

MICROSAR RTE Analyzer

Technical Reference

Version 0.8.0

Authors Sascha Sommer

Status Released

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 2
based on template version 5.12.0

Document Information

History

Author Date Version Remarks

Sascha Sommer 2015-09-25 0.5 Initial creation for RTE Analyzer 0.5.0

Sascha Sommer 2016-02-26 0.6 Update for RTE Analyzer 0.6.0

Sascha Sommer 2016-07-07 0.7 Described Configuration Feedback and
Template Variant Check

Sascha Sommer 2016-10-20 0.8 Configuration Feedback extensions

Reference Documents

No. Source Title Version

[1] ISO ISO/IEC 9899:1990, Programming languages -C Second
edition

[2] AUTOSAR AUTOSAR_SWS_RTE.pdf 3.2.0

Scope of the Document

This technical reference describes the general use of the MICROSAR RTE Analyzer static
code analysis tool. This document is relevant for developers that want to integrate a
generated RTE into an ECU with functional safety requirements. All aspects that concern
the generation of the RTE are described in the technical reference of the RTE.

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 3
based on template version 5.12.0

Contents

1 Component History .. 5

2 Introduction... 6

3 Functional Description ... 7

4 RTE Analysis and Integration .. 9

4.1 Scope of Delivery ... 9

4.1.1 Static Files ... 9

4.1.2 Dynamic Files .. 11

4.2 Restrictions .. 12

4.5 MicrosarRteAnalyzer.exe Command Line Options ... 12

4.6 Analysis Report Contents ... 13

4.6.1 Analyzed Files .. 13

4.6.2 Configuration Parameters .. 13

4.6.3 Findings ... 14

4.6.4 Configuration Feedback ... 19

4.6.5 Template Variant Check ... 22

4.7 Integration into DaVinci CFG.. 22

5 Glossary and Abbreviations .. 25

5.1 Glossary .. 25

5.2 Abbreviations ... 25

6 Additional Copyrights .. 26

7 Contact .. 27

Tables

Table 1-1 Component history.. 5
Table 3-1 Supported features .. 8
Table 4-1 Static files ... 10
Table 4-2 Assumed platform type sizes .. 11
Table 4-3 Generated files ... 12
Table 4-4 RTE Analyzer Command Line Options .. 13
Table 4-5 Analysis parameters that are extracted from the configuration 14
Table 4-6 RTE Analyzer Findings ... 19
Table 5-1 Glossary ... 25
Table 5-2 Abbreviations .. 25
Table 6-1 Free and Open Source Software Licenses ... 26

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 4
based on template version 5.12.0

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 5
based on template version 5.12.0

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

0.5.0 Initial version of MICROSAR RTE Analyzer for MICROSAR RTE 4.9.x

Supported Features:

- Detection of RTE code that cannot be compiled

- Detection of Out Of Bounds write accesses within RTE APIs

- Detection of Interrupt Lock API sequence mismatches within RTE
APIs

- Detection of Unreachable RTE APIs and runnables

- Detection of RTE variables that are accessed from concurrent
execution contexts without protection

- Detection of concurrent calls to nonreentrant APIs within the RTE

- Detection of variables that are accessed from multiple cores and
that are not mapped to noncacheable memory sections

- Detection of non typesafe interfaces to the BSW and SWCs where
a call with a wrong parameter might cause out of bounds writes by
the RTE or a called runnable/BSW API.

- Detection of recursive call sequences

0.6.0 Updated for MICROSAR RTE 4.10.x

0.6.1 Updated for MICROSAR RTE 4.11.x

0.7.0 Updated for MICROSAR RTE 4.12.x

New optimized Range Analysis algorithm

Added Configuration Feedback

Added Template Variant Check

0.8.0 Extended Configuration Feedback

Findings that are expected to always occur were moved to the
configuration feedback section in the Analysis report

RTE Analyzer now automatically extracts the number of bytes written by
the COM signal reception APIs from the generated MICROSAR COM
sources

RTE Analyzer now automatically extracts the size of the buffer that is
passed by the NVM module from the generated MICROSAR NVM
sources

RTE Analyzer now checks for memcpy with overlapping source and
destination

Table 1-1 Component history

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 6
based on template version 5.12.0

2 Introduction

This document describes the static code analysis tool MICROSAR RTE Analyzer.
MICROSAR RTE Analyzer is part of MICROSAR Safe RTE. MICROSAR Safe RTE
provides an AUTOSAR RTE generator that is developed with an ISO26262 compliant
development process, to allow the usage of the generated RTE code within an ECU with
functional safety requirements.

