RENESAS

-
o
9
ﬁ\.
7
<
O
S
=
QO

AUTOSAR MCAL R4.0.3
User's Manual

PORT Driver Component Ver.1.0.4

Embedded User's Manual

Target Device:
RH850\P1x-C

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.1.02 Jun 2017


http://www.renesas.com/
http://www.renesas.com/




10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor
products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in
the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third
parties arising from the use of these circuits, software, or information.

Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents,
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information
described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics
disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or
otherwise misappropriation of Renesas Electronics products.

Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended
applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

""Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;
home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication
equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or
bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea
repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any
and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the
product is not intended by Renesas Electronics.

When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General
Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges
specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics,
installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas
Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas
Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the
possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics
products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system.
Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or
systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including
without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable
laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale
is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1)
any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons,
chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose
relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and
security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly
or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When
exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and
regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.

Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and
conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your
resale or making Renesas Electronics products available any third party.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.







Abbreviations and Acronyms

Abbreviation / Acronym

Description

ADC

Analog to Digital Converter

ANSI American National Standards Institute
API Application Programming Interface
ARXML AutosaR eXtensible Mark-up Language
AUTOSAR AUTomotive Open System ARchitecture
BUS BUS Network

BSW Basic SoftWare

DEM Diagnostic Event Manager

DET Development Error Tracer

DIO Digital Input Output

ECU Electronic Control Unit

GNU GNU is Not Unix

GPT General Purpose Timer

HW HardWare

ICU Input Capture Unit

id/ID Identifier

le] Input Output

ISR Interrupt Service Routine

KB Kilo Bytes

MCAL Microcontroller Abstraction Layer
MCU MicroController Unit

MHz Mega Hertz

NA Not Applicable

0S Operating System

PDF Parameter Definition File

PLL Phase Locked Loop

PWM Pulse Width Modulation

RAM Random Access Memory

ROM Read Only Memory

RTE Runtime Environment

SWS Software Requirements Specification
TAU Timer Array Unit

WDT Watchdog Timer




Definitions

Term Represented by
PORT channel Numeric identifier linked to a hardware PORT
PORT Idle State The idle state represents the output state of the PORT channel after the
call of
Port_SetOutputToldle or Port_Delnit.
PORT Output State Defines the output state for a PORT signal. It
could be: High
Low
PORT period Defines the period of the PORT signal.
PORT Polarity Defines the starting output state of each PORT channel
Sl. No. Serial Number




Table of Contents

Chapter 1 INtrOdUCTION ...cuiii e 11
1.1. DOCUMENT OVEIVIEW ..eiiiiiiiiiie ittt ettt ettt e ettt e e ettt e e sttt e e s bbb e e e s bbbt e e s sbe e e e s anbneeesnnnneeas 13
Chapter 2 Reference DOCUMENTS .....ccoviiiiiiiieiiii e 15
Chapter 3 Integration And Build Process......cccccoceviiiiiiiiiicciiineenn, 17
3.1. PORT Driver Component Make fil@ ... e 17
Chapter 4 FOrethoughts. ..., 19
4.1. (T L= | OO OUPPTPPPPPN 19
4.2. PrECONAITIONS ...ttt s bt e e s bbbt e e s bbbt e e s aabe e e e s abb e e e e snnneeas 19
4.3. User Mode and SUPEIrVISOr MOGE. ......ciiiiiiiieiiiiie ettt ettt e e sneeeas 20
4.4, (D= U= W O o ] g E=T K= (= o o) VPP 21
4.5. DEVIATION LIS .ieiiiiiiiiie ettt ettt e st e st e e s s e e e s e e e s e e e e s 22
Chapter 5  Architecture DetailS........cccoevviiiiiiiiiiiii e 23
Chapter 6 Registers DetailS.......cc.oivviiiiiiiie e 25
Chapter 7 Interaction Between The User And PORT Driver
(@70 01 o 10 o =] o 1 SRR 29
7.1. Services provided by PORT Driver Module tO USEr ............uuvviviiiiiiiiiiiiiiiiiiiiininieininineninnnnnn. 29
Chapter 8 PORT Driver Component Header And Source File
91T o 1 o £ o o 1 31
Chapter 9 Generation Tool GUIde........cooeveviiiiiiiiee e, 33
Chapter 10 Application Programming Interface ..............cco.coovnn. 35
10.1. [ aT o Lol g (=To I8/ o = 1= PP 35
10.1.1. SEANAAIA TYPES .ttt ettt ettt e et e e e s bb e e e e s bbeeeeabreeaean 35
10.1.2. Other MOAUIE TYPES ..ottt ettt e et e et ee e e sbreeaeans 35
10.2.  TYPE DEIINITIONS .ottt e e e ettt et e e e e e s bbb e e e e e e e e e e nnnbnnneaaaeas 35
10.2.1. o S G OXo 01T N o SRTPPR 35
10.2.2. o A T 1 Y o= TSRS 37
10.2.3. POrt_PINDIrECHION TYPE ...uiiiiieieie ettt e e e e e e e eneee e 37
10.2.4. POrt. PINMOGETYPE ..ottt ettt e e e e e s et e e e e e e s e anneee e 37
10.3. FUNCHION DEFINITIONS ..eiiiiiiiiii ettt st e e s e e s snneeeas 38
10.3.1 (o] o A 1 T ST PRTT TP 38
10.3.2 POrt_ SEtPINDIrECHON ... ..uviiiiiiiiiieiiieieieietaeeereerereeare e e erererererrrrrarerrrrrrrrrrrnrrrnrnrnnes 39
10.3.3 Port RefreShPOMDIrECHON ........uviiiiiiiiiiiiiiiiiieieieiiieieieeeeerrereererererrrersrnrrrrrrrrrrrerararnne 39
10.3.4 [ado Ty R CT=Y AV =T 60T ] ) (o PR 39
10.3.5 Lo T Y=Y o111, o T =P 40



10.3.6 [ado] S T= 1 o] D101 Fo o = SRR 40

10.3.7 Port_ SetTOAREINAtEMOUE ......cccccei e e e e e e 41

10.3.8 Port_ SetPiNDefaultMOdEe ........ccocooiiiiiiiieec e 41

10.3.9 Port_ SetPinDefaultDir€CtioN...........ccviiiiiee e e e 42
Chapter 11 Development And Production Errors..........cccceeveeennnneee, 43
11.1. PORT Driver Component DeVelOPMENT ErTOIS . ....cc.uuiii it 43
11.2. PORT Driver Component ProducCtion EFTOIS ......coccuiiiiiiiiieiiiiie e 44
Chapter 12 Memory Organization .........cccooeveuiieveiiieeiiieeeeeeeeeii 45
Chapter 13 P1x-C Specific Information ...........ccoeeiviviiiiiviiiieeiii, 47
13.1. Interaction between the User and PORT Driver COMpPoNent .......ccccceveveveviiiieieieieceeeeeceeeee 47
13.1.1. Parameter Definition File ... 47

13.1.2. Services Provided By PORT Driver COMPONENT.......c.cocuieiiiiiieeeiiiieeeiniieeeesnireeeens 47

13.2. S F= 0 ] ] TSI A o ] L= 4 o Y o 48
13.2.1. Sample ApPlCAtioN SIFUCTUIE ........uuiiiiiiiiee e 48

13.2.2. Building Sample APPIICALION .......cuuiiiiiiiie e 49

13.2.2.1  Configuration EXampPle..........ccooiiiiiiiiiiiieiiie e 49

13.2.2.2 Debugging the Sample AppliCatioN ...............uuvrvivimiriiiniiiiieiiieiei. 50

13.3. Memory and TREOUGRPUL ....ooiii e bbb e e 51
13.3.1. ROM/RAM USBQE....ccieiiiiiiiiiteee ettt ettt e e et e e e e e e s s st e e e e e e e s ananneeees 51

13.3.2. SEACK DEPEN . ————— 52

13.3.3. Throughput DetalilS .......ccoooi i 52

13.4. Critical SECHON DELAIIS ....cueeiiiiiiiiie ettt e b e 52
Chapter 14 Release DetailS.......c.cccoovviiiiiiiiiiiii e, 53



Figure 1-1
Figure 1-2
Figure 5-1
Figure 12-1
Figure 13-1

Table 4-1
Table 4-2
Table 4-3
Table 6-1
Table 8-1
Table 10-1
Table 10-2
Table 11-1
Table 11-2
Table 13-1
Table 13-2
Table 13-3
Table 13-4
Table 13-5

List of Figures

System Overview Of AUTOSAR ArchiteCture .......ccccceeeviiiciiiiieee e 11
System Overview Of The PORT Driver In AUTOSAR MCAL Layer......cccccceeevvennnnen. 12
PORT DIIVEr ArChItECIUIE.......eiiiiiiiiie ettt e e e e e 23
PORT Driver Component Memory Organization.............ccccvveereeeesiiicninneeeeeesssssenennns 45
Overview of PORT Driver Sample Application .........cccccoovcvvieeeiee i 48

List of Tables

Supervisor mode and User mode detailS............uuuiuieimiiiiiiiiiiiiiiiiieeenn. 21
PORT Driver Protected RESOUICES LiSt .......ooiiuiuiiiiiieeiiiiiiiet e 21
PORT Driver DeViation LiSt.........couiiuuriiiieeeee ittt 22
REGISIEI DEIAIIS ......eeieiiiiii e 25
Description of the PORT Driver Component Files ... 32
AUTOSAR Specific APIs supported by the PORT Driver Component...................... 38
Non- AUTOSAR Specific APIs supported by the PORT Driver Component ............ 38
DET Errors of PORT Driver COMPONENT ........uviiiiiiiieiiiiie ettt 43
DEM Errors of PORT Driver COMPONENT .........uuuuuevrierrrriririririnnrrernrnrninrmrnenn.. 44
PDF information fOr PLX-C .....cciiiiiiiiiiiiiiiee ettt 47
ROM/RAM Details WItNOUE DET ......ccoiiiiiieiiiiiieiiiiieessiiee et siiee e e 51
ROM/RAM Details With DET .....cocviiiiiiiiiie et 51
Throughput Details of the APIS..........ccooooo i, 52
Critical Section Throughput Details of the APIS ... 52



10



Introduction

Chapter 1

Chapter 1

Introduction

The purpose of this document is to describe the information related to
PORT Driver Component for Renesas P1x-C microcontrollers.

