RENESAS

o
7
D
ﬁ\l
v
=
Q
=
=
QD

AUTOSAR MCAL R4.0.3
User’s Manual

MCU Driver Component Ver.1.0.2
Embedded User’s Manual

Target Device:
RH850\P1x-C

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.1.00 Jan 2017

http://www.renesas.com/
http://www.renesas.com/

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and
damages incurred by you or third parties arising from the use of these circuits, software, or information.

Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents,
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information
described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics
disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or
otherwise misappropriation of Renesas Electronics products.

Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended
applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

""Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;
home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication
equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or
bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea
repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any
and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the
product is not intended by Renesas Electronics.

When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General
Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges
specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics,
installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas
Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas
Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the
possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics
products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system.
Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or
systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including
without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable
laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale
is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1)
any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons,
chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose
relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and
security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly
or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When
exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and
regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.

Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and
conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your
resale or making Renesas Electronics products available any third party.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Abbreviations and Acronyms

Abbreviation / Acronym

Description

ADC

Analog to Digital Converter

ANSI American National Standards Institute
API Application Programming Interface
ATOM ARU-connected Timer Output Module
AUTOSAR AUTomotive Open System ARchitecture
CAN Control Area Network

CLMA Clock Monitor

CMU Clock Management Unit

CVM Core Voltage Monitor

DEM/Dem Diagnostic Event Manager

DET/Det Development Error Tracer

DIO Digital Input Output

ECU Electronic Control Unit

EEPROM Electrically Erasable Programmable Read-Only Memory
ECM/Ecm Error Control Module

GNU GNU’s Not Unix

GPT General Purpose Timer

GTM Generic Timer Module

ICU Input Capture Unit

ID/Id IDentifier

I/O Input and Output

KB Kilo Byte

LIN Local Interconnect Network

MCAL Microcontroller Abstraction Layer
MCU/Mcu MicroController Unit

NA Not Applicable

NMI Non Maskable Interrupt

0OS/Os Operating System

PWM Pulse Width Modulation

PLL Phase Locked Loop

RAM/Ram Random Access Memory

ROM Read Only Memory

RESF Reset Factor Register

RTE Run Time Environment

SPI Serial Peripheral Interface

sw SoftWare

TIM Timer Input Module

WDT WatchDog Timer

Definitions

Term Represented by

Sl. No. Serial Number

Table of Contents

Chapter 1 INErOdUCTION ..ceeic e 11
1.1. DOCUMENT OVEIVIBW ...ttt 13
Chapter 2 Reference DOCUMENTScoovviiiiiiiieeii e 15
Chapter 3 Integration And Build Process........cccccoeveviiiiiiiiccinneeennn. 17
3.1. MCU Driver Component MaKefil€cccui i 17
Chapter 4 FOrethoughtS ... 19
4.1. €T T=T - | OO U OO P OT RPN 19
4.2. PreCONditiONSooi s 19
4.3. DAt CONSISTEIMCY .itiiiei ittt ettt ettt e s bbb et e s bbb et e sbbb e e e s bbb e e e e anbb e e e s snnneeas 20
4.4, User Mode and SUPEIrVISOr MOGE.ciiiiiiiieiiiiie ittt 21
4.5. DEVIALION LiSTS ...eviiiiiieiiie i 22
4.6. REGISTEr WITTE VEIITY oeiiiiiiiie ettt e e sanneeas 23
Chapter 5 Architecture Detailsccooieiiiiiiiiiii e, 25
Chapter 6 Registers DetailS.........cooveviiiiiiiii e 27
Chapter 7 Interaction Between The User And MCU Driver

Component 35
7.1. Services Provided By MCU Driver Component t0 USEr........ooccoiiiiiiieiiiiiie e 35

Chapter 8 MCU Driver Component Header And Source File

Description 37
Chapter 9 Generation Tool Guide.........cocoiieiiiiiieii e, 41
Chapter 10 Application Programming Interfacecccococeeunnne.. 43
10.1. [T oXoT g (=T I VA 0= SO PSP PP T RPPPRTI 43
10.1.1. SEANAAIT TYPES e ———— 43
10.1.2. L@ 11 g1 a1V (oo L1 F= TR I o = 43
10.2. TYPE DEfINITIONS e 43
10.2.1. MCU_CIOCKTYPE .ottt et e et e e e 43
10.2.2. MCU_RBWRESEITYPE ...ttt nnrenerenennnnnnrnnes 43
10.2.3. Lo W 1Y oo [1Y o1 PSPPSR 43
10.2.4. MCU_RAMSECHONTYPE ..eeeeiitiiee ettt ettt et e st e e e neee 44
10.2.5. MCU_PIISTAIUSTYPES ... ettt ettt e e e e e e e 44
10.2.6. MCU_RAM STAIE TYPE ...ttt e e s a e e e s 44
10.2.7. MCU_RESEEITYPE ..ttt ettt ettt et s st et s et s st s e bnbebnbebnbnnes 44
10.3. FUNCHION DEFINITIONS ..eiiiiiiiiiie ettt e e s bt e e s snneeeas 46
10.3.1. oW 0 PO URUPT PP 46

10.3.2. MCU_INIERAMSECHION ... s e e e e s e s e e e e e e s s e e e e e e e s nneneeees a7

10.3.3. MCU_INIECIOCKveveeeeee et s e e e e e s e e e e e e e s et e e e e e e e e s e nnnneeees a7

10.3.4. [o 1S T o101 =1 o 10 o Tod SRR 48

10.3.5. [o 1= o 1K) = (LSRR 48

10.3.6. MCU_GEIRESEIREASONceeviiiiiee ettt e e e e e st e 49

10.3.7. MCU_GEtRESEIRAWVAIUEoeeeiiei it a e e e 49

10.3.8. oW I =T 0 0 01 U= S PP 50

10.3.9. [o TS Y=Y 117 To [R PR 50

10.3.10. MCU_GEtVErSIONINTO.....uuiiiiiiieie it e e e e e e eee e e e s 51

10.3.11. MCU_GEtRAMSIALEcceiiiiiiiiei e 51
Chapter 11 Development And Production Errorscccoeeee 53
11.1. MCU Driver Component Development ErrOrs ... 53
11.2. MCU Driver Component Production Erforsccccovvveviiiiiieeeeeeeeee 54
Chapter 12 Memory Organizationcccooeveuiiieveiiieeeiie e 55
Chapter 13 P1x-C Specific Informationc.ccoeeviviiiiiiiiiiieeei, 57
13.1. (5] S U] 0[] ¥ o] o PP PP SR PRSP 57
13.1.1. Interrupt routings for OS.......oov i 57

13.2. SaAMPIE APPIICALION ..ttt e e et e e e e nbr e e e 58
13.2.1. ST= 0] o1 (AN o] o] o= T ToT g0 1 U Tod (1 | = 58

13.2.2. Building Sample APPlCAtioNcooiiiiiiiiii e 60

13.2.2.1 Configuration EXample ... 60

13.2.2.2 Debugging The Sample Applicationcccooiiiiiiiiiiiiie e 60

13.3. Memory and TREOUGRPULooiiii et e e sneee s 61
13.3.1. ROM/RAM USBQE ...ttt ettt ettt ettt ettt e e ettt e e et e e e s it e e e e anbae e e e neee 61

13.3.2. SEACK DEPLN ... 62

13.3.3. Throughput DELAIISccooiiiiiie e 62
Chapter 14 Release DetailS........coovvviiiiiiiiiiiii e 65

Figure 1-1
Figure 1-2
Figure 5-1
Figure 12-1

Table 4-0
Table 4-1
Table 4-2
Table 6-1
Table 8-1
Table 10-1
Table 11-1
Table 11-2
Table 13-1
Table 13-2
Table 13-3
Table 13-3

List of Figures

System Overview Of AUTOSAR ArchiteCturecccceeeiiiiciiiiiiee et 11
System Overview Of The MCU Driver In AUTOSAR MCAL Layercccccceeeevvuvnnnen. 12
MCU DrIVEr ArCHITECIUIE ...t 25
MCU Driver Component Memory Organizationccccuvveereeeesiisinneeeeeeesssssnnnnnns 55

List of Tables

Critical SECHION DELAIISveiiiieiieie et 21
Supervisor Mode and User Mode Detailsccuvveeeeeeiiiiiiiieicee e 21
MCU Driver DeVIAtION LiSt........cocueeiireieiiee e e 22
REQISTEN DELAIIS ... veeiiiee et e e e e e e e e e s s n e e e e e e e nannraaes 27
Description of the MCU Driver Component Files ..o 38
API Provided by MCU Driver COMPONENT.......cocuutieiiiiiieiiiieee et e s 46
DET Errors of MCU Driver COMPONENL........uuiiiiiiiiieiiiiee ettt 53
DEM Errors of MCU Driver COMPONENT..........uiiiiiiiieiiiiieeaiiee e eibee e e 54
ISR FOr MCU ..o 57
ROM/RAM Details WItNOUE DETuviiiiiiiiieeiiee ettt 62
ROM/RAM Details With DETccueiiiiieiiieiiie et 62
Throughput Details of the APIS ..., 63

10

Introduction Chapter 1

Chapter 1 Introduction

The purpose of this document is to describe the information related to
MCU Driver Component for Renesas P1x-C microcontrollers.

This document shall be used as reference by the users of MCU Driver
Component. The system overview of complete AUTOSAR architecture
is shown in the below Figure:

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

MCU Driver

Microcontroller

Figure 1-1 System Overview Of AUTOSAR Architecture

The MCU Driver is part of the Microcontroller Abstraction Layer (MCAL),
the lowest layer of Basic Software in the AUTOSAR environment.

11

Chapter 1

Introduction

The Figure in the following page depicts the MCU Driver as part of layered
AUTOSAR MCAL Layer:

12

Microcontroller Drivers Memory Drivers Communication Drivers I/O Drivers
3
Zl112]|l8
I @ > %]
s 3 S || 2 3 il
o) 2 Z D = m I|lc ()3 @
30 12| € Sllallz|l® SZ]|Z]| = _
a2l Bl S| =llgllell2 Sl9llo||2 8l 2l|z|l2ll3
Slel 8]z S1151121]¢2 oll5||2]|o sl 2118191%
S o < o I o o < 9 o) 3. o X
@ =4 @ a a = =4 o Z = < 2 o o Ol
3 RIERIE g ¢ 51 21311518
= 3 o) o)] z
< Mi - m
@ 5 |Micro y - m - -
1) s S o v - by 3 %) 0w = Q I} s & 9
= S ENS) Controller %’ 4 g 3 z Qg z < g S o
~ o =
Figure 1-2 System Overview Of The MCU Driver In AUTOSAR MCAL Layer

The RTE provides the encapsulation of Hardware channels and basic
services to the Application Software Components. So it is possible to map the
Application Software-Components between different ECUs.