MICROSAR RTE Analyzer analyzes the generated RTE code for errors with a special
emphasis on sporadic runtime errors that are hard to detect during ECU integration tests.

Caution
This version of MICROSAR RTE Analyzer is a preview version. While many of the
errors that are described in the feature list can be detected, the development and
certification of MICROSAR RTE Analyzer and MICROSAR Safe RTE are still in the
works.

The usage of this version of MICROSAR RTE Analyzer alone is therefore no sufficient
prove that the generated RTE can be used in an ECU with functional safety
requirements.

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 7
based on template version 5.12.0

3 Functional Description

The features listed in the following table cover the complete functionality of MICROSAR
RTE Analyzer.

Supported Features

Compilation check for RTE code

Detection of disallowed inline assembly usage in RTE APIs

Detection of template variants that are not allowed for SafeRTE

Detection of template combinations that are not allowed for SafeRTE

Detection of accesses to invalid pointers in RTE APIs

Detection of out of bounds write accesses in RTE APIs

Detection of memcpy operations with overlapping pointers in RTE APIs

Detection of global RTE variables that are not initialized

Detection of interrupt lock API sequence mismatches in RTE APIs

Detection of OS APIs that are wrongly called with locked interrupts in RTE APIs

Detection of data consistency APIs that are called from the wrong context in RTE APIs

Detection of RTE variables that are accessed from concurrent execution contexts without
protection

Detection of RTE variables that are accessed from multiple cores and that are not mapped to
noncacheable memory sections

Detection of concurrent calls to nonreentrant APIs within RTE APIs

Configuration Feedback for scheduling properties

Configuration Feedback for executable entities

Configuration Feedback for unreachable RTE APIs and entities

Configuration Feedback for RTE APIs that require a valid COM buffer configuration

Configuration Feedback for RTE APIs that require a valid NVM buffer configuration

Automatic verification of COM buffer assumptions for MICROSAR COM

Automatic verification of NVM buffer assumptions for MICROSAR NVM

Configuration Feedback for non typesafe interfaces to the BSW and SWCs where a call with a
wrong parameter might cause out of bounds writes by the RTE or a called runnable/BSW API

Configuration Feedback for RTE APIs for which a call from a wrong context might cause data
consistency problems

Configuration Feedback for RTE APIs that are blocking

Configuration Feedback for RTE APIs that communicate with other ECUs

Configuration Feedback for RTE APIs with queues

Configuration Feedback for RTE APIs with alive timeout handling

Configuration Feedback for RTE APIs with invalidation handling

Configuration Feedback for RTE APIs with never received handling

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 8
based on template version 5.12.0

Supported Features

Configuration Feedback for RTE APIs with initial value handling

Configuration Feedback for RTE APIs with E2E transformer handling

Configuration Feedback for RTE APIs with data conversion

Configuration Feedback for RTE APIs that access nonvolatile memory

Configuration Feedback for exclusive areas

Configuration Feedback for connections

Configuration Feedback for recursive calls

Configuration Feedback for spinlocks that need to protect from task interruptions

RTE Analyzer Configuration generation by DaVinciCFG

Analysis report generation

Configuration Feedback Generation for QM and ASIL partitions

Table 3-1 Supported features

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 9
based on template version 5.12.0

4 RTE Analysis and Integration

This chapter gives necessary information about the content of the delivery, the usage of
MICROSAR RTE Analyzer and a description of the generated report.

