processing function.

Sl. No.

3

Error Code

FLS_E_READ_FAILED

Related API(s)

Fls_MainFunction

Source of Error

When the Read API service is invoked and the internal reading of the data
flash memory fails, error will be reported by the job processing function.

Development and Production Errors Chapter 11
Sl. No. 4
Error Code FLS_E_COMPARE_FAILED

Related API(s)

Fls_MainFunction

Source of Error

When the Compare API service is invoked and when the comparison
between the data in the application buffer and the data flash memory fails,
error will be reported by the job processing function.

Sl. No.

5

Error Code

FLS_E_READ_FAILED_DED

Related API(s)

Fls_MainFunction

Source of Error

During any read operation in the data flash memory, if any double bit error
is detected, error will be reported by the job processing function.

Sl. No.

6

Error Code

FLS_E_REG_WRITE_VERIFY

Related API(s)

Fls_lInit,FIs_Erase, Fls_Write, FIs_Read, Fls_Compare, Fls_Cancel,
Fls_MainFunction, FIs_Readlmmediate, FIs_BlankCheck, FIs_Suspend,
Fls_Resume

Source of Error

If any write operation on the protection register fails, error shall be reported.

Sl. No.

7

Error Code

FLS_E_ECC_FAILED

Related API(s)

Fls_Init

Source of Error

Error Code

During initialization, FLS module shall read FRTEINT register and check if any
ECC error has occurred. If any errors are there, DEM shall be reported

FLS_E_HW_FAILURE

Related API(s)

Fls_Init, FIs_Erase, Fls_Write, FIs_Read, FIs_Cancel, FIs_MainFunction,
Fls_BlankCheck, Fls_Suspend,Fls_Resume

Source of Error

If any failure has occurred due to mode switch or forced stop or clear status
command processing failure, DEM shall be reported

53

Chapter 11

Development and Production Errors

54

Memory Organization

Chapter 12

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be met for
proper functioning of FLS Driver Component software.

ROM Section

A 4

FLS Driver Component

Object Files

RAM Section

FLS Driver code related

to APIs are placed in
this memory.

Segment Name:
FLS_PUBLIC_CODE_ROM

Segment Name:
FLS_PRIVATE_CODE_ROM

Segment Name:
FLS_SAMPLE_CODE_ROM

Segment Name:

FLS_CFG_DATA_UNSPECIFIED

-5 = =P ==

-

Segment Name:
FLS_PRIVATE_CODE_RAM

Segment Name:
RAM_1BIT

Segment Name:
NOINIT_RAM_32BIT

Segment Name:
NOINIT_RAM_1BIT

Segment Name:
NOINIT_RAM_UNSPECIFIED

Segment Name:
RAM_UNSPECIFIED

ES5 = 5= EE = S S = ==

Figure 12-1 FLS Driver Component Memory Organization

55

Chapter 12

Memory Organization

56

ROM Sections:

FLS_PUBLIC_CODE_ROM (X1): This section consists of FLS Driver
Component APIs and FCL functions that can be located in code memory.

FLS _PRIVATE_CODE_ROM (X2): This section consists of FLS Driver
Component internal functions and scheduler function that can be located in
code memory. This section is copied to RAM by the GHS start-up routines.

FLS SAMPLE_CODE_ROM (X3): This section needs to be aligned at the
end of FLS code sections in RAM, for exception protection.

FLS_CFG_DATA_UNSPECIFIED (X4): This section consists of FLS Driver
Component database table of contents generated by the FLS Driver
Component Generation Tool.

RAM Sections: Following are the Ram sections mapped.

FLS PRIVATE_CODE_RAM (Y1): This section in RAM is copied from ROM
section (X1) by the GHS start-up routines.

RAM_1BIT (Y2): This section consists of the global RAM variables of 1-bit size
that are initialized by start-up code and used internally by FLS software
component and other software components. The specific sections of
respective software components will be merged into this RAM section
accordingly.

NOINIT_RAM_32BIT (Y3): This section consists of the global RAM variables
of 32-bit size that are used internally by FLS software component and other
software components. The specific sections of respective software
components will be merged into this RAM section accordingly.

NOINIT_RAM_1BIT (Y4): This section consists of the global RAM variables of
1-bit size that are used internally by FLS software component and other
software components. The specific sections of respective software
components will be merged into this RAM section accordingly.

NOINIT_RAM_UNSPECIFIED (Y5): This section consists of the global RAM
variables that are used internally by FLS software component and other
software components. The specific sections of respective software
components will be merged into this RAM section accordingly.

RAM_UNSPECIFIED (Y6): This section consists of the global RAM variables
that are initialized by start-up code and used internally by FLS software
component and other software components. The specific sections of
respective software components will be merged into this RAM section
accordingly.