The Basic Software Modules are located below the RTE. The Basic Software
itself is divided into the subgroups: System Services, Memory,
Communication and I/O Hardware-Abstraction. The Complex Drivers are also
located below the RTE. Among others, the Operating System (OS), the
Watchdog manager and the Diagnostic services are located in the System
Services subgroup. The Memory subgroup contains modules to provide
access to the non-volatile memories, namely Flash and EEPROM. In the I/O
Hardware-Abstraction subgroup the whole MCU Driver Component is

provided.

On board Device Abstraction provides an interface to physical values for
AUTOSAR software components. It abstracts the physical origin of signals
(their paths to the hardware ports) and normalizes the signals with respect to
their physical appearance. The Microcontroller driver provides services for
basic microcontroller initialization, power down functionality, reset and
microcontroller specific functions required from the upper layers.

Introduction Chapter 1

1.1. Document Overview

The document has been segmented for easy reference. The table below
provides user with an overview of the contents of each section:

Section Contents
Sectionl (Introduction) This section provides an introduction and overview of MCU Driver
Component.

Section 2 (Reference Documents) | This section lists the documents referred for developing this document.

Section 3 (Integration And Build This section explains the folder structure, Makefile structure for MCU
Process) Driver Component. This section also explains about the Makefile
descriptions, Integration of MCU Driver Component with other
components, building the MCU Driver Component along with a sample
application.

Section 4 (Forethoughts) This section provides brief information about the MCU Driver
Component, the preconditions that should be known to the user before
it is used, data consistency details and deviation list.

Section 5 (Architecture Details) This section describes the layered architectural details of the MCU Driver

Component.
Section 6 (Registers Details) This section describes the register details of MCU Driver Component.
Section 7 (Interaction between This section describes interaction of the MCU Driver Component with
The User And MCU Driver the upper layers.
Component)
Section 8 (MCU Driver This section provides information about the MCU Driver Component
Component Header And Source [source files is mentioned. This section also contains the brief note on
File Description) the tool generated output file.

Section 9 (Generation Tool Guide) | This section provides information on the MCU Driver Component Code
Generation Tool.

Section 10 (Application This section explains all the APIs provided by the MCU Driver

Programming Interface) Component.

Section 11 (Development And This section lists the DET and DEM errors.

Production Errors)

Section 12 (Memory This section provides the typical memory organization, which must be

Organization) met for proper functioning of component.

Section 13 (P1x-C Specific This section provides P1x-C specific information also the information

Information) about linker compiler and sample application.

Section 14 (Release Details) This section provides release details with version name and base
version.

13

Chapter 1 Introduction

14

Reference Documents Chapter 2
Chapter 2 Reference Documents
Sl. No. Title Version
1. Specification of MCU Driver (AUTOSAR_SWS_MCUDriver.pdf) 3.2.0
2. RH850/P1x-C Group Document User’s Manual: Hardware 1.00
(r01uh0517€j0100_rh850p1x-c_Open)
Specification of Memory Mapping (AUTOSAR_SWS_MemoryMapping.pdf) | 1.4.0
4, Specification of Platform Types (AUTOSAR_SWS_PlatformTypes.pdf) 25.0
AUTOSAR BSW Makefile Interface 0.3
(AUTOSAR_BSW_Makefilelnterface.pdf)
6. Specification of Compiler Abstraction 3.2.0
(AUTOSAR_SWS_CompilerAbstraction.pdf)
7. AUTOSAR BUGZILLA (http://www.autosar.org/bugzilla) -
Note: AUTOSAR BUGZILLA is a database, which contains concerns
raised against information present in AUTOSAR Specifications.

15

http://www.autosar.org/bugzilla

Chapter 2

Reference Documents

16

Integration And Build Process Chapter 3

Chapter 3

Remark

3.1.

3.1.1.

Remark

Integration And Build Process

In this section the folder structure of the MCU Driver Component is explained.
Description of the Make files along with samples is provided in this section.

The details about the C Source and Header files that are generated by the
MCU Driver Generation Tool are mentioned in the Generation Tool User’s
Manual “R20UT3652EJ0100-AUTOSAR.pdf”.

MCU Driver Component Makefile

The Makefile provided with the MCU Driver Component consists of the GNU
Make compatible script to build the MCU Driver Component in case of any
change in the configuration. This can be used in the upper level Makefile (of
the application) to link and build the final application executable.

Folder Structure

The files are organized in the following folders:

Trailing slash ‘\" at the end indicates a folder

X1X\P1x-C\modules\mcu\src
\Mcu.c

\Mcu_Ram.c
\Mcu_Irg.c

\Mcu_Version.c

X1X\P1x-C\modules\mcul\include
\Mcu.h
\Mcu_Debug.h
\Mcu_PBTypes.h
\Mcu_Ram.h

\Mcu_lIrg.h
\Mcu_Types.h

\Mcu_Version.h

Mcu_RegWrite.h

X1X\P1x-C\modules\mcu\sample_application\<SubVariant>\make\ghs
\App_MCU_P1x-C_Sample.mak

X1X\P1x-C\modules\mcu\sample_application\<SubVariant>\make\ghs
\App_MCU_P1x-C_Sample.ld

X1X\P1x-C\modules\mcu\sample_application\<SubVariant>\obj

X1X\P1x-C\modules\mcu\generator
\R403_MCU_P1x-C_BSWMDT.arxml.

17

Chapter 3

Integration And Build Process

18

Note:

X1X\P1x-C\modules\mculuser_manual

(User manuals will be available in this folder)

1. <AUTOSAR_version> should be 4.0.3.
2. <SubVariant> can be P1H-C or P1H-CE or P1M-C.

Forethoughts

Chapter 4

Chapter 4
4.1,

4.2.

Forethoughts

General

Following information will aid the user to use the MCU Driver Component
software efficiently:

The MCU Driver does not enable or disable the ECU or Microcontroller
power supply. The upper layer should handle this operation.

The start-up code is ECU and MCU specific. MCU Driver does
not implement the start-up code.

MCU specific initializations such as reset registers, one time writable
registers, interrupt stack pointer, user stack pointer and MCU internal
watchdog, MCU specific features of internal memory and registers are not
implemented by MCU Driver. These initializations should be implemented
by the start-up code.

MCU Driver does not implement any call-back natification functions.
MCU Driver does not implement scheduled functions.
The MCU Driver component is implemented as a Post build variant.

MCU Driver depends on Scheduler and Wake-up source service Modules
for disabling all relevant interrupts to protect writing into the protected
registers and invoking the ECU state manager functions.

The reset reason information from HW registers shall be cleared after
reading and processing the information, in order to avoid multiple reset
reasons. This should be done in the APIs Mcu_GetResetReason() and
Mcu_GetResetRawValue().

If the RAM state feature is enabled the APl Mcu_InitRamSection follows this
procedure:

« Initializes all configured RAM sections according to user configuration.
» Enables ECM interrupt generation for all configured RAM errors
according to user configuration.
The procedure requires that the complete RAM is initialized before the RAM
state functionality is used.

The container 'McuResetReasonConf' is not used for implementation.
Since this is coming under the published information and specific to
hardware & implementation, the user must not allowed to
configure/rename this. So the other vendor specific containers are
introduced here to achive the same functionality. These containers have
multiplicity 1 - 1 and have fixed values depends on the reset type.

The parameter 'McuLoopCount' represents the number of register write
retries in MCU module. User has to take care to provide a proper value
for this parameter to avoid stabilization issues. The default value used for
this parameter is 28, to avoid unwanted reporting of DEM due to
stabilization issues.

Support for CLMAA4 is available only for P1H-C (Dual core) devices.

Preconditions

Following preconditions have to be adhered by the user, for proper

19

Chapter 4

Forethoughts

20

4.3.

functioning of the MCU Driver Component:

The Mcu_Cfg.h file generated by the MCU Driver component Code
Generation Tool must be compiled and linked along with MCU Driver
component source files.

The application has to be rebuilt, if there is any change in the Mcu_Cfg.h file
generated by the MCU Driver component Generation Tool.

File Mcu_PBcfg.c generated for single configuration set or multiple
configuration sets using MCU Driver component Generation Tool can
be compiled and linked independently.

The authorization of the user for calling the software triggering of a
hardware reset is not checked in the MCU Driver. This is the responsibility
of the upper layer.

The MCU Driver component needs to be initialized before accepting
any request. The APl Mcu_Init should be called by the ECU State
Manager Module to initialize MCU Driver Component.

The user should ensure that MCU Driver component API requests
are invoked in the correct and expected sequence and with correct
input arguments.

Input parameters are validated only when the static configuration
parameter MCU_DEV_ERROR_DETECT is enabled. Application should
ensure that the right parameters are passed while invoking the APIs when
MCU_DEV_ERROR_DETECT is disabled.

There are different clock settings possible. For more details, please refer
the respective device specific component user manual.

If the handle of clock setting passed to the APl Mcu_InitClock is not
configured to any one of the supported clock settings, then the
Development Error Detection function is invoked if the static configuration
parameter MCU_DEV_ERROR_DETECT is enabled.

The MCU Diriver initializes the clock generator as per the required
configuration settings and provides the configured clock sources for the
peripherals as applicable. It is the responsibility of the individual drivers to
select and initialize the respective driver specific registers as required for
their functionality with reference to the clock source provided by the MCU
Driver.

The API Mcu_InitClock is implemented considering its invocation at run
time. Hence, there is a possibility of change in the baud rate set by the
peripheral drivers if the clock setting is different. Hence, the initialization of
the respective drivers after the invocation of Mcu_InitClock, is the
responsibility of the user of MCU Driver services.

A mismatch in the version numbers of header and the source files results
in compilation error. User should ensure that the correct versions of the
header and the source files are used.

The user shall configure the exact Module Short Name Mcu in
configurations as specified in config.xml file and the same shall be given in
command line.

Data Consistency

To support the re-entrance and interrupt services, the MCU Driver will ensure
the data consistency while accessing its own RAM storage or hardware
registers or to prevent any interrupts between the two write instructions of the
write protected register and the corresponding write enable register.

Forethoughts

Chapter 4

The MCU Driver will use SchM_Enter_Mcu_<Exclusive Area> and
SchM_Exit_ Mcu_<Exclusive Area> functions.

The SchM_Enter_Mcu_<Exclusive Area> function is called before the data
needs to be protected and SchM_EXxit_Mcu_<Exclusive Area> function is
called after the data is accessed.

