

AUTOSAR MCAL R4.0.3

User's Manual

SPI Driver Component Ver.1.0.2

Embedded User's Manual

Target Device:

RH850/P1x-C

All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.

website (http://www.renesas.com).

www.renesas.com Rev.1.00 Feb 2017

http://www.renesas.com/
http://www.renesas.com/

2

3

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,

software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and

damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents,

copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information

described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas

Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics

disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or

otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended

applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;

home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication

equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or

bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea

repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any

and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the

product is not intended by Renesas Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General

Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges

specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics,

installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas

Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have

specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas

Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the

possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics

products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention,

appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system.

Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or

systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including

without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable

laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with

applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale

is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1)

any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons,

chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose

relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and

security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly

or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When

exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and

regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and

conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your

resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas

Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

4

5

Abbreviations and Acronyms

Abbreviation / Acronym Description

ANSI American National Standards Institute

API Application Programming Interface

ARXML/arxml AutosaR eXtensible Mark-up Language

ASIC Application Specific Integration Circuit

AUTOSAR AUTomotive Open System Architecture

BSW Basic SoftWare

CPU Central Processing Unit

CSIH/CSIG, CSIG Enhanced Queued Clocked Serial Interface.

DEM Diagnostic Event Manager

DET/Det Development Error Tracer

DIO Digital Input Output

DMA Direct Memory Access

EB External Buffer

ECU Electronic Control Unit

EDL Extended Data Length

EEPROM Electrically Erasable Programmable Read-Only Memory

GNU GNU’s Not Unix

GPT General Purpose Timer

HW HardWare

IB Internal Buffer

Id Identifier

I/O Input/Output

ISR Interrupt Service Routine

MCAL Microcontroller Abstraction Layer

MHz Mega Hertz

NA Not Applicable

PLL Phase Locked Loop

RAM Random Access Memory

ROM Read Only Memory

RTE Run Time Environment

SPI Serial Peripheral Interface

µs Micro Seconds

Definitions

Term Represented by

Sl. No. Serial Number

6

7

Table Of Contents

Chapter 1 Introduction ... 11

1.1. Document Overview .. 13

Chapter 2 Reference Documents .. 15

Chapter 3 Integration And Build Process ... 17

3.1. SPI Driver Component Makefile ... 17

Chapter 4 Forethoughts ... 19

4.1. General.. 19

4.2. Preconditions ... 22

4.3. User Mode and Supervisor Mode ... 23

4.4. Memory modes .. 25

4.5. Data Consistency ... 25

4.6. Deviation List ... 26

Chapter 5 Architecture Details .. 29

Chapter 6 Registers Details ... 33

Chapter 7 Interaction Between The User And SPI Driver Component

 .. 41

7.1. Services Provided By SPI Driver Component To The User... 41

Chapter 8 SPI Driver Component Header And Source File

Description .. 43

Chapter 9 Generation Tool Guide .. 47

Chapter 10 Application Programming Interface 49

10.1. Imported Types .. 49

10.1.1. Standard Types .. 49

10.1.2. Other Module Types ... 49

10.2. Type Definitions ... 49

10.2.1. Spi_ConfigType ... 49

10.2.2. Spi_StatusType .. 49

10.2.3. Spi_JobResultType... 50

10.2.4. Spi_SeqResultType .. 50

10.2.5. Spi_DataType ... 50

10.2.6. Spi_NumberOfDataType .. 50

10.2.7. Spi_ChannelType ... 51

10.2.8. Spi_JobType ... 51

8

10.2.9. Spi_SequenceType .. 51

10.2.10. Spi_HWUnitType .. 51

10.2.11. Spi_AsyncModeType .. 51

10.2.12. Spi_CommErrorType .. 52

10.2.13. Spi_HWErrorsType ... 52

10.2.14. Spi_SelfTestType ... 52

10.2.15. Spi_ReturnStatus .. 52

10.3. Function Definitions .. 53

Chapter 11 Development And Production Errors 55

11.1. SPI Driver Component Development Errors ... 55

11.2. SPI Driver Component Production Errors... 56

Chapter 12 Memory Organization ... 59

Chapter 13 P1x-C Specific Information ... 61

13.1. Interaction Between The User And SPI Driver Component ... 61

13.1.1. ISR Function .. 61

13.2. Sample Application ... 63

13.2.1. Sample Application Structure .. 63

13.2.2. Building Sample Application .. 64

13.2.2.1. Configuration Example .. 64

13.2.2.2. Debugging The Sample Application .. 64

13.3. Memory And Throughput .. 65

13.3.1. ROM/RAM Usage .. 65

13.3.2. Stack Depth ... 66

13.3.3. Throughput Details .. 66

Chapter 14 Release Details .. 69

9

List Of Figures

Figure 1-1 System Overview Of AUTOSAR Architecture ... 11
Figure 1-2 System Overview Of The SPI Driver In AUTOSAR MCAL Layer 12
Figure 5-1 SPI Driver Architecture .. 29
Figure 5-2 Component Overview Of SPI Driver Component .. 30
Figure 12-1 SPI Driver Component Driver Organization ... 59
Figure 13-1 Overview Of SPI Driver Sample Application .. 63

List Of Tables

Table 4-1 Registers to be Configured for Static Configuration .. 21
Table 4-2 Channel container parameters .. 21
Table 4-3 Job container parameters .. 21
Table 4-4 User Mode and Supervisory Mode .. 23
Table 4-5 HW unit and Memory Mode Selection ... 25
Table 4-6 SPI Driver Critical section protection List .. 25
Table 4-7 SPI Driver Deviation List .. 26
Table 6-1 Register Details.. 33
Table 8-1 Description Of The SPI Driver Component Files ... 44
Table 10-1 The APIs provided by the SPI Driver Component ... 53
Table 11-1 DET Errors Of SPI Driver Component ... 55
Table 11-2 DEM Errors Of SPI Driver Component .. 57
Table 13-1 Interrupt Vector Table .. 61
Table 13-2 ROM/RAM Details Without DET .. 65
Table 13-3 ROM/RAM Details With DET ... 66
Table 13-4 Throughput Details Of The APIs .. 67

10

Introduction Chapter 1

11

Chapter 1 Introduction

The purpose of this document is to describe the information related to SPI

Driver Component for Renesas P1x-C microcontrollers.

This document shall be used as reference by the users of SPI Driver

Component. The system overview of complete AUTOSAR architecture is

shown in the below Figure:

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

SPI Driver

Microcontroller

Figure 1-1 System Overview Of AUTOSAR Architecture

The SPI Driver is part of the Microcontroller Abstraction Layer (MCAL), the

lowest layer of Basic Software in the AUTOSAR environment.

Chapter 1 Introduction

12

P
O

R
T

 D
riv

e
r

D
IO

D

IO
 D

riv
e
r

A
D

C

A
D

C
 D

riv
e
r

P
W

M
 D

riv
e
r

IC
U

IC

U
 D

riv
e

r

F
le

x
R

a
y
 D

riv
e
r

C
A

N

C
A

N
 D

riv
e

r

L
IN

 D
riv

e
r

S
P

I H
a

n
d

le
r D

riv
e
r

S
P

I

in
te

rn
a

l E
E

P
R

O
M

 D
riv

e
r

in
te

rn
a

l F
la

s
h

 D
riv

e
r

e
x
te

rn
a

l F
la

s
h

 D
riv

e
r

R
A

M
 T

e
s
t

P
W

M

C
o

re
 T

e
s
t

L
IN

 o
r

S
C

I

M
C

U
 D

riv
e

r

E
E

P
R

O

M

W
a

tc
h

d
o

g
 D

riv
e
r

F
L

A
S

H

G
P

T
 D

riv
e
r

E
x
t. B

U
S

M
C

U

P
o

w
e

r &

C
lo

c
k

U
n
it

 N

U
n
it

G
P

T

W
D

T

 The Figure in the following page depicts the SPI Driver as part of layered

AUTOSAR MCAL Layer:

M icrocont roller Drivers Me mo r y Drivers Communication Drivers I/O Drivers

Micro -
controller

Figure 1-2 System Overview Of The SPI Driver In AUTOSAR MCAL Layer

The SPI Driver Component comprises Embedded software and the

Configuration Tool to achieve scalability and configurability.

The SPI Driver component code Generation Tool is a command line tool that

accepts ECU configuration description files as input and generates source

and header files. The configuration description is an ARXML file that contains

information about the configuration for SPI Driver. The tool generates the

Spi_PBcfg.c, Spi_Lcfg.c, Spi_Hardware.c, Spi_Hardware.h, Spi_Cfg.h and

Spi_Cbk.h.

The SPI driver provides services for reading from and writing to devices

connected through SPI buses. It provides access to SPI communication to

several users (For example, EEPROM, I/O ASICs). It also provides the

required mechanism to configure the on-chip SPI peripheral.

Introduction Chapter 1

13

1.1. Document Overview

The document has been segmented for easy reference. The table below

provides user with an overview of the contents of each section:

Section Contents

Section 1 (Introduction) This section provides an introduction and overview of SPI Driver

Component.

Section 2 (Reference Documents) This section lists the documents referred for developing this document.

Section 3 (Integration And Build

Process)
This section explains the folder structure, Makefile structure for SPI

Driver Component. This section also explains about the Makefile

descriptions, Integration of SPI Driver Component with other

components, building the SPI Driver Component along with a

sample application.

Section 4 (Forethoughts) This section provides brief information about the SPI Driver

Component, the preconditions that should be known to the user before

it is used, memory modes, data consistency details, deviation list and

Support For Different Interrupt Categories.

Section 5 (Architecture Details) This section describes the layered architectural details of the SPI Driver

Component.

Section 6 (Register Details) This section describes the register details of SPI Driver Component.

Section 7 (Interaction Between

User And SPI Driver Component)
This section describes interaction of the SPI Driver Component with

the upper layers.

Section 8 (SPI Driver Component

Header And Source File

Description)

This section provides information about the SPI Driver Component

source files is mentioned. This section also contains the brief note on

the tool generated output file.

Section 9 (Generation Tool Guide) This section provides information on the SPI Driver Component Code

Generation Tool.

Section 10 (Application

Programming Interface)
This section explains all the APIs provided by the SPI Driver
Component.

Section 11 (Development And

Production Errors)
This section lists the DET and DEM errors.

Section 12 (Memory

Organization)
This section provides the typical memory organization, which must

be met for proper functioning of component.

Section 13(P1X-C

Specific information)
This section provides P1x-C specific information like ISR Function, the

details of the P1x-C Sample Application and its folder structure and the

information about RAM/ROM usage, stack depth and throughput

details.
Section 14 (Release Details) This section provides release details with version name and

base version.

Chapter 1 Introduction

14

Reference Documents Chapter 2

15

Chapter 2 Reference Documents

Sl. No. Title Version

1. AUTOSAR_SWS_SPIHandlerDriver.pdf 3.2.0

2. AUTOSAR BUGZILLA (http://www.autosar.org/bugzilla)

Note: AUTOSAR BUGZILLA is a database, which contains concerns raised
against information present in AUTOSAR Specifications.

-

3. r01uh0517ej0070_rh850p1x-c_Open.pdf Rev.1.00

4. Specification of Compiler Abstraction

 (AUTOSAR_SWS_CompilerAbstraction.pdf)

 3.2.0

 5. Specification of Memory Mapping

 (AUTOSAR_SWS_MemoryMapping.pdf)

 1.4.0

6. Specification of Platform Types

 (AUTOSAR_SWS_PlatformTypes.pdf)

 2.5.0

http://www.autosar.org/bugzilla

Chapter 2 Reference Documents

16

 Integration And Build Process Chapter 3

17

Chapter 3 Integration And Build Process

In this section the folder structure of the SPI Driver Component is explained.

