RENESAS

=
o
o
ﬁ\l
7
<
O
S5
c
QO

AUTOSAR MCAL R4.0.3
User's Manual

SPI Driver Component Ver.1.0.2
Embedded User's Manual

Target Device:
RH850/P1x-C

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.1.00 Feb 2017

http://www.renesas.com/
http://www.renesas.com/

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and
damages incurred by you or third parties arising from the use of these circuits, software, or information.

Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents,
copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information
described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics
disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or
otherwise misappropriation of Renesas Electronics products.

Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended
applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

""Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;
home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication
equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or
bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea
repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any
and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the
product is not intended by Renesas Electronics.

When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General
Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges
specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics,
installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas
Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas
Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the
possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics
products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention,
appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system.
Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or
systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including
without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable
laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale
is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1)
any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons,
chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose
relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and
security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly
or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When
exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and
regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.

Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and
conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your
resale or making Renesas Electronics products available any third party.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Abbreviations and Acronyms

Abbreviation / Acronym

Description

ANSI

American National Standards Institute

API Application Programming Interface
ARXML/arxml AutosaR eXtensible Mark-up Language
ASIC Application Specific Integration Circuit
AUTOSAR AUTomotive Open System Architecture
BSW Basic SoftWare
CPU Central Processing Unit
CSIH/CSIG, CSIG Enhanced Queued Clocked Serial Interface.
DEM Diagnostic Event Manager
DET/Det Development Error Tracer
DIO Digital Input Output
DMA Direct Memory Access
EB External Buffer
ECU Electronic Control Unit
EDL Extended Data Length
EEPROM Electrically Erasable Programmable Read-Only Memory
GNU GNU'’s Not Unix
GPT General Purpose Timer
HW HardWare
B Internal Buffer
Id Identifier
I/0 Input/Output
ISR Interrupt Service Routine
MCAL Microcontroller Abstraction Layer
MHz Mega Hertz
NA Not Applicable
PLL Phase Locked Loop
RAM Random Access Memory
ROM Read Only Memory
RTE Run Time Environment
SPI Serial Peripheral Interface
VIS Micro Seconds
Definitions
Term Represented by
Sl. No. Serial Number

Table Of Contents

Chapter 1 INtrodUCTIONcivvii e 11

1.1. DOCUMENT OVEIVIEWtiiiiiieee ettt ettt e e e e e sttt et e e e e e s sna b et e eeeee e s s annbeeeeeeeeeseaanntaseeeeaens 13

Chapter 2 Reference DOCUMENTScccovviiiiiiiiiiiiiie e, 15

Chapter 3 Integration And Build Process.........cccooeveviiiiiiiiiiicccinnnnnnn, 17

3.1. SPI Driver Component Makefile ... 17

Chapter 4 ForethoughtS......ccccooiiiiiii e 19

4.1. LCT=T T - | SRR 19

4.2. PrECONAITIONS .. .ot s e e s s e e e s 22

4.3. User Mode and SUPEervisOr MOUE........coooviiiiiiiiiiee e 23

4.4, =T 0 0 0] VA 1 4o o 1= P 25

4.5, (D= U= W O o] g E=T 1= (= o o) VP 25

4.6. DEVIATION LIS .eteiiiiiiiiie ettt ettt e e st e e s e e e s et e s e e e st e e s 26

Chapter 5 Architecture Detailscoooveviiiiiiiiii e, 29

Chapter 6 Registers DetailS.......coooovuiiiiiiiiiiiie e 33

Chapter 7 Interaction Between The User And SPI Driver Component

.. 41

7.1. Services Provided By SPI Driver Component TO The USEr.........uuviviviuinieiiieinininininininininn. 41
Chapter 8 SPI Driver Component Header And Source File

1971 o] 1 01 1 o 1 o 43

Chapter 9 Generation Tool GUIde........cocvviiiiiiiiiiii e 47

Chapter 10 Application Programming Interface.........cccccccccceevevvnnnnnne, 49

10.1. [aT oo Y (=To I Y] o L= ST PP PRSPPI 49

O T S = T o =T o [Y/ 0T PP 49

10.1.2. Other MOUUIE TYPES .. ueeiiieiiiiiie ittt ettt e et e e s bt e e s nnneeeas 49

10.2. TYPE DEFINITIONS ittt ettt e e st e e e st b e e e sbbeeeesbbeeeeans 49

O I S o R @] 01110 1 Y/ o 1T P UUP PRI 49

10.2.2. SPI_StAUSTYPE .eeeiiiiiiiiiiiiie ettt e e ettt e e e e e e e s b bt e e et e e e e e e aanbbeeeeeaaessaannbbnaeeaaens 49

10.2.3. SPi_JODRESUITY P ittt e e e e et e e e e e e e e e sanbraeeeaee s 50

10.2.4. SPi_SEORESUITYPE ...t e e e e et e e e e e e e e e ranbraeeeaae s 50

O ST S o I B - 1 - U Y 1= S PP UUP PRI 50

10.2.6. SPi_NUMDEIrODAIATYPE ...eeeiiiaeiiiiiiiieiie ettt e e et e e e e e e e e saabreaeeaee s 50

O S oI @1 g F= T a1 I 15/ 1 PP 51

02 TR o N o o 1/ o - S 51

10.2.9. SPi_SEUUENCETYPE . .ciieeieiieiie e e e e sttt e et e e e s s st e e e e e e s s saat e e e aaeessasntaraereeeessssnnsannreeees 51

10.2.10. SPi_HWUNIETYPE «.eveeeeeeeeeeeeeeeeeee et e eeee e e e e eee s s e seeeeeen s e e e et en s s e e eeeesenenenens 51

10.2.11. SPi_ASYNCMOUETYPE ... uuuiiiiiiieeeeeiiittee et e e e s s s straee e e e e e s s ssat e e e aaeeseasntrraereaeesssannrenneeeaes 51

10.2.12. SPi_COMMEITOITYPE .. iiiiiiiiiie e sttt e e s e e e e s s e e e e e s e s sntaree e e e e e s s s snnrrnnneeees 52

B e T S oI LAY = o £ Y/ o 1= PR 52

O I S o IS Y= |l =T 1Y o L= PSP 52

10.2.15. SPi_REIUIMNSIALUS.......ciiiiiiiiii et e e e s e e e e e s s s r e e e e e s e s st e e e e e e e e s s s snnrenneeeees 52

10.3. FUNCLION DEFINITIONS ..ottt e e 53
Chapter 11 Development And Production Errorsccceceevevevneenn. 55
11.1. SPI Driver Component DevelopmeNnt EFTOrS e uiiieiiiriiiiieirieiiisieinieeninrernnnrnnnnn. 55
11.2. SPI Driver Component ProducCtion ErfOrS........uiuiiiiiieiiiiiiiiieieieinisieieieiererereinrnrennn. 56
Chapter 12 Memory Organizationccceeeeveeiiieiiie e e 59
Chapter 13 P1x-C Specific Information..........cccooevvviiiiviiiieiiiiieeeei, 61
13.1. Interaction Between The User And SPI Driver COmponentcccccevevvveveiiiiieieiecececeeeeeeeee 61
R T I 11 2 B U T 1 o PO PP P PP OPPPR PP 61

13.2. S F= 0]] TSI A o] L= 4 o Y o 63
13.2.1. Sample Application StHUCTUIEcoooviiiiiie e 63

13.2.2. Building Sample AppliCation............coovvviiiiiiii 64

13.2.2.1. Configuration EXamplecccccooiiiiiiii 64

13.2.2.2. Debugging The Sample Applicationcccccceveveiiiiiiee 64

13.3. Memory ANd TRFOUGNPUL....coiiii e 65
13.3.1. ROM/RAM USBQE....cciiiiiiiiiiiitit ettt e e et et e e e e e et b e e e e e e e e e e nanbraneeaeens 65

13.3.2. StaCK DEPtN ..o 66

13.3.3. Throughput DELAIIScuveeiiiiiiiie e 66
Chapter 14 Release DetailS..........covvviiiiiiiiiiiciic e 69

Figure 1-1
Figure 1-2
Figure 5-1
Figure 5-2
Figure 12-1
Figure 13-1

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 6-1
Table 8-1
Table 10-1
Table 11-1
Table 11-2
Table 13-1
Table 13-2
Table 13-3
Table 13-4

List Of Figures

System Overview Of AUTOSAR ArchiteCtureccccoevviiiiiiiiieie e 11
System Overview Of The SPI Driver In AUTOSAR MCAL Layer.........ccccceveeeeennnns 12
SPI Driver ArChItECIUIEoiiiiiiii et 29
Component Overview Of SPI Driver COMPONENTceeeeeiiiiiiieeeeeeeeciiinieeeeeeeee e 30
SPI Driver Component Driver Organization..........ccccueveeeeeiiiciiieereeeeesessisineeeeeeeennnns 59
Overview Of SPI Driver Sample Application...........ccccceveeeiiiiiiieereee e 63

List Of Tables

Registers to be Configured for Static Configurationcccccvvvivriiiininininininin. 21
Channel container PAramMEeterScccoeiiiiiie e 21
Job container parameters ... 21
User Mode and SUPErviSOry MOUEuuuuuuuuiuiuirieinieininineernreinrnnnrnrnrnrnnn.. 23
HW unit and Memory Mode SeleCtionuuuuiuiiiiiuiiiiiiieieiiinieieinenennn.. 25
SPI Driver Critical section proteCtion LiStc.coiuviiiiiiiiriiiiiiie e 25
SPI Driver Deviation LiSt...........ueiiiiiiiiiiiiiiieee e e e e e e e ee e e e e e 26
REQISLEr DELAIIS.eiiiiiiiiei it 33
Description Of The SPI Driver Component FileSccceeviiiiiiiiiiieie e 44
The APIs provided by the SPI Driver COmMpPONENtcoocviveiniiiieniiiiee e 53
DET Errors Of SPI Driver COMPONENT........uuuuuuiuiriiieieiuierniernenininnnrnrnrnenmnnn.. 55
DEM Errors Of SPI Driver COMPONENTuuvuiuiriiiiieiuinieinieininrnieinrnrnenenrnn.. 57
L1 oY U] o MY A= Tox (o] g =1] 61
ROM/RAM Details WithOUt DETccciiiiiiiiiiiie et e sieee e nineee e 65
ROM/RAM Details With DETcccuviiiiiiiiie ettt sttt e e niaeee e 66
Throughput Details Of The APIS ... 67

10

Introduction Chapter 1

Chapter 1 Introduction

The purpose of this document is to describe the information related to SPI
Driver Component for Renesas P1x-C microcontrollers.

This document shall be used as reference by the users of SPI Driver
Component. The system overview of complete AUTOSAR architecture is
shown in the below Figure:

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

SPI Driver

Microcontroller

Figure 1-1 System Overview Of AUTOSAR Architecture

The SPI Driver is part of the Microcontroller Abstraction Layer (MCAL), the
lowest layer of Basic Software in the AUTOSAR environment.

11

Chapter 1 Introduction

The Figure in the following page depicts the SPI Driver as part of layered
AUTOSAR MCAL Layer:

Microcontroller Drivers Memory Drivers Communication Drivers 1/0 Drivers
] | 1 | p— — —— — —
° El
x S o %)
s z 3 3 by
9 % K (o] X 3 3 = E e % o
SllzEllells S22 5]l® CH IEN A sl 2llglle]|ls
3 glla||z 3 z 2 18115]||2
o] o 2 = o D 3 =3 o o 2 c E i Rsl o 3
s||g||3]|8 gll2]12]2 21zl 2]] e 2l gllgllg]le
= S = - “llellgll® o 1% || 2 ES 3 EI 5 ES
g 2 2|9 <) = R =]
g 2 s e
@
— _ _ e — ——] L] - J e J __J L J —
o3 Micro - o - m - . 2.
= - = 3
ol 21522 5|controller | : Sllz3 ollgz |l 2 a2 °
— =99 2 2] o = ~ 9 z H o 3
3 282 2 4] 2 2 o
3 »

Figure 1-2 System Overview Of The SPI Driver In AUTOSAR MCAL Layer

The SPI Driver Component comprises Embedded software and the
Configuration Tool to achieve scalability and configurability.