The following exclusive area along with scheduler services is used to provide
data integrity for shared resources:

MCU_REGISTER_PROTECTION

MCU_PWR_MODE_PSC_PROTECTION

MCU_VARIABLE_PROTECTION

The functions SchM_Enter_Mcu_<Exclusive Area> and SchM_Exit_Mcu
_<Exclusive Area> can be disabled by disabling the configuration parameter
‘McuCriticalSectionProtection’.

If the ‘McuCriticalSectionProtection’ parameter is enabled then the critical
section protection is applicable to all these API's in MCU Module:

Table 4-1 Critical Section Details

API Name Exclusive Area Type Protected Resources

Mcu_Init MCU_REGISTER_PROTECTION | Registers:
ECMmMnESSTCO
DTMCTL

Mcu_InitRamSectio | MCU_REGISTER_PROTECTION | Registers:

ECMmMnNESSTCO
ECMmnESSTC1

Mcu_GetRamState | VARIABLE_PROTECTION Shared Data:

Global variable to store Ram
state of MCU Driver

Mcu_SetMode MCU_PWR_MODE_PSC_PROT | Registers:

ECTION MSR_LM3,MSR_LM4,
MSR_LM5,MSR_LM8,
MSR_LM7,MSR_LMS8,
MSR_LM10,MSR_L11,
MSR_LM12

The highest measured duration of a critical section was 0.587 micro seconds measured
for Mcu_Init API with a CPU frequency of 160 MHz.

4.4. User Mode and Supervisor Mode
The below table specifies the APIs which can run in user mode, supervisor
mode or both modes
Table 4-2 Supervisor Mode and User Mode Details
SI.No. APl Name User Mode Supervisor | Known limitation in User
Mode mode
1 Mcu_Init - X Critical section protection
cannot be enabled
2 Mcu_ InitClock X X -
3 Mcu_DistributePlIClock X X -

21

Chapter 4 Forethoughts

4 Mcu_GetPlIStatus X X -
Mcu_InitRamSection - X Critical section protection
cannot be enabled
6 Mcu_GetResetRawValue X X -
7 Mcu_GetVersioninfo X X -
8 Mcu_GetRamState - X Critical section protection
cannot be enabled
9 Mcu_SetMode - X 1.The execution of the
assembly instruction for
entering HALT mode will
not be possible
2. Critical section
protection cannot be
enabled
10 Mcu_PerformReset X X -

Note: Implementation of Critical Section is not dependent on MCAL. Hence Ciritical Section is not
considered to the entries for User mode in the above table.

45. Deviation Lists

Table 4-3 MCU Driver Deviation List

SI. No. Description AUTOSAR Bugzilla / Mantis

1 The parameter McuResetSetting -
from the sub-container
McuModuleConfiguration is not
considered.

2 The MCU Driver considers the -
parameters of RAM section
configuration as pre-compile
parameters, since the number of
RAM settings are not known and
hence the generation of handles is
not possible at post-build-time.

3 The sub-container -
McuClockReferencePoint in the
Clock setting configuration is not
used as the reference frequencies
specific to various peripheral
devices need to be published by
MCU Driver component

4 The parameter McuClockSettingld | 54536
range in McuClockSettingConfig
container is changed from “1 to
255” to “0 to 255” since 0 is valid
minimum value for clock setting
ID.

5 If an invalid database is passed as | -
a parameter to APl Mcu_lInit, DET
Error code
MCU_E_INVALID_DATABASE is
reported to DET.

22

Forethoughts

Chapter 4

4.6.

Register Write Verify

Register write-verify is a functional safety based implementation, where the
control registers’ write operation is verified straight away after the write
operation. After writing to control registers, content of the registers are read
back and verified against the expected content to make sure that register
content has been written correctly.

The main use of this implementation is to detect random HW faults
(transient/permanent). This can happen on the bus while writing to the
configuration registers which will potentially lead to wrong configuration and
potentially wrong operation. Also it could happen because of faulty registers
which will potentially lead to incorrect operation.

23

Chapter 4

Forethoughts

24

Architecture Details Chapter 5

Chapter 5 Architecture Details

The MCU Driver architecture is shown in the following figure. The MCU user
shall directly use the APIs to configure and execute the MCU conversions:

Application Software (MCU User)

MCU

On-Chip Registers

On-Chip Hardware

Figure 5-1 MCU Driver Architecture

The MCU driver accesses the microcontroller hardware directly and is located
in the MCAL. MCU component provides the functionalities related to PLL
Initialization, Clock Initialization and Distribution, RAM sections Initialization,
PreScaler Initialization, MCU reduced Power Modes Activation and MCU
Reset Activation and Reason.

The component consists of the following sub modules based on the
functionality:

* [nitialization

» Self-diagnostic test for Core Voltage Monitoring, Clock monitoring and Lock
Step mechanism is possible in real scenario.

» Self-Diagnostic test for ECM, CVM, Clock Monitor and Lock Step.
* Clock Initialization

* RAM sections Initialization and Status Verification

* MCU Reset Activation and Reason

¢ Version Information

Initialization

This sub module provides the structures and APIs for both global and
controller specific initialization. MCU specific initialization is necessary in
order to ensure different startup behaviors of the microcontroller. This sub
module also checks if the data base is flashed.

25

Chapter 5

Architecture Details

26

Self-Diagnostic test for ECM, CVM, Clock Monitor and Lock Step

This functionality is provided as part MCU module initialization.
Self-diagnostic test for ECM error source is helpful to check the ECM error
output signal by creating the real ECM error signal.

Self-diagnostic test for Core Voltage Monitoring, Clock monitoring and Lock
Step mechanism is possible in real scenario.

Clock Initialization

The clock initialization sub module provides the functionality for generating all
the required clock signals for microcontroller operation from any one of the
available sources. It enables the provision for individual clock source
selection for CPU and groups of peripherals.

This sub module also provides the functionality for obtaining various
frequencies required for individual peripheral devices.

Generic Timer Module
P1x-C controller uses GTM HW core for timer related drivers.

The Clock Management Unit is responsible for clock generation of the counters and of
the GTM-IP. The CMU generate different clock sources for the whole GTM-IP.

The Configurable Clock Generation subunit provides eight dedicated clock sources for
the GTM submodules: TIM and ATOM.

All the CMU clock initializations required for TIM and ATOM sub modules are done from
the MCU module. The GTM CMU registers are provided in Chapter 6.

For available clock sources, please refer to the respective device specific
component user manual.

RAM sections Initialization and Status Verification

This sub module provides the functionality for initializing the RAM with the any
given value, at the selected blocks of the RAM and to verify the status of RAM.

MCU Reset Activation and Reason

The microcontroller reset activation will be performed by forcing a
watchdog overflow. The limitation of this implementation is that this type of
reset activation is possible only if the watchdog is configured in reset
mode. If microcontroller reset is requested when the watchdog is
configured in NMI mode, then an interrupt is generated which would not be
handled in this driver component.

To provide the reset reason, this sub module captures the information
available with RESF - Reset factor register. This register contains reset
information.

HW BIST is executed by Power-On-Reset, System Reset 1 and
SystemReset2. In System Reset 2, HW BIST execution can be disabled
depending on Field BIST control register (BSEQOCTL).

Version Information

This module provides APIs for reading Module Id, Vendor Id and vendor
specific version numbers.

Registers Details

Chapter 6

Chapter 6

Registers Detalils

This section describes the register details of MCU Driver Component.

Table 6-1 Register Details

nterrupt

API Name Registers Config Parameter Macro/Variable
Mcu_Init RESC McuEcmRstConfigure -
ECMnEMKO - MCU_ECMEMKO_FULL_
MASK
ECMnEMK1 - MCU_ECMEMK1_FULL_
MASK
ECMnEMK2 - MCU_ECMEMK2_FULL_
MASK
ECMNnPS - -
ECMnPCMD1 - -
CVMDEW McuCvmOutMaskFbist, -
McuCvmOutMaskDiag,
McuCvmResetEnable
ECMnEPCFG McuEcmErrorOutputMo | MCU_ECM_ERROUT_MO
de DE
ECMnMICFGO McuEcmErrorMaskablel -
nterrupt
ECMnMICFG1 McuEcmErrorMaskablel -
nterrupt
ECMNMICFG2 McuEcmErrorMaskablel -

ECMnNMICFGO

McuEcmErrorNonMaskal
bleInterrupt

ECMNNMICFG1

McuEcmErrorNonMaskal
blelnterrupt

ECMNNMICFG2

McuEcmErrorNonMaskal
blelnterrupt

mer

ECMnIRCFGO McuEcmErrorinternalRe -
set
ECMnIRCFG1 McuEcmErrorinternalRe -
set
ECMnIRCFG2 McuEcmeErrorinternalRe -
set
ECMnDTMCTL - MCU_ECM_DELAY_TIME
R_STOP
ECMnDTMCMP - MCU_ECM_DLYTIMER_V
ALUE
ECMNDTMCFGO McuEcmErrorMIDelayTi -

27

Chapter 6

Registers Details

APl Name Registers Config Parameter Macro/Variable

ECMNDTMCFG1 McuEcmErrorMIDelayTi -

mer
ECMNDTMCFG2 McuEcmErrorMIDelayTi -

mer
ECMNDTMCFG3 McuEcmErrorNMIDelay -

Timer
ECMNDTMCFG4 McuEcmErrorNMIDelay -

Timer
ECMNDTMCFG5 McuEcmErrorNMIDelay -

Timer
GTMOCMUCLKEN - MCU_CMUCLK_DISABLE
GTMOCMUGCLKNUM - MCU_ZERO
GTMOCMUGCLKDEN - MCU_ZERO
GTMOCMUCLKOCTRL - MCU_ZERO
GTMOCMUCLK1CTRL - MCU_ZERO
GTMOCMUCLK2CTRL - MCU_ZERO
GTMOCMUCLK3CTRL - MCU_ZERO
GTMOCMUCLKACTRL - MCU_ZERO
GTMOCMUCLK5CTRL - MCU_ZERO
GTMOCMUCLK6CTRL - MCU_ZERO
GTMOCMUCLK7CTRL - MCU_ZERO
MSR _LM5 - MCU_ZERO
RESF McuEcmRstConfigure -
RESFC - -
CVMFC McuClmaO0SelfDiagnosti -

