

MICROSAR OS

Technical Reference

Version 1.7.0

Authors Anton Schmukel, Ivan Begert, Stefano Simoncelli,
Torsten Schmidt, Da He, David Feuerstein, Michael
Kock, Martin Schultheiß, Andreas Jehl

Status Released

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 2
based on template version 6.0.1

Document Information

History

Author Date Version Remarks

Torsten Schmidt 2016-04-27 1.0.0 First release version

Torsten Schmidt 2016-05-18 1.0.1 References to hardware manuals added.

Revision work

Torsten Schmidt 2016-06-03 1.0.2 Fix of ESCAN00089598

Torsten Schmidt 2016-06-20 1.1.0 List of OS internal objects added.

Additional startup concept chapter added.

Chapter “Memory mapping concept” reworked.

Description of “generate callout stubs” feature
added.

Torsten Schmidt 2016-07-05 1.1.1 Chapter “Memory Mapping Concept” extended.

IOC notification callback concept changed.

HSI of RH850 family added.

HSI of Power PC family added.

Torsten Schmidt 2016-07-19 1.1.2 Chapter “Memory Mapping Concept” changed.

Hints for shorter compile times added.

Nesting behavior of OS hooks described.

Ivan Begert 2016-08-11 1.1.3 HSI of ARM family added.

Torsten Schmidt 2016-08-12 1.1.4 Chapter “Memory Mapping Concept” extended.

Chapter “Clear Pending Interrupt” extended.

Chapter “RH850 Special Characteristics”
extended.

Ivan Begert 2016-08-18 1.1.5 HSI of ARM Zynq UltraScale added.

Torsten Schmidt 2016-08-30 1.1.6 HSI of RH850 extended.

Torsten Schmidt 2016-08-31 1.1.7 ORTI Debugging added.

Timing Hook Macros reworked.

Chapter “Memory Mapping Concept” changed.

Chapter “Category 1 Interrupts” extended.

Stefano Simoncelli

Torsten Schmidt

2016-09-15 1.1.8 Chapter “Interrupt Source API” extended.

HSI chapter for ARM extended

Torsten Schmidt 2016-09-22 1.2.0 VTT OS and Dual Target Concept added.

Chapter ORTI Debugging extended.

Anton Schmukel
Da He

2016-10-14 1.3.0 Ristrictions concerning API usage before
StartOS() documented.

Clarification concerning forcible termination and
schedule tables added.

Deviations in IOC added.

Notes on mixed criticality systems added.
Chapter “RH850 Special Characteristics”
extended.

Torsten Schmidt 2016-10-19 1.3.1 Chapter “Configuration of X-Signals” added.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 3
based on template version 6.0.1

Chapter “Power PC Special Characteristics”
extended.

Correction of startup examples.

Chapter “User include files” added.

RH850 HSI extended.

PPC HSI extended.

Hardware Overview extended by RH850.

David Feuerstein 2016-11-03 1.4.0 PPC HSI extended.
Chapter ORTI Debugging extended.

Michael Kock 2016-11-25 1.5.0 Updated chapter Timing Hooks

Martin Schultheiß 2016-12-08 1.6.0 PPC HSI extended.

Updated characteristics of VTT OS.

David Feuerstein

Andreas Jehl

Ivan Begert

Stefano Simoncelli

2016-22-12 1.7.0 Updated precautions in PreStartTask.

Support new Power PC Derivative: PC580003

Support IAR compiler for ARM

ARM Cortex-A HSI added

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 4
based on template version 6.0.1

Reference Documents

No. Source Title Version

[1] AUTOSAR Specification of Operating System

Document ID 034: AUTOSAR_SWS_OS

4.2.1

[2] OSEK/VDX OSEK/VDX Operating System Specification

This document is available in PDF-format on
the Internet at the OSEK/VDX homepage
(http://www.osek-vdx.org)

2.2.3

[3] OSEK/VDX OSEK RunTime Interface (ORTI) Part A:
Language Specification.

This document is available in PDF-format on
the Internet at the OSEK/VDX homepage
(http://www.osek-vdx.org)

2.2

[4] OSEK/VDX OSEK Run Time Interface (ORTI) Part B: OSEK
Objects and Attributes

This document is available in PDF-format on
the Internet at the OSEK/VDX homepage
(http://www.osek-vdx.org)

2.2

[5] Lauterbach ORTI Representation of SMP Systems (ORTI
2.3)

4

[6] Vector vVIRTUALtarget Technical Reference See delivery
information

[7] Vector Startup with Vector and vVIRTUALtarget See delivery
information

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

http://www.osek-vdx.org/
http://www.osek-vdx.org/
http://www.osek-vdx.org/

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 5
based on template version 6.0.1

Contents

1 Introduction... 16

1.1 Architecture Overview .. 16

1.2 Abstract ... 17

1.3 Characteristics ... 17

1.4 Hardware Overview ... 18

1.4.1 TriCore Aurix .. 19

1.4.2 Power PC ... 20

1.4.3 ARM ... 21

1.4.4 RH850.. 22

1.4.5 VTT OS .. 23

1.4.5.1 Characteristics of VTT OS ... 23

2 Functional Description ... 24

2.1 General .. 24

2.2 MICROSAR OS Deviations from AUTOSAR OS Specification 24

2.2.1 Generic Deviation for API Functions ... 24

2.2.2 Trusted Function API Deviations .. 24

2.2.3 Service Protection Deviation .. 25

2.2.4 SyncScheduleTable API Deviation ... 25

2.2.5 CheckTask/ISRMemoryAccess API Deviation 25

2.2.6 Interrupt API Deviation ... 26

2.2.7 Cross Core Getter APIs .. 26

2.2.8 IOC .. 26

2.2.9 Return value upon stack violation ... 27

2.2.10 Forcible Termination of Applications ... 28

2.3 Stack Concept ... 29

2.3.1 Task Stack Sharing .. 31

2.3.1.1 Description ... 31

2.3.1.2 Activation ... 31

2.3.1.3 Usage .. 31

2.3.2 ISR Stack Sharing .. 31

2.3.2.1 Description ... 31

2.3.2.2 Activation ... 31

2.3.2.3 Usage .. 32

2.3.3 Stack Check Strategy ... 32

2.3.4 Software Stack Check .. 33

2.3.4.1 Description ... 33

2.3.4.2 Activation ... 33

2.3.4.3 Usage .. 33

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 6
based on template version 6.0.1

2.3.5 Stack Supervision by MPU ... 34

2.3.5.1 Description ... 34

2.3.5.2 Activation ... 34

2.3.5.3 Usage .. 35

2.3.6 Stack Usage Measurement .. 37

2.3.6.1 Description ... 37

2.3.6.2 Activation ... 37

2.3.6.3 Usage .. 37

2.4 Interrupt Concept ... 38

2.4.1 Interrupt Handling API .. 38

2.4.1.1 Interrupt Handling in SC1 / SC3 38

2.4.1.2 Interrupt Handling in SC2 / SC4 39

2.4.2 Interrupt Vector Table ... 40

2.4.3 Nesting of Category 2 Interrupts... 40

2.4.3.1 Description ... 40

2.4.3.2 Activation ... 40

2.4.4 Category 1 Interrupts ... 40

2.4.4.1 Implementation of Category 1 ISRs 40

2.4.4.2 Nesting of Category 1 ISRs .. 41

2.4.4.3 Category 1 ISRs before StartOS 41

2.4.4.4 Notes on Category 1 ISRs ... 42

2.4.5 Initialization of Interrupt Sources .. 43

2.4.6 Unhandled Interrupts .. 43

2.5 Exception Concept ... 43

2.5.1 Exception Vector Table ... 43

2.5.2 Unhandled Exceptions ... 43

2.6 Timer Concept ... 44

2.6.1 Description ... 44

2.6.2 Activation ... 44

2.6.3 Usage .. 44

2.6.4 Dependencies .. 44

2.7 Periodical Interrupt Timer (PIT) .. 45

2.7.1 Description ... 45

2.7.2 Activation ... 45

2.8 High Resolution Timer (HRT) ... 46

2.8.1 Description ... 46

2.8.2 Activation ... 46

2.9 PIT versus HRT ... 46

2.10 Startup Concept ... 47

2.11 Single Core Startup .. 48

2.11.1 Single Core Derivatives .. 48

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 7
based on template version 6.0.1

2.11.2 Multi Core Derivatives .. 49

2.11.2.1 Examples for SC1 / SC2 Systems 49

2.11.2.2 Examples for SC3 / SC4 Systems 50

2.12 Multi Core Startup .. 51

2.12.1 Example for SC1 / SC2 Systems .. 51

2.12.2 Examples for SC3 / SC4 systems .. 52

2.12.2.1 Only with AUTOSAR Cores .. 52

2.12.2.2 Mixed Core System.. 53

2.13 Error Handling .. 54

2.14 Error Reporting .. 54

2.14.1 Extension of Service IDs .. 55

2.14.2 Extension of Error Codes ... 55

2.14.3 Detailed Error Codes .. 56

2.15 Multi Core Concepts .. 57

2.15.1 Scheduling and Dispatching ... 57

2.15.2 Multi Core Data Concepts .. 57

2.15.3 X-Signals ... 57

2.15.4 Master / Slave Core ... 57

2.15.5 Startup of a Multi Core System .. 57

2.15.6 Spinlocks ... 57

2.15.7 Cache .. 58

2.15.8 Shutdown ... 58

2.15.8.1 Shutdown of one Core ... 58

2.15.8.2 Shutdown of all Cores .. 58

2.15.8.3 Shutdown during Protection Violation............................. 58

2.16 Debugging Concepts ... 59

2.16.1 Description ... 59

2.16.2 Activation ... 59

2.16.3 ORTI Debugging .. 60

2.17 Memory Protection ... 62

2.17.1 Usage of the System MPU ... 62

2.17.2 Usage of the Core MPUs ... 62

2.17.3 Configuration Aspects .. 63

2.17.3.1 Static MPU Regions ... 63

2.17.3.2 Dynamic MPU Regions .. 63

2.17.3.3 Freedom from Interference .. 64

2.17.4 Stack Monitoring .. 65

2.17.5 Protection Violation Handling ... 65

2.17.6 Optimized / Fast Core MPU Handling .. 65

2.17.7 Recommended Configuration ... 66

2.18 Memory Access Checks ... 67

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 8
based on template version 6.0.1

2.18.1 Description ... 67

2.18.2 Activation ... 67

2.18.3 Usage .. 67

2.18.4 Dependencies .. 67

2.19 Timing Protection Concept ... 68

2.19.1 Description ... 68

2.19.2 Activation ... 69

2.19.3 Usage .. 69

2.20 IOC .. 70

2.20.1 Description ... 70

2.20.2 Unqeued (Last Is Best) Communication ... 70

2.20.2.1 1:1 Communication Variant .. 70

2.20.2.2 N:1 Communication Variant ... 71

2.20.2.3 N:M Communication Variant .. 71

2.20.3 Queued Communication .. 71

2.20.4 Notification ... 71

2.20.5 Particularities ... 72

2.20.5.1 N:1 Queued Communication .. 72

2.20.5.2 IOC Spinlocks .. 72

2.20.5.3 Notification ... 73

2.21 Trusted OS Applications ... 74

2.21.1 Trusted OS Applications with Memory Protection 74

2.21.1.1 Description ... 74

2.21.1.2 Activation ... 74

2.21.1.3 Dependencies .. 74

2.21.2 Trusted OS Applications in User Mode ... 74

2.21.2.1 Description ... 74

2.21.2.2 Activation ... 74

2.21.2.3 Dependencies .. 74

2.21.3 Trusted Functions .. 75

2.22 OS Hooks .. 76

2.22.1 Runtime Context .. 76

2.22.2 Nesting behavior .. 76

2.22.3 Hints .. 77

3 Vector Specific OS Features .. 78

3.1 Optimized Spinlocks .. 78

3.1.1 Description ... 78

3.1.2 Activation ... 78

3.1.3 Usage .. 78

3.2 Peripheral Access API .. 79

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 9
based on template version 6.0.1

3.2.1 Description ... 79

3.2.2 Activation ... 79

3.2.3 Usage .. 79

3.2.4 Dependencies .. 79

3.2.5 Alternatives .. 79

3.2.6 Common Use Cases .. 79

3.3 Trusted Function Call Stubs ... 80

3.3.1 Description ... 80

3.3.2 Activation ... 80

3.3.3 Usage .. 80

3.3.4 Dependencies .. 80

3.4 Non-Trusted Functions (NTF) .. 81

3.4.1 Description ... 81

3.4.2 Activation ... 81

3.4.3 Usage .. 82

3.4.4 Dependencies .. 82

3.5 Interrupt Source API ... 83

3.5.1 Description ... 83

3.6 Pre-Start Task .. 84

3.6.1 Description ... 84

3.6.2 Activation ... 84

3.6.3 Usage .. 84

3.6.4 Dependencies .. 85

3.7 X-Signals ... 86

3.7.1 Description ... 86

3.7.1.1 Notes on Synchronous X-Signals 89

3.7.1.2 Notes on Mixed Criticality Systems 89

3.7.2 Activation ... 89

3.8 Timing Hooks ... 90

3.8.1 Description ... 90

3.8.2 Activation ... 90

3.8.3 Usage .. 90

3.9 Kernel Panic .. 91

3.10 Generate callout stubs ... 92

3.10.1 Description ... 92

3.10.2 Activation ... 92

3.10.3 Usage .. 92

4 Integration ... 93

4.1 Compiler Optimization Assumptions ... 93

4.1.1 Compile Time ... 93

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 10
based on template version 6.0.1

4.2 Hardware Software Interfaces (HSI)... 93

4.2.1 TriCore Aurix Family ... 94

4.2.1.1 Context .. 94

4.2.1.2 Core Registers ... 94

4.2.1.3 Interrupt Registers ... 94

4.2.1.4 GPT Registers ... 95

4.2.1.5 STM Registers ... 95

4.2.1.6 Aurix Special Characteristics ... 96

4.2.1.7 PSW handling .. 98

4.2.2 RH850 Family .. 99

4.2.2.1 Context .. 99

4.2.2.2 Core Registers ... 100

4.2.2.3 MPU Registers ... 101

4.2.2.4 INTC Registers .. 101

4.2.2.5 Inter Processor Interrupt Control Registers 101

4.2.2.6 Timer TAUJ Registers .. 102

4.2.2.7 Timer STM Registers ... 104

4.2.2.8 Timer OSTM Registers .. 106

4.2.2.9 RH850 Special Characteristics 107

4.2.2.10 PSW Register Handling ... 108

4.2.2.11 Instructions .. 108

4.2.2.12 Exception and Interrupt Cause Address 108

4.2.3 Power PC Family ... 109

4.2.3.1 Context .. 109

4.2.3.2 Core Registers ... 109

4.2.3.3 Interrupt Registers ... 109

4.2.3.4 PIT Registers ... 110

4.2.3.5 STM Registers ... 110

4.2.3.6 MPU Registers ... 110

4.2.3.7 SEMA4 Registers ... 111

4.2.3.8 Power PC Special Characteristics 111

4.2.3.9 MSR Handling .. 112

4.2.4 ARM Family ... 113

4.2.4.1 Cortex-R derivatives .. 113

4.2.4.2 Cortex-A derivatives ... 115

4.2.4.3 ARM Special Characteristics .. 115

4.3 Memory Mapping Concept ... 117

4.3.1 Provided MemMap Section Specifers .. 117

4.3.1.1 Usage of MemMap Macros .. 120

4.3.1.2 Resulting sections .. 121

4.3.1.3 Access Rights to Variable Sections 127

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 11
based on template version 6.0.1

4.3.2 Link Sections.. 130

4.3.2.1 Simple Linker Defines .. 131

4.3.2.2 Hierachical Linker Defines ... 131

4.3.2.3 Selecting OS constants .. 132

4.3.2.4 Selecting OS variables ... 133

4.3.2.5 Selecting OS Barriers, Core Status and Trace variables134

4.3.2.6 Selecting OS Spinlocks .. 135

4.3.2.7 Selecting User Constant Sections 136

4.3.2.8 Selecting User Variable Sections 137

4.3.3 Section Symbols .. 139

4.4 Static Code Analysis .. 139

4.5 Configuration of X-Signals ... 140

4.5.1 TriCore Aurix Family ... 140

4.5.2 RH850 Family .. 140

4.5.3 Power PC Family ... 141

4.5.4 ARM Family ... 141

4.5.5 VTT OS .. 141

4.6 OS generated objects .. 141

4.6.1 System Application ... 141

4.6.2 Idle Task ... 142

4.6.3 Timer ISR ... 142

4.6.4 System Timer Counter ... 142

4.6.5 Timing Protection Counter .. 142

4.6.6 Timing protection ISR ... 142

4.6.7 Resource Scheduler... 143

4.6.8 X Signal ISR .. 143

4.6.9 IOC Spinlocks .. 143

4.7 VTT OS Specifics ... 144

4.7.1 Configuration.. 144

4.7.2 CANoe Interface .. 144

4.8 User include files.. 145

5 API Description ... 146

5.1 Peripheral Access API .. 147

5.1.1 Read Functions .. 147

5.1.2 Write Functions .. 149

5.1.3 Bitmask Functions .. 151

5.2 Pre-Start Task .. 153

5.3 Non-Trusted Functions (NTF) .. 154

5.4 Interrupt Source API ... 155

5.4.1 Disable Interrupt Source .. 155

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 12
based on template version 6.0.1

5.4.2 Enable Interrupt Source ... 156

5.4.3 Clear Pending Interrupt .. 157

5.4.4 Check Interrupt Source Enabled .. 158

5.4.5 Check Interrupt Pending .. 159

5.5 Detailed Error API .. 160

5.5.1 Get detailed Error ... 160

5.5.2 Unhandled Interrupt Requests ... 161

5.5.3 Unhandled Exception Requests ... 162

5.6 Stack Usage API .. 163

5.7 RTE Interrupt API ... 164

5.8 Time Conversion Macros ... 165

5.8.1 Convert from Time into Counter Ticks .. 165

5.8.2 Convert from Counter Ticks into Time .. 165

5.9 Access Check API .. 166

5.9.1 Check ISR Memory Access .. 166

5.9.2 Check Task Memory Access .. 167

5.10 OS Initialization .. 168

5.11 Timing Hooks ... 170

5.11.1 Timing Hooks for Activation .. 170

5.11.1.1 Task Activation ... 170

5.11.1.2 Set Event ... 171

5.11.2 Timing Hook for Context Switch ... 172

5.11.3 Timing Hooks for Locking Purposes ... 173

5.11.3.1 Get Resource... 173

5.11.3.2 Release Resource ... 173

5.11.3.3 Request Spinlock ... 174

5.11.3.4 Request Internal Spinlock .. 174

5.11.3.5 Get Spinlock .. 175

5.11.3.6 Get Internal Spinlock .. 175

5.11.3.7 Release Spinlock ... 176

5.11.3.8 Release Internal Spinlock .. 176

5.11.3.9 Disable Interrupts ... 177

5.11.3.10 Enable Interrupts ... 178

5.12 PanicHook ... 179

5.13 Calling Context Overview ... 180

6 Configuration .. 181

7 Glossary .. 182

8 Contact .. 183

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 13
based on template version 6.0.1

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 14
based on template version 6.0.1

Illustrations

Figure 1-1 AUTOSAR Architecture Overview ... 16
Figure 2-1 Stack Safety Gap .. 35
Figure 2-2 Interrupt APIs in SC1 / SC3 .. 38
Figure 2-3 Interrupt API in SC2 / SC4 .. 39
Figure 2-4 API functions during startup .. 47
Figure 2-5 MICROSAR OS Detailed Error Code .. 56
Figure 2-6 N:1 Multiple Sender Queues ... 72
Figure 3-1 X-Signal .. 86
Figure 4-1 Padding bytes between MPU regions ... 96

Tables

Table 1-1 MICROSAR OS Characteristics .. 17
Table 1-2 Supported TriCore Aurix Hardware ... 19
Table 1-3 Supported TriCore Aurix Compilers ... 19
Table 1-4 Supported Power PC Hardware .. 20
Table 1-5 Supported Power PC compilers .. 21
Table 1-6 Supported ARM Hardware .. 21
Table 1-7 Supported ARM compilers .. 21
Table 1-8 Supported RH850 Hardware ... 22
Table 1-9 Supported RH850 Compilers .. 22
Table 1-10 VTT OS characteristics ... 23
Table 2-1 MICROSAR OS Stack Types .. 30
Table 2-2 Stack Check Patterns ... 33
Table 2-3 PIT versus HRT .. 46
Table 2-4 Types of OS Errors ... 54
Table 2-5 Extension of Error Codes .. 55
Table 2-6 Recommended Configuration MPU Access Rights 66
Table 3-1 Differences of OS and Optimized Spinlocks .. 78
Table 3-2 Comparison between Synchronous and Asynchronous X-Signal 87
Table 3-3 Priority of X-Signal receiver ISR.. 89
Table 4-1 Provided MemMap Section Specifiers .. 120
Table 4-2 MemMap Code Sections Descriptions .. 121
Table 4-3 MemMap Const Sections Descriptions ... 122
Table 4-4 MemMap Variable Sections Descriptions .. 125
Table 4-5 Recommended Section Access Rights ... 128
Table 4-6 List of Generated Linker Command Files .. 130
Table 4-7 OS constants linker define group .. 132
Table 4-8 OS variables linker define group ... 133
Table 4-9 OS Barriers and Core status linker define group 134
Table 4-10 User constants linker define group .. 136
Table 4-11 User variables linker define group ... 137
Table 5-1 Read Peripheral API ... 147
Table 5-2 Write Peripheral APIs .. 149
Table 5-3 Bitmask Peripheral API ... 152
Table 5-4 API Service Os_EnterPreStartTask ... 153
Table 5-5 Call Non-Trusted Function API .. 154
Table 5-6 API Service Os_DisableInterruptSource ... 155
Table 5-7 API Service Os_EnableInterruptSource .. 156
Table 5-8 API Service Os_ClearPendingInterrupt ... 157
Table 5-9 API Service Os_IsInterruptSourceEnabled ... 158

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 15
based on template version 6.0.1

Table 5-10 API Service Os_IsInterruptPending .. 159
Table 5-11 API Service Os_GetDetailedError ... 160
Table 5-12 API Service Os_GetUnhandledIrq .. 161
Table 5-13 API Service Os_GetUnhandledExc ... 162
Table 5-14 Overview: Stack Usage Functions .. 163
Table 5-15 Conversion Macros from Time to Counter Ticks 165
Table 5-16 Conversion Macros from Counter Ticks to Time 165
Table 5-17 API Service CheckISRMemoryAccess .. 166
Table 5-18 API Service CheckTaskMemoryAccess .. 167
Table 5-19 API Service Os_Init... 168
Table 5-20 API Service Os_InitMemory .. 169
Table 5-21 Calling Context Overview.. 180

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 16
based on template version 6.0.1

1 Introduction

This document describes the usage and functions of “MICROSAR OS”, an operating
system which implements the AUTOSAR BSW module “OS” as specified in [1].

This documentation assumes that the reader is familiar with both the OSEK OS1
specification and the AUTOSAR OS specification.

1.1 Architecture Overview

The following figure shows the location of the OS module within the AUTOSAR
architecture.

Figure 1-1 AUTOSAR Architecture Overview

1
 OSEK is a registered trademark of Continental Automotive GmbH (until 2007: Siemens AG)

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 17
based on template version 6.0.1

1.2 Abstract

The MICROSAR OS operating system is a real time operating system, which was
specified for the usage in electronic control.

As a requirement, there is no dynamic creation of new tasks at runtime; all tasks have to
be defined before compilation (pre-compile configuration variant).

The OS has no dynamic memory management and there is no shell for the control of tasks
by hand.

Typically the source and configuration files of the operating system and the application
source files are compiled and linked together to one executable file, which is loaded into
an emulator or is burned into an EPROM or Flash EEPROM.

1.3 Characteristics

MICROSAR OS has the following characteristics:

Supported Scalability Classes SC1, SC2, SC3, SC4 (as described in [1])

Single Core ECUs Supported

Multi Core ECUs Supported

IOC Supported

Table 1-1 MICROSAR OS Characteristics

MICROSAR OS supports various different processor families of different vendors in
conjunction with multiple compilers.

The availability for a particular processor in conjunction with a specific compiler can be
queried from Vector Informatik.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 18
based on template version 6.0.1

1.4 Hardware Overview

The following table summarizes information about MICROSAR OS. It gives detailed
information about the derivatives and compilers. As very important information the
documentations of the hardware manufacturers are listed. MICROSAR OS is based upon
these documents in the given version.

Table Rows

> Compiler: List of Compilers MICROSAR OS is working with.