Description of the Makefiles along with samples is provided in this section.

Remark The details about the C Source and Header files that are generated by the

SPI Driver Generation Tool are mentioned in the

 “R20UT3660EJ0100-AUTOSAR.pdf”.

3.1. SPI Driver Component Makefile

The Makefile provided with the SPI Driver Component consists of the GNU

Make compatible script to build the SPI Driver Component in case of any

change in the configuration. This can be used in the upper level Makefile (of

the application) to link and build the final application executable.

3.1.1. Folder Structure

The files are organized in the following folders:

 Remark Trailing slash ‘\’ at the end indicates a folder

X1X\common_platform\modules\spi\src\Spi_Driver.c

\Spi.c

\Spi_Scheduler.c

\Spi_Irq.c

\Spi_Ram.c

\Spi_Version.c

X1X\common_platform\modules\spi\include\Spi_Driver.h

\Spi.h

\Spi_Scheduler.h

\Spi_Irq.h

\Spi_LTTypes.h

\Spi_PBTypes.h

\Spi_Ram.h

\Spi_Version.h

\Spi_Types.h

\Spi_RegWrite.h

X1X\P1x-C\modules\spi\sample_application\<SubVariant>\make\ghs

\App_Spi_P1x-C_Sample.mak

\App_Spi_P1x-C_Sample.ld

 X1X\P1x-C\modules\spi\generator

\R403_SPI_P1x-C_BSWMDT.arxml

Chapter 3 Integration And Build Process

18

X1X\P1x-C\modules\spi\user_manual

(User manuals will be available in this folder)

 Note: 1. <AUTOSAR_version> should be 4.0.3
 2. <SubVariant> can be P1H-C, P1H-CE, P1M-C.

 Forethoughts Chapter 4

19

Chapter 4 Forethoughts

4.1. General

Following information will aid the user to use the SPI Driver Component

software efficiently:

• SPI Driver component does not take care of setting the registers which

configure clock, prescaler and PLL.

• SPI Driver component handles only the Master mode.

• SPI Driver component supports full-duplex mode.

• The chip select is implemented using the microcontroller pins and it is

configurable.

• The microcontroller pins used for chip select is directly accessed by the

SPI Driver component without using the APIs of DIO module.

• Maximum number of channels and jobs configurable is 65536.

• The scope is restricted to post-build with multiple configuration sets.

• The identifiers for channels, jobs and sequences entered by the user

should start from 0 and should be continuous.

• The width of the transmitted data unit is configurable and the valid values

are 8 bits to 32 bits.

• The number of channels, jobs and sequences should be same across

multiple configuration sets.

• The channels, jobs and sequences cannot be deleted or added at post-

build time.

• The SPI hardware unit cannot be deleted or added at post–build time. But,

the reassignment of the SPI hardware units to different jobs is possible at

post-build time.

• The DMA unit cannot be deleted or added at post–build time. But, the

reassignment of DMA units to the SPI hardware units is possible at post-

build time.

• When the level of scalable functionality is configured as 2, then two SPI

buses using separate hardware units are required. In this case, the SPI

bus dedicated for synchronous transmission is configurable.

• When the level of scalable functionality is configured as 2, two modes of

asynchronous communication using polling or interrupt mechanism are

possible. These modes are selectable during execution time.

• When the level of scalable functionality is configured as 1 or 2, If interrupt

mechanism is selected during execution time, the transmission and

reception will be performed using the on-chip DMA unit only if the DMA

mode is enabled through the configuration.

• The LEVEL 2 SPI Handler is specified for microcontrollers that have to

provide at least two SPI busses using separated hardware units. Otherwise,

using this level of functionality makes no sense.

 Chapter 4 Forethoughts

20

• When Level Delivered is 0 and 2, the memory mode configured for jobs

linked for the synchronous sequence shall be always Direct Access Mode

only.

• If user configures 32 bit IB and EB channels and additionally configures

DMA in direct access mode there will be a generator error message.

• When the SPI driver is configured in Level 2 (SpiLevelDelivered) and the

DMA is also configured (SpiDmaMode), then the asynchronous mode

needs to be set for interrupt mode using the API Spi_SetAsyncMode

• Direct Access mode can be effectively used in case of sequence having

channels and buffers of significantly different properties.

• Double Buffer mode can be effectively used in case of sequence having

more number of jobs, channels and buffers with same hardware properties

for continuous transmission of data. For double buffer mode only usage of

internal buffers is allowed. FIFO mode can be effectively used at the time of

transmit/receive of large amount of data. FIFO mode can also be used in

case of sequence having lesser number of jobs and having more channels

and buffers.

• In a particular configurations where CSIH HW units are configured, Spi_Init

function must be called before Port_Init function.

• Only if "SpiCsInactive" parameter is set to "true", the PWR bit in CSI

hardware will be cleared for that hardware unit, so setting "false" value can

lead to unnecessary power consumption.

• When “SpiCsIdleEnforcement” is set to true for the jobs configured for CSIH

Hw units, the value configured for "SpiCsInactive" will not have any impact

in actual Chip Select behavior".

• The parameter "SpiCsIdleEnforcement" influences the behaviour of idle

level of the chip select during data transfer and after the transmission of a

job.

When the parameter 'SpiCsIdleEnforcement' is configured as false, the

corresponding chip select is deactivated before every channel transmission

and stays active after transmission until another job with different CS is

transmitted.

When the parameter 'SpiCsIdleEnforcement' is configured as true, the chip

select is deactivated after job transmission. An idle phase of CS is inserted

between transmissions of two data buffers.The duration of idle state of the

chip select between the channels transmissions will be less than duration

of idle state of the chip select between single data of each channel.

This information is valid only for DIRECT ACCES MODE.

• For availability of Data Consistency Check on the port pins, please refer

respective microcontroller user manual.

• Sequences assigned to a hardware channel (CSIHx) which is configured to

work with transmit only memory mode can be an interruptible or non-

interruptible sequence (specified by the parameter

SpiInterruptibleSequence). However, even if the sequence is non-

interruptible, it can still be interrupted by CPU-controlled high priority

communication functionality. i.e. the parameter SpiInterruptibleSequence is

valid only for software interruption.

• Each of the high priority sequences shall refer to a unique chip select line.

 These lines shall not be referred by any of the low priority sequences too.

 Forethoughts Chapter 4

21

• In order to support DEEPSTOP functionality without resetting the
microcontroller, the re initialization of the Driver using Spi_Init API is
supported. To achieve this functionality the

'SPI_E_ALREADY_INITIALIZED' Det error check is to be suppressedusing

‘SpiAlreadyInitDetCheck’ parameter when DET is enabled.When DET is

disabled there is no impact of “SpiAlreadyInitDetCheck” parameter.

• Hardware high priority sequence mechanism is not supported for P1x-C

devices.

• The parameter SpiPersistentHWConfiguration decides whether Hardware

configuration is static or dynamic. This is applicable for both CSIG and CSIH

and both Synchronous and Asynchronous communication and all memory

modes.

• If SpiPersistentHWConfiguration is “True”, then HW configuration is Static

(configuration is performed in the function Spi_Init()), else it is dynamic.

• SpiTimeOut has been added to have the hold on functions and ongoing

process of APIs, SpiTimeOut keeps the track of time and breaks loop if it is

exceeds the defined time.

Table 4-1 Registers to be Configured for Static Configuration

 CSIH HW Unit

CSIHnCTL0

CSIHnCTL1

 CSIHnCTL2

 CSIHnCFGx

 CSIHnBRSy

Table 4-2 Channel container parameters

Parameter in

channel container

Registers linked

SpiDataWidth CSIHnCFGx.CSIHnDLSx

SpiTransferStart CSIHnCFGx.CSIHnDIRx

Table 4-3 Job container parameters

Parameter in job

container

Registers linked

SpiPortPinSelect CSIHnTXOW.CSIHnCSx

CSIHnCTL1.CSIHnCSx

• Table 4-1 contains the registers that must be configured inside Spi_Init()

function.

• All the parameters in channel/job/external devices containers linked to a

hardware unit mentioned in Table 4-2 and 4-3 should be same for Static

Configuration.

• MCTL1, MCTL2 and CSIHnMRWP0 registers are allowed to be accessed

when there is an ongoing communication only when PWR is set.

 Chapter 4 Forethoughts

22

• Manual transmission is possible only in Direct Access and FIFO modes.

However user has to implement his own ISRs for SPI. In case he wants to

use Renesas SPI driver transmission in parallel, he has to call Renesas SPI

ISRs functions from his custom ISRs (e.g. use different interrupt category

mode).

• When configuring DMA mode, the number of buffers configured shall be
greater than 1 in the case of Direct Access Mode and Fifo Mode.

• The notifications should be called from user’s complex driver ISRs.

• When using DMA, 'SpiDataWidthSelection' in 'General' container shall be
'BITS_16', the user shall setup the buffer(EB or IB) in the application as
type 'Spi_DataType' for channels that are configured for DMA and fill
required data(8 or 16) as configured in 'SpiDataWidth' in 'SpiChannel'.

• The SPI DMA type is specified by the parameter SPI_DMA_TYPE_USED.

• The Buffers used for transmission/reception using DMA shall be initialized

and configured in Retention RAM or Global RAM.

Note: The DMA will work whenever the DMA access for the LOCAL RAM,
which is having PE guard protection is enabled (this can be done by
configuring the PE guard registers.)

4.2. Preconditions

Following preconditions have to be adhered by the user, for proper

functioning of the SPI Driver Component:

• The Spi_Lcfg.c, Spi_PBcfg.c, Spi_Hardware.c, Spi_Hardware.h,

Spi_Cbk.h and Spi_Cfg.h files generated by the SPI Driver Component

Code Generation Tool must be compiled and linked along with SPI Driver

Component source files.

• The application has to be rebuilt, if there is any change in the Spi_Lcfg.c,

Spi_PBcfg.c, Spi_Hardware.c, Spi_Hardware.h,Spi_Cbk.h and Spi_Cfg.h

files generated by the SPI Driver Component Generation Tool.

• File Spi_PBcfg.c generated for single configuration set or multiple

configuration sets using SPI Driver Component Generation Tool can be

compiled and linked independently.

• The authorization of the user for calling the software triggering of a

hardware reset is not checked in the SPI Driver. This is the responsibility of

the upper layer.

• The SPI Driver Component needs to be initialized before accepting any

request. The API Spi_Init should be invoked to initialize SPI Driver

Component.

• The user should ensure that SPI Driver Component API requests are

invoked in the correct and expected sequence and with correct input

arguments.

• Input parameters are validated only when the static configuration

parameter SPI_DEV_ERROR_DETECT is enabled. Application should

ensure that the right parameters are passed while invoking the APIs when

SPI_DEV_ERROR_DETECT is disabled.

 Forethoughts Chapter 4

23

• A mismatch in the version numbers of header and the source files results

in compilation error. User should ensure that the correct versions of the

header and the source files are used.

• The ISR functions and the corresponding handler addresses are provided

in Table ISR Handler Addresses. User should ensure that Interrupt Vector

table configuration is done as per the information provided in the table.

• The user shall configure the exact Module Short Name Spi in

configurations when reloading, as specified in config.xml file and the same

shall be given in command line.