cTest,

McuClmalSelfDiagnosti

cTest,

McuClma2SelfDiagnosti

cTest,

McuClma3SelfDiagnosti

cTest,

McuClma4SelfDiagnosti

cTest
CVMF McuClmaO0SelfDiagnosti -

cTest,

McuClmalSelfDiagnosti

cTest,

McuClma2SelfDiagnosti

cTest,

McuClma3SelfDiagnosti

cTest,

McuClma4SelfDiagnosti

cTest
CVMDMASK McuCvmOutMaskDiag -
CVMDIAG McuClmaO0SelfDiagnosti -

cTest,
McuClmalSelfDiagnosti
cTest,
McuClma2SelfDiagnosti

28

Registers Details

Chapter 6

APl Name

Registers

Config Parameter

Macro/Variable

CVMMON

McuCvmOutMaskDiag

CMPTSTO

McuLockStepSelfDiagn
osticTest

MCU_LOCKSTEP_DUMM
Y_VALUE

CMPTST1

McuLockStepSelfDiagn
osticTest

MCU_LOCKSTEP_DUMM
Y_VALUE

ECMMnESSTRO

ECMnESSTCO

ECMOESSTC1

ECMOESSTC2

ECMOPS

ECMMESSTRO

ECMMESSTR1

ECMMESSTR2

ECMCESSTRO

ECMCESSTR1

ECMnPEM

ECMOPCMD1

ECMCESSTR2

CVMDE

McuCvmDiagLockBit

ECMnPEO

ECMPCMD1

ECMPEO

ECMPS

ECMESSTCO

Mcu_InitRamSection

ECMnMICFGO

McuEcmErrorMaskablel
nterrupt

ECMnMICFG1

McuEcmErrorMaskablel
nterrupt

ECMnNNMICFGO

McuEcmErrorNonMaskal
blelnterrupt

ECMnNNMICFG1

McuEcmErrorNonMaskal
bleInterrupt

ECMnIRCFGO McuEcmErrorNonMaskal -
bleInterrupt

ECMnIRCFG1 McuEcmErrorNonMaskal -
bleInterrupt

ECMnEMKO McuEcmErrorNonMaskal -
bleInterrupt

ECMNnPS - -

ECMnPCMD1 - -

ECMNnESSTCO - -

ECMNnESSTC1 - -

ECMNnESSTRO - -

ECMnESSTR1 - -

ECMnEMK1 - -

29

Chapter 6

Registers Details

30

APl Name Registers Config Parameter Macro/Variable
Mcu_InitClock CKSscocC - ucSysClkOSelectedSrcCloc|
k LucCIkSrcClk
CKSCO0S - -
CLKDOSTAT - -
CLKDODIV - usSysCIkODivider
LusCIkDivider
CLKD1STAT - -
CLKD1DIV - usSysClIk1Divider
LusCIkDivider
CKsc2C - ucExtClkOSelectedSrcCloc
k LucCIkSrcCIk
CKSC2S - -
CLKD2STAT - -
CLKD2DIV - usExtClkODivider
LusClkDivider
CKSC3cC - ucExtClk1SelectedSrcCloc
k LucCIkSrcClk
CKSC3s - -
CLKD3STAT - -
CLKD3DIV - usExtClk1Divider
LusClkDivider
CLMAOCMPH McuCImOMonitoringCloc -
kAccuracy,
McuClm0SamplingClock
Accuracy
CLMAOCMPL McuCImOMonitoringCloc -
kAccuracy,
McuClm0SamplingClock|
Accuracy
CLMAOCTLO - MCU_ONE
CLMAOPCMD - -
CLMAOPS - -
CLMA1CMPH McuClm1MonitoringCloc -
kAccuracy,
McuClm1SamplingClock
Accuracy
CLMA1CMPL McuClim1MonitoringCloc -
kAccuracy,
McuClm1SamplingClock
Accuracy
CLMA1CTLO - MCU_ONE
CLMA1PS - -
CLMA1PCMD - -
CLMA2CMPH McuClm2MonitoringCloc -
kAccuracy,
McuClm2SamplingClock
Accuracy
CLMA2CMPL McuClm2MonitoringCloc -
kAccuracy,
McuClm2SamplingClock
Accuracy
CLMA2CTLO - MCU_ONE
CLMA2PCMD - -

Registers Details

Chapter 6

APl Name Registers Config Parameter Macro/Variable
CLMA2PS - -
CLMA3CMPH McuClm3MonitoringCloc -
kAccuracy,
McuClm0SamplingClock|
Accuracy
CLMA3CMPL McuClm3MonitoringCloc -
kAccuracy,
McuClm0SamplingClock|
Accuracy
CLMA3CTLO - MCU_ONE
CLMA3PCMD - -
CLMA3PS - -
CLMA4CMPH McuClm3MonitoringCloc| CLMA4CMPH
kAccuracy,
McuClm0SamplingClock
Accuracy
CLMA4CMPL McuClm3MonitoringCloc| CLMA4CMPL
kAccuracy,
McuClm0SamplingClock
Accuracy
CLMAA4CTLO - CLMAA4CTLO
CLMA4PCMD - CLMA4PCMD
CLMA4PS - CLMA4PS
CLMATESTS - -
CLMATEST - -
GTMOCMUGCLKNUM McuGTMCMUGCLKNu -
merator
GTMOCMUGCLKDEN McuGTMCMUGCLKDe -
nominator
GTMOCMUCLKXCTRL McuGTMChannelCIkSrc -
Divider
GTMOCMUCLKEN - MCU_CMUCLK_ENABLE
GTMOGTMIRQMODE MCU_ZERO
Mcu_DistributePlIClo - - -
ck
Mcu_GetPlIStatus - - -
Mcu_GetResetReason - - -
Mcu_GetResetRawVal - - -
ue
Mcu_PerformReset SWSRESAO - MCU_ONE
SWARESAOQ - MCU_ONE
MSR_LM3 McuMcanStopTrigger, | MCU_TARGET_STOP_TR
McuMcanWakeupTrigge| IGGER,

r

MCU_TARGET_WAKEUP
_TRIGGER

31

Chapter 6

Registers Details
APl Name Registers Config Parameter Macro/Variable
MSR_LM4 McuFlexrayStopTrigger,| MCU_TARGET_STOP_TR
McuFlexrayWakeupTrig | IGGER,
ger MCU_TARGET_WAKEUP
_TRIGGER
MSR_LM5 McuGtmStopTrigger, MCU_TARGET_STOP_TR
McuGtmWakeupTrigger | IGGER,
MCU_TARGET_WAKEUP
_TRIGGER
MSR_LM6 McuEthernetStopTriggerl MCU_TARGET_STOP_TR
,McuEthernetWakeupTri| IGGER,
gger MCU_TARGET_WAKEUP
_TRIGGER
MSR_LM7 McuRsentStopTrigger, | MCU_TARGET_STOP_TR
McuRsentWakeupTrigg | IGGER,
er MCU_TARGET_WAKEUP
_TRIGGER
MSR _LM8 McuHsUsrtStopTrigger, | MCU_TARGET_STOP_TR
McuHsUsrtWakeupTrigg| IGGER,
er MCU_TARGET_WAKEUP
_TRIGGER
Mcu_SetMode MSR _LM10 McuCsihStopTrigger, MCU_TARGET_STOP_TR
McuCsihWakeupTrigger | IGGER,
MCU_TARGET_WAKEUP
_TRIGGER
MSR _LM11 McuRlin3StopTrigger, | MCU_TARGET_STOP_TR
McuRlin3WakeupTrigge | IGGER,
r MCU_TARGET_WAKEUP
TRIGGER
MSR _LM12 McuAdcStopTrigger, MCU_TARGET_STOP_TR
McuAdcWakeupTrigger | IGGER,
MCU_TARGET_WAKEUP
_TRIGGER
SWLRESS3 - -
SWLRESS4 - -
SWLRESS5 - -
SWLRESS6 - -
SWLRESS7 - -
SWLRESSS8 - -
SWLRESS10 - -
SWLRESS11 - -
SWLRESS12 - -

32

Registers Details

Chapter 6

APl Name

Registers

Config Parameter

Macro/Variable

EICO, EIC1, EIC2, EICS,
EICS, EIC9, EIC32,
EICS33, EIC34, EIC35,
EIC36, EIC38, EIC39,
EIC41, EIC42, EICS53,
EIC54, EIC61, EIC62,
EIC83, EIC87, EIC91,
EIC111, EIC114,
EIC128, EIC129,
EIC130, EIC131,
EIC132, EIC141,
EIC142, EIC174,
EIC177, EIC184,
EIC186, EIC197,
EIC209, EIC211,
EIC240, EIC241,
EIC242, EIC243,
EIC244, EIC245

IMRO

McuWakeUpFactorNam
e

IMR1

McuWakeUpFactorNam
e

IMR2

McuWakeUpFactorNam
e

IMR3

McuWakeUpFactorNam
e

IMR4

McuWakeUpFactorNam
e

IMR5

McuWakeUpFactorNam
e

IMR6

McuWakeUpFactorNam
e

IMR7

McuWakeUpFactorNam
e

e

Mcu_ResetReasonStor

RESF

RESFC

MCU_RESF_CLEAR

ECMMESSTRO

ECMCESSTRO

ECMOESSTCO

ECMOPCMD1

ECMOPS

ECMMESSTR1

ECMCESSTR1

ECMOESSTC1

ECMMESSTR2

ECMCESSTR2

ECMOESSTC2

33

Chapter 6

Registers Details

34

APl Name

Registers

Config Parameter

Macro/Variable

Mcu_WakeupConfigure

EICO, EIC1, EIC2, EIC3,

EICS, EIC9, EIC32, EIC33,

EIC34, EIC35, EIC36,
EIC38, EIC39, EIC41,
EIC42, EIC53, EIC54,
EIC61, EIC62, EIC83,
EIC87, EIC91, EIC111,
EIC114, EIC128, EIC129,
EIC130, EIC131, EIC132,
EIC141, EIC142, EIC174,
EIC177, EIC184, EIC186,
EIC197, EIC209, EIC211,
EIC240, EIC241, EIC242,
EIC243, EIC244, EIC245

MCU_WAKEUP_INTP_MA

SK

IMRO McuWakeUpFactorNam -
e

IMR1 McuWakeUpFactorNam -
e

IMR2 McuWakeUpFactorNam -
e

IMR3 McuWakeUpFactorNam -
e

IMR4 McuWakeUpFactorNam
e

IMR5 McuWakeUpFactorNam -
e

IMR6 McuWakeUpFactorNam -
e

IMR7 McuWakeUpFactorNam -
e

Mcu_GetRamState

Interaction Between The User And MCU Driver Component Chapter 7

Chapter 7 Interaction Between The User And MCU
Driver Component

The details of the services supported by the MCU Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

7.1. Services Provided By MCU Driver Component to User

The MCU Driver Component provides the following functions to upper layers,
if supported by hardware:

To Initialize the ECM, EVM, CVM, Clock Monitor and
Lock step.

+ Toinitialize the RAM and to verify the status, section wise.
+ To initialize the MCU specific clock options.

+ To activate the specific clock to the MCU clock distribution.
* To read the reset type from the hardware.

» To perform the micro controller reset.

* To read the MCU Driver component version information.