4.1 Scope of Delivery

The delivery contains the files which are described in the chapters 4.1.1 and 4.1.2:

4.1.1 Static Files

File Name Description

MicrosarRteAnalyzer.exe MICROSAR RTE Analyzer commandline frontend

MicrosarRteAnalyzerCfgGen.exe MICROSAR RTE Analyzer configuration file generator
(automatically invoked by DaVinci CFG during RTE
generation)

Settings_RteAnalyzer.xml Davinci CFG adaption module

TechnicalReference_RteAnalyzer.pdf This document

clang.exe CLANG compiler frontend (used internally by
MicrosarRteAnalyzer.exe)

llvm-link.exe LLVM linker (used internally by
MicrosarRteAnalyzer.exe)

MicrosarIRAnalyzer.exe Analysis backend (used internally by
MicrosarRteAnalyzer.exe)

License_Artistic.txt Perl license

License_LLVM.txt LLVM/CLANG license

Com.h Stub Com header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

Compiler.h Stub Compiler header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

Compiler_Cfg.h Stub Compiler_Cfg header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

ComStack_Cfg.h Stub ComStack_Cfg header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

ComStack_Types.h Stub ComStack_Types header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

Det.h Stub Det header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

E2EXf.h Stub E2EXf header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 10
based on template version 5.12.0

File Name Description

Float.h Stub Float header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

Ioc.h Stub Ioc header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

LdCom.h Stub LdCom header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

MemMap.h Stub MemMap header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

NvM.h Stub NvM header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

Os.h Stub Os header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

Os_MemMap.h Stub Os_MemMap header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

Platform_Types.h Stub Platform_Types header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

Std_Types.h Stub Std_Types header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

String.h Stub String header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

Xcp.h Stub Xcp header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

XcpProf.h Stub XcpProf header (used internally by
MicrosarRteAnalyzer.exe for standalone RTE
verification)

Vstdlib.h Stub VStdlib header (used internally by
MicroarRteAnalyzer.exe to extract the COM signal
lengths)

Table 4-1 Static files

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 11
based on template version 5.12.0

RTE Analyzer assumes the following maximum data type sizes:

Type Size in Bits

sint8 8

uint8 8

sint16 16

uint16 16

sint32 32

uint32 32

sint64 64

uint64 64

float32 32

float64 64

enum 32

Table 4-2 Assumed platform type sizes

Caution
If the sizes of the platform types exceed the sizes described Table 4-2, contact Vector
as the size of the data types is used for the data consistency checks.

4.1.2 Dynamic Files

The dynamic files are generated by the configuration tool DaVinci CFG to the RteAnalyzer
subdirectory when the RTE is generated.

File Name Description

RteAnalyzerConfiguration.json Configuration file for MICROSAR RTE Analyzer.

<BSW>.c These files contain stub implementations for the schedulable
entities that call all available RTE APIs.

TestControl.c This file contains stubs for the BSW calls to the RTE.

<SWC>.c These files contain stub implementations for the runnables that
call all available RTE APIs.

Com_Cfg.h This file contains the configuration for the stub COM module.

LdCom_Cfg.h This file contains the configuration for the stub LDCOM module.

Os_Cfg.h This file contains the configuration for the stub OS module.

Ioc_Cfg.h This file contains the IOC configuration for the stub OS module.

Xcp_Cfg.h This file contains the configuration for the stub XCP module.

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 12
based on template version 5.12.0

File Name Description

NvM_Cfg.h This file contains the configuration for the stub NVM module.

E2EXf_Cfg.h This file contains the configuration for the stub E2E module.

Table 4-3 Generated files

Besides the files that are generated by DaVinci CFG, RTE Analyzer generates the
following files when invoked from the commandline.

File Name Description

AnalysisReport.txt Report that contains the results of the static code analysis and
analysis assumptions that need to be reviewed by the user of
MICROSAR RTE Analyzer.