> Derivative: This can be a single information or a list of derivatives, MICROSAR OS
can be used on.

> Hardware Manufacturer Document Name: List of hardware documentation
MICROSAR OS is based on.

> Document Version: To be able to reference to this hardware documentation its
version is very important.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 19
based on template version 6.0.1

1.4.1 TriCore Aurix

Derivative Hardware Manufacturer Document Name Document
Version

TC21x

TC22x

TC23x

User Manual: tc23x_tc22x_tc21x_um_v1.1.pdf V1.1

Errata Sheet: TC22x_TC21x_AB_Errata_Sheet_v1_2_03804A.pdf V1.2

TC24x Target Specification: tc24x_ts_v2.0_OPEN_MARKET.pdf V2.0

TC26x User Manual:

tc26xB_um_v1.3._usermanual_rev1v3.pdf

V1.3

Errata Sheet:

TC26x_BB_Errata_Sheet_rev1v2_03989A_2016-04-18.pdf

V1.2

TC27x User Manual:

tc27xD_um_v2.2_UserManual_rev2v2_2014-12.pdf

V2.2

Errata Sheet:

TC27x_BC_Errata_Sheet_rev1v5_2015_09_16.pdf

V1.5

TC29x User Manual:

tc29xB_um_v1.3._TC29x_B-Step_User_Manual_rev_1v3_2014_12.pdf

V1.3

Errata Sheet:

TC29x_BA_Errata_Sheet_v1_0.pdf

V1.0

Table 1-2 Supported TriCore Aurix Hardware

Tasking v4.2r2

HighTec (GNU) V4.6.3.0

Table 1-3 Supported TriCore Aurix Compilers

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 20
based on template version 6.0.1

1.4.2 Power PC

Derivative Hardware Manufacturer Document Name Document
Version

MPC574xBD Freescale Semiconductor MPC5746C

Reference Manual

Rev. 2.1,
06/2015

MPC574xC1 Freescale Semiconductor MPC5746C

Reference Manual

Rev. 2.1,
06/2015

MPC574xC2 NXP MPC5748G Reference Manual Rev. 4, 07/2015

MPC574xG NXP MPC5748G Reference Manual Rev. 4, 07/2015

NXP Safety Manual for MPC5748G Rev. 2, 01/2016

MPC574xK ST SPC574Kxx

Reference Manual

Rev. 5, 08/2015

MPC574xM Freescale Semiconductor MPC5746M

Reference Manual

Rev. 5.1,
04/2014

MPC574xP Freescale Semiconductor MPC5744P

Reference Manual

Rev. 5.1,
02/2015

NXP Safety Manual for MPC5744P Rev. 3, 06/2014

MPC574xR NXP MPC5746R

Reference Manual

Rev. 6, 03/2016

MPC577xK Freescale Semiconductor MPC5775K

Reference Manual

Rev. 4, 12/2015

MPC577xM NXP MPC5777M

Reference Manual

Rev. 4, 04/2015

MPC577xN Freescale Semiconductor MPC5774N

Reference Manual

Rev. 2, 02/2014

PC580003 Freescale Semiconductor PC580003 Reference Manual Rev. 2, 05/2014

SPC58ECxx ST SPC584Cx/SPC58ECx

Reference Manual

Rev. 1, 10/2015

SPC58EGxx ST SPC58NE84x/SPC58xG84x

Reference Manual

Rev. 2, 02/2016

SPC58NGxx ST SPC58NE84x/SPC58xG84x

Reference Manual

Rev. 2, 02/2016

SPC582Bxx ST SPC582Bx

Reference Manual

Rev. 1, 08/2015

SPC584Bxx ST SPC584Cx/SPC58ECx

Reference Manual

Rev. 1, 10/2015

SPC584Cxx ST SPC584Cx/SPC58ECx

Reference Manual

Rev. 1, 10/2015

SPC584Gxx ST SPC58NE84x/SPC58xG84x

Reference Manual

Rev. 2, 02/2016

Table 1-4 Supported Power PC Hardware

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 21
based on template version 6.0.1

Windriver DiabData 5.9.4.x

Green Hills (GHS) 2014.1.6

Table 1-5 Supported Power PC compilers

1.4.3 ARM

Derivative Hardware Manufacturer Document Name Document
Version

S6J32xx Cypress S6J3200 Series Hardware Manual Rev. 4.0,
09/2015

ZUxxx XILINX Zynq UltraScale+ MPSoc Technical Reference Manual v1.2, 06/2016

iMX6xx i.MX 6Dual/6Quad Applications Processor Reference Manual Rev. 3,

07/2015

Table 1-6 Supported ARM Hardware

Green Hills (GHS) 2013.5.4

IAR V7.50.1

Table 1-7 Supported ARM compilers

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 22
based on template version 6.0.1

1.4.4 RH850

Derivative Family Hardware Manufacturer Document Name Document Version

RH850 C1M
RH850 C1H

RH850/C1x User’s Manual: Hardware Rev.1.00 Mar 2015

RH850 D1x RH850/D1L/D1M Group User’s Manual: Hardware Rev.2.01 Aug 2016

RH850 E1x FCC2 RH850/E1x-FCC2 User’s Manual: Hardware Rev.0.50 Apr 2015

RH850 E1x FCC1 RH850/E1x-FCC1 User’s Manual: Hardware Rev.0.50 Jul 2014

RH850 E1L RH850/E1L User’s Manual: Hardware Rev.1.10 Apr 2016

RH850 E1M RH850/E1M-S User’s Manual: Hardware Rev.1.10 Apr 2016

RH850 F1H RH850/F1H Group User’s Manual: Hardware Rev.1.12 May 2016

RH850 F1L RH850/F1L Group User’s Manual: Hardware Rev.1.33 Apr 2016

RH850 F1K RH850/F1K Group User’s Manual: Hardware Rev.1.00 Jun 2016

RH850 F1M RH850/F1M Group User’s Manual: Hardware Rev.1.03 May 2016

RH850 P1HC RH850/P1x-C Group User’s Manual: Hardware Rev.1.10 Jul 2016

RH850 P1MC RH850/P1x-C Group User’s Manual: Hardware Rev.1.10 Jul 2016

RH850 P1M RH850/P1x Group User’s Manual: Hardware Rev.1.00 Jul, 2015

RH850 R1L RH850/R1x Group User’s Manual: Hardware Rev.1.31 Jun 2016

G3K Core RH850G3K User’s Manual: Software Rev.1.20 Apr 2016

G3KH Core RH850G3KH User’s Manual: Software Rev.1.10 Jul 2016

G3M Core RH850G3M User’s Manual: Software Rev.1.30 Jun 2016

G3MH Core RH850G3MH User’s Manual: Software Rev.1.00 Mar 2015

Table 1-8 Supported RH850 Hardware

Green Hills (GHS) V6.1.4 2013.5.5

V6.1.6 2015.1.5

Table 1-9 Supported RH850 Compilers

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 23
based on template version 6.0.1

1.4.5 VTT OS

VTT OS stands for “vVIRTUALtarget Operating System”. It runs within Vectors CANoe
development tool.

Vectors CANoe is capable of simulating an entire ECU network. Within such a simulated
network the OS of each ECU can be simulated.

This is useful in early ECU development phases when no real hardware is available yet.
Application development can be started at once.

The VTT OS behaves as regular AUTOSAR OS. All OS objects (e.g. tasks or ISRs) are
simulated.

The VTT system is described in [6].

1.4.5.1 Characteristics of VTT OS

Supported Scalability Classes SC1, SC2

Single Core ECUs Supported

Multi Core ECUs Up to 32 cores are supported

IOC Supported

Number of Simulated Interrupt Sources Up to 10000

Simulated Interrupt Levels VTT OS allows interrupt levels from 1 .. 200

Whereas 1 is the lowest priority and 200 is the
highest.

Memory Protection Not supported2

Stack Protection Not supported

Stack Usage Measurement Not supported

Stack Sharing Not supported

Table 1-10 VTT OS characteristics

2
 The memory protection can be configured. However the actual protection mechanism is not executed.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 24
based on template version 6.0.1

2 Functional Description

2.1 General

The MICROSAR OS basically implements the OS according to the AUTOSAR OS
standard referred in [1].

It is possible that MICROSAR OS deviates from specified AUTOSAR OS behavior. All
deviations from the standard are listed in the chapters hereafter.

On the other hand MICROSAR OS extends the AUTOSAR OS standard with numerous
functions. These extensions in function are described in detail in chapter 2.21.1.

2.2 MICROSAR OS Deviations from AUTOSAR OS Specification

2.2.1 Generic Deviation for API Functions

Specified Behavior There are some API functions which are only available within specific
scalability classes (e.g. TerminateApplication() in SC3 and SC4 only).

Deviation Description Within the MICROSAR OS all API functions are always available.

Deviation Reason The static OS code gets more simplified for better maintainability (less
pre-processor statements are necessary).

Modern toolchains will remove unused function automatically.

2.2.2 Trusted Function API Deviations

Specified Behavior The Operating System shall not schedule any other Tasks which
belong to the same OS-Application as the non-trusted caller of the
service. Also interrupts of Category 2 which belong to the same OS-
Application shall be disabled during the execution of the service.

Deviation Description In MICROSAR OS the re-scheduling of tasks in this particular case is
not suppressed.

The selective disabling of category 2 ISRs is also not done.

Deviation Reason For a better runtime performance during trusted function calls the
specified behavior is not implemented in MICROSAR OS.

Data consistency problems can be solved in a more efficient way by
using the OS interrupt API and/or OS resource API.

Specified Behavior All specified OS APIs should be called with interrupts enabled.

In case CallTrustedFunction() API is called with disabled interrupts it
returns the status code E_OS_DISABLEDINT.

Deviation Description In MICROSAR OS this limitation does not exist.

It is allowed to call CallTrustedFunction() API with disabled interrupts.
There is no error check.

The return value E_OS_DISABLEDINT is not possible.

Deviation Reason It offers the possibility to call CallTrustedFunction() API where
interrupts may be disabled. This is more convenient and reasonable.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 25
based on template version 6.0.1

2.2.3 Service Protection Deviation

Specified Behavior If an invalid address (address is not writable by this OS-Application) is
passed as an out-parameter to an Operating System service, the
Operating System module shall return the status code
E_OS_ILLEGAL_ADDRESS.

Deviation Description The validity of out-parameters is checked automatically by the MPU.
Write accesses to such parameters are always done with the
accessing rights of the caller of the OS service.

If the address is invalid a MPU exception is raised.

The return value E_OS_ILLEGAL_ADDRESS is not possible.

Deviation Reason Hardware checks by the MPU are much more performant than
software memory checks.

2.2.4 SyncScheduleTable API Deviation

Specified Behavior All specified OS APIs should be called with interrupts enabled.

In case SyncScheduleTable() is called with disabled interrupts it
returns the status code E_OS_DISABLEDINT.

Deviation Description In MICROSAR OS this limitation does not exist.

It is allowed to call SyncScheduleTable() with disabled interrupts.
There is no error check.

The return value E_OS_DISABLEDINT is not possible.

Deviation Reason It offers the possibility to call SyncScheduleTable() where interrupts
may be disabled. This is more convenient and reasonable.

2.2.5 CheckTask/ISRMemoryAccess API Deviation

Specified Behavior All specified OS APIs should be called with interrupts enabled.

In case one of these APIs is called with disabled interrupts it issues
the error E_OS_DISABLEDINT.

Deviation Description In MICROSAR OS this limitation does not exist.

It is allowed to call these API functions with disabled interrupts. There
is no error check.

The return value E_OS_DISABLEDINT is not possible.

Deviation Reason It offers the possibility to call these functions e.g. from hardware
drivers where interrupts may be disabled. This is more convenient and
reasonable.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 26
based on template version 6.0.1

Specified Behavior The API functions CheckTask/ISRMemoryAccess() are only allowed
within specific OS call contexts (Task/Cat2
ISR/ErrorHook/ProtectionHook)

In case one of these APIs is called within the wrong OS call context it
issues the error E_OS_CALLEVEL.

Deviation Description In MICROSAR OS In MICROSAR OS this limitation does not exist.

It is allowed to call these API functions from all OS contexts.

The return value E_OS_CALLEVEL is not possible.

Deviation Reason Practically it is more reasonable to allow these APIs in all OS runtime
contexts.

2.2.6 Interrupt API Deviation

Specified Behavior The API functions SuspendOSInterrupts() and ResumeOSInterrupts()
are allowed within a category 1 ISR

Deviation Description In MICROSAR OS it is not allowed to use SuspendOSInterrupts() and
ResumeOSInterrupts() within a category 1 ISR.

Deviation Reason The function SuspendOSInterrupts() lowers the current interrupt level
when used in a category 1 ISR. This may lead to data inconsistencies
if another category 1 ISR occurs.

Therefore those functions are not allowed.

2.2.7 Cross Core Getter APIs

Specified Behavior All getter APIs (e.g. GetTaskID()) may be called cross core within
hooks and non nestable category 2 ISRs.

Deviation Description MICROSAR OS does not allow usage of those functions within OS
Hooks and non-nestable category 2 ISRs.

Deviation Reason Deadlock avoidance due to disabled interrupts in case that there are
two simultaneous concurrent usages of those APIs from multiple
cores.

2.2.8 IOC

Specified Behavior IocSend/IocWrite APIs have an IN parameter. The parameter will be
passed by value for primitive data elements and by reference for all
other types. The data type is configured in “OsIocDataTypeRef”.

Deviation Description The configurator does not evaluate information in
“OsIocDataTypeRef”. Instead it evaluates the parameter
“OsIocDataType“. Primitive data types are passed by value. The
configurator identifies the following strings as primitive data types:
“uint8”, “uint16” and “uint32”. All other data types are passed by
reference.

Deviation Reason Usage of “OsIocDataType” reduces dependencies and complexity of
the OS configurator.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 27
based on template version 6.0.1

2.2.9 Return value upon stack violation

Specified Behavior If a stack fault is detected by stack monitoring AND no ProtectionHook
is configured, the Operating System module shall call the
ShutdownOS() service with the status E_OS_STACKFAULT.

Deviation Description Within a SC3 / SC4 system with MPU stack supervision:

If a stack fault is detected by stack monitoring AND no ProtectionHook
is configured, the Operating System module shall call the
ShutdownOS() service with the status
E_OS_PROTECTION_MEMORY.

Deviation Reason With Hardware stack supervision MICROSAR OS is not possible to
distinguish between stack violation and other memory violation

Specified Behavior If a stack fault is detected by stack monitoring AND a ProtectionHook
is configured the Operating System module shall call the
ProtectionHook() with the status E_OS_STACKFAULT.

Deviation Description Within a SC3 / SC4 system with MPU stack supervision:

If a stack fault is detected by stack monitoring AND a ProtectionHook
is configured the Operating System module shall call the
ProtectionHook() with the status E_OS_PROTECTION_MEMORY.

Deviation Reason With Hardware stack supervision MICROSAR OS is not possible to
distinguish between stack violation and other memory violation

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 28
based on template version 6.0.1

2.2.10 Forcible Termination of Applications

Specified Behavior AUTOSAR does not specify the handling of “next” schedule tables in
case of forcible termination of applications.

Deviation Description Use case:

An application has a running schedule table which itself has a nexted
schedule table of a foreign application.

The foreign application is forcibly terminated.

The OS removes the “next” request from the running schedule table.

Deviation Reason Clarification of behavior.

Impact on other applications should be minimal, therefore the current
schedule table is not stopped. This is different to the behavior of
StopScheduleTable().

Specified Behavior AUTOSAR does not specify the handling of “next” schedule tables in
case of forcible termination of applications.

Deviation Description Use case:

An application has a running schedule table which itself has a nexted
schedule table of a foreign application.

The first application is forcibly terminated.

The OS stops the current schedule table of the terminated application.
and removes the “next” request.

As a result it does not switch to the “next” schedule table of the foreign
application.

Deviation Reason Clarification of behavior.

Impact on other applications should be minimal. The described
behavior is identical to the behavior of StopScheduleTable().

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 29
based on template version 6.0.1

2.3 Stack Concept

MICROSAR OS implements a specific stack concept.

It defines different stacks which may be used by stack consumers (runtime contexts).
Whereas not all stacks may be used by all consumers.

The following table gives an overview.

Stack Type Multiplicity Possible Stack Consumers

Kernel stack 1 per core > OS memory exception handling

> Os_PanicHook()

Protection stack 0..1 per core > ProtectionHook()

> OS API calls

> Os_PanicHook()

Error stack 0..1 per core > ErrorHooks (global and OS-application specific)

> OS API calls

> Category 1 ISRs

> Os_PanicHook()

Shutdown stack 0..1 per core > ShutdownHooks (global and OS-application
specific)

> OS API calls

> Os_PanicHook()

Startup stack 0..1 per core > StartupHooks (global and OS-application specific)

> OS API calls

> Category 1 ISRs

> Os_PanicHook()

NTF stacks 0..n > Non-trusted functions

> OS API calls

> OS ISR wrapper

> Trusted functions

> Alarm callback functions

> Pre / PostTaskHook()

> Category 1 ISRs

> Os_PanicHook()

No nesting interrupt stack 0..1 per core > No nesting category 2 ISRs

> OS API calls

> Trusted functions

> Alarm callback functions

> Category 1 ISRs

> Os_PanicHook()

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 30
based on template version 6.0.1

Interrupt level stacks 0..n > Nesting category 2 ISRs

> OS API calls

> OS ISR wrapper

> Trusted functions

> Alarm callback functions

> Category 1 ISRs

> Os_PanicHook()

Task stacks 1..n > Tasks

> OS API calls

> OS ISR wrapper

> Trusted functions

> Alarm callback functions

> Pre / PostTaskHook()

> Category 1 ISRs

> Os_PanicHook()

IOC receiver pull callback
stack

0..1 per core > IOC receiver pull callback functions

Table 2-1 MICROSAR OS Stack Types

Note
The stack sizes of all stacks must be configured within the ECU configuration

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 31
based on template version 6.0.1

2.3.1 Task Stack Sharing

2.3.1.1 Description

In order to save RAM it is possible that different basic tasks share the same task stack.

These basic tasks must behave cooperative to each other (must not preempt each other).

2.3.1.2 Activation

The attribute “OsTaskStackSharing” of a basic task has to be set to TRUE.

All basic tasks on the same task priority and with activated task stack sharing are
cooperative and share one task stack.

The size of the shared task stack is the maximum of all configured task stack sizes of
tasks with the same priority.

Note
Stack sharing of tasks can only be achieved between tasks which are assigned to the
same core!

2.3.1.3 Usage

The feature is automatically used by the OS. Tasks which are cooperative to each other
are sharing the same stack.

2.3.2 ISR Stack Sharing

2.3.2.1 Description

In order to save RAM it is possible that different category 2 ISRs share the same ISR
stack.

> All category 2 ISRs which are not nestable can share one stack.

> All Category 2 ISRs which have the same priority can share one stack.

2.3.2.2 Activation

The attribute “OsIsrEnableNesting” must be set to FALSE for a category 2 ISR.

The size of the shared ISR stack is the maximum of all configured ISR stack sizes of non-
nestable category 2 ISRs.

Note
Stack sharing of ISRs can only be achieved between ISRs which are assigned to the
same core!

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 32
based on template version 6.0.1

2.3.2.3 Usage

The feature is used automatically by the OS. All category 2 ISRs on the same core which
are not nestable are sharing the same stack.

2.3.3 Stack Check Strategy

All OS stacks must be protected from overflowing.

MICROSAR OS offers different strategies to detect stack overflows or even to prevent
stacks from overflowing.

In dependency of the configured scalability class there are the following strategies:

Scalability Class Stack check strategy

SC1 / SC2 Software stack check (see 2.3.4)

SC3 / SC4 Stack supervision by memory protection unit (MPU) (see 2.3.5)

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 33
based on template version 6.0.1

2.3.4 Software Stack Check

2.3.4.1 Description

The OS initializes the very last element of each stack to a specific stack check pattern.
Whenever a stack switch is performed (e.g. a task switch) the OS checks whether this last
element of the last valid stack still holds the stack check pattern.

If the OS detects that the stack check pattern has been altered it assumes that the last
valid stack did overflow.

 Stack Check Pattern

32 Bit Microcontrollers 0xAAAAAAAA

Table 2-2 Stack Check Patterns

Note
The software stack check is able to detect stack overflows. It is not capable to avoid
them!

2.3.4.2 Activation

Within a SC1 or SC2 configuration the attribute “OsStackMonitoring” has to be set to
TRUE to activate the software stack check feature.

Expert Knowledge
On platforms which disable the MPU in supervisor mode, the software stack check may
be activated also for SC3 and SC4 configurations.

On other platforms the software stack check should be switched off in a SC3 or SC4
configuration.

2.3.4.3 Usage

Once the feature is activated the OS checks the stacks automatically upon each stack
switch.

If the OS detects a stack overflow it goes into shutdown. If a ShutdownHook is configured
it is invoked to inform the application about OS shutdown.

Note
Debugging hint: The stack check pattern is restored by the OS before the
ShutdownHook() is called.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 34
based on template version 6.0.1

2.3.5 Stack Supervision by MPU

2.3.5.1 Description

During the whole runtime of the OS the current active stack is supervised by the MPU of
the microcontroller. Therefore the OS reserves one MPU region which is reprogrammed by
the OS with each stack switch.

Stack overflows cannot happen since the MPU avoids write accesses beyond the stack
boundaries.

Whenever a memory violation is recognized (e.g. due to a stack violation) an exception is
raised. Within the exception handling the OS calls the ProtectionHook().

The application decides in the ProtectionHook() how to deal with the memory protection
violation. If the application invokes the shutdown of the OS, the ShutdownHook() is called
as well (if configured).

Note
The stack supervision recognizes write accesses beyond stack boundaries and
suppresses them.

2.3.5.2 Activation

The system must be configured as a SC3 or SC4 system.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 35
based on template version 6.0.1

2.3.5.3 Usage

In a SC3 / SC4 system the OS automatically initializes one MPU region for stack
supervision.

To safely detect stack violations special care must be taken with configuring additional
MPU regions and also with linking of sections:

> When configuring additional MPU regions included memory region must never overlap
with any OS stack sections.

> By using an OS generated linker command file (see 4.3.2) it is assured that the OS
stacks are linked consecutively into the RAM.

> A stack safety gap is needed which is linked adjacent to the stacks (in dependency of
the stack growth direction; see Figure 2-1). No software parts must have write access
to the stack safety gap.

> The size of the stack safety gap must be at least the granularity of the MPU.

> The linkage of the safety gap is mandatory. Otherwise a stack violation of the stack
with the lowest address cannot be detected.

Figure 2-1 Stack Safety Gap

Caution
Don’t configure MPU regions which grant access to any OS stacks

Stack growth direction

OS stacks

stack safety gap

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 36
based on template version 6.0.1

Caution
Add a stack safety gap to the linkage scheme. The stack safety gap is a restricted
memory region. No software parts must have write access to this region.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 37
based on template version 6.0.1

2.3.6 Stack Usage Measurement

2.3.6.1 Description

During runtime of the OS the maximum stack usage can be obtained by the application.
The OS initializes all OS stacks with the stack check pattern (see Table 2-2).

There are API functions which are capable to return the maximum stack usage (since call
of StartOS()) for each stack (see 5.6).

2.3.6.2 Activation

Set “OsStackUsageMeasurement” to TRUE

2.3.6.3 Usage

The stack usage APIs can be used anywhere in application.

Note
To save OS startup time, the feature can be deactivated in a productive environment.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 38
based on template version 6.0.1

2.4 Interrupt Concept

2.4.1 Interrupt Handling API

The AUTOSAR OS standard specifies several APIs to disable / enable Interrupts. The
implementation of those functions and their effects on the application depends on the
timing protection configuration.

2.4.1.1 Interrupt Handling in SC1 / SC3

Without configured timing protection the interrupt APIs are implemented as follows:

Figure 2-2 Interrupt APIs in SC1 / SC3

DisableAllInterrupts()

EnableAllInterrupts() The functions disable all interrupts by
manipulate a global interrupt mask /
disable flag SuspendAllInterrupts()

ResumeAllInterrupts()

SuspendOSInterrupts()

ResumeOSInterrupts()

The functions disable category 2
interrupts by manipulate the interrupt
priority / level

Note
The lowest priority of all category 1 ISRs is called OS system level.