35

Chapter 7

Interaction Between The User And MCU Driver Component

36

MCU Driver Component Header And Source File Description Chapter 8

Chapter 8 MCU Driver Component Header And
Source File Description

This section explains the MCU Driver Component’s C Source and C Header
files. These files have to be included in the project application while
integrating with other modules.

The C header file generated by MCU Driver Generation Tool:

* Mcu_Cfg.h
* Mcu_Hardware.h
* Mcu_Cbk.h

The C source file generated by MCU Driver Generation Tool:

* Mcu_PBcfg.c
* Mcu_Hardware.c

The MCU Driver Component C header files:

Mcu.h

Mcu_lIrg.h
Mcu_Debug.h
Mcu_PBTypes.h
Mcu_Ram.h
Mcu_Types.h
Mcu_Version.h
Mcu_RegWrite.h

The MCU Driver Component source files:

Mcu.c
Mcu_Ram.c
Mcu_Version.c
Mcu_Irg.c

The Stub C header files:

+ Compiler.h

+ Compiler_Cfg.h

« MemMap.h

* Platform_Types.h
* Std_Types.h

* rh850_Types.h

* Os.h

« Dem.h

+ Dem_Cfg.h
* Det.h

e SchM_Mcu.h

The Stub C source files:

« Dem.c
e Det.c
e Os.c

* SchM_Mcu.c

37

Chapter 8

MCU Driver Component Header And Source File Description

38

The description of the MCU Driver Component files is provided in the table
below:

Table 8-1 Description of the MCU Driver Component Files

File

Details

Mcu_Cfg.h

This file is generated by the MCU Driver Generation Tool for various MCU
Driver Component pre-compile time parameters. The macros and the
parameters generated will vary with respect to the configuration in the input
ARXML file.

Mcu_Hardware.h

This file contains the #define macros for the hardware registers to be used by
the driver.

Mcu_Cbk.h This file contains the extern declaration of call back functions used in the MCU
Driver Module.
Mcu_PBcfg.c This file contains post-build configuration data. The structures related to MCU

Initialization, clock and power mode setting are provided in this file. Data structures
will vary with respect to parameters configured.

Mcu_Hardware.c

This file contains the reference objects for the hardware register structure which is
defined in device header file.

Mcu.h This file provides extern declarations for all the MCU Driver Component APIs. This
file provides service Ids of APIs, DET Error codes and type definitions for MCU
Driver initialization structure. This header file shall be included in other modules to
use the features of MCU Driver Component.

Mcu_Types.h This file provides data structure and type definitions for initialization of MCU Driver.

Mcu_Irg.h This file contains the extern declaration of ISR routines.

Mcu_Debug.h This file provides Provision of global variables for debugging purpose.

Mcu_PBTypes.h This file contains the data structure definitions of clock setting and Mode setting.

Mcu_Ram.h This file contains the extern declarations for the global variables that are defined in

Mcu_Ram.c file and the version information of the file.

Mcu_Version.h

This file contains the macros of AUTOSAR version numbers of all modules that are
interfaced to MCU

Mcu_RegWrite.h

This file contains macro for register write verify check

Mcu.c This file contains the implementation of all APIs.
Mcu_Ram.c This file contains the global variables used by MCU Driver Component.
Mcu_lIrg.c This file contains the definition of ISR routines

Mcu_Version.c

This file contains the code for checking version of all modules that are interfaced to
MCU.

Compiler.h

Provides compiler specific (non-ANSI) keywords. All mappings of keywords, which
are not standardized, and/or compiler specific are placed and organized in this
compiler specific header

Compiler_Cfg.h

This file contains the memory and pointer classes.

MemMap.h

This file allows to map variables, constants and code of modules to individual
memory sections. Memory mapping can be modified as per ECU specific needs.

Platform_Types.h

This file provides provision for defining platform and compiler dependent types.

rh850 Types.h

This file contains platform dependent types declaration.

0Os.h

This file contains macro definitions of OS component.

Std_Types.h This file contains macro definitions of Standard Types.

Rte.h This file contains macro definitions of RTE component.

SchM_Mcu.h This file contains the external declaration of scheduler services of MCU module.
Dem.h This file contains the external declaration of DEM Error Status function
Dem_Cfg.h This file contains macro definitions of DemEventParameters.

MCU Driver Component Header And Source File Description Chapter 8

Det.h This file contains the external declaration of DET Report Error function and
structure definition of DET Error.

Det.c This file contains the definition of DET Report Error function and structure
definition of DET Error.

Dem.c This file contains the definition of DEM Error Status function

Os.c This file is a stub for OS component and contains the definition of the OS category
interrupts subroutines.

SchM_Mcu.c This file is a stub for SchM Component and contains the definition of the exclusive
areas for the scheduler services, which are used to provide data integrity for shared
resources.

39

Chapter 8

MCU Driver Component Header And Source File Description

40

Generation Tool Guide

Chapter 9

Chapter 9

Generation Tool Guide

For more information on the MCU Driver Code Generation Tool, please refer
“R20UT3652EJ0100-AUTOSAR.pdf".

41

Chapter 9

Generation Tool Guide

42

Application Programming Interface

Chapter 10

Chapter 10

10.1.

Application Programming Interface

This section explains the Data types and APIs provided by the MCU Driver

Component to the Upper layers.

Imported Types

This section explains the Data types imported by the MCU Driver Component

and lists its dependency on other modules.

10.1.1. Standard Types

In this section all types included from the Std_Types.h are listed:
* Std_ReturnType
+ Std_VersioninfoType

10.1.2. Other Module Types

In this chapter all types included from the Dem_types.h are listed:
+ Dem_EventldType
* Dem_EventStatusType

10.2. Type Definitions
This section explains the type definitions of MCU Driver Component
according to AUTOSAR Specification.
For more type definitions refer the SWS of MCU driver as mentioned in
chapter 2.
10.2.1. Mcu_ClockType
Name: Mcu_ClockType
Type: uint8
Range: 0 to 255
Description: Type definition for Mcu_ClockType used by the APl Mcu_lInitClock.
10.2.2. Mcu_RawResetType
Name: Mcu_RawResetType
Type: uint32
Range: 0 to 4294967295
Description: Type definition for Mcu_RawResetType used by the API Mcu_GetResetRawValue.
Note: Mcu_GetResetRawValue API is returning the RESF register status.

10.2.3. Mcu_ModeType

Name: Mcu_ModeType

Type: uint8

Range: 0 to 255

Description: Type definition for Mcu_ModeType used by the APl Mcu_SetMode.

43

Chapter 10 Application Programming Interface

Note: As per CPU Manual Mcu_SetMode API is not supporting for any standby mode.
Hence the Mcu_ModeType parameter is unused for P1x-C MCU module implementation.

10.2.4. Mcu_RamSectionType

Name: Mcu_RamSectionType

Type: Uint32

Range: 0 to 4294967295

Description: Type definition for Mcu_RamSectionType used by the APl Mcu_InitRamSection.

10.2.5. Mcu_PIlIStatusTypes

Name: Mcu_PIIStatusType
Type: Enumeration

MCU_PLL_LOCKED PLL is locked
Range: MCU_PLL_UNLOCKED PLL is unlocked.

MCU_PLL_STATUS_UNDEFINED [PLL status is unknown

Description: Status value returned by the API Mcu_GetPlIStatus.

Note: As per CPU manual Mcu_GetPIIStatus API does not support the PLL clock implementation.
Hence Mcu_GetPlIStatus always returns MCU_PLL_LOCKED Status.

10.2.6. Mcu_RamStateType
Following are the type definitions which are specific to R4.0 used by the MCU
Driver module:

Name: Mcu_RamStateType
Type: Enumeration

_ MCU_RAMSTATE_INVALID RAM State is valid.
et MCU_RAMSTATE_VALID RAM State is invalid.
Description: Status value returned by the APl Mcu_GetRamState

10.2.7. Mcu_ResetType

Name: Mcu_ResetType
Type: Enumeration
Range: MCU_POWER_ON_RESET

MCU_TERMINAL_RESET
MCU_CVM_RESET
MCU_SW_SYS_RESET
MCU_WATCHDOG_RESET
MCU_LOCK_STEP_CORE_RST
MCU_PBUS_FSS_RST
MCU_BUS_BRIDGE_ERROR_RST
MCU_SAFETY_MECH_COMP_RST
MCU_TEMPERATURE_SENSOR_RST
MCU_CLMAO_RST

44

Application Programming Interface

Chapter 10

MCU_CLMA2_RST

MCU_CLMA3_RST

MCU_CLMA5_RST

MCU_CLMA1_RST

MCU_LRAM_ECC_DED_RST

MCU_GRAM_ECC_DED_RST

MCU_CACHE_RAM_EDC_RST

MCU_CODE_FLS_ECC_DED_RST

MCU_DATA_FLS ECC_DED _RST

MCU_CSIH_RAM_ECC_DED_RST

MCU_CAN_RAM_ECC_DED_RST

MCU_ETH_RAM_ECC_DED_RST

MCU_FR_RAM_ECC_DED_RST

MCU_GTM_RAM_ECC_DED_RST

MCU_BUS_ECC_DED_RST

MCU_BUS_ECC_SED_RST

MCU_LRAM_ADDR_OVF_RST

MCU_GRAM_ADDR_OVF_RST

MCU_CODE_FLS_ADDR_OVF RST

MCU_DATA_FLS_ADDR_OVF_RST

MCU_PERI_RAM_ECC_ADDR_OVF_RST

MCU_DTS_RAM_ECC_DED_RST

MCU_DTS_RAM_ECC_SED_RST

MCU_LRAM_ECC_SED_RST

MCU_GRAM_ECC_SED_RST

MCU_CODE_FLS_ECC_SED_RST

MCU_DATA_FLS_ECC_SED_RST

MCU_CSIH_RAM_ECC_SED_RST

MCU_CAN_RAM_ECC_SED_RST

MCU_ETH_RAM_ECC_SED_RST

MCU_FR_RAM_ECC_SED_RST

MCU_GTM_RAM_ECC_SED_RST

MCU_PE_GUARD_RST

MCU_GRAM_GUARD_RST

MCU_MEMC_GUARD_RST

MCU_SLAVE_GUARD_RST

MCU_CODE_FLS_PE_UNMAP_ACCESS_RST

MCU_GRAM_PE_UNMAP_ACCESS_RST

MCU_LPB_PE_UNMAP_ACCESS_RST

MCU_PBUS_UNMAP_ACCESS_RST

MCU_HBUS_UNMAP_ACCESS_RST

MCU_CODE_FLS_GVC|_UNMAP_ACCESS_RST

MCU_GRAM_FLS_GVCI_UNMAP_ACCESS_RST

MCU_RES_HBUS_UNMAP_ACCESS_RST

MCU_DMA_TRANSFER_RST

45

Chapter 10

Application Programming Interface

MCU_DMA_UNMAPPED_RST

MCU_FLS_SEQUENCE_RST

MCU_FLS_FACI_RST

MCU_ADC_PARITY_RST

MCU_PE_UNINTEN_EN_DIS_RST

MCU_UNINTEN_DEACT _USR_RST

MCU_UNINTEN_ACT_CFP_MODE_RST

MCU_UNINTEN_DEBUG_EN_DET_RST

MCU_UNINTEN_ACT_TESTMODE_RST

MCU_ECM_COMP_RST

MCU_DEBUGGER_RESET

MCU_SW_APPL_RESET

MCU_BIST RESET

MCU_RESET_UNDEFINED

MCU_RESET_UNKNOWN

Description:

Type of reset supported by the hardware

10.3. Function Definitions

10.3.1.

