

XCP Protocol Layer

Technical Reference

Version 2.05.00

Version: 2.05.00

Status: Released

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

2 / 94

1 History

Date Version Remarks

2005-01-17 1.00.00 ESCAN00009143: Initial draft
Warning Text added

2005-06-22 1.01.00 FAQ extended: ESCAN00012356, ESCAN00012314
ESCAN00012617: Add service to retrieve XCP state

2005-12-20 1.02.00 ESCAN00013883: Revise Resume Mode

2006-03-09 1.03.00 ESCAN00015608: Support command
TRANSPORT_LAYER_CMD
ESCAN00015609: Support XCP on FlexRay Transport Layer

2006-04-24 1.04.00 ESCAN00015913: Correct filenames
Data page banking support of application callback template
added

2006-05-08 1.05.00 ESCAN00016263: Describe support of reflected CRC16 CCITT
ESCAN00016159: Add demo disclaimer to XCP Basic

2006-05-29 1.06.00 ESCAN00016226: Support XCP on LIN Transport Layer

2006-07-20 1.07.00 ESCAN00012636: Add configuration with GENy
ESCAN00016956: Support AUTOSAR CRC module

2006-10-26 1.08.00 ESCAN00018115: DPRAM Support only available in XCP Basic
ESCAN00017948: Add paging support
ESCAN00017221: Documentation of reentrant capability of all
functions

2007-01-18 1.09.00 ESCAN00018809: Support data paging on Star12X / Cosmic

2007-05-07 1.10.00 Description of new features added

2007-09-14 1.11.00 Segment freeze mode now supported

2008-07-23 1.12.00 ESCAN00028586: Support of Program_Start callback

ESCAN00017955: Support MIN_ST_PGM

ESCAN00017952: Open Interface for command processing

2008-09-10 1.13.00 Additional pending return value of call backs added

MIN_ST configuration added

2008-12-01 1.14.00 ESCAN00018157: SERV_RESET is not supported

ESCAN00032344: Update of XCP Basic Limitations

2009-05-14 1.15.00 ESCAN00033909: New features implemented: Prog Write
Protection, Timestamps, Calibration activation

2009-07-30 1.15.01 Fixed some editorial errors

2009-11-13 1.16.00 Added AUTOSAR Compiler Abstraction

2010-04-30 1.16.01 Fixed some editorial errors

2010-07-27 1.16.02 Fixed some editorial errors

2010-08-19 1.17.00 ESCAN00044693: New callbacks XcpCalibrationWrite and
XcpCalibrationRead

ESCAN00042867: Support Multiple Transport Layers

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

3 / 94

2010-12-10 1.18.00 ESCAN00045981: Add support to read out FR Parameters

2011-07-20 1.19.00 ESCAN00049542: Describe IDT_VECTOR_MAPNAMES format
in TechRef

ESCAN00043487: XCP shall support user selectable behaviour
of Send Queue overrun

2011-08-04 ESCAN00052564: Adapt ReadCcConfig Parameter to ASR3.2.1

2012-02-20 1.19.01 ESCAN00055214: DAQ Lists can be extended after
START_STOP_SYNCH

2012-09-03 1.19.02 ESCAN00061159: Provide an API to detect XCP state and usage

2012-11-08 1.19.03 Added Option for AMD Runtime Measurement

2011-03-23 2.00.00 ESCAN00049471: Create branch for AUTOSAR 4

2013-02-11 2.01.01 Editorial Changes

2013-07-08 2.02.00 ESCAN00068035: Xcp_SetTransmissionMode not supported

ESCAN00070127: AR4-322/AR3_2552: Support of Vx1000
System

ESCAN00070082: The API ApplXcpDaqResumeStore has a
wrong description

ESCAN00069019: Mapping to critical sections not described in
detail for Protocol Layer

ESCAN00068639: Describe data consistency on ODT Level

ESCAN00067332: Document the usage of the
Xcp_MainFunction/XcpBackground

2013-12-04 2.03.00 ESCAN00072401: Support custom CRC Cbk

ESCAN00072326: Support Generic GET_ID

2014-08-15 2.03.01 ESCAN00077231: AR3-2679: Description BCD-coded return-
value of Xcp_GetVersionInfo() in TechRef

ESCAN00077813: Specify supported ASAM Version

2015-02-02 2.03.02 ESCAN00080981: SET_CAL_PAGE is limited to synchronous
operation

2015-06-09 2.04.00 ESCAN00082215: FEAT-1450: Basic MultiCore XCP

2016-02-18 2.04.01 ESCAN00087492: New API
ApplXcpMeasurementRead/ApplXcpCalibrationWrite not
documented

ESCAN00087496: Return code description of ApplXcp call-backs
incomplete

2016-10-04 2.05.00 Replaced Xcp_Control API by variable.

ESCAN00091747: FEAT-1980: Add Multi Client / Multi
Connection support

ESCAN00092229: Support API to modify Protection State

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

4 / 94

Please note
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Note for XCP Basic
Please note, that the demo and example programs only show special aspects of the
software. With regard to the fact that these programs are meant for demonstration
purposes only, Vector Informatik’s liability shall be expressly excluded in cases of
ordinary negligence, to the extent admissible by law or statute.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