Interrupt Priority

High

Low Tasks

Category

2

ISRs

Category

1

ISRs

SuspendOSInterrupts()

ResumeOSInterrupts()

DisableAllInterrupts()

EnableAllInterrupts()

SuspendAllInterrupts()

ResumeAllInterrupts()

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 39
based on template version 6.0.1

2.4.1.2 Interrupt Handling in SC2 / SC4

With configured timing protection the interrupt APIs are implemented as follows:

Figure 2-3 Interrupt API in SC2 / SC4

DisableAllInterrupts()

EnableAllInterrupts()

The functions disable all interrupts except the timing protection

interrupt

 By manipulate a global interrupt mask / disable flag (if the timing
protection interrupt is not maskable)

 By manipulate the interrupt priority / level (if the timing protection
interrupt is maskable)

See chapter 2.19 for details

SuspendAllInterrupts()

ResumeAllInterrupts()

SuspendOSInterrupts()

ResumeOSInterrupts()

The functions disable category 2 interrupts by manipulate the
interrupt priority / level

Interrupt Priority

High

Low Tasks

Category

2

ISRs

Category

1

ISRs

Timing

Protection

ISR

SuspendOSInterrupts()

ResumeOSInterrupts()

DisableAllInterrupts()

EnableAllInterrupts()

SuspendAllInterrupts()

ResumeAllInterrupts()

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 40
based on template version 6.0.1

2.4.2 Interrupt Vector Table

The interrupt vector table is generated by MICROSAR OS with respect to the
configuration, microcontroller family and used compiler.

In a multi core system multiple vector tables may be generated.

MICROSAR OS generates an interrupt vector for each possible interrupt source.

2.4.3 Nesting of Category 2 Interrupts

2.4.3.1 Description

To keep interrupt latency as low as possible it is possible that

> A higher priority category 2 ISR interrupts a lower priority category 2 ISR.

> A category 1 ISRs interrupts a category 2 ISR (category 1 ISR has always a higher
priority)

2.4.3.2 Activation

When setting “OsIsrEnableNesting” to TRUE the category 2 ISR itself is interruptible by
higher priority ISRs.

2.4.4 Category 1 Interrupts

2.4.4.1 Implementation of Category 1 ISRs

MICROSAR OS offers a macro for implementing a category 1 ISR. This is a similar
mechanism like the macro for a category 2 ISR defined by the AUTOSAR standard.

MICROSAR OS abstracts the needed compiler keywords.

Implement a category 1 ISR

OS_ISR1(<MyCategory1ISR>)

{

}

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 41
based on template version 6.0.1

2.4.4.2 Nesting of Category 1 ISRs

Since category 1 ISRs are directly called from interrupt vector table without any OS pro-
and epilogue, automatic nesting of category 1 ISRs cannot be supported.

The configuration attribute “OsIsrEnableNesting” is ignored for category 1 ISRs.

Nevertheless the interrupts may be enabled during a category 1 ISR to allow interrupt
nesting but OS API functions cannot be used for this purpose. The application has to use
compiler intrinsic functions or inline assembler statements.

Example

OS_ISR1(<MyCategory1ISR>)

{

 __asm(EI); /* enable nesting of this ISR */

 __asm(DI); /* disable nesting before leaving the function */

}

2.4.4.3 Category 1 ISRs before StartOS

There may be the need to activate and serve category 1 ISRs before the OS has been
started.

The following sequence should be implemented:

1. Call Os_InitMemory

2. Call Os_Init (within the function the basic interrupt controller settings are initialized
e.g. priorities of interrupt sources).

3. Enable the Interrupt sources of category 1 ISRs by directly manipulating the control
registers in the interrupt controller.

4. Enable the interrupts by directly manipulating the global interrupt flag and / or
current interrupt priority to allow the category 1 ISRs

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 42
based on template version 6.0.1

2.4.4.4 Notes on Category 1 ISRs

Expert Knowledge
On platforms which have no automatic stack switch upon interrupt request there will be
no stack switch at all if a category 1 ISR occurs. Thus the stack consumption of a
category 1 ISR should be added to all stacks which are can be consumed by category
1 ISRs (see 2.3 for an overview).

Note
Although the interrupt priorities are initialized by MICROSAR OS there is no API to
enable or acknowledge category 1 ISRs. The interrupt control registers have to be
accessed directly.

Caution
The AUTOSAR OS standard does not allow OS API usage within category 1 ISRs (the
only exception is the interrupt handling API).

If a not allowed OS API is called anyway, MICROSAR OS is not able to detect this and
the called API may not work as expected.

Caution
Category 1 ISRs are always executed with trusted rights on supervisor level.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 43
based on template version 6.0.1

2.4.5 Initialization of Interrupt Sources

Through the OS configuration MICROSAR OS knows the assignment of interrupt sources
and priorities to ISRs. In multi core system the core assignment of all ISRs is also known.

Based on these configuration information MICROSAR OS generates data structures for
initializing the interrupt controller. It initializes the interrupt priority and its core assignment.

2.4.6 Unhandled Interrupts

Interrupt sources which are not assigned to a user defined ISR are assigned to a default
OS interrupt handler which collects those interrupt sources.

Thus interrupt requests from unassigned interrupt sources are handled by the OS. Within
OS Hooks (e.g. ProtectionHook()) the application can obtain the source number of the
unhandled interrupt request by an OS API (see 5.5.1 for details).

In case of an unhandled interrupt request MICROSAR OS calls the ProtectionHook() with
the parameter E_OS_SYS_PROTECTION_IRQ.

2.5 Exception Concept

2.5.1 Exception Vector Table

The exception vector table is generated by MICROSAR OS with respect to the
configuration, microcontroller family and used compiler.

In a multi core multiple vector tables may be generated.

MICROSAR OS generates an exception vector for each possible exception source.

Note
In a SC3 and SC4 system MICROSAR OS defines OS exception handlers for memory
protection errors and for SYSCALL / TRAP instructions.

Exception sources which are used by the OS cannot be configured by the application.

2.5.2 Unhandled Exceptions

Exception sources which are not assigned to user defined exception handlers are
assigned to a default OS exception handler which collects those exceptions.

Thus exception requests from unassigned exception sources are handled by the OS.
Within OS Hooks the application can obtain the exception number of the unhandled
exception request by an OS API (see 5.5.3 for details).

In case of an unhandled exception request MICROSAR OS calls the ProtectionHook() with
the parameter E_OS_PROTECTION_EXCEPTION.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 44
based on template version 6.0.1

2.6 Timer Concept

2.6.1 Description

MICROSAR OS can provide a time base generated from timer hardware located on the
microcontroller. This time base can be used to drive alarms and schedule-tables.

2.6.2 Activation

The OS configuration may define an OsCounter Object of type “HARDWARE”. Then a
driving hardware must be assigned to “OsDriver” attribute.

2.6.3 Usage

Once the hardware counter is defined it can be assigned to alarms (“OsAlarmCounterRef”)
and schedule-tables (“OsScheduleTableCounterRef”).

Such alarms and schedule-tables are driven time based.

Additionally MICROSAR OS provides conversion macros (which are based on the
hardware counter configuration) to convert from hardware ticks to time and vice versa (see
for 5.8 details).

2.6.4 Dependencies

A hardware counter can be driven in two modes:

> Periodical interrupt timer mode (see 2.7)

> High resolution timer mode (see 2.8)

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 45
based on template version 6.0.1

2.7 Periodical Interrupt Timer (PIT)

2.7.1 Description

The timer hardware is set up to generate timer interrupts requests in a strict periodical
interval (e.g. 1ms). The interval does not change during OS runtime.

Within each timer ISR MICROSAR OS checks for alarm and schedule-table expirations
and execute the configured OS action.

2.7.2 Activation

> Define an OsCounter of type “HARDWARE” and select the timer Hardware in
“OsDriver”.

> Set the counter sub-attribute “OsDriverHighResolution” to FALSE.

> The attribute “OsSecondsPerTick” specifies the cycle time of interrupt generation.

> The attribute “OsCounterTicksPerBase” specifies the number of timer counter cycles
which are necessary to reach “OsSecondsPerTick”.

Note
The OS will add an appropriate ISR automatically to the configuration.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 46
based on template version 6.0.1

2.8 High Resolution Timer (HRT)

2.8.1 Description

The timer hardware is set up to generate one timer interrupt request when an alarm or
schedule-table action shall be executed.

Within each timer ISR MICROSAR OS performs that action, calculates the timer interval
for the next action and reprograms the timer hardware with the new expiration time.

2.8.2 Activation

> Define an OsCounter of type “HARDWARE” and select the timer Hardware in
“OsDriver”.

> Set the counter sub-attribute “OsDriverHighResolution” to TRUE.

> The attribute “OsSecondsPerTick” specifies the cycle time of the timer counter.

> The attribute “OsCounterTicksPerBase” must be set to “1”.

> The attribute “OsCounterMaxAllowedValue” must be set to 0x3FFFFFFF

Note
The OS will add an appropriate ISR automatically to the configuration.

2.9 PIT versus HRT

 PIT HRT

Interrupt Requests are generated …  Strictly periodical  On demand

Precision of Alarms / Schedule-
tables

 Only multiples of the
attribute
OsSecondsPerTick are
possible for alarm /
schedule-table times.

 Any times are possible.
With precision of the
cycle time of the used
timer hardware.

Interrupt Load  Generates a constant
interrupt load which is
equally distributed over
runtime.

 Interrupt load is not
equally distributed over
runtime.

 Interrupt bursts may be
possible.

Table 2-3 PIT versus HRT

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 47
based on template version 6.0.1

2.10 Startup Concept

The following figure gives an overview of the different startup phases of the OS. It also
shows which OS API functions are available in the different phases.

Figure 2-4 API functions during startup

 stm API Usage before StartOS

Initial Startup-Phase0

Startup-Phase1

Startup-Phases2and3

Initial

Startup-Phase2

ExitPoint

Startup-Phase3

After StartOS() all API functions can be

called in exactly the contexts as

described in the AutosarOS standard.

Mind that StartNonAutosarCore() can stil l

be called.

Init-Step1

Init-Step2

Init-Step3

Init-Step4

Os_CallNonTrustedFunction(),

CallTrustedFunction,

Os_ReadPeripheral*,

Os_WritePeripheral*,

Os_ModifyPeripheral*

Os_EnterPreStartTask()

DisableAllInterrupts(),

EnableAllInterrupts(),

SuspendAllInterrupts(),

ResumeAllInterrupts(),

SuspendOSInterrupts(),

ResumeOSInterrupts(),

StartCore(), GetCoreID(),

StartNonAutosarCore()

StartOS()

Os_Init()

Os_InitMemory()

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 48
based on template version 6.0.1

2.11 Single Core Startup

This chapter shows some examples how MICROSAR OS is started as single core OS.

2.11.1 Single Core Derivatives

OS single core startup on a single core derivative

void main (void)

{

 Os_InitMemory();

 Os_Init();

 StartOS(OSDEFAULTAPPMODE);

}

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 49
based on template version 6.0.1

2.11.2 Multi Core Derivatives

2.11.2.1 Examples for SC1 / SC2 Systems

OS single core startup on a multi core derivative

void main (void)

{

 StatusType rv;

 Os_InitMemory();

 Os_Init();

 switch(GetCoreID())

 {

 case OS_CORE_ID_MASTER:

 StartNonAutosarCore(OS_CORE_ID_1, &rv); /* call of StartNonAutosarCore is

 optional the other core may also be

 held in reset */

 StartOS(OSDEFAULTAPPMODE);

 break;

 case OS_CORE_ID_1:

 /* don’t call StartOS; do something else */

 break;

 default:

 break;

 }

}

The example starts a single core OS on the master core of a multi core derivative.

OS single core startup on a multi core derivative

void main (void)

{

 StatusType rv;

 Os_InitMemory();

 Os_Init();

 switch(GetCoreID())

 {

 case OS_CORE_ID_MASTER:

 StartCore(OS_CORE_ID_1, &rv);

 /* don’t call StartOS; do something else */

 break;

 case OS_CORE_ID_1:

 StartOS(OSDEFAULTAPPMODE);

 break;

 default:

 break;

 }

}

The example starts a single core OS on the slave core of a multi core derivative

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 50
based on template version 6.0.1

2.11.2.2 Examples for SC3 / SC4 Systems

Caution
The function GetCoreID requires a trap into the OS to be functional. Since the OS does
not initialize any trap tables on non-AUTOSAR cores GetCoreID cannot be used on
such cores.

Therefore it is not possible to use the API function GetCoreID within the main function.
A user function (e.g. UsrGetCoreID) is necessary which distinguishes the correct core
ID.

OS single core startup on a multi core derivative

void main (void)

{

 StatusType rv;

 Os_InitMemory();

 Os_Init();

 switch(UsrGetCoreID())

 {

 case 0:

 StartNonAutosarCore(OS_CORE_ID_1, &rv); /* call of StartNonAutosarCore is

 optional the other core may also be

 held in reset */

 StartOS(OSDEFAULTAPPMODE);

 break;

 case 1:

 /* don’t call StartOS; do something else */

 break;

 default:

 break;

 }

}

The example starts a single core OS on the master core of a multi core derivative.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 51
based on template version 6.0.1

2.12 Multi Core Startup

Within a multi core system each core has the following possibilities when entering the main
function:

1. Mandatory: call to Os_InitMemory and Os_Init().

2. Optional: calls to StartCore() to start additional cores under control of MICROSAR
OS.

3. Optional: calls to StartNonAutosarCore() to start additional cores which are
independent of MICROSAR OS.

4. Optional: call StartOS() to start MICROSAR OS on the core

 For a slave core this is only possible if the core once has been started with
StartCore() API from another core.

 For the master core this is only possible if the core itself is configured to be
an AUTOSAR core.

2.12.1 Example for SC1 / SC2 Systems

OS multi core startup

void main (void)

{

 StatusType rv;

 Os_InitMemory();

 Os_Init();

 switch(GetCoreID())

 {

 case OS_CORE_ID_MASTER:

 StartCore(OS_CORE_ID_1, &rv);

 StartCore(OS_CORE_ID_2, &rv);

 StartOS(OSDEFAULTAPPMODE);

 break;

 case OS_CORE_ID_1:

 StartOS(DONOTCARE);

 break;

 case OS_CORE_ID_2:

 StartCore(OS_CORE_ID_3, &rv);

 StartOS(DONOTCARE);

 break;

 case OS_CORE_ID_3:

 StartOS(DONOTCARE);

 break;

 default:

 break;

 }

}

The example shows a possible startup sequence for a quad core system.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 52
based on template version 6.0.1

2.12.2 Examples for SC3 / SC4 systems

2.12.2.1 Only with AUTOSAR Cores

OS multi core startup

void main (void)

{

 StatusType rv;

 Os_InitMemory();

 Os_Init();

 switch(GetCoreID())

 {

 case OS_CORE_ID_MASTER:

 StartCore(OS_CORE_ID_1, &rv);

 StartCore(OS_CORE_ID_2, &rv);

 StartOS(OSDEFAULTAPPMODE);

 break;

 case OS_CORE_ID_1:

 StartOS(DONOTCARE);

 break;

 case OS_CORE_ID_2:

 StartCore(OS_CORE_ID_3, &rv);

 StartOS(DONOTCARE);

 break;

 case OS_CORE_ID_3:

 StartOS(DONOTCARE);

 break;

 default:

 break;

 }

}

The example shows a possible startup sequence for a quad core system. All cores are
configured to be AUTOSAR cores.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 53
based on template version 6.0.1

2.12.2.2 Mixed Core System

Caution
The function GetCoreID requires a trap into the OS to be functional. Since the OS does
not initialize any trap tables on non-AUTOSAR cores GetCoreID cannot be used on
such cores.

Therefore it is not possible to use the API function GetCoreID within the main function.
A user function (e.g. UsrGetCoreID) is necessary which distinguishes the correct core
ID.

OS multi core startup

void main (void)

{

 StatusType rv;

 Os_InitMemory();

 Os_Init();

 switch(UsrGetCoreID())

 {

 case 0:

 StartNonAutosarCore(OS_CORE_ID_1, &rv);

 StartCore(OS_CORE_ID_2, &rv);

 StartOS(OSDEFAULTAPPMODE);

 break;

 case 1:

 /* not an AUTOSAR core; do something else */

 break;

 case 2:

 StartCore(OS_CORE_ID_3, &rv);

 StartOS(DONOTCARE);

 break;

 case 3:

 StartOS(DONOTCARE);

 break;

 default:

 break;

 }

}

The example shows a possible startup sequence for a quad core system. Three cores are
AUTOSAR cores and one core is a non-AUTOSAR core.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 54
based on template version 6.0.1

2.13 Error Handling

MICROSAR OS is able to detect and handle the following types of errors:

Application Errors …  Are raised if the OS could not execute a requested OS API service
correctly. Typically the OS API is used wrong (e.g. invalid object
ID).

 Do not corrupt the internal OS data.

 Will result in call of the global ErrorHook() for centralized error
handling (if configured).

 Will result in call of an application specific ErrorHook (if configured).

 May not induce shutdown / terminate reactions. Instead the
application may continue execution by simply returning from the
ErrorHooks.

Protection Errors …  Are raised if the application violates its configured boundaries (e.g.
memory access violations, timing violations).

 Do not corrupt OS internal data.

 Are raised upon occurrence of unhandled exceptions and
interrupts.

 Will result in call of the ProtectionHook() where a shutdown or
terminate handling (with or without restart) is induced.

 If Shutdown is induced the ShutdownHook() is called (if
configured).

 If no ProtectionHook() is configured shutdown is induced.

Kernel Errors …  Are raised if the OS cannot longer assume the correctness if its
internal data (e.g. memory access violation during
ProtectionHook())

 Will result in call of the Os_PanicHook() to inform the application.

 Afterwards the OS disables all interrupts and enters an infinite loop.

Table 2-4 Types of OS Errors

2.14 Error Reporting

MICROSAR OS supports error reporting according to the AUTOSAR [1] and OSEK OS [2]
standard.

This includes

> StatusType return values of OS APIs

> Parameter passing of error codes error to ErrorHook()

> Service ID information provided by the macro OSErrorGetServiceId()

> Parameter access macros (e.g. OSError_ActivateTask_TaskID())

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 55
based on template version 6.0.1

2.14.1 Extension of Service IDs

MICROSAR OS introduces new service IDs for own services.

Reference

All service IDs are listed in the OS header file OsInt.h and may be looked up in the

enum data type OSServiceIdType.

2.14.2 Extension of Error Codes

MICROSAR OS introduces new 8 bit error codes which extend the error codes which are
already defined by AUTOSAR OS and OSEK OS standard.

Type of Error Related Error Code Value

An internal OS buffer used for cross core
communication is full.

E_OS_SYS_OVERFLOW 0xF5

A forcible termination of a kernel object has
been requested e.g. terminate system
applications.

E_OS_SYS_KILL_KERNEL_OBJ 0xF6

An OS-Application has been terminated
with requested restart but no restart task
has been configured.

E_OS_SYS_NO_RESTARTTASK 0xF7

The application tries to use an API cross
core, but the target core has not been
configured for cross core API

E_OS_SYS_CALL_NOT_ALLOWED 0xF8

The triggered cross core function is not
available on the target core.

E_OS_SYS_FUNCTION_UNAVAILABLE 0xF9

A syscall instruction has been executed
with an invalid syscall number.

E_OS_SYS_PROTECTION_SYSCALL 0xFA

An unhandled interrupt occurred. E_OS_SYS_PROTECTION_IRQ 0xFB

The interrupt handling API is used wrong. E_OS_SYS_API_ERROR 0xFC

Internal OS assertion (not issued to
customer).

E_OS_SYS_ASSERTION 0xFD

A system timer ISR was delayed too long. E_OS_SYS_OVERLOAD 0xFE

Table 2-5 Extension of Error Codes

Reference

All error codes and their values can be looked up in the header file OsInt.h

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 56
based on template version 6.0.1

2.14.3 Detailed Error Codes

MICROSAR OS provides detailed error code to extend the standard error handling of
AUTOSAR to uniquely identify each possible OS error.

The detailed error code is assembled from AUTOSAR StatusType error code and unique
error code.

Figure 2-5 MICROSAR OS Detailed Error Code

Within OS Hook routines the error code can be obtained by calling Os_GetDetailedError()
(see 5.5.1 for details).

Note
Vector OS experts always asks about the detailed error codes when supporting
customers in case of OS errors.

Reference

The detailed error codes are listed in the file OsInt.h and may be looked up in the

enum data type Os_StatusType.

Each detailed error code is preceded by a descriptive comment.

0x XXXXXX YY

Autosar StatusType

MICROSAR OS

Error code extension

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 57
based on template version 6.0.1

2.15 Multi Core Concepts

2.15.1 Scheduling and Dispatching

MICROSAR OS implements independent schedulers and dispatchers for each core.

2.15.2 Multi Core Data Concepts

The multi core data concept of MICROSAR OS tries to avoid concurrent writing accesses
between cores.

Although cores may read all OS data of all cores, write accesses to OS data are only
performed locally from the owning core.

This data concept allows optimized linking:

> The data of a particular core may be linked into fast accessible memory

> The data of a particular core may be linked into cached memory

Only the variables related to spinlocks have to be linked into global memory which must be
accessible by all participating cores.

2.15.3 X-Signals

To realize cross core service APIs MICROSAR OS offers the X-Signal concept (see 3.7 for
details).

2.15.4 Master / Slave Core

In a real master / slave multi core architecture only one core is started upon reset. This is
the master core. All other cores are held in a reset state and must be explicitly started by
the master core. These are slave cores.

There are also multi core systems which starts all cores simultaneously. There is no
hardware master / slave classification.

MICROSAR OS is capable to deal with both concepts. In a system with equal cores the
OS emulates master / slave behavior according to the core configurations.

2.15.5 Startup of a Multi Core System

The startup of a multi core system is described in detail in 2.12.

MICROSAR OS offers the possibility to configure a startup symbol for each core. Within a
real master / slave system the OS needs this information for starting the slave cores.

2.15.6 Spinlocks

Synchronization of cores is done by

> OS Spinlocks (see [1]) or

> Optimized spinlocks (see 3.1)

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 58
based on template version 6.0.1

2.15.7 Cache

Due to cache coherency problems spinlock variables and other application variables which
are shared among cores must not be cached.

2.15.8 Shutdown

2.15.8.1 Shutdown of one Core

If ShutdownOS() is called on one core, it induces shutdown actions.

> The core terminates all its applications

> Application specific ShutdownHooks are called

> The global ShutdownHook() is called

> Interrupts are disabled

> An endless loop is entered

2.15.8.2 Shutdown of all Cores

Upon call to ShutdownAllCores() synchronized shutdown of the system is invoked. An
asynchronous X-Signal is used for this purpose.

Synchronized shutdown is described in [1].

2.15.8.3 Shutdown during Protection Violation

If the ProtectionHook() returns with “PRO_SHUTDOWN” a shutdown of all cores is
invoked.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 59
based on template version 6.0.1

2.16 Debugging Concepts

2.16.1 Description

MICROSAR OS offers two software utilities to support OS debugging.

ORTI MICROSAR OS generates an ORTI debug file (OSEK RunTime
Interface). Many debuggers are capable of loading such ORTI files
and provide comfortable debug means based upon the OS
configuration.

See chapter 2.16.3 for details

TimingHooks MICROSAR OS provides macros which may be used for debugging
purposes (also suitable for third party tools). See chapter 3.8 for
details.

2.16.2 Activation

ORTI and TimingHooks may be switched on within the OsDebug container.

Note
There is an additional switch within the “OsDebug” container. It enables OS assertions.
They are intended for OS internal test purposes. If activated the OS performs additional
runtime checks on its own internal states.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 60
based on template version 6.0.1

2.16.3 ORTI Debugging

ORTI is the abbreviation of “OSEK Runtime Interface”.

When ORTI debugging is activated MICROSAR OS generates additional files with “.ort”

extension. These files contain information about the whole OS configuration. They are
intended to be read by a debugger.

The debugger uses the information from the ORTI files to display static and runtime
information about OS objects e.g. task states.

ORTI versions supported by MICROSAR OS:

ORTI 2.2 As described in the OSEK standard [3] and [4]

ORTI 2.3 Unofficial “Standard” based upon ORTI 2.2. It does contain extensions
for multi core OS and was proposed by “Lauterbach Development
Tools” (described in [5]).

Both ORTI versions are capable to be used within single core and multi core systems.

Note for ORTI 2.2 multi core debugging

For each configured AUTOSAR core there is one separate ORTI file.

For multi core debugging, the debugger software must be capable to read several
ORTI files.

Note for ORTI 2.3 multi core debugging

The debug information for all configured cores is aggregated in one file.

Note

Basically debuggers are capable to display the stack consumption for each stack
(OsStackUsageMeasurement must be switched on).

Please note that uninitialized OS stacks may show 100% stack usage within ORTI
debugging. Reliable information can only be given after the OS has initialized all
stacks.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 61
based on template version 6.0.1

Caution

MESSAGE objects and CONTEXT information specified by ORTI 2.2 Standard are not
supported in MICROSAR OS.