• Within the callback notification functions only following APIs are allowed.

Spi_ReadIB

Spi_WriteIB

Spi_SetupEB

Spi_GetJobResult

Spi_GetSequenceResult

Spi_GetHWUnitStatus

Spi_Cancel

All other SPI Handler/Driver API calls are not allowed.

• User have the responsibility to enable or disable the critical protection

using the parameter SpiCriticalSectionProtection. By enabling parameter

SpiCriticalSectionProtection, Microcontroller HW registers which suffer

from concurrent access by multiple tasks are protected.

4.3. User Mode and Supervisor Mode

The below table specifies the APIs which can run in user mode, supervisor
mode or both modes:

 Table 4-4 User Mode and Supervisory Mode

S

l.

N

o

.

API name

Interrupt mode Polling mode

Known limitation

in User Mode

user

mode

supervisor

mode

user

mode
supervisor
mode

1

.
Spi_Init - x - x

The IMR and INTC
registers are
accessed inside
this function. Hence
it should not be
invoked in User
mode.

2. Spi_DeInit - x - x

3. Spi_WriteIB x x x x

4. Spi_AsyncTransmit - x - x

The IMR and INTC
registers are
accessed inside
this function. Hence
it should not be
invoked in User
mode.

5. Spi_ReadIB x x x x

 Chapter 4 Forethoughts

24

S

l.

N

o

.

API name

Interrupt mode Polling mode

Known limitation

in User Mode

user

mode

supervisor

mode

user

mode
supervisor
mode

6. Spi_SetupEB x x x x

7. Spi_GetStatus x x x x

8. Spi_GetJobResult x x x x

9. Spi_GetSequenceResult x x x x

10. Spi_GetVersionInfo x x x x

11. Spi_SyncTransmit - x - x

The IMR and INTC
registers are
accessed inside
this function. Hence
it should not be
invoked in User
mode.

12. Spi_Cancel - x - x

The IMR and INTC
registers are
accessed inside
this function. Hence
it should not be
invoked in User
mode.

13. Spi_SetAsyncMode - x - x

The IMR and INTC
registers are
accessed inside
this function. Hence
it should not be
invoked in User
mode.

14.
Spi_MainFunction_Handl
ing

- - - x

The IMR and INTC
registers are
accessed inside
this function. Hence
it should not be
invoked in User
mode

15. Spi_GetHWUnitStatus x x x x

16. Spi_GetErrorInfo x x x x

17. Spi_SelfTest - x - x

The IMR and
INTC registers
are accessed
inside this
function. Hence it
should not be
invoked in User
mode

18. All ISRs - x - -

The IMR and INTC
registers are
accessed inside
this function. Hence
it should not be
invoked in User
mode

Note: Implementation of Critical Section is not dependent on MCAL. Hence

Critical Section is not considered to the entries for User mode in the above

table.

 Forethoughts Chapter 4

25

4.4. Memory modes

The SPI Driver will use different memory modes. The following four modes

can be configured.

Table 4-5 HW unit and Memory Mode Selection

HW unit Memory
mode

CSIH(0-3) Direct Access Mode

FIFO Mode

 Dual Buffer mode

 Transmit Only Mode

4.5. Data Consistency

To support the re-entrance and interrupt services, the AUTOSAR SPI

component will ensure the data consistency while accessing its own RAM

storage or hardware registers. The SPI component will use

SchM_Enter_Spi_<Exclusive Area> and SchM_Exit_Spi_<Exclusive Area>

functions. The SchM_Enter_Spi_<Exclusive Area> function is called before

the data needs to be protected and SchM_Exit_Spi_<Exclusive Area>

function is called after the data is accessed.

The following exclusive area along with scheduler services is used to provide

data integrity for shared resources:

• RAM_DATA_PROTECTION

The functions SchM_Enter_Spi_<Exclusive Area> and

SchM_Exit_Spi_<Exclusive Area> can be disabled by disabling the

configuration parameter 'Spi_CriticalSectionProtection'. The flowchart will

indicate the flow with the pre-compile option 'Spi_CriticalSectionProtection'

enabled.

The information about the API’s and the protected resources by the critical

section are given in the following table.

Table 4-6 SPI Driver Critical section protection List

API Name

Exclusive Area Type

Protected
Resources

Spi_AsyncTransmit SPI_RAM_DATA_PROTECTION During communication the
status of sequence, job,
corresponding hardware unit
and communicating data are
protected.

Spi_SyncTransmit SPI_RAM_DATA_PROTECTION During communication the
status of sequence, job,
corresponding hardware unit
and communicating data are

protected.

 Chapter 4 Forethoughts

26

API Name

Exclusive Area Type

Protected
Resources

Spi_Cancel SPI_RAM_DATA_PROTECTION During cancelling the status

of sequence are protected.

Note: The highest measured duration of a critical section was 1.162 micro
seconds measured for Spi_AsyncTransmit API.

4.6. Deviation List

Table 4-7 SPI Driver Deviation List

Sl. No. Description AUTOSAR Bugzilla

1 The parameter

"SpiHwUnitSynchronous" is moved

to SpiJob container from

SpiChannel container.

48763

2 The total number of SPI Hardware

Units is published as

“SPI_MAX_HW_UNIT”.

24328

3 The parameter “SPI_BAUDRATE”

is not used since the value

configured for this parameter

cannot be mapped directly to the

register value. Hence, a parameter

”SpiBaudrateSelection” is used to

select input frequency source.

-

4 The parameter 'SpiTimeClk2Cs' is

not used since the value of this

parameter is configured as count

value. Hence, the parameter

'SpiClk2CsCount' is provided to

configure the wait loop count to add

delay between clock and chip

select.

-

5 Type of the parameter SpiHwUnit is

ENUMERATION-PARAM-DEF with

a list of all possible hardware units.

-

6 The inclusion or deletion of the

hardware units will not be possible

in the post-build time. But the

reassignment of configured HW

unit for different jobs is possible.

-

7 Type of the parameter SpiCs is

ENUMERATION-PARAM-DEF with

a list of all possible port lines.

-

8 If the parameter "DataBufferPtr"

passed through the API

“Spi_ReadIB” is null pointer, then

the error

SPI_E_PARAM_POINTER will be

reported to DET.

-

 Forethoughts Chapter 4

27

Sl. No. Description AUTOSAR Bugzilla

9 The channel parameters

“SpiChannelType”, “SpiIbNBuffers”

and “SpiEbMaxLength” are pre-

compile time parameters.

-

10 A queue will be implemented and

maintained if there are more than

one sequence is requested for

transmission. The length of the

queue will be number of configured

jobs minus 1.

-

11 If a sequence is requested for

transmission while already one

uninterruptible sequence is on-

going, the requested sequence will

be put on queue.

-

12 The upper and lower multiplicity of

the parameter ‘SpiCsIdentifier’ is ‘1’

i.e. mandatory and the default

value is NULL. The upper and

lower multiplicity of the parameter

‘SpiEnableCS’ is ‘1’ i.e. mandatory

and the default value is false.

-

13 The parameters SpiMaxChannel,

SpiMaxJob and SpiMaxSequence

in SpiDriverConfiguration is made

as mandatory in the Parameter

Definition File of SPI Driver

Component.

-

14 From the file Lcfg.c only

notification related structure has

been removed.

As per mantis #8421

15 There will be an inactive state in

between Chip Select during

communication, when channel

properties are different.

As per JIRA ARDAAAF-383

 Chapter 4 Forethoughts

28

 Architecture Details Chapter 5

29

Chapter 5 Architecture Details

To minimize the effort and to optimize the reuse of developed software on

different platforms, the SPI driver is split as High Level Driver and Low Level

Driver. The SPI Driver architecture is shown in the following figure:

 Figure 5-1 SPI Driver Architecture

The High Level Driver exports the AUTOSAR API towards upper modules

and it will be designed to allow the compilation for different platforms without

or only slight modifications, i.e. that no reference to specific microcontroller

features or registers will appear in the High Level Driver. All these references

are moved inside a µC specific Low Level Driver. The Low Level Driver

interface extends the High Level Driver types and methods in order to adapt it

to the specific target microcontroller.

SPI Driver component:

The SPI Driver provides services for reading and writing to devices connected

via SPI busses. It provides access to SPI communication to several users like

EEPROM, Watchdog, I /O ASICs. It also provides the required mechanism to

configure the on chip SPI peripheral.

The SPI Driver component is divided into the following sub modules based on

the functionality required:

• Initialization and De-initialization

• Buffer Management

• Communication

• Status information

SPI User

SPI High-level Driver

 (Microcontroller Independent)

SPI Low Level Driver

MICROCONTROLLER

CSIH

Chapter 5 Architecture Details

30

-

I n
it

ia
li
 z
a
ti

o
n

D
e

In
it

i a
li
z
a
 t
io

n

B
u
ff

e
r

M
a
n

a
g
e
m

e
n
t

C
o
m

m
u

n
ic

a
ti

o
n

N
o
t
if

ic
a
ti

o
n

S
ta

t
u
s

In
fo

rm
a
ti

o
n

V
e
r
si

o
n
 I
n
fo

rm
a
ti

o
n

S
P
I

D
ri

v
e

r
L
a
y
e

r

• Module version information

The basic architecture of the SPI Driver component is illustrated in the

following Figure:

AP PL I C AT IO N L A Y ER

SP I H ig h Le v e l Dr ive r

Setting of

HW

register

Disabling

the
interrupts

De -

initialization
of SPI HW

units

Transmit and

receive the jobs
 and channels

Sequen
ce and

job

notifica
tion

Return the

status of

module, job,
sequence

SP I L ow Le v e l Dr ive r

 Figure 5-2 Component Overview Of SPI Driver Component

SPI Driver Initialization and De-Initialization module

This module initializes and de-Initializes the SPI driver. It provides the

Spi_Init() and Spi_DeInit() APIs. The Spi_Init() API should be invoked before

the usage of any other APIs of Watchdog Driver Module.Spi-Init should be

called prior to Port_Init. De-initialization function puts all microcontroller SPI

peripherals in the same state such as Power On Reset.

Buffer Management

This module provides the services for reading and writing the internal buffers

and setting up the external buffer. The type of buffer for each channel is

configurable as either internal or external

The APIs related to this module are Spi_WriteIB(), Spi_ReadIB() and

Spi_SetupEB().

Communication

This module provides the services for the transmission of data on the SPI bus

both synchronously and asynchronously, cancelling the ongoing transmission

and setting the asynchronous transfer mode.

The synchronous mode is based on polling mechanism. But for the

asynchronous mode, the possible mechanisms are Polling and Interrupt

mode. One of these modes is selectable during execution by one of the

services provided by this sub-module.

The APIs related to this module are Spi_SyncTransmit(),

Spi_AsyncTransmit(), Spi_SetAsyncMode() and Spi_Cancel().

 Architecture Details Chapter 5

31

Status Information

This module provides the services for getting the status of the SPI Driver and

hardware unit. It also provides the services for getting the result of the

specified job and specified sequence.

The APIs related to this module are Spi_GetStatus(),

Spi_GetHWUnitStatus(), Spi_GetJobResult() and Spi_GetSequenceResult().

Module Version Information

This module provides APIs for reading module Id, vendor Id and vendor

specific version numbers.

The API related to this module is Spi_GetVersionInfo().

Chapter 5 Architecture Details

32

 Registers Details Chapter 6

33

Chapter 6 Registers Details

This section describes the register details of SPI Driver Component.