4.2 Restrictions

MICROSAR RTE Analyzer uses a Compiler front end in order to compile the input source
files. This Compiler front end requires ANSI-C 90 [1] conform source code. Some target
compilers implement specific language extensions which might prevent MICROSAR
RTE Analyzer from compiling the code successfully. The Vector BSW code does not
contain such language extensions. However, these extensions may be included via
customer header files. In such a case the customer shall take care that these language
extensions are encapsulated via the preprocessor for the MICROSAR RTE Analyzer
execution. The corresponding preprocessor switches can be specified via the command
line when calling MICROSAR RTE Analyzer.

4.5 MicrosarRteAnalyzer.exe Command Line Options

The frontend MicrosarRteAnalyzer.exe starts the static code analysis. It can be started on
the commandline once the RTE and the MICROSAR RTE Analyzer configuration were
generated by DaVinci CFG.

Option Description

–c <config> Selects the configuration file of the project that shall be analyzed.

-I <dir> Add directory name <dir> to include file search path

-D <name>[=<value>] Defines macro with name <name> and value <value>

–o <path> Selects the directory to which the analysis report will be written

-e Extended Configuration Feedback. If not set, the Configuration
Feedback will not include RTE functionality in OS Applications with
SafetyLevel QM.

-d Disable analysis of COM and NVM generation data

-V Shows the version

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 13
based on template version 5.12.0

–h Shows the commandline help

Table 4-4 RTE Analyzer Command Line Options

Example:

MicrosarRteAnalyzer.exe -c RteAnalyzerConfiguration.json –o

Reports

4.6 Analysis Report Contents

MicrosarRteAnalyzer.exe prints errors that prevent the analysis of the system to the
console.

When MicrosarRteAnalyzer.exe was executed without errors, an analysis report is written
to the output directory that contains potential problems within the generated RTE.

These problems are only listed in the report and not printed to the console.

As not every detected violation necessarily leads to an error in the ECU, the final decision
whether an issue is critical or not is up to the user of MicrosarRteAnalyzer.exe.

Besides the detected constraint violations, the analysis report also contains assumptions
about the system that were derived from the configuration.

These assumptions need to be verified by the user of MicrosarRteAnalyzer.exe.

4.6.1 Analyzed Files

The report starts with the version of the analysis report, the time of the analysis and the
name of the windows user that initiated the analysis.

Moreover the analyzed files are listed. It needs to be assured that the correct files were
analyzed and no file is missing.

4.6.2 Configuration Parameters

MICROSAR RTE Analyzer relies on configuration parameters from DaVinci CFG to
determine the scheduling properties of the individual tasks and BSW callbacks.

These parameters need to be reviewed because a wrong parameter might lead to missed
data consistency problems.

The report contains the following parameters that need to be checked against the target
system.

Parameter Description

MaxAtomicMemoryAccess Describes the maximum number of bytes for
variable accesses up to which the compiler
will emit an atomic access instruction.

BswOsApplication Describes the OS Application from which the
RTE Callbacks (Rte_COMCbk, Rte_LdCom,

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 14
based on template version 5.12.0

Parameter Description

Rte_GetMirror, Rte_SetMirrors, …) are called.

OsApplications Lists the OS Applications in the system

OsApplicationName Name of the OS Application

CoreId ID of the Core that contains the OS
Application

IsTrusted Describes if the OS Application runs without
MPU (IsTrusted == 1) or with MPU (IsTrusted
== 0)

SafetyLevel SafetyLevel of the OS Application: QM,
ASIL_A, ASIL_B, ASIL_C, ASIL_D

Tasks List of OS Tasks that are assigned to the OS
Application

TaskName Name of the OS Task

Priority Priority of the OS Task

Preemption Preemption setting of the OS Task

Table 4-5 Analysis parameters that are extracted from the configuration

4.6.3 Findings

RTE Analyzer currently reports the findings described in Table 4-6. The description
describes the possible findings in more detail and the actions that need to be taken when
they are contained in the analysis report.

ID Headline Description

11000 Unsupported integer to pointer conversion RTE code uses an integer value that was
casted to a pointer type.
Example:

uint8* ptr = 0xdeadbeef;

*ptr = 5;

This code construct must not be used in
the RTE code. Contact Vector.

11001 Unsupported inline assembly RTE code uses inline assembly.
Example:

asm("add %al, (%rax)");

This code construct must not be used in
the RTE code. Contact Vector.