Table 10-1 API Provided by MCU Driver Component

SI. No API's name

Mcu_Init

Mcu_InitRamsection

Mcu_InitClock

Mcu_DistributePlIClock

Mcu_GetPlIStatus

Mcu_GetResetReason

Mcu_GetResetRawValue

Mcu_GetVersioninfo

Ol N~ W NE

Mcu_PerformReset

[EnY
©

Mcu_SetMode

IR
[ERN

Mcu_GetRamState

Mcu_Init

Name:

Mcu_ Init

Prototype:

FUNC(void, MCU_PUBLIC_CODE) Mcu_lInit (P2CONST(Mcu_ConfigType,
AUTOMATIC, MCU_APPL_CONST) ConfigPtr)

Service ID:

0x00

Sync/Async:

Synchronous

Reentrancy:

Non-Reentrant

Parameters In:

Type Parameter

Value/Range

Mcu_ConfigType ConfigPtr

NA

46

Application Programming Interface

Chapter 10

Parameters InOut: | None NA NA
Parameters out: None NA NA
Type Possible Return Values
Return Value: :
void NA
Description: This service performs initialization of the MCU Driver component.
Configuration None
Dependency:

Preconditions:

None

10.3.2. Mcu_InitRamSection
Name: Mcu_InitRamSection
Prototype: FUNC(Std_ReturnType, MCU_PUBLIC_CODE) Mcu_InitRamSection
Mcu_RamSectionType RamSection)
Service ID: 0x01
Sync/Async: Synchronous
Reentrancy: Non-Reentrant
Type Parameter Value/Range
: Mcu_RamSectionType RamSection NA
Parameters In
Parameters InOut: | None NA NA
Parameters out: None NA NA
Type Possible Return Values
Return Value:
Std_ReturnType E_OK, E_NOT _OK

Description: This function initializes the RAM section as provided from the configuration structure.

Configuration None

Dependency:

Preconditions: None

10.3.3. Mcu_InitClock

Name: Mcu_InitClock

FralsE: FUNC(Std_ReturnType, MCU_PUBLIC_CODE) Mcu_InitClock
(Mcu_ClockType ClockSetting)

Service ID: 0x02

Sync/Async: Synchronous

Reentrancy: Non-Reentrant
Type Parameter Value/Range

Parameters In: Mcu_ClockType ClockSetting NA

Parameters InOut: | None NA NA

Parameters out: None NA NA

Return Value:

Type Possible Return Values

Std_ReturnType E_OK, E_NOT_OK

Description: This service initializes the PLL and other MCU specific clock options.
Configuration None
Dependency:

47

Chapter 10

Application Programming Interface

Preconditions:

None

10.3.4. Mcu_DistributePlIClock

Name: Mcu_DistributePlIClock
Prototype: FUNC(void, MCU_PUBLIC_CODE) Mcu_DistributePlIClock (void)
Service ID: 0x03
Sync/Async: Synchronous
Reentrancy: Non-Reentrant

Type Parameter Value/Range
Parameters In: Void NA NA
Parameters InOut: | None NA NA
Parameters out: None NA NA

Type Possible Return Values
Return Value:

Std_ReturnType E_OK, E_NOT_OK

Description: This service activates the PLL clock to the MCU clock distribution
Configuration None

Dependency:

Preconditions: None

10.3.5. Mcu_GetPlIStatus
Name: Mcu_GetPlIStatus
Prototype: FUNC(Mcu_PlIStatusType, MCU_PUBLIC_CODE) Mcu_GetPlIStatus (void)
Service ID: 0x04
Sync/Async: Synchronous
Reentrancy: Reentrant
Type Parameter Value/Range
Parameters In: void NA A
Parameters InOut: | None NA NA
Parameters out: None NA NA
Type Possible Return Values
Return Value:
Mcu_PlIStatusType MCU_PLL LOCKED =0,
MCU_PLL_UNLOCKED,
MCU_PLL_STATUS_UNDEFINED

Description: This service provides the lock status of the PLL
Configuration None

Dependency:

Preconditions: None

48

Application Programming Interface Chapter 10

10.3.6. Mcu_GetResetReason

Name: Mcu_GetResetReason

Prototype: FUNC(Mcu_ResetType, MCU_PUBLIC_CODE) Mcu_GetResetReason (void)

Service ID: 0x05

Sync/Async: Synchronous

Reentrancy: Reentrant
Type Parameter Value/Range

Parameters In: Void NA A

Parameters InOut: | None NA NA

Parameters out: None NA NA
Type Possible Return Values

Return Value: - - —
Mcu_ResetType Values are read from hardware register and mentioned in file

Mcu Types.h

Description: The function reads the reset type from the hardware

Configuration None

Dependency:

Preconditions: None

10.3.7. Mcu_GetResetRawValue

Name: Mcu_GetResetRawValue

Prototype: FUNC(Mcu_RawResetType, MCU_PUBLIC_CODE) Mcu_GetResetRawValue (void)

Service ID: 0x06

Sync/Async: Synchronous

Reentrancy: Reentrant
Type Parameter Value/Range

Parameters In: Void NA NA

Parameters InOut: | None NA NA

Parameters out: None NA NA
Type Possible Return Values

Return Value: _
Mcu_RawResetType 32-bit value from hardware register

Description: [The service return reset type value from the hardware register

Configuration None

Dependency:

Preconditions: None

49

Chapter 10 Application Programming Interface
10.3.8. Mcu_PerformReset
Name: Mcu_PerformReset
Prototype: FUNC (void, MCU_PUBLIC_CODE) Mcu_PerformReset (void)
Service ID: 0x07
Sync/Async: Synchronous
Reentrancy: Non-Reentrant
Type Parameter Value/Range
Parameters In: Void NA A
Parameters InOut: | None NA NA
Parameters out: None NA NA
Type Possible Return Values
Return Value:
None None

Description:

This service provides microcontroller reset by accessing the Software reset register

Configuration None
Dependency:
Preconditions: None

10.3.9. Mcu_SetMode

Name: Mcu_SetMode
Prototype: FUNC (void, MCU_PUBLIC_CODE) Mcu_SetMode (Mcu_ModeType McuMode)
Service ID: 0x08
Sync/Async: Synchronous
Reentrancy: Non-Reentrant

Type Parameter Value/Range
FellEIEns 17, Mcu_ModeType McuMode NA
Parameters InOut: | None NA NA
Parameters out: None NA NA

Type Possible Return Values
Return Value:

None None
Description: This service activates the MCU power modes
Configuration None
Dependency:
Preconditions: None

50

Application Programming Interface

Chapter 10

10.3.10. Mcu_GetVersioninfo
Name: Mcu_GetVersioninfo
Prototype: FUNC(void, MCU_PUBLIC_CODE) Mcu_GetVersionInfo
(P2VAR(Std_VersioninfoType, AUTOMATIC, MCU_APPL_CONST) versioninfo)
Service ID: 0x09
Sync/Async: Synchronous
Reentrancy: Reentrant
Type Parameter Value/Range
Parameters In: None None NA
Parameters InOut: | None NA NA
Parameters out: versioninfo Pointer to where to store the version NA
information of this module
Type Possible Return Values
Return Value:
None None
Description: This service returns the version information of this module
Configuration None
Dependency:
Preconditions: None

10.3.11. Mcu_GetRamState

Name: Mcu_GetRamState
Prototype: FUNC(Mcu_RamStateType, MCU_PUBLIC_CODE) Mcu_GetRamState (void)
Service ID: O0x0A
Sync/Async: Synchronous
Reentrancy: Reentrant

Type Parameter Value/Range
Parameters In: None None NA
Parameters InOut: | None NA NA
Parameters out: None NA NA

Type Possible Return Values

Return Value:

Mcu_RamStateType

MCU_RAMSTATE_INVALID =0,
MCU RAMSTATE VALID

Description: This service provides the actual status of the microcontroller RAM area
Configuration None

Dependency:

Preconditions: None

51

Chapter 10

Application Programming Interface

52

Development And Production Errors

Chapter 11

Chapter 11 Development And Production Errors

11.1.

In this section the development errors that are reported by the MCU Driver
Component are tabulated. The development errors will be reported only when
the pre-compiler option McuDevErrorDetect is enabled in the configuration.
The production code errors are not supported by MCU Driver Component.

MCU Driver Component Development Errors

The following table contains the DET errors that are reported by MCU Driver
Component. These errors are reported to Development Error Tracer Module
when the MCU Driver Component APIs are invoked with wrong input
parameters or without initialization of the driver.

Table 11-1 DET Errors of MCU Driver Component

SI. No. 1

Error Code MCU_E_PARAM_CONFIG

Related API(s) Mcu_lInit

Source of Error When Mcu_Init is called with NULL PTR.
SI. No. 2

Error Code MCU_E_PARAM_CLOCK

Related API(s) Mcu_InitClock

Source of Error

When Clock Setting is not within the settings defined in the configuration data
structure.

Sl. No.

3

Error Code

MCU_E_PARAM_RAMSECTION

Related API(s)

Mcu_InitRamSection

Source of Error

When RamsSection is not within the sections defined in the configuration data structure.

Sl. No.

4

Error Code

MCU_E_UNINIT

Related API(s)

Mcu_InitRamSection, Mcu_lInitClock, Mcu_DistributePlIClock, Mcu_GetPlIStatus,
Mcu_GetResetReason, Mcu_GetResetRawValue, Mcu_PerformReset,
Mcu_SetMode, Mcu_GetRamState

Source of Error

When the APIs are invoked without the initialization of the MCU Driver Component.

Sl. No.

5

Error Code

MCU_E_PARAM_POINTER

Related API(s)

Mcu_GetVersioninfo

Source of Error

When Mcu_GetVersioninfo is called with NULL PTR.

Sl. No.