5 / 94

Contents

1 History ... 2

2 Overview ... 11

2.1 Abbreviations and Items used in this paper .. 11

2.2 Naming Conventions .. 13

3 Functional Description ... 14

3.1 Overview of the Functional Scope .. 14

3.2 Communication Mode Info ... 14

3.3 Block Transfer Communication Model (XCP Professional only) 14

3.4 Slave Device Identification ... 14

3.4.1 XCP Station Identifier ... 14

3.4.2 XCP Generic Identification ... 15

3.4.3 Identification of FlexRay Parameters .. 15

3.5 Seed & Key .. 15

3.6 Checksum Calculation ... 17

3.6.1 Custom CRC calculation .. 17

3.7 MainFunction ... 17

3.8 Memory Protection (XCP Professional only) .. 18

3.9 Memory Access by Application ... 18

3.9.1 Special use case “Type Safe Copy” ... 18

3.10 Event Codes .. 18

3.11 Service Request Messages ... 19

3.12 User Defined Command ... 19

3.13 Transport Layer Command .. 19

3.14 Synchronous Data Transfer ... 20

3.14.1 Synchronous Data Acquisition (DAQ) ... 20

3.14.2 DAQ Timestamp ... 20

3.14.3 Power-Up Data Transfer .. 21

3.14.4 Send Queue ... 21

3.14.5 Data Stimulation (STIM) ... 22

3.14.6 Bypassing .. 22

3.14.7 Data Acquisition Plug & Play Mechanisms 22

3.14.8 Event Channel Plug & Play Mechanism ... 23

3.14.9 Data consistency .. 23

3.15 The Online Data Calibration Model .. 24

3.15.1 Page Switching .. 24

3.15.2 Page Switching Plug & Play Mechanism .. 24

3.15.3 Calibration Data Page Copying .. 24

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

6 / 94

3.15.4 Freeze Mode Handling ... 24

3.16 Flash Programming .. 25

3.16.1 Flash Programming by the ECU’s Application 25

3.16.2 Flash Programming with a Flash Kernel ... 26

3.16.3 Flash Programming Write Protection .. 26

3.17 EEPROM Access ... 26

3.18 Parameter Check ... 27

3.19 Performance Optimizations .. 27

3.20 Interrupt Locks / Exclusive Areas ... 27

3.20.1 XCP_EXCLUSIVE_AREA_0 .. 28

3.20.2 XCP_EXCLUSIVE_AREA_1 .. 28

3.20.3 XCP_EXCLUSIVE_AREA_2 .. 28

3.21 Basic Multi Core support .. 28

3.21.1 Type safe copy ... 28

3.22 Accessing internal data .. 28

3.23 En- / Disabling the XCP module ... 28

3.24 XCP measurement during the follow up time ... 29

4 Integration into the Application ... 30

4.1 Files of XCP Professional .. 30

4.2 Version changes .. 30

4.3 Compiler Abstraction and Memory Mapping ... 30

4.4 Support of Vx1000 Integration.. 31

5 Feature List ... 32

6 Description of the API .. 34

6.1 Version of the Source Code ... 34

6.2 XCP Services called by the Application .. 35

6.2.1 Xcp_InitMemory: Initialization of the XCP Protocol Layer Memory ... 35

6.2.2 Xcp_Init: Initialization of the XCP Protocol Layer 35

6.2.3 Xcp_Event: Handling of a data acquisition event channel 36

6.2.4 Xcp_StimEventStatus: Check data stimulation events 37

6.2.5 Xcp_MainFunction: Background calculation of checksum 37

6.2.6 Xcp_SendEvent: Transmission of event codes 38

6.2.7 Xcp_Putchar: Put a char into a service request packet 38

6.2.8 Xcp_Print: Transmission of a service request packet 39

6.2.9 Xcp_Disconnect: Disconnect from XCP master 40

6.2.10 Xcp_SendCrm: Transmit response or error packet 40

6.2.11 Xcp_GetXcpDataPointer: Request internal data pointer 41

6.2.12 Xcp_GetVersionInfo: Request module version information 41

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

7 / 94

6.2.13 Xcp_ModifyProtectionStatus: Influence seed&key behaviour 42

6.3 XCP Protocol Layer Functions, called by the XCP Transport Layer 42

6.3.1 Xcp_Command: Evaluation of XCP packets and command
interpreter .. 43

6.3.2 Xcp_SendCallBack: Confirmation of the successful transmission of
a XCP packet ... 43

6.3.3 Xcp_GetSessionStatus: Get session state of XCP 44

6.3.4 Xcp_SetActiveTl: Set the active Transport Layer 45

6.3.5 Xcp_GetActiveTl: Get the currently active Transport Layer 45

6.4 XCP Transport Layer Services called by the XCP Protocol Layer 46

6.4.1 <Bus>Xcp_Send: Request for the transmission of a DTO or CTO
message .. 46

6.4.2 <Bus>Xcp_SendFlush: Flush transmit buffer 46

6.4.3 XcpAppl_InterruptEnable: Enable interrupts 47

6.4.4 XcpAppl_InterruptDisable: Disable interrupts 48

6.4.5 <Bus>Xcp_TLService: Transport Layer specific commands 48

6.5 Application Services called by the XCP Protocol Layer 49

6.5.1 XcpAppl_GetPointer: Pointer conversion ... 49

6.5.2 XcpAppl_GetIdData: Get Identification ... 50

6.5.3 XcpAppl_GetSeed: Generate a seed ... 50

6.5.4 XcpAppl_Unlock: Valid key and unlock resource 51

6.5.5 XcpAppl_CheckReadEEPROM: Check read access from
EEPROM ... 52

6.5.6 XcpAppl_CheckWriteEEPROM: Check write access to the
EEPROM ... 53

6.5.7 XcpAppl_CheckWriteAccess: Check address for valid write access . 53

6.5.8 XcpAppl_CheckReadAccess: Check address for valid read access . 54

6.5.9 XcpAppl_CheckDAQAccess: Check address for valid read or write
access.. 55

6.5.10 XcpAppl_CheckProgramAccess: Check address for valid write
access.. 55

6.5.11 XcpAppl_UserService: User defined command 56

6.5.12 XcpAppl_OpenCmdIf: XCP command extension interface 56

6.5.13 XcpAppl_SendStall: Resolve a transmit stall condition 57

6.5.14 XcpAppl_DisableNormalOperation: Disable normal operation of the
ECU ... 58

6.5.15 XcpAppl_StartBootLoader: Start of boot loader 58

6.5.16 XcpAppl_Reset: Perform ECU reset .. 59

6.5.17 XcpAppl_ProgramStart: Prepare flash programming 59

6.5.18 XcpAppl_FlashClear: Clear flash memory .. 60

6.5.19 XcpAppl_FlashProgram: Program flash memory 60

6.5.20 XcpAppl_DaqResume: Resume automatic data transfer 61

6.5.21 XcpAppl_DaqResumeStore: Store DAQ lists for resume mode 62

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

8 / 94

6.5.22 XcpAppl_DaqResumeClear: Clear stored DAQ lists......................... 62

6.5.23 XcpAppl_CalResumeStore: Store Calibration data for resume
mode .. 63

6.5.24 XcpAppl_GetTimestamp: Returns the current timestamp 64

6.5.25 XcpAppl_GetCalPage: Get calibration page 64

6.5.26 XcpAppl_SetCalPage: Set calibration page 65

6.5.27 XcpAppl_CopyCalPage: Copying of calibration data pages 66

6.5.28 XcpAppl_SetFreezeMode: Setting the freeze mode of a segment 66

6.5.29 XcpAppl_GetFreezeMode: Reading the freeze mode of a segment . 67

6.5.30 XcpAppl_Read: Read a single byte from memory 67

6.5.31 XcpAppl_Write: Write a single byte to RAM 68

6.5.32 XcpAppl_MeasurementRead: Read multiple bytes from memory 68

6.5.33 XcpAppl_CalibrationWrite: Write multiple bytes to memory 69

6.5.34 XcpAppl_ReadChecksumValue: Read checksum value 70

6.5.35 XcpAppl_CalculateChecksum: Custom checksum calculation 70