The SPI Driver component code Generation Tool is a command line tool that
accepts ECU configuration description files as input and generates source
and header files. The configuration description is an ARXML file that contains
information about the configuration for SPI Driver. The tool generates the
Spi_PBcfg.c, Spi_Lcfg.c, Spi_Hardware.c, Spi_Hardware.h, Spi_Cfg.h and
Spi_Cbk.h.

The SPI driver provides services for reading from and writing to devices
connected through SPI buses. It provides access to SPI communication to
several users (For example, EEPROM, I/O ASICs). It also provides the
required mechanism to configure the on-chip SPI peripheral.

12

Introduction

Chapter 1

1.1

Document Overview

The document has been segmented for easy reference. The table below
provides user with an overview of the contents of each section:

Section

Contents

Section 1 (Introduction)

This section provides an introduction and overview of SPI Driver
Component.

Section 2 (Reference Documents)

This section lists the documents referred for developing this document.

Section 3 (Integration And Build
Process)

This section explains the folder structure, Makefile structure for SPI
Driver Component. This section also explains about the Makefile
descriptions, Integration of SPI Driver Component with other
components, building the SPI Driver Component along with a
sample application.

Section 4 (Forethoughts)

This section provides brief information about the SPI Driver
Component, the preconditions that should be known to the user before
it is used, memory modes, data consistency details, deviation list and
Support For Different Interrupt Categories.

Section 5 (Architecture Details)

This section describes the layered architectural details of the SPI Driver
Component.

Section 6 (Register Details)

This section describes the register details of SPI Driver Component.

Section 7 (Interaction Between
User And SPI Driver Component)

This section describes interaction of the SPI Driver Component with
the upper layers.

Section 8 (SPI Driver Component
Header And Source File
Description)

This section provides information about the SPI Driver Component
source files is mentioned. This section also contains the brief note on
the tool generated output file.

Section 9 (Generation Tool Guide)

This section provides information on the SPI Driver Component Code
Generation Tool.

Section 10 (Application
Programming Interface)

This section explains all the APIs provided by the SPI Driver
Component.

Section 11 (Development And
Production Errors)

This section lists the DET and DEM errors.

Section 12 (Memory
Organization)

This section provides the typical memory organization, which must
be met for proper functioning of component.

Section 13(P1X-C
Specific information)

This section provides P1x-C specific information like ISR Function, the
details of the P1x-C Sample Application and its folder structure and the
information about RAM/ROM usage, stack depth and throughput
details.

Section 14 (Release Details)

This section provides release details with version name and
base version.

13

Chapter 1

Introduction

14

Reference Documents Chapter 2
Chapter 2 Reference Documents
SI. No. Title Version
1. AUTOSAR_SWS_SPIHandlerDriver.pdf 3.2.0
2. AUTOSAR BUGZILLA (http:/Aww.autosar.org/bugzilla) -
Note: AUTOSAR BUGZILLA is a database, which contains concerns raised
against information present in AUTOSAR Specifications.
3. r01uh0517ej0070_rh850p1x-c_Open.pdf Rev.1.00
4. Specification of Compiler Abstraction 3.2.0
(AUTOSAR_SWS_CompilerAbstraction.pdf)
5. Specification of Memory Mapping 1.4.0
(AUTOSAR_SWS_MemoryMapping.pdf)
6. Specification of Platform Types 250
(AUTOSAR_SWS_PlatformTypes.pdf)

15

http://www.autosar.org/bugzilla

Chapter 2

Reference Documents

16

Integration And Build Process

Chapter 3

Chapter 3

Remark

3.1.

3.1.1.

Integration And Build Process

In this section the folder structure of the SPI Driver Component is explained.
Description of the Makefiles along with samples is provided in this section.

The details about the C Source and Header files that are generated by the
SPI Driver Generation Tool are mentioned in the
“R20UT3660EJ0100-AUTOSAR.pdf".

SPI Driver Component Makefile

The Makefile provided with the SPI Driver Component consists of the GNU
Make compatible script to build the SPI Driver Component in case of any
change in the configuration. This can be used in the upper level Makefile (of
the application) to link and build the final application executable.

Folder Structure

The files are organized in the following folders:

Remark Trailing slash ‘\’ at the end indicates a folder

X1X\common_platform\modules\spi\src\Spi_Driver.c
\Spi.c
\Spi_Scheduler.c
\Spi_lrg.c
\Spi_Ram.c

\Spi_Version.c

X1X\common_platform\modules\spi\include\Spi_Driver.h
\Spi.h
\Spi_Scheduler.h
\Spi_Irg.h
\Spi_LTTypes.h
\Spi_PBTypes.h
\Spi_Ram.h
\Spi_Version.h
\Spi_Types.h

\Spi_RegWrite.h

X1X\P1x-C\modules\spi\sample_application\<SubVariant>\make\ghs
\App_Spi_P1x-C_Sample.mak
\App_Spi_P1x-C_Sample.ld

X1X\P1x-C\modules\spi\generator
\R403_SPI_P1x-C_BSWMDT.arxml

17

Chapter 3

Integration And Build Process

18

X1X\P1x-C\modules\spi\user_manual
(User manuals will be available in this folder)

Note: 1. <AUTOSAR_version> should be 4.0.3
2. <SubVariant> can be P1H-C, P1H-CE, P1M-C.

Forethoughts Chapter 4

Chapter 4 Forethoughts

4.1. General

Following information will aid the user to use the SPI Driver Component
software efficiently:

» SPI Driver component does not take care of setting the registers which
configure clock, prescaler and PLL.

* SPI Driver component handles only the Master mode.
* SPI Driver component supports full-duplex mode.

* The chip select is implemented using the microcontroller pins and it is
configurable.

* The microcontroller pins used for chip select is directly accessed by the
SPI Driver component without using the APIs of DIO module.

* Maximum number of channels and jobs configurable is 65536.
* The scope is restricted to post-build with multiple configuration sets.

* The identifiers for channels, jobs and sequences entered by the user
should start from 0 and should be continuous.

* The width of the transmitted data unit is configurable and the valid values
are 8 bits to 32 bits.

* The number of channels, jobs and sequences should be same across
multiple configuration sets.

* The channels, jobs and sequences cannot be deleted or added at post-
build time.

* The SPI hardware unit cannot be deleted or added at post—build time. But,
the reassignment of the SPI hardware units to different jobs is possible at
post-build time.

* The DMA unit cannot be deleted or added at post—build time. But, the
reassignment of DMA units to the SPI hardware units is possible at post-
build time.

* When the level of scalable functionality is configured as 2, then two SPI
buses using separate hardware units are required. In this case, the SPI
bus dedicated for synchronous transmission is configurable.

* When the level of scalable functionality is configured as 2, two modes of
asynchronous communication using polling or interrupt mechanism are
possible. These modes are selectable during execution time.

* When the level of scalable functionality is configured as 1 or 2, If interrupt
mechanism is selected during execution time, the transmission and
reception will be performed using the on-chip DMA unit only if the DMA
mode is enabled through the configuration.

* The LEVEL 2 SPI Handler is specified for microcontrollers that have to
provide at least two SPI busses using separated hardware units. Otherwise,
using this level of functionality makes no sense.

19

Chapter 4

Forethoughts

20

When Level Delivered is 0 and 2, the memory mode configured for jobs
linked for the synchronous sequence shall be always Direct Access Mode
only.

If user configures 32 bit IB and EB channels and additionally configures
DMA in direct access mode there will be a generator error message.

When the SPI driver is configured in Level 2 (SpiLevelDelivered) and the
DMA is also configured (SpiDmaMode), then the asynchronous mode
needs to be set for interrupt mode using the API Spi_SetAsyncMode

Direct Access mode can be effectively used in case of sequence having
channels and buffers of significantly different properties.

Double Buffer mode can be effectively used in case of sequence having
more number of jobs, channels and buffers with same hardware properties
for continuous transmission of data. For double buffer mode only usage of
internal buffers is allowed. FIFO mode can be effectively used at the time of
transmit/receive of large amount of data. FIFO mode can also be used in
case of sequence having lesser number of jobs and having more channels
and buffers.

In a particular configurations where CSIH HW units are configured, Spi_Init
function must be called before Port_Init function.

Only if "SpiCslnactive" parameter is set to "true", the PWR bit in CSI
hardware will be cleared for that hardware unit, so setting "false" value can
lead to unnecessary power consumption.

When “SpiCsldleEnforcement” is set to true for the jobs configured for CSIH
Hw units, the value configured for "SpiCslnactive" will not have any impact
in actual Chip Select behavior".

The parameter "SpiCsldleEnforcement” influences the behaviour of idle
level of the chip select during data transfer and after the transmission of a
job.

When the parameter 'SpiCsldleEnforcement’ is configured as false, the
corresponding chip select is deactivated before every channel transmission
and stays active after transmission until another job with different CS is
transmitted.

When the parameter 'SpiCsldleEnforcement' is configured as true, the chip
select is deactivated after job transmission. An idle phase of CS is inserted
between transmissions of two data buffers.The duration of idle state of the
chip select between the channels transmissions will be less than duration
of idle state of the chip select between single data of each channel.

This information is valid only for DIRECT ACCES MODE.

For availability of Data Consistency Check on the port pins, please refer
respective microcontroller user manual.

Sequences assigned to a hardware channel (CSIHx) which is configured to
work with transmit only memory mode can be an interruptible or non-
interruptible sequence (specified by the parameter
SpilnterruptibleSequence). However, even if the sequence is non-
interruptible, it can still be interrupted by CPU-controlled high priority
communication functionality. i.e. the parameter SpilnterruptibleSequence is
valid only for software interruption.

Each of the high priority sequences shall refer to a unique chip select line.
These lines shall not be referred by any of the low priority sequences too.

Forethoughts

Chapter 4

In order to support DEEPSTOP functionality without resetting the
microcontroller, the re initialization of the Driver using Spi_Init APl is
supported. To achieve this functionality the
'SPI_E_ALREADY_INITIALIZED' Det error check is to be suppressedusing
‘SpiAlreadylnitDetCheck’ parameter when DET is enabled.When DET is
disabled there is no impact of “SpiAlreadylnitDetCheck” parameter.

Hardware high priority sequence mechanism is not supported for P1x-C
devices.

The parameter SpiPersistentHW Configuration decides whether Hardware
configuration is static or dynamic. This is applicable for both CSIG and CSIH
and both Synchronous and Asynchronous communication and all memory
modes.

If SpiPersistentHW Configuration is “True”, then HW configuration is Static
(configuration is performed in the function Spi_Init()), else it is dynamic.
SpiTimeOut has been added to have the hold on functions and ongoing
process of APIs, SpiTimeOut keeps the track of time and breaks loop if it is
exceeds the defined time.

Table 4-1 Registers to be Configured for Static Configuration

CSIH HW Unit
CSIHNCTLO
CSIHNCTL1
CSIHNCTL2
CSIHNCFGXx
CSIHNBRSy

Table 4-2 Channel container parameters

Parameter in Registers linked
channel container

SpiDataWidth CSIHNCFGx.CSIHNDLSx

SpiTransferStart CSIHNCFGx.CSIHNDIRX

Table 4-3 Job container parameters

Parameter in job Registers linked
container
SpiPortPinSelect CSIHNTXOW.CSIHNCSx
CSIHNCTL1.CSIHNCSx

Table 4-1 contains the registers that must be configured inside Spi_Init()
function.

All the parameters in channel/job/external devices containers linked to a
hardware unit mentioned in Table 4-2 and 4-3 should be same for Static
Configuration.