11006 Unsupported path to pointer target The pointer analysis detected a code

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 15
based on template version 5.12.0

ID Headline Description

construct that it cannot handle. This code
construct must not be used in RTE code.
Contact Vector.

12000 Potential out of bounds write A pointer that was already used in the
preparation of the analysis is outside of
the assumptions that were used during
the preparations.

Example:

typedef struct {

 uint8* a;

 uint8* b;

} struct_t;

struct_t s;

uint8** ptr = &s.a;

ptr[1][0] = 7;

This code construct must not be used in
the RTE code. Contact Vector.

12001 Potential null pointer write An RTE API writes to a pointer that may
be null.

This code construct must not be used in
the RTE code. Contact Vector.

12002 Potential out of bounds write An RTE API writes outside of the bounds
of a variable.

Example:

uint8 a[5];

a[5] = 1;

This code construct must not be used in
the RTE code. Contact Vector.

13000 Unexpected lock sequence A lock function is not followed by an
appropriate unlock function.

Example:

SuspendAllInterrupts();

a = 5;

ResumeOSInterrupts();

This code construct must not be used in
the RTE code. Contact Vector.

13001 Different lock states for loop A function uses different lock states in
different loop iterations.

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 16
based on template version 5.12.0

ID Headline Description

Example:

for (i = 0; i < 20; i++)

{

 if (i == 5)

 {

 DisableAllInterupts();

 }

 if (i == 6)

 {

 EnableAllInterrupts();

 }

}

This code construct must not be used in
the RTE code. Contact Vector.

13002 Different lock states for call A call may be done with and without prior
locking.

Example:

if (a == 0)

{

 DisableAllInterrupts();

}

Function();

This code construct must not be used in
the RTE code. Contact Vector.

13003 Different lock states for recursive call A recursive function changes the lock
state prior to the next recursion.

Example:

void func()

{

 DisableAllInterrupts();

 func();

 EnableAllInterrupts();

}

This code construct must not be used in
the RTE code. Contact Vector.

13004 Different lock states for return A function may return a with different lock
state.

Example:

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 17
based on template version 5.12.0

ID Headline Description

DisableAllInterrupts();

if (a)

{

 return;

}

EnableAllInterrupts();

return;

This code construct must not be used in
the RTE code. Contact Vector.

13005 Task or ISR returns with locked interrupts A RTE Task or callback returns with
locked interrupts in at least one code
branch.

This code construct must not be used in
the RTE code. Contact Vector.

13006 OS API called with locked interrupt An OS API e.g. WaitEvent is called with
locked interrupts. This is prohibited by the
OS specification.

This code construct must not be used in
the RTE code. Contact Vector.

13007 OS API called with disabled interrupts An OS API e.g. SuspendOSInterrupts is
called within a section that is locked with
DisableAllInterrupts. This is prohibited by
the OS specification.

This code construct must not be used in
the RTE code. Contact Vector.

13008 OS API called in wrong context An optimized MICROSAR interrupt lock
API is called from the wrong context. E.g.
an optimized lock API for trusted OS
application is called from an untrusted
application.

This code construct must not be used in
the RTE code. Contact Vector.

13009 Accesses can interrupt each other RTE Analyzer detected that a variable is
accessed from multiple tasks that can
interrupt each other. The variable is not
protected by an OS API e.g. interrupt lock
or spinlock.

This code construct must not be used in
the RTE code. Contact Vector.

13010 Nonreentrant function with nonconstant
handle

RTE Analyzer checks the RTE for
concurrent calls to BSW APIs. If the
reentrancy depends on the handle, the
handle needs to be constant so that it can
be analyzed by RTE Analyzer. This code
construct must not be used in the RTE
code. Contact Vector.

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 18
based on template version 5.12.0

ID Headline Description

13011 Nonreentrant function invoked concurrently RTE Analyzer detects concurrently called
functions for which the caller would have
needed to assure nonreentrant calls. This
code construct must not be used in the
RTE code. Contact Vector.