6.6 XCP Protocol Layer Functions that can be overwritten 71

6.6.1 Xcp_MemCpy: Copying of a memory range 71

6.6.2 Xcp_MemSet: Initialization of a memory range 72

6.6.3 Xcp_MemClr: Clear a memory range ... 72

6.7 AUTOSAR CRC Module Services called by the XCP Protocol Layer (XCP
Professional Only) .. 73

6.8 Configuration without Generation Tool ... 75

6.8.1 Compiler Switches ... 75

6.8.2 Configuration of Constant Definitions ... 78

6.8.3 Configuration of the CPU Type ... 80

6.8.4 Configuration of Slave Device Identification 80

6.8.5 Configuration of the Event Channel Plug & Play Mechanism 82

6.8.6 Configuration of the DAQ Time Stamped Mode 83

6.8.7 Configuration of the Flash Programming Plug & Play Mechanism 84

6.8.8 Configuration of the Page Switching Plug & Play Mechanism 85

6.8.9 Configuration of the used Transport Layer 85

7 Resource Requirements... 87

8 Limitations .. 88

8.1 General Limitations .. 88

8.2 Limitations Regarding Platforms, Compilers and Memory Models 89

9 FAQ .. 90

9.1 Invalid Time Stamp Unit ... 90

9.2 Support of small and medium memory model .. 90

9.3 Small memory model on ST10 / XC16X / C16X with Tasking Compiler 91

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

9 / 94

9.4 Data Page Banking on Star12X / Metrowerks .. 91

9.5 Memory model banked on Star12X / Cosmic ... 91

9.6 Reflected CRC16 CCITT Checksum Calculation Algorithm 92

10 Bibliography .. 93

11 Contact .. 94

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

10 / 94

Illustrations

Figure 3-1 Data consistency .. 23

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

11 / 94

2 Overview

This document describes the features, API, configuration and integration of the XCP
Protocol Layer. Both XCP versions: XCP Professional and XCP Basic are covered by this
document. Chapters that are only relevant for XCP Professional are marked.

This document does not cover the XCP Transport Layers for CAN, FlexRay and LIN, which
are available at Vector Informatik.
Please refer to [IV] for further information about XCP on CAN and the integration of XCP
on CAN with the Vector CANbedded software components. Further information about XCP
on FlexRay Transport Layer and XCP on LIN Transport Layer can be found in its
documentation.

Please also refer to “The Universal Measurement and Calibration Protocol Family”
specification by ASAM e.V.

The XCP Protocol Layer is a hardware independent protocol that can be ported to almost
any hardware. Due to there are numerous combinations of micro controllers, compilers
and memory models it cannot be guaranteed that it will run properly on any of the above
mentioned combinations.

Please note that in this document the term Application is not used strictly for the user
software but also for any higher software layer, like e.g. a Communication Control Layer.
Therefore, Application refers to any of the software components using XCP.

The API of the functions is described in a separate chapter at the end of this document.
Referred functions are always shown in the single channel mode.

Info
The source code of the XCP Protocol Layer, configuration examples and
documentation are available on the Internet at www.vector-informatik.de in a
functional restricted form.

2.1 Abbreviations and Items used in this paper

Abbreviations Complete expression

A2L File Extension for an ASAM 2MC Language File

AML ASAM 2 Meta Language

API Application Programming Interface

ASAM Association for Standardization of Automation and Measuring Systems

BYP BYPassing

CAN Controller Area Network

CAL CALibration

CANape Calibration and Measurement Data Acquisition for Electronic Control
Systems

http://www.vector-informatik.de/

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

12 / 94

CMD Command

CTO Command Transfer Object

DAQ Synchronous Data Acquistion

DLC Data Length Code (Number of data bytes of a CAN message)

DLL Data link layer

DTO Data Transfer Object

ECU Electronic Control Unit

ERR Error Packet

EV Event packet

ID Identifier (of a CAN message)

Identifier Identifies a CAN message

ISR Interrupt Service Routine

MCS Master Calibration System

Message One or more signals are assigned to each message.

ODT Object Descriptor Table

OEM Original equipment manufacturer (vehicle manufacturer)

PAG PAGing

PID Packet Identifier

PGM Programming

RAM Random Access Memory

RES Command Response Packet

ROM Read Only Memory

SERV Service Request Packet

STIM Stimulation

TCP/IP Transfer Control Protocol / Internet Protocol

UDP/IP Unified Data Protocol / Internet Protocol

USB Universal Serial Bus

XCP Universal Measurement and Calibration Protocol

VI Vector Informatik GmbH

Also refer to ‘AN-AND-1-108 Glossary of CAN Protocol Terminology.pdf’, which can be
found in the download area of http://www.vector-informatik.de.

http://www.vector-group.net/support/appnotes/AN-AND-1-108_glossary_of_can_protocol_terminology.pdf
http://www.vector-informatik.de/

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

13 / 94

2.2 Naming Conventions

The names of the access functions provided by the XCP Protocol Layer always start with a

prefix that includes the characters Xcp. The characters Xcp are surrounded by an

abbreviation which refers to the service or to the layer which requests a XCP service. The
designation of the main services is listed below:

Naming conventions

Xcp_… It is mandatory to use all functions beginning with Xcp…
These services are called by either the data link layer or the application.
They are e.g. used for the initialization of the XCP Protocol Layer and for the
cyclic background task.

XcpAppl_... The functions, starting with ApplXcp… are functions that are provided

either by any XCP Transport Layer or the application and are called by the
XCP Protocol Layer.

These services are user callback functions that are application specific and have
to be implemented depending on the application.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

14 / 94

3 Functional Description

3.1 Overview of the Functional Scope

The Universal Measurement and Calibration Protocol (XCP) is standardized by the
European ASAM working committee for standardization of interfaces used in calibration
and measurement data acquisition. XCP is a higher level protocol used for communication
between a measurement and calibration system (MCS, i.e. CANape) and an electronic
control unit (ECU). The implementation supports the ASAM XCP 1.1 Specification.