MCTL1, MCTL2 and CSIHnMRWPO registers are allowed to be accessed
when there is an ongoing communication only when PWR is set.

21

Chapter 4

Forethoughts

22

4.2.

Manual transmission is possible only in Direct Access and FIFO modes.
However user has to implement his own ISRs for SPI. In case he wants to
use Renesas SPI driver transmission in parallel, he has to call Renesas SPI
ISRs functions from his custom ISRs (e.g. use different interrupt category
mode).

When configuring DMA mode, the number of buffers configured shall be
greater than 1 in the case of Direct Access Mode and Fifo Mode.

The notifications should be called from user’s complex driver ISRs.

When using DMA, 'SpiDataWidthSelection' in 'General' container shall be
'‘BITS_16', the user shall setup the buffer(EB or IB) in the application as
type 'Spi_DataType' for channels that are configured for DMA and fill
required data(8 or 16) as configured in 'SpiDataWidth' in 'SpiChannel’.

The SPI DMA type is specified by the parameter SPI_DMA_TYPE_USED.

The Buffers used for transmission/reception using DMA shall be initialized
and configured in Retention RAM or Global RAM.

Note: The DMA will work whenever the DMA access for the LOCAL RAM,
which is having PE guard protection is enabled (this can be done by
configuring the PE guard registers.)

Preconditions

Following preconditions have to be adhered by the user, for proper
functioning of the SPI Driver Component:

The Spi_Lcfg.c, Spi_PBcfg.c, Spi_Hardware.c, Spi_Hardware.h,
Spi_Cbk.h and Spi_Cfg.h files generated by the SPI Driver Component
Code Generation Tool must be compiled and linked along with SPI Driver
Component source files.

The application has to be rebuilt, if there is any change in the Spi_Lcfg.c,
Spi_PBcfg.c, Spi_Hardware.c, Spi_Hardware.h,Spi_Cbk.h and Spi_Cfg.h
files generated by the SPI Driver Component Generation Tool.

File Spi_PBcfg.c generated for single configuration set or multiple
configuration sets using SPI Driver Component Generation Tool can be
compiled and linked independently.

The authorization of the user for calling the software triggering of a
hardware reset is not checked in the SPI Driver. This is the responsibility of
the upper layer.

The SPI Driver Component needs to be initialized before accepting any
request. The API Spi_Init should be invoked to initialize SPI Driver
Component.

The user should ensure that SPI Driver Component API requests are
invoked in the correct and expected sequence and with correct input
arguments.

Input parameters are validated only when the static configuration
parameter SPI_DEV_ERROR_DETECT is enabled. Application should
ensure that the right parameters are passed while invoking the APIs when
SPI_DEV_ERROR_DETECT is disabled.

Forethoughts

Chapter 4

4.3.

A mismatch in the version numbers of header and the source files results
in compilation error. User should ensure that the correct versions of the
header and the source files are used.

The ISR functions and the corresponding handler addresses are provided
in Table ISR Handler Addresses. User should ensure that Interrupt Vector
table configuration is done as per the information provided in the table.

The user shall configure the exact Module Short Name Spi in
configurations when reloading, as specified in config.xml file and the same
shall be given in command line.

Within the callback notification functions only following APIs are allowed.
Spi_ReadIlB
Spi_WritelB
Spi_SetupEB
Spi_GetJobResult
Spi_GetSequenceResult
Spi_GetHWUnitStatus
Spi_Cancel
All other SPI Handler/Driver API calls are not allowed.
User have the responsibility to enable or disable the critical protection
using the parameter SpiCriticalSectionProtection. By enabling parameter

SpiCriticalSectionProtection, Microcontroller HW registers which suffer
from concurrent access by multiple tasks are protected.

User Mode and Supervisor Mode

The below table specifies the APIs which can run in user mode, supervisor
mode or both modes:

Table 4-4 User Mode and Supervisory Mode

Z-Wn

o

API name

Interrupt mode Polling mode

Known limitation
in User Mode

supervisor
mode

user
mode

user
mode

supervisor
mode

Spi_Init

The IMR and INTC
registers are
accessed inside

Spi_Delnit

this function. Hence
it should not be
invoked in User
mode.

Spi_WritelB

Spi_AsyncTransmit

The IMR and INTC
registers are
accessed inside
this function. Hence
it should not be
invoked in User
mode.

Spi_ReadIB

23

Chapter 4

Forethoughts

Z—Wnm

o

APl name

Interrupt mode

Polling mode

user
mode

supervisor
mode

user
mode

supervisor
mode

Known limitation
in User Mode

Spi_SetupEB

Spi_GetStatus

Spi_GetJobResult

©| o N2 |

Spi_GetSequenceResult

Spi_GetVersioninfo

11.

Spi_SyncTransmit

The IMR and INTC
registers are
accessed inside
this function. Hence
it should not be
invoked in User
mode.

12.

Spi_Cancel

The IMR and INTC
registers are
accessed inside
this function. Hence
it should not be
invoked in User
mode.

13.

Spi_SetAsyncMode

The IMR and INTC
registers are
accessed inside
this function. Hence
it should not be
invoked in User
mode.

14.

Spi_MainFunction_Hand|
ing

The IMR and INTC
registers are
accessed inside
this function. Hence
it should not be
invoked in User
mode

15.

Spi_GetHWUnitStatus

16.

Spi_GetErrorinfo

17.

Spi_SelfTest

The IMR and
INTC registers
are accessed
inside this
function. Hence it
should not be
invoked in User
mode

18.

All ISRs

The IMR and INTC
registers are
accessed inside
this function. Hence
it should not be
invoked in User
mode

24

Note: Implementation of Critical Section is not dependent on MCAL. Hence
Critical Section is not considered to the entries for User mode in the above

table.

Forethoughts

Chapter 4

4.4.

4.5.

Memory modes

The SPI Driver will use different memory modes. The following four modes
can be configured.

Table 4-5 HW unit and Memory Mode Selection

HW unit Memory

CSIH(0-3) Direct Access Mode

FIFO Mode
Dual Buffer mode

Transmit Only Mode

Data Consistency

To support the re-entrance and interrupt services, the AUTOSAR SPI
component will ensure the data consistency while accessing its own RAM
storage or hardware registers. The SPlI component will use
SchM_Enter_Spi_<Exclusive Area> and SchM_Exit_Spi_<Exclusive Area>
functions. The SchM_Enter_Spi_<Exclusive Area> function is called before
the data needs to be protected and SchM_Exit Spi_<Exclusive Area>
function is called after the data is accessed.

The following exclusive area along with scheduler services is used to provide
data integrity for shared resources:

* RAM_DATA_PROTECTION

The functions SchM_Enter_Spi_<Exclusive Area> and
SchM_Exit_Spi_<Exclusive Area> can be disabled by disabling the
configuration parameter 'Spi_CriticalSectionProtection'. The flowchart will
indicate the flow with the pre-compile option 'Spi_CriticalSectionProtection'
enabled.

The information about the API's and the protected resources by the critical
section are given in the following table.

Table 4-6 SPI Driver Critical section protection List

APl Name Exclusive Area Type Protected
Resources

Spi_AsyncTransmit SPI_RAM_DATA_PROTECTION | During communication the

status of sequence, job,
corresponding hardware unit
and communicating data are
protected.

Spi_SyncTransmit SPI_RAM_DATA_PROTECTION [During communication the

status of sequence, job,
corresponding hardware unit
and communicating data are

protected.

25

Chapter 4 Forethoughts
APl Name Exclusive Area Type Protected
Resources
Spi_Cancel SPI_RAM_DATA_PROTECTION | During cancelling the status
of sequence are protected.

26

Note: The highest measured duration of a critical section was 1.162 micro

seconds measured for Spi_AsyncTransmit API.

4.6. Deviation List

Table 4-7 SPI Driver Deviation List

Sl. No.

Description

AUTOSAR Bugzilla

The parameter
"SpiHwUnitSynchronous" is moved
to SpiJob container from
SpiChannel container.

48763

The total number of SPI Hardware
Units is published as
“SPI_MAX_HW_UNIT".

24328

The parameter “SPI_BAUDRATE”
is not used since the value
configured for this parameter
cannot be mapped directly to the
register value. Hence, a parameter
"SpiBaudrateSelection” is used to
select input frequency source.

The parameter 'SpiTimeCIk2Cs' is
not used since the value of this
parameter is configured as count
value. Hence, the parameter
'SpiClk2CsCount' is provided to
configure the wait loop count to add
delay between clock and chip
select.

Type of the parameter SpiHwUnit is
ENUMERATION-PARAM-DEF with
a list of all possible hardware units.

The inclusion or deletion of the
hardware units will not be possible
in the post-build time. But the
reassignment of configured HW
unit for different jobs is possible.

Type of the parameter SpiCs is
ENUMERATION-PARAM-DEF with
a list of all possible port lines.

If the parameter "DataBufferPtr"
passed through the API
“Spi_ReadIB” is null pointer, then
the error
SPI_E_PARAM_POINTER will be
reported to DET.

Forethoughts

Chapter 4

Sl. No.

Description

AUTOSAR Bugzilla

The channel parameters
“SpiChannelType”, “SpilbNBuffers”
and “SpiEbMaxLength” are pre-
compile time parameters.

10

A queue will be implemented and
maintained if there are more than
one sequence is requested for
transmission. The length of the
gueue will be number of configured
jobs minus 1.

11

If a sequence is requested for
transmission while already one
uninterruptible sequence is on-
going, the requested sequence will
be put on queue.

12

The upper and lower multiplicity of
the parameter ‘SpiCsldentifier’ is ‘1’
i.e. mandatory and the default
value is NULL. The upper and
lower multiplicity of the parameter
‘SpiEnableCS’ is ‘1’ i.e. mandatory
and the default value is false.

13

The parameters SpiMaxChannel,
SpiMaxJob and SpiMaxSequence
in SpiDriverConfiguration is made
as mandatory in the Parameter
Definition File of SPI Driver
Component.

14

From the file Lcfg.c only
notification related structure has
been removed.

As per mantis #8421

15

There will be an inactive state in
between Chip Select during
communication, when channel
properties are different.

As per JIRA ARDAAAF-383

27

Chapter 4

Forethoughts

28

Architecture Details

Chapter 5

Chapter 5

Architecture Details

To minimize the effort and to optimize the reuse of developed software on
different platforms, the SPI driver is split as High Level Driver and Low Level
Driver. The SPI Driver architecture is shown in the following figure:

|

CSIH

Figure 5-1 SPI Driver Architecture

The High Level Driver exports the AUTOSAR API towards upper modules
and it will be designed to allow the compilation for different platforms without
or only slight modifications, i.e. that no reference to specific microcontroller
features or registers will appear in the High Level Driver. All these references
are moved inside a pC specific Low Level Driver. The Low Level Driver
interface extends the High Level Driver types and methods in order to adapt it
to the specific target microcontroller.

SPI Driver component:

The SPI Driver provides services for reading and writing to devices connected
via SPI busses. It provides access to SPI communication to several users like
EEPROM, Watchdog, | /O ASICs. It also provides the required mechanism to
configure the on chip SPI peripheral.

The SPI Driver component is divided into the following sub modules based on
the functionality required:

¢ Initialization and De-initialization
* Buffer Management
* Communication

e Status information

29

Chapter 5

Architecture Details

¢« Module version information

The basic architecture of the SPI Driver component is illustrated in the
following Figure:

APPLICATION LAYER

Setting of
HW
register

Disabling
the
interrupts

A A
A v y v
: s
c
8 5 s
H % g $ 5 3 g
S £ 5 € 5 5 E s
= <] £ 9% c & L €
] < o 8 2 = £
s £ : 5 s
E & 2 £ =z § &
S 5 5
© a > =
g
A A 2 A 2 3
=
SPI High Level Drive] £
(=}
o
wv

Sequen
De - Transmit and ce and Return the
initialization receive the jobs job status of
of SPI HW and channels notifica module, job,
units tion sequence

30

Figure 5-2 Component Overview Of SPI Driver Component

SPI Driver Initialization and De-Initialization module

This module initializes and de-Initializes the SPI driver. It provides the
Spi_Init() and Spi_Delnit() APIs. The Spi_Init() API should be invoked before
the usage of any other APIs of Watchdog Driver Module.Spi-Init should be
called prior to Port_Init. De-initialization function puts all microcontroller SPI
peripherals in the same state such as Power On Reset.