Caution

Due to performance reasons the following OS services are not traced by ORTI service
tracing:

> GetSpinlock (for optimized spinlocks)

> TryToGetSpinlock (for optimized spinlocks)

> ReleaseSpinlock (for optimized spinlocks)

> IOC

> Os_GetVersionInfo

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 62
based on template version 6.0.1

2.17 Memory Protection

MICROSAR OS uses memory protection facilities of a processor to achieve freedom from
interference between OS applications and cores. For this purpose it may use the system
MPU and the core MPUs.

2.17.1 Usage of the System MPU

In multi core systems whereas the cores have different levels of diagnostic coverage it
may be necessary to use a system MPU to achieve freedom of interference between
cores.

A system MPU allows configuring access rights for cores to access specific memory
ranges.

The system MPU is only initialized once during startup of the OS. It is never
reprogrammed during runtime.

With a system MPU other potential bus masters (DMA, FlexRay) can be isolated to
achieve freedom from interference.

This is done with the following steps:

Step Toolchain phase

Set up a SC3 system

Configuration of OS Configure memory regions

Assign the memory region to the system MPU

2.17.2 Usage of the Core MPUs

The core MPUs are used to achieve freedom from interference between applications /
tasks / ISRs on the same core. The basic concept is that access rights of these runtime
entities (read/write/executable) have to be granted explicitly to software parts.

This is done with the following steps:

Step Toolchain phase

Set up a SC3 system

Configuration of OS

Configure memory regions

Assign the memory region to a core MPU

Assign the memory regions to OS applications / Tasks / ISRs
(optional)

Use the AUTOSAR MemMap mechanism to place code, constants and
variables into appropriate sections (see 4.3.1.1)

Compilation

Use OS generated linker command files to locate the sections into
memory (see 4.3.2)

Linkage

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 63
based on template version 6.0.1

2.17.3 Configuration Aspects

A memory region is typically configured by

> Specify a start and end address by number, or by linker labels (see 4.3.3 for OS
generated section labels)

> Specify access rights to this region (a pre-defined set of access rights is referable)

> Specify the validity of the region by ID (e.g. PID / ASID / Protection Set)

> Specify to which memory protection unit the region belongs (e.g. Core MPU / System
MPU)

> Specify the owner of the region

The owner of the memory region distinguishes the runtime behavior of the hardware MPU
regions (whether the region is static or dynamic).

Note
The start and end addresses of configured memory region should always be a multiple
of the granularity of the hardware MPU.

Note
The number of available hardware MPU regions is limited by hardware!

MICROSAR OS checks during code generation that the overall number of configured
memory regions does not exceed the number of available hardware MPU regions.

2.17.3.1 Static MPU Regions

If no owner is specified, MICROSAR OS initializes a hardware MPU region to be static. It
is never reprogrammed during runtime of the OS. It is valid for all software parts.

2.17.3.2 Dynamic MPU Regions

If an owner is specified for a memory region MICROSAR OS initializes a hardware MPU
region to be dynamically reprogrammed during OS runtime. Whenever the owner of the
memory is active during runtime a specific hardware MPU region is programmed with the
configured values of the memory region.

Memory regions which are assigned to an OS application are reprogrammed whenever the
OS application is switched.

Memory regions which are assigned to tasks or ISRs are reprogrammed with each thread
switch.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 64
based on template version 6.0.1

2.17.3.3 Freedom from Interference

MICROSAR OS is able to encapsulate OS application data, task private data and ISR
private data. This does also depend on the owner of the memory region.

Memory Region Owner Access Granted To Access Denied For

OS application Runtime objects of this OS
application

> Tasks

> ISRs

> IOC callbacks

> Non-trusted functions

> Application specific hooks

> Other non-trusted OS
applications and its
applications objects

Task > The owning task > Other non-trusted OS
applications and its
applications objects

> Other runtime objects of the
belonging OS application

ISR > The owning ISR

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 65
based on template version 6.0.1

2.17.4 Stack Monitoring

MICROSAR OS uses one memory region of the MPU to supervise the current stack. This
is the default handling in SC3 and SC4 systems. See 2.3.5 for details.

Caution
Memory regions must not be configured to allow write access into any stack regions.
Otherwise the OS cannot ensure stack data integrity.

2.17.5 Protection Violation Handling

Upon any memory protection violation the OS

> Switches to the kernel stack

> Informs the application by execution of the ProtectionHook()

2.17.6 Optimized / Fast Core MPU Handling

If the number of application / task / ISR specific memory regions is small, MICROSAR OS
may have the possibility to initialize the MPU entirely with static MPU regions.

By utilize memory protection identifiers different access rights may still be achieved
between different applications.

MICROSAR OS switches access rights by simply switching the protection identifier. This
will result in a very fast MPU handling.

> Configure only memory regions which are static (no owner is assigned).

> Use “OsMemoryRegionIdentifier” to assign a protection identifier to that region.

> Assign either OS applications or Tasks and ISRs to use a specific protection identifier
(OsAppMemoryProtectionIdentifier, OsTaskMemoryProtectionIdentifier,
OsIsrMemoryProtectionIdentifier)

Note
Depending on the used platform protection identifiers are also referred as PID (MPC),
ASID (RH850) or protection sets (TriCore). But the basic technique is the same.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 66
based on template version 6.0.1

2.17.7 Recommended Configuration

MICROSAR OS offers a recommended MPU configuration which contains a basic setup.

It configures the MPU to achieve the access rights as follows

Access Rights
Trusted Software Non-Trusted Software

Executable rights to whole memory X X

Read access to whole RAM / ROM X X

Write access to whole RAM (except
stack regions)

X -

Read / Write access to peripheral
registers

X -

Read / Write access to global shared
memory

X X

Write access to current active stack X X

Table 2-6 Recommended Configuration MPU Access Rights

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 67
based on template version 6.0.1

2.18 Memory Access Checks

2.18.1 Description

AUTOSAR OS specifies functions for checking memory access rights of an ISR or task to
a specific memory region.

> CheckTaskMemoryAccess

> CheckISRMemoryAccess

MICROSAR OS implements these two functions (see 5.9 for Details)

2.18.2 Activation

No explicit activation of these API service functions necessary. They are provided
automatically by the OS.

2.18.3 Usage

The API service functions CheckTaskMemoryAccess() and CheckISRMemoryAccess()
work on additional configuration data which has to be provided by the user.

Therefore additional regions (“OsAccessCheckRegion“) may be configured. Tasks and
ISRs may be assigned to each access check region.

Note
All memory access checks are based upon the configured “OsAccessCheckRegion”
objects. They are not based upon current MPU values during runtime!

OsAccessCheckRegions and OsMemoryRegions contain redundant information.

2.18.4 Dependencies

This feature is of significance in SC3 and SC4 system with active memory protection.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 68
based on template version 6.0.1

2.19 Timing Protection Concept

2.19.1 Description

To implement timing protection, MICROSAR OS needs a timer hardware which is able to
generate an interrupt with high priority. This interrupt is never disabled by the OS interrupt
handling API.

Two concepts may be implemented within MICROSAR OS:

 The timing protection interrupt request is non-maskable (NMI request)

 The timing protection interrupt request is maskable

The consequences of both concepts are shown in the comparison:

 Timing Protection IRQ is
Maskable

Timing Protection IRQ is NMI

Level of timing
protection IRQ

The level of the interrupt source
is chosen to be on the highest
possible priority of the
microcontroller.

The exception source has no
interrupt level.

DisableAllInterrupts()

EnableAllInterrupts()

The functions disable all ISRs
(with exception of timing
protection interrupt) by
manipulate the interrupt priority /
level

The functions disable all ISRs (with
exception of timing protection
interrupt) by manipulate a global
interrupt mask / disable flag SuspendAllInterrupts()

ResumeAllInterrupts()

SuspendOSInterrupts()

ResumeOSInterrupts()

The functions disable category 2 interrupts by manipulate the interrupt
priority / level

Caution
Any category 1 ISR bypasses the OS. For this reason such an ISR may get terminated
in case it is executed, while the budget of a monitored entity is exhausted.

Thus the AUTOSAR OS specification advises not to use category 1 ISRs within a
system which uses timing protection.

Caution
In case of an inter-arrival time violation MICROSAR OS does currently not provide the
information which task or ISR did violate its inter-arrival time. GetTaskID() and
GetISRID() return the current task / ISR. The suppressed task / ISR ID is not returned
by these APIs.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 69
based on template version 6.0.1

2.19.2 Activation

Timing protection features are activated by setting the scalability class to SC2 or SC4
(OsScalabilityClass).

Afterwards timing protection containers may be configured for tasks or ISRs
(OsTaskTimingProtection / OsIsrTimingProtection). Observed times are configured within
these containers.

Note
The OS will add an appropriate ISR automatically to the configuration.

2.19.3 Usage

Once the timing protection feature is active tasks and ISRs are observed automatically by
the OS.

Observation of a particular OS object (task / ISR) only takes place if any execution
budgets or locking times are configured for this object.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 70
based on template version 6.0.1

2.20 IOC

2.20.1 Description

The Inter OS-Application Communicator (IOC) is responsible for data exchange between
OS applications. It handles two important tasks

> Data exchange across core boundaries

> Data exchange across memory protection boundaries

Parts of the IOC API services are generated.

MICROSAR OS always tries to generate IOC API services and data structures to minimize
resource usage.

Especially the runtime of IOC API services is influenced by the configuration of IOC
objects. For the customer it is important how configuration aspects minimize the IOC
runtime.

For each IOC object MICROSAR OS decides during runtime whether

> Interrupt locks

> Spinlocks

Are used or not.

2.20.2 Unqeued (Last Is Best) Communication

Note
Whenever the data of a last is best IOC object can be written / read atomically (integral
data type) no spinlocks are used at all.

2.20.2.1 1:1 Communication Variant

 Sender and Receiver are located
on the same core

Sender and Receiver are located
on the different cores

Interrupt Locks Used Not used

Spinlocks Not Used Used

System Call Traps Not Used Not Used

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 71
based on template version 6.0.1

2.20.2.2 N:1 Communication Variant

 Sender and Receiver are located
on the same core

Sender and Receiver are located
on the different cores

Interrupt Locks Used Not used

Spinlocks Not Used Used

System Call Traps Used Used

2.20.2.3 N:M Communication Variant

 Sender and Receiver are located
on the same core

Sender and Receiver are located
on the different cores

Interrupt Locks Used Not used

Spinlocks Not Used Used

System Call Traps Not Used Not Used

2.20.3 Queued Communication

For 1:1 and N:1 Communication the following table is applied:

 Sender and Receiver are located
on the same core

Sender and Receiver are located
on the different cores

Interrupt Locks Not Used Not used

Spinlocks Not Used Not Used

System Call Traps Not Used Not Used

2.20.4 Notification

MICROSAR OS provides configurable receiver callback functions for notification purposes.

Note
In case an IOC object has a configured receiver callback function a system call trap is
needed in any case.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 72
based on template version 6.0.1

2.20.5 Particularities

2.20.5.1 N:1 Queued Communication

N:1 queued commination is realized with multiple sender queues. The receiver application
does an even multiplexing on all sender queues when calling the receive function (see
figure).

Figure 2-6 N:1 Multiple Sender Queues

2.20.5.2 IOC Spinlocks

Note
During generation of OS data structures, if MICROSAR OS detects that a spinlock is
needed for a particular IOC object, it automatically creates a spinlock object within the
OS configuration.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 73
based on template version 6.0.1

2.20.5.3 Notification

Based on the core assignment of sender and receiver of an IOC object, two possible
scenarios for callback handling are possible.

Sender and Receiver are located on
the same core

> The callback notification function is called within the
IOC send function

Sender and Receiver are located on
different cores

> The sender triggers an X-Signal request on the
receiving core

> The callback notification function is called within the
X-Signal ISR

Note

> All callback functions are using the cores IOC receiver pull callback stack.

> During execution of the IOC receiver pull callback function category 2 ISRs are
disabled.

> Within IOC receiver pull callback functions only other IOC API functions and
interrupt dis/enable API functions are allowed.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 74
based on template version 6.0.1

2.21 Trusted OS Applications

Trusted OS Applications are basically executed in supervisor mode. They can have
read/write access to nearly the whole memory (except stack regions).

MICROSAR OS allows gradually restricting of access rights of trusted OS applications.

Trusted OS applications may be restricted by memory access or by processor mode.

2.21.1 Trusted OS Applications with Memory Protection

2.21.1.1 Description

Runtime objects (Tasks / ISRs / Trusted functions) of trusted OS applications with enabled
memory protection have the following behavior

> They run in supervisor mode

> Memory access has to be granted explicitly (in the same way as for a non-trusted OS
application)

> The MPU is re-programmed whenever software of the OS application is executed.

2.21.1.2 Activation

Set “OsTrustedApplicationWithProtection” to TRUE.

2.21.1.3 Dependencies

This feature is of significance in SC3 and SC4 system with active memory protection.

2.21.2 Trusted OS Applications in User Mode

2.21.2.1 Description

Such OS applications can have read/write access to nearly the whole memory (except
stack regions), but they are running in user mode. This is also applied to all runtime
objects (Tasks / ISRs / Trusted functions) assigned to this OS application.

Note

> API runtimes for OS applications which run in user mode are longer.

2.21.2.2 Activation

Set “OsApplicationIsPrivileged” to FALSE.

2.21.2.3 Dependencies

This feature is of significance in SC3 and SC4 system with active memory protection.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 75
based on template version 6.0.1

2.21.3 Trusted Functions

Note

> The interrupt state of the caller is preserved when entering the trusted function.

> The trusted function may manipulate the interrupt state by using OS services. The changed
interrupt state is preserved upon return from the trusted function.

Caution
Nesting level of trusted functions is limited to 255.

The application has to ensure that this limitation is held. There is no error detection
within the OS.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 76
based on template version 6.0.1

2.22 OS Hooks

2.22.1 Runtime Context

MICROSAR OS implements the runtime context and accessing rights of OS Hooks
according to the following table

Hook Name Processor Mode Access Rights Interrupt State

StartupHook

Supervisor Trusted

Disabled up to
system level ErrorHook

ShutdownHook
Globally disabled

ProtectionHook

StartupHook_<OS application name>
Depending on the configuration of

the owning OS application

Disabled up to
system level ErrorHook_<OS application name>

ShutdownHook_<OS application name> Globally disabled

Os_PanicHook Supervisor Trusted Globally disabled

PreTaskHook Supervisor Trusted Globally disabled

PostTaskHook Supervisor Trusted Globally disabled

AlarmCallbacks Supervisor Trusted Globally disabled

IOC receiver pull callbacks

Depending on the configuration of
the owning OS application

Disabled up to
system level

(execution is done
within ISR
context)

2.22.2 Nesting behavior

It is possible that OS hooks may be nested by other OS hooks according to the following
table

Nested by

OS Hook

ErrorHook(s) ProtectionHook StartupHook(s) ShutdownHook(s)) IOC Callbacks

ErrorHook(s) Not possible possible Not possible possible possible

ProtectionHook Not possible Not possible Not possible possible possible

StartupHook(s) possible possible Not possible possible possible

ShutdownHook(s) Not possible Not possible Not possible Not possible possible

IOC Callbacks possible possible Not possible possible Not possible

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 77
based on template version 6.0.1

2.22.3 Hints

Caution
Within OS Hooks the interrupts must not be enabled again!

Caution
Hooks must never be called by application code directly.

Note for SC2 or SC4
Hooks don’t have any own runtime budgets. OS Hooks consume the budget of the
current task / ISR.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 78
based on template version 6.0.1

3 Vector Specific OS Features

This chapter describes functions which are available only in MICROSAR OS. They extend
the standardized OS functions from the AUTOSAR and OSEK OS standard [1] [2].

3.1 Optimized Spinlocks

3.1.1 Description

For core synchronization in multi core systems, MICROSAR OS offers (beneath the
AUTOSAR specified OS spinlocks) additional optimized spinlocks.

They are able to reduce the runtime of the Spinlock API. Configuration is also easier.

AUTOSAR specified OS spinlocks cannot cause any deadlocks between cores (see
unique order of nesting OS spinlocks in AUTOSAR OS standard). Therefore some error
checks on OS configuration data are necessary.

The error checks are not performed with optimized spinlocks.

 OS Spinlocks Optimized Spinlocks

Deadlocks No deadlocks possible Deadlocks are possible

Runtime Longer runtime due to more error
checks

Smaller runtime due to less error
checks

Configuration OsSpinlockSuccessor must be
configured if spinlocks must be
nested

OsSpinlockSuccessor need not to
be configured

Nesting Can be nested by other OS
spinlocks

Nesting of optimized spinlock
should be avoided or at least be
used with caution

Linking OS and optimized spinlock variables are placed into different
dedicated memory sections (see 4.3.1).

Table 3-1 Differences of OS and Optimized Spinlocks

3.1.2 Activation

The spinlock attribute “OsSpinlockLockType” may be set to “OPTIMIZED”.

The “OsSpinlockSuccessor” attribute should not be configured for an optimized spinlock.

3.1.3 Usage

Once a spinlock object is configured to be an optimized spinlock the application may use
the Spinlock API as usual. The Spinlock service functions are capable to deal with
optimized and OS spinlocks.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 79
based on template version 6.0.1

3.2 Peripheral Access API

3.2.1 Description

MICROSAR OS offers peripheral access services for manipulating registers of peripheral
units. The application may delegate such accesses to the OS in case that its own
accessing rights are not sufficient to manipulate specific peripheral registers.

3.2.2 Activation

The API service functions themselves do not need any activation.

But within the OS configuration “OsPeripheralRegion” objects may be specified. They are
needed for error and access checking by the OS.

An OsPeripheralRegion object consists of the start address, end address and a list of OS
applications which have accessing rights to the peripheral region.

Note
Access to a peripheral region is granted if the following constraint is held

Start address of peripheral region <= Accessed address <= End address of peripheral region

3.2.3 Usage

Once peripheral regions are configured they may be passed to the API functions.

Reference
The API service functions themselves are described in chapter 5.1.

3.2.4 Dependencies

This feature is of significance in SC3 and SC4 system with active memory protection.

3.2.5 Alternatives

The access rights to peripheral registers may also be granted by configure an additional
MPU region for the accessing OS application.

3.2.6 Common Use Cases

The peripheral access APIs may be used …

> … if the accessing OS application runs in user mode but the register to be
manipulated can only be accessed in supervisor mode.

> … if the application does not want to spend a whole MPU region to grant access
rights.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 80
based on template version 6.0.1

3.3 Trusted Function Call Stubs

3.3.1 Description

Since the OS service CallTrustedFunction() is very generic, there is the need to implement
a stub-interface which does the packing and unpacking of the arguments for trusted
functions.

MICROSAR OS is able to generate these stub functions.

3.3.2 Activation

The OS application attribute “OsAppUseTrustedFunctionStubs” must be set to TRUE. Data
types must be defined in the header file which is referred by
“OsAppCalloutStubsIncludeHeader”.

3.3.3 Usage

A particular trusted function is called with the following syntax:

<configured return type> Os_Call_<trusted function name>

(<configured parameters>);

Parameter packing, unpacking and return value handling is done by the stub function.

3.3.4 Dependencies

This feature is of significance in SC3 and SC4 system with active memory protection.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 81
based on template version 6.0.1

3.4 Non-Trusted Functions (NTF)

3.4.1 Description

Service functions which are provided by non-trusted OS applications are called non-
trusted functions. They have the following characteristic:

> They run in user mode.

> They run with the MPU access rights of the owning OS application.

> They perform a stack switch to specific non-trusted function stacks.

> They run on an own secured stack.

> They can safely provide non-trusted code to other OS applications.

> Parameters are passed to the NTF with a reference to a data structure provided by
the caller.

> Returning of values is only possible if the caller passes the non-trusted functions
parameters as pointer to global accessible data.

3.4.2 Activation

They are defined within an OsApplication container. The attribute “OsTrusted” for this OS
application must be set to FALSE.

Special care needs to be taken when configuring stacks for non-trusted functions. For
correct stack handling the following attributes need to be configured for each non-trusted
function:

Non-Trusted Function Attribute Description

OsNonTrustedFunctionStackSize Specifies the stack size for one instance of the
NTF.

OsNonTrustedFunctionStacks Specifies the number of stacks which are
generated for the NTF.

Note: This attribute limits the number of parallel
calls to the NTF. Once the maximum number is
reached any call to the NTF issues an error.

OsNonTrustedFunctionCaller Specifies an OS application which may call the
NTF.

OsNonTrustedFunctionAppStacks Specifies the number of parallel NTF calls from
the calling OS application.

Note: It must not exceed the attribute
OsNonTrustedFunctionStacks.

OsNonTrustedFunctionAppRef Reference to the calling OS application.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 82
based on template version 6.0.1

3.4.3 Usage

Similar to the CallTrustedFunction() API of the AUTOSAR OS standard MICROSAR OS
implements an additional service which is called Os_CallNonTrustedFunction() (see
chapter 5.3 for Details).

Configured non-trusted functions are called with this API.

Note

> The interrupt state of the caller is preserved when entering the non-trusted function

> The non-trusted function may manipulate the interrupt state by using OS services. The
changed interrupt state is preserved upon return from the non-trusted function.

Caution
Non-trusted functions currently cannot be terminated without termination of the caller.

3.4.4 Dependencies

This feature is of significance in SC3 and SC4 system with active memory protection.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 83
based on template version 6.0.1

3.5 Interrupt Source API

3.5.1 Description

MICROSAR OS offers additional API services for category 2 ISRs and their respective
interrupt sources.

The services include

> Enable of an interrupt source

> Disable of an interrupt source

> Clearing of the interrupt pending bit

> Checking if the interrupt source is enabled

> Checking of interrupt pending bit status

(See 5.4 for API details).

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 84
based on template version 6.0.1

3.6 Pre-Start Task

3.6.1 Description

MICROSAR OS offers the possibility to provide a set of OS API functions for initialization
purposes before StartOS has been called.

Therefore a pre-start task may be configured which is capable to run before the OS has
been started. Within this task stack protection is enabled and particular OS APIs can be
used.

The table in 5.13 lists the OS API functions which may be used within the Pre-Start task.

3.6.2 Activation

> Define a basic task

> Within a core object this basic task has to be referred to be the pre-start task of this
core (attribute “OsCorePreStartTask”). Only one pre-start task per core is possible.

> Start the OS as described below

3.6.3 Usage

1. Execute Startup Code

2. Call Os_InitMemory()

3. Call Os_Init()

4. Call Os_EnterPreStartTask() (see 5.2 for Details)

5. The OS schedules and dispatches to the task which has been referred as pre-start
task.

6. The pre-start task has to be left by a call to StartOS()

Caution
The pre-start task may only be active once prior to StartOS() call.

Caution
Within the pre-start task the getter OS API services (e.g. GetActiveApplicationMode())
neither return a valid result nor a valid error code.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 85
based on template version 6.0.1

Caution
If MICROSAR OS encounters an error within the pre-start task, only the global hooks
(ErrorHook(), ProtectionHook() and ShutdownHook()) are executed. OS application
specific hooks won’t be executed.

Consider that the StartupHook() did not yet run when the Pre-Start Task is executed.

Caution
If the Pre-Start Task is used, global hooks have to consider that the OS might not be
completely initialized. OS APIs which are allowed after normal initialization (e.g.
TerminateApplication()) are not allowed within global hooks, if the error occurred in the
Pre-Start Task.

Caution
If the ProtectionHook() is triggered within the Pre-Start Task, the OS ignores its return
value. The only valid return value is PRO_SHUTDOWN.

3.6.4 Dependencies

This feature is of significance in SC3 and SC4 system with active memory protection.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 86
based on template version 6.0.1

3.7 X-Signals

3.7.1 Description

MICROSAR OS uses cross core signaling (X-Signals) to realize API service calls between
cores.

The next figure shows the basic principles of an X-Signal

Figure 3-1 X-Signal

Whenever a core executes a service API cross core it writes this request into its own send
port queue. Then it signals this request by an interrupt request (X-Signal) to the serving
core.

The serving core reads the request from the send port queue and executes the requested
service API. The result of the service API is provided in the receive port queue.

Requesting

Core

Serving

Core

X-Signal

Send Port Queue Receive Port Queue

R/W access

Read only access

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 87
based on template version 6.0.1

X-Signals have the following characteristics:

> An X-Signal is a unidirectional request from one core to another (1:1).

> For each core interconnection one X-Signal is needed.

> All accesses to the (sender / receiver) port queues are lock free.

> Queue Sizes must be configured.

> The Queues may be protected by MPU to achieve freedom of interference between
cores.

> X-Signals may be configured to offer only a subset of possible cross core API services.
Not configured API services are refused to be served.

> The API error codes for cross core API services are extended.

 Additional error codes for queue handling.

 Additional error code if the requested service is refused to be served.