3.2 Communication Mode Info

In order to gather information about the XCP Slave device, e.g. the implementation version
number of the XCP Protocol Layer and supported communications models, the

communication mode info can be enabled by the switch XCP_ENABLE_COMM_MODE_INFO.

3.3 Block Transfer Communication Model (XCP Professional only)

In the standard communication model, each request packet is responded by a single
response packet or an error packet. To speed up memory uploads, downloads and flash
programming the XCP commands UPLOAD, DOWNLOAD and PROGRAM support a
block transfer mode similar to ISO/DIS 15765-2.

In the Master Block Transfer Mode can the master transmit subsequent (up to the
maximum block size MAX_BS) request packets to the slave without getting any response
in between. The slave responds after transmission of the last request packet of the block.

In Slave Block Transfer Mode the slave can respond subsequent (there is no limitation) to
a request without additional requests in between.

Refer to chapter 6.8.1 for configuration details.

3.4 Slave Device Identification

3.4.1 XCP Station Identifier

The XCP station identifier is an ASCII string that identifies the ECU’s software program
version.

The MCS can interpret this identifier as file name for the ECU database. The ECU
developer should change the XCP station identifier with each program change. This will
prevent database mix-ups and grant the correct access of measurement and calibration
objects from the MCS to the ECU. Another benefit of the usage of the XCP station
identifier is the automatic assignment of the correct ECU database at program start of the
MCS via the plug & play mechanism. The plug & play mechanism prevents the user from
selecting the wrong ECU database.

Refer to chapter 6.8.4.1 (Identification by ASAM-MC2 Filename without Path and
Extension) for configuration details.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

15 / 94

3.4.2 XCP Generic Identification

The XCP provides a generic mechanism for identification by the GET_ID command. For
this purpose a call-back exist which can be implemented by the user to provide the
requested information. The following function

uint32 XcpAppl_GetIdData(MTABYTEPTR *pData, uint8 id) (6.5.2)

has to set a pointer to the identification information based on the requested id and return
the length of this information.
Refer to chapter 6.8.4.2 (Automatic Session Configuration with MAP Filenames) for an
example implementation.

3.4.3 Identification of FlexRay Parameters

If the “Virtual FlexRay Parameters” feature is enabled, the parameters can be read out in a
platform independent way. They will be provided as virtual measurement values that can
be read at fixed memory locations with a configurable Address Extension.
To calculate the memory address for each parameter please read the Technical Reference
and the AUTOSAR specification of the FlexRay Driver. Each FlexRay parameter is defined
with a unique ID to be used as parameter for the API call. Use this ID and multiply it with
four to get the address where this variable can be measured at.
If this parameter is enabled the API:

Std_ReturnType FrIf_ReadCCConfig(uint8 ClusterIdx, uint8

FrIf_CCLLParamIndex, P2VAR(uint32, AUTOMATIC, FRIF_APPL_DATA)

FrIf_CCLLParamValue)

will be called. The FlexRay parameters can be measured from CAN and FlexRay but the
API is only provided if the FlexRay Interface is present.

3.5 Seed & Key

The seed and key feature allows individual access protection for calibration, flash
programming, synchronous data acquisition and data stimulation. The MCS requests a
seed (a few data bytes) from the ECU and calculates a key based on a proprietary
algorithm and sends it back to the ECU.

The seed & key functionality can be enabled with the switch XCP_ENABLE_SEED_KEY and

disabled with XCP_DISABLE_SEED_KEY in order to save ROM. Also refer to chapter 6.8.1.

The application callback function

uint8 XcpAppl_GetSeed(uint8 Xcp_Channel, MEMORY_ROM uint8

resourceMask, BYTEPTR seed) (6.5.3)

returns a seed that is transferred to the MCS. The callback function

uint8 XcpAppl_Unlock(uint8 Xcp_Channel, MEMORY_ROM uint8 *key,

MEMORY_ROM uint8 length) (6.5.4)

has to verify a received key and if appropriate return the resource that shall be unlocked.

The service:

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

16 / 94

uint8 Xcp_ModifyProtectionStatus(uint8 Xcp_Channel, uint8

andState, uint8 orState) (6.2.13)

can be used to modify the protection state by software.

Annotation for the usage of CANape

The calculation of the key is done in a DLL named SEEDKEY1.DLL, which is developed by
the ECU manufacturer and which must be located in the EXEC directory of CANape.
CANape can access the ECU only if the ECU accepts the key. If the key is not valid, the
ECU stays locked.

Example Implementation for SEEDKEY1.DLL

The function call of ASAP1A_XCP_ComputeKeyFromSeed() is standardized by the ASAM
committee.

Example

FILE SEEDKEY1.H

#ifndef _SEEDKEY_H_

#define _SEEDKEY_H_

#ifndef DllImport

#define DllImport __declspec(dllimport)

#endif

#ifndef DllExport

#define DllExport __declspec(dllexport)

#endif

#ifdef SEEDKEYAPI_IMPL

#define SEEDKEYAPI DllExport __cdecl

#else

#define SEEDKEYAPI DllImport __cdecl

#endif

#ifdef __cplusplus

extern "C" {

#endif

BOOL SEEDKEYAPI ASAP1A_XCP_ComputeKeyFromSeed(BYTE *seed,

 unsigned short sizeSeed,

 BYTE *key,

 unsigned short maxSizeKey,

 unsigned short *sizeKey

);

#ifdef __cplusplus

}

#endif

#endif

FILE SEEDKEY1.C

#include <windows.h>

#define SEEDKEYAPI_IMPL

#include "SeedKey1.h"

extern "C" {

BOOL SEEDKEYAPI ASAP1A_XCP_ComputeKeyFromSeed(BYTE *seed,

 unsigned short sizeSeed,

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

17 / 94

 BYTE *key,

 unsigned short maxSizeKey,

 unsigned short *sizeKey

)

{ // in that example sizeSeed == 4 is expected only

 if(sizeSeed != 4) return FALSE;

 if(maxSizeKey < 4) return FALSE;

 ((unsigned long)key) *= 3;

 ((unsigned long)key) &= 0x55555555;

 ((unsigned long)key) *= 5;

 *sizeKey = 4;

 return TRUE;

 }

}

3.6 Checksum Calculation

The XCP Protocol Layer supports calculation of a checksum over a specific memory
range. The XCP Protocol Layer supports all XCP ADD algorithms and the CRC16CCITT
checksum calculation algorithm.