Buffer Management

This module provides the services for reading and writing the internal buffers
and setting up the external buffer. The type of buffer for each channel is
configurable as either internal or external

The APIs related to this module are Spi_WritelB(), Spi_ReadIB() and
Spi_SetupEB().

Communication

This module provides the services for the transmission of data on the SPI bus
both synchronously and asynchronously, cancelling the ongoing transmission
and setting the asynchronous transfer mode.

The synchronous mode is based on polling mechanism. But for the
asynchronous mode, the possible mechanisms are Polling and Interrupt
mode. One of these modes is selectable during execution by one of the
services provided by this sub-module.

The APIs related to this module are Spi_SyncTransmit(),
Spi_AsyncTransmit(), Spi_SetAsyncMode() and Spi_Cancel().

Architecture Details

Chapter 5

Status Information

This module provides the services for getting the status of the SPI Driver and
hardware unit. It also provides the services for getting the result of the
specified job and specified sequence.

The APIs related to this module are Spi_GetStatus(),
Spi_GetHWUnitStatus(), Spi_GetJobResult() and Spi_GetSequenceResult().

Module Version Information

This module provides APIs for reading module Id, vendor Id and vendor
specific version numbers.

The API related to this module is Spi_GetVersioninfo().

31

Chapter 5 Architecture Details

32

Registers Details

Chapter

6

Chapter 6

Registers Detalils

This section describes the register details of SPI Driver Component.

Table 6-1 Register Details

SpiBaudrateConfiguration

. Config Register .
APl Name Registers Macro/Variable
g Parameter Access
R/W/RW
Spi_Init CSIHNCTLO SpiMemoryModeSelection w SPI_ZERO
DCSTCn - w SPI_DMA_STR_CLEAR
DCSTn - R -
DCENnN - w SPI_DMA_DCEN_DISABLE
DSAnN SpiDma w LpDmacConfig-
>ulTxRxRegAddress
DTCTn SpiTxDmaChannel/ w SPI_DMA_16BIT_TX_SETTI
SpiRxDmaChannel NGS
SPI_DMA_16BIT_RX_SETTI
NGS
DDAnN SpiDma w LpDmacConfig-
>ulTxRxRegAddress
DTFRn SpiTxDmaChannel/ w LpDmacConfig-
SpiRxDmaChannel >usDmaDtfrRegValue
CSIHNCTL1 SpiCslnactiveAfterLastDat w LunDataAccessl.ulRegData
a, SpiDataWidth
ICRN - w SPI_CLR_INT_REQ
IMRn SpiHwUnitSelection W Spi_GstHWUnitinfo[LddHWU
and nit].usRxImrMask,
SpiMemoryModeSelection Spi_GstHWUnitInfo[LddHWU
nit].pTxImrAddress,
Spi_GstHWUnitInfo[LddHWU
nit].pErrorimrAddress,
Spi_GstHWUnitInfo[LddHWU
nit].usRximrMask,
Spi_GstHWUnitInfo[LddHWU
nit].pTxImrAddress,
LpHWUnitInfo-
>usTxCancellmrMask,
Spi_GstHWUnitInfo[LddHWU
nit].pErrorimrAddress
CSIHNTX0OW - w LunDataAccessl.ulRegData
CSIHNSTCRO | - w SPI_CSIH_CLR_STS_FLAG
S
CSIHNSTRO - R -
CSIHNCTL2 SpilnputClockSelect w LpJobConfig->usCtl2Value
SpiBaudrateConfiguration & SPI_CSIH_PRE_MASK
CSIHNMCTLO | SpiMemoryModeSelection w LpJobConfig->usMCtl0Value
CSIHNBRSy SpilnputClockSelect W (LpJobConfigCSConfig-

>usCtl2Value) &
SPI_CSIH_BRS_MASK

33

Chapter 6

Registers Details

: Config Register :
APl Name Registers Macro/Variable
9 Parameter Access
R/W/RW
CSIHNCFGx SpiDataWidth W LunDataAccess1.ulRegData
SpiParitySelection
SpiTransferStart
SpiDataShiftEdge
SpiShiftClocklidleLevel
ECCCSIHNCTL | SpiECCSelfTest RW | SET_EC1EDIC_EC2EDIC
ECC_CTL_ECEMF_SET
ECC_CTL_ECER1F_ECER
2F CLEAR
CTL_ERRCLR_FLAG
CTL_2BIT_ERRCLR_FLAG
CTL_1BIT_ERR_FLAG
ECCCSIHNTMC| SpiECCSelfTest \W SET_TMC_BITS
SET_TEST_DISABLE
ECCCSIHNTRC | SpiECCSelfTest \W TRC_ERDB_INITIALIZE
ECCCSIHNTED | SpiECCSelfTest R/W RAM_INITIALIZE,
ALL_ZERO_PATTERN,
ALL_ONE_PATTERN,
TWO_BIT_PATTERN
CSIHNRXOH |- R -
CSIHNMCTL1 | SpiMemoryModeSelection w SPI_CTL_32BIT_REG_VAL
CSIHNMCTL2 | SpiMemoryModeSelection w SPI_CTL_32BIT_REG_VAL
CSIHNMRWPO | - RW LunDataAccess1.ulRegData
Spi_Delnit CSIHNnCTLO [SpiMemoryModeSelection W SPI_ZERO
CSIHNCTL1 - \W SPI_ZERO
CSIHNCTL2 - \W SPI_CTL2_16BIT_REG_DEI
NIT
CSIHNMCTLO - w SPI_MCTLO_16BIT_REG_D
EINIT
CSIHNMCTL1 - w SPI_CTL_32BIT_REG_MAS
K
CSIHNMCTL2 |- SPI_CTL_32BIT_REG_MAS
K
CSIHNSTCRO - SPI_CTL_16BIT_REG_DEIN
IT
CSIHNMRWPO | - SPI_CTL_32BIT_REG_MAS
K
CSIHNBRSy - w SPI_CTL_16BIT_REG_DEIN
IT
DSAN - W SPI_DMA_DEINIT
DDAN - W SPI_DMA_DEINIT
DCENnN - w SPI_DMA_DCEN_DISABLE
DTCTn - w SPI_DMA_DEINIT
DTFRRQCn - w SPI_DMA_DRQ_CLEAR
DCSTCn - W SPI_DMA_STR_CLEAR
DTFRRQn - R -

34

Registers Details

Chapter 6

: Config Register .
APl Name Registers Macro/Variable
9 Parameter Access
R/W/RW
DCSTn - R -
DTFRn - w SPI_DMA_DEINIT
CSIHNCFGx w SPI_CTL_32BIT_REG_VAL
IMRn SpiHwUnitSelection w Spi_GstHWUnitInfo[LddHWU
and nit].usRxImrMask,
SpiMemoryModeSelection Spi_GstHWUnitInfo[LddHWU
nit].pTxImrAddress,
Spi_GstHWUnitInfo[LddHWU
nit].pErrorimrAddress,
Spi_GstHWUnitInfo[LddHWU
nit].usRxImrMask,
Spi_GstHWUnitinfo[LddHWU
nit].pTxImrAddress,
LpHW UnitInfo-
>usTxCancellmrMask,
Spi_GstHWUnitInfo[LddHWU
nit].pErrorimrAddress
ICRn - SPI_CLR_INT_REQ
CSIHNSTRO - R -
Spi_WritelB CSIHMCTLO SpiMemoryModeSelection w LusMctIData
SPI_TX_ONLY_MODE_SET
SPI_DUAL_BUFFER_MOD
E_SET
CSIHhnMRWPO | - RW LunDataAccessl.ulRegData
CSIHNTX0OW - \W LunDataAccessl.ulRegData
Spi_AsyncTransmit CSIHNMCTLO | - w LpJobConfig->usMCtlOValue
CSIHNCTLO SpiMemoryModeSelection w SPI_RESET_PWR
w SPI_SET_DIRECT_ACCES
S
SPI_SET_MEMORY_ACCE
SS
CSIHNSTCRO | - w SPI_CLR_STS_FLAGS
CSIHNSTRO - R -
CSIHNnCTL1 SpiCslnactiveAfterLastDat w LunDataAccessl.ulRegData
a, SpiDataWidth LpJobConfig-
>ulMainCtl1Value
SPI_SET_SLIT
DCSTCn - W SPI_DMA_STR_CLEAR
DCSTn - R -
DCENn - W SPI_DMA_DCEN_DISABLE
DTCTn - W SPI_DMA_FIXED_TX_SETT

INGS
SPI_DMA_INV_TX_SETTIN
GS

LddNoOfBuffers
SPI_DMA_STR_REQ
SPI_DMA_ONCE
SPI_DMA_FIXED_RX_SET
TINGS

35

Chapter 6

Registers Details

; Config Register :
APl Name Registers Macro/Variable
e Parameter Access
R/W/RW
DSANn - w (uint32)LpTxData
DTFRn - w (uint32)SPI_ZERO
(uint32)(LpDmaConfig->
usDmabDtfrRegValue
DCSTSn - w SPI_DMA_STR
DTCn - w SPI_ONE
DTFRRQCn - w SPI_DMA_DRQ_CLEAR
DDAN - w (uint32)(&Spi_GddDmaRxD
ata)
CSIHNCTL2 SpiBaudrateRegisterSelect LpJobConfig->usCtl2Value
CSIHNMCTL2 | - LunDataAccessl.ulRegData
CSIHNTX0W - w LunDataAccessl.ulRegData,
LunDataAccess2.ulRegData,
LoDataAccess->ulReagData
CSIHNTXO0H - w LddData,
LunDataAccess2.usRegDatal
5[SPI_ZEROQ]
CSIHNCFGx [SpiCsldleTiming, w LunDataAccess1.ulRegData
SpiCsHoldTiming,
SpiCsinterDataDelay,
SpiCsSetupTime,
SpiCsldleEnforcement
CSIHNBRSy SpiBaudrateConfiguration w Csih_BaseAddress[LddHWU
nit]->BRSy
IMRn SpiHwUnitSelection Spi_GstHW Unitinfo[LddHWU
and nit].ulRxImrMask,
SpiMemoryModeSelection Spi_GstHWUnitInfo[LddHWU
nit].ulTxImrMask,
Spi_GstHWUnitInfo[LddHWU
nit].ulErrorimrMask,
Spi_GstHWUnitInfo[LddHWU
nit].ulTxCancellmrMask
ICRn - W SPI_CLR_INT_REQ
DTFRRQnN - R -
CSIHNRX0H - R -
CSIHNRXOW |- R j
Spi_ReadIB CSIHNRX0OW - w LunDataAccess2.ulRegData
CSIHNRX0H - W LunDataAccess2.usRegDatal
5[SPI_ONE],
LunDataAccess2.usRegData
5[SPI_ZEROQ]
CSIHhnMRWPO | - RW LunDataAccessl.ulRegData
Spi_SetupEB - - - -
Spi_GetStatus - - - -
Spi_GetJobResult - - - -
Spi_GetSequenceRes| - - - -
ult
Spi_SyncTransmit CSIHNMCTLO | - w LpJobConfig->usMCtl0Value