6

Error Code

MCU_E_PARAM_MODE

Related API(s)

Mcu_SetMode

Source of Error

When McuMode is not within the settings defined in the configuration data structure.

Sl. No.

7

Error Code

MCU_E_INVALID_DATABASE

Related API(s)

Mcu_Init

Source of Error

When the API is invoked with no database.

53

Chapter 11 Development And Production Errors

11.2. MCU Driver Component Production Errors

In this section the DEM errors identified in the MCU Driver component are
listed. MCU Driver component reports these errors to DEM by invoking
Dem_ReportErrorStatus API. This API is invoked, when the processing of the
given API request fails.

Table 11-2 DEM Errors of MCU Driver Component

Sl. No. 1
[Error Code MCU_E_CLOCK_FAILURE

[Related API(s) Mcu_InitClock

Source of Error \When there is failure of the monitored clock frequency.
Sl. No. 2
[Error Code MCU_E_WRITE_TIMEOUT_FAILURE
[Related API(s) Mcu_ProtectedWrite

Source of Error When writing to a write-protected register fails
Sl. No. 3
[Error Code MCU_E_POWER_DOWN_MODE_FAILURE
[Related API(s) Mcu_SetMode

Source of Error \When there is failure in low power mode transition.
Sl. No. il
[Error Code MCU_E_INT_INCONSISTENT

[Related API(s) MCU_ECM_EIC_ISR

Source of Error \When there is failure in interrupt consistency check.
Sl. No. 9)
[Error Code MCU_E_REG_WRITE_VERIFY

[Related API(s) Mcu_Init, Mcu_InitRamSection, Mcu_InitClock, Mcu_SetMode,
MCU_ECM_EIC ISR,

Source of Error When there is a failure in Register write.

Sl. No. 6
[Error Code MCU_E_CLM_SELFDIAG_FAILURE

[Related API(s) Mcu_InitClock

Source of Error \When there is failure in Clock Monitor Self Diagnosis
Sl. No. 7
[Error Code MCU_E_CVM_SELFDIAG_FAILURE
[Related API(s) Mcu_Init

Source of Error When there is failure in CVM Self Diagnosis
Sl. No. 8
[Error Code MCU_E_ECM_SELFDIAG_FAILURE
[Related API(s) Mcu_Init

Source of Error \When there is failure in ECM Self Diagnosis
Sl. No. o
[Error Code MCU_E_LOCKSTEP_SELFDIAG_FAILURE
[Related API(s) Mcu_Init

Source of Error \When there is failure in Lockstep Self Diagnosis

54

Memory Organization

Chapter 12

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be met for proper
functioning of MCU Driver Component software.

ROM Section MCU Driver Component RAM Section
Library / Object Files

MCU Driver code related to APIs is placed in T

this memory.

Segment Name:
MCU PUBLIC CODE ROM

X1

MCU Driver code related to internal
functions are placed in this memory

Segment Name:
MCU_PRIVATE_CODE_ROM

X2

le

Global RAM of unspecific size required for
MCU driver functioning.

Segment Name:
NOINIT_RAM_UNSPECIFIED

T

Y1

v

Global 8-bit RAM initialized by MCU Diriver.

Segment Name:
NOINIT_RAM_8BIT

f

* <
N

Global 8-bit RAM to be initialized by start-
up code

Segment Name:
RAM_8BIT

—

<
w

<+

Tool Generated Files

The const section in the file Mcu_Pbcfg.c
is placed in this memory.
Segment Name:

CONST_ROM_UNSPECIFIED

The const section (for MCU configuration
structure of type “Mcu_ConfigType”) in
the file Mcu_PBcfg.c is placed in this
memory.

Segment Name:
MCU_CFG_DBTOC_UNSPECIFIED

The const section (other than

MCU Configuration structure) in the file
Mcu_PBcfg.c is placed in this memory.
Segmentname:

MCU_CFG_DATA_UNSPECIFIED

X6

Global RAM of unspecific
size required for MCU Driver
functioning. The Generation
tool allocates this RAM.
Segment Name:
MCU_CFG_RAM_UNSPEC
IFIED

r
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

—_—

<
s

<

Figure 12-1 MCU Driver Component Memory Organization

55

Chapter 12 Memory Organization

ROM Section (X1, X2, X3, X4 and X0):

MCU_PUBLIC_CODE_ROM (X1): API(s) of MCU Driver Component, which
can be located in code memory.

MCU_PRIVATE_CODE_ROM (X2): Internal functions of MCU Driver
Component code that can be located in code memory.

MCU_CFG_DBTOC_UNSPECIFIED (X4): This section consists of MCU
Driver Component database table of contents generated by the MCU Driver
Component Generation Tool. This can be located in code memory.

MCU_CFG_DATA_UNSPECIFIED (X5): This section consists of MCU
Driver Component constant configuration structures. This can be located in
code memory.

CONST_ROM_UNSPECIFIED (X6): This section consists of MCU Driver
Component constant structures used for function pointers in MCU Driver
Component. This can be located in code memory.

RAM Section (Y1, Y2, Y3 and Y4):

NOINIT_RAM_UNSPECIFIED (Y1): This section consists of the global RAM
pointer variables that are used internally by MCU Driver Component. This can
be located in data memory.

NOINIT_RAM_8BIT (Y2): This section consists of the global RAM variables of
8-hit size that are used internally by MCU Driver Component. This can be
located in data memory.

RAM_1BIT (Y3): This section consists of the global RAM variables of 1-bit
size that are initialized by start-up code and used internally by MCU Driver
Component. This can be located in data memory.

MCU_CFG_RAM_UNSPECIFIED (Y4): This section consists of the global
RAM variables that are generated by MCU Driver Component Generation
Tool. This can be located in data memory.

Remark

o X1, X2,Y1, Y2 and Y3 pertain to only MCU Driver Component and do not include memory
occupied by Mcu_PBcfg.c file generated by MCU Driver Component Generation Tool.

e User must ensure that none of the memory areas overlap with each other. Even ‘debug’
information should not overlap

56

P1x-C Specific Information Chapter 13

Chapter 13

13.1.

P1x-C Specific Information

P1x-C supports following devices:

e R7F701370A(CPU1(PEL)), R7F701371(CPUL(PEL)),
R7F701372(CPU1(PE1)), R7F701373, R7F701374

ISR Function

The table below provides the list of handler addresses corresponding to the
hardware unit ISR(s) in MCU Driver Component. The user should configure
the ISR functions mentioned below:

Table 13-1 ISR For MCU

Interrupt Source Name of the ISR Function

MCU_FEINT_ISR

INTECM

MCU_ECM_EIC_ISR

13.1.1. Interrupt routines for OS

Module's <Module>_Irg.c/h files must include "Os.h" header file to obtain
the interrupt category information configured in the OS. Therefore
preprocessor definitions shown by below table must be expected to be
published in Os.h file by the OS in case of CAT2 or to be used in the
interrupt vector table in case of CAT1. In case of CAT2 ISRs the “ISR
(Isr_Name)” Keyword must be used in <Module>_Irq.c/h file.

Interrupt Category Naming Convention
CAT1 <MCAL_INTERRUPT_NAME>_ ISR
CAT2 <MCAL_INTERRUPT_NAME>_CATZ2_ISR

CAT2 (In case the handles of the Os_<MCAL_INTERRUPT_NAME>_CAT2_ISR
Oslsr container are generated
without ‘Os_’ prefix by Os
generation tool)

Example of module_irq.h:
[* Defines the CAT?2 interrupt mapping */

#if defined (Os_<MCAL_INTERRUPT_NAME>_CAT2_ISR) || defined
(MCAL_INTERRUPT_NAME>_CAT2_ISR)

/* Use ISR() macro from Os.h */

/* Defines the CAT1 interrupt mapping */

Chapter 13

P1x-C Specific Information

58

#else
extern FUNC(type, memclass) <MCAL_INTERRUPT_NAME>_ ISR(void);

#endif

Example of module_irg.c:
/* Defines the CAT2 interrupt mapping */

#if defined (Os_<MCAL_INTERRUPT_NAME> CAT2_ISR) || defined
(<MCAL_INTERRUPT_NAME>_CAT2_ISR)

ISR(<MCAL_INTERRUPT_NAME>_CAT2_ISR)
[* Defines the CAT1 interrupt mapping */
#else

_INTERRUPT_FUNC(type, memclass) <MCAL_INTERRUPT_NAME> _
ISR(void)

#endif
In case if the MCAL modules are to be used standalone without having standard

Autosar Os module, the user has to prepare an Os.h stub file with the published
handles only for those interrupt names which are to be used as CAT2.

13.2. Sample Application

13.2.1. Sample Application Structure

The Sample Application is provided as reference to the user to understand

the method in which the MCU APIs can be invoked from the application.

G eneric
AUTOSAR RH850
TYPES COMPILER TYPES
e S avices T T T T T T -
P 1x-C

MCU STUB STUB STUB STUB
Sample
Application Det Dem SchM Os

Figure 13-1 Overview of MCU Driver Sample Application

P1x-C Specific Information Chapter 13

The Sample Application of the P1x-C is available in the path
X1X\P1x-C\modules\mcu\sample_application
The Sample Application consists of the following folder structure:

X1X\P1x-C\modules\mcu\definition\<AUTOSAR_version>\common
R403_MCU_P1X-C.arxml

X1X\P1x-C\modules\mcu\sample_application\< SubVariant>

\<AUTOSAR_version>
\src\Mcu_PBcfg.c
\src\Mcu_Hardware.c
\include\Mcu_Cfg.h
\include\Mcu_Hardware.h

\config\ App_MCU_P1x-C_701370A_Sample.arxml
\config\App_MCU_P1x-C_701370A_Sample.html
\config\App_MCU_P1x-C_701370A_Sample.one

\config\ App_MCU_P1x-C_701371_Sample.arxml
\config\ App_MCU_P1x-C_701371_Sample.html
\config\ App_MCU_P1x-C_701371_Sample.one

\config\ App_MCU_P1x-C_701372_Sample.arxmi
\config\ App_MCU_P1x-C_701372_Sample.html
\config\ App_MCU_P1x-C_701372_Sample.one

\config\ App_MCU_P1x-C_701373_Sample.arxml
\config\ App_MCU_P1x-C_701373_Sample.html
\config\ App_MCU_P1x-C_701373_Sample.one

\config\ App_MCU_P1x-C_701374_Sample.arxml
\config\ App_MCU_P1x-C_701374_Sample.html|
\config\ App_MCU_P1x-C_701374_Sample.one

In the Sample Application all the MCU APIs are invoked in the following
sequence:

* The API Mcu_lInit is invoked with a valid database address for the proper
initialization of the MCU Driver, all the MCU Driver control registers and
RAM variables will get initialized after this APl is called.