XCP Professional allows the usage of the AUTOSAR CRC Module [VII]. If the AUTOSAR
CRC Module is used also the XCP CRC32 algorithm can be used.

Also refer to 6.8.2.1 ‘Table of Checksum Calculation Methods’.

If checksum calculation is enabled the background task has to be called cyclically.

3.6.1 Custom CRC calculation

The Protocol Layer also allows the calculation of the CRC by the application. For this the
call-back:

uint8 XcpAppl_CalculateChecksum(uint8 Xcp_Channel, ROMBYTEPTR

pMemArea, BYTEPTR pRes, uint32 length)

is called. This call-back can either calculate the checksum synchronously and return

XCP_CMD_OK or it can trigger the calculation and return XCP_CMD_PENDING for asynchronous
calculation of the checksum. In every case the response frame has to be assembled.

3.7 MainFunction

The Xcp provides a MainFunction:

void Xcp_MainFunction(void) (6.2.5)

 which must be called cyclically and performs the following tasks:

 Checksum calculation which is done asynchronously in configurable chunks to
prevent extensive runtime

 Resume Mode Handling

The Xcp MainFunction is normally called by the SchM. If you use a 3rd party SchM you
must configure it accordingly such that the function is called cyclically.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

18 / 94

3.8 Memory Protection (XCP Professional only)

If XCP_ENABLE_WRITE_PROTECTION is defined write access of specific RAM areas can

be checked with the function

uint8 XcpAppl_CheckWriteAccess(MTABYTEPTR addr, uint8 size)(6.5.7)

It should only be used, if write protection of memory areas is required.

If XCP_ENABLE_READ_PROTECTION is defined read access of specific RAM areas can be

checked with the function

uint8 XcpAppl_CheckReadAccess(MTABYTEPTR addr, uint8 size)(6.5.8)

It should only be used, if read protection of memory areas is required.

While the first two functions are used during polling, the following function is used for
DAQ/STIM access:

uint8 XcpAppl_CheckDAQAccess(DAQBYTEPTR addr, uint8 size) (6.5.9)

These functions can be used to protect memory areas that are not allowed to be
accessed, e.g. memory mapped registers or the xcp memory itself.

3.9 Memory Access by Application

There are two APIs available that allow memory access by application. Those APIs can be

enabled by setting XCP_ENABLE_CALIBRATION_MEM_ACCESS_BY_APPL. Please note that these
API are only used for polling access. DAQ/STIM still uses direct memory access.

uint8 XcpAppl_CalibrationWrite(P2VAR(void, AUTOMATIC,

XCP_APPL_DATA) dst, P2CONST(void, AUTOMATIC, XCP_APPL_DATA) src,

uint8 len) (6.5.33)

uint8 XcpAppl_MeasurementRead(P2VAR(void, AUTOMATIC,

XCP_APPL_DATA) dst, P2CONST(void, AUTOMATIC, XCP_APPL_DATA) src,

uint8 len) (6.5.32)

If the option XCP_ENABLE_DAQ_MEM_ACCESS_BY_APPL is set the function
XcpAppl_MeasurementRead is also called for DAQ measurement.

3.9.1 Special use case “Type Safe Copy”

The above mentioned APIs will also be used if the feature “Type Safe Copy” is enabled. If
this is the case polling as well as DAQ/STIM measurement will use these functions to
read/write data. The template code for these functions performs read/write access in an
atomic way. See 3.21.1 for further information.

3.10 Event Codes

The slave device may report events by sending asynchronous event packets (EV), which
contain event codes, to the master device. The transmission is not guaranteed due to the
fact that these event packets are not acknowledged.

The transmission of event codes is enabled with XCP_ENABLE_SEND_EVENT. The

transmission is done by the service

void Xcp_SendEvent(uint8 evc, ROMBYTEPTR c, uint8 len) (6.2.6)

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

19 / 94

The event codes can be found in the following table.

Event Code Description

EV_RESUME_MODE 0x00 The slave indicates that it is starting in RESUME mode.

EV_CLEAR_DAQ 0x01 The slave indicates that the DAQ configuration in non-
volatile memory has been cleared.

EV_STORE_DAQ 0x02 The slave indicates that the DAQ configuration has been
stored into non-volatile memory.

EV_STORE_CAL 0x03 The slave indicates that the calibration data has been
stored.

EV_CMD_PENDING 0x05 The slave requests the master to restart the time-out
detection.

EV_DAQ_OVERLOAD 0x06 The slave indicates an overload situation when
transferring DAQ lists.

EV_SESSION_TERMINATED 0x07 The slave indicates to the master that it autonomously
decided to disconnect the current XCP session.

EV_USER 0xFE User-defined event.

EV_TRANSPORT 0xFF Transport layer specific event.

3.11 Service Request Messages

The slave device may request some action to be performed by the master device. This is
done by the transmission of a Service Request Packet (SERV) that contains the service
request code. The transmission of service request packets is asynchronous and not
guaranteed due to these packets are not being acknowledged.

The service request messages can be sent by the following functions

void Xcp_PutChar (const uint8 c) (6.2.7)

void Xcp_Print (const uint8 *str) (6.2.8)

Refer to 6.8.1 for the configuration of the service request message.

3.12 User Defined Command

The XCP Protocol allows having a user defined command with an application specific
functionality. The user defined command is enabled by setting

XCP_ENABLE_USER_COMMAND and upon reception of the user command the following

callback function is called by the XCP command processor:

uint8 XcpAppl_UserService (uint8 Xcp_Channel, ROMBYTEPTR pCmd

) (6.5.11)

3.13 Transport Layer Command

The transport layer commands are received by the XCP Protocol Layer and processed by
the XCP Transport Layer. The XCP Protocol Layer transmits the XCP response packets
(RES) or XCP error packets (ERR).

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

20 / 94

The transport layer command is enabled by setting XCP_ENABLE_TL_COMMAND.

Upon reception of any transport layer command the following callback function is called by
the XCP command processor:

uint8 ApplXcpTLService (ROMBYTEPTR pCmd) (6.4.5)

3.14 Synchronous Data Transfer

3.14.1 Synchronous Data Acquisition (DAQ)

The synchronous data transfer can be enabled with the compiler switch

XCP_ENABLE_DAQ. In this mode, the MCS configures tables of memory addresses in the

XCP Protocol Layer. These tables contain pointers to measurement objects, which have
been configured previously for the measurement in the MCS. Each configured table is
assigned to an event channel.