36

Registers Details

Chapter 6

: Config Register .
APl Name Registers Macro/Variable
9 Parameter Access
R/W/RW
CSIHNCTLO - w SPI_RESET_PWR
w SPI_SET_DIRECT_ACCES
S
SPI_SET_PWR
SPI_ZERO
CSIHNRX0H - RW LunDataAccess3.ulRegData,
Spi_GusSynDataAccess
CSIHNSTRO - R -
CSIHNSTCRO | - w SPI_DCE_ERR_CLR,
SPI_PE_ERR_CLR,
SPI_OFE_ERR_CLR
CSIHNCTL1 SpiCslnactiveAfterLastDat w LunDataAccessl.ulRegData,
a, SpiDataWidth (LpMainOsBaseAddr-
>ulMainCTL1 |
~SPI_CSRI_AND_MASK
CSIHNCTL2 SpiBaudrateRegisterSelect w LunDataAccessl.ulRegData,
LpJobConfig->usCtl2Value
CSIHNTX0W - LpJobConfig->usCtl2Value,
LunDataAccess3.ulRegData
CSIHNBRSy SpiBaudrateConfiguration w Csih_BaseAddress[LddHWU
nit]->BRSy , LpJobConfig-
>usCtl2Value &
SPI_CSIH_BRS_MASK
ICRn - SPI_CLR_INT_REQ
CSIHNCFGx [SpiCsldleTiming, LunDataAccess1.ulRegData
SpiCsHoldTiming,
SpiCslinterDataDelay,
SpiCsSetupTime,
SpiCsldleEnforcement
Spi_GetHWUnitStatus| CSIHnNSTRO - R -
Spi_Cancel CSIHNCTLO - R/W SPI_SET_JOBE
IMRN - w Spi_GstHWUnitInfo[LddHW
Unit].ulTxCancellmrMask
ICRn - SPI_CLR_INT_REQ
Spi_SetAsyncMode |IMRn SpiHwUnitSelection Spi_GstHWUnitinfo[LddHWU
and nit].ulRxImrMask,
SpiMemoryModeSelection Spi_GstHWUnitInfo[LddHWU
nit].ulTxImrMask,
Spi_GstHWUnitInfo[LddHWU
nit].ulErrorimrMask,
Spi_GstHWUnitInfo[LddHWU
nit].ulTxCancellmrMask
ICRn - w SPI_CLR_INT_REQ
Spi_MainFunction_Ha| CSIHnCTLO - W SPI_SET_PWR
ndling
CSIHNRX0H - R -
CSIHNTX0OW - w LunDataAccessl.ulRegData
CSIHNTX0H - w LddData

LunDataAccess2.usRegData
5[0]

37

Chapter 6

Registers Details

; Config Register :
APl Name Registers Macro/Variable
9 Parameter Access
R/W/RW
CSIHNRX0W - R -
CSIHNMCTL2 | SpiMemoryModeSelection LunDataAccessl.ulRegData
ICRN - w SPI_CLR_INT_REQ
DCSTCn - w SPI_DMA_STR_CLEAR
DCSTn - R -
DCENnN - w SPI_DMA _DCEN_DISABLE
SPI_DMA_DCEN_ENABLE
DTCTn - w SPI_DMA_FIXED_TX_SETT
INGS
DSAn - \W (uint32)LpTxData
DTFRn - w (uint32)SPI_ZERO
(uint32)(LpDmacConfig->
usDmabDtfrRegValue
DCSTSn - w SPI_DMA_STR
DTCn - w SPI_ONE
DTFRRQCn - w SPI_DMA_DRQ_CLEAR
DDAN - w (uint32)(&Spi_GddDmaRxD
ata)
CSIHNSTCRO | - w SPI_CLR_STS_FLAGS
CSIHNSTRO - R -
CSIHNCTL1 SpiCslnactiveAfterLastDat LunDataAccessl.ulRegData
a, SpiDatawidth LpJobConfig-
>ulMainCtl1Value
SPI_SET_SLIT
CSIHNCTL2 SpiBaudrateRegisterSelect w LpJobConfig->usCtl2Value
IMRN SpiHwUnitSelection Spi_GstHWUnitInfo[LddHWU
and nit].ulRxImrMask,
SpiMemoryModeSelection Spi_GstHWUnitinfo[LddHWU
nit].ulTxImrMask,
Spi_GstHWUnitInfo[LddHWU
nit].ulErrorimrMask,
Spi_GstHWUnitInfo[LddHWU
nit].ulTxCancellmrMask
CSIHNCFGx [SpiCsldleTiming, w LunDataAccess1.ulRegData
SpiCsHoldTiming,
SpiCsinterDataDelay,
SpiCsSetupTime,
SpiCsldleEnforcement
CSIHNBRSYy SpiBaudrateConfiguration w Csih_BaseAddress[LddHWU
nit]->BRSy
CSIHNMCTLO | - w LpJobConfig->usMCtlOValue
DTFRRQN - R -
Spi_GetVersioninfo |- - - -
Spi_GetErrorinfo - - - -
Spi_SelfTest CSIHNRX0OH - R -

38

Registers Details

Chapter 6

APl Name

Registers

Config

Parameter

Register
Access
R/W/RW

Macro/Variable

CSIHNCTLO

SpiLoopBackSelfTest

w

SPI_SET_DIRECT_ACCES
S

SPI_ZERO

CSIHNCTL1

SpiLoopBackSelfTest

SPI_LOOPBACK_ENABLE
SPI_ZERO SPI_SET_SLIT
LunDataAccessl.ulRegData

CSIHNCTL2

SpiLoopBackSelfTest

SPI_LOOPBACK_CSIH_CN
TRL2_VALUE

SPI_ZERO
((LpJobConfig->usCtl2Value)
& SPI_CSIH_PRE_MASK)

CSIHNSTCRO

SpiLoopBackSelfTest

SPI_CSIH_CLR_STS_FLAG
S

SPI_PE_ERR_CLR
SPI_ZERO

CSIHNCFGx

SpiLoopBackSelfTest

SPI_LOOPBACK_DLS_SET
TING SPI_ZERO
LunDataAccessl.ulRegData

CSIHNBRSy

SpiLoopBackSelfTest

SPI_LOOPBACK_CSIH_BR
S0_VALUE

SPI_ZERO
((LpJobConfigCSConfig-
>usCtl2Value) &
SPI_CSIH_BRS_MASK)

CSIHNTX0W

SpiLoopBackSelfTest

SPI_LOOPBACK_DATA
SPI_ZERO

CSIHNSTRO

SpiLoopBackSelfTest

ECCCSIHNCTL

SpiECCSelfTest

R/W

SET_EC1EDIC_EC2EDIC
ECC_CTL_ECEMF_SET
ECC_CTL_ECERIF_ECER
2F CLEAR
CTL_ERRCLR_FLAG
CTL_2BIT_ERRCLR_FLAG
CTL_1BIT_ERR_FLAG

ECCCSIHNTMC

SpiECCSelfTest

SET_TMC_BITS
SET_TEST_DISABLE

ECCCSIHNTRC

SpiECCSelfTest

TRC_ERDB_INITIALIZE

ECCCSIHNTED

SpiECCSelfTest

R/W

RAM_INITIALIZE,
ALL_ZERO_PATTERN,
ALL_ONE_PATTERN,
TWO_BIT_PATTERN

IMRNn

SpiHwUnitSelection

and

SpiLoopBackSelfTest

Spi_GstHWUnitInfo[LddHWU
nit].usRxImrMask,
Spi_GstHWUnitInfo[LddHWU
nit].pTxImrAddress,
Spi_GstHWUnitInfo[LddHWU
nit].pErrorimrAddress,
Spi_GstHWUnitInfo[LddHWU
nit].usRxImrMask,

LpHW UnitInfo-
>usTxCancellmrMask

ICRnN

SPI_CLR_INT_REQ

39

Chapter 6

Registers Details

; Config Register :
API Nam Register Macr riabl
ame egisters Parameter Y acro/Variable
R/W/RW
CSIHNMCTLO | SpiMemoryModeSelection W LpJobConfig->usMCtlOValue

40

Interaction Between The User And SPI Driver Component Chapter 7

Chapter 7 Interaction Between The User And SPI
Driver Component

The details of the services supported by the SPI Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

7.1. Services Provided By SPI Driver Component To The User

The SPI Driver Component provides the following functions to upper layer:

* To provide the required mechanism to configure the on-chip SPI peripheral
* Tonitialize and de-initialize the SPI driver

* Toread and write to devices connected through SPI buses

* To provide the transmission of data on the SPI bus both synchronously and
asynchronously

* To cancel an ongoing transmission

* To set the asynchronous transfer mode

* To get the status of the SPI Driver and hardware unit

* To get the result of the specified job and specified sequence

* To provide access to SPI communication to several users(for example,
EEPROM, I/O ASICs)

* To read the SPI Driver Component version information.

41

Chapter 7

Interaction Between The User And SPI Driver Component

42

SPI Driver Component Header And Source File Description Chapter 8

Chapter 8 SPI Driver Component Header And
Source File Description

This section explains the SPI Driver Component’s source and header files.
These files have to be included in the project application while integrating with
other modules.

The C header file generated by SPI Driver Generation Tool:

* Spi_Cfg.h
* Spi_Cbk.h
e Spi_Hardware.h

The C source file generated by SPI Driver Generation Tool:

* Spi_PBcfg.c
* Spi_Lcfg.c
* Spi_Hardware.c

The SPI Driver Component C header files:

Spi_Driver.h
Spi_PBTypes.h
Spi_LTTypes.h
Spi_Ram.h
Spi.h

Spi_Irg.h
Spi_Scheduler.h
Spi_Version.h
Spi_Types.h
Spi_RegWrite.h

The SPI Driver Component C source files:

Spi_Driver.c
Spi.c

Spi_lrg.c
Spi_Ram.c
Spi_Scheduler.c
Spi_Version.c

The Stub C header files:

Compiler.h
Compiler_Cfg.h
MemMap.h
Platform_Types.h
rh850 Types.h
Det.h

Rte.h

SchM.h
SchM_Spi.h
Dem.h
Dem_cfg.h

The description of the SPI Driver Component files is provided in the table
below:

43

Chapter 8

SPI Driver Component Header And Source File Description

44

Table 8-1 Description Of The SPI Driver Component Files

File

Details

Spi_Cfg.h

This file is generated by the SPI Driver Component Code Generation Tool for
various SPI Driver component pre-compile time parameters. This file contains
macro definitions for the configuration elements and exclusive areas for data
protection. The macros and the parameters generated will vary with respect to the
configuration in the input XML file.

Spi_Cbk.h

This file is generated by the SPI Driver Component Code Generation Tool for
provision of function prototype Declarations for SPI callback Notification

Spi_Hardware.h

This file contains the #define macros for the hardware registers to be used by the
driver.

Spi_PBcfg.c This file contains post-build configuration data. The structures related to channel
configuration, job configuration and sequence configuration are provided in this
file. Data structures will vary with respect to parameters configured.

Spi_Lcfg.c This file contains provision of SPI Link time Parameters. The structures related to

hardware registers are provided in this file. Data structures will vary with respect
to parameters configured.

Spi_Hardware.c

This file contains the reference objects for the structures of hardware register which
is defined in device header file.

Spi_Driver.h

This file contains the Function Prototypes that are defined in Spi_Driver.c file.

Spi_PBTypes.h

This file contains the data structure definitions of the channel configuration,
job configuration and sequence configuration

Spi_LTTypes.h

This file contains the data structure definitions of CSIH hardware registers, Interrupt
control registers, DMA hardware registers, Hardware unit information, DMA unit
information, storing current status of SPI communication, channel for the link time
parameters, function pointer for Callback notification function for Jobs, processing
sequence, storing external buffer attributes, Scheduler and DMA Address.

Spi_Ram.h This file contains the extern declarations for the global variables that are defined in
Spi_Ram.c file and the version information of the file.

Spi.h This file provides extern declarations for all the SPI Driver Component APIs. This
file provides service Ids of APIs, DET Error codes and type definitions for SPI
Driver initialization structure. This header file shall be included in other modules to
use the features of SPI Driver Component.