This document shall be used as reference by the users of PORT Driver
Component for P1x-C Device. The information specific to P1x-C Device
channel mapping, ISR handler, integration and build process for
application along with the memory consumption and throughput
information are provided.

The users of PORT Driver Component shall use this document as
reference. This document describes the common features of PORT Driver
Component.

This document is intended for the developers of ECU software using
Application Programming Interfaces provided by AUTOSAR. The PORT Driver
Component provides the following services:

* PORT Driver Component initialization
* Port Pin Direction Handling

* Port Pin Direction Refreshing

* Port Pin Mode Handling

* Port Set To Dio Mode

* Port Set To Alternate Mode

« Port Pin Set To Default Direction
* Port Pin Set To Default Mode

* Module Version Information

The following diagram shows the system overview of the AUTOSAR
Architecture.

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

PORT Driver

Microcontroller

Figure 1-1 System Overview Of AUTOSAR Architecture

11



Chapter 1 Introduction

The PORT Driver Component comprises of two sections that is,
embedded software and the configuration tool to achieve scalability and
configurability. The PORT Driver Component Code Generation Tool is a
command line tool that accepts ECU configuration description files as
input and generates C Source and C Header files. The configuration
description is an ARXML file that contains information about the
configuration for PORT channels. The tool generates Port_Cfg.h,
Port_Cbk.h, Port_Hardware.h, Port Hardware.c and Port_PBcfg.c files.

The Figure in the following page depicts the PORT Driver as part of layered
AUTOSAR MCAL Layer:

Microcontroller Drivers Memory Drivers Communication Drivers 1/O Drivers
— — 1 1 r—r— —— — 1 [ [—
=Y
2llzlle ”
= = 3
s 23|z T n
@ 2 < 3 o m T [ € o
T S (e} 0 'Y = m ) > >
— a c =) N A R 2 z 5 — o
o g = @ SN 2 by S1E| o < o) 3|2 o|lo
3 Q = — (||| =1]2 = || g = ) c S g Rl E
sl | 9| 5|8 glloll9|l= ol a3 ol Sllgllolle
ST 1] S 3 22l 221
4 ) ] = @ ] < <
= ‘3 = o @ ] )
L L It I S S i S L L L]
< x § Micro- o - m .
[0) c A = = m [ Q) = > o
£ O o . v ] © [72) > o s =
3 S ER g Controller @ 2 S 2 bl 62 z 2 s 3 5
~ o -

12

Figure 1-2 System Overview Of The PORT Driver In AUTOSAR MCAL Layer




Introduction

Chapter 1

1.1

Document Overview

The document has been segmented for easy reference. The table below
provides user with an overview of the contents of each section:

Section

Contents

Section 1 (Introduction)

This section provides an introduction and overview of PORT Driver
Component.

Section 2 (Reference Documents)

This section lists the documents referred for developing this document.

Section 3 (Integration And Build
Process)

This section explains the folder structure for PORT Driver Component
along with a sample application.

Section 4 (Forethoughts)

This section provides brief information about the PORT Driver
Component, the preconditions that should be known to the user before it
is used, data consistency details and deviation list.

Section 5 (Architecture Details)

This section describes the layered architectural details of the PORT
Driver Component.

Section 6 (Registers Details)

This section describes the register details of PORT Driver Component.

Section 7 (Interaction Between
The User And PORT Driver
Component)

This section describes interaction of the PORT Driver Component with
the upper layers.

Section 8 (PORT Driver
Component Header And Source
File Description)

This section provides information about the PORT Driver Component
source files is mentioned. This section also contains the brief note on the
tool generated output file.

Section 9 (Generation Tool Guide)

This section provides information on the PORT Driver Component Code
Generation Tool.

Section 10 (Application
Programming Interface)

This section mentions all the APIs provided by the PORT Driver
Component.

Section 11 (Development And
Production Errors)

This section lists the DET and DEM errors.

Section 12 (Memory
Organization)

This section provides the typical memory organization, which must be
met for proper functioning of component.

Section 13 (P1x-C Specific
Information)

This section describes P1x-C Sample Application with its folder
structure and the information about RAM/ROM usage, stack depth
and throughput details.

Section 14 (Release Details)

This section provides release details with version name and base
version.

13



Chapter 1 Introduction

14



Reference Documents Chapter 2
Chapter 2 Reference Documents
SI. No. Title Version
1. Autosar R4.0 3.2.0
Specification of PORT Driver (AUTOSAR_SWS_PortDriver.pdf)
2. AUTOSAR BUGZILLA (http:/Aww.autosar.org/bugzilla) -
Note: AUTOSAR BUGZILLA is a database, which contains concerns raised
against information present in AUTOSAR Specifications.
3. RHB850/P1x-C Group Document User's Manual: Hardware Rev.1.20
(r01uh0517€j00120_rh850p1x-c_Open.pdf)
4. Specification of Compiler Abstraction 3.2.0
(AUTOSAR_SWS_CompilerAbstraction.pdf)
5. Specification of Memory Mapping 1.4.0
(AUTOSAR_SWS_MemoryMapping.pdf)
6. Specification of Platform Types 250
(AUTOSAR_SWS_PlatformTypes.pdf)

15


http://www.autosar.org/bugzilla

Chapter 2

Reference Documents

16



Integration And Build Process Chapter 3

Chapter 3

Remark

3.1.

3.1.1.

Remark

Integration And Build Process

In this section the folder structure of the PORT Driver Component is
explained. Description of the Make files along with samples is provided in this
section.

The details about the C Source and C Header files that are generated by the
PORT Driver Generation Tool are mentioned in the “R20UT3654EJ0102-
AUTOSAR.pdf”.

PORT Driver Component Make file

The Make file provided with the PORT Driver Component consists of the
GNU Make compatible script to build the PORT Driver Component in case of
any change in the configuration. This can be used in the upper level Make file
(of the application) to link and build the final application executable.

Folder Structure
The files are organized in the following folders:

Trailing slash ‘\" at the end indicates a folder

X1X\common_platform\modules\port\src
\Port.c
\Port_ Ram.c
\Port_Version.c

X1X\common_platform\modules\port\include
\Port.h
\Port_PBTypes.h
\Port_Ram.h
\Port_Version.h
\Port_Debug.h
\Port_Types.h
\Port_RegWrite.h

X1X\P1x-C\modules\port\sample_application\make\ghs
App_Port_P1x-C_Sample.mak
App_Port_P1x-C_Sample.ld

X1X\P1x-C\modules\port\user_manual
(User manuals will be available in this folder)

X1X\P1x-C\modules\port\generator
\R403_PORT_P1x-C_BSWMDT.arxml

Note: < Sub-Variant> tag indicate device supported which is P1H-C, P1H-CE, and P1M-C.

17



Chapter 3

Integration And Build Process

18



Forethoughts

Chapter 4

Chapter 4 Forethoughts

4.1. General

Following information will aid the user to use the PORT Driver Component

software efficiently:

The PORT Driver Component does not enable or disable the
ECU or Microcontroller power supply. The upper layer should
handle this operation.

Start-up code is not implemented by the PORT Driver
Component.

PORT Driver Component does not implement any callback
notification functions.

PORT Driver Component does not implement any scheduled
functions.

The PORT Driver Component is restricted to Post Build only.
The authorization of the user for calling the software
triggering of a hardware reset is not checked in the PORT
Driver Component. This will be the responsibility of the upper
layer.

The PORT Driver Component supports setting of Analog and
Digital Noise Elimination. To figure out the different port filter
arrangements the device User Manual should be taken as
reference. If no configuration of a certain port filter is done
within this Port Module, the device specific default settings
will take effect on this filter.

The value of unused pins are set to defined state. i.e. Mode =
DIO, Direction = Input, Pin Level Value = LOW

All development errors will be reported to DET by using the
API Det_ReportError provided by DET.