P1x-C Specific Information

Chapter 13

Chapter 13 P1x-C Specific Information

P1x-C supports following devices:
R7F701370A(CPUL(PEL)),
R7F701371(CPU1(PEL)),
R7F701372(CPU1(PEL)),

R7F701373,
R701374

13.1. Sample Application

13.1.1. Sample Application Structure

The Sample Application is provided as reference to the user to understand the
method in which the FLS APIs can be invoked from the application. The
Sample Application is provided for three use-cases of only data flash or only
code flash or for both code flash and data flash supported.

Generic
AUTOSARTYPES COMPILER rh850
TYPES
Devices

Common P1x-C STUB STUB STUB STUB
FLS FLS

Sample Sample Det Dem SchM Memlf
Application Application

Figure 13-1 Overview Of FLS Driver Sample Application

The Sample Application of the P1X-C is available in the path

X1X\P1x-C\modules\fls\sample_application
The Sample Application consists of the following folder structure

X1X\P1x-C\modules\fls\definition\<AUTOSAR_version>\<SubVariant>

X1X\P1x-
C\modules\fls\sample_application\<SubVariant>\<AUTOSAR_version>
\src\FIs_PBcfg.c

\src\FIs_Hardware.c

\include\FIs_Hardware.h

\R403_FLS_P1X-C.arxml

57

Chapter 13

P1x-C Specific Information

58

\include\FIs_Cfg.h
\include\FIs_Cbk.h

\config\App_FLS P1x-C_701372_Sample.arxml.
\config\App_FLS P1x-C_701372_Sample.one
\config\App_FLS P1x-C_701372_Sample.html|

\config\App_FLS P1x-C_701371_Sample.arxml.
\config\App_FLS P1x-C_701371_Sample.one
\config\App_FLS P1x-C_701371_Sample.htmi

\config\App_FLS P1x-C_701373_Sample.arxml.
\config\App_FLS P1x-C_701373_Sample.one
\config\App_FLS P1x-C_701373_Sample.html

\config\App_FLS_ P1x-C_701374_Sample.arxml.
\config\App_FLS_ P1x-C_701374_Sample.one
\config\App_FLS_ P1x-C_701374_Sample.html

\config\App_FLS P1x-C_701370A_Sample.arxml.
\config\App_FLS_P1x-C_701370A_Sample.one
\config\App_FLS_P1x-C_701370A_Sample.html

In the Sample Application all the FLS APIs are invoked in the following
sequence:

The API Fls_GetVersioninfo is invoked to get the version Information of FLS
component with a variable of Std_VersioninfoType type, after the call of this
API the passed parameter will get updated with the FLS Driver Component
version details.

The API Fls_Init is invoked with config pointer. This API performs the
initialization of the FLS Driver Component. This API initializes all the elements
(Global Variables) of Global structure.

The API FIs_Erase is invoked to erase one or more complete Flash
Sectors.

The API FIs_Write is invoked to write the one or more complete flash pages
to the flash device from the application data buffer

The API FIs_Read is invoked to read the requested length of flash memory
and stores it in the application data buffer.

The API FIs_Compare is invoked to compare the contents of an area of flash
memory with that of an application data buffer.

The API FIs_Cancel is invoked to cancel an ongoing flash operations like
read, write, erase or compare job.

The API Fls_Getstatus returns the FLS module state synchronously.
The API FiIs_GetJobResult returns the result of the last job synchronously.
The API FIs_Setmode, this API sets the flash driver operation mode.

The API FIs_Mainfunction is invoked performs processing of the flash
Read, Erase, write or compare jobs. It's a scheduled function. The
Fls_Mainfunction accepts only read, write, erase or compare job at a time.

The API FIs_Readlmmediate is invoked for reading of the flash memory. The
data from flash memory (source address) is read to the data buffer (Target

P1x-C Specific Information Chapter 13

Remark

13.1.2.
13.1.2.1.

13.1.2.2.

Remark

address) of application without performing blank check before read.

* The API FIs_BlankCheck is invoked to verify whether the memory is properly
erased before doing a write operation.

* The API Fls_Suspend, suspends the on-going job.

* The API Fls_Resume, resumes the previous suspended job.

The API FIs_MainFunction needs to be called in a certain time interval
configured using the parameter "FIsCallCycle". Hence, the sample application
invokes the API ‘FiIs_MainFunction’ periodically in a loop with sufficient
software delay. Since neither the interrupt vector table nor the interrupt handler
routines, which are normally located in the flash memory, are accessible while
self-programming is active, the timer interrupt is not used for this purpose. In
order to do so, interrupt acknowledges have to be re-routed to non-flash
memory. This can be achieved by suitably modifying the start-up code to
access the system registers (SW_CFG/SW_BASE respectively EH_CFG/
EH_BASE) to reroute the interrupt vector of the timer interrupt to the RAM
area.