Spi_Irg.h This file contains the function prototypes that are defined in Spi_Irg.c file.

Spi_Scheduler.h This file contains the function prototypes that are defined in Spi_Scheduler.c file.

Spi_Types.h This file contains the common macro definitions and the data types required
internally by the SPI software component.

Spi_Version.h This file contains the definitions of AUTOSAR version numbers of all modules
that are interfaced to SPI Driver.

Spi_Driver.c This file contains the SPI Low Level Driver code.

Spi.c This file contains the implementation of all APIs.

Spi_Irg.c This file contains the ISR functions for SPI Driver Component.

Spi_Ram.c This file contains the global variables used by SPI Driver Component.

Spi_Scheduler.c

This file contains the SPI Scheduler code. This contains function to schedule
the sequences according to the priority of the jobs.

Spi_Version.c

This file contains the code for checking version of all modules that are interfaced to
SPI Driver.

Compiler.h

This file Provides compiler specific (hon-ANSI) keywords. All mappings of keywords,
which are not standardized, and/or compiler specific are placed and organized in this
compiler specific header.

SPI Driver Component Header And Source File Description

Chapter 8

File

Details

Compiler_Cfg.h

This file contains the memory and pointer classes.

MemMap.h

This file allows to map variables, constants and code of modules to individual
memory sections. Memory mapping can be modified as per ECU specific

Platform_Types.h

This file provides provision for defining platform and compiler dependent types.

Spi_RegWrite.h

This file contains macro for register write verify check.

rh850_Types.h

This file provides macros to perform supervisor mode (SV) write enabled Register
ICxxx and IMR register writing using OR/AND/Direct operation.

Det.h This file is a stub for DET Component.

Rte.h This file is a stub for Rte Component.

SchM.h This file is a stub for Schm Component.
SchM_Spi.h Header file information for Schm application.
Dem.h This file is a stub for DEM component.
Dem_cfg.h This file contains the stub values for Dem_Cfg.h.

45

Chapter 8

SPI Driver Component Header And Source File Description

46

Generation Tool Guide

Chapter 9

Chapter 9

Generation Tool Guide

For information on the SPI Driver Component Code Generation Tool, please
refer “R20UT3660EJ0100-AUTOSAR.pdf” document.

47

Chapter 9 Generation Tool Guide

48

Application Programming Interface Chapter 10

Chapter 10 Application Programming Interface

This section explains the Data types and APIs provided by the SPI Driver
Component to the Upper layers.

10.1. Imported Types

This section explains the Data types imported by the SPI Driver Component
and lists its dependency on other modules.

10.1.1. Standard Types

In this section all types included from the Std_Types.h are listed:
* Std_ReturnType
* Std_VersioninfoType

10.1.2. Other Module Types

In this chapter all types included from the Dem_types.h are listed:
« Dem_EventldType
« Dem_EventStatusType

10.2. Type Definitions

This section explains the type definitions of SPI Driver Component according
to AUTOSAR Specification.

10.2.1. Spi_ConfigType

Name: Spi_ConfigType

Type: Structure

Range: Implementation Specific The contents of the initialization
data structure are SPI specific

This type of the external data structure shall contain the initialization data for the SPI

LTI EUE driver/Handler
10.2.2. Spi_StatusType
Name: Spi_StatusType
Type: Enumeration
SPI_UNINIT The SPI Handler/Driver is not initialized or
not usable
SPI_IDLE The SPI Handler/Driver is not
Range: - .
currently transmitting any job
SPI_BUSY The SPI Handler/Driver is performing a SPI
job(transmit)
Description: This type defines a range of specific status for SPI Handler/driver

49

Chapter 10 Application Programming Interface
10.2.3. Spi_JobResultType
Name: Spi_JobResultType
Type: Enumeration
SPI_JOB_OK The last transmission of the job has
been finished successfully
RO SPI_JOB_PENDING The SPI Handler/Driver is performing a
t= SPI1 Job. The meaning of this status is
equal to SPI_BUSY
SPI_JOB_FAILED The last transmission of the job has failed
Description: This type defines a range of specific jobs status for SPI Handler/driver
10.2.4. Spi_SeqResultType
Name: Spi_SeqResultType
Type: Enumeration
SPI_SEQ_OK The last transmission of the Sequence
has been finished successfully
SPI_SEQ_PENDING The SPI Handler/Driver is performing a SPI
Sequence The meaning of this status is
Range: equal to SPI_BUSY
SPI_SEQ_FAILED The last transmission of the Sequence
has failed
SPI_SEQ_CANCELLED The last transmission of the Sequence
has been cancelled by user.
Description: This type defines a range of specific sequences status for SPI Handler/driver
10.2.5. Spi_DataType
Name: Spi_DataType
Type: uint8,uint16,uint32
0 to 255, 0 to 65535, This is implementation specific but not all
0 to 4294967296. values may be valid within the type This type
Range: shall be chosen in order to have the most
efficient implementation on a specific
microcontroller platform
Description: Type of application data buffer elements
10.2.6. Spi_NumberOfDataType
Name: Spi_NumberOfDataType
Type: uintl6
Range: 0 to 65535
Description: Type for defining the number of data elements of the type Spi_DataType to send

and/or receive by channel

Application Programming Interface Chapter 10
10.2.7. Spi_ChannelType
Name: Spi_ChannelType
Type: uint8
Range: 0 to 255
Description: Specifies the identification(ldld) for a channel
10.2.8. Spi_JobType
Name: Spi_JobType
Type: uintl6
Range: 0 to 65535
Description: Specifies the identification(ld) for a Job
10.2.9. Spi_SequenceType
Name: Spi_SequenceType
Type: uint8
Range: 0 to 255
Description: Specifies the identification(ld) for a sequence of Jobs
10.2.10. Spi_HWUnIitType
Name: Spi_ HWUnitType
Type: uint8
Range: 0 to 255
Description: Specifies the identification(ld) for a SPI Hardware microcontroller peripheral(unit)
10.2.11. Spi_AsyncModeType
Name: Spi_AsyncModeType
Type: Enumeration
SPI_POLLING_MODE The asynchronous mechanism is ensured
by polling, so interrupts related to SPI
Range: busses handled asynchronously are
SPI_INTERRUPT_MODE Streaming access mode
Descriotion: Specifies the asynchronous mechanism mode for SPI busses handled
P ’ asynchronously in LEVEL2.

51

Chapter 10

Application Programming Interface

Following are the internal type definitions used by the SPI Driver module.

10.2.12. Spi_CommErrorType

52

Name: Spi_CommErrorType
Type: Structure
Type Name Explanation
Spi_HWErrorsType ErrorType This is the type of the
hardware error.
Spi_HWUnitType HwUnit This is the hardware
unit in which error is
reported.
Spi_SequenceType SeqID This is the sequence
Element: id for which error is
reported.
Spi_JobType JobID This is the job id for
which error is
Description: This type is used to provide the details regarding the type of hardware errors, hardware
unit, sequence and job in which the errors were reported.
10.2.13. Spi_HWETrrorsType
Name: Spi_HWErrorsType
Type: Enumeration
SPI_NO_ERROR No hardware error has occured.
SPI_OVERRUN_ERROR Over Run Error has occured.
SPI_PARITY_ERROR Parity Error has occured.
SPI_DATA_CONSISTENCY_ERROR| Data Consistency Error has occured
Range: SPI_OVERFLOW_ERROR Over Flow Error has occured
SPI_ECC_1BIT_ERROR 1 Bit ECC Error has occured
Description: This type defines different types of hardware errors in SPI driver.
10.2.14. Spi_SelfTestType
Name: Spi_SelfTestType
Type: uint8
Range: 0 to 255
Description: Specifies the type for self-test functionality.
10.2.15. Spi_ReturnStatus
Name: Spi_ReturnStatus
Type: Enumeration
SPI_SELFTEST_INVALID_MODE When invalid argument other than
Range: LoopBack_Init/ LoopBack_Init_RunTime/
g€ ECC_Init_RunTime/ ECC_Init are
SPI_SELFTEST_DRIVERBUSY When SelfTest APl is invoked during any
active transmission, i.e when driver is busy.
Range: SPI_SELFTEST_PASS SelfTest functionality is successful.
SPI_SELFTEST_FAILED SelfTest functionality is failed.
Description: This type defines the return status of the self-test functionality.

Application Programming Interface

Chapter 10

10.3. Function Definitions

Table 10-1

The APIs provided by the SPI Driver Component

SI.No

API’s

API’s specific

Spi_Init

Spi_Delnit

Spi_WritelB

Spi_AsyncTransmit

Spi_ReadIB

Spi_SetupEB

Spi_GetStatus

Spi_GetJobResult

Ol N|lO|O| | W[N] P

Spi_GetSequenceResult

=
o

Spi_GetVersioninfo

[EEY
[

Spi_SyncTransmit

[EnY
N

Spi_Cancel

IRy
w

Spi_SetAsyncMode

[y
N

Spi_MainFuncnction_Handling

=
(6]

Spi_GetHWUnitStatus

IRy
»

Spi_GetErrorinfo

[EE
~

Spi_SelfTest

53

Chapter 10

Application Programming Interface

54

Development And Production Errors

Chapter 11

Chapter 11

11.1.

Development And Production Errors

In this section the development errors that are reported by the SPI Driver
Component are tabulated. The development errors will be reported only when
the pre compiler option SpiDevErrorDetect is enabled in the configuration.
The production code errors are not supported by SPI Driver Component.

SPI Driver Component Development Errors

The following table contains the DET errors that are reported by SPI Driver
Component. These errors are reported to Development Error Tracer Module
when the SPI Driver Component APIs are invoked with wrong input
parameters or without initialization of the driver.

Table 11-1 DET Errors Of SPI Driver Component
Sl. No. 1
Error Code SPI_E_PARAM_CHANNEL

Related API(s)

Spi_WritelB, SpiReadIB and Spi_SetupEB

Source of Error

When the API service is invoked with invalid channel Id and if incorrect type of
channel
(IB or EB) is used with services.

Sl. No.

2

Error Code

SPI_E_PARAM_JOB

Related API(s)

Spi_GetJobResult

Source of Error

When the API service is invoked with invalid job Id.

Sl. No.

3

Error Code

SPI_E_PARAM_SEQ

Related API(s)

Spi_AsyncTransmit, Spi_GetSequenceResult, Spi_SyncTransmit and Spi_Cancel.

Source of Error

When the API service is invoked with invalid sequence Id.

Sl. No. 4
Error Code SPI_E_PARAM_LENGTH
Related API(s) Spi_SetupEB

Source of Error

When the API service is invoked with length greater than the configured length.

SI. No.

5

Error Code

SPI_E_PARAM_UNIT

Related API(s)

Spi_GetHWUnitStatus

Source of Error

When the API service is invoked with invalid hardware unit Id.

Sl. No.

6

Error Code

SPI_E_SEQ_PENDING

Related API(s)

Spi_AsyncTransmit

Source of Error

When the API service is invoked in a wrong sequence.

Sl. No.

7

Error Code

SPI_E_SEQ_IN_PROCESS

Related API(s)

Spi_SyncTransmit, Spi_SelfTest

Source of Error

When the API service is invoked at wrong time.

55

Chapter 11 Development And Production Errors
SI. No. 8
Error Code SPI_E_ALREADY_INITIALIZED
Related API(s) Spi_Init

Source of Error

When the API Spi_lInit is invoked when the SPI driver is already initialized.

Sl. No.

9

Error Code

SPI_E_INVALID_DATABASE

Related API(s)

Spi_Init

Source of Error

When the API service is invoked with invalid pointer.

SI. No.

10

Error Code

SPI_E_UNINIT

Related API(s)

Spi_Delnit, Spi_AsyncTransmit, Spi_Cancel, Spi_GetStatus,
Spi_GetHWUnitStatus, Spi_GetJobResult, Spi_GetSequenceResult, Spi_WritelB,
Spi_ReadIB, Spi_SetupEB, Spi_SyncTransmit, Spi_SetAsyncMode,
Spi_MainFunction_Handling and Spi_GetErrorinfo.