The function Xcp_Event(x) has to be called cyclically for each event channel with the

corresponding event channel number as parameter. The application has to ensure that

Xcp_Event is called with the correct cycle time, which is defined in the MCS. Note that

the event channel numbers are given by the GenTool when the Event Info feature is used.

The ECU automatically transmits the current value of the measurement objects via

messages to the MCS, when the function Xcp_Event is executed in the ECU’s code with

the corresponding event channel number. This means that the data can be transmitted at
any particular point of the ECU code when the data values are valid.

The data acquisition mode can be used in multiple configurations that are described within
the next chapters.

Annotation for the usage of CANape

It is recommended to enable both data acquisition plug & play mechanisms to detect the
DAQ settings.

3.14.2 DAQ Timestamp

There are two methods to generate timestamps for data acquisition signals.

1. By the MCS tool on reception of the message

2. By the ECU (XCP slave)

The time precision of the MCS tool is adequate for the most applications; however, some
applications like the monitoring of the OSEK operating system or measurement on
FlexRay with an event cycle time smaller than the FlexRay cycle time require higher
precision timestamps. In such cases, ECU generated timestamps are recommended.

The timestamp must be implemented in a call-back which returns the current value:

XcpDaqTimestampType XcpAppl_GetTimestamp (void) (6.5.24)

There are several possibilities to implement such a timestamp:

 16bit Counter variable, incremented by software in a fast task (.e.g. 1ms task) for
applications where such a resolution is sufficient and returned in the above
mentioned call-back

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

21 / 94

 32bit General Purpose Timer of the used µC, configured to a certain repetition rate
(e.g. 1µs increment) for applications that require a high resolution of the timestamp
and returned in the above mentioned call-back

The resolution and increment value of this timer must be configured in the configuration
Tool (e.g. GENy) accordingly.

For the configuration of the DAQ time stamped mode refer to chapter 6.8.6 (Configuration
of the DAQ Time Stamped Mode).

3.14.3 Power-Up Data Transfer

Power-up data transfer (also called resume mode) allows automatic data transfer (DAQ,
STIM) of the slave directly after power-up. Automotive applications would e.g. be
measurements during cold start.

The slave and the master have to store all the necessary communication parameters for
the automatic data transfer after power-up. Therefore the following functions have to be
implemented in the slave.

uint8 XcpAppl_DaqResume (uint8 Xcp_Channel, tXcpDaq * daq) (6.5.20)

void XcpAppl_DaqResumeStore (uint8 Xcp_Channel, const tXcpDaq

* daq) (6.5.21)

void XcpAppl_DaqResumeClear (uint8 Xcp_Channel) (6.5.22)

uint8 XcpAppl_CalResumeStore (uint8 Xcp_Channel) (6.5.23)

To use the resume mode the compiler switches XCP_ENBALE_DAQ and

XCP_ENABLE_RESUME_MODE have to be defined.

Keep also in mind that the Xcp_MainFunction has to be called cyclically in order for the
resume mode to work. If Resume Mode is enabled by the Master Tool the before
mentioned call-back XcpAppl_DaqResumeStore is called by the MainFunction.

void Xcp_MainFunction(void) (6.2.5)

Annotation for the usage of CANape

Start the resume mode with the menu command Measurement | Start and push the button
“Measure offline” on the dialog box.

3.14.4 Send Queue

The send queue is used to store measurement values until they can be transmitted on the
bus. This is required if the used Transport Layer does not perform buffering on its own.
Vector Transport Layers do not buffer any data and therefore this feature should be used.

The send queue size can be indirectly configured in the GenTool. It is defined by the
parameter “Memory Size” – the memory size used by the dynamic DAQ lists. As the DAQ
lists are created during runtime by the tool no detailed calculation is possible. A worst case
analysis can be made and the parameter should be chosen such that enough space is left
for the send queue.

Furthermore the behaviour of the send queue in case of an overrun condition can be
influenced. There are two possible options:

1. Throw away oldest element

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

22 / 94

 The oldest odt in the send queue is discarded and the new measurement value is
inserted. The send queue behaves as a ring buffer.

2. Throw away latest element

 The latest measurement values are discarded. The send queue behaves like a
linear buffer.

The GenTool option “Replace First Element” determines the default behaviour. The
behaviour can be changed during runtime by modifying the variable

xcp.Daq.SendQueueBehaviour. If this variable is zero linear mode is selected, if this variable
is one the ring buffer mode is selected. This variable can be modified by the Master Tool.

3.14.5 Data Stimulation (STIM)

Synchronous Data Stimulation is the inverse mode of Synchronous Data Acquisition.

The STIM processor buffers incoming data stimulation packets. When an event occurs

(Xcp_Event is called), which triggers a DAQ list in data stimulation mode, the buffered

data is transferred to the slave device’s memory.

To use data stimulation the compiler switches XCP_ENBALE_DAQ and XCP_ENABLE_STIM

have to be defined.

3.14.6 Bypassing

Bypassing can be realized by making use of Synchronous Data Acquisition (DAQ) and
Synchronous Data Stimulation (STIM) simultaneously.

State-of-the-art Bypassing also requires the administration of the bypassed functions. This
administration has to be performed in a MCS like e.g. CANape.

Also the slave should perform plausibility checks on the data it receives through data
stimulation. The borders and actions of these checks are set by standard calibration
methods. No special XCP commands are needed for this.

3.14.7 Data Acquisition Plug & Play Mechanisms

The XCP Protocol Layer comprises two plug & play mechanisms for data acquisition:

> general information on the DAQ processor

(enabled with XCP_ENABLE_DAQ_PROCESSOR_INFO)

> general information on DAQ processing resolution

(enabled with XCP_ENABLE_DAQ_RESOLUTION_INFO)

The general information on the DAQ processor contains:

> general properties of DAQ lists

> total number of available DAQ lists and event channels

The general information on the DAQ processing resolution contains:

> granularity and maximum size of ODT entries for both directions

> information on the time stamp mode

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

23 / 94

3.14.8 Event Channel Plug & Play Mechanism

The XCP Protocol Layer supports a plug & play mechanism that allows the MCS to
automatically detect the available event channels in the slave.

Please refer to chapter 6.8.5 (Configuration of the Event Channel Plug & Play Mechanism)
for details about the configuration of this plug & play mechanism.