> X-Signals can be configured to be synchronous or asynchronous.

 Synchronous X-Signal Asynchronous X-Signal

Call behavior After the cross core service API has
been requested the requester core
goes into active waiting loop and
polls for the result from the server
core (remote procedure call).

Note: During active wait the
interrupts are enabled.

After the cross core service API has
been requested the requester core
continues its own program execution.

Error signaling Error handling is induced on the
requester core immediately, if the
polled API result is not E_OK.

Error handling is induced with the
next X-Signal request on the
requester core, if the result of the
previously requested API is not
E_OK.

Note: Upon potential errors of the
previously requested API the current
application ID on sender and receiver
side meanwhile may have changed.

AUTOSAR standard
compliance

Compliant to the AUTOSAR
Standard

Deviation to the AUTOSAR Standard

Table 3-2 Comparison between Synchronous and Asynchronous X-Signal

Note
Any cross core “getter” APIs e.g. GetTaskState() are always executed with a
synchronous X-Signal.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 88
based on template version 6.0.1

Note
The sender core as well as the receiver core may cause protection violations.
Protection error handling is performed on the core where the violation is detected.

Note

When a cross core API is induced by an X-Signal, all static error checks (e.g. validity of
parameters) are done on the caller side.

All dynamic error checks (which depend on runtime states) are executed on the
receiver side.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 89
based on template version 6.0.1

3.7.1.1 Notes on Synchronous X-Signals

The priority of the receiver ISR determines which other category 2 ISRs of one core may
use cross core API services.

Additionally category 2 ISRs may only use cross core API services if they allow nesting.

The following table gives an overview.

Logical Priority ISR Nesting Synchronous Cross
Core API Calls

ISR with higher priority than X-Signal priority ISR nesting is allowed Not allowed

ISR with higher priority than X-Signal priority ISR nesting is disabled Not allowed

X-Signal ISR priority - -

ISR with lower priority than X-Signal priority ISR nesting is allowed Allowed

ISR with lower priority than X-Signal priority ISR nesting is disabled Not allowed

Table 3-3 Priority of X-Signal receiver ISR

Caution
If the priority and nesting requirements from the previous table are not fulfilled there
may be deadlocks within a multicore system!

3.7.1.2 Notes on Mixed Criticality Systems

MICROSAR OS checks application access rights on sender and on receiver side. This
increases isolation of safety-critical parts in mixed criticality systems (e.g. protect a
lockstep core from a non-lockstep core).

Consider that these application access checks are not performed for ShutdownAllCores().
Thus switching off the usage of ShutdownAllCores API for non-lockstep cores is
recommended. This can be done within the X-Signal configuration.

3.7.2 Activation

X-Signals must be configured explicitly in a multi core environment. See chapter 4.5 for
details.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 90
based on template version 6.0.1

3.8 Timing Hooks

3.8.1 Description

MICROSAR OS supports timing measurement and analysis by external tools. Therefor it
provides timing hooks. Timing hooks inform the external tools about several events within
the OS:

> Activation (arrival) of a task or ISR

 These allow an external tool to trace all activations of task as well as further arrivals
(e.g. setting of an event or the release of a semaphore with transfer to another task.

 They allow external tools to visualize the arrivals and to measure the time between
them in order to allow a schedule-ability analysis.

> Context switch

 These allow external tools to trace all context switches from task to ISR and back as
well as between tasks. So external tools may visualize the information or measure
the execution time of tasks and ISRs.

> Locking of interrupts, resources or spinlocks

 These allow an external tool to trace locks. This is important as locking times of
tasks and ISRs influence the execution of other tasks and ISRs. The kind of
influence is different for different locks.

Within MICROSAR OS code the timing hooks are called. Additionally it provides empty
hooks by default.

The application may decide to implement any of the hooks by itself. The empty OS default
hook is then replaced by the application implemented hook.

3.8.2 Activation

An include header has to be specified in the attribute “OsTimingHooksIncludeHeader”
located in the “OsDebug” container.

3.8.3 Usage

The timing hooks may be implemented in the configuration specified header. All available
macros are introduced in chapter 5.11.

Caution
Within the timing hooks trusted access rights are active e.g. access rights to OS
variables.

Thus the timing hooks must be disabled for a safety serial production system.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 91
based on template version 6.0.1

3.9 Kernel Panic

If MICROSAR OS recognizes an inconsistent internal state it enters the kernel panic
mode. In such cases, the OS does not know how to correctly continue execution. Even a
regular shutdown cannot be reached. E.g.:

> The protection hook itself causes errors

> The shutdown hook itself causes errors

MICROSAR OS goes into freeze as fast as possible

1. Disable all interrupts

2. Inform the application about the kernel panic by calling the Os_PanicHook() (see 5.12)

3. Enter an endless loop

Caution

> The OS cannot recover from kernel panic.

> ProtectionHook() is not called

> ErrorHook() is not called

> There is no stack switch. The Os_PanicHook() runs on the current active stack

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 92
based on template version 6.0.1

3.10 Generate callout stubs

3.10.1 Description

MICROSAR OS offers the feature to generate the function bodies of all configured OS
hook functions (all global hooks and application specific hooks).

The function bodies are generated into the file “Os_Callout_Stubs.c”.

3.10.2 Activation

The Configuration attribute “OsGenerateCalloutStubs” has to be set to TRUE.

3.10.3 Usage

Once the C-File has been generated it may be altered by the user. Code parts between
certain special comments are permanent and won’t get lost between two generation
processes.

If a hook is switched off, the corresponding function body is also removed. But the user
code (between the special comments) is preserved. Once the hook is switched on again,
the preserved user code is also restored.

Example

FUNC(void, OS_STARTUPHOOK_CODE) StartupHook(void)

{

/***

 * DO NOT CHANGE THIS COMMENT! <USERBLOCK OS_Callout_Stubs_StartupHook>

 **/

 /* user code starts here */

 /* code between those comments is preserved even if the file is newly generated

 Or even if the hook is switched off in the meanwhile */

/***

 * DO NOT CHANGE THIS COMMENT! </USERBLOCK>

 **/

}

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 93
based on template version 6.0.1

4 Integration

4.1 Compiler Optimization Assumptions

MICROSAR OS makes the following assumptions for compiler optimization:

> Inlining of functions is active

> Not used functions are removed

> If statements with a constant condition (due to configuration) are optimized

4.1.1 Compile Time

To shorten the compile time of the OS the following measures can be taken within the OS
configuration:

Systems without active memory
protection (SC1/SC2)

Set “OsGenerateMemMap” to “EMPTY”

Systems with memory protection
(SC3/SC4)

Set “OsGenerateMemMap” to “COMPLETE” and
"OsGenerateMemMapForThreads” to “FALSE”

4.2 Hardware Software Interfaces (HSI)

The following chapter describes the Hardware-Software Interface for the supported
processor families of the MICROSAR OS.

The HSI describes all hardware registers which are used by the OS. Such registers must
not be altered by user software.

Included within the HSI is the context of the OS. The context is the sum of all registers
which are preserved upon a task switch and ISR execution.

Additionally platform specific characteristics of the OS are described here.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 94
based on template version 6.0.1

4.2.1 TriCore Aurix Family

4.2.1.1 Context

 A0-A15

 D0-D15

 PSW

 PCXI

 DPR0L, DPR0H

Note
The register A8 is exclusively used by the OS to hold the pointer to the current thread.
Thus any addressing modes which would use A8 register are not possible.

4.2.1.2 Core Registers

 ICR

 SYSCON

 PCXI

 FCX

 LCX

 PSW

 PC

 DBGSR

 DPRxL, DPRxH

 CPRxL, CPRxH

 DPRE0 – DPRE3

 DPWE0 – DPWE3

 CPXE0 – CPXE3

4.2.1.3 Interrupt Registers

 INT_SRC0 – INTSRC255

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 95
based on template version 6.0.1

4.2.1.4 GPT Registers

 T2, T3, T6

 T2CON, T3CON, T6CON

 CAPREL

4.2.1.5 STM Registers

 TIM0, TIM5, TIM6

 CMCON

 CAP

 CMP0, CMP1

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 96
based on template version 6.0.1

4.2.1.6 Aurix Special Characteristics

 The exception handler for trap class 1 is implemented by the OS

 The exception handler for trap class 6 is implemented by the OS

Caution

The TriCore Hardware enforces that a configured MPU region must be followed by at
least 15 padding bytes before the next region may be started.

MICROSAR OS obey to this rule within the generated linker scripts. For other
additional configured MPU regions the user has to take care to fulfill this requirement

Figure 4-1 Padding bytes between MPU regions

Start Address of adjacent MPU Region

End Address of adjacent MPU Region

At least 15 padding bytes

Start Address of MPU Region

End Address of MPU Region

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 97
based on template version 6.0.1

Caution

Due to MPU granularity all start addresses and end addresses of configured MPU
regions must be a multiple of 8.

MICROSAR OS programs the MPU to grant access to the memory region between
start address and end address.

> Access to configured start address itself is granted

> Access to configured end address is prohibited

Caution

MICROSAR OS does not use the System MPU to achieve freedom of interference
between cores.

This has to be done by the application.

The system MPU has to be initialized by a lockstep core. It must not be accessed by
non-lockstep cores.

Note
All stack sizes shall be configured to be a multiple of 8

Expert Knowledge
For proper context management exception handling the LCX should be initialized
during startup code that it does not point to the last available CSA.

In this way some CSAs are reserved which can be used within the context exception
handling for further function calls.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 98
based on template version 6.0.1

4.2.1.7 PSW handling

PSW.RM bit handling MICROSAR OS sets the rounding mode bits to 0 upon start of a
thread.

PSW.S bit handling MICROSAR OS sets the safety task identifier bit to 1 for trusted
software parts and to 0 for non-trusted software parts.

PSW.IS bit handling MICROSAR OS sets the interrupt stack bit to 1.

Thus automatic hardware stack switch is not supported.

PSW.GW bit handling MICROSAR OS sets the global address register write permission to 0.
Write permission to A0, A1, A8 and A9 are not allowed.

PSW.CDE bit handling MICROSAR OS sets the call depth enable bit to 1 upon start of a
thread.

Call depth counting is enabled.

PSW.CDC bits handling MICROSAR OS sets the call depth counter to 1 upon start of a thread.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 99
based on template version 6.0.1

4.2.2 RH850 Family

4.2.2.1 Context

 R1 ... R31

 PC

 PSW

 PMR

 LP

 SP

 EIPC, EIPSW

 FPSR, FPEPC

 ASID

 MPLA0, MPUA0

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 100
based on template version 6.0.1

4.2.2.2 Core Registers

 PC

 PSW

 PMR

 LP

 SP

 ASID

 SCCFG

 SCBP

 EIPC

 EIPSW

 EIWR

 FPSR

 FPEPC

 EBASE

 INTBP

 INTCFG

 CTPC

 EIIC

 FEIC

 FEPC

 FEPSW

 HTCFG0

Note

The register EIWR is exclusively used by the OS to hold the pointer to the current
thread.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 101
based on template version 6.0.1

4.2.2.3 MPU Registers

 MPM

 MPRC

 MPLA0 ... MPLA15

 MPUA0 ... MPUA15

 MPAT0 ... MPAT15

4.2.2.4 INTC Registers

 EIC0 ... EIC511

 IBD0 … IBD511

4.2.2.5 Inter Processor Interrupt Control Registers

 IPIR_CH0

 IPIR_CH1

 IPIR_CH2

 IPIR_CH3

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 102
based on template version 6.0.1

4.2.2.6 Timer TAUJ Registers

 TAUJnCDR

 TAUJnCNT

 TAUJnCMUR

 TAUJnCSR

 TAUJnCSC

 TAUJnTE

 TAUJnTE0

 TAUJnTE1

 TAUJnTS

 TAUJnTS0

 TAUJnTS1

 TAUJnTT

 TAUJnTT0

 TAUJnTT1

 TAUJnTO

 TAUJnTO0

 TAUJnTO1

 TAUJnTOE

 TAUJnTOE0

 TAUJnTOE1

 TAUJnTOL

 TAUJnTOL0

 TAUJnTOL1

 TAUJnRDT

 TAUJnRDT0

 TAUJnRDT1

 TAUJnRSF

 TAUJnRSF0

 TAUJnRSF1

 TAUJnRSF2

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 103
based on template version 6.0.1

 TAUJnCMOR

 TAUJnTPS

 TAUJnTPS0

 TAUJnBRS

 TAUJnBRS0

 TAUJnBRS1

 TAUJnTOM

 TAUJnTOM0

 TAUJnTOM1

 TAUJnTOC

 TAUJnTOC0

 TAUJnTOC1

 TAUJnRDE

 TAUJnRDE0

 TAUJnRDE1

 TAUJnRDM

 TAUJnRDM0

 TAUJnRDM1

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 104
based on template version 6.0.1

4.2.2.7 Timer STM Registers

 STMnCKSEL

 STMnTS

 STMnTT

 STMnCSTR

 STMnSTR

 STMnSTC

 STMnIS

 STMnRM

 STMnCNT0L

 STMnCNT0H

 STMnCMP0AL

 STMnCMP0AH

 STMnCMP0BL

 STMnCMP0BH

 STMnCMP0CL

 STMnCMP0CH

 STMnCMP0DL

 STMnCMP0DH

 STMnCNT1

 STMnCMP1A

 STMnCMP1B

 STMnCMP1C

 STMnCMP1D

 STMnCNT2

 STMnCMP2A

 STMnCMP2B

 STMnCMP2C

 STMnCMP2D

 STMnCNT3

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 105
based on template version 6.0.1

 STMnCMP3A

 STMnCMP3B

 STMnCMP3C

 STMnCMP3D

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 106
based on template version 6.0.1

4.2.2.8 Timer OSTM Registers

 OSTMnCMP

 OSTMnCNT

 OSTMnTO

 OSTMnTOE

 OSTMnTE

 OSTMnTS

 OSTMnTT

 OSTMnCTL

 OSTMnEMU

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 107
based on template version 6.0.1

4.2.2.9 RH850 Special Characteristics

Note

> The exception handler for TRAP1 (offset = 0x50) is implemented by the OS.

Note

In SC3 / SC4 systems

> The exception handler for TRAP0 (offset = 0x40) is implemented by the OS.

> The exception handler for MIP/MDP (offset = 0x90) is implemented by the OS.

Caution

The MPU in RH850 has a granularity of 4Byte. Each data section must have 4Byte
address alignement.

Caution

Due to MPU granularity the start address of any configured MPU region must be a
multiple of 4Byte.

The end address of any configured MPU region must be the address of the last valid
Byte of the section.

MICROSAR OS programs the MPU to grant access to the memory region from start
address and end address.

Note
All stack sizes shall be configured to be a multiple of 4

Note

Tiny data area (TDA) and zero data area (ZDA) addressing are not supported.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 108
based on template version 6.0.1

Note

For multicore-core derivatives, the stack used before StartOS should be linked into the
respective core local RAM areas.

4.2.2.10 PSW Register Handling

PSW.EBV MICROSAR OS sets PSW.EBV to 1 upon Os_Init().

PSW.UM MICROSAR OS sets PSW.UM to 0 for trusted software parts and to 1 for non-
trusted software parts.

PSW.NP MICROSAR OS sets PSW.NP to 1 to disable FE level interrupts and to 0 to
enable FE level interrupts.

PSW.ID MICROSAR OS sets PSW.ID to 1 to disable EI level interrupts and to 0 to
enable EI level interrupts.

PSW.CU0 MICROSAR OS sets PSW.CU0 to 1 in order to support FPU.

4.2.2.11 Instructions

Caution
> The instructions "trap 16" … “trap 31” used for TRAP1 are exclusively used by the
OS.

Caution

In SC3 / SC4 systems

> The instructions "trap 0" … “trap 15” used for TRAP0 are exclusively used by the
OS.

> The instruction "syscall" is not supported and therefore shall not be used.

4.2.2.12 Exception and Interrupt Cause Address

Note

The exception and interrupt cause address from EIPC and FEPC is stored in register
CTPC when unhandled EIINT, unhandled SYSCALL, MIP/MDP exception (SC3/SC4)
or unhandled core exception is reported.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 109
based on template version 6.0.1

4.2.3 Power PC Family

4.2.3.1 Context

 R2

 R13-R31

 PID

 SP

 PC

 LR

 MSR

 INTC_CPR[0|1|2]

 SPEFSCR

4.2.3.2 Core Registers

 SPRG0, SPRG1

 SRR0, SRR1

 IVPR

 PIR

4.2.3.3 Interrupt Registers

 INTC_BCR

 INTC_CPR0 – INTC_CPR2

 INTC_IACKR0 – INTC_IACKR2

 INTC_EOIR0 – INTC_EOIR2

 INTC_SSCIRn

 INTC_PSRn

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 110
based on template version 6.0.1

4.2.3.4 PIT Registers

 PIT_MCR

 PIT_LDVALn

 PIT_CVALn

 PIT_TCTRLn

 PIT_TFLGn

4.2.3.5 STM Registers

 STM_CR

 STM_CNT

 STM_CCRn

 STM_CIRn

 STM_CMPn

4.2.3.6 MPU Registers

Core MPU System MPU

> CMPU_MAS0

> CMPU_MAS1

> CMPU_MAS2

> CMPU_MAS3

> CMPU_MPU0CSR0

> SMPU_CESR0

> SMPU_RGDn_WRD0

> SMPU_RGDn_WRD1

> SMPU_RGDn_WRD2

> SMPU_RGDn_WRD3

> SMPU_RGDn_WRD4

> SMPU_RGDn_WRD5

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 111
based on template version 6.0.1

4.2.3.7 SEMA4 Registers

 SEMA42_GATE0

4.2.3.8 Power PC Special Characteristics

 The exception handler for Machine check is implemented by the OS

 The exception handler for Data Storage is implemented by the OS

 The exception handler for Instruction Storage is implemented by the OS

 The exception handler for External Input is implemented by the OS

 The exception handler for Program is implemented by the OS

 The exception handler for System call is implemented by the OS

Note
The register SPRG0 is exclusively used by the OS to hold the identifier of the current
thread.

The register SPRG1 is exclusively used by the OS to hold the address of the
INTC_CPR register.

The register SEMA42_GATE0 is exclusively used by the OS to provide mutual
exclusion in multicore systems for spinlock handling.

Thus these registers must not be used otherwise.

Caution

Due to MPU granularity all start addresses of configured MPU regions for the
SystemMPU must be a multiple of 32. The configured end addresses must be a
multiple of 32 minus one byte.

MICROSAR OS programs the MPU to grant access to the memory region between
start address and end address.

> Access to configured start address and end address itself is granted

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 112
based on template version 6.0.1

Note
For the CoreMPU, no restrictions on start address and end address apply.

MICROSAR OS programs the MPU to grant access to the memory region between
start address and end address.

> Access to configured start address and end address itself is granted

Note
All stack sizes shall be configured to be a multiple of 8

Caution

MICROSAR OS assumes that Power PC multi core derivatives are booted as a master
/ slave system (as described in 2.15.4).

Note

For System MPU regions only the format FMT1 is supported to setting up the
SMPUx_RGDn_WORD2.

4.2.3.9 MSR Handling

MSR.SPV bit handling MICROSAR OS sets the SPV bit to 1 upon start of a thread.

MSR.EE bit handling MICROSAR OS sets the external interrupt enable bit to 0 for non-
interruptible threads without TimingProtection supervision, and to 1 for
interruptible or TimingProtection supervised threads.

MSR.PR bit handling MICROSAR OS sets the problem state bit to 0 for trusted software
parts and to 1 for non-trusted software parts.

MSR.ME bit handling MICROSAR OS sets the machine check enable bit to 1.
Asynchronous Machine Check interrupts are enabled.

MSR remaining bits
handling

MICROSAR OS sets all other MSR bits to 0 upon start of a thread.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 113
based on template version 6.0.1

4.2.4 ARM Family

4.2.4.1 Cortex-R derivatives

 Generic
Cortex-R

Traveo Family UltraScale Family

Context Registers > R4-R11

> PC

> LR

> SP

> PSR

--- > IRQPLM > ICCPMR

Core Registers > SCTLR

> TPIDRURO

MPU Registers > DRBAR

> DRSR

> DRACR

> RGNR

Bootrom Registers

> UNLOCK

> CNFG

> UNDEFINACT

> SVCINACT

> PABORTINACT

> DABORTINACT

INTC Registers

> NMIST

> IRQST

> NMIVAn

> IRQVAn

> NMIPLn

> IRQPLn

> NMIS

> NMIR

> IRQSn

> IRQRn

> IRQCESn

> IRQCERn

> NMIHC

> IRQHC

> UNLOCK

> ICCICR

> ICCBPR

> ICCIAR

> ICCEOIR

> ICDDCR

> ICDISRn

> ICDISERn

> ICDICERn

> ICDISPRn

> ICDICPRn

> ICDIPRn

> ICDIPTRn

> ICDSGIR

FRT Registers

> TCDT

> TCCS

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 114
based on template version 6.0.1

> TCCSC

> TCCSS

Output Compare
Registers

> OCCP0, OCCP1

> OCS

> OCSC

> OCSS

TTC Registers

--- ---

> Clock_Control

> Counter_Control

> Counter_Value

> Interval_Counter

> Match_1_Counter

> Match_2_Counter

> Match_3_Counter

> Interrupt_Register

> Interrupt_Enable

> Event_Control_Timer

> Event_Register

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 115
based on template version 6.0.1

4.2.4.2 Cortex-A derivatives

 Generic Cortex-A iMX6 Family

Context Registers > R4-R11

> PC

> LR

> SP

> PSR

Core Registers > SCTLR

> VBAR

INTC Registers

> ICCICR

> ICCBPR

> ICCIAR

> ICCEOIR

> ICDDCR

> ICDISRn

> ICDISERn

> ICDICERn

> ICDISPRn

> ICDICPRn

> ICDIPRn

> ICCPMR

> ICDIPTRn

> ICDSGIR

4.2.4.3 ARM Special Characteristics

 The exception handler for Supervisor Call is implemented by the OS

 The exception handler for Undefined Instruction is implemented by the OS

 The exception handler for Prefetch Abort is implemented by the OS

 The exception handler for Data Abort is implemented by the OS

Caution
Due to MPU hardware restriction the sizes of MPU regions and stack sizes must be
configured with power of 2 values.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 116
based on template version 6.0.1

Caution with UltraScale derivatives

The exception vector table of each core must be located in tightly coupled RAM
memory at address 0x0.

Either the debugger or the startup code has to copy the exception vector table from
ROM section “OS_EXCVEC_CORE<core ID>_CODE” to address 0x0.

During OS startup OS code assumes that the exception vector table has already been
copied.

Caution

To avoid memory violations during startup phase, the startup code shall initialize the
stack pointer to use the OS kernel stack.

e.g. usage of the following function within startup code

__asm void HwSpec_ChangeToKernelStackAndReturn(void)

{

 ldr r0, =OsCfg_Stack_KernelStacks

 ldr r0, [r0] /* r0 = OsCfg_Stack_KernelStacks[0] */

 ldr r0, [r0] /* r0 = OsCfg_Stack_KernelStacks[0]->StackRegionEnd */

 mov sp, r0

 bx lr

}

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 117
based on template version 6.0.1

4.3 Memory Mapping Concept

MICROSAR OS uses the AUTOSAR MemMap mechanism to locate its own variables but
also application variables.

Note
To use the OS memory mapping concept within the AUTOSAR MemMap mechanism
the generated OS file “Os_MemMap.h” has to be included into “MemMap.h”.

It should be included after the inclusion of the MemMap headers of all other basic
software components.

4.3.1 Provided MemMap Section Specifers

MICROSAR OS uses and specifies section specifiers as described in the AUTOSAR
specification of memory mapping. All section specifiers have one of the following forms:

OS_START_SEC_<SectionType>[_<InitPolicy>][_<Alignment>]

OS_STOP_SEC_<SectionType>[_<InitPolicy>][_<Alignment>]

Note

Due to clarity and understanding this chapter does only refer to section specifiers that
shall be handled by the application.