Source of Error

When the APIs are invoked without the initialization of SPI Driver Component.

SI. No.

11

Error Code

SPI_E_PARAM_POINTER

Related API(s)

Spi_ReadIB and Spi_GetVersionlInfo.

Source of Error

When the API service is invoked with null pointer.
Note: This error code (SPI_E_PARAM_POINTER) is applicable for Autosar R4.0

only.
SI. No. 12
Error Code SPI_E_PARAM_CONFIG
Related API(s) Spi_Init

Source of Error

When the API invoked with null config pointer.

Sl. No.

13

Error Code

SPI_E_MAINFUNCTION_HANDLING_INVALIDMODE

Related API(s)

Spi_MainFunction_Handling

Source of Error

When the API invoked in SPI_INTERRUPT_MODE.

56

11.2.

SPI Driver Component Production Errors

In this section the DEM errors identified in the SPI Driver Component are
listed. SPI Driver Component reports these errors to DEM by invoking

Dem_ReportErrorStatus API. This APl is invoked, when the processing of the

given API request fails.

Development And Production Errors

Chapter 11

Table 11-2 DEM Errors Of SPI Driver Component
Sl. No. 1
Error Code SPI_E_HARDWARE_ERROR

Related API(s)

Spi_Init, Spi_SyncTransmit, Spi_MainFunction_Handling and Spi_SelfTest.

Source of Error

When an overrun occurs when the next reception starts without performing a CPU
read of the value of the receive buffer, upon completion of the receive operation.

Sl. No.

2

Error Code

SPI_E_DATA_TX_TIMEOUT_FAILURE

Related API(s)

Spi_SyncTransmit, Spi_Init and Spi_SelfTest.

Source of Error

When Hardware data transmit timeout error is detected, This error will be reported to
DEM

Sl. No.

3

Error Code

SPI_E_INT_INCONSISTENT

Related API(s)

All ISRs

Source of Error

DemEventParameter which shall be issued when Interrupt consistency error was
detected.

Sl. No.

4

Error Code

SPI_E_ECC_SELFTEST_FAILURE

Related API(s)

Spi_Init and Spi_SelfTest

Source of Error

DemEventParameter which shall be issued when Ecc selft test error was detected.

Sl. No.

5

Error Code

SPI_E_LOOPBACK_SELFTEST_FAILURE

Related API(s)

Spi_Init and Spi_SelfTest

Source of Error

DemEventParameter which shall be issued when loop back self-test error was
detected.

Sl. No.

6

Error Code

SPI_E_REG_WRITE_VERIFY

Related API(s)

All APIs accessing the registers

Source of Error

DemEventParameter which shall be issued when loop back self-test error was
detected.

57

Chapter 11

Development And Production Errors

58

Mem

ory Organization

Chapter 12

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be met

for proper functioning of SPI Driver Component software.

| ROM Section |

_______ .

SPI Driver Component Library /
Object Files

| RAM Section |

SPI Driver code related to APIs are placed in this
memory.

Segment Name:
SPI_PUBLIC_CODE_ROM

T

X1

SPI Driver code r elated to internal functions are
placed in this memory

Segment Name:
SPI_PRIVATE_CODE_ROM

SPI Driver code related to ISR functions
are placed in this memory

Global RAM of unspecific size required for SPI
Driver functioning.

Segment Name:
NOINIT_RAM_UNSPECIFIED

Global RAM of unspecific size initialized by
Start-Up code.

Segment Name:
RAM UNSPECIFIED

Global 1-bit RAM initialized by SPI Driver.

Segment Name:
NOINIT_RAM_1BIT

Segment Name:

SPI_FAST_CODE_ROM
e o o s s o s o o o o S S i S —
—_————————

Tool Generated Files

The const section (for SPI configuration
Structure) in the file Spi_PBcfg.c is placed in
this memory.

Segment Name:
SPI_CFG_DATA_UNSPECIFIED

The const section in the file Spi_Lcfg.c is placed in
this memory.

Segment Name:

CONST_ROM_UNSPECIFIED

X4

«— x —> —

Global 8-bit RAM initialized by SPI Driver.

Segment Name:
NOINIT_RAM_8BIT

Global 16 -bit RAM initialized by SPI Driver.

Segment Name:
NOINIT_RAM_16 BIT

Global RAM of unspecific size required for SPI Driver
functioning. The Generation tool

allocates this RAM.

Segment Name:
SPI_CFG_RAM_UNSPECIFIED

Figure 12-1 SPI Driver Component Driver Organization

59

Chapter 12

Memory Organization

60

ROM Section (X1, X2, X3, X4, X3 and X0);

SPI_PUBLIC_CODE_ROM (X1): API(s) of SPI Driver Component, which can
be located in code memory.

SPI_PRIVATE_CODE_ROM (X2): Internal functions of SPI Driver
Component code that can be located in code memory.

SPI_FAST_CODE_ROM(X3): SPI Driver code related to ISR
functions are placed in this memory Segment Name.

SPI_CFG_DATA_UNSPECIFIED (X4): This section consists of SPI
Driver Component constant configuration structures. This can be located
in code memory.

CONST_ROM_UNSPECIFIED (X5): This section consists of SPI Driver
Component constant structures used for function pointers in SPI Driver
Component. This can be located in code memory.

RAM Section (Y1, Y2, Y3, Y4, Y5 and YO):

NOINIT_RAM_UNSPECIFIED (Y1): This section consists of the global RAM
variables that are used internally by SPI Driver Component. This can be
located in data memory.

RAM_UNSPECIFIED (Y2): This section consists of the global RAM variables
of 1-bit size that are initialized by start-up code and used internally by SPI
Driver Component. This can be located in data memory.

NOINIT_RAM_1BIT (Y3): This section consists of the global RAM variables of
1-bit size that are used internally by SPI Driver Component. The specific
sections of respective software components will be merged into this RAM
section accordingly.

NOINIT_RAM_8BIT (Y4): This section consists of the global RAM variables of
8-bit size that are used internally by SPI Driver Component. This can be
located in data memory.

NOINIT_RAM_16BIT (Y5): This section consists of the global RAM variables
of 16-bit size that are used internally by SPI Driver Component. This can be
located in data memory.

SPI_CFG_RAM_UNSPECIFIED (Y6): This section consists of the global
RAM variables that are generated by SPI Driver Component Generation Tool.
This can be located in data memory.

Remark

o X1, X2, Y1, Y2, Y3, Y4, Y5, Y6 pertain to only SPI Driver Component
and do not include memory occupied by Spi_PBcfg.c or Spi_Lcfg.c file
generated by SPI Driver Component Generation Tool.

e User must ensure that none of the memory areas overlap with each
other. Even ‘debug’ information should not overlap.

P1x-C Specific Information Chapter 13

Chapter 13 P1x-C Specific Information

P1X-C supports following devices:

e R7F701370A(CPU1(PE1)), R7F701371(CPU1(PEL)),
R7F701372(CPU1(PE1)), R7F701373, R7F701374.

13.1. Interaction Between The User And SPI Driver
Component

The details of the services supported by the SPI Driver Component to
the upper layers users and the mapping of the channels to the
hardware units is provided in the following sections:

13.1.1. ISR Function
The table below provides the list of handler addresses corresponding to

the hardware unit ISR(s) in SPI Driver Component. The user should
configure the ISR functions mentioned below.

Table 13-1 Interrupt Vector Table

Interrupt Source Name of the ISR Function
INTCSIHOIRE SPI_CSIHO_TIRE_ISR
SPI_CSIHO_TIRE_CAT2_ISR
INTCSIHOIR SPI_CSIHO_TIR_ISR
SPI_CSIHO_TIR_CAT2_ISR
INTCSIHOIC SPI_CSIHO_TIC_ISR
SPI_CSIHO_TIC_CAT2_ISR
INTCSIHOIJC SPI_CSIHO_THJC_ISR
SPI_CSIHO_TIJC_CAT2_ISR
INTCSIH1IRE SPI_CSIH1_TIRE_ISR
SPI_CSIH1_TIRE_CAT2_ISR
INTCSIH1IR SPI_CSIH1_TIR_ISR
SPI_CSIH1_TIR_CAT2_ISR
INTCSIH1IC SPI_CSIH1_TIC_ISR
SPI_CSIH1_TIC_CAT2_ISR
INTCSIH1I1JC SPI_CSIH1_TIJC_ISR
SPI_CSIH1_TIJC_CAT2_ISR
INTCSIH2IRE SPI_CSIH2_TIRE_ISR
SPI_CSIH2_TIRE_CAT2_ISR
INTCSIH2IR SPI_CSIH2_TIR_ISR
SPI_CSIH2_TIR_CAT2_ISR
INTCSIH2IC SPI_CSIH2_TIC_ISR
SPI_CSIH2_TIC_CAT2_ISR
INTCSIH21JC SPI_CSIH2_TIJC_ISR
SPI_CSIH2_TIJC_CAT2_ISR
INTCSIH3IRE SPI_CSIH3_TIRE_ISR
SPI_CSIH3_TIRE_CAT2_ISR

61

Chapter 13 P1x-C Specific Information

Interrupt Source Name of the ISR Function
INTCSIH3IR SPI_CSIH3_TIR_ISR
SPI_CSIH3_TIR_CAT2_ISR
INTCSIH3IC SPI_CSIH3_TIC_ISR
SPI_CSIH3_TIC_CAT2_ISR
INTCSIH3IIC SPI_CSIH3_TIJC_ISR
SPI_CSIH3_TIJC_CAT2_ISR
INTDMAOO SPI_DMAOO_ISR
SPI_DMA0O_CAT2_ISR
INTDMAO1 SPI_DMAO1_ISR
SPI_DMAO1_CAT2_ISR
INTDMAO2 SPI_DMAO02_ISR
SPI_DMAO02_CAT2_ISR
INTDMAO3 SPI_DMAO3_ISR
SPI_DMA03_CAT2_ISR
INTDMAO4 SPI_DMAO4_ISR
SPI_DMAO4_CAT2_ISR
INTDMAOS SPI_DMAO5_ISR
SPI_DMAO5_CAT2_ISR
INTDMAOG6 SPI_DMAOG6_ISR
SPI_DMA06_CAT2_ISR
INTDMAO7 SPI_DMAO7_ISR
SPI_DMAOQO7_CAT2_ISR
INTDMAOS SPI_DMAO08_ISR
SPI_DMAO08_CAT2_ISR
INTDMAO9 SPI_DMAQ9_ISR
SPI_DMA09 CAT2_ISR
INTDMA10 SPI_DMA10_ISR
SPI_DMA10_CAT2_ISR
INTDMA11 SPI_DMA11_ISR
SPI_DMA11_CAT2_ISR
INTDMA12 SPI_DMA12_ISR
SPI_DMA12_CAT2_ISR
INTDMA13 SPI_DMA13_ISR
SPI_DMA13_CAT2_ISR
INTDMA14 SPI_DMA14_ISR
SPI_DMA14_CAT2_ISR
INTDMA15 SPI_DMA15_ISR
SPI_DMA15 CAT2_ISR

62

P1x-C Specific Information Chapter 13

13.2. Sample Application

The Sample Application is provided as reference to the user to
understand the method in which the SPI APIs can be invoked from the

application.
Generic
AUTOSAR COMPILER RH850 Types
Common SPI P1x-C SPI STUB STUB STUB
sample Sample Det Schm DEM
application application
STUB Os STUB
MCU

Figure 13-1 Overview Of SPI Driver Sample Application

13.2.1. Sample Application Structure

The Sample Application of the P1X-C is available in the path

X1X\P1x-C\modules\spi\sample_application

The Sample Application consists of the following folder structure

X1X\P1x-C\modules\spi\definition\<sAUTOSAR_version>\common\
R403_SPI_P1x-C.arxml

X1X\P1x-C
\modules\spi\sample_application\<SubVariant>\<AUTOSAR_version>
\src\Spi_Lcfg.c
\src\Spi_PBcfg.c
\src\Spi_Hardware.c
\inc\Spi_Cfg.h
\inc\Spi_Cbk.h
\inc\Spi_ Hardware.h
\config\App_SPI_P1x-C_<Device_Name>_Sample.arxml|

Note For P1x-C <Device_Name> can be 701370A, 701371, 701372,
701373, 701374.