Table 6-1 Register Details

API Name

Registers

Config

Parameter

Register
Access
R/W/RW

Macro/Variable

Spi_Init CSIHnCTL0 SpiMemoryModeSelection W SPI_ZERO

 DCSTCn - W SPI_DMA_STR_CLEAR

 DCSTn - R -

 DCENn - W SPI_DMA_DCEN_DISABLE

 DSAn SpiDma W LpDmaConfig-
>ulTxRxRegAddress

 DTCTn SpiTxDmaChannel/

SpiRxDmaChannel

W SPI_DMA_16BIT_TX_SETTI
NGS

SPI_DMA_16BIT_RX_SETTI
NGS

 DDAn SpiDma W LpDmaConfig-

>ulTxRxRegAddress

 DTFRn SpiTxDmaChannel/

SpiRxDmaChannel

W LpDmaConfig-
>usDmaDtfrRegValue

 CSIHnCTL1 SpiCsInactiveAfterLastDat
a, SpiDataWidth

W LunDataAccess1.ulRegData

 ICRn - W SPI_CLR_INT_REQ

 IMRn SpiHwUnitSelection

and

SpiMemoryModeSelection

W

Spi_GstHWUnitInfo[LddHWU

nit].usRxImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].pTxImrAddress,

Spi_GstHWUnitInfo[LddHWU

nit].pErrorImrAddress,

Spi_GstHWUnitInfo[LddHWU

nit].usRxImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].pTxImrAddress,

LpHWUnitInfo-

>usTxCancelImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].pErrorImrAddress

 CSIHnTX0W - W LunDataAccess1.ulRegData

 CSIHnSTCR0 - W SPI_CSIH_CLR_STS_FLAG
S

 CSIHnSTR0 - R -

 CSIHnCTL2 SpiInputClockSelect

SpiBaudrateConfiguration

W LpJobConfig->usCtl2Value
& SPI_CSIH_PRE_MASK

 CSIHnMCTL0 SpiMemoryModeSelection W LpJobConfig->usMCtl0Value

 CSIHnBRSy SpiInputClockSelect

SpiBaudrateConfiguration

W (LpJobConfigCSConfig-
>usCtl2Value) &
SPI_CSIH_BRS_MASK

Chapter 6 Registers Details

34

API Name

Registers

Config

Parameter

Register
Access
R/W/RW

Macro/Variable

 CSIHnCFGx SpiDataWidth

SpiParitySelection

SpiTransferStart

SpiDataShiftEdge

SpiShiftClockIdleLevel

W LunDataAccess1.ulRegData

 ECCCSIHnCTL SpiECCSelfTest R/W SET_EC1EDIC_EC2EDIC

ECC_CTL_ECEMF_SET

ECC_CTL_ECER1F_ECER
2F_CLEAR

CTL_ERRCLR_FLAG

CTL_2BIT_ERRCLR_FLAG

CTL_1BIT_ERR_FLAG

 ECCCSIHnTMC SpiECCSelfTest W SET_TMC_BITS

SET_TEST_DISABLE

 ECCCSIHnTRC SpiECCSelfTest W TRC_ERDB_INITIALIZE

 ECCCSIHnTED SpiECCSelfTest R/W RAM_INITIALIZE,

ALL_ZERO_PATTERN,

ALL_ONE_PATTERN,

TWO_BIT_PATTERN

 CSIHnRX0H - R -

 CSIHnMCTL1 SpiMemoryModeSelection W SPI_CTL_32BIT_REG_VAL

 CSIHnMCTL2 SpiMemoryModeSelection W SPI_CTL_32BIT_REG_VAL

 CSIHnMRWP0 - RW LunDataAccess1.ulRegData

Spi_DeInit CSIHnCTL0 SpiMemoryModeSelection W SPI_ZERO

 CSIHnCTL1 - W SPI_ZERO

 CSIHnCTL2 - W SPI_CTL2_16BIT_REG_DEI
NIT

 CSIHnMCTL0 - W SPI_MCTL0_16BIT_REG_D
EINIT

 CSIHnMCTL1 - W SPI_CTL_32BIT_REG_MAS
K

 CSIHnMCTL2 - W SPI_CTL_32BIT_REG_MAS
K

 CSIHnSTCR0 - W SPI_CTL_16BIT_REG_DEIN
IT

 CSIHnMRWP0 - W SPI_CTL_32BIT_REG_MAS
K

 CSIHnBRSy - W SPI_CTL_16BIT_REG_DEIN
IT

 DSAn - W SPI_DMA_DEINIT

 DDAn - W SPI_DMA_DEINIT

 DCENn - W SPI_DMA_DCEN_DISABLE

 DTCTn - W SPI_DMA_DEINIT

 DTFRRQCn - W SPI_DMA_DRQ_CLEAR

 DCSTCn - W SPI_DMA_STR_CLEAR

 DTFRRQn - R -

 Registers Details Chapter 6

35

API Name

Registers

Config

Parameter

Register
Access
R/W/RW

Macro/Variable

 DCSTn - R -

 DTFRn - W SPI_DMA_DEINIT

 CSIHnCFGx W SPI_CTL_32BIT_REG_VAL

 IMRn SpiHwUnitSelection

and

SpiMemoryModeSelection

 W

Spi_GstHWUnitInfo[LddHWU

nit].usRxImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].pTxImrAddress,

Spi_GstHWUnitInfo[LddHWU

nit].pErrorImrAddress,

Spi_GstHWUnitInfo[LddHWU

nit].usRxImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].pTxImrAddress,

LpHWUnitInfo-

>usTxCancelImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].pErrorImrAddress

 ICRn - W SPI_CLR_INT_REQ

 CSIHnSTR0 - R -

Spi_WriteIB CSIHMCTL0 SpiMemoryModeSelection W LusMctlData

SPI_TX_ONLY_MODE_SET

SPI_DUAL_BUFFER_MOD
E_SET

 CSIHnMRWP0 - RW LunDataAccess1.ulRegData

 CSIHnTX0W - W LunDataAccess1.ulRegData

Spi_AsyncTransmit

 CSIHnMCTL0 - W LpJobConfig->usMCtl0Value

 CSIHnCTL0 SpiMemoryModeSelection W

W

SPI_RESET_PWR

SPI_SET_DIRECT_ACCES
S

SPI_SET_MEMORY_ACCE
SS

 CSIHnSTCR0 - W SPI_CLR_STS_FLAGS

 CSIHnSTR0 - R -

 CSIHnCTL1 SpiCsInactiveAfterLastDat
a, SpiDataWidth

W LunDataAccess1.ulRegData

LpJobConfig-
>ulMainCtl1Value

SPI_SET_SLIT

 DCSTCn - W SPI_DMA_STR_CLEAR

 DCSTn - R -

 DCENn - W SPI_DMA_DCEN_DISABLE

 DTCTn - W SPI_DMA_FIXED_TX_SETT
INGS

SPI_DMA_INV_TX_SETTIN
GS

LddNoOfBuffers

SPI_DMA_STR_REQ

SPI_DMA_ONCE

SPI_DMA_FIXED_RX_SET
TINGS

SPI_DMA_INV_RX_SETTIN
GS

SPI_DMA_ONCE

Chapter 6 Registers Details

36

API Name

Registers

Config

Parameter

Register
Access
R/W/RW

Macro/Variable

 DSAn - W (uint32)LpTxData

 DTFRn - W (uint32)SPI_ZERO

(uint32)(LpDmaConfig->
usDmaDtfrRegValue

 DCSTSn - W SPI_DMA_STR

 DTCn - W SPI_ONE

 DTFRRQCn - W SPI_DMA_DRQ_CLEAR

 DDAn - W (uint32)(&Spi_GddDmaRxD
ata)

 CSIHnCTL2 SpiBaudrateRegisterSelect

W LpJobConfig->usCtl2Value

 CSIHnMCTL2 - W LunDataAccess1.ulRegData

 CSIHnTX0W - W LunDataAccess1.ulRegData,
LunDataAccess2.ulRegData,
LpDataAccess->ulRegData

 CSIHnTX0H - W LddData,
LunDataAccess2.usRegData
5[SPI_ZERO]

 CSIHnCFGx SpiCsIdleTiming,

SpiCsHoldTiming,

SpiCsInterDataDelay,

SpiCsSetupTime,

SpiCsIdleEnforcement

W LunDataAccess1.ulRegData

 CSIHnBRSy SpiBaudrateConfiguration W

Csih_BaseAddress[LddHWU
nit]->BRSy

 IMRn SpiHwUnitSelection

and

SpiMemoryModeSelection

W

Spi_GstHWUnitInfo[LddHWU

nit].ulRxImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].ulTxImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].ulErrorImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].ulTxCancelImrMask

 ICRn - W SPI_CLR_INT_REQ

 DTFRRQn - R -

 CSIHnRX0H - R -

 CSIHnRX0W - R -

Spi_ReadIB CSIHnRX0W - W LunDataAccess2.ulRegData

 CSIHnRX0H - W LunDataAccess2.usRegData
5[SPI_ONE],
LunDataAccess2.usRegData
5[SPI_ZERO]

 CSIHnMRWP0 - RW LunDataAccess1.ulRegData

Spi_SetupEB - - - -

Spi_GetStatus - - - -

Spi_GetJobResult - - - -

Spi_GetSequenceRes
ult

 - - - -

Spi_SyncTransmit CSIHnMCTL0 - W LpJobConfig->usMCtl0Value

 Registers Details Chapter 6

37

API Name

Registers

Config

Parameter

Register
Access
R/W/RW

Macro/Variable

 CSIHnCTL0 - W

W

SPI_RESET_PWR

SPI_SET_DIRECT_ACCES
S

SPI_SET_PWR

SPI_ZERO

 CSIHnRX0H - RW LunDataAccess3.ulRegData,

Spi_GusSynDataAccess

 CSIHnSTR0 - R -

 CSIHnSTCR0 - W SPI_DCE_ERR_CLR,
SPI_PE_ERR_CLR,
SPI_OFE_ERR_CLR

 CSIHnCTL1 SpiCsInactiveAfterLastDat
a, SpiDataWidth

W LunDataAccess1.ulRegData,
(LpMainOsBaseAddr-
>ulMainCTL1 |
~SPI_CSRI_AND_MASK

 CSIHnCTL2 SpiBaudrateRegisterSelect

W LunDataAccess1.ulRegData,
LpJobConfig->usCtl2Value

 CSIHnTX0W - W LpJobConfig->usCtl2Value,

LunDataAccess3.ulRegData

 CSIHnBRSy SpiBaudrateConfiguration W

Csih_BaseAddress[LddHWU
nit]->BRSy , LpJobConfig-
>usCtl2Value &
SPI_CSIH_BRS_MASK

 ICRn - W SPI_CLR_INT_REQ

 CSIHnCFGx SpiCsIdleTiming,

SpiCsHoldTiming,

SpiCsInterDataDelay,

SpiCsSetupTime,

SpiCsIdleEnforcement

W LunDataAccess1.ulRegData

Spi_GetHWUnitStatus CSIHnSTR0 - R -

Spi_Cancel CSIHnCTL0 - R/W SPI_SET_JOBE

 IMRn - W Spi_GstHWUnitInfo[LddHW
Unit].ulTxCancelImrMask

 ICRn - W SPI_CLR_INT_REQ

Spi_SetAsyncMode IMRn SpiHwUnitSelection

and

SpiMemoryModeSelection

W Spi_GstHWUnitInfo[LddHWU

nit].ulRxImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].ulTxImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].ulErrorImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].ulTxCancelImrMask