Building Sample Application
Configuration Example

This section contains the typical configuration which is used for measuring
RAM/ROM consumption, stack depth and throughput details.

Configuration Details: App_FLS_P1x-C_<Device_name>_Sample.html

For P1x-C <Device_name> can be 701370A, 701372, 701373, 701374,
701371.

Debugging The Sample Application

GNU Make utility version 3.81 or above must be installed and available in the
path as defined by the environment user variable “GNUMAKE” to complete the
build process using the delivered sample files.

Open a Command window and change the current working directory to “make”
directory present as mentioned in below path:
“X1X/P1x-C/common_family/make/<compiler>"

Now execute batch file SampleApp.bat with following parameters:

SampleApp.bat FIs <Device_name>

After this, the tool output files will be generated with the configuration as
mentioned in App_FLS_ P1x-C_<Device_name> _Sample.html file is
available in the path:

“X1X\P1x-

C\modules\fls\sample_application\<SubVariant>\<AUTOSAR_version>\config\
App_FLS P1x-C_<Device_name> _Sample.html’

» After this, all the object files, map file and the executable file App_FLS _
P1x-C_<Device_name> _Sample.out will be available in the output folder
(“X1X\P1x-C\modules\fls\sample_application\<SubVariant>\obj\
<Complier>").

59

Chapter 13 P1x-C Specific Information

* The executable can be loaded into the debugger and the sample application
can be executed.

Remark Executable files with *“.out’ extension can be downloaded into the target
hardware with the help of Green Hills debugger.

If any configuration changes (only post-build) are made to the ECU
Configuration Description file

“X1X\P1x-C\modules\fls\sample_application\<SubVariant>
\<AUTOSAR_version>\config\App_FLS_P1x-C_<Device_name>

_Sample.arxml’

App_FLS_P1x-C_<Device_name> _Sample.arxml|” the database alone can be
generated by using the following commands.
make —f App_FLS_P1x-C_<Device_name> _Sample.mak
generate_fls_config

make —f App_FLS_ P1x-C_<Device_Number>_Sample.mak
App_FLS_ P1x-C_<Device_name>_Sample.run

+ After this, a flash able Motorola S-Record file App_FLS_ P1x-
C_<Device_name> _Sample.run is available in the output folder.

Note 1.For P1x-C <Device_name> can be 701370A, 701371, 701372, 701373,
701374.

2. <compiler> for example can be “ghs”.
3. <SubVariant> can be P1H-C, P1H-CE, P1M-C.
4. <AUTOSAR_version> can be 4.0.3.

13.2. Memory and Throughput

13.2.1. ROM/RAM Usage

The details of memory usage for the typical configuration, with DET enabled is
provided in this section.

Typical FLS configuration

DET OFF

All other Pre-Compile Settings ON

Number of bytes read in Fls_MainFunction shall be 256 bytes
The Flash erasure for 4 KB(Data Flash).

Table 13-1 ROM/RAM Details with DET

SI. No. | ROM/RAM Segment Name Size in bytes
for 701372
1. ROM FLS_PUBLIC_CODE_ROM 1780
FLS_PRIVATE_CODE_ROM 3820
FLS_CFG_DATA_UNSPECIFIED 630
ROM.FLS_PRIVATE_CODE_RAM 178

60

P1x-C Specific Information Chapter 13

2. RAM FLS_PRIVATE_CODE_RAM 178
NOINIT_RAM_UNSPECIFIED 100
NOINIT_RAM_32_BIT 404
RAM_1 BIT 2
NOINIT_RAM_1_BIT 4
RAM_UNSPECIFIED 3

The details of memory usage for the typical configuration, with DET disabled is
provided in this section.
Table 13-2 ROM/RAM Details without DET
SI. No. | ROM/RAM Segment Name Size in bytes
for 701372

1. ROM FLS_PUBLIC_CODE_ROM 1364
FLS_PRIVATE_CODE_ROM 3590
FLS CFG_DATA _UNSPECIFIED 1634
ROM.FLS_PRIVATE_CODE_RAM 178

2. RAM FLS_PRIVATE_CODE_RAM 178
NOINIT_RAM_UNSPECIFIED 100
NOINIT_RAM_32_BIT 404
RAM_1 BIT 2
NOINIT_RAM_1 BIT 3

3

RAM_UNSPECIFIED

13.2.2. Stack Depth

The worst-case stack depth for FLS Driver Component is 48 bytes.