All production errors will be reported to DEM by using the
API Dem_ReportErrorStatus provided by DEM.

The PORT Driver does not have the API support to read the
status of Port pins or Port registers. Hence PORT Driver will
not support ‘Read back’ feature.

The file Interrupt_VectorTable.c provided is just a Demo and
not all interrupts will be mapped in this file. So the user has
to update the Interrupt_VectorTable.c as per his
configuration.

The parameter PortDriveStrengthControl has dependency on
parameter PortUniversalCharacteristicCntrl while specifying
the output driving abilities of port pins.

Port_SetToDioMode and Port_SetPinDefaultMode Api shall
not change or affect the level of the requested pin.

The access to HW registers is possible only using AUTOSAR
standard and vendor specific API functions described in this
document (Chapter 10).

The output level of each pin can be inverted by configuring
the required value (true/false) through the configuration
parameter PortOutputLevellnversion.

The user shall take care of setting mode of a respective port
pin as valid or not while calling Port_SetPinMode API.

The value of unused pins are set to defined state. i.e. Mode =
DIO, Direction = Input, Pin Level Value = LOW

4.2. Preconditions

Following preconditions have to be adhered by the user, for proper
functioning of the PORT Driver Component:

19



Chapter 4 Forethoughts

* The Port_PBcfg.c, Port_Hardware.c, Port_Hardware.h Port_Cbk.h and
Port_Cfg.h files generated by the PORT Driver Component Code Generation
Tool must be compiled and linked along with PORT Driver Component
source files.

* The application has to be rebuilt, if there is any change in the Port_Cfg.h file
generated by the PORT Driver Component Generation Tool.

» File Port_PBcfg.c generated for single configuration set or multiple
configuration sets using PORT Driver Component Code Generation Tool
should be compiled and linked independently.

*  Symbolic names for all Port Pins are generated in Port_Cfg.h file which can
be used as parameters for passing to PORT Driver Component APIs.

+ The PORT Driver Component needs to be initialized for all Port Pins before
doing any operation on Port Pins. The Port_Init () API shall also be called
after a reset in order to reconfigure the Port Pins of the microcontroller. If
PORT Driver Component is not initialized properly, the behavior of Port Pins
may be undetermined.

* The user should ensure that PORT Driver Component API requests are
invoked with correct input arguments.

»  The other modules depending on PORT Driver Component should ensure
that the PORT Driver Component initialization is successful before doing any
operation on Port Pins.

* Input parameters are validated only when the static configuration parameter
PORT_DEV_ERROR_DETECT is enabled. Application should ensure that
the right parameters are passed while invoking the APIs when
PORT_DEV_ERROR_DETECT is disabled.

» Values for production code Event Id’s should be assigned externally by the
configuration of the DEM.

+ A mismatch in the version numbers of header and the source files will result
in a compilation error. User should ensure that the correct versions of the
header and the source files are used.

*+ The PORT Driver Component APIs, except Port_GetVersioninfo API, which
are intended to operate on Port Pins shall be called only after PORT Driver
Component is initialized by invoking Port_Init() API. Otherwise Port Pin
functions will exhibit undefined behavior.

+ All Port Pins and their functions should be configured by the Port
configuration tool. It is the User/Integrator responsibility to ensure that the
same Port/Port Pin is not being accessed/configured in parallel by different
entities in the same system.

» User have the responsibility to enable or disable the critical protection using
the parameter PortCriticalSectionProtection. By enabling parameter
PortCriticalSectionProtection, Microcontroller HW registers which suffer from
concurrent access by multiple tasks, are protected.

+ The same alternative function should not be assigned to two different pins at
same time.

* The user shall configure the exact Module Short Name PORT in
configurations as specified in config.xml file and the same shall be given in
command line.

4.3. User Mode and Supervisor Mode

The below table specifies the APIs which can run in user mode, supervisor
mode or both modes:

20



Forethoughts

Chapter 4

Table 4-1 Supervisor mode and User mode details

SI.No

API| Name

User Mode

Supervisor mode

Known
limitation in
User mode

Port_Init

Port_SetPinDirection

Port_RefreshPortDirection

Port_SetPinMode

Port_SetToDioMode

Port_SetToAlternateMode

Port_SetPinDefaultDirection

Port_SetPinDefaultMode

©| 0| N o G &~ W[N] -

Port_GetVersioninfo

Note:

4.4.

Table 4-2

Implementation of Critical Section is not dependent on MCAL. Hence

Critical Section is not considered to the entries for User mode in the

above table.

The user can switch between user mode and supervisor mode during

Enter/Exit critical section functions, so that these functions will work
properly even though critical section protection is ON.

Data Consistency

To support the re-entrance and interrupt services, the AUTOSAR PORT
component will ensure the data consistency while accessing its own RAM

storage or hardware registers. The PORT component will use
SchM_Enter_Port_<Exclusive Area> and SchM_EXxit_Port_<Exclusive

Area> functions. The SchM_Enter_Port_<Exclusive Area> function is called
before the data needs to be protected and SchM_EXxit_Port_<Exclusive

Area>function is called after the data is accessed.

The following exclusive areas along with scheduler services are used to

provide data integrity for shared resources:
PORT_SET_PIN_MODE_PROTECTION
PORT_SET_PIN_DEFAULT_MODE_PROTECTION
PORT_SET_PIN_DEFAULT _DIR_PROTECTION

PORT_SET_PIN_DIR_PROTECTION

PORT_SET_TO_DIO_ALT_PROTECTION
PORT_REFRESHPORT_INTERNAL_PROTECTION

The functions SchM_Enter_Port_<Exclusive Area> and
SchM_Exit_Port_<Exclusive Area> can be disabled by disabling the
configuration parameter ‘PortCriticalSectionProtection’.

PORT Driver Protected Resources List

APl Name

Exclusive Area Type

Protected Resources

Direction

Port_SetPin

CTION

PORT_SET_PIN_DIR_PROTE

HW registers: PSRn, JPSR0O, PMSRn,
PINVn and JPMSRO.

Port_Refres
hPortDirecti

RNAL_PROTECTION

PORT_REFRESHPORT_INTE

HW registers: PMSRn and JPMSRO.

21



Chapter 4 Forethoughts

on

Port_SetPin | PORT_SET_PIN_MODE_PRO | HW registers: PIPCn, PMSRn,

Mode TECTION PMCSRn, PSRn, JPMSRO,
JPMCSRO, JPSR0, PFCEn, PFCn and
JPFCEO.

Port_SetTo PORT_SET_TO_DIO_ALT_PR HW registers: PMCSRn, PIPCn and
DioMode OTECTION JPMCSRO

Port_SetTo | PORT_SET_TO_DIO_ALT_PR HW registers: PMCSRn, PIPCn and

AlternateMo OTECTION JPMCSRO

de

Port_SetPin PORT_SET_PIN_DEFAULT_M HW registers: PMCSRn, PMSRn,
DefaultMod ODE_PROTECTION PIPCn, JPMCSRO, JPMSRO, PFCEn,
e PFCn, JPFCEO, PSRn and JPSRO.

Port_SetPin | PORT_SET_PIN_DEFAULT DI | HW registers: PMSRn, JPMSRO,

DefaultDire R_PROTECTION PSRn and JPSRO.
ction

Port_GetVe None None

rsioninfo

Note: The highest measured duration of a critical section is 2.512 micro seconds
measured for Port_RefreshPortDirection API.

4.5. Deviation List

Table 4-3 PORT Driver Deviation List

Sl. No. |Description IAUTOSAR Bugzilla

1. The Port Pin specific containers (PortPin0, PortPinl, |-
PortPin2 and so on ...) are added as sub containers
of PortGroup<n> containers, having the parameters
‘PortPinDirection’, ‘PortPinDirectionChangeable’,
‘PortPinLevelValue’ and

‘PortPinlInitialMode’ are added. AUTOSAR specified
container ‘PortPin’ and all its parameters are
considered as unused.

2. PortPinMode configuration parameter is not -
used for implementation as all possible modes
of a pin can be used in the Port_SetPinMode
function.

3. [ecuc_sws_2108] requirement is not applicable -
to port module since implementation of PORT
module is vendor specific.

4, Port Pin level inversion is implemented as per -
Renesas requirement which is violating
AUTOSAR requirement PORT082

22



Architecture Details

Chapter 5

Chapter 5

Architecture Details

The PORT Driver Component accesses the microcontroller Port Pins that are
located in the On-Chip hardware. The basic architecture of the PORT Driver
Component is illustrated below:

Initialization

Direction Refreshing Direction Switching

Runtime Mode Change

Figure 5-1 PORT Driver Architecture

The PORT Driver Component consists of the following sub modules based on
the functionality:

*  Port Initialization.

* Port Direction Refreshing.

*  Port Pin Direction Switching.
* Port Pin Mode Change.

*  Module Version Information

Port Initialization

This sub module provides the Port initialization functionality by providing the
Port_Init() API. This API should be invoked before the usage of any other APIs
of PORT Driver Component. Port Initialization includes initializing Port Pin
mode, Port Pin direction, Port Pin Level value, Port Pin driven value (Normal /
Open Drain), Activation of internal pull-ups and Port Filter configuration.