 ICRn - w SPI_CLR_INT_REQ

Spi_MainFunction_Ha
ndling

 CSIHnCTL0 - W SPI_SET_PWR

 CSIHnRX0H - R -

 CSIHnTX0W - W LunDataAccess1.ulRegData

 CSIHnTX0H - W LddData

LunDataAccess2.usRegData
5[0]

Chapter 6 Registers Details

38

API Name

Registers

Config

Parameter

Register
Access
R/W/RW

Macro/Variable

 CSIHnRX0W - R -

 CSIHnMCTL2 SpiMemoryModeSelection W LunDataAccess1.ulRegData

 ICRn -

W

SPI_CLR_INT_REQ

 DCSTCn - W SPI_DMA_STR_CLEAR

 DCSTn - R -

 DCENn - W SPI_DMA_DCEN_DISABLE

SPI_DMA_DCEN_ENABLE

 DTCTn - W SPI_DMA_FIXED_TX_SETT
INGS

SPI_DMA_INV_TX_SETTIN
GS

LddNoOfBuffers

SPI_DMA_STR_REQ

SPI_DMA_ONCE

SPI_DMA_FIXED_RX_SET
TINGS

SPI_DMA_INV_RX_SETTIN
GS

SPI_DMA_ONCE

 DSAn - W (uint32)LpTxData

 DTFRn - W (uint32)SPI_ZERO

(uint32)(LpDmaConfig->
usDmaDtfrRegValue

 DCSTSn - W SPI_DMA_STR

 DTCn - W SPI_ONE

 DTFRRQCn - W SPI_DMA_DRQ_CLEAR

 DDAn - W (uint32)(&Spi_GddDmaRxD
ata)

 CSIHnSTCR0 - W SPI_CLR_STS_FLAGS

 CSIHnSTR0 - R -

 CSIHnCTL1 SpiCsInactiveAfterLastDat
a, SpiDataWidth

W LunDataAccess1.ulRegData

LpJobConfig-
>ulMainCtl1Value

SPI_SET_SLIT

 CSIHnCTL2 SpiBaudrateRegisterSelect

W LpJobConfig->usCtl2Value

 IMRn SpiHwUnitSelection

and

SpiMemoryModeSelection

W

Spi_GstHWUnitInfo[LddHWU

nit].ulRxImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].ulTxImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].ulErrorImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].ulTxCancelImrMask

 CSIHnCFGx SpiCsIdleTiming,

SpiCsHoldTiming,

SpiCsInterDataDelay,

SpiCsSetupTime,

SpiCsIdleEnforcement

W LunDataAccess1.ulRegData

 CSIHnBRSy SpiBaudrateConfiguration W Csih_BaseAddress[LddHWU
nit]->BRSy

 CSIHnMCTL0 - W LpJobConfig->usMCtl0Value

 DTFRRQn - R -

Spi_GetVersionInfo - - - -

Spi_GetErrorInfo - - - -

Spi_SelfTest CSIHnRX0H - R -

 Registers Details Chapter 6

39

API Name

Registers

Config

Parameter

Register
Access
R/W/RW

Macro/Variable

 CSIHnCTL0 SpiLoopBackSelfTest W SPI_SET_DIRECT_ACCES
S

SPI_ZERO

 CSIHnCTL1 SpiLoopBackSelfTest W SPI_LOOPBACK_ENABLE

SPI_ZERO SPI_SET_SLIT

LunDataAccess1.ulRegData

 CSIHnCTL2 SpiLoopBackSelfTest W SPI_LOOPBACK_CSIH_CN
TRL2_VALUE

SPI_ZERO

((LpJobConfig->usCtl2Value)
& SPI_CSIH_PRE_MASK)

 CSIHnSTCR0 SpiLoopBackSelfTest W SPI_CSIH_CLR_STS_FLAG
S

SPI_PE_ERR_CLR

SPI_ZERO

 CSIHnCFGx SpiLoopBackSelfTest W SPI_LOOPBACK_DLS_SET
TING SPI_ZERO
LunDataAccess1.ulRegData

 CSIHnBRSy SpiLoopBackSelfTest W SPI_LOOPBACK_CSIH_BR
S0_VALUE

SPI_ZERO

((LpJobConfigCSConfig-
>usCtl2Value) &
SPI_CSIH_BRS_MASK)

 CSIHnTX0W SpiLoopBackSelfTest W SPI_LOOPBACK_DATA

SPI_ZERO

 CSIHnSTR0 SpiLoopBackSelfTest R -

 ECCCSIHnCTL SpiECCSelfTest R/W SET_EC1EDIC_EC2EDIC

ECC_CTL_ECEMF_SET

ECC_CTL_ECER1F_ECER
2F_CLEAR

CTL_ERRCLR_FLAG

CTL_2BIT_ERRCLR_FLAG

CTL_1BIT_ERR_FLAG

 ECCCSIHnTMC SpiECCSelfTest W SET_TMC_BITS

SET_TEST_DISABLE

 ECCCSIHnTRC SpiECCSelfTest W TRC_ERDB_INITIALIZE

 ECCCSIHnTED SpiECCSelfTest R/W RAM_INITIALIZE,

ALL_ZERO_PATTERN,

ALL_ONE_PATTERN,

TWO_BIT_PATTERN

 IMRn SpiHwUnitSelection

and

SpiLoopBackSelfTest

W

Spi_GstHWUnitInfo[LddHWU

nit].usRxImrMask,

Spi_GstHWUnitInfo[LddHWU

nit].pTxImrAddress,

Spi_GstHWUnitInfo[LddHWU

nit].pErrorImrAddress,

Spi_GstHWUnitInfo[LddHWU

nit].usRxImrMask,

LpHWUnitInfo-

>usTxCancelImrMask

 ICRn - W SPI_CLR_INT_REQ

Chapter 6 Registers Details

40

API Name

Registers

Config

Parameter

Register
Access
R/W/RW

Macro/Variable

 CSIHnMCTL0 SpiMemoryModeSelection W LpJobConfig->usMCtl0Value

Interaction Between The User And SPI Driver Component Chapter 7

41

Chapter 7 Interaction Between The User And SPI
 Driver Component

The details of the services supported by the SPI Driver Component to the

upper layers users and the mapping of the channels to the hardware units is

provided in the following sections:

7.1. Services Provided By SPI Driver Component To The User

The SPI Driver Component provides the following functions to upper layer:

• To provide the required mechanism to configure the on-chip SPI peripheral

• To initialize and de-initialize the SPI driver

• To read and write to devices connected through SPI buses

• To provide the transmission of data on the SPI bus both synchronously and

asynchronously

• To cancel an ongoing transmission

• To set the asynchronous transfer mode

• To get the status of the SPI Driver and hardware unit

• To get the result of the specified job and specified sequence

• To provide access to SPI communication to several users(for example,

EEPROM, I/O ASICs)

• To read the SPI Driver Component version information.

Chapter 7 Interaction Between The User And SPI Driver Component

42

SPI Driver Component Header And Source File Description Chapter 8

43

Chapter 8 SPI Driver Component Header And
Source File Description

This section explains the SPI Driver Component’s source and header files.

These files have to be included in the project application while integrating with

other modules.

The C header file generated by SPI Driver Generation Tool:

• Spi_Cfg.h
• Spi_Cbk.h
• Spi_Hardware.h

The C source file generated by SPI Driver Generation Tool:

• Spi_PBcfg.c
• Spi_Lcfg.c
• Spi_Hardware.c

The SPI Driver Component C header files:

• Spi_Driver.h
• Spi_PBTypes.h
• Spi_LTTypes.h
• Spi_Ram.h
• Spi.h
• Spi_Irq.h
• Spi_Scheduler.h
• Spi_Version.h
• Spi_Types.h
• Spi_RegWrite.h

The SPI Driver Component C source files:

• Spi_Driver.c
• Spi.c
• Spi_Irq.c
• Spi_Ram.c
• Spi_Scheduler.c
• Spi_Version.c

The Stub C header files:

• Compiler.h
• Compiler_Cfg.h
• MemMap.h
• Platform_Types.h
• rh850_Types.h
• Det.h
• Rte.h
• SchM.h
• SchM_Spi.h
• Dem.h
• Dem_cfg.h

The description of the SPI Driver Component files is provided in the table

below:

Chapter 8 SPI Driver Component Header And Source File Description

44

Table 8-1 Description Of The SPI Driver Component Files

File Details

Spi_Cfg.h This file is generated by the SPI Driver Component Code Generation Tool for

various SPI Driver component pre-compile time parameters. This file contains

macro definitions for the configuration elements and exclusive areas for data

protection. The macros and the parameters generated will vary with respect to the

configuration in the input XML file.

Spi_Cbk.h

This file is generated by the SPI Driver Component Code Generation Tool for

provision of function prototype Declarations for SPI callback Notification

Functions.
Spi_Hardware.h This file contains the #define macros for the hardware registers to be used by the

driver.

Spi_PBcfg.c This file contains post-build configuration data. The structures related to channel

configuration, job configuration and sequence configuration are provided in this

file. Data structures will vary with respect to parameters configured.

Spi_Lcfg.c This file contains provision of SPI Link time Parameters. The structures related to

hardware registers are provided in this file. Data structures will vary with respect

to parameters configured.

Spi_Hardware.c This file contains the reference objects for the structures of hardware register which
is defined in device header file.

Spi_Driver.h This file contains the Function Prototypes that are defined in Spi_Driver.c file.

Spi_PBTypes.h This file contains the data structure definitions of the channel configuration,

job configuration and sequence configuration

Spi_LTTypes.h This file contains the data structure definitions of CSIH hardware registers, Interrupt

control registers, DMA hardware registers, Hardware unit information, DMA unit

information, storing current status of SPI communication, channel for the link time

parameters, function pointer for Callback notification function for Jobs, processing

sequence, storing external buffer attributes, Scheduler and DMA Address.

Spi_Ram.h This file contains the extern declarations for the global variables that are defined in

Spi_Ram.c file and the version information of the file.

Spi.h This file provides extern declarations for all the SPI Driver Component APIs. This

file provides service Ids of APIs, DET Error codes and type definitions for SPI

Driver initialization structure. This header file shall be included in other modules to

use the features of SPI Driver Component.

Spi_Irq.h This file contains the function prototypes that are defined in Spi_Irq.c file.

Spi_Scheduler.h This file contains the function prototypes that are defined in Spi_Scheduler.c file.

Spi_Types.h This file contains the common macro definitions and the data types required

internally by the SPI software component.

Spi_Version.h This file contains the definitions of AUTOSAR version numbers of all modules

that are interfaced to SPI Driver.

Spi_Driver.c This file contains the SPI Low Level Driver code.

Spi.c This file contains the implementation of all APIs.

Spi_Irq.c This file contains the ISR functions for SPI Driver Component.

Spi_Ram.c This file contains the global variables used by SPI Driver Component.

Spi_Scheduler.c This file contains the SPI Scheduler code. This contains function to schedule

the sequences according to the priority of the jobs.

Spi_Version.c This file contains the code for checking version of all modules that are interfaced to

SPI Driver.

Compiler.h This file Provides compiler specific (non-ANSI) keywords. All mappings of keywords,

which are not standardized, and/or compiler specific are placed and organized in this

compiler specific header.

SPI Driver Component Header And Source File Description Chapter 8

45

File Details

Compiler_Cfg.h This file contains the memory and pointer classes.