In the Sample Application all the SPI APIs are invoked in the
following sequence:

* The API Spi_Init is invoked with a valid database address for the
proper initialization of the SPI Driver, all the SPI Driver control registers
and RAM variables will get initialized after this APl is called.

63

Chapter 13 P1x-C Specific Information

* The API Spi_GetVersioninfo is invoked to get the version of the SPI
Driver module with a variable of Std_VersioninfoType, after the call of
this API the passed parameter will get updated with the SPI Driver
version details.

* The API Spi_GetHWUnitStatus will return the status of the specified
SPI Hardware microcontroller peripheral.

* The API Spi_SyncTransmit will transmit data on the SPI bus
synchronously.

* This module will take the passed parameter and set the SPI Driver
status to SPI_BUSY. Also it sets the sequence result to
SPI_SEQ_PENDING and first job result to SPI_JOB_PENDING and
performs the transmission.

* The API Spi_SetAsyncMode will set the asynchronous mechanism
mode for SPI busses handled asynchronously.

* The API Spi_MainFunction_Driving is used for Asynchronous
transmission of the sequences in polling mode. This service is should
be invoked in a scheduler loop if the asynchronous transmission mode
is selected as SPI_POLLING_MODE.

* The API Spi_Cancel will cancel the specified on-going sequence
transmission without canceling any Job transmission and the SPI
Driver will set the sequence result to SPI_SEQ_CANCELLED.

* The API Spi_Delnit is invoked for de-initialization of the all the controls
registers and RAM variables.

« The API Spi_GetErrorinfo copies Hardware Error Details to User
Buffer.

13.2.2. Building Sample Application

13.2.2.1. Configuration Example

This section contains the typical configuration which is used for measuring
RAM/ROM consumption, stack depth and throughput details.

Configuration Details:
App_SPI_<SubVariant>_<Device_Name>_Sample.arxml.

Note For P1x-C <Device_Name> can be 701370A, 701371, 701372,
701373, 701374.

13.2.2.2. Debugging The Sample Application

Remark GNU Make utility version 3.81 or above must be installed
and available in the path as defined by the environment user variable
“GNUMAKE” to complete the build process using the delivered sample
files.

* Open a Command window and change the current working directory to
"make” directory present as mentioned in below path:
“X1X\P1x-C\common_family\make\ghs\<Compiler>”"
* Now execute the batch file SampleApp.bat with following parameters
SampleApp.bat Spi 4.0.3 <Device_name>
» After this, all the object files, map file and the executable file
App_Spi_P1x-C_Sample.out will be available in the output folder:
(“X1X\P1x-C\modules\spi\sample_application\<SubVariant>
\obj\<Compiler>")

64

P1x-C Specific Information

Chapter 13

* The executable can be loaded into the debugger and the sample
application can be executed.

Remark Executable files with “*.out’ extension can be
downloaded into the target hardware with the help of Green Hills
debugger.

» If any configuration changes (only post-build) are made to the ECU
Configuration Description files

“X1X\P1x-C\modules\spi\sample_application\<SubVariant>
\<AUTOSAR_version>\config\App_SPI_P1X-C_701372_Sample.arxml’

* The database alone can be generated by using the following
commands.
make —f App_SPI_P1x-C_Sample.mak generate_spi_config

make —f App_SPI_P1x-C_Sample.mak App_SPI_P1x-C_Sample.s37

+ After this, a flash able Motorola S-Record file App_SPI_P1x-
C_Sample.s37 is available in the output folder.

Note: The <Device_name> indicates the device to be compiled, which
can be 701370A, 701371, 701372, 701373, 701374 and <SubVariant>
can be P1H-C, P1H-CE, P1M-C.

13.3. Memory And Throughput

Typical Configuration

DET OFF
DMA disabled
All other Pre-Compile Settings ON
2 16bit SPI channels
o with external buffers
o with internal buffers
2 SPI jobs
o CSIH in direct access mode
2 external devices configured
SpiLevelDelivered configured as 2

13.3.1. ROM/RAM Usage

The details of memory usage for the typical configuration, with DET
disabled as provided in Table 13-2

Table 13-2 ROM/RAM Details Without DET

Sl. No. | ROM/RAM Segment Name Size in bytes

1 ROM DEFAULT_CODE_ROM 7782
CONST_ROM_UNSPECIFIED 456
CONST_ROM_32BIT 32

65

Chapter 13

P1x-C Specific Information

66

SI. No. | ROM/RAM Segment Name Size in bytes

2 RAM NOINIT_RAM_UNSPECIFIED 156
RAM_UNSPECIFIED 2
NOINIT_RAM_1BIT 8
NOINIT_RAM_8BIT 9
NOINIT_RAM_16BIT 22
RAM_8BIT 2

The details of memory usage for the typical configuration, with DET
enabled and all other configurations as provided in Table 13-3.

Table 13-3 ROM/RAM Details With DET

Sl. No. | ROM/RAM Segment Name Size in bytes

1 ROM DEFAULT_CODE_ROM 8856
CONST_ROM_UNSPECIFIED 456
CONST_ROM_32BIT 32

2 RAM NOINIT_RAM_UNSPECIFIED 156
RAM_UNSPECIFIED 2
NOINIT_RAM_1BIT 8
NOINIT_RAM_8BIT 9
NOINIT_RAM_16BIT 22
RAM_8BIT 2

13.3.2. Stack Depth

The worst-case stack depth for Driver Component is 188 bytes for the
typical configuration provided in Section 13.2.2.1.

13.3.3. Throughput Details

The throughput details of the APIs for the configuration mentioned in the
Section13.2.2.1 Configuration are provided in this section. The clock
frequency used to measure the throughput is 240 MHz for all APIs.

P1x-C Specific Information

Chapter 13

Table 13-4 Throughput Details Of The APIs

SI. No. | API Name ;T;?gg:fourfég Remarks

1 Spi_Init 2.137 -

2 Spi_Delnit 2.500 -

3 Spi_WritelB 0.387 -

4 Spi_AsyncTransmit 5.325 -

5 Spi_ReadIB 0. 250 -

6 Spi_SetupEB 0.200 -

7 Spi_GetStatus 0.620 -

8 Spi_GetJobResult 0. 620 -

9 Spi_GetSequenceResult 0. 620 -

10 Spi_GetVersioninfo 0.100 -

11 Spi_SyncTransmit 8.400 -

12 Spi_GetHWUnitStatus 0.187 -

13 Spi_Cancel 0.275 -

14 Spi_SetAsyncMode 1.437 SPI_POLLING_MODE

15 Spi_SetAsyncMode 0.175 SPI_INTERRUPT_ MODE

16 Spi_MainFunction_Handling 0.850 -

17 Spi_SelfTest 649.850 SPI_LOOP_BACK_SELF
| TEST

18 Spi_SelfTest 32.150 SPI_ECC_SELF_TEST

19 Spi_GetErrorinfo 0.125 -

67

Chapter 13

P1x-C Specific Information

68

Release Details

Chapter 14

Chapter 14 Release Detalils

SPI Driver Software
Version: 2.0.0

69

Chapter 14

Release Details

70

Revision History

Sl.No. | Description Version Date
1. Initial Version 1.0.0 05-Aug-2015
2 Following changes are made: 1.0.1 28-Mar-2016
1. Table 4-4 User Mode and Supervisory Mode is
updated.
2. In section 4, Information for 16 bit datawidth selection is
added when DMA is configured.
3. Table 6-1 Register details, 8bit and 32bit settings when
DMA is configured are removed.
4. In section 4.6, Information for the limitation for CS
added.
5. In section 4.2, Note about the user Configuration of
Module Short Name was added.
6. Insection 11.1, new development error
SPI_E_MAINFUNCTION_HANDLING_INVALIDMODE
is added for Spi_MainFunction_Handling API.
3 Following changes are made: 1.0.2 15-Feb-2017

1.

2.

10.
11.
12.
13.
14.
15.

16.
17.

18.

19.

Removed Section 13.2, Compiler, Linker and
Assembler.

In section 4.3, Note about entries for User mode
dependency of Critical Section added.

In section 4.5, Critical section details are updated by
adding Table 4-6.

In section 4.1, Note added regarding the DMA access
for local RAM area.

In section 12, Memory Organization is updated by
adding information about
SPI_START_SEC_CODE_FAST.

Section 6, Register access details are updated.
Updated section 13.2.1 Sample Application Structure to
add details about Spi_GetErrorinfo API.

Added Spi_GetErrorinfo API in section 11.1 under
Related API(s) corresponding to the error
SPI_E_UNINIT.

Section 3 updated R number in remarks.

Folder Structure updated in the section 3.1.1.

Table 4-4 User mode and Supervisory mode is updated.
Section 8 updated for file information.

Section 9 updated for R number.

Table 10-1 updated with API name.

Memory, Throughput and stack depth Details are
updated in section 13.3.

Release details updated in section 14.

Chapter 13, Added Processor name along with Device
variants.

Figure 12-1 SPI Driver Component Driver Organization
has been updated in Chapter 12.

Removed traces of .one and .html from the section 13.2
Sample Application.

71

AUTOSAR MCAL R4.0.3 User's Manual
SPI Driver Component Ver.1.0.2
Embedded User's Manual

Publication Date: Rev.1.00, Feb 15, 2017

Published by: Renesas Electronics Corporation

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany

Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China

Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HAL Il Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2006-2017 Renesas Electronics Corporation. All rights reserved.

Colophon 4.1

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3

User's Manual

ENESANAS

Renesas Electronics Corporation

R20UT3659EJ0100

	Chapter 1 Introduction
	1.1. Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration And Build Process
	3.1. SPI Driver Component Makefile

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. User Mode and Supervisor Mode
	4.4. Memory modes
	4.5. Data Consistency
	4.6. Deviation List

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction Between The User And SPI Driver Component
	7.1. Services Provided By SPI Driver Component To The User

	Chapter 8 SPI Driver Component Header And Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1. Imported Types
	10.1.1. Standard Types
	10.1.2. Other Module Types

	10.2. Type Definitions
	10.2.1. Spi_ConfigType
	10.2.2. Spi_StatusType
	10.2.3. Spi_JobResultType
	10.2.4. Spi_SeqResultType
	10.2.5. Spi_DataType
	10.2.6. Spi_NumberOfDataType
	10.2.7. Spi_ChannelType
	10.2.8. Spi_JobType
	10.2.9. Spi_SequenceType
	10.2.10. Spi_HWUnitType
	10.2.11. Spi_AsyncModeType
	10.2.12. Spi_CommErrorType
	10.2.13. Spi_HWErrorsType
	10.2.14. Spi_SelfTestType
	10.2.15. Spi_ReturnStatus

	10.3. Function Definitions

	Chapter 11 Development And Production Errors
	11.1. SPI Driver Component Development Errors
	11.2. SPI Driver Component Production Errors

	Chapter 12 Memory Organization
	Chapter 13 P1x-C Specific Information
	13.1. Interaction Between The User And SPI Driver Component
	13.1.1. ISR Function

	13.2. Sample Application
	13.2.1. Sample Application Structure
	13.2.2. Building Sample Application
	13.2.2.1. Configuration Example
	13.2.2.2. Debugging The Sample Application

	13.3. Memory And Throughput
	13.3.1. ROM/RAM Usage
	13.3.2. Stack Depth
	13.3.3. Throughput Details

	Chapter 14 Release Details