Port Direction Refreshing

This sub module provides the Port Direction Refreshing functionality by
providing the Port_RefreshPortDirection() API. In this functionality the PORT
Driver Component refreshes the direction of all configured Port Pins except
those Port Pins that are configured as ‘Port Pin Direction Changeable during
runtime’.

In this functionality only Direction of Port Pins is refreshed.
Port Pin Direction Switching

This sub module provides the Port Direction switching functionality at run time
by providing the Port_SetPinDirection() API. In this functionality the PORT
driver Component allows the user to change the direction of Port Pins during
runtime.

Port Pin Mode changing

This sub module provides the Port Mode change functionality at run time by
providing the Port_SetPinMode() API. In this functionality the PORT driver
Component allows the user to change the mode of Port Pins during runtime.

This sub module provides the Port Mode change functionality at run time by
providing the Port_SetToDioMode() API. In this functionality the PORT

23



Chapter 5

Architecture Details

24

driver Component allows the user to change the mode of Port Pin to DIO
mode during runtime.

This sub module provides the Port Mode change functionality at run time by
providing the Port_SetToAlternateMode() API. In this functionality the PORT
driver Component allows the user to change the mode of Port Pin to alternate
mode during runtime.

Module Version Information

The Api Port_GetVersioninfo is responsible for reading the version information
of the PORT Driver Information. The version information includes Module 1D,
Vendor ID, and Version number of the PORT Driver software.



Registers Details

Chapter 6

Chapter 6

Registers Detalils

This section describes the register details of PORT Driver Component.

Table 6-1 Register Details
Register |Register
Access Access
API Name [ g/16/32 riw/rw | Registers Configuration Macro/Variable
bits Parameter
Port_SetPinDire | 32 bit rw PSRn PortPinLevelValue usChangeableConfigVal
ction PortPinDirectionChangeabl
e
32 bit rw JPSRO PortPinLevelValue usChangeableConfigVal
PortPinDirectionChangeabl
e
32 bit rw PMSRnN PortPinDirection usOrMaskVal
PortPinDirectionChangeabl
[=Y
32 bit rw JPMSRO PortPinDirection usOrMaskVal
PortPinDirectionChangeabl
e
32 bit w PINVN PortOutputLevellnversion | usPortinversionVal
PortPinDirectionChangeabl
e PortPinDirection
Port_RefreshPor rw PortPinDirection
tDirection 32 bit PMSRn PortPinDirectionChangeabl | ulMaskAndConfigValue
e
rw PortPinDirection
32 bit JPMSRO ZO”P'”D'feCt'O”Changeab' ulMaskAndConfigValue
Port_SetToDioM | 32 bit rw PMCSRn PortPinDioAltModeChange | usOrMask
ode able PortPinInitialMode
16 bit rw PIPCn PortlpControl usOrMask
PortPinInitialMode
PortPinDiocAltModeChange
able
32 bit rw JPMCSRO [ PortPinDioAltModeChange | usOrMask
ablePortPinInitialMode
Port_SetToAlter | 32 bit rw PMCSRn PortPinDioAltModeChange | usOrMask
nateMode ablePortPinInitialMode
16 bit rw PIPCn PortlpControl usOrMask
PortPinInitialMode
PortPinDioAltModeChange
able
32 bit rw JPMCSRO [ PortPinDioAltModeChange | usOrMask
able PortPinInitialMode
Port_SetPinDefa | 32 bit rw PMCSRn PortPinModeChangeable usOrMask
ultMode PortPinInitialMode usInitModeRegVall
PortPinDirection
32 bit rw PMSRn PortPinModeChangeable usOrMask
PortPininitialMode uslnitModeRegVal
PortPinDirection
32 bit rw PSRn PortPinModeChangeable usOrMask
PortPinLevelValue uslnitModeRegVal
PortPinDirection

25




Chapter 6

Registers Details

Register | Register
Access Access
APl Name [ g/16/32 riw/rw | Registers Configuration Macro/Variable
bits Parameter
16 bit rw PIPCn PortPinModeChangeable usOrMask
PortipControl usInitModeRegVal
32 bit rw JPMCSRO [ PortPinModeChangeable usOrMask
PortPinInitialMode uslnitModeRegVal
PortPinDirection
32 bit rw JPMSRO PortPinModeChangeable usOrMask
PortPininitialMode uslnitModeRegVal
PortPinDirection
32 bit rw JPSRO PortPinModeChangeable usOrMask
PortPinLevelValue uslnitModeRegVal
PortPinDirection
_ w PFCEn PortPinModeChangeable usOrMask
16 bit PortPinlnitialMode uslnitModeRegVal
rw PFCn PortPinModeChangeable | usOrMask
16 bit PortPinInitialMode usInitModeRegVal
‘ rw JPFCEO PortPinModeChangeable | usOrMask
8 bit PortPinlnitialMode usinitModeRegVal
Port_SetPinDefa | 32 bit rw PMSRnN PortPinDirection usOrMaskVal
ultDirection PortPinDirectionChangeabl
32 bit rw PSRn PortPinDirectionChangeabl | usOrMaskVal
e
PortPinLevelValue
32 bit rw JPSRO PortPinDirectionChangeabl | usOrMaskVal
e
PortPinLevelValue
32 bit rw JPMSRO PortPinDirection usOrMaskVal
PortPinDirectionChangeabl
e
Port_SetPinMod | 16 bit rw PIPCn PortPinModeChangeable usOrMask
e PortlpControl
32 bit rw PMSRn PortPinModeChangeable usOrMask
32 bit rw PMCSRn PortPinModeChangeable usOrMask
32 bit rw PSRn PortPinModeChangeable uslnitModeRegVal
PortPinLevelValue
32 bit rw JPMSRO PortPinModeChangeable usOrMask
32 bit rw JPMCSRO [ PortPinModeChangeable usOrMask
32 bit rw JPSRO PortPinModeChangeable uslnitModeRegVal
PortPinLevelValue
16 bit rw PFCEn PortPinModeChangeable usOrMask
rw PFCn PortPinModeChangeable usOrMask
16 bit
8 bi rw JPFCEO PortPinModeChangeable | usOrMask
it
Port_Init 32 bit rw PSRn PortPinLevelValue uslnitModeRegValPSR

26




Registers Details

Chapter 6

nsion

Register | Register
Access Access
APl Name [ g/16/32 riw/rw | Registers Configuration Macro/Variable
bits Parameter
32 bit rw JPSRO PortPinLevelValue uslnitModeRegValPSR
rw inDirecti
32 bit PMSRnN PortPinDirection usinitModeRegVal
w PMCSRn — .
32 bit PortPinInitialMode uslnitModeRegValPMCSR
16 bit rw PISn PortinputSelection uslnitModeRegValPIS
8 bit rw JPISO PortinputSelection usinitModeRegValPIS
16 bit rw PIBCn PortinputBufferControl usinitModeRegValPIBC
8 bit rw JPIBCO PortinputBufferControl usinitModeRegValPIBC
16 bit rw PIPCn PortlpControl usinitModeRegValPIPC
16 bit rw PUn PullUpOption uslnitModeRegValPU
8 bit rw JPUO PullUpOption usInitModeRegValPU
16 bit rw PDn PullDownOption usinitModeRegValPD
8 bit rw JPDO PullDownOption usinitModeRegValPD
16 bit rw PBDCn PortBiDirectionControl uslnitModeRegValPBDC
8 bit rw JPBDCO PortBiDirectionControl uslnitModeRegValPBDC
PortSamelLevelSamples
. rw UcDNFACTL
8 bit DNFANCTL PortSamplingClockFreque
ncy
8 bit rw ;CLAnCTL IF’ortDlgltaIFllterEdgeContro UCECLACTL
16 bit rw DNFANEN PortDigitalFilterEnablelnput USDNEAEN
rw
8 bit JPFCEO PortPinInitialMode uslnitModeRegValPFCE
rw
32 bit JPMCSRO | PortPinInitialMode uslnitModeRegValPMCSR
rw
32 bit JPMSRO PortPinDirection uslnitModeRegValPMSR
16 bit w PFCEN PortPinInitialMode uslnitModeRegValPFCE
rw
16 bit PFCn PortPinInitialMode usinitModeRegValPFC
32 bit w PODCn PortOpenDrainControlExpa | usInitModeRegValPODC
nsion
32 bit w JPODCO PortOpenDrainControlExpa | usIinitModeRegValPODC
nsion
32 bit w PODCEnN PortOpenDrainControlExpa | usinitModeRegValPODCE

27




Chapter 6

Registers Details

Register | Register
Access Access
APIName [ g/16/32 riwirw | Registers Configuration Macro/Variable
bits Parameter
32 bit w PDSCn PortDriveStrengthControl usInitModeRegValPDSC
32 bit w JPDSCO PortDriveStrengthControl uslnitModeRegValPDSC
32 bit w PUCCnh PortUnlimitedCurrentContr | usinitModeRegValPUCC
ol
32 bit JPUCCO PortUnlimitedCurrentContr | usinitModeRegValPUCC
ol
16 bit PINVn PortOutputLevellnversion | usinitModeRegValPINV
16 bit w JPINVO PortOutputLevellnversion | usinitModeRegValPINV

Port_GetVersion
Info

28




Interaction Between The User And PORT Driver Component Chapter 7

Chapter 7 Interaction Between The User And PORT
Driver Component

The details of the services supported by the PORT Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

7.1. Services provided by PORT Driver Module to User

The PORT Driver provides following functionalities to the upper layers:
To initialize the PORT pins.