The OS internally used section specifiers are not listed here.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 118
based on template version 6.0.1

SectionType InitPolicy Alignment

<Callout>_CODE - -

NONAUTOSAR_CORE< Core Id >_CONST - UNSPECIFIED

NONAUTOSAR_CORE< Core Id>_VAR NOINIT UNSPECIFIED

<ApplicationName>_VAR -

NOINIT

ZERO_INIT

BOOLEAN

8BIT

16BIT

32BIT

UNSPECIFIED

<ApplicationName>_VAR_FAST -

NOINIT

BOOLEAN

8BIT

16BIT

32BIT

UNSPECIFIED

<ApplicationName>_VAR_NOCACHE -

NOINIT

ZERO_INIT

BOOLEAN

8BIT

16BIT

32BIT

UNSPECIFIED

<ApplicationName>_CONST - BOOLEAN

8BIT

16BIT

32BIT

UNSPECIFIED

<ApplicationName>CONST_FAST - BOOLEAN

8BIT

16BIT

32BIT

UNSPECIFIED

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 119
based on template version 6.0.1

SectionType InitPolicy Alignment

<Task/IsrName>_VAR -

NOINIT

ZERO_INIT

BOOLEAN

8BIT

16BIT

32BIT

UNSPECIFIED

<Task/IsrName>_VAR_FAST -

NOINIT

ZERO_INIT

BOOLEAN

8BIT

16BIT

32BIT

UNSPECIFIED

<Task/IsrName>_CONST - BOOLEAN

8BIT

16BIT

32BIT

UNSPECIFIED

<Task/IsrName>_CONST_FAST - BOOLEAN

8BIT

16BIT

32BIT

UNSPECIFIED

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 120
based on template version 6.0.1

SectionType InitPolicy Alignment

GLOBALSHARED_VAR -

NOINIT

ZERO_INIT

BOOLEAN

8BIT

16BIT

32BIT

UNSPECIFIED

GLOBALSHARED_VAR_FAST -

NOINIT

ZERO_INIT

BOOLEAN

8BIT

16BIT

32BIT

UNSPECIFIED

GLOBALSHARED_VAR_NOCACHE -

NOINIT

ZERO_INIT

BOOLEAN

8BIT

16BIT

32BIT

UNSPECIFIED

GLOBALSHARED_CONST - BOOLEAN

8BIT

16BIT

32BIT

UNSPECIFIED

GLOBALSHARED_CONST_FAST - BOOLEAN

8BIT

16BIT

32BIT

UNSPECIFIED

Table 4-1 Provided MemMap Section Specifiers

4.3.1.1 Usage of MemMap Macros

Example
#define OS_START_SEC_MyAppl_VAR_FAST_NOINIT_UNSPECIFIED

#include “MemMap.h”

uint16 MyApplicationVariable;

#define OS_STOP_SEC_MyAppl_VAR_FAST_NOINIT_UNSPECIFIED

#include “MemMap.h”

This code snippet puts the user variable into an OS application section.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 121
based on template version 6.0.1

4.3.1.2 Resulting sections

The usage of the above described macros will result in the following memory sections:

SectionType Content / Description

OS_CODE > OS Code

OS_INTVEC_CODE > Interrupt vector table in case the system needs
one generic vector table for all cores

OS_INTVEC_CORE<Core ID>_CODE > Interrupt vector table of one specific core

OS_EXCVEC_CORE<Core ID>_CODE > Exception vector table of one core

OS_<Callout>_CODE > Code of Tasks, ISRs and OS Hooks

Table 4-2 MemMap Code Sections Descriptions

Note

The MPU may be set up to grant execution from the whole address space.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 122
based on template version 6.0.1

SectionType Content / Description

OS_CONST > OS constant data

OS_CONST_FAST > OS constant data for fast memory

OS_INTVEC_CONST > Interrupt vector table in case the system needs
one generic vector table for all cores

OS_CORE<Core Id>_CONST > OS constant data related to one specific core

OS_CORE<Core Id>_CONST_FAST > OS constant data related to one specific for fast
memory

OS_INTVEC_<Core Id>_CONST > Interrupt vector table of one specific core

OS_EXCVEC_<Core Id>_CONST > Exception vector table of one core

OS_NONAUTOSAR_CORE< Core Id >_CONST > OS constant data of a non-AUTOSAR core

OS_NONAUTOSAR_CORE< Core Id
>_CONST_FAST

> OS constant data of a non-AUTOSAR core with
shord addressing

OS_GLOBALSHARED_CONST > Constants which shall be shared among core
boundaries

OS_GLOBALSHARED_CONST_FAST > Constants which shall be shared among core
boundaries and which use short addressing
accesses (e.g. by base address pointer)

OS_<Task/IsrName>_CONST > Thread specific constants

OS_<Task/IsrName>_CONST_FAST > Thread specific constants which use short
addressing accesses (e.g. by base address
pointer)

OS_<ApplicationName>_CONST > Application specific constants

OS_<ApplicationName>_CONST_FAST > Application specific constants which use short
addressing accesses (e.g. by base address
pointer)

Table 4-3 MemMap Const Sections Descriptions

Note
The MPU may be set up to grant read access to const sections from all runtime
contexts (trusted and non-trusted)

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 123
based on template version 6.0.1

Section

C
o

n
te

n
t

OS_VAR_NOCACHE OS global variables. All cores may
have to access these variables. OS_VAR_NOCACHE_NOINIT

OS_VAR_FAST_NOCACHE

OS_VAR_FAST_NOCACHE_NOINIT

OS_CORE<Core Id>_VAR OS core local variables. These
variables are never accessed from
foreign cores.

OS_CORE<Core Id>_VAR_FAST

OS_CORE<Core Id>_VAR_NOINIT

OS_CORE<Core Id>_VAR_FAST_NOINIT

OS_CORE<Core Id>_VAR_NOCACHE

OS_CORE<Core Id>_VAR_FAST_NOCACHE

OS_CORE<Core Id>_VAR_NOCACHE_NOINIT

OS_CORE<Core Id>_VAR_FAST_NOCACHE_NOINIT

OS_PUBLIC_CORE<Core Id>_VAR_NOINIT OS core local variables. These
variables may also be accessed
from foreign cores

OS_PUBLIC_CORE<Core Id>_VAR_FAST_NOINIT

OS_NONAUTOSAR_CORE<Core Id>_VAR User core local variables of non-
AUTOSAR cores. Access to these
from foreign cores may be allowed.

OS_NONAUTOSAR_CORE<Core Id>_VAR_FAST

OS_NONAUTOSAR_CORE<Core Id>_VAR_NOINIT

OS_NONAUTOSAR_CORE<Core Id>_VAR_FAST_NOINIT

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 124
based on template version 6.0.1

Section

C
o

n
te

n
t

OS_GLOBALSHARED_VAR User global shared variables.
All cores have access to them. OS_GLOBALSHARED_VAR_FAST

OS_GLOBALSHARED_VAR_NOINIT

OS_GLOBALSHARED_VAR_FAST_NOINIT

OS_GLOBALSHARED_VAR_ZERO_INIT

OS_GLOBALSHARED_VAR_NOCACHE

OS_GLOBALSHARED_VAR_FAST_NOCACHE

OS_GLOBALSHARED_VAR_NOCACHE_NOINIT

OS_GLOBALSHARED_VAR_FAST_NOCACHE_NOINIT

OS_GLOBALSHARED_VAR_NOCACHE_ZERO_INIT

OS_<ApplicationName>_VAR User application private
variables. Only application
members and other trusted
software may have access to
them.

OS_<ApplicationName>_VAR_FAST

OS_<ApplicationName>_VAR_NOINIT

OS_<ApplicationName>_VAR_FAST_NOINIT

OS_<ApplicationName>_VAR_FAST_ZERO_INIT

OS_<ApplicationName>_VAR_NOCACHE

OS_<ApplicationName>_VAR_FAST_NOCACHE

OS_<ApplicationName>_VAR_NOCACHE_NOINIT

OS_<ApplicationName>_VAR_FAST_NOCACHE_NOINIT

OS_<ApplicationName>_VAR_NOCACHE_ZERO_INIT

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 125
based on template version 6.0.1

Section

C
o

n
te

n
t

OS_<Task/IsrName>_VAR User thread private
variables. Only the owning
thread and other trusted
software may have
access to them

OS_<Task/IsrName>_VAR_FAST

OS_<Task/IsrName>_VAR_NOINIT

OS_<Task/IsrName>_VAR_FAST_NOINIT

OS_<Task/IsrName>_VAR_ZERO_INIT

OS_BARRIER_CORE<Core Id>_VAR_NOCACHE_NOINIT OS synchronization
barriers. Only the OS
must have access to
them. They will be
accessed from all cores

OS_BARRIER_CORE<Core Id>_VAR_FAST_NOCACHE_NOINIT

OS_CORESTATUS_CORE<Core Id>_VAR_ NOCACHE_NOINIT Startup state of each
physical core. Only the
OS must have access to
them. They will be written
by the master core and
the owning core itself, and
read from all cores.

OS_CORESTATUS_CORE<Core
Id>_VAR_FAST_NOCACHE_NOINIT

OS_SPINLOCK_<SpinlockName>_VAR_NOCACHE_NOINIT User spinlocks. Only the
OS must have access to
them. Potentially they will
be accessed from all
cores

OS_SPINLOCK_<SpinlockName>_VAR_FAST_NOCACHE_NOINIT

OS_STACK_<StackName>_VAR_NOINIT OS stacks. Only the
current running software
has access to the stack.
Software which runs on a
foreign must not have
access to it.

Table 4-4 MemMap Variable Sections Descriptions

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 126
based on template version 6.0.1

Notes
Sections which contain the keyword “FAST” are intended to be linked into fast RAM.

Sections which contain the keyword “NOCACHE” must never be linked into cacheable
memory.

Sections which contain the keyword “NOINIT” contain non-initialized variables.

Sections which contain the keyword “ZERO_INIT” contain zero initialized variables.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 127
based on template version 6.0.1

4.3.1.3 Access Rights to Variable Sections

The table shows the recommended access rights to the sections.

Section

L
o

c
a
l

C
o

re

T
ru

s
te

d

L
o

c
a
l

c
o

re
 n

o
n

tr

u
s

te
d

F
o

re
ig

n
 c

o
re

tr
u

s
te

d

F
o

re
ig

n
 c

o
re

n
o

n
 t

ru
s
te

d

OS_VAR_NOCACHE

RW RO RW RO
OS_VAR_NOCACHE_NOINIT

OS_VAR_FAST_NOCACHE

OS_VAR_FAST_NOCACHE_NOINIT

OS_CORE<Core Id>_VAR

RW RO RO RO

OS_CORE<Core Id>_VAR_FAST

OS_CORE<Core Id>_VAR_NOINIT

OS_CORE<Core Id>_VAR_FAST_NOINIT

OS_CORE<Core Id>_VAR_NOCACHE

OS_CORE<Core Id>_VAR_FAST_NOCACHE

OS_CORE<Core Id>_VAR_NOCACHE_NOINIT

OS_CORE<Core Id>_VAR_FAST_NOCACHE_NOINIT

OS_PUBLIC_CORE<Core Id>_VAR_NOINIT
RW RO RW RO

OS_PUBLIC_CORE<Core Id>_VAR_FAST_NOINIT

OS_NONAUTOSAR_CORE<Core Id>_VAR

RW RO RW RO
OS_NONAUTOSAR_CORE<Core Id>_VAR_FAST

OS_NONAUTOSAR_CORE<Core Id>_VAR_NOINIT

OS_NONAUTOSAR_CORE<Core Id>_VAR_FAST_NOINIT

OS_GLOBALSHARED_VAR

RW RW RW RW

OS_GLOBALSHARED_VAR_FAST

OS_GLOBALSHARED_VAR_NOINIT

OS_GLOBALSHARED_VAR_FAST_NOINIT

OS_GLOBALSHARED_VAR_ZERO_INIT

OS_GLOBALSHARED_VAR_NOCACHE

OS_GLOBALSHARED_VAR_FAST_NOCACHE

OS_GLOBALSHARED_VAR_NOCACHE_NOINIT

OS_GLOBALSHARED_VAR_FAST_NOCACHE_NOINIT

OS_GLOBALSHARED_VAR_NOCACHE_ZERO_INIT

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 128
based on template version 6.0.1

Section

L
o

c
a
l

C
o

re

T
ru

s
te

d

L
o

c
a
l

c
o

re
 n

o
n

tr
u

s
te

d

F
o

re
ig

n
 c

o
re

tr

u
s

te
d

F
o

re
ig

n
 c

o
re

n
o

n
 t

ru
s
te

d

OS_<ApplicationName>_VAR

RW RW RW RO

OS_<ApplicationName>_VAR_FAST

OS_<ApplicationName>_VAR_NOINIT

OS_<ApplicationName>_VAR_FAST_NOINIT

OS_<ApplicationName>_VAR_FAST_ZERO_INIT

OS_<ApplicationName>_VAR_NOCACHE

OS_<ApplicationName>_VAR_FAST_NOCACHE

OS_<ApplicationName>_VAR_NOCACHE_NOINIT

OS_<ApplicationName>_VAR_FAST_NOCACHE_NOINIT

OS_<ApplicationName>_VAR_NOCACHE_ZERO_INIT

OS_<Task/IsrName>_VAR

RW RW RW RO

OS_<Task/IsrName>_VAR_FAST

OS_<Task/IsrName>_VAR_NOINIT

OS_<Task/IsrName>_VAR_FAST_NOINIT

OS_<Task/IsrName>_VAR_ZERO_INIT

OS_BARRIER_CORE<Core Id>_VAR_NOCACHE_NOINIT
RW RO RW RO

OS_BARRIER_CORE<Core Id>_VAR_FAST_NOCACHE_NOINIT

OS_CORESTATUS_CORE<Core Id>_VAR_ NOCACHE_NOINIT

RW RO RW RO OS_CORESTATUS_CORE<Core
Id>_VAR_FAST_NOCACHE_NOINIT

OS_SPINLOCK_<SpinlockName>_VAR_NOCACHE_NOINIT
RW RO RW RO

OS_SPINLOCK_<SpinlockName>_VAR_FAST_NOCACHE_NOINIT

Table 4-5 Recommended Section Access Rights

Note
The access to the stack section is handled completely by MICROSAR OS

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 129
based on template version 6.0.1

Note
The table is only valid for cores which have the same diagnostic level. Cores with a
lower diagnostic level must never interact with data from a core with a higher diagnostic
level.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 130
based on template version 6.0.1

4.3.2 Link Sections

Once variables have been put into OS sections (by usage of the section specifiers
described in 4.3.1.1) the sections would have to be linked.

Therefore MICROSAR OS generates linker command files which utilize the linkage of
those sections.

Linker Command Filename Content

Os_Link_<Core>.<FileSuffix> All data and code sections which are bound to a
core

Os_Link.<FileSuffix> All data and code sections which are global

Os_Link_<Core>_Stacks.<FileSuffix> all stacks of a core

Table 4-6 List of Generated Linker Command Files

Note
<Core> is the logical core ID

<FileSuffix> is the suffix for linker command files. It depends on the used compiler.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 131
based on template version 6.0.1

4.3.2.1 Simple Linker Defines

The following defines are used to select groups of OS sections from the linker command
files.

Select OS code OS_LINK_CODE

Select an interrupt vector table OS_LINK_INTVEC_CODE

Select an exception vector table OS_LINK_EXCVEC_CODE

Select user callouts (Tasks, ISRs, Hooks) OS_LINK_CALLOUT_CODE

Select constants related to an interrupt vector table OS_LINK_INTVEC_CONST

Select constants related to an exception vector table OS_LINK_EXCVEC_CONST

Select OS stacks OS_LINK_KERNEL_STACKS

Example
#define OS_LINK_INTVEC_CODE

#include Os_Link_Core0_Tasking.lsl

Selects the interrupt vector table from the included linker command file for linking.

4.3.2.2 Hierachical Linker Defines

The linker command files are intended to be included into a main linker command file.
Single sections or group of sections can be selected for linkage by usage of C-like defines.
This mechanism is similar to the MemMap mechanism of AUTOSAR.
The linker defines of MICROSAR OS uses a hierarchical syntax.
The more one walks down in the hierarchy the less sections are selected.

Note
Once one have made the decision for a specific hierarchical level one will have to stick
to this level throughout the linker defines group. Otherwise there may be multiple
section definitions.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 132
based on template version 6.0.1

4.3.2.3 Selecting OS constants

These are hierarchical linker defines

Prefix Optional Hierarchy level 1

OS_LINK_CONST_KERNEL _NEAR

_FAR

Table 4-7 OS constants linker define group

Example
#define OS_LINK_CONST_KERNEL

#include Os_Link_Core0_Tasking.lsl

Selects all OS constants from Os_Link_Core0_Tasking.lsl file

Example
#define OS_LINK_CONST_KERNEL_NEAR

#include Os_Link_Core0_Tasking.lsl

Selects all near addressable OS constants only from Os_Link_Core0_Tasking.lsl file

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 133
based on template version 6.0.1

4.3.2.4 Selecting OS variables

These are hierarchical linker defines

Prefix Optional Hierarchy
level 1

Optional
Hierarchy level
2

Optional
Hierarchy level 3

OS_LINK_VAR_KERNEL _NEAR

_FAR

_CACHE

_NOCACHE

_INIT

_NOINIT

Table 4-8 OS variables linker define group

Example
#define OS_LINK_VAR_KERNEL

#include Os_Link_Core0_Tasking.lsl

Selects all OS variables from Os_Link_Core0_Tasking.lsl file

Example
#define OS_LINK_VAR_KERNEL_NEAR_CACHE

#include Os_Link_Core0_Tasking.lsl

Selects all OS variables from Os_Link_Core0_Tasking.lsl file which are near
addressable and cacheable

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 134
based on template version 6.0.1

4.3.2.5 Selecting OS Barriers, Core Status and Trace variables

These are hierarchical linker defines

Prefix Optional Hierarchy level 1

OS_LINK_KERNEL_BARRIERS
_NEAR

_FAR
OS_LINK_KERNEL_CORESTATUS

OS_LINK_KERNEL_TRACE

Table 4-9 OS Barriers and Core status linker define group

Example
#define OS_LINK_KERNEL_BARRIERS

#include Os_Link_Core0_Tasking.lsl

Selects all OS Barriers from Os_Link_Core0_Tasking.lsl file

Example
#define OS_LINK_KERNEL_CORESTATUS

#include Os_Link_Core0_Tasking.lsl

Selects all OS core state variables from Os_Link_Core0_Tasking.lsl file

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 135
based on template version 6.0.1

4.3.2.6 Selecting OS Spinlocks

These are hierarchical linker defines

Prefix Optional Hierarchy level 1

OS_LINK_SPINLOCKS _NEAR

_FAR

Example
#define OS_LINK_SPINLOCKS

#include Os_Link_Tasking.lsl

Selects all OS core state variables from Os_Link_Tasking.lsl file

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 136
based on template version 6.0.1

4.3.2.7 Selecting User Constant Sections

These are hierarchical linker defines

Prefix Optional Hierarchy level 1 Owner Name Optional Hierarchy level 2

OS_LINK_CONST _APP <Owner Name>

_NEAR

_FAR

_TASK

_ISR

_GLOBALSHARED ---

Table 4-10 User constants linker define group

Example
#define OS_LINK_CONST_APP_<ApplicationName>

#include Os_Link_Core0_Tasking.lsl

Selects all constants from Os_Link_Core0_Tasking.lsl file which belong to the OS application <ApplicationName>

Example
#define OS_LINK_CONST_ISR_<ISRName>_FAR

#include Os_Link_Core0_Tasking.lsl

Selects all constants from Os_Link_Core0_Tasking.lsl file which belong to the ISR <ISRName> which have far addressing

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 137
based on template version 6.0.1

4.3.2.8 Selecting User Variable Sections

These are hierarchical linker defines

Prefix Optional Hierarchy
level 1

Owner Name Optional Hierarchy
level 2

Optional Hierarchy
level 3

Optional Hierarchy
level 4

OS_LINK_VAR _APP <Owner Name>

_NEAR

_FAR

_CACHE

_NOCACHE

_INIT

_NOINIT

_ZEROINIT

_TASK

_ISR

_GLOBALSHARED --- ---

Table 4-11 User variables linker define group

Example
#define OS_LINK_VAR_APP_<ApplicationName>

#include Os_Link_Core0_Tasking.lsl

Selects all variables from Os_Link_Core0_Tasking.lsl file which belong to the OS application <ApplicationName>

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 138
based on template version 6.0.1

Example
#define OS_LINK_VAR_APP_<ApplicationName>_FAR_CACHE_INIT

#include Os_Link_Core0_Tasking.lsl

Selects all variables from Os_Link_Core0_Tasking.lsl file which belong to the OS application <ApplicationName> which have far
addressing, are cacheable and are initialized

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 139
based on template version 6.0.1

4.3.3 Section Symbols

The linker command files described in 4.3.2 also generate section start and stop symbols
which may be used to configure start and end addresses of MPU region objects or access
check region objects.

These have the syntax

OS_<SectionType>_START

OS_<SectionType>_END

Example

OS_MyAppl_VAR_FAST_START

OS_ MyAppl_VAR_FAST_END

4.4 Static Code Analysis

Note

When running tools for static code analysis (e.g. MISRA, MSSV), the pre-processor
definition OS_STATIC_CODE_ANALYSIS has to be set during analysis. It switches off
compiler specific keywords and inline assembler parts. Typically code analysis tools
cannot deal with such code parts.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 140
based on template version 6.0.1

4.5 Configuration of X-Signals

This chapter describes how X-Signals are configured for cross core API calls.

1. Add an “OsCoreXSignalChannel” to an “OsCore” object. This core will be the sender of
the X-Signal.

2. Specify the queue size of the channel with the “OsCoreXSignalChannelSize” attribute.

3. Add an X-Signal receiver ISR. It must be of category 2.

4. Assign this ISR to be the X-Signal receiver
“OsCore/OsCoreXSignalChannelReceiverIsr”.

5. Configure an appropriate interrupt priority for the receiver ISR (see the following
chapters for details on your used platform). The configured priority must follow the
rules listed in Table 3-3.

6. Choose an appropriate interrupt source for the receiver ISR (see the following
chapters for details on your used platform).

7. Add the "OsIsrXSignalReceiver" to the receiver ISR and select the provided APIs
(callable from the sender core) with the "OsIsrXSignalReceiverProvidedApis" attribute.

Note

The DaVinci Configurator provides solving actions which support the correct
configuration of X-signals.

4.5.1 TriCore Aurix Family

Logical Priority A low number for OsIsrInterruptPriority attribute means a low
logical priority

X-Signal ISR Interrupt Priority Beside the rules listed in Table 3-3 the OsIsrInterruptPriority
can be chosen freely.

X-Signal ISR Interrupt Source Any interrupt source, which is not used by other modules, may
be used for the X-Signal ISR.

The offset of the SRC register of the used interrupt source has
to be specified for OsIsrInterruptSource.

4.5.2 RH850 Family

Logical Priority A low number for OsIsrInterruptPriority attribute means a high
logical priority

X-Signal ISR Interrupt Priority Beside the rules listed in Table 3-3 the OsIsrInterruptPriority
can be chosen freely.

X-Signal ISR Interrupt Source Only interrupt source 0 is possible.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 141
based on template version 6.0.1

4.5.3 Power PC Family

Logical Priority A low number for OsIsrInterruptPriority attribute means a low
logical priority

X-Signal ISR Interrupt Priority Beside the rules listed in Table 3-3 the OsIsrInterruptPriority
can be chosen freely.

X-Signal ISR Interrupt Source Any Interrupt source of the available software interrupts may
be used.

4.5.4 ARM Family

 NVIC Interrupt Controller GIC Interrupt Controller

Logical Priority A low number for OsIsrInterruptPriority attribute means a high logical priority

X-Signal ISR
Interrupt Priority

Beside the rules listed in Table 3-3 the OsIsrInterruptPriority can be chosen
freely.

X-Signal ISR
Interrupt Source

Any interrupt source, which is not
used by other modules, may be used
for the X-Signal ISR.

The interrupt sources 0..15 have to be
used for the X-Signal ISR.

4.5.5 VTT OS

Logical Priority A low number for OsIsrInterruptPriority attribute means a low
logical priority

X-Signal ISR Interrupt Priority Beside the rules listed in Table 3-3 the OsIsrInterruptPriority
can be chosen freely.

X-Signal ISR Interrupt Source Any interrupt source, which is not used by other modules, may
be used for the X-Signal ISR.

4.6 OS generated objects

In dependency of its configuration MICROSAR OS may add other OS configuration
objects to it.

4.6.1 System Application

Type OsApplication

Name SystemApplication_<Core Id>

Condition Is added when the core <Core Id> is configured to be an AUTOSAR
core.

Features > A system application contains the OS objects

> Idle Task_<Core Id>

> TpCounter_<Core Id>

> XSignalIsr_<Core Id>

> CounterIsr_TpCounter_<Core Id>

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 142
based on template version 6.0.1

4.6.2 Idle Task

Type OsTask

Name IdleTask_<Core Id>

Condition Is added when the core <Core Id> is configured to be an AUTOSAR
core.

Features > Has the lowest priority of all tasks assigned to the same core.

> Is fully preemptive.

> Is implemented by the OS

4.6.3 Timer ISR

Type OsIsr

Name CounterIsr_<Core Id>

Condition Is added if a hardware counter is configured to have a driver (attribute
“OsCounterDriver”).