13012 Different resources used on same core The RTE code uses different resources to
protect the same variable. If a variable
needs to be protected from concurrent
accesses in multiple tasks, the same
resource needs to be used for all
accesses. This code construct must not
be used in the RTE code. Contact Vector.

13013 Different spinlocks used The RTE code uses different spinlocks to
protect the same variable on a single
core. If a variable needs to be protected
from concurrent accesses on multiple
cores, the same spinlock needs to be
used for all accesses. This code construct
must not be used in the RTE code.
Contact Vector.

13014 Not all accesses protected with resource The RTE code does not always use
resources to protect a variable. If a
variable needs to be protected from
concurrent accesses in multiple tasks, the
same resource needs to be used for all
accesses. This code construct must not
be used in the RTE code. Contact Vector.

13015 Bitfield write access without interrupt locks The RTE uses interrupt locks to prevent
read modify write problems in bitfields.
RTE Analyzer detected an access without
locks. This code construct must not be
used in the RTE code. Contact Vector.

14000 Unmatched memory section A memory section was not closed
correctly. Example:

#define RTE_START_SEC_VAR

#include “MemMap.h”

uint8 var;

#define RTE_STOP_SEC_CONST

#include “MemMap.h”

This code construct must not be used in
the RTE code. Contact Vector.

14001 Variable not mapped to memory section A variable is declared without being
mapped to a memory section.

Example:

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 19
based on template version 5.12.0

ID Headline Description

uint8 var;

#define RTE_START_SEC_VAR

#include “MemMap.h”

This code construct must not be used in
the RTE code. Contact Vector.

14002 Variable not mapped to NOCACHE
memory section

A variable that is accessed from multiple
cores is not mapped to a NOCACHE
memory section. This may lead to data
consistency problems.

Example:

#define RTE_START_SEC_VAR

#include “MemMap.h”

uint8 var;

#define RTE_STOP_SEC_VAR

#include “MemMap.h”

This code construct must not be used in
the RTE code. Contact Vector.

16000 Missing task info The configuration contains no task
settings for the task. Possible reason: a
function ends with the name func and is
missdetected as OS Task by RTE
Analyzer. Rename the function or ignore
the message.

17000 Potential illegal memcpy Memcpy is called with overlapping source
and destination arguments.
Example:

Rte_MemCpy(dst, dst, 5);

This code construct must not be used in
the RTE code. Contact Vector.

Table 4-6 RTE Analyzer Findings

4.6.4 Configuration Feedback

The findings from chapter 4.6.3 describe inconsistencies within the generated RTE.
However, also a consistently generated RTE may violate functional safety requirements
when the generated RTE does not match the intentions of the user e.g. when wrong
configuration parameters were chosen for the intended use case.

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 20
based on template version 5.12.0

Therefore, during development of the RTE Generator a safety analysis is performed on all
input parameters of the generator in order to detect functionality for which a slightly
different configuration leads to the generation of APIs with compatible C signature but
different runtime behavior.

RTE Analyzer lists the detected functionality in the analysis report, so that an integration
test as required by ISO26262 can confirm that only the intended and no unintended
functionality is implemented in the generated RTE.

This also makes it possible to use MICROSAR RTE Generator in combination with non
TCL1 configuration tools as unintended configuration modifications by the tool will lead to
an unexpected configuration feedback.

By default the configuration feedback is only printed for the OS Applications with ASIL
safety levels. When the –e configuration switch is enabled, the RTE functionality in OS
Applications with SafetyLevel QM is also included. Analysis report contains the following
information:

 Function may be called recursively - The software design contains e.g. configured
client server calls that may lead to recursive calls. ISO26262 recommends that
recursion is not used in the software design and implementation.

 Uncalled function - A function e.g. a server runnable without connected client was
encountered during the analysis. Functions that are not called are not analyzed by
RTE Analyzer. Assure that the function is not called in the target system, either.