MemMap.h This file allows to map variables, constants and code of modules to individual

memory sections. Memory mapping can be modified as per ECU specific

needs.
Platform_Types.h This file provides provision for defining platform and compiler dependent types.

Spi_RegWrite.h This file contains macro for register write verify check.

 rh850_Types.h This file provides macros to perform supervisor mode (SV) write enabled Register

ICxxx and IMR register writing using OR/AND/Direct operation.

Det.h This file is a stub for DET Component.

Rte.h This file is a stub for Rte Component.

SchM.h This file is a stub for Schm Component.

SchM_Spi.h Header file information for Schm application.

 Dem.h This file is a stub for DEM component.
Dem_cfg.h This file contains the stub values for Dem_Cfg.h.

Chapter 8 SPI Driver Component Header And Source File Description

46

Generation Tool Guide Chapter 9

47

Chapter 9 Generation Tool Guide

For information on the SPI Driver Component Code Generation Tool, please

refer “R20UT3660EJ0100-AUTOSAR.pdf” document.

48

Chapter 9 Generation Tool Guide

Application Programming Interface Chapter 10

49

Chapter 10 Application Programming Interface

This section explains the Data types and APIs provided by the SPI Driver

Component to the Upper layers.

10.1. Imported Types

This section explains the Data types imported by the SPI Driver Component

and lists its dependency on other modules.

10.1.1. Standard Types

In this section all types included from the Std_Types.h are listed:

• Std_ReturnType

• Std_VersionInfoType

10.1.2. Other Module Types

In this chapter all types included from the Dem_types.h are listed:

• Dem_EventIdType

• Dem_EventStatusType

10.2. Type Definitions

This section explains the type definitions of SPI Driver Component according

to AUTOSAR Specification.

10.2.1. Spi_ConfigType

Name: Spi_ConfigType

Type: Structure

Range:
Implementation Specific The contents of the initialization

data structure are SPI specific

Description: This type of the external data structure shall contain the initialization data for the SPI

driver/Handler

10.2.2. Spi_StatusType

Name: Spi_StatusType

Type: Enumeration

Range:

SPI_UNINIT The SPI Handler/Driver is not initialized or

not usable

SPI_IDLE The SPI Handler/Driver is not

currently transmitting any job

SPI_BUSY The SPI Handler/Driver is performing a SPI

job(transmit)

Description: This type defines a range of specific status for SPI Handler/driver

Chapter 10 Application Programming Interface

50

10.2.3. Spi_JobResultType

Name: Spi_JobResultType

Type: Enumeration

Range:

SPI_JOB_OK The last transmission of the job has

been finished successfully

SPI_JOB_PENDING The SPI Handler/Driver is performing a

SPI Job. The meaning of this status is

equal to SPI_BUSY

SPI_JOB_FAILED The last transmission of the job has failed

Description: This type defines a range of specific jobs status for SPI Handler/driver

10.2.4. Spi_SeqResultType

Name: Spi_SeqResultType

Type: Enumeration

Range:

SPI_SEQ_OK The last transmission of the Sequence

has been finished successfully

SPI_SEQ_PENDING The SPI Handler/Driver is performing a SPI

Sequence The meaning of this status is

equal to SPI_BUSY

SPI_SEQ_FAILED The last transmission of the Sequence

has failed

SPI_SEQ_CANCELLED The last transmission of the Sequence

has been cancelled by user.

Description: This type defines a range of specific sequences status for SPI Handler/driver

10.2.5. Spi_DataType

Name: Spi_DataType

Type: uint8,uint16,uint32

Range:

0 to 255, 0 to 65535,

0 to 4294967296.
This is implementation specific but not all

values may be valid within the type This type

shall be chosen in order to have the most

efficient implementation on a specific

microcontroller platform

Description: Type of application data buffer elements

10.2.6. Spi_NumberOfDataType

Name: Spi_NumberOfDataType

Type: uint16

Range: 0 to 65535

Description: Type for defining the number of data elements of the type Spi_DataType to send

and/or receive by channel

Application Programming Interface Chapter 10

51

10.2.7. Spi_ChannelType

Name: Spi_ChannelType

Type: uint8

Range: 0 to 255

Description: Specifies the identification(IdId) for a channel

10.2.8. Spi_JobType

Name: Spi_JobType

Type: uint16

Range: 0 to 65535

Description: Specifies the identification(Id) for a Job

10.2.9. Spi_SequenceType

Name: Spi_SequenceType

Type: uint8

Range: 0 to 255

Description: Specifies the identification(Id) for a sequence of Jobs

10.2.10. Spi_HWUnitType

Name: Spi_HWUnitType

Type: uint8

Range: 0 to 255

Description: Specifies the identification(Id) for a SPI Hardware microcontroller peripheral(unit)

10.2.11. Spi_AsyncModeType

Name: Spi_AsyncModeType

Type: Enumeration

Range:

SPI_POLLING_MODE The asynchronous mechanism is ensured

by polling, so interrupts related to SPI

busses handled asynchronously are

disabled
SPI_INTERRUPT_MODE Streaming access mode

Description: Specifies the asynchronous mechanism mode for SPI busses handled

asynchronously in LEVEL2.

Chapter 10 Application Programming Interface

52

Following are the internal type definitions used by the SPI Driver module.

10.2.12. Spi_CommErrorType

Name: Spi_CommErrorType

 Type: Structure

Element:

Type Name Explanation

Spi_HWErrorsType ErrorType This is the type of the

hardware error.
Spi_HWUnitType HwUnit This is the hardware

unit in which error is

reported.

Spi_SequenceType SeqID This is the sequence

id for which error is

reported.

 Spi_JobType JobID This is the job id for

which error is

reported.
Description: This type is used to provide the details regarding the type of hardware errors, hardware

unit, sequence and job in which the errors were reported.

10.2.13. Spi_HWErrorsType

Name: Spi_HWErrorsType

Type: Enumeration

Range:

SPI_NO_ERROR No hardware error has occured.

SPI_OVERRUN_ERROR Over Run Error has occured.

SPI_PARITY_ERROR Parity Error has occured.

SPI_DATA_CONSISTENCY_ERROR Data Consistency Error has occured

SPI_OVERFLOW_ERROR Over Flow Error has occured

SPI_ECC_1BIT_ERROR 1 Bit ECC Error has occured

Description: This type defines different types of hardware errors in SPI driver.

10.2.14. Spi_SelfTestType

Name: Spi_SelfTestType

Type: uint8

Range: 0 to 255

Description: Specifies the type for self-test functionality.

10.2.15. Spi_ReturnStatus

Name: Spi_ReturnStatus

Type: Enumeration

 Range:

Range:

SPI_SELFTEST_INVALID_MODE When invalid argument other than

LoopBack_Init/ LoopBack_Init_RunTime/
ECC_Init_RunTime/ ECC_Init are

passed. SPI_SELFTEST_DRIVERBUSY When SelfTest API is invoked during any

active transmission, i.e when driver is busy.

SPI_SELFTEST_PASS SelfTest functionality is successful.

SPI_SELFTEST_FAILED SelfTest functionality is failed.

Description: This type defines the return status of the self-test functionality.

Application Programming Interface Chapter 10

53

10.3. Function Definitions

Table 10-1 The APIs provided by the SPI Driver Component

SI.No
API’s

 API’s specific

1 Spi_Init -

2 Spi_DeInit -

3 Spi_WriteIB -

4 Spi_AsyncTransmit -

5 Spi_ReadIB -

6 Spi_SetupEB -

7 Spi_GetStatus -

8 Spi_GetJobResult -

9 Spi_GetSequenceResult -

10 Spi_GetVersionInfo -

11 Spi_SyncTransmit -

12 Spi_Cancel -

13 Spi_SetAsyncMode -

14 Spi_MainFuncnction_Handling -

15 Spi_GetHWUnitStatus -

16 Spi_GetErrorInfo -

17 Spi_SelfTest -

Chapter 10 Application Programming Interface

54

Development And Production Errors Chapter 11

55

Chapter 11 Development And Production Errors

In this section the development errors that are reported by the SPI Driver

Component are tabulated. The development errors will be reported only when

the pre compiler option SpiDevErrorDetect is enabled in the configuration.

The production code errors are not supported by SPI Driver Component.

11.1. SPI Driver Component Development Errors

The following table contains the DET errors that are reported by SPI Driver

Component. These errors are reported to Development Error Tracer Module

when the SPI Driver Component APIs are invoked with wrong input

parameters or without initialization of the driver.

Table 11-1 DET Errors Of SPI Driver Component

Sl. No. 1

Error Code SPI_E_PARAM_CHANNEL

Related API(s) Spi_WriteIB, SpiReadIB and Spi_SetupEB

Source of Error When the API service is invoked with invalid channel Id and if incorrect type of
channel

(IB or EB) is used with services.

Sl. No. 2

Error Code SPI_E_PARAM_JOB

Related API(s) Spi_GetJobResult

Source of Error When the API service is invoked with invalid job Id.

Sl. No. 3

Error Code SPI_E_PARAM_SEQ

Related API(s) Spi_AsyncTransmit, Spi_GetSequenceResult, Spi_SyncTransmit and Spi_Cancel.

Source of Error When the API service is invoked with invalid sequence Id.

Sl. No. 4

Error Code SPI_E_PARAM_LENGTH

Related API(s) Spi_SetupEB

Source of Error When the API service is invoked with length greater than the configured length.

Sl. No. 5

Error Code SPI_E_PARAM_UNIT

Related API(s) Spi_GetHWUnitStatus

Source of Error When the API service is invoked with invalid hardware unit Id.

Sl. No. 6

Error Code SPI_E_SEQ_PENDING

Related API(s) Spi_AsyncTransmit

Source of Error When the API service is invoked in a wrong sequence.

Sl. No. 7

Error Code SPI_E_SEQ_IN_PROCESS

Related API(s) Spi_SyncTransmit, Spi_SelfTest

Source of Error When the API service is invoked at wrong time.

Chapter 11 Development And Production Errors

56

Sl. No. 8

Error Code SPI_E_ALREADY_INITIALIZED

Related API(s) Spi_Init

Source of Error When the API Spi_Init is invoked when the SPI driver is already initialized.

Sl. No. 9

Error Code SPI_E_INVALID_DATABASE

Related API(s) Spi_Init

Source of Error When the API service is invoked with invalid pointer.

Sl. No. 10

Error Code SPI_E_UNINIT

Related API(s) Spi_DeInit, Spi_AsyncTransmit, Spi_Cancel, Spi_GetStatus,

Spi_GetHWUnitStatus, Spi_GetJobResult, Spi_GetSequenceResult, Spi_WriteIB,

Spi_ReadIB, Spi_SetupEB, Spi_SyncTransmit, Spi_SetAsyncMode,

Spi_MainFunction_Handling and Spi_GetErrorInfo.

Source of Error When the APIs are invoked without the initialization of SPI Driver Component.

Sl. No. 11

Error Code SPI_E_PARAM_POINTER

Related API(s) Spi_ReadIB and Spi_GetVersionInfo.

Source of Error When the API service is invoked with null pointer.

 Note: This error code (SPI_E_PARAM_POINTER) is applicable for Autosar R4.0

only.

Sl. No. 12

Error Code SPI_E_PARAM_CONFIG

Related API(s) Spi_Init

Source of Error When the API invoked with null config pointer.