Annotation for the usage of CANape

If the plug & play mechanism is not built-in, you must open the dialog XCP Device Setup
with the menu command Tools|Driver parameters. Go to the Event tab. Make one entry for

each event channel. An event channel is an Xcp_Event(x) function call in ECU source

code.

3.14.9 Data consistency

The Xcp supports a data consistency on ODT level. If a consistency on DAQ level is
required, interrupts must be disabled prior calling Xcp_Event and enabled again after the
function returns. The following example demonstrates the integrity on ODT level by
showing the XCP ODT frames as sent on the bus. Two Events (x, y) are configured with
DAQ list DAQ1 assigned to Event(x) and DAQ list DAQ2 assigned to Event(y). A call of the
Xcp_Event function with the respective event channel number will then trigger the
transmission of the associated DAQ list.

Example1: a call of Xcp_Event(x) is interrupted by a call of Xcp_Event(y). This is allowed
as long as the interrupt locks are provided by the Schedule Manager (default with
MICROSAR stack).

Example2: a call of Xcp_Event(x) is interrupted by a call of Xcp_Event(x). As a result a
DAQ list is interrupted by itself. This is not allowed and must be prevented by data
consistency on DAQ level. For this use a interrupt lock when calling Xcp_Event()

DAQ1

DAQ2

ODT0

ODT3

ODT1

ODT4

ODT2

 Example1 ODT0 ODT1 ODT3 ODT4 ODT2

 Example2 ODT0 ODT1 ODT0 ODT1 ODT2 ODT2

Figure 3-1 Data consistency

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

24 / 94

3.15 The Online Data Calibration Model

3.15.1 Page Switching

The MCS can switch between a flash page and a RAM page. The XCP command
SET_CAL_PAGE is used to activate the required page. The page switching is enabled with

the XCP_ENABLE_CALIBRATION_PAGE definition.

The following application callback functions have to be implemented:

uint8 XcpAppl_GetCalPage (uint8 Xcp_Channel, uint8 segment,

uint8 mode) (6.5.25)

uint8 XcpAppl_SetCalPage (uint8 Xcp_Channel, uint8 segment,

uint8 page, uint8 mode) (6.5.26)

Annotation for the usage of CANape

Open the dialog XCP Device Setup with the menu command Tools|Driver Configuration.
Go to the tab “FLASH”. Activate page switching. Enter a flash selector value e.g. 1 and a
Ram selector e.g. 0.

3.15.2 Page Switching Plug & Play Mechanism

The MCS can be automatically configured if the page switching plug & play mechanism is
used. This mechanism comprises

> general information about the paging processor

Also refer to chapter 6.8.8 (Configuration of the Page Switching Plug & Play Mechanism)
and to the XCP Specification [II].

The page switching plug & play mechanism is enabled with the switch

XCP_ENABLE_PAGE_INFO.

3.15.3 Calibration Data Page Copying

Calibration data page copying is performed by the XCP command COPY_CAL_PAGE. To

enable this feature the compiler switch XCP_ENABLE_PAGE_COPY has to be set.

For calibration data page copying the following application callback function has to be
provided by the application:

uint8 XcpAppl_CopyCalPage(uint8 Xcp_Channel, uint8 srcSeg,

uint8 srcPage, uint8 destSeg, uint8

destPage) (6.5.27)

3.15.4 Freeze Mode Handling

Freeze mode handling is performed by the XCP commands SET_SEGMENT_MODE and
GET_SEGMENT_MODE. To enable this feature the compiler switch

XCP_ENABLE_PAGE_FREEZE has to be set.

For freeze mode handling the following application callback functions have to be provided
by the application:

void XcpAppl_SetFreezeMode(uint8 segment, uint8 mode) (6.5.28)

uint8 XcpAppl_GetFreezeMode(uint8 segment) (6.5.29)

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

25 / 94

3.16 Flash Programming

There are two methods available for the programming of flash memory.

> Flash programming by the ECU’s application

> Flash programming with a flash kernel

Depending on the hardware it might not be possible to reprogram an internal flash sector,
while a program is running from another sector. In this case the usage of a special flash
kernel is necessary.

3.16.1 Flash Programming by the ECU’s Application

If the internal flash has to be reprogrammed and the microcontroller allows to
simultaneously reprogram and execute code from the flash the programming can be
performed with the ECU’s application that contains the XCP. This method is also used for
the programming of external flash.

The flash programming is done with the following XCP commands PROGRAM_START,
PROGRAM_RESET, PROGRAM_CLEAR, PROGRAM, PROGRAM_NEXT,
PROGRAM_MAX, PROGRAM_RESET, PROGRAM_FORMAT1, PROGRAM_VERIFY1.

The flash prepare, flash program and the clear routines are platform dependent and
therefore have to be implemented by the application.

uint8 XcpAppl_ProgramStart(void) (6.5.17)

uint8 XcpAppl_FlashClear(MTABYTEPTR a, uint32 size) (6.5.18)

uint8 XcpAppl_FlashProgram(ROMBYTEPTR data,

 MTABYTEPTR a, uint8 size) (6.5.19)

The flash programming is enabled with the switch XCP_ENABLE_PROGRAM.

Annotation for the usage of CANape

Open the dialog XCP Device Setup with the menu command Tools|Driver Configuration.
Go to the tab “FLASH” and select the entry “Direct” in the flash kernel drop down list.

3.16.1.1 Flash Programming Plug & Play Mechanism

The MCS (like e.g. CANape) can get information about the Flash and the Flash
programming process from the ECU. The following information is provided by the ECU:

> number of sectors, start address or length of each sector

> the program sequence number, clear sequence number and programming method

> additional information about compression, encryption

Also refer to chapter 6.8.7 (Configuration of the Flash Programming Plug & Play
Mechanism) and to the XCP Specification [II].

The flash programming plug & play mechanism is enabled with the switch

XCP_ENABLE_PROGRAM_INFO.

1
 Command not supported

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

26 / 94

3.16.2 Flash Programming with a Flash Kernel

A flash kernel has to be used for the flash programming if it is not possible to
simultaneously reprogram and execute code from the flash. Even though the
reprogrammed sector and the sector the code is executed from are different sectors.

The application callback function

uint8 XcpAppl_DisableNormalOperation(MTABYTEPTR a, uint16 size

) (6.5.14)

is called prior to the flash kernel download in the RAM. Within this function the normal
operation of the ECU has to be stopped and the flash kernel download can be prepared.
Due to the flash kernel is downloaded in the RAM typically data gets lost and no more
normal operation of the ECU is possible.