 Call with non typesafe parameters - Some APIs contain pointers that are not
typesafe e.g. because the parameter type is a pointer to the base type and the
function writes more than a single element of this type. The parameter may also be
a void pointer type. RTE Analyzer lists these functions so that it can be verified that
the passed buffer matches the expectations of the called function. Please note that
the buffer that is listed by RTE Analyzer might be larger than the actual number of
bytes that are written by the called function.

 COM call with non typesafe parameters – The COM APIs for data reception are not
typesafe. It has to be assured, that COM does not write more bytes than expected
by the RTE. If MICROSAR COM is used, RTE Analyzer extracts the number of
written bytes from the generated COM sources.

 NVM callback with non typesafe parameters – The NVM GetMirror callback does
not have typesafe parameters. It has to be assured that the buffer that is passed by
the NVM is not smaller than the number of bytes that are written by the RTE. If
MICROSAR NVM is used, RTE Analyzer extracts the available number of bytes
from the generated NVM sources.

 API for Safe component must not be called from wrong context - The RTE
generator disables task priority optimizations for partitions with an ASIL Safety
Level. If an API is used only on a single task according to the configuration, the RTE
generator optimizes nevertheless. RTE Analyzer lists these APIs so that it can be
confirmed that the APIs are not accidently called from a runnable for which no port
access was configured in the configuration.

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 21
based on template version 5.12.0

 Non-Queued connections – This contains list of all non-queued intra-ECU sender-
receiver connections between Rte_Write, Rte_IWrite, Rte_Read, Rte_DRead,
Rte_IRead.

 Queued connections – This contains list of all queued intra-ECU sender-receiver
communication connections between Rte_Send and Rte_Receive.

 Inter-runnable connections – This contains list of all inter-runnable variable
connections.

 External connections – This contains list of all the APIs and server runnables that
communicate with other ECUs.

 Switch-mode connections – This contains list of all mode connections between
Rte_Switch and Rte_Mode.

 Exclusive areas – This contains list of all exclusive areas and their implementation
methods. This includes explicit and implicit exclusive areas. The implementation
methods need to be set according to the requirements of the application.

 Initial values of APIs – This contains list of all the APIs that return an initial value.
The calling runnable needs to handle the initial value. When RteAnalyzer was able
to extract the initial value from the code, the value is also printed.

 Blocking APIs – This contains list of all APIs that are blocking. These may
unexpectedly delay the calling function.

 Executable Entities – This contains list of all the executable entities. The entities are
listed together with the tasks in which they are executed.

 APIs with special return values – This contains list of all the APIs that return special
error codes such as RTE_E_MAX_AGE_EXCEEDED, RTE_E_INVALID and
RTE_E_NEVER_RECEIVED.

 APIs with queues – This contains the list of APIs with queues along with the queue
sizes.

 APIs with E2E transformers – This contains the list of APIs that read or write data
with the help of the E2E transformer. The communication partner needs to handle
the converted data.

 Reentrant Executable Entities – This contains list of all executable entities that are
called reentrantly. This is based on the core id, priority and the preemption setting
of the tasks in which the entity is executed.

 APIs using data conversion – This contains list of all the APIs that do data
conversion. The communication partner needs to handle the converted data.

 APIs that may use NVM – This contains list of all Per Instance Memories and
sender-receiver APIs that access NV Block SWCs. The NVM module needs to be
configured correctly.

Please note that the configuration feedback describes the actual properties of the code.
This can be different from the configured values, especially if the APIs are generated for
unconnected ports.

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 22
based on template version 5.12.0

Example: An unconnected Rte_Read API is configured to return
RTE_E_NEVER_RECEIVED. According to the RTE specification, the return value is
RTE_E_UNCONNECTED independently of the never received handling, therefore the
generated API has no code to return RTE_E_NEVER_RECEIVED and the analysis report
does not list the API in the “APIs with special return values” section.

The safety manual describes how the configuration feedback can be used for integration
testing.

4.6.5 Template Variant Check

MICROSAR RTE Generator is a template based code generator. During generation,
MICROSAR RTE Generator calculates checksums for the template sequences that were
used to generate the RTE APIs. The delivery of the generator contains a list of checksums
that were approved for the usage in an ECU with functional safety requirements.