* The API Mcu_InitRamSection is invoked to initialize the RAM section wise
as provided from the configuration structure.

* The API Mcu_lInitClock is invoked to initialize the clock sources.

* The API Mcu_GetPlIlIStatus is invoked to provide the lock status of the
PLL. This API will return the PLL status as MCU_PLL_LOCKED or
MCU_PLL_UNLOCKED.

* The API Mcu_GetResetReason is invoked to read the reset type from
the hardware by checking the RESF register and if not supported,
returns MCU_POWER_ON_RESET. This API shall clear the reset
factor register.

* The API Mcu_GetResetRawValue is invoked to return reset type value
from the hardware register RESF.

59

Chapter 13 P1x-C Specific Information

* The API Mcu_GetVersionInfo is invoked to get the version of the MCU
Driver module with a variable of Std_VersioninfoType. After the call of
this API the passed parameter will get updated with the MCU Driver
version details.

* The API Mcu_PerformReset is invoked to reset the microcontroller by
accessing the software reset register.

* The API Mcu_SetMode is invoked to activate the MCU power modes.

Remark To unmask all resets ‘target pinmask * command is used.

13.2.2. Building Sample Application

13.2.2.1 Configuration Example
This section contains the typical configuration which is used for measuring
RAM/ROM consumption, stack depth and throughput details.

¢ For Autosar Version R4.0.3

Configuration Details:
App_MCU_<SubVariant>_<Device_Name>_Sample.html

Note For P1x-C <Device_name> can be 701370A, 701371, 701372, 701373,
701374.

13.2.2.2 Debugging The Sample Application

GNU Make utility version 3.81 or above must be installed and available in the
path as defined by the environment user variable “GNUMAKE” to complete
the build process using the delivered sample files.

Open a Command window and change the current working directory to
"make” directory present as mentioned in below path:

“X1X\P1x-C\common_family\Sample_Application\<Complier>"

Now execute batch file SampleApp.bat with following parameters:
SampleApp.bat Mcu <Device_name>

Note For P1x-C <Device_name> can be 701370A, 701371, 701372, 701373,
701374.

After this, the tool output files will be generated with the configuration as
mentioned in the path:

* For Autosar Version R4.0.3
“X1X\P1x-C\modules\Mcu\sample_application\<SubVariant>\<

AUTOSAR_version> \config”

+ After this, all the object files, map file and the executable file
App_MCU_P1x-C_Sample.out will be available in the output folder
(“X1X\P1x-
C\modules\Mcu\sample_application\<SubVariant>\obj\<complier>" in this
case).

60

P1x-C Specific Information Chapter 13

* The executable can be loaded into the debugger and the sample application
can be executed.

Executable files with **.out’ extension can be downloaded into the target
hardware with the help of Green Hills debugger.

If any configuration changes (only post-build) are made to the ECU
Configuration Description file.

“X1X\P1x-
C\modules\Mcu\sample_application\<SubVariant>\<Autosar_versio
n>\config\App_MCU_<SubVariant>_<Device_name>_Sample.arx
ml” the database alone can be generated by using the following
commands

make —f App_MCU_<SubVariant>_Sample.mak generate_Mcu_config

make —f App_MCU_<SubVariant>_Sample.mak
App_MCU_<SubVariant>_Sample.out

« After this, a flash able Motorola S-Record file
App_MCU_<SubVariant>_Sample.run is available in the output folder.

Note 1.For P1x-C <Device_name> can be 701370A,
701371,701372, 701373, 701374.
2. <compiler> for example can be “ghs”.
3. <SubVariant> can be P1H-C, P1H-CE, P1M-C.
4. <AUTOSAR_version> can be 4.0.3.

13.3. Memory and Throughput

Typical Configuration
e DETON
e All other Pre-Compile Settings ON
e RAM Sector ConfigurationO
o Default Value OxFF
o RAM Section Base Address OxFEDEOOOO

o RAM Section Size 0x40

13.3.1. ROM/RAM Usage

The details of memory usage for the typical configuration, with DET disabled
are provided in this section.

61

Chapter 13 P1x-C Specific Information

Table 13-2 ROM/RAM Details without DET

SI. No. [ROM/RAM Segment Name gi:éin S T

1. ROM DEFAULT_CODE_ROM 11394
CONST_ROM_UNSPECIFIED 316
CONST_ROM_32BIT 48

2. RAM RAM_1BIT 1
RAM_8BIT 1
RAM_16BIT 4
RAM_32BIT 4
RAM_UNSPECIFIED 24

The details of memory usage for the typical configuration, with DET enabled
are provided in this section.

Table 13-3 ROM/RAM Details with DET

Sl. No. | ROM/RAM Segment Name gi:éin bytes in

1. ROM DEFAULT_CODE_ROM 9790
CONST_ROM_UNSPECIFIED 316
CONST_ROM_32BIT 48

2. RAM RAM_1BIT 2
RAM_8BIT 1
RAM_16BIT 4
RAM_32BIT 4
RAM_UNSPECIFIED 24

13.3.2. Stack Depth

The worst-case stack depth for MCU Driver Component for the typical

configuration is 148 bytes.

13.3.3. Throughput Details

The throughput details of the APIs at 160 MHz clock frequency are mentioned
below.

62

P1x-C Specific Information

Chapter 13

Table 13-4 Throughput Details of the APIs
Throughput in
SI. No. [API Name microseconds in | Remarks
GHS
1. Mcu_Init 84.425 -
2. Mcu_InitRamSection 14.125 -
3. Mcu_InitClock 117.562 -
4. Mcu_DistributePIIClock 0.87 -
5. Mcu_GetPlIStatus 0.87 -
6. Mcu_GetResetReason 0.100 -
7. Mcu_GetResetRawValue 0.87 -
8. Mcu_GetVersioninfo 0.137 -
9. Mcu_GetRamstate 0.662 -
10. Mcu_PerformReset 0. 150 -
11. Mcu_EcmReleaseErrorOutPin 8.900 -

63

Chapter 13

P1x-C Specific Information

64

Release Details

Chapter 14

Chapter 14 Release Detalils
MCU Driver Software

Version: 1.1.0

65

Chapter 14 Release Details

66

Revision History

Sl. No.

Description

Version

Date

Initial Version

1.0.0

14-Aug-2015

Following changes are made

1. Chapter 2 “Reference Documents” is updated.

2. Chapter 3 and Chapter 9 is updated for the name of the Tool User
Manual.

3. Chapter 4 “Forethoughts” is updated.

4. Section 4.3 is updated for adding the information on Critical
Section Protection.

5. Chapter 5 is updated for the information on GTM and the HW
BIST.

6. Section 10.3 “Function Definitions” are updated.

7. Chapter 6 “Register Details” is updated.

8. Section 13.2 “ISR Function” is added.

9. Section 13.4 “Memory and Throughput” is updated.

10. Chapter 14 “Release Details” is updated.

11. Added R number for the document.

1.0.1

15-Apr-2016

Following changes are made

1. Removed Section 13.1 “Compiler Linker and Assembler”.

2. Updated Section 4.4 to add note on User Mode.

3. Chapter 6 “Register Details” is updated.

4. Added critical section details table in section 4.3

5. Chapter 14 “Release Details” is updated.

6. Chapter 8 is updated for Stub C Header files and added the|
description of the stub files in Table 8-1.

7. Updated the Table 4-1 Supervisor Mode and User Mode Details.

8. Updated Table 6-1 and Table 11-2

9. Section 4.6 register write verify has added.

10. Chapter 5 Architecture Details is updated.

11. Section 7.1 Services Provided by MCU driver component to user
is updated.

12. Section MCU driver generation tool has updated with Mcu_Cbk.h
header file in chapter 8.

13. Section 13.2.1 is updated with 701371 series.

14. Device name R7F701370A, R7F701371 and R7F701372,
updated in chapter13.

15. Section 4.1 updated with forethought on ‘McuLoopCount’
parameter.

16. Os.c and SchM_Mcu.c are added in the stub files and thein
descriptions are included in Table 8-1

17. Updated Table 4-1 Supervisor Mode and User Mode Details.

18. Section 13.2.2 is updated with other device options.

19. Section 4.1 updated with general thought regarding CLMAA4
support.

1.0.2

27-Jan-2017

67

AUTOSAR MCAL R4.0.3 User's Manual
MCU Driver Component Ver.1.0.2
Embedded User’s Manual

Publication Date: Rev.1.00, January 27, 2017

Published by: Renesas Electronics Corporation

LENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3

Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany

Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China

Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HAL Il Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2006-2017 Renesas Electronics Corporation. All rights reserved.

Colophon 4.1

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3

User’s Manual

RENESAS

. . R20UT3651EJ0100
Renesas Electronics Corporation

	Chapter 1 Introduction
	1.1. Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration And Build Process
	3.1. MCU Driver Component Makefile

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. Data Consistency
	4.4. User Mode and Supervisor Mode
	4.5. Deviation Lists
	4.6. Register Write Verify

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction Between The User And MCU Driver Component
	7.1. Services Provided By MCU Driver Component to User

	Chapter 8 MCU Driver Component Header And Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1. Imported Types
	10.1.1. Standard Types
	10.1.2. Other Module Types

	10.2. Type Definitions
	10.2.1. Mcu_ClockType
	10.2.2. Mcu_RawResetType
	10.2.3. Mcu_ModeType
	10.2.4. Mcu_RamSectionType
	10.2.5. Mcu_PllStatusTypes
	10.2.6. Mcu_RamStateType
	10.2.7. Mcu_ResetType

	10.3. Function Definitions
	10.3.1. Mcu_Init
	10.3.2. Mcu_InitRamSection
	10.3.3. Mcu_InitClock
	10.3.4. Mcu_DistributePllClock
	10.3.5. Mcu_GetPllStatus
	10.3.6. Mcu_GetResetReason
	10.3.7. Mcu_GetResetRawValue
	10.3.8. Mcu_PerformReset
	10.3.9. Mcu_SetMode
	10.3.10. Mcu_GetVersionInfo
	10.3.11. Mcu_GetRamState

	Chapter 11 Development And Production Errors
	11.1. MCU Driver Component Development Errors
	11.2. MCU Driver Component Production Errors

	Chapter 12 Memory Organization
	Chapter 13 P1x-C Specific Information
	13.1. ISR Function
	13.1.1. Interrupt routines for OS

	13.2. Sample Application
	13.2.1. Sample Application Structure
	13.2.2. Building Sample Application
	13.2.2.1 Configuration Example
	13.2.2.2 Debugging The Sample Application

	13.3. Memory and Throughput
	13.3.1. ROM/RAM Usage
	13.3.2. Stack Depth
	13.3.3. Throughput Details

	Chapter 14 Release Details