To change the direction of a PORT pin during runtime.

To change the mode of a PORT pin during runtime.

To refresh the direction of a PORT Pin.

To read the version information of the PORT module.

To change the direction of a PORT pin to default.

To change the mode of a PORT pin to default.

To change the mode of a PORT pin to DIO.

To change the mode of a PORT pin to ALTERNATE

29



Chapter 7

Interaction Between The User And PORT Driver Component

30



PORT Driver Component Header And Source File Description Chapter 8

Chapter 8

PORT Driver Component Header And
Source File Description

This section explains the PORT Driver Component’s C Source and C Header
files. These files have to be included in the project application while
integrating with other modules.

The C header file generated by PORT Driver Generation Tool:
* Port_Cfg.h

* Port_Cbk.h

e Port_Hardware.h

The C source file generated by PORT Driver Generation Tool:
* Port_PBcfg.c
e Port_Hardware.c

The PORT Driver Component C header files:
« Porth

* Port_PBTypes.h

* Port_Ram.h

* Port_Version.h

* Port_Debug.h

* Port_Types.h

e Port_RegWrite.h

The PORT Driver Component source files:
*  Port.c

« Port_Ram.c

* Port_Version.c

The Stub C header files:
*  Compiler.h

*  Compiler_Cfg.h

+  MemMap.h

* Platform_Types.h

e Std_Types.h

« Dem.h
+ Dem_Cfg.h
« Deth

* Schm_Port.h

31



Chapter 8

PORT Driver Component Header And Source File Description

The description of the PORT Driver Component files is provided in the table below:

32

Table 8-1 Description of the PORT Driver Component Files

File Details

Port_Cfg.h This file contains various PORT Driver Pre-compile time parameters, macro
definitions for the ISRs, channel notifications used by PORT Driver, PORT channel
handles.

Port_Cbk.h This file contains the definition of error interface which will be invoked when the

port register write-verify fails.

Port_PBcfg.c

This file contains the post-build configuration data. The structures related to PORT
initialization, PORT Timer channel configuration and the timer related structures are
also provided in this file.

Port_Hardware.h

This file is generated by the PORT Generation Tool which includes definition of
hardware registers specific to P1x-C PORT.

Port_Hardware.c

This file is generated by the PORT Generation Tool which consists of Base address
for each Port Register and Global variable definition of hardware registers specific
to P1x-C PORT.

Port.h

This file provides extern declarations for all the PORT Driver Component APIs. This
file provides service Ids of APIs, DET Error codes and type definitions for Port
initialization structure. This header file shall be included in other modules to use the
features of PORT Driver Component.

Port_PBTypes.h

This file contains the data structures related to Port initialization, Port Refresh,
Direction changeable Pins at run time and Mode Changeable at run time.

Port_Types.h

This file provides data structure and type definitions for initialization of MCU Driver.

Port_Debug.h

This file is used for version check.

Port_RegWrite.h

This file is to have macro definitions for the registers write and verification.

Port_Ram.h

This file contains the extern declarations for the global variables defined in
Port_Ram.c file.

Port_Version.h

This file contains the macros of AUTOSAR version numbers of all modules that are
interfaced to PORT Diriver.

Port.c

This file contains the implementation of all APIs.

Port_ Ram.c

This file contains the global variables used by PORT Driver Component.

Port_Version.c

This file contains the code for checking version of all modules that are interfaced to
PORT Driver.

Compiler.h

Provides compiler specific (non-ANSI) keywords. All mappings of keywords, which
are not standardized, and/or compiler specific are placed and organized in this
compiler specific header.

Compiler_Cfg.h

This file contains the memory and pointer classes.

MemMap.h

This file allows to map variables, constants and code of modules to individual
memory sections. Memory mapping can be modified as per ECU specific needs.

Platform_Types.h

This file provides provision for defining platform and compiler dependent types.

Dem.h

This file is a stub for DEM component

Dem_Cfg.h This file contains the stub values for Dem_Cfg.h
SchM_Port.h This file is a stub for SchM Component
Std_Types.h Provision for Standard types

Det.h This file is a stub for DET component.




Generation Tool Guide

Chapter 9

Chapter 9

Generation Tool Guide

For more information on the Code Generation, please refer
“R20UT3654EJ0102-AUTOSAR.pdf” document.

33



Chapter 9

Generation Tool Guide

34



Application Programming Interface Chapter 10

Chapter 10 Application Programming Interface

This section explains the Data types and APIs provided by the PORT Driver
Component to the Upper layers.

10.1. Imported Types

This section explains the Data types imported by the PORT Driver
Component and lists its dependency on other modules.

10.1.1. Standard Types

In this section all types included from the Std_Types.h are listed:
Std_VersionInfoType
Std_ReturnType

10.1.2. Other Module Types

In this chapter all types included from the Dem_types.h are listed:
Dem_EventldType

10.2. Type Definitions

This section explains the type definitions of PORT Driver Component
according to AUTOSAR Specification.

10.2.1. Port_ConfigType

Name: Port_ConfigType

Type: struct

Element: Type Name Explanation

uint32 ulStartOfDbToc Database start
value.

Port_Regs pPortNumRegs Pointer to the
address of
Numeric port
registers
configuration.

Port_FuncCtrIRegs pPortNumFuncCtriIRegs Pointer to the
address of the
Numeric function
control registers
configuration.

Port PMSRRegs pPortNumPMSRRegs Pointer to the
address of the
Numeric PMSR
registers
configuration.

Port_Regs pPortJRegs Pointer to the
address of JTAG
port registers
configuration

Port_FuncCtrIRegs pPortJFuncCtriRegs Pointer to the
address of JTAG
function control
registers
configuration

35



Chapter 10

Application Programming Interface

36

Port_ PMSRRegs

pPortJPMSRRegs

Pointer to the
address of JTAG
PMSR registers
configuration.

Port_PinsDirChangeable

pPinDirChangeable

Pointer to the
address of
runtime direction
changeable pins
structure.

Port_PinModeChangeableGroups

pPinModeChangeableGrou
ps

Pointer to the
address of
runtime mode
changeable pin
group details
structure.

Port_PinDioAltChangeableDetails

pPinDioAltModeDetails

Pointer to the
address of run
time mode
changeable pins
structure.

Port_PinModeChangeableDetails

pPinModeChangeableDetai
Is

Pointer to the
address of run
time mode
changeable pins
structure.

Port_ DNFARegs

pPortDNFARegs

Pointer to the
DNFA registers
structure.

Port_FCLARegs

pPortFCLARegs

Pointer to the
FCLA registers
structure.

uint8

ucNoOfPinsDirChangeable

Total number of
Pins configured
for Direction
Changeable at
run time

uint8

ucNoOfPinsModeChangea
ble

Total number of
Pins configured
for mode
Changeable at
run time

uint8

ucNoOfPinsDioAltModeCha
ngeable

Total number of
Pins configured
for mode
Changeable at
run time

uint8

ucNoOfDNFARegs

The total number
of DNFA noise
elimination
registers

uint8

ucNoOfFCLARegs

The total number
of FCLA noise
elimination
registers

Description:

This is the type of the external data structure containing the initialization data for the

PORT Driver Component.

The user shall use the symbolic names defined in the PORT Driver Configuration Tool.
The configuration of each Port Pin is Microcontroller specific.




Application Programming Interface Chapter 10

10.2.2. Port_PinType

Name: Port_PinType
Type: uintl6
Range: 0 to 65535
o The user shall use the symbolic names defined in the PORT Driver Configuration Tool.
Description: The configuration of each Port Pin is Microcontroller specific.

10.2.3. Port_PinDirection Type

Name: Port_PinDirectionlType
Type: Enumeration
PORT_PIN_OUT Output Direction
Range: —
PORT_PIN_IN Input Direction
Description: These are the possible directions; a port pin can have for both input and output.

10.2.4. Port_PinModeType

Name: Port_PinModeType

Type: uint8

REMEEL PIPC=0
0 PORT_DIO_OUT (Port_PinModeType)0x00
1 PORT_DIO_IN (Port_PinModeType)0x01
2 APP_ALT1 OUT (Port_PinModeType)0x02
3 APP_ALT1_IN (Port_PinModeType)0x03
4 APP_ALT2_OUT (Port_PinModeType)0x04
5 APP_ALT2_IN (Port_PinModeType)0x05
6 APP_ALT3_OUT (Port_PinModeType)0x06
7 APP_ALT3_IN (Port_PinModeType)0x07
8 APP_ALT4_OUT (Port_PinModeType)0x08
9 APP_ALT4 _IN (Port_PinModeType)0x09

R PIPC=1
0 IAPP_ALT1_OUT_SET_PIPC [(Port_PinModeType)0x82
1 APP_ALT1 IN_SET PIPC  |(Port_PinModeType)0x83
2 IAPP_ALT2_OUT_SET_PIPC |(Port_PinModeType)0x84
3 IAPP_ALT2_IN_SET_PIPC  [(Port_PinModeType)0x85
4 IAPP_ALT3 OUT_SET_PIPC |(Port_PinModeType)0x86
5 APP_ALT3_IN_SET_PIPC (Port_PinModeType)0x87
6 IAPP_ALT4 _OUT_SET_PIPC |(Port_PinModeType)0x88
7 APP_ALT4_IN_SET_PIPC (Port_PinModeType)0x89

Description: | These are the possible modes; a port pin can have for both input and output.