13.2.3. Throughput Details

The throughput details of the APIs is mentioned below.
The clock frequency used to measure the throughput is 160 MHz for all

APIs.
Table 13-3 Throughput Details Of The APIs
Sl. No. | APl Name Throughput in Remarks
microseconds for
device 701372
1. Fls_Init 334.687 -
2. Fls_Erase 2.312 -
3. Fls_Write 2.337 -
4, Fls_Read 0.6 -

61

Chapter 13

P1x-C Specific Information

62

5. Fls_GetStatus 0.125 -
6. Fls_GetJobResult 0.125 -
7. Fls_Compare 0.575 -
8. Fls_GetVersioninfo 0.125 -
9. Fls_SetMode 0275 This API .does. not provide
any functionality
10. Fls_Cancel 0.25 -
11 Fls_Readlmmediate 0.725 -
12. Fls_BlankCheck 2.125 -
13. Fls_Erase Operation 3704.812 -
14. Fls_BlankCheck -
Operation 175.37
15. Fls_Write Operation 6516.862 -
16. Fls_Read Operation 1328.862 -
17. gl;giiii?llmmedlate 43.162 -
| e Capare mas |
19. Fls_Suspend 0.237 -
20. Fls_Resume 2.25 -

Release Details

Chapter 14

Chapter 14 Release Details

FLS Driver Software
Version: 1.0.2

63

Chapter 14

Release Details

64

Revision History

SI.No.

Description

Version

Date

Initial Version

1.0.0

12-Aug-2015

1. Introduction Updated

2. Chapter 3, Section 3.1.1 updated

3. Chapter 4, Forethoughts updated

4. Chapter 5, Architecture Details updated

5. Chapter 8, FLS Component Header And Source File
Description updated

6. Chapter 11, Table 11.1 and Table 11.2 updated

7. Chapter 12, memory Organization updated

8. Chapter 13, Section 13.2 Sample Application updated
9. Release details updated

10. R number added to User manual

1.0.1

11-May-2016

The following changes are made:

. In chapter 4, section 4.2 Preconditions points are revised.

. Table 4-2 is updated with Known Limitation in User Mode.

. Table 4-1 is added to list protected resources in FLS driver.

. Chapter 8 is updated with Stub files and Table 8-1 is updated.

. In Chapter 6, Table 6-1 is updated with Register Files.

. In chapter 13, added references for device 701371.

. Chapter 12 and chapter 13.2 are updated with memory sections

. In Chapter 4, section 4.3 Data Consistency is updated.

. In Chapter 4.4 Deviation list updated.

10. Updated Chapter 13.2.3 added Throughput for main function and
updated with Fls_BlankCheck, FIs_Suspend, Fls_Resume API
details in chapter 4.1.

11. Updated Chapter 12 Memory Organization

12. Updated Chapter 6 with details of the register as per individual
API

13.Chapter 13, Added Processor name along with Device variants

14. In section 4.5, Note added.

15. In Chapter 12 memory organization updated and In chapter
13.2.1 memory usage updated.

16. In chapter 4.1 General section updated with time timeout
monitoring details and chapter 4.4 with timeout monitoring
deviation details.

O©o~NOoOUhA~WNPE

1.0.2

28-Feb-2017

65

AUTOSAR MCAL R4.0.3 User's Manual
FLS Driver Component Ver.1.0.2
Embedded User’s Manual

Publication Date: Rev.1.00, February 28, 2017

Published by: Renesas Electronics Corporation

RENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany

Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China

Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL Il Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2006-2017 Renesas Electronics Corporation. All rights reserved.

Colophon 4.1

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3
User's Manual

RENESAS

Renesas Electronics Corporation R20UT3641EJ0100

	Chapter 1 Introduction
	1.1 Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration and Build Process
	3.1. FLS Driver Component Make file
	3.1.1. Folder Structure

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. Data Consistency
	4.4. Deviation List
	4.5. User mode and supervisor mode

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction Between The User and FLS Driver Component
	7.1. Services Provided By FLS Driver Component To The User

	Chapter 8 FLS Component Header and Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1. Imported Types
	10.1.1. Standard Types
	10.1.2. Other Module Types

	10.2. Type Definitions
	10.3. Function Definitions

	Chapter 11 Development and Production Errors
	11.1. FLS Driver Component Development Errors
	11.2. FLS Driver Component Production Errors

	Chapter 12 Memory Organization
	Chapter 13 P1x-C Specific Information
	13.1. Sample Application
	13.1.1. Sample Application Structure
	13.1.2. Building Sample Application
	13.1.2.1. Configuration Example
	13.1.2.2. Debugging The Sample Application

	13.2. Memory and Throughput
	13.2.1. ROM/RAM Usage
	13.2.2. Stack Depth
	13.2.3. Throughput Details

	Chapter 14 Release Details