Sl. No. 13

Error Code SPI_E_MAINFUNCTION_HANDLING_INVALIDMODE

Related API(s) Spi_MainFunction_Handling

Source of Error When the API invoked in SPI_INTERRUPT_MODE.

11.2. SPI Driver Component Production Errors

In this section the DEM errors identified in the SPI Driver Component are

listed. SPI Driver Component reports these errors to DEM by invoking

Dem_ReportErrorStatus API. This API is invoked, when the processing of the

given API request fails.

Development And Production Errors Chapter 11

57

Table 11-2 DEM Errors Of SPI Driver Component

Sl. No. 1

Error Code SPI_E_HARDWARE_ERROR

Related API(s) Spi_Init , Spi_SyncTransmit, Spi_MainFunction_Handling and Spi_SelfTest.

Source of Error When an overrun occurs when the next reception starts without performing a CPU
read of the value of the receive buffer, upon completion of the receive operation.

Sl. No. 2
Error Code SPI_E_DATA_TX_TIMEOUT_FAILURE

Related API(s) Spi_SyncTransmit, Spi_Init and Spi_SelfTest.

Source of Error When Hardware data transmit timeout error is detected, This error will be reported to
DEM

Sl. No. 3

Error Code SPI_E_INT_INCONSISTENT

Related API(s) All ISRs

Source of Error DemEventParameter which shall be issued when Interrupt consistency error was
detected.

Sl. No. 4

Error Code SPI_E_ECC_SELFTEST_FAILURE

Related API(s) Spi_Init and Spi_SelfTest

Source of Error DemEventParameter which shall be issued when Ecc selft test error was detected.

Sl. No. 5

Error Code SPI_E_LOOPBACK_SELFTEST_FAILURE

Related API(s) Spi_Init and Spi_SelfTest

Source of Error DemEventParameter which shall be issued when loop back self-test error was
detected.

Sl. No. 6

Error Code SPI_E_REG_WRITE_VERIFY

Related API(s) All APIs accessing the registers

Source of Error DemEventParameter which shall be issued when loop back self-test error was
detected.

Chapter 11 Development And Production Errors

58

Memory Organization Chapter 12

59

X4

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be met

for proper functioning of SPI Driver Component software.

ROM Section SPI D rive r Component Library /

Object Files

R AM Section

SPI Driver code related to APIs are placed in this

memory.

X1
Segment Name:

SPI_PUBLIC_CODE_ROM

Global RAM of unspecific size required for SPI

Driver functioning.

Y1

Segment Name:

NOINIT_RAM_UNSPECIFIED

SPI Driver code r elated to internal functions are

placed in this memory

X2
Segment Name:
SPI_PRIVATE_CODE_ROM

Global RAM of unspecific size initialized by

Start-Up code.

Segment Name:

RAM_UNSPECIFIED

Global 1-bit RAM initialized by SPI Driver.

Segment Name: Y3

NOINIT_RAM_1BIT

Tool Genera ted Files

The const section (for SPI configuration

Structure) in the file Spi_PBcfg.c is placed in
 this memory.

X4
Segment Name:
SPI_CFG_DATA_UNSPECIFIED

Global 8- bit R AM initialized by SPI D rive r.

Segment Name: Y4

N OIN IT _ RA M _8 B IT

The const section in the file Spi_Lcfg.c is placed in

this memory.

 X5
Segment Name:

CONST_ROM_UNSPECIFIED

Global 16 -bit RAM initialized by SPI Driver.

Segment Name:

NOINIT_RAM_16 BIT Y5

 .

:

Global RAM of unspecific size required for SPI Driver

functioning. The Generation tool

X6 allocates this RAM. Y6

Segment Name:
 SPI_CFG_RAM_UNSPECIFIED

Figure 12-1 SPI Driver Component Driver Organization

SPI Driver code related to ISR functions

are placed in this memory

Segment Name:
SPI_FAST_CODE_ROM

X3

Y2

Chapter 12 Memory Organization

60

ROM Section (X1, X2, X3, X4, X5 and X6):

SPI_PUBLIC_CODE_ROM (X1): API(s) of SPI Driver Component, which can

be located in code memory.

SPI_PRIVATE_CODE_ROM (X2): Internal functions of SPI Driver

Component code that can be located in code memory.

 SPI_FAST_CODE_ROM(X3): SPI Driver code related to ISR
functions are placed in this memory Segment Name.

SPI_CFG_DATA_UNSPECIFIED (X4): This section consists of SPI

Driver Component constant configuration structures. This can be located

in code memory.

CONST_ROM_UNSPECIFIED (X5): This section consists of SPI Driver

Component constant structures used for function pointers in SPI Driver

Component. This can be located in code memory.

RAM Section (Y1, Y2, Y3, Y4, Y5 and Y6):

NOINIT_RAM_UNSPECIFIED (Y1): This section consists of the global RAM

variables that are used internally by SPI Driver Component. This can be

located in data memory.

RAM_UNSPECIFIED (Y2): This section consists of the global RAM variables

of 1-bit size that are initialized by start-up code and used internally by SPI

Driver Component. This can be located in data memory.

NOINIT_RAM_1BIT (Y3): This section consists of the global RAM variables of

1-bit size that are used internally by SPI Driver Component. The specific

sections of respective software components will be merged into this RAM

section accordingly.

NOINIT_RAM_8BIT (Y4): This section consists of the global RAM variables of

8-bit size that are used internally by SPI Driver Component. This can be

located in data memory.

NOINIT_RAM_16BIT (Y5): This section consists of the global RAM variables

of 16-bit size that are used internally by SPI Driver Component. This can be

located in data memory.

SPI_CFG_RAM_UNSPECIFIED (Y6): This section consists of the global

RAM variables that are generated by SPI Driver Component Generation Tool.

This can be located in data memory.
Remark

 X1, X2, Y1, Y2, Y3, Y4, Y5, Y6 pertain to only SPI Driver Component

and do not include memory occupied by Spi_PBcfg.c or Spi_Lcfg.c file

generated by SPI Driver Component Generation Tool.

 User must ensure that none of the memory areas overlap with each

other. Even ‘debug’ information should not overlap.

 P1x-C Specific Information Chapter 13

61

Chapter 13 P1x-C Specific Information

P1X-C supports following devices:

 R7F701370A(CPU1(PE1)), R7F701371(CPU1(PE1)),
R7F701372(CPU1(PE1)), R7F701373, R7F701374.

13.1. Interaction Between The User And SPI Driver
Component

The details of the services supported by the SPI Driver Component to

the upper layers users and the mapping of the channels to the

hardware units is provided in the following sections:

13.1.1. ISR Function

The table below provides the list of handler addresses corresponding to

the hardware unit ISR(s) in SPI Driver Component. The user should

configure the ISR functions mentioned below.

Table 13-1 Interrupt Vector Table
Interrupt Source Name of the ISR Function

INTCSIH0IRE SPI_CSIH0_TIRE_ISR

SPI_CSIH0_TIRE_CAT2_ISR

INTCSIH0IR SPI_CSIH0_TIR_ISR

SPI_CSIH0_TIR_CAT2_ISR

INTCSIH0IC SPI_CSIH0_TIC_ISR

SPI_CSIH0_TIC_CAT2_ISR

INTCSIH0IJC SPI_CSIH0_TIJC_ISR

SPI_CSIH0_TIJC_CAT2_ISR

INTCSIH1IRE SPI_CSIH1_TIRE_ISR

SPI_CSIH1_TIRE_CAT2_ISR

INTCSIH1IR SPI_CSIH1_TIR_ISR

SPI_CSIH1_TIR_CAT2_ISR

INTCSIH1IC SPI_CSIH1_TIC_ISR

SPI_CSIH1_TIC_CAT2_ISR

INTCSIH1IJC SPI_CSIH1_TIJC_ISR

SPI_CSIH1_TIJC_CAT2_ISR

INTCSIH2IRE SPI_CSIH2_TIRE_ISR

SPI_CSIH2_TIRE_CAT2_ISR

INTCSIH2IR SPI_CSIH2_TIR_ISR

SPI_CSIH2_TIR_CAT2_ISR

INTCSIH2IC SPI_CSIH2_TIC_ISR

SPI_CSIH2_TIC_CAT2_ISR

INTCSIH2IJC SPI_CSIH2_TIJC_ISR

SPI_CSIH2_TIJC_CAT2_ISR

INTCSIH3IRE SPI_CSIH3_TIRE_ISR

SPI_CSIH3_TIRE_CAT2_ISR

 Chapter 13 P1x-C Specific Information

62

Interrupt Source Name of the ISR Function

INTCSIH3IR SPI_CSIH3_TIR_ISR

SPI_CSIH3_TIR_CAT2_ISR

INTCSIH3IC SPI_CSIH3_TIC_ISR

SPI_CSIH3_TIC_CAT2_ISR

INTCSIH3IJC SPI_CSIH3_TIJC_ISR

SPI_CSIH3_TIJC_CAT2_ISR

INTDMA00 SPI_DMA00_ISR

SPI_DMA00_CAT2_ISR

INTDMA01 SPI_DMA01_ISR

SPI_DMA01_CAT2_ISR

INTDMA02 SPI_DMA02_ISR

SPI_DMA02_CAT2_ISR

INTDMA03 SPI_DMA03_ISR

SPI_DMA03_CAT2_ISR

INTDMA04 SPI_DMA04_ISR

SPI_DMA04_CAT2_ISR

INTDMA05 SPI_DMA05_ISR

SPI_DMA05_CAT2_ISR

INTDMA06 SPI_DMA06_ISR

SPI_DMA06_CAT2_ISR

INTDMA07 SPI_DMA07_ISR

SPI_DMA07_CAT2_ISR

INTDMA08 SPI_DMA08_ISR

SPI_DMA08_CAT2_ISR

INTDMA09 SPI_DMA09_ISR

SPI_DMA09_CAT2_ISR

INTDMA10 SPI_DMA10_ISR

SPI_DMA10_CAT2_ISR

INTDMA11 SPI_DMA11_ISR

SPI_DMA11_CAT2_ISR

INTDMA12 SPI_DMA12_ISR

SPI_DMA12_CAT2_ISR

INTDMA13 SPI_DMA13_ISR

SPI_DMA13_CAT2_ISR

INTDMA14 SPI_DMA14_ISR

SPI_DMA14_CAT2_ISR

INTDMA15 SPI_DMA15_ISR

SPI_DMA15_CAT2_ISR

 P1x-C Specific Information Chapter 13

63

13.2. Sample Application

The Sample Application is provided as reference to the user to

understand the method in which the SPI APIs can be invoked from the

application.

Figure 13-1 Overview Of SPI Driver Sample Application

13.2.1. Sample Application Structure

The Sample Application of the P1X-C is available in the path

X1X\P1x-C\modules\spi\sample_application

The Sample Application consists of the following folder structure

X1X\P1x-C\modules\spi\definition\<AUTOSAR_version>\common\
R403_SPI_P1x-C.arxml

X1X\P1x-C
\modules\spi\sample_application\<SubVariant>\<AUTOSAR_version>

 \src\Spi_Lcfg.c
 \src\Spi_PBcfg.c
 \src\Spi_Hardware.c
 \inc\Spi_Cfg.h
 \inc\Spi_Cbk.h
 \inc\Spi_ Hardware.h

\config\App_SPI_P1x-C_<Device_Name>_Sample.arxml

 Note For P1x-C <Device_Name> can be 701370A, 701371, 701372,

701373, 701374.

In the Sample Application all the SPI APIs are invoked in the

following sequence:

• The API Spi_Init is invoked with a valid database address for the

proper initialization of the SPI Driver, all the SPI Driver control registers

and RAM variables will get initialized after this API is called.