37



Chapter 10 Application Programming Interface

10.3. Function Definitions

This section explains the APIs provided by the PORT Driver Component.

Table 10-1 AUTOSAR Specific APIs supported by the PORT Driver Component

SL.NO API’s API’s specific

Port_Init -

Port_SetPInDirection -

Port_RefreshPortDirection -

Port_GetVersioninfo -
Port_SetPinMode -

al bl W[ DN| -

Table 10-2 Non- AUTOSAR Specific APIs supported by the PORT Driver Component

SL. NO
API’s
1 Port_SetToDioMode
2 Port_SetToAlternateMode
3 Port_SetPinDefaultMode
4 Port_SetPinDefaultDirection

10.3.1 Port_Init

Name: Port_Init
5 : FUNC(void, PORT_PUBLIC_CODE) Port_Init
eI, (P2CONST (Port_ConfigType, AUTOMATIC, PORT_APPL_CONST) ConfigPtr)
Service ID: 0x00
Sync/Async: Synchronous
Reentrancy: Non-Reentrant
Type Parameter Value/Range
Parameters In: - -
Port_ConfigType ConfigPtr NA
Parameters InOut: | None NA NA
Parameters out: None NA NA
Type Possible Return Values
Return Value:
None NA
Description: This service performs initialization of the PORT Driver components.
Configuration None
Dependency:
Preconditions: None

38



Application Programming Interface

Chapter 10

10.3.2 Port_SetPinDirection

Name: Port_SetPinDirection
FUNC (void, PORT_PUBLIC_CODE) Port_SetPinDirection
PO (Port_PinType Pin, Port_PinDirectionType Direction)
Service ID: 0x01
Sync/Async: Synchronous
Reentrancy: Reentrant
Type Parameter Value/Range
Parameters In: Port_PinType Pin 0-136
Port_PinDirectionType |Direction 0,1
Parameters InOut: | None NA NA
Parameters out: None NA NA
st illirss Type Possible Return Values
None NA

Description:

This service sets the port pin direction during runtime

Configuration
Dependency:

None

Preconditions:

Ports should be initialized by calling Port_lInit().

10.3.3 Port_RefreshPortDirection

Name: Port_RefreshPortDirection

FUNC (void, PORT_PUBLIC_CODE) Port_RefreshPortDirection (void)
Prototype:
Service ID: 0x02
Sync/Async: Synchronous
Reentrancy: Non-Reentrant

Type Parameter Value/Range
Parameters In: None NA NA
Parameters InOut: |None NA NA
Parameters out: None NA NA

Type Possible Return Values
Return Value:

None NA

Description:

This service shall refresh the direction of all configured ports to the configured direction.

Configuration
Dependency:

None

Preconditions:

Ports should be initialized by calling Port_init().

10.3.4 Port_GetVersioninfo

Name: Port_GetVersioninfo
FUNC(void, PORT_PUBLIC_CODE) Port_GetVersioninfo
ATUE o (P2VAR(Std_VersioninfoType, AUTOMATIC, PORT_APPL_DATA)versioninfo)
Service ID: 0x03
Sync/Async: Synchronous
Reentrancy: Non-Reentrant
Type Parameter Value/Range

39



Chapter 10

Application Programming Interface

None NA NA
Parameters In:
Parameters InOut: |None NA NA
Parameters out: Std_VersioninfoType versioninfo NA

Type Possible Return Values
Return Value:

None NA
Description: This API will return the version information of this Port Driver.
Configuration None
Dependency:
Preconditions: None

10.3.5 Port_SetPinMode

Name: Port_SetPinMode
_ FUNC (void, PORT_PUBLIC_CODE) Port_SetPinMode
PO (Port_PinType Pin, Port_PinModeType Mode)
Service ID: 0x04
Sync/Async: Synchronous
Reentrancy: Reentrant
Type Parameter Value/Range
Parameters In: Port_PinType Pin 0-136
Port_PinModeType Mode 2-9, 82-89
Parameters InOut: |None NA NA
Parameters out: None NA NA
Type Possible Return Values
Return Value:
None NA

Description:

This function used to set the mode of a port pin during runtime.

Configuration
Dependency:

None

Preconditions:

Ports should be initialized by calling Port_init().

10.3.6 Port_SetToDioMode

Name: Port_SetToDioMode

FUNC (void, PORT_PUBLIC_CODE) Port_SetToDioMode (Port_PinType Pin)
Prototype:
Service ID: 0x05
Sync/Async: Synchronous
Reentrancy: Reentrant

Type Parameter Value/Range
Parameters In: Port_PinType Pin 0-136
Parameters InOut: |None NA NA
Parameters out: None NA NA

Type Possible Return Values
Return Value:

None NA

Description:

This function used to set the mode of a port pin to DIO mode during runtime.

40




Application Programming Interface

Chapter 10

Configuration
Dependency:

None

Preconditions:

Ports should be initialized by calling Port_init().

10.3.7 Port_SetToAlternateMode

Name: Port_SetToAlternateMode

FUNC (void, PORT_PUBLIC_CODE) Port_SetToAlternateMode
Prototype: : -

(Port_PinType Pin)

Service ID: 0x06
Sync/Async: Synchronous
Reentrancy: Reentrant

Type Parameter Value/Range
Parameters In: Port_PinType Pin 0-136
Parameters InOut: |None NA NA
Parameters out: None NA NA

Type Possible Return Values
Return Value:

None NA

Description:

This function used to set the mode of a port pin to alternate mode during runtime.

Configuration
Dependency:

None

Preconditions:

Ports should be initialized by calling Port_init().

10.3.8 Port_SetPinDefaultMode

Name: Port_SetPinDefaultMode

FUNC (void, PORT_PUBLIC_CODE) Port_SetPinDefaultMode
Prototype: . -

(Port_PinType Pin)

Service ID: 0x07
Sync/Async: Synchronous
Reentrancy: Reentrant

Type Parameter Value/Range
Parameters In: Port_PinType Pin 0-136
Parameters InOut: [None NA NA
Parameters out: None NA NA

Type Possible Return Values
Return Value:

None NA

Description:

This function used to set the mode of a port pin during runtime. The PORT Driver
module allows changing the mode of the pin to default mode set by the configuration at
the time of Port_lInit().

Configuration
Dependency:

None

Preconditions:

Ports should be initialized by calling Port_init().

41



Chapter 10

Application Programming Interface

42

10.3.9 Port_SetPinDefaultDirection

Name: Port_SetPinDefaultDirection
: FUNC (void, PORT_PUBLIC_CODE) Port_SetPinDefaultDirection
PRI (Port_PinType Pin)
Service ID: 0x08
Sync/Async: Synchronous
Reentrancy: Reentrant
Type Parameter Value/Range
Parameters In: Port_PinType Pin 0-136
Parameters InOut: |None NA NA
Parameters out: None NA NA
Type Possible Return Values
Return Value:
None NA

Description:

This service sets the port pin direction during runtime. The PORT Driver module allows
changing the mode of the pin to default mode set by the configuration at the time of
Port_lInit().

Configuration
Dependency:

None

Preconditions:

Ports should be initialized by calling Port_Init().




Development And Production Errors

Chapter 11

Chapter 11

Development And Production Errors

In this section the development errors that are reported by the PORT Driver
Component are tabulated. The development errors will be reported only when
the pre compiler option PORT_DEV_ERROR_DETECT is enabled in the
configuration.

11.1. PORT Driver Component Development Errors

The following table contains the DET errors that are reported by PORT Driver
Component. These errors are reported to Development Error Tracer Module
when the PORT Driver Component APIs are invoked with wrong input
parameters or without initialization of the driver.
Table 11-1 DET Errors of PORT Driver Component

SI. No. 1

Error Code PORT_E_PARAM_CONFIG

Related API(s) Port_lInit

Source of Error API is invoked with NULL Pointer

SI. No. 2

Error Code PORT_E_INVALID_DATABASE

Related API(s) Port_Init

Source of Error

Invalid database is found

Sl. No.

3

Error Code

PORT_E_UNINIT

Related API(s)

Port_RefreshPortDirection, Port_SetPinDirection, Port_SetPinMode,
Port_SetToDioMode, Port_SetToAlternateMode

Source of Error

APIs are invoked without the initialization of the PORT Driver Component.

Sl. No.

4

Error Code

PORT_E_PARAM_PIN

Related API(s)

Port_SetPinMode, Port_SetPinDirection, Port_SetToDioMode,
Port_SetToAlternateMode

Source of Error

APl is invoked with invalid Pin

Sl. No.