Features > Is Implemented by the OS.

> Handles the system timer counter, alarms and scheduletables
which are assigned to the core.

4.6.4 System Timer Counter

Type OsCounter

Name SystemTimer

Condition Is added optionally within the recommended configuration.

Features > Is used for OSEK backward compatibility

4.6.5 Timing Protection Counter

Type OsCounter

Name TpCounter_<Core Id>

Condition Is added when OsTask/IsrTimingProtection parameters are configured
on the core.

Features > Handles all times related to timing protection

4.6.6 Timing protection ISR

Type OsIsr

Name CounterIsr_TpCounter_<Core Id>

Condition Is added when OsTask/IsrTimingProtection parameters are configured
on the core.

Features > Interrupt service routine of the timing protection feature

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 143
based on template version 6.0.1

4.6.7 Resource Scheduler

Type OsResource

Name RES_SCHEDULER_<Core Id>

Condition For each core the resource scheduler is added when
OsUseResScheduler is set to TRUE.

Features > Is automatically assigned to all tasks of core <Core Id>.

4.6.8 X Signal ISR

Type OsIsr

Name XSignalIsr_<Core Id>

Condition Is added when an X signal channel is configured on the core.

Features > Handles cross core requests.

4.6.9 IOC Spinlocks

Type OsSpinlock

Name IocSpinlock_<IOC Name>

Condition Is added when an IOC is configured which requires cross core
communication.

Features > Each IOC has its own spinlock to reduce core wait times

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 144
based on template version 6.0.1

4.7 VTT OS Specifics

4.7.1 Configuration

As described in [6] all VTT configuration parameters are derived from the hardware target.
The only exceptions are the ISR objects for the VTT OS.

 ISRs from other Vector MICROSAR BSW modules (e.g. CAN) are inserted
automatically by the respective BSW module.

 Other user ISRs have to be added separately.

 Interrupt levels for all ISRs have to be configured manually. VTT OS knows interrupt
levels from 1 to 200 (where 1 is the lowest priority and 200 the highest).

4.7.2 CANoe Interface

A VTT OS is simulated within the CANoe simulation software. There are a set of API
functions which are capable to communicate with CANoe (e.g. sending a message on the
CAN bus).

These API functions are prefixed with “CANoeAPI_”.

The available set of API functions can be looked up in the delivered header “CANoeApi.h”.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 145
based on template version 6.0.1

4.8 User include files

Within some features of MICROSAR OS it may be necessary to provide foreign data types
to the OS.

This can be done by referencing user headers within the OS configuration.

The features “IOC” and “trusted functions stub generation” are relying on such include
mechanisms.

 Configuration Content

IOC IOC include files are configured with
the IOC attribute
"OsIocIncludeHeader“.

A list of include files may be specified
here.

The headers have to provide

> Definitions of foreign OS data
types which are used within IOC
communication.

Trusted
Functions

Include files which are needed for
trusted function feature are configured
within the application attribute

“OsAppCalloutStubsIncludeHeader”.

A list of include files may be specified
here.

The headers have to provide

> The definitions of foreign OS data
types which are used as trusted
functions parameters or return
values.

Caution

All user include files need to implement a double inclusion preventer!

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 146
based on template version 6.0.1

5 API Description

This chapter lists all API service functions which are additionally provided by MICROSAR
OS. AUTOSAR OS API service functions are not listed here. They can be looked up in [1]
and [2].

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 147
based on template version 6.0.1

5.1 Peripheral Access API

The API consists of read, write and bit manipulating functions for 8, 16 and 32 bit
accesses.

5.1.1 Read Functions

Prototype

FUNC(uint8, OS_CODE) Os_ReadPeripheral8(

 Os_PeripheralIdType PeripheralID,

 uint32 Address

)

FUNC(uint16, OS_CODE) Os_ReadPeripheral16(

 Os_PeripheralIdType PeripheralID,

 uint32 Address

)

FUNC(uint32, OS_CODE) Os_ReadPeripheral32(

 Os_PeripheralIdType PeripheralID,

 uint32 Address

)

Parameter

PeripheralID The ID of a configured peripheral region.

The symbolic name may be passed here.

Address The address of the peripheral register which shall be read.

Return code

uint8

The content of the peripheral register which has been passed in the Address
parameter.

uint16

uint32

Functional Description

The function distinguishes the address range of the passed peripheral region. It checks whether the
parameter “Address” is within this range. Then it checks whether the calling OS application has access
rights to the passed peripheral region.

If all checks did pass the API returns the content of the passed address

Particularities and Limitations

> If one of the performed checks within the API is not passed the OS treats it as a memory protection
violation. The ProtectionHook() is called.

> The data alignment of the “Address” parameter is not checked by the service function. Misaligned
accesses may lead to exceptions.

Table 5-1 Read Peripheral API

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 148
based on template version 6.0.1

Note
The former names of the API functions osReadPeripheral8(), osReadPeripheral16()
and osReadPeripheral32() may also be used (the OS is backward compatible).

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 149
based on template version 6.0.1

5.1.2 Write Functions

Prototype

FUNC(void, OS_CODE) Os_WritePeripheral8(

 Os_PeripheralIdType PeripheralID,

 uint32 Address,

 uint8 Value

)

FUNC(void, OS_CODE) Os_WritePeripheral16(

 Os_PeripheralIdType PeripheralID,

 uint32 Address,

 uint16 Value

)

FUNC(void, OS_CODE) Os_WritePeripheral32(

 Os_PeripheralIdType PeripheralID,

 uint32 Address,

 uint32 Value

)

Parameter

PeripheralID The ID of a configured peripheral region.

The symbolic name may be passed here.

Address The address of the peripheral register which shall be written.

Value uint8

Value which shall be written to the peripheral register. Value uint16

Value uint32

Return code

void none

Functional Description

The function distinguishes the address range of the passed peripheral region. It checks whether the
parameter “Address” is within this range. Then it checks whether the calling OS application has access
rights to the passed peripheral region.

If all checks did pass the OS writes the Value into the peripheral register.

Particularities and Limitations

> If one of the performed checks within the API is not passed the OS treats it as a memory protection
violation. The ProtectionHook() is called.

> The data alignment of the “Address” parameter is not checked by the service function. Misaligned
accesses may lead to exceptions.

Table 5-2 Write Peripheral APIs

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 150
based on template version 6.0.1

Note
The former names of the API functions osWritePeripheral8(), osWritePeripheral16()
and osWritePeripheral32() may also be used (the OS is backward compatible).

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 151
based on template version 6.0.1

5.1.3 Bitmask Functions

Prototype

FUNC(void, OS_CODE) Os_ModifyPeripheral8(

 Os_PeripheralIdType PeripheralID,

 uint32 Address,

 uint8 ClearMask,

 uint8 SetMask

)

FUNC(void, OS_CODE) Os_ModifyPeripheral16(

 Os_PeripheralIdType PeripheralID,

 uint32 Address,

 uint16 ClearMask,

 uint16 SetMask

)

FUNC(void, OS_CODE) Os_ModifyPeripheral32(

 Os_PeripheralIdType PeripheralID,

 uint32 Address,

 uint32 ClearMask,

 uint32 SetMask

)

Parameter

PeripheralID The ID of a configured peripheral region.

The symbolic name may be passed here.

Address The address of the peripheral register which shall be modified.

ClearMask uint8

The mask for the AND operation. ClearMask uint16

ClearMask uint32

SetMask uint8

The mask for the OR operation. SetMask uint16

SetMask uint32

Return code

void none

Functional Description

The function distinguishes the address range of the passed peripheral region. It checks whether the
parameter “Address” is within this range. Then it checks whether the calling OS application has access
rights to the passed peripheral region.

If all checks did pass the OS performs the following operation:

Address = (Address & ClearMask) | SetMask;

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 152
based on template version 6.0.1

Particularities and Limitations

> If one of the performed checks within the API is not passed the OS treats it as a memory protection
violation. The ProtectionHook() is called.

> The data alignment of the “Address” parameter is not checked by the service function. Misaligned
accesses may lead to exceptions.

Table 5-3 Bitmask Peripheral API

Note
The former names of the API functions osModifyPeripheral8(), osModifyPeripheral16()
and osModifyPeripheral32() may also be used (the OS is backward compatible).

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 153
based on template version 6.0.1

5.2 Pre-Start Task

Prototype

FUNC(void, OS_CODE) Os_EnterPreStartTask(void)

Parameter

none

Return code

none

Functional Description

The function schedules and dispatches to the pre-start task. The core is initialized that non-trusted function
calls can be used safely within this task.

Particularities and Limitations

> Has to be called on a core which is started as an AUTOSAR core.

> The core which calls this function must have a configured pre-start task.

> Must only be called once.

> Must be called prior to StartOS() but after Os_Init()

Table 5-4 API Service Os_EnterPreStartTask

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 154
based on template version 6.0.1

5.3 Non-Trusted Functions (NTF)

Prototype

FUNC(StatusType, OS_CODE) Os_CallNonTrustedFunction(

 Os_NonTrustedFunctionIndexType FunctionIndex,

 Os_NonTrustedFunctionParameterRefType FunctionParams

)

Parameter

FunctionIndex The Index of the non-trusted function.

FunctionParams Pointer to parameters which are passed to the non-trusted function.

Return code

E_OK No error.

E_OS_SERVICEID No function defined for this index.

E_OS_CALLEVEL Called from invalid context. (EXTENDED status)

E_OS_ACCESS The given object belongs to a foreign core. (EXTENDED status)

E_OS_ACCESS Owner OS application is not accessible. (Service Protection)

E_OS_SYS_NO_NTFSTACK No further NTF-Stacks available. (EXTENDED status)

Functional Description

Performs a call to the non-trusted function passed in „FunctionIndex“.

Particularities and Limitations

> The non-trusted function will not be able to return any values. It has no access rights to the data

structure of the caller referenced by the “FunctionParams” parameter.

> This API service may be called with disabled interrupts.

Table 5-5 Call Non-Trusted Function API

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 155
based on template version 6.0.1

5.4 Interrupt Source API

5.4.1 Disable Interrupt Source

Prototype

FUNC(StatusType, OS_CODE) Os_DisableInterruptSource(

 ISRType ISRID

)

Parameter

ISRID The ID of a category 2 ISR.

Return code

E_OK No error.

E_OS_ID ISRID is not a valid category 2 ISR identifier (EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function (EXTENDED status)

E_OS_ACCESS The calling application is not the owner of the ISR passed in ISRID (Service
Protection)

Functional Description

MICROSAR OS disables the interrupt source by modifying the interrupt controller registers.

Particularities and Limitations

> May be called for category 2 ISRs only.

Table 5-6 API Service Os_DisableInterruptSource

Caution

Depending on target platform (e.g. ARM platforms), the ISR may still become active
although Os_DisableInterruptSource has returned E_OK.

This may be caused by hardware racing conditions e.g. when the interrupt is requested
immediately before the effect of Os_DisableInterruptSource becomes active.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 156
based on template version 6.0.1

5.4.2 Enable Interrupt Source

Prototype

FUNC(StatusType, OS_CODE) Os_EnableInterruptSource(

 ISRType ISRID,

 boolean ClearPending

)

Parameter

ISRID The ID of a category 2 ISR.

ClearPending Defines whether the pending flag shall be cleared (TRUE) or not (FALSE).

Return code

E_OK No error.

E_OS_ID ISRID is not a valid category 2 ISR identifier ID (EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function (EXTENDED status)

E_OS_VALUE The parameter “ClearPending” is not a boolean value (EXTENDED status)

E_OS_ACCESS The calling application is not the owner of the ISR passed in ISRID (Service
Protection)

Functional Description

MICROSAR OS enables the interrupt source by modifying the interrupt controller registers. Additionally it
may clear the interrupt pending flag

Particularities and Limitations

> May be called for category 2 ISRs only

Table 5-7 API Service Os_EnableInterruptSource

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 157
based on template version 6.0.1

5.4.3 Clear Pending Interrupt

Prototype

FUNC(StatusType, OS_CODE) Os_ClearPendingInterrupt(

 ISRType ISRID

)

Parameter

ISRID The ID of a category 2 ISR.

Return code

E_OK No errors

E_OS_ID ISRID is not a valid category 2 ISR identifier (EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function (EXTENDED status)

E_OS_ACCESS The calling application is not the owner of the ISR passed in ISRID (Service
Protection)

Functional Description

MICROSAR OS clears the interrupt pending flag by modifying the interrupt controller registers.

Particularities and Limitations

> May be called for category 2 ISRs only

Table 5-8 API Service Os_ClearPendingInterrupt

Note

In order to minimize the risk of spurious interrupts, Os_ClearPendingInterrupt shall be
called only after the ISR (IsrId) has been disabled and before it is enabled again.

Note

The API service tries to clear the pending flag only. The interrupt cause has to be reset
by the application software. Otherwise the flag may be set again immediately after it
has been cleared by the API. This may be the case e.g. with level triggered ISRs.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 158
based on template version 6.0.1

5.4.4 Check Interrupt Source Enabled

Prototype

FUNC(StatusType, OS_CODE) Os_IsInterruptSourceEnabled(

 ISRType ISRID,

 P2VAR(boolean, AUTOMATIC, OS_VAR_NOINIT) IsEnabled

)

Parameter

ISRID The ID of a category 2 ISR.

IsEnabled Defines wether the source of the ISR is enabled (TRUE) or not (FALSE)

Return code

E_OK No errors

E_OS_ID ISRID is not a valid category 2 ISR identifier (EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function (EXTENDED status)

E_OS_ACCESS The calling application is not the owner of the ISR passed in ISRID (Service
Protection)

E_OS_PARAM_POINTER Given pointer parameter (isEnabled) is NULL (EXTENDED status)

Functional Description

MICROSAR OS checks if the interrupt source is enabled reading the interrupt controller registers and
update the boolean addressed by IsEnabled accordingly

Particularities and Limitations

> May be called for category 2 ISRs only

Table 5-9 API Service Os_IsInterruptSourceEnabled

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 159
based on template version 6.0.1

5.4.5 Check Interrupt Pending

Prototype

FUNC(StatusType, OS_CODE) Os_IsInterruptPending(

 ISRType ISRID,

 P2VAR(boolean, AUTOMATIC, OS_VAR_NOINIT) IsPending

)

Parameter

ISRID The ID of a category 2 ISR.

IsPending Defines wether the ISR has been already
requesterd (TRUE) or not (FALSE)

Return code

E_OK No errors

E_OS_ID ISRID is not a valid category 2 ISR identifier
(EXTENDED status)

E_OS_CALLEVEL Wrong call context of the API function
(EXTENDED status)

E_OS_ACCESS The calling application is not the owner of the
ISR passed in ISRID (Service Protection)

E_OS_PARAM_POINTER Given pointer parameter (isPending) is NULL
(EXTENDED status)

E_OS_SYS_UNIMPLEMENTED_FUNCTIONALITY Hardware does not support to check if there are
pending interrupts

Functional Description

MICROSAR OS checks if the ISR has been already requested, reading the interrupt controller registers
and update the boolean addressed by IsPending accordingly

Particularities and Limitations

> May be called for category 2 ISRs only

Table 5-10 API Service Os_IsInterruptPending

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 160
based on template version 6.0.1

5.5 Detailed Error API

5.5.1 Get detailed Error

Prototype

FUNC(StatusType, OS_CODE) Os_GetDetailedError(

 Os_ErrorInformationRefType ErrorRef

)

Parameter

ErrorRef Output parameter of type Os_ErrorInformationRefType

Return code

E_OK No error.

E_OS_CALLEVEL Called from invalid context. (EXTENDED status)

E_OS_PARAM_POINTER Given parameter pointer is NULL. (EXTENDED status)

Functional Description

Returns error information of the last error occurred on the local core.

Particularities and Limitations

> The ErrorRef output parameter is a struct which holds the 8 bit AUTOSAR error code, the detailed error
code and the service ID of the causing API service.

Table 5-11 API Service Os_GetDetailedError

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 161
based on template version 6.0.1

5.5.2 Unhandled Interrupt Requests

Prototype

FUNC(StatusType, OS_CODE) Os_GetUnhandledIrq(

 Os_InterruptSourceIdRefType InterruptSource

)

Parameter

InterruptSource Output parameter of type Os_InterruptSourceIdRefType

Return code

E_OK No error.

E_OS_CORE Called from a non-AUTOSAR core (EXTENDED status)

E_OS_PARAM_POINTER Null pointer passed as argument (EXTENDED status)

E_OS_STATE No unhandled interrupt reported since start up (EXTENDED status)

Functional Description

In case of an unhandled interrupt request the triggering interrupt source can be distinguished with this
service.

Particularities and Limitations

> The return value of this function may be interpreted differently for different controller families.

Table 5-12 API Service Os_GetUnhandledIrq

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 162
based on template version 6.0.1

5.5.3 Unhandled Exception Requests

Prototype

FUNC(StatusType, OS_CODE) Os_GetUnhandledExc(

 Os_ExceptionSourceIdRefType ExceptionSource

)

Parameter

ExceptionSource Output parameter of type Os_ExceptionSourceIdRefType

Return code

E_OK No error.

E_OS_CORE Called from a non-AUTOSAR core (EXTENDED status)

E_OS_PARAM_POINTER Null pointer passed as argument (EXTENDED status)

E_OS_STATE No unhandled exception reported since start up. (EXTENDED status)

Functional Description

In case of an unhandled exception request the triggering exception source can be distinguished with this
service.

Particularities and Limitations

> The return value of this function may be interpreted differently for different controller families.

Table 5-13 API Service Os_GetUnhandledExc

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 163
based on template version 6.0.1

5.6 Stack Usage API

All Service API functions which calculate stack usage are working in the same way.

> The service performs error checks:

> validity of passed parameters

> existence of OS Hook routine (if hook stacks are queried)

> cross core checks (when stack sizes are queried of stacks which are located on a
foreign core)

> if one of these checks fails, the OS initiates error handling (ErrorHook() is called)

> Calculates the maximum stack usage of the queried stack since call of StartOS()

> Returns the stack usage in bytes

> Stack Usage API services may be called from any context

> Stack Usage API services may be used cross core

Stack usage service API Prototypes Parameter

FUNC(uint32, OS_CODE) Os_GetTaskStackUsage (TaskType TaskID)
Task ID

FUNC(uint32, OS_CODE) Os_GetISRStackUsage (ISRType IsrID)
ISR ID

FUNC(uint32, OS_CODE) Os_GetKernelStackUsage (CoreIdType CoreID)
Core ID

FUNC(uint32, OS_CODE) Os_GetStartupHookStackUsage(CoreIdType CoreID)
Core ID

FUNC(uint32, OS_CODE) Os_GetErrorHookStackUsage (CoreIdType CoreID)
Core ID

FUNC(uint32, OS_CODE) Os_GetShutdownHookStackUsage(CoreIdType CoreID)
Core ID

FUNC(uint32, OS_CODE) Os_GetProtectionHookStackUsage(CoreIdType CoreID)
Core ID

Table 5-14 Overview: Stack Usage Functions

Caution
Any stack usage function must not be used cross core with interrupts disabled.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 164
based on template version 6.0.1

5.7 RTE Interrupt API

MICROSAR OS provides optimized interrupt en-/disable functions for exclusive usage for
the RTE module of Vector.

API Name Alias (for backward compatibility)

Os_DisableLevelAM() osDisableLevelAM()

Os_DisableLevelKM() osDisableLevelKM()

Os_DisableLevelUM() osDisableLevelUM()

Os_EnableLevelAM() osEnableLevelAM()

Os_EnableLevelKM() osEnableLevelKM()

Os_EnableLevelUM() osEnableLevelUM()

Os_DisableGlobalAM() osDisableGlobalAM()

Os_DisableGlobalKM() osDisableGlobalKM()

Os_DisableGlobalUM() osDisableGlobalUM()

Os_EnableGlobalAM() osEnableGlobalAM()

Os_EnableGlobalKM() osEnableGlobalKM()

Os_EnableGlobalUM() osEnableGlobalUM()

Caution
RTE interrupt handling functions should not be used by the application and are listed
here to avoid naming collisions.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 165
based on template version 6.0.1

5.8 Time Conversion Macros

Based on counter configuration attributes conversion macros are generated which are
capable to convert from time into counter ticks and vice versa.

There are a set of conversion macros for each configured OS counter

Caution
The conversion macros embody multiplication operations which may lead to a data
type overflow. The macros are not capable to detect these overflows

Caution
Although the results of the macros are mathematically rounded the result will still be an
integer (e.g. results smaller than 0.5 are used as 0).

5.8.1 Convert from Time into Counter Ticks

OS_NS2TICKS_<Counter Name>(x) x is given in nanoseconds

OS_US2TICKS_<Counter Name>(x) x is given in microseconds

OS_MS2TICKS_<Counter Name>(x) x is given in milliseconds

OS_SEC2TICKS_<Counter Name>(x) x is given in seconds

Table 5-15 Conversion Macros from Time to Counter Ticks

5.8.2 Convert from Counter Ticks into Time

OS_TICKS2NS_<Counter Name>(x) The result is in nanoseconds

OS_TICKS2US_<Counter Name>(x) The result is in microseconds

OS_TICKS2MS_<Counter Name>(x) The result is in milliseconds

OS_TICKS2SEC_<Counter Name>(x) The result is in seconds

Table 5-16 Conversion Macros from Counter Ticks to Time

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 166
based on template version 6.0.1

5.9 Access Check API

5.9.1 Check ISR Memory Access

Prototype

FUNC(AccessType, OS_CODE) CheckISRMemoryAccess(

 ISRType ISRID,

 MemoryStartAddressType Address,

 MemorySizeType Size

)

Parameter

ISRID ID of category 2 ISR

Address Start address of checked address range

Size Size of checked address range

Return code

AccessType Returns the access rights of the ISR to the given address range

Functional Description

The service distinguishes the memory access rights of a given category 2 ISR

Particularities and Limitations

> The access checks are based upon the “OsAccessCheckRegion” configuration objects.

> The return value of this functions is typically used with the AUTOSAR OS specified macros

> OSMEMORY_IS_READABLE

> OSMEMORY_IS_WRITEABLE

> OSMEMORY_IS_EXECUTABLE

> OSMEMORY_IS_STACKSPACE

Table 5-17 API Service CheckISRMemoryAccess

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 167
based on template version 6.0.1

5.9.2 Check Task Memory Access

Prototype

FUNC(AccessType, OS_CODE) CheckTaskMemoryAccess(

 TaskType TaskID,

 MemoryStartAddressType Address,

 MemorySizeType Size

)

Parameter

TaskID ID of task

Address Start address of checked address range

Size Size of checked address range

Return code

AccessType Returns the access rights of the Task to the given address range

Functional Description

The service distinguishes the memory access rights of a given Task.

Particularities and Limitations

> The access checks are based upon the “OsAccessCheckRegion” configuration objects.

> The return value of this functions is typically used with the AUTOSAR OS specified macros

> OSMEMORY_IS_READABLE

> OSMEMORY_IS_WRITEABLE

> OSMEMORY_IS_EXECUTABLE

> OSMEMORY_IS_STACKSPACE

Table 5-18 API Service CheckTaskMemoryAccess

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 168
based on template version 6.0.1

5.10 OS Initialization

Prototype

FUNC(void, OS_CODE) Os_Init(void)

Parameter

none

Return code

none

Functional Description

The function performs all the basic OS initialization which includes

> Variable initialization

> Interrupt controller initialization

> System MPU initialization in SC3 and SC4 systems (if supported by platform)

> Synchronization barriers in multi core systems

Particularities and Limitations

> A function call to this service must be available on all available cores (even for cores which are intended
to be a non-AUTOSAR core)

> After call of Os_Init() the AUTOSAR interrupt API may be used.

> After Call of Os_Init() the API GetCoreID may be used.

Table 5-19 API Service Os_Init

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 169
based on template version 6.0.1

Prototype

FUNC(void, OS_CODE) Os_InitMemory(void)

Parameter

none

Return code

none

Functional Description

> This is an API function which is provided within all BSWs of Vector. It initializes variables of the BSW.
Within the OS module this function is currently empty

Particularities and Limitations

> This service must be called on all available cores (even for cores which are intended to be a non-
AUTOSAR core)

Table 5-20 API Service Os_InitMemory

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 170
based on template version 6.0.1

5.11 Timing Hooks

Implementation of all timing hooks must conform to the following guidelines:

> They are expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs.

> Calls of any operating system API functions are prohibited within the hooks.