C O M P I L E R RH850 Types

Common SPI

sample

application

P1x-C SP I

Sample

application

STUB

DEM

STUB

Det

STUB Os

STUB

SchM

STUB

MCU

Generic

AUTOSAR

 Chapter 13 P1x-C Specific Information

64

• The API Spi_GetVersionInfo is invoked to get the version of the SPI

Driver module with a variable of Std_VersionInfoType, after the call of

this API the passed parameter will get updated with the SPI Driver

version details.

• The API Spi_GetHWUnitStatus will return the status of the specified

SPI Hardware microcontroller peripheral.

• The API Spi_SyncTransmit will transmit data on the SPI bus
synchronously.

• This module will take the passed parameter and set the SPI Driver

status to SPI_BUSY. Also it sets the sequence result to

SPI_SEQ_PENDING and first job result to SPI_JOB_PENDING and

performs the transmission.

• The API Spi_SetAsyncMode will set the asynchronous mechanism

mode for SPI busses handled asynchronously.

• The API Spi_MainFunction_Driving is used for Asynchronous

transmission of the sequences in polling mode. This service is should

be invoked in a scheduler loop if the asynchronous transmission mode

is selected as SPI_POLLING_MODE.

• The API Spi_Cancel will cancel the specified on-going sequence

transmission without canceling any Job transmission and the SPI

Driver will set the sequence result to SPI_SEQ_CANCELLED.

• The API Spi_DeInit is invoked for de-initialization of the all the controls

registers and RAM variables.

• The API Spi_GetErrorInfo copies Hardware Error Details to User

Buffer.

13.2.2. Building Sample Application

13.2.2.1. Configuration Example

 This section contains the typical configuration which is used for measuring

 RAM/ROM consumption, stack depth and throughput details.

 Configuration Details:

 App_SPI_<SubVariant>_<Device_Name>_Sample.arxml.

 Note For P1x-C <Device_Name> can be 701370A, 701371, 701372,

701373, 701374.

13.2.2.2. Debugging The Sample Application

 Remark GNU Make utility version 3.81 or above must be installed
and available in the path as defined by the environment user variable
“GNUMAKE” to complete the build process using the delivered sample
files.

• Open a Command window and change the current working directory to
”make” directory present as mentioned in below path:
 “X1X\P1x-C\common_family\make\ghs\<Compiler>”

• Now execute the batch file SampleApp.bat with following parameters
SampleApp.bat Spi 4.0.3 <Device_name>

• After this, all the object files, map file and the executable file
App_Spi_P1x-C_Sample.out will be available in the output folder:
(“X1X\P1x-C\modules\spi\sample_application\<SubVariant>

\obj\<Compiler>”)

 P1x-C Specific Information Chapter 13

65

• The executable can be loaded into the debugger and the sample
application can be executed.

 Remark Executable files with ‘*.out’ extension can be

downloaded into the target hardware with the help of Green Hills

debugger.

• If any configuration changes (only post-build) are made to the ECU
Configuration Description files

“X1X\P1x-C\modules\spi\sample_application\<SubVariant>
\<AUTOSAR_version>\config\App_SPI_P1X-C_701372_Sample.arxml”

• The database alone can be generated by using the following
commands.
make –f App_SPI_P1x-C_Sample.mak generate_spi_config

make –f App_SPI_P1x-C_Sample.mak App_SPI_P1x-C_Sample.s37

• After this, a flash able Motorola S-Record file App_SPI_P1x-
C_Sample.s37 is available in the output folder.

Note: The <Device_name> indicates the device to be compiled, which

can be 701370A, 701371, 701372, 701373, 701374 and <SubVariant>

can be P1H-C, P1H-CE, P1M-C.

13.3. Memory And Throughput

Typical Configuration

 DET OFF

 DMA disabled

 All other Pre-Compile Settings ON

 2 16bit SPI channels

o with external buffers

o with internal buffers

 2 SPI jobs

o CSIH in direct access mode

 2 external devices configured

 SpiLevelDelivered configured as 2

13.3.1. ROM/RAM Usage

The details of memory usage for the typical configuration, with DET

disabled as provided in Table 13-2

Table 13-2 ROM/RAM Details Without DET

Sl. No. ROM/RAM Segment Name Size in bytes

1 ROM DEFAULT_CODE_ROM

CONST_ROM_UNSPECIFIED

CONST_ROM_32BIT

 7782

 456

 32

 Chapter 13 P1x-C Specific Information

66

Sl. No. ROM/RAM Segment Name Size in bytes

2

RAM

NOINIT_RAM_UNSPECIFIED

RAM_UNSPECIFIED

NOINIT_RAM_1BIT

NOINIT_RAM_8BIT

NOINIT_RAM_16BIT

RAM_8BIT

 156

 2

 8

 9

 22

 2

The details of memory usage for the typical configuration, with DET

enabled and all other configurations as provided in Table 13-3.

Table 13-3 ROM/RAM Details With DET

Sl. No. ROM/RAM Segment Name Size in bytes

1 ROM DEFAULT_CODE_ROM

CONST_ROM_UNSPECIFIED

CONST_ROM_32BIT

8856

 456

 32

2

RAM

NOINIT_RAM_UNSPECIFIED

RAM_UNSPECIFIED

NOINIT_RAM_1BIT

NOINIT_RAM_8BIT

NOINIT_RAM_16BIT

RAM_8BIT

 156

 2

 8

 9

 22

 2

13.3.2. Stack Depth

The worst-case stack depth for Driver Component is 188 bytes for the

typical configuration provided in Section 13.2.2.1.

13.3.3. Throughput Details

The throughput details of the APIs for the configuration mentioned in the

Section13.2.2.1 Configuration are provided in this section. The clock

frequency used to measure the throughput is 240 MHz for all APIs.

 P1x-C Specific Information Chapter 13

67

Table 13-4 Throughput Details Of The APIs

Sl. No.

API Name
Throughput in

microseconds

Remarks

1 Spi_Init 2.137 -

2 Spi_DeInit 2.500 -

3 Spi_WriteIB 0.387 -

4 Spi_AsyncTransmit 5.325 -

5 Spi_ReadIB 0. 250 -

6 Spi_SetupEB 0.200 -

7 Spi_GetStatus 0.620 -

8 Spi_GetJobResult 0. 620 -

9 Spi_GetSequenceResult 0. 620 -

10 Spi_GetVersionInfo 0.100 -

11 Spi_SyncTransmit 8.400 -

12 Spi_GetHWUnitStatus 0.187 -

13 Spi_Cancel 0.275 -

14 Spi_SetAsyncMode 1.437 SPI_POLLING_MODE

15 Spi_SetAsyncMode 0.175 SPI_INTERRUPT_ MODE
16 Spi_MainFunction_Handling 0.850 -

17 Spi_SelfTest 649.850 SPI_LOOP_BACK_SELF
_TEST

18 Spi_SelfTest 32.150 SPI_ECC_SELF_TEST

19 Spi_GetErrorInfo 0.125 -

 Chapter 13 P1x-C Specific Information

68

Release Details Chapter 14

69

Chapter 14 Release Details

SPI Driver Software

Version: 2.0.0

Chapter 14 Release Details

70

71

Revision History

Sl.No. Description Version Date

1. Initial Version 1.0.0 05-Aug-2015

2 Following changes are made:

1. Table 4-4 User Mode and Supervisory Mode is

updated.

2. In section 4, Information for 16 bit datawidth selection is
added when DMA is configured.

3. Table 6-1 Register details, 8bit and 32bit settings when
DMA is configured are removed.

4. In section 4.6, Information for the limitation for CS
added.

5. In section 4.2, Note about the user Configuration of
Module Short Name was added.

6. In section 11.1, new development error
SPI_E_MAINFUNCTION_HANDLING_INVALIDMODE
is added for Spi_MainFunction_Handling API.

1.0.1 28-Mar-2016

3 Following changes are made:

1. Removed Section 13.2, Compiler, Linker and
Assembler.

2. In section 4.3, Note about entries for User mode
dependency of Critical Section added.

3. In section 4.5, Critical section details are updated by
adding Table 4-6.

4. In section 4.1, Note added regarding the DMA access
for local RAM area.

5. In section 12, Memory Organization is updated by
adding information about
SPI_START_SEC_CODE_FAST.

6. Section 6, Register access details are updated.

7. Updated section 13.2.1 Sample Application Structure to
add details about Spi_GetErrorInfo API.

8. Added Spi_GetErrorInfo API in section 11.1 under
Related API(s) corresponding to the error
SPI_E_UNINIT.

9. Section 3 updated R number in remarks.

10. Folder Structure updated in the section 3.1.1.

11. Table 4-4 User mode and Supervisory mode is updated.

12. Section 8 updated for file information.

13. Section 9 updated for R number.

14. Table 10-1 updated with API name.

15. Memory, Throughput and stack depth Details are
updated in section 13.3.

16. Release details updated in section 14.

17. Chapter 13, Added Processor name along with Device
variants.

18. Figure 12-1 SPI Driver Component Driver Organization
has been updated in Chapter 12.

19. Removed traces of .one and .html from the section 13.2
Sample Application.

1.0.2 15-Feb-2017

AUTOSAR MCAL R4.0.3 User's Manual
SPI Driver Component Ver.1.0.2
Embedded User's Manual

Publication Date: Rev.1.00, Feb 15, 2017

Published by: Renesas Electronics Corporation

SALES OFFICES http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2006-2017 Renesas Electronics Corporation. All rights reserved.

Colophon 4.1

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3

User's Manual

R20UT3659EJ0100

	Chapter 1 Introduction
	1.1. Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration And Build Process
	3.1. SPI Driver Component Makefile

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. User Mode and Supervisor Mode
	4.4. Memory modes
	4.5. Data Consistency
	4.6. Deviation List

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction Between The User And SPI Driver Component
	7.1. Services Provided By SPI Driver Component To The User

	Chapter 8 SPI Driver Component Header And Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1. Imported Types
	10.1.1. Standard Types
	10.1.2. Other Module Types

	10.2. Type Definitions
	10.2.1. Spi_ConfigType
	10.2.2. Spi_StatusType
	10.2.3. Spi_JobResultType
	10.2.4. Spi_SeqResultType
	10.2.5. Spi_DataType
	10.2.6. Spi_NumberOfDataType
	10.2.7. Spi_ChannelType
	10.2.8. Spi_JobType
	10.2.9. Spi_SequenceType
	10.2.10. Spi_HWUnitType
	10.2.11. Spi_AsyncModeType
	10.2.12. Spi_CommErrorType
	10.2.13. Spi_HWErrorsType
	10.2.14. Spi_SelfTestType
	10.2.15. Spi_ReturnStatus

	10.3. Function Definitions

	Chapter 11 Development And Production Errors
	11.1. SPI Driver Component Development Errors
	11.2. SPI Driver Component Production Errors

	Chapter 12 Memory Organization
	Chapter 13 P1x-C Specific Information
	13.1. Interaction Between The User And SPI Driver Component
	13.1.1. ISR Function

	13.2. Sample Application
	13.2.1. Sample Application Structure
	13.2.2. Building Sample Application
	13.2.2.1. Configuration Example
	13.2.2.2. Debugging The Sample Application

	13.3. Memory And Throughput
	13.3.1. ROM/RAM Usage
	13.3.2. Stack Depth
	13.3.3. Throughput Details

	Chapter 14 Release Details