MICROSAR RTE Analyzer checks that the template sequences that were used to
generate the analyzed RTE are within the allowed sequences.

Please contact Vector if the analysis report lists template variants that are not within the
allowed ones.

4.7 Integration into DaVinci CFG

Since MICROSAR RTE Analyzer checks the consistency of the generated RTE it is
convenient to run MICROSAR RTE Analyzer automatically after the data is generated. To
integrate MICROSAR RTE Analyzer into DaVinci CFG, an external generation step can be
configured.

Start DaVinci CFG and select the menu “Project”. Next select the menu item “Settings”.

To add a new external generation step, select “External Generation Steps”. This will
display the following window:

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 23
based on template version 5.12.0

Click on the Add button with the “+” symbol and enter the MICROSAR RTE Analyzer path
e.g.

$(SipRootPath)/Misc/RteAnalyzer/MicrosarRteAnalyzer.exe

and command line arguments e.g.

-c $(GenDataFolder)/RteAnalyzer/RteAnalyzerConfiguration.json -o

$(GenDataFolder)/RteAnalyzer/Reports

For Virtual Target, $(GenDataVTTFolder) needs to be used.

Note
It is required to set a working directory for a post generation step.

Now the external generation step needs to be configured to be run after the DaVinci
Generators. To configure this click on the item “Code Generation”.

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 24
based on template version 5.12.0

Now select the MICROSAR RTE Analyzer Generation Step and enable it by checking the
check box in front of it. Additionally MICROSAR RTE Analyzer should be run after DaVinci
Configurator Pro generated the data. Therefore it is necessary to move it after the DaVinci
Code Generation using the Down button with the “” symbol.

Now MICROSAR RTE Analyzer will be automatically executed after the DaVinci
Configurator Pro has generated the data.

Note
MICROSAR RTE Analyzer will also be executed if the data was not successfully
generated.

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 25
based on template version 5.12.0

5 Glossary and Abbreviations

5.1 Glossary

Term Description

DaVinci CFG DaVinci Configurator 5: The BSW and RTE Configuration Editor.

Table 5-1 Glossary

5.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

DEM Diagnostic Event Manager

DET Development Error Tracer

EAD Embedded Architecture Designer

ECU Electronic Control Unit

HIS Hersteller Initiative Software

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

PPORT Provide Port

RPORT Require Port

RTE Runtime Environment

SRS Software Requirement Specification

SWC Software Component

SWS Software Specification

Table 5-2 Abbreviations

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 26
based on template version 5.12.0

6 Additional Copyrights

MICROSAR RTE Analyzer contains Free and Open Source Software (FOSS). The

following table lists the files which contain this software, the kind and version of the FOSS,

the license under which this FOSS is distributed and a reference to a license file which

contains the original text of the license terms and conditions. The referenced license files

can be found in the directory of MICROSAR RTE Analyzer.

File FOSS License License Reference

MicrosarRteAnalyzer.exe

MicrosarRteAnalyzerCfgGen.exe

Perl 5.20.2 Artistic License License_Artistic.txt

MicrosarIRAnalyzer.exe

llvm-link.exe

llvm 3.6.2
vssa r343

LLVM
License

License_LLVM.txt

clang.exe Clang 3.6.2 LLVM

License

License_LLVM.txt

Table 6-1 Free and Open Source Software Licenses

Technical Reference MICROSAR RTE Analyzer

© 2016 Vector Informatik GmbH Version 0.8.0 27
based on template version 5.12.0

7 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1 Component History
	2 Introduction
	3 Functional Description
	4 RTE Analysis and Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Restrictions
	4.5 MicrosarRteAnalyzer.exe Command Line Options
	4.6 Analysis Report Contents
	4.6.1 Analyzed Files
	4.6.2 Configuration Parameters
	4.6.3 Findings
	4.6.4 Configuration Feedback
	4.6.5 Template Variant Check

	4.7 Integration into DaVinci CFG

	5 Glossary and Abbreviations
	5.1 Glossary
	5.2 Abbreviations

	6 Additional Copyrights
	7 Contact