Note
All hooks are called from within an OS API service. Interrupts are disabled

5.11.1 Timing Hooks for Activation

5.11.1.1 Task Activation

Macro

#define OS_VTH_ACTIVATION(TaskId, DestCoreId, CallerCoreId)

Parameter

TaskId Identifier of the task which is activated

DestCoreId Identifier of the core on which the task is activated

CallerCoreId Identifier of the core which performs the activation (has called ActivateTask(), has
called TerminateTask() or has performed an alarm/schedule table action to activate
a task)

Return code

none

Functional Description

This hook is called on the caller core when that core has successfully performed the activation of TaskId on
the destination core. On single core systems both core IDs are identical.

Particularities and Limitations

> none

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 171
based on template version 6.0.1

5.11.1.2 Set Event

Macro

#define OS_VTH_SETEVENT(TaskId, EventMask, StateChanged,

DestCoreId, CallerCoreId)

Parameter

TaskId Identifier of the task which receives this event

EventMask A bit mask with the events which shall be set

StateChanged TRUE: The task state has changed from WAITING to READY

FALSE: The task state hasn’t changed

DestCoreId Identifier of the core on which the task receives the event

CallerCoreId Identifier of the core which performs the event setting (has called SetEvent() or
performed an alarm/schedule table action to set an event)

Return code

none

Functional Description

This hook is called on the caller core when that core has successfully performed the event setting on the
destination core. On single core systems both core IDs are always identical.

Particularities and Limitations

> none

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 172
based on template version 6.0.1

5.11.2 Timing Hook for Context Switch

Macro

#define OS_VTH_SCHEDULE(FromThreadId, FromThreadReason,

ToThreadId, ToThreadReason, CallerCoreId)

Parameter

FromThreadId Identifier of the thread (task, ISR) which has run on the caller core before the
switch took place

FromThreadReason OS_VTHP_TASK_TERMINATION

> The thread is a task, which has just been terminated.

OS_VTHP_ISR_END

> The thread is an ISR, which has reached its end.

OS_VTHP_TASK_WAITEVENT

> The thread is a task, which waits for an event.

OS_VTHP_TASK_WAITSEMA

> The thread is a task, which waits for the release of a semaphore.

OS_VTHP_THREAD_PREEMPT

> The thread is interrupted by another one, which has higher priority.

ToThreadId The identifier of the thread, which runs from now on

ToThreadReason OS_VTHP_TASK_ACTIVATION

> The thread is a task, which was activated.

OS_VTHP_ISR_START

> The thread is an ISR, which now starts execution.

OS_VTHP_TASK_SETEVENT

> The thread is a task, which has just received an event it was
waiting for. It resumes execution right behind the call of
WaitEvent().

OS_VTHP_GOTSEMA

> The thread is a task, which has just got the semaphore it was
waiting for.

OS_VTHP_THREAD_RESUME:

> The thread is a task or ISR, which was preempted before and
becomes running again as all higher priority tasks and ISRs do not
run anymore.

CallerCoreId Identifier of the core which performs the thread switch

Return code

none

Functional Description

This hook is called on the caller core when that core in case it performs a thread switch (from one task or

ISR to another task or ISR). On single core systems both core IDs are always identical.

Particularities and Limitations

> None

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 173
based on template version 6.0.1

5.11.3 Timing Hooks for Locking Purposes

5.11.3.1 Get Resource

Macro

#define OS_VTH_GOT_RES(ResId, CallerCoreId)

Parameter

ResId Identifier of the resource which has been taken

CallerCoreId Identifier of the core where GetResorce() was called

Return code

none

Functional Description

The OS calls this hook on a successful call of the API function GetResource(). The priority of the calling
task or ISR has been increased so that other tasks and ISRs on the same core may need to wait until they
can be executed.

Particularities and Limitations

> none

5.11.3.2 Release Resource

Macro

#define OS_VTH_REL_RES(ResId, CallerCoreId)

Parameter

ResId Identifier of the resource which has been released

CallerCoreId Identifier of the core where ReleaseResorce() was called

Return code

None

Functional Description

The OS calls this hook on a successful call of the API function ReleaseResource(). The priority of the
calling task or ISR has been decreased so that other tasks and ISRs on the same core may become
running as a result.

Particularities and Limitations

> none

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 174
based on template version 6.0.1

5.11.3.3 Request Spinlock

Macro

#define OS_VTH_REQ_SPINLOCK(SpinlockId, CallerCoreId)

Parameter

SpinlockId Identifier of the spinlock which has been requested

CallerCoreId Identifier of the core where GetSpinlock() was called

Return code

none

Functional Description

The OS calls this hook on any attempt to get a spinlock. The calling task or ISR may end up in entering a
busy waiting loop. In such case other tasks or ISRs of lower priority have to wait until this task or ISR has
taken and released the spinlock.

Particularities and Limitations

> The hook is not called for optimized spinlocks

> The hook is called only on multicore operating system implementations

5.11.3.4 Request Internal Spinlock

Macro

#define OS_VTH_REQ_ISPINLOCK(SpinlockId, CallerCoreId)

Parameter

SpinlockId Identifier of the spinlock which has been requested

CallerCoreId Identifier of the core where the internal spinlock was requested

Return code

none

Functional Description

The OS calls this hook on any attempt to get a spinlock for the OS itself. The OS may end up in entering a
busy waiting loop. In such case other program parts on this core have to wait until the OS has taken and
released the spinlock.

Particularities and Limitations

> Only called for Spinlocks which used internally by the OS

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 175
based on template version 6.0.1

5.11.3.5 Get Spinlock

Macro

#define OS_VTH_GOT_SPINLOCK(SpinlockId, CallerCoreId)

Parameter

SpinlockId Identifier of the spinlock which has been taken

CallerCoreId Identifier of the core where GetSpinlock() or TryToGetSpinlock() were called

Return code

none

Functional Description

The OS calls this hook whenever a spinlock has successfully been taken.

If a previosly attempt of getting the spinlock was not successful immediately (entered busy waiting loop),
this hook means that the core leaves the busy waiting loop.

From now on no other thread may get the spinlock until the current task or ISR has released it.

Particularities and Limitations

> The hook is not called for optimized spinlocks

> The hook is called only on multicore operating system implementations

5.11.3.6 Get Internal Spinlock

Macro

#define OS_VTH_GOT_ISPINLOCK(SpinlockId, CallerCoreId)

Parameter

SpinlockId Identifier of the spinlock which has been taken

CallerCoreId Identifier of the core where the internal spinlock has been taken

Return code

None

Functional Description

The OS calls this hook whenever a spinlock has successfully been taken by the OS itself.

If a previosly attempt of getting the spinlock was not successful immediately (entered busy waiting loop),
this hook means that the core leaves the busy waiting loop.

From now on no other thread may get the spinlock until the OS has released it.

Particularities and Limitations

> Only called for Spinlocks which used internally by the OS

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 176
based on template version 6.0.1

5.11.3.7 Release Spinlock

Macro

#define OS_VTH_REL_SPINLOCK(SpinlockId, CallerCoreId)

Parameter

SpinlockId Identifier of the spinlock which has been released

CallerCoreId Identifier of the core where ReleaseSpinlock() was called

Return code

none

Functional Description

The OS calls this hook on a release of a spinlock. Other tasks and ISR may take the spinlock now.

Particularities and Limitations

> The hook is not called for optimized spinlocks

> The hook is called only on multicore operating system implementations

5.11.3.8 Release Internal Spinlock

Macro

#define OS_VTH_REL_ISPINLOCK(SpinlockId, CallerCoreId)

Parameter

SpinlockId Identifier of the spinlock which has been released

CallerCoreId Identifier of the core where the internal spinlock has been released

Return code

none

Functional Description

The OS calls this hook on a release of a spinlock. Other tasks and ISR may take the spinlock now.

Particularities and Limitations

> Only called for Spinlocks which used internally by the OS

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 177
based on template version 6.0.1

5.11.3.9 Disable Interrupts

Macro

#define OS_VTH_DISABLEDINT(IntLockId, CallerCoreId)

Parameter

IntLockId OS_VTHP_CAT2INTERRUPTS:

Interrupts have been disabled by means of the current interrupt level. That
interrupt level has been changed in order to disable all category 2 interrupts,
which also prevents task switch and alarm/schedule table management.

OS_VTHP_ALLINTERRUPTS:

Interrupts have been disabled by means of the global interrupt enable/disable
flag. Additionally to the effects described above, also category 1 interrupts are
disabled.

CallerCoreId Identifier of the core where interrupts are disabled

Return code

none

Functional Description

The OS calls this hook if the application has called an API function to disable interrupts.

The parameter IntLockId describes whether category 1 interrupts may still occur. Mind that the two types of
interrupt locking (as described by the IntLockId) are independent from each other so that the hook may be
called twice before the hook OS_VTH_ENABLEDINT is called, dependent on the application.

Particularities and Limitations

> The hook is not called for operating system internal interrupt locks

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 178
based on template version 6.0.1

5.11.3.10 Enable Interrupts

Macro

#define OS_VTH_ENABLEDINT(IntLockId, CallerCoreId)

Parameter

IntLockId OS_VTHP_CAT2INTERRUPTS

> Interrupts had been disabled by means of the current interrupt level
until this hook was called. The OS releases this lock right after the
hook has returned.

OS_VTHP_ALLINTERRUPTS

> Interrupts had been disabled by means of the global interrupt
enable/disable flag before this hook was called. The OS releases this
lock right after the hook has returned.

CallerCoreId Identifier of the core where interrupts are disabled

Return code

None

Functional Description

The OS calls this hook if the application has called an API function to enable interrupts. Mind that the two
types of interrupt locking (as described by the IntLockId) are independent from each other so that interrupts
may still be disabled by means of the other locking type after this hook has returned.

Particularities and Limitations

> The hook is not called for operating system internal interrupt locks

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 179
based on template version 6.0.1

5.12 PanicHook

Prototype

FUNC(void, OS_PANICHOOK_CODE) Os_PanicHook(void)

Parameter

none

Return code

none

Functional Description

Called upon kernel panic mode.

Particularities and Limitations

> Trusted access rights

> Interrupts are disabled

> No OS API service calls are allowed

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 180
based on template version 6.0.1

5.13 Calling Context Overview

The following table gives an overview about the valid context for MICROSAR OS
additional API service calls.

Calling Context

API Service T
a
s
k

C
a
te

g
o
ry

 1
 I

S
R

C
a
te

g
o
ry

 2
 I

S
R

E
rr

o
r

H
o
o
k

P
re

T
a
s
k
 H

o
o
k

P
o
s
tT

a
s
k
 H

o
o
k

S
ta

rt
u

p
 H

o
o
k

S
h
u
td

o
w

n
 H

o
o
k

A
la

rm
 C

a
llb

a
c
k

P
ro

te
c
ti
o
n
 H

o
o
k

B
e
fo

re
 S

ta
rt

 o
f

O
S

P
re

-S
ta

rt
 T

a
s
k

IO
C

 c
a
llb

a
c
k
s

Peripheral Access APIs X X X X X X X X X X

Os_EnterPreStartTask X

Os_CallNonTrustedFunction X X X

Os_DisableInterruptSource X X

Os_EnableInterruptSource X X

Os_ClearPendingInterrupt X X

Os_GetDetailedError X

Os_GetUnhandledIrq X X X X X X X X X

Os_GetUnhandledExc X X X X X X X X X

Stack Usage APIs X X X X X X X X X

Time Conversion Macros X X X X X X X X X

Os_Init X

CheckISRMemoryAccess X X X X

CheckTaskMemoryAccess X X X X

CallTrustedFunction X X X

Table 5-21 Calling Context Overview

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 181
based on template version 6.0.1

6 Configuration

MICROSAR OS is configured with Vectors “DaVinci Configurator”.

The descriptions of all OS configuration attributes are described with tool tips within the
configuration tool.

They can easily be look up during configuration of the OS component.

Note
The configuration with OIL (OSEK implementation language) is not supported.

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 182
based on template version 6.0.1

7 Glossary

Term Description

Non-trusted function
(NTF)

A non-trusted function is a functional service provided by a non-trusted
OS application.

It runs in the non-privileged mode of the processor with restricted memory
rights.

Application Any software parts that uses the OS. This may include other software
modules or customer software (don’t confuse this with the OS-application
object).

Pre-start task An OS task which may run before StartOS has been called. Within the
pre-start task the usage of non-trusted functions is allowed.

OS-application An OS object of type application.

OS system level The lowest priority of all category 1 ISRs.

X-Signal MICROSAR OS mechanism which realizes cross core service APIs.

Kernel Panic An inconsistent state of the OS results in kernel panic mode. The OS
does not know how to proceed correctly. It goes into freeze as fast as
possible (interrupts are disabled, the panic hook is called and afterwards
an endless loop is entered).

Thread Umbrella Term for OS Task, OS hooks and OS ISR objects

Technical Reference MICROSAR OS

© 2016 Vector Informatik GmbH Version 1.7.0 183
based on template version 6.0.1

8 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1 Introduction
	1.1 Architecture Overview
	1.2 Abstract
	1.3 Characteristics
	1.4 Hardware Overview
	1.4.1 TriCore Aurix
	1.4.2 Power PC
	1.4.3 ARM
	1.4.4 RH850
	1.4.5 VTT OS
	1.4.5.1 Characteristics of VTT OS

	2 Functional Description
	2.1 General
	2.2 MICROSAR OS Deviations from AUTOSAR OS Specification
	2.2.1 Generic Deviation for API Functions
	2.2.2 Trusted Function API Deviations
	2.2.3 Service Protection Deviation
	2.2.4 SyncScheduleTable API Deviation
	2.2.5 CheckTask/ISRMemoryAccess API Deviation
	2.2.6 Interrupt API Deviation
	2.2.7 Cross Core Getter APIs
	2.2.8 IOC
	2.2.9 Return value upon stack violation
	2.2.10 Forcible Termination of Applications

	2.3 Stack Concept
	2.3.1 Task Stack Sharing
	2.3.1.1 Description
	2.3.1.2 Activation
	2.3.1.3 Usage

	2.3.2 ISR Stack Sharing
	2.3.2.1 Description
	2.3.2.2 Activation
	2.3.2.3 Usage

	2.3.3 Stack Check Strategy
	2.3.4 Software Stack Check
	2.3.4.1 Description
	2.3.4.2 Activation
	2.3.4.3 Usage

	2.3.5 Stack Supervision by MPU
	2.3.5.1 Description
	2.3.5.2 Activation
	2.3.5.3 Usage

	2.3.6 Stack Usage Measurement
	2.3.6.1 Description
	2.3.6.2 Activation
	2.3.6.3 Usage

	2.4 Interrupt Concept
	2.4.1 Interrupt Handling API
	2.4.1.1 Interrupt Handling in SC1 / SC3
	2.4.1.2 Interrupt Handling in SC2 / SC4

	2.4.2 Interrupt Vector Table
	2.4.3 Nesting of Category 2 Interrupts
	2.4.3.1 Description
	2.4.3.2 Activation

	2.4.4 Category 1 Interrupts
	2.4.4.1 Implementation of Category 1 ISRs
	2.4.4.2 Nesting of Category 1 ISRs
	2.4.4.3 Category 1 ISRs before StartOS
	2.4.4.4 Notes on Category 1 ISRs

	2.4.5 Initialization of Interrupt Sources
	2.4.6 Unhandled Interrupts

	2.5 Exception Concept
	2.5.1 Exception Vector Table
	2.5.2 Unhandled Exceptions

	2.6 Timer Concept
	2.6.1 Description
	2.6.2 Activation
	2.6.3 Usage
	2.6.4 Dependencies

	2.7 Periodical Interrupt Timer (PIT)
	2.7.1 Description
	2.7.2 Activation

	2.8 High Resolution Timer (HRT)
	2.8.1 Description
	2.8.2 Activation

	2.9 PIT versus HRT
	2.10 Startup Concept
	2.11 Single Core Startup
	2.11.1 Single Core Derivatives
	2.11.2 Multi Core Derivatives
	2.11.2.1 Examples for SC1 / SC2 Systems
	2.11.2.2 Examples for SC3 / SC4 Systems

	2.12 Multi Core Startup
	2.12.1 Example for SC1 / SC2 Systems
	2.12.2 Examples for SC3 / SC4 systems
	2.12.2.1 Only with AUTOSAR Cores
	2.12.2.2 Mixed Core System

	2.13 Error Handling
	2.14 Error Reporting
	2.14.1 Extension of Service IDs
	2.14.2 Extension of Error Codes
	2.14.3 Detailed Error Codes

	2.15 Multi Core Concepts
	2.15.1 Scheduling and Dispatching
	2.15.2 Multi Core Data Concepts
	2.15.3 X-Signals
	2.15.4 Master / Slave Core
	2.15.5 Startup of a Multi Core System
	2.15.6 Spinlocks
	2.15.7 Cache
	2.15.8 Shutdown
	2.15.8.1 Shutdown of one Core
	2.15.8.2 Shutdown of all Cores
	2.15.8.3 Shutdown during Protection Violation

	2.16 Debugging Concepts
	2.16.1 Description
	2.16.2 Activation
	2.16.3 ORTI Debugging

	2.17 Memory Protection
	2.17.1 Usage of the System MPU
	2.17.2 Usage of the Core MPUs
	2.17.3 Configuration Aspects
	2.17.3.1 Static MPU Regions
	2.17.3.2 Dynamic MPU Regions
	2.17.3.3 Freedom from Interference

	2.17.4 Stack Monitoring
	2.17.5 Protection Violation Handling
	2.17.6 Optimized / Fast Core MPU Handling
	2.17.7 Recommended Configuration

	2.18 Memory Access Checks
	2.18.1 Description
	2.18.2 Activation
	2.18.3 Usage
	2.18.4 Dependencies

	2.19 Timing Protection Concept
	2.19.1 Description
	2.19.2 Activation
	2.19.3 Usage

	2.20 IOC
	2.20.1 Description
	2.20.2 Unqeued (Last Is Best) Communication
	2.20.2.1 1:1 Communication Variant
	2.20.2.2 N:1 Communication Variant
	2.20.2.3 N:M Communication Variant

	2.20.3 Queued Communication
	2.20.4 Notification
	2.20.5 Particularities
	2.20.5.1 N:1 Queued Communication
	2.20.5.2 IOC Spinlocks
	2.20.5.3 Notification

	2.21 Trusted OS Applications
	2.21.1 Trusted OS Applications with Memory Protection
	2.21.1.1 Description
	2.21.1.2 Activation
	2.21.1.3 Dependencies

	2.21.2 Trusted OS Applications in User Mode
	2.21.2.1 Description
	2.21.2.2 Activation
	2.21.2.3 Dependencies

	2.21.3 Trusted Functions

	2.22 OS Hooks
	2.22.1 Runtime Context
	2.22.2 Nesting behavior
	2.22.3 Hints

	3 Vector Specific OS Features
	3.1 Optimized Spinlocks
	3.1.1 Description
	3.1.2 Activation
	3.1.3 Usage

	3.2 Peripheral Access API
	3.2.1 Description
	3.2.2 Activation
	3.2.3 Usage
	3.2.4 Dependencies
	3.2.5 Alternatives
	3.2.6 Common Use Cases

	3.3 Trusted Function Call Stubs
	3.3.1 Description
	3.3.2 Activation
	3.3.3 Usage
	3.3.4 Dependencies

	3.4 Non-Trusted Functions (NTF)
	3.4.1 Description
	3.4.2 Activation
	3.4.3 Usage
	3.4.4 Dependencies

	3.5 Interrupt Source API
	3.5.1 Description

	3.6 Pre-Start Task
	3.6.1 Description
	3.6.2 Activation
	3.6.3 Usage
	3.6.4 Dependencies

	3.7 X-Signals
	3.7.1 Description
	3.7.1.1 Notes on Synchronous X-Signals
	3.7.1.2 Notes on Mixed Criticality Systems

	3.7.2 Activation

	3.8 Timing Hooks
	3.8.1 Description
	3.8.2 Activation
	3.8.3 Usage

	3.9 Kernel Panic
	3.10 Generate callout stubs
	3.10.1 Description
	3.10.2 Activation
	3.10.3 Usage

	4 Integration
	4.1 Compiler Optimization Assumptions
	4.1.1 Compile Time

	4.2 Hardware Software Interfaces (HSI)
	4.2.1 TriCore Aurix Family
	4.2.1.1 Context
	4.2.1.2 Core Registers
	4.2.1.3 Interrupt Registers
	4.2.1.4 GPT Registers
	4.2.1.5 STM Registers
	4.2.1.6 Aurix Special Characteristics
	4.2.1.7 PSW handling

	4.2.2 RH850 Family
	4.2.2.1 Context
	4.2.2.2 Core Registers
	4.2.2.3 MPU Registers
	4.2.2.4 INTC Registers
	4.2.2.5 Inter Processor Interrupt Control Registers
	4.2.2.6 Timer TAUJ Registers
	4.2.2.7 Timer STM Registers
	4.2.2.8 Timer OSTM Registers
	4.2.2.9 RH850 Special Characteristics
	4.2.2.10 PSW Register Handling
	4.2.2.11 Instructions
	4.2.2.12 Exception and Interrupt Cause Address

	4.2.3 Power PC Family
	4.2.3.1 Context
	4.2.3.2 Core Registers
	4.2.3.3 Interrupt Registers
	4.2.3.4 PIT Registers
	4.2.3.5 STM Registers
	4.2.3.6 MPU Registers
	4.2.3.7 SEMA4 Registers
	4.2.3.8 Power PC Special Characteristics
	4.2.3.9 MSR Handling

	4.2.4 ARM Family
	4.2.4.1 Cortex-R derivatives
	4.2.4.2 Cortex-A derivatives
	4.2.4.3 ARM Special Characteristics

	4.3 Memory Mapping Concept
	4.3.1 Provided MemMap Section Specifers
	4.3.1.1 Usage of MemMap Macros
	4.3.1.2 Resulting sections
	4.3.1.3 Access Rights to Variable Sections

	4.3.2 Link Sections
	4.3.2.1 Simple Linker Defines
	4.3.2.2 Hierachical Linker Defines
	4.3.2.3 Selecting OS constants
	4.3.2.4 Selecting OS variables
	4.3.2.5 Selecting OS Barriers, Core Status and Trace variables
	4.3.2.6 Selecting OS Spinlocks
	4.3.2.7 Selecting User Constant Sections
	4.3.2.8 Selecting User Variable Sections

	4.3.3 Section Symbols

	4.4 Static Code Analysis
	4.5 Configuration of X-Signals
	4.5.1 TriCore Aurix Family
	4.5.2 RH850 Family
	4.5.3 Power PC Family
	4.5.4 ARM Family
	4.5.5 VTT OS

	4.6 OS generated objects
	4.6.1 System Application
	4.6.2 Idle Task
	4.6.3 Timer ISR
	4.6.4 System Timer Counter
	4.6.5 Timing Protection Counter
	4.6.6 Timing protection ISR
	4.6.7 Resource Scheduler
	4.6.8 X Signal ISR
	4.6.9 IOC Spinlocks

	4.7 VTT OS Specifics
	4.7.1 Configuration
	4.7.2 CANoe Interface

	4.8 User include files

	5 API Description
	5.1 Peripheral Access API
	5.1.1 Read Functions
	5.1.2 Write Functions
	5.1.3 Bitmask Functions

	5.2 Pre-Start Task
	5.3 Non-Trusted Functions (NTF)
	5.4 Interrupt Source API
	5.4.1 Disable Interrupt Source
	5.4.2 Enable Interrupt Source
	5.4.3 Clear Pending Interrupt
	5.4.4 Check Interrupt Source Enabled
	5.4.5 Check Interrupt Pending

	5.5 Detailed Error API
	5.5.1 Get detailed Error
	5.5.2 Unhandled Interrupt Requests
	5.5.3 Unhandled Exception Requests

	5.6 Stack Usage API
	5.7 RTE Interrupt API
	5.8 Time Conversion Macros
	5.8.1 Convert from Time into Counter Ticks
	5.8.2 Convert from Counter Ticks into Time

	5.9 Access Check API
	5.9.1 Check ISR Memory Access
	5.9.2 Check Task Memory Access

	5.10 OS Initialization
	5.11 Timing Hooks
	5.11.1 Timing Hooks for Activation
	5.11.1.1 Task Activation
	5.11.1.2 Set Event

	5.11.2 Timing Hook for Context Switch
	5.11.3 Timing Hooks for Locking Purposes
	5.11.3.1 Get Resource
	5.11.3.2 Release Resource
	5.11.3.3 Request Spinlock
	5.11.3.4 Request Internal Spinlock
	5.11.3.5 Get Spinlock
	5.11.3.6 Get Internal Spinlock
	5.11.3.7 Release Spinlock
	5.11.3.8 Release Internal Spinlock
	5.11.3.9 Disable Interrupts
	5.11.3.10 Enable Interrupts

	5.12 PanicHook
	5.13 Calling Context Overview

	6 Configuration
	7 Glossary
	8 Contact