5

Error Code

PORT_E_PARAM_INVALID_MODE

Related API(s)

Port_SetPinMode

Source of Error

API is invoked with invalid mode

Sl. No.

6

Error Code

PORT_E_DIRECTION_UNCHANGEABLE

Related API(s)

Port_SetPinDirection

Source of Error

API is invoked with Pin which is not configured as ‘Direction Changeable during run
time’.

Sl. No.

7

Error Code

PORT_E_MODE_UNCHANGEABLE

Related API(s)

Port_SetPinMode, Port_SetToDioMode, Port_SetToAlternateMode

Source of Error

API is invoked with Pin which is not configured as ‘Mode Changeable during run time’.

43



Chapter 11 Development And Production Errors
SI. No. 8
Error Code PORT_E_PARAM_POINTER

44

Related API(s)

Port_GetVersioninfo

Source of Error

GetVersioninfo is called with NULL pointer.

11.2. PORT Driver Component Production Errors
The following table contains the DEM errors that are reported by PORT
software component.
Table 11-2 DEM Errors of PORT Driver Component
SI. No. 1
Error Code PORT_E_REG_WRITE_VERIFY

Related API(s)

Port_Init ,Port_SetPinDirection, Port_RefreshPortDirection, Port_SetPinMode,
Port_SetToDioMode, Port_SetToAlternateMode, Port_SetPinDefaultMode,
Port_SetPinDefaultDirection

Source of Error

When register write-verify fails.




Memory Organization

Chapter 12

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be met

for proper functioning of PORT Driver Component software.

ROM Section

PORT Driver Component
Library / Object Files

RAM Section

Port Driver code related to API's are placed in
this memory.

Segment Name:
PORT_PUBLIC_CODE_ROM

Port Driver code related to Internal Functions
are placed in this memory

Segment Name:
PORT_PRIVATE_CODE_ROM

X2

Global RAM of unspecific size required for Port
Driver functioning.

Segment Name:
RAM_UNSPECIFIED

Global 1-bit RAM to be initialized by start-up
code.

Segment Name:

RAM_1BIT

The const section in the file Port_PBcfg.c is
placed in this memory.

Segment Name:
PORT_CFG_DATA_UNSPECIFIED

The const section in the file
Port_Hardware.c is placed in this memory.

Segment Name:
CONST_ROM_UNSPECIFIED

X3

Figure 12-1

PORT Driver Component Memory Organization

45



Chapter 12

Memory Organization

46

ROM Section (X1, X2, X3, X4);

PORT_PUBLIC_CODE_ROM (X1): API(s) of PORT Driver Component,
which can be located in code memory.

PORT_PRIVATE_CODE_ROM (X2): Internal functions of PORT Driver
Component code that can be located in code memory.

PORT_CFG_DATA_UNSPECIFIED (X3): This section consists of PORT
Driver Component constant configuration structures and database table of
contents generated by the PORT Driver Component Generation Tool. This
can be located in code memory.

CONST_ROM_UNSPECIFIED (X4): The constant section of PORT Driver
Component code that can be located in code memory.

RAM Section (Y1 and Y2);

RAM_UNSPECIFIED (Y1): This section consists of the global RAM pointer
variables that are used internally by PORT Driver Component. This can be
located in data memory.

RAM_1BIT (Y2): This section consists of the global RAM variables of 1-bit size
that are used internally by PORT Driver Component. This can be located in
data memory.



P1x-C Specific Information Chapter 13

Chapter 13 P1x-C Specific Information

P1x-C supports following devices:

RF701370A(CPU1(PE1))
RF701371(CPU1(PEL))
RF701372(CPU1(PEL))
RF701373

RF701374

13.1. Interaction between the User and PORT Driver Component

The details of the services supported by the PORT Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

13.1.1. Parameter Definition File
Parameter definition files support information for P1x-C

Table 13-1 PDF information for P1x-C

PDF Files Devices Supported
R403_PORT_P1X-C_70A_71_72.arxml 701370A(CPU1(PE1)), 701371(CPU1(PEL)),
701372(CPU1(PE1))
R403_PORT_P1X-C_73.arxml 701373
R403 PORT_P1X-C_74.arxml 701374

13.1.2. Services Provided By PORT Driver Component

The PORT Driver Component provides the following functionalities to the
upper layers or users:

e Toinitialize the Port and set according Port filter functions.
e To refresh the direction of Port.

e To switch the Port pin direction at run time.

e To change the mode of a Port pin at run time.

e Toread the PORT Driver Component version information.

47



Chapter 13 P1x-C Specific Information

13.2. Sample Application

13.2.1. Sample Application Structure

The Sample Application is provided as reference to the user to understand the
method in which the PORT APIs can be invoked from the application.

Generic
AUTOSAR TYPES COMPILER RH850 TYPES
Devices
P1x-CPORT STUB STUB STUB
Sample DET DEM SchM
application

Figure 13-1 Overview of PORT Driver Sample Application

The Sample Application of the P1x-C is available in the path
X1X\P1x-C\modules\port\sample_application
The Sample Application consists of the following folder structure:

X1X\P1x-C\modules\port\definition\4.0.3\P1H-C\
R403_PORT_P1X-C_70A_71_72.arxml

X1X\P1x-C\modules\port\definition\4.0.3\P1M-C\
R403_PORT_P1X-C_73.arxml
R403_PORT_P1X-C_74.arxml

X1X\P1x-C\modules\port\definition\4.0.3\ P1H-CE\
R403_PORT_P1X-C_70A_71_72.arxml

X1X\P1x-C\modules\port\sample_application\<SubVariant>\4.0.3
\src\Port_PBcfg.c
\src\Port_Hardware.c
\include\Port_Cfg.h
\include\Port_Hardware.h

X1X\P1x-C\modules\port\sample_application\P1H-CE\4.0.3
\config\ App_PORT_P1x-C_701370A_Sample.arxml

48



P1x-C Specific Information

Chapter 13

X1X\P1x-C\modules\port\sample_application\P1H-C\4.0.3

\config\ App_PORT_P1x-C_701371_Sample.arxml

\config\ App_PORT_P1x-C_701372_Sample.arxml

X1X\P1x-C\modules\port\sample_application\P1M-C\4.0.3

\config\ App_PORT_P1x-C_701373_Sample.arxml

\config\ App_PORT_P1x-C_701374_Sample.arxml

In the Sample Application all the PORT APIs are invoked in the following
sequence:

Port_GetVersioninfo: The API Port_GetVersioninfo is invoked to get the
version of the PORT Driver module with a variable of Std_VersionInfoType
after the call of this API the passing parameter will get updated with the
PORT Driver version details.

Port_Init: The API Port_Init is invoked with a valid database address for the
proper initialization of the PORT Driver, all the PORT Driver control registers
and RAM variables will get initialized after this APl is called.

Port_SetPinMode: This service sets the Port Pin mode during runtime.
Port_SetPinDirection: This service sets the port pin direction during

Port_RefreshPortDirection: The API refreshes the direction of all ports to the
configured direction. It excludes those port pins from refreshing that are
configured as 'pin direction changeable during runtime' by invoking internal
API Port_RefreshPortinternal().

Port_SetPinDefaultDirection: This service sets the port pin direction during
runtime. The PORT Driver module allows changing the mode of the pin to
default mode set by the configuration at the time of Port_Init().

Port_SetToDioMode: This function used to set the mode of a port pin to DIO
mode during runtime.

Port_SetToAlternateMode: This function used to set the mode of a port pin
to alternate mode during runtime.

Port_SetPinDefaultMode: This function used to set the mode of a port pin
during runtime. The PORT Driver module allows changing the mode of the
pin to default mode set by the configuration at the time of Port_Init().

Note: <SubVariant> indicate P1H-CE, P1H-C, P1M-C.

13.2.2. Building Sample Application

13.2.2.1 Configuration Example

This section contains the typical configuration which is used for measuring
RAM/ROM consumption, stack depth and throughput details.

49



Chapter 13 P1x-C Specific Information

13.2.2.2 Debugging the Sample Application

Remark GNU Make utility version 3.81 or above must be installed and available in the
path as defined by the environment user variable “GNUMAKE” to complete the
build process using the delivered sample files.

Open a Command window and change the current working directory to “make”
directory present as mentioned in below path:

“X1X\P1x-C\common_family\make\<Compiler>"
Now execute the batch file SampleApp.bat with following parameters:

SampleApp.bat Port <Device_name>

«  After this, all the object files, map file and the executable file
App_PORT_P1x-C_Sample.out will be available in the output folder:
(“X1X\P1x-C\modules\port\sample_application\<SubVariant>
\obj\<Compiler>")

* The executable can be loaded into the debugger and the sample application
can be executed.

* The initialization function initializes all ports and port pins with the
configuration set pointed by ConfigPtr by invoking internal API
Port_InitConfig(). This function should be called first in order to initialize the
port for use otherwise no operation can occur on the MCU ports and port
pins. This function is also called after reset, in order to reconfigure the ports
and port pins of the MCU.

* Port Set Pin Mode: This API will change the pin mode to the requested
mode.

* Port_SetToDioMode: This API will set the mode of a pin to DIO mode.

* Port_SetToAlternateMode: This API will set the mode of a port pin to
Alternate mode.

* Port SetPinDirection: This API will change the direction of the pin to the
requested direction.

* Port RefreshPortDirection: This API will refresh all the port pins to the
configured value except the pins that are configured as pin direction
changeable during runtime.

Note: The <Device_name> indicates the device to be compiled, which can be
701370A (CPU1(PE1)), 701371(CPU1(PE1)), 701372(CPU1(PE1)), 701373,
701374 , <Compiler> indicate, comp_201517, <AUTOSAR_version>
indicates 4.0.3 and <SubVariant> indicate P1H-CE, P1H-C, P1H-M.

Remark Executable files with *“.out’ extension can be downloaded into the target
hardware with the help of Green Hills debugger.

« If any configuration changes (only post-build) are made to the ECU
Configuration Description files

“X1X\P1x-C\modules\port\sample_application\<SubVariant>
\<AUTOSAR_version>\config\App_PORT_P1x-C_701370A_Sample.arxml”

50



P1x-C Specific Information Chapter 13

\App_PORT_P1x-C_701371_Sample.arxml”
\App_PORT_P1x-C_701372_Sample.arxml”
\App_PORT_P1x-C_701373_Sample.arxml”
\App_PORT_P1x-C_701374_Sample.arxml”

* The database alone can be generated by using the following commands.
make —f App_PORT_P1x-C_Sample.mak generate_port_config
make —f App_PORT_P1x-C_Sample.mak App_PORT_P1x-C_Sample.s37

« After this, a flash able Motorola S-Record file App_PORT_P1x-
_Sample.s37 is available in the output folder.

13.3. Memory and Throughput

13.3.1. ROM/RAM Usage

The details of memory usage for the typical configuration, with DET disabled
is provided in this section.

Typical PORT configuration

DET OFF
All other Pre-Compile switches ON
Table 13-2 ROM/RAM Details without DET
SI. No. | ROM/RAM Segment Name Size in bytes
1 ROM PORT_CFG_DATA_UNSPECIFIED 1322
CONST_ROM_UNSPECIFIED 96
PORT_PUBLIC_CODE_ROM 1252
PORT_PRIVATE_CODE_ROM 2774
2 RAM RAM_UNSPECIFIED 4
RAM_1BIT 0

The details of memory usage for the typical configuration, with DET enabled is
provided in this section

Table 13-3 ROM/RAM Details with DET

SI. No. | ROM/RAM Segment Name Size in bytes

1 ROM PORT_CFG_DATA_UNSPECIFIED 1322
CONST_ROM_UNSPECIFIED 9
PORT_PUBLIC_CODE_ROM 1494
PORT_PRIVATE_CODE_ROM 3168

2 RAM RAM_UNSPECIFIED 4
RAM_1BIT 1

51



Chapter 13 P1x-C Specific Information

13.3.2. Stack Depth

The worst-case stack depth for PORT Driver Component for the typical
configuration is 104 bytes.

13.3.3. Throughput Details

The throughput details of the APIs shall be as following: The clock frequency
used to measure the throughput is 160 MHz for all APIs.

Table 13-4 Throughput Details of the APIs

SI. No. [ API Name Throughput in Remarks
microseconds

1 Port_Init 38.450 -
2 Port_SetPinDirection 2.175 -
3 Port_RefreshPortDirection 3.212 -
4 Port_GetVersioninfo 0.100 -
5 Port_SetPinMode 5.762 -
6 Port_SetToDioMode 1.550 -
7 Port_SetToAlternateMode 1.587 -
8 Port_SetPinDefaultDirection 1.275 -
9 Port_SetPinDefaultMode 1.850 -

13.4. Critical Section Detalls

The critical section throughput details are listed below. The clock frequency used
to measure the throughput is 160MHz for all APIs.

Table 13-5 Critical Section Throughput Details of the APIs

Sl. No. APl Name Critical section Remarks

throughput in

microseconds in

GHS for 701372

(CPU1(PEL))
1 Port_Init NA -
2 Port_SetPinDirection 0.950 -
3 Port_RefreshPortDirection 2.849 -
4 Port_GetVersioninfo NA -
5 Port_SetPinMode 1.862 -
6 Port_SetToDioMode 0.687 -
7 Port_SetToAlternateMode 0.725 -
8 Port_SetPinDefaultDirection 0.312 -
9 Port_SetPinDefaultMode 0.737 -

52



Release Details

Chapter 14

Chapter 14 Release Details

PORT Driver Software R4.0.3

Version: 1.0.4

53



Chapter 14

Release Details

54



Revision History

SI.No. | Description Version | Date
1. Initial Version 1.0.0 17-Aug-2015
2. The following changes are made 1.0.1 04-Apr-2016
1. Chapter-2 Reference Documents section updated.
2. Section 4.2 Preconditions updated.
3. Section 4.6 Data Consistency has updated.
4. Chapter-13 P1x-C specific information updated for device
support.
5. In Chapter-13, Section- 13.4.4 Sample Application Structure
updated.
6. In Chapter-13, Section-13.4 Memory and Throughput,
updated the ROM/RAM details, and Throughput Details.
7. Chapter-14 Driver Software version is updated.
8. Added R Number in last page
3. The following changes are made : 1.0.2 10-Feb-2017
1. Removed the section 13.2. Compiler, Linker and Assembler.
2. Updated section 4.3 by adding a note.
3. Updated section 4.1 by adding a statement.
4. Chapter 8 updated for sub section heading change and
missing stub files inclusion.
5. Section 4.4 updated for critical section protection
6. Chapter 6 Registers Details updated.
7. In Chapter 8, Port_Cbk.h file detail is updated.
8. Chapter 11, Section 11.1 updated for Port_GetVersioninfo
9. Section 11.2 added in the chapter Chapter 11
10. Removed PORT_CFG_DBTOC_UNSPECIFIED details in
Chapter 12
11. Table 13-1 PDF information for P1x-C added in the Chapter
13
12. 13.2.1.Sample Application Structure updated for Dem stub
13. Device name updated.
14. User's name changed to User's in the title.
4. The following changes are made 1.0.3 27-Apr-2017
1. Subsections are added to Section 10.3
2. In Section 4.3 the Note for Table 4-4 is updated
3. Section 4.1 is updated with information about initialization of
unused Port pins
4. Notice and copyright are updated
5. Description about Inverting the output level of a pin is added
in section 4.1
6. Table 4-2 updated and Note in section 4.4 is corrected.
7. .one and .html files are removed from section 3.1 and 13.2
8. R-Number is updated
5. Following changes are made 1.04 16-Jun-2017

1.
2.

Memory and Throughput details updated in chapter 13.
R-Number updated.

55




AUTOSAR MCAL R4.0.3 User's Manual
PORT Driver Component Ver.1.0.4
Embedded User's Manual

Publication Date: Rev. 1.02, June 16, 2017

Published by: Renesas Electronics Corporation




LENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3

Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China

Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HAL Il Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2006-2017 Renesas Electronics Corporation. All rights reserved.

Colophon 4.1


http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3

User's Manual

RENESAS

R . R20UT3653EJ0102
Renesas Electronics Corporation



	Chapter 1 Introduction
	1.1. Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration And Build Process
	3.1. PORT Driver Component Make file

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. User Mode and Supervisor Mode
	4.4. Data Consistency
	4.5. Deviation List

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction Between The User And PORT  Driver Component
	7.1. Services provided by PORT Driver Module to User

	Chapter 8 PORT Driver Component Header And Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1. Imported Types
	10.1.1. Standard Types
	10.1.2. Other Module Types

	10.2. Type Definitions
	10.2.1. Port_ConfigType
	10.2.2. Port_PinType
	10.2.3. Port_PinDirection Type
	10.2.4. Port_PinModeType

	10.3. Function Definitions
	10.3.1 Port_Init
	10.3.2 Port_SetPinDirection
	10.3.3 Port_RefreshPortDirection
	10.3.4 Port_GetVersionInfo
	10.3.5 Port_SetPinMode
	10.3.6 Port_SetToDioMode
	10.3.7 Port_SetToAlternateMode
	10.3.8 Port_SetPinDefaultMode
	10.3.9 Port_SetPinDefaultDirection


	Chapter 11 Development And Production Errors
	11.1. PORT Driver Component Development Errors
	11.2. PORT Driver Component Production Errors

	Chapter 12 Memory Organization
	Chapter 13 P1x-C Specific Information
	13.1. Interaction between the User and PORT Driver Component
	13.1.1. Parameter Definition File
	13.1.2. Services Provided By PORT Driver Component

	13.2. Sample Application
	13.2.1. Sample Application Structure
	13.2.2. Building Sample Application
	13.2.2.1 Configuration Example
	13.2.2.2 Debugging the Sample Application


	13.3. Memory and Throughput
	13.3.1. ROM/RAM Usage
	13.3.2. Stack Depth
	13.3.3. Throughput Details

	13.4. Critical Section Details

	Chapter 14 Release Details