The flash programming with a flash kernel is enabled with the switch

XCP_ENABLE_BOOTLOADER_DOWNLOAD.

Annotation for the usage of CANape

The flash kernel is loaded by CANape into the microcontroller’s RAM via XCP whenever
the flash memory has to be reprogrammed. The flash kernel contains the necessary flash
routines, its own CAN-Driver and XCP Protocol implementation to communicate via the
CAN interface with CANape.

Every flash kernel must be customized to the microcontroller and the flash type being
used. CANape already includes some flash kernels for several microcontrollers. There is
also an application note available by Vector Informatik GmbH that describes the
development of a proprietary flash kernel.

Open the dialog XCP Device Setup with the menu command Tools|Driver Configuration.
Go to the tab “FLASH”, and select in the ‘flash kernel’ drop down list, the corresponding fkl
file for the microcontroller being used.

3.16.3 Flash Programming Write Protection

If XCP_ENABLE_PROGRAMMING_WRITE_PROTECTION is defined write access of specific

FLASH areas can be checked with the function

uint8 XcpAppl_CheckProgramAccess

 (MTABYTEPTR addr, uint32 size) (6.5.10)

It should only be used, if write protection of flash areas is required.

3.17 EEPROM Access

For uploading data from the ECU to a MCS the XCP commands SHORT_UPLOAD and

UPLOAD are used. The switch XCP_ENABLE_READ_EEPROM allows EEPROM access for

these commands.

Before reading from an address it is checked within the following callback function whether
EEPROM or RAM is accessed:

uint8 XcpAppl_CheckReadEEPROM

(MTABYTEPTR addr, uint8 size, BYTEPTR data) (6.5.5)

The EEPROM access is directly performed within this function.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

27 / 94

For downloading data from the MCS to the ECU the XCP commands
SHORT_DOWNLOAD, DOWNLOAD, DOWNLOAD_NEXT and DOWNLOAD_MAX can be

used. The switch XCP_ENABLE_WRITE_EEPROM allows the EEPROM access for these

commands.

Also before writing to an address within the following callback function it is checked
whether EEPROM or RAM is accessed

uint8 XcpAppl_CheckWriteEEPROM

(uint8 Xcp_Channel, MTABYTEPTR addr, uint8 size,

ROMBYTEPTR data) (6.5.6)

3.18 Parameter Check

As long as the XCP Protocol Layer is not thoroughly tested together with the XCP
Transport Layer and the application, the parameter check should be enabled. This is done

by setting the compiler switch XCP_ENABLE_PARAMETER_CHECK.

The parameter check may be removed in order to save code space.

3.19 Performance Optimizations

The XCP Protocol Layer is a platform comprehensive higher software layer and therefore
platform specific optimizations are not implemented. However it is possible to apply
platform specific optimizations.

The following memory access functions can be overwritten by either macros or functions:

void Xcp_MemCpy(DAQBYTEPTR dest,

ROMDAQBYTEPTR src, uint16 n) (6.6.1)

void Xcp_MemSet(BYTEPTR p, uint16 n, uint8 b) (6.6.2)

static void Xcp_MemClr(BYTEPTR p, uint16 n) (6.6.3)

It is recommended to use DMA access as far as possible for faster execution of these
services.

3.20 Interrupt Locks / Exclusive Areas

The functions Xcp_Event, Xcp_SendCallBack, Xcp_MainFunction and

Xcp_Command are not reentrant. If one of these functions may interrupt one of the others,

they must be protected against each other. See also 3.14.9.

For this purpose the Xcp Protocol Layer makes use of three exclusive areas. The SchM
must provide the following sections:

 XCP_EXCLUSIVE_AREA_0

 XCP_EXCLUSIVE_AREA_1

 XCP_EXCLUSIVE_AREA_2

The individual exclusive areas must not be allowed to interrupt each other. The areas are
used for the following cases:

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

28 / 94

3.20.1 XCP_EXCLUSIVE_AREA_0

Is used by functions Xcp_SendCallBack, Xcp_MainFunction and Xcp_Command to

protect these non-reentrant functions.

3.20.2 XCP_EXCLUSIVE_AREA_1

Is used by Xcp_Event during DAQ measurement.

3.20.3 XCP_EXCLUSIVE_AREA_2

Is used by Xcp_Event during STIM measurement.

3.21 Basic Multi Core support

3.21.1 Type safe copy

The Xcp Protocol Layer supports a feature called “Type Safe Copy” which provides atomic
access to aligned uint16 and uint32 measurement values. This is important on multi core
platforms where one core is accessing a measurement value while the Xcp is trying to do
the same running from another core.

With this option disabled, access to measurement values is performed byte wise which is
not an atomic operation.

The following points must be taken into consideration when enabling this option:

 This option allows the Xcp to only read/write basic data types used on another core;
it cannot provide data consistency on ODT level.

 This option has a slightly higher runtime.

 Some Master Tools perform an optimization by grouping measurement values. This
option must be disabled, otherwise they do not represent unique data types
anymore.

3.22 Accessing internal data

The function

void Xcp_GetXcpDataPointer (P2VAR(tXcpData, AUTOMATIC,

XCP_APPL_DATA) *pXcpData) (6.2.11)

provides access to the internal data structure of the XCP module. By means of this
function the internal data can be preset to a certain value. This can be used to process a
measurement further that has been started in application mode but is finished in boot
mode.

As the whole data can be accessed, it must be handled with care.

3.23 En- / Disabling the XCP module

The variable Xcp_ControlState

can be used to en- or disable the XCP module during run time. Thus the XCP functionality
can be controlled by the application.

Furthermore two macros are available: XCP_ACTIVATE and XCP_DEACTIVATE. They
can be used to control the protocol and transport layer together, i.e. enabling or disabling

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

29 / 94

them as a whole. It is recommended to use these macros. It is also recommended to
perform a Xcp_Disconnect() API call to bring the Xcp in a save state before it is disabled.

3.24 XCP measurement during the follow up time

In use cases where there is no further communication request except XCP measurement
the session state of the XCP can be determined to prevent an early shutdown of the ECU.
For this purpose the following API exist:

SessionStatusType Xcp_GetSessionStatus (void) (6.3.3)

An example implementation that is called cyclically could look like the following example:

Example

{

 SessionStatusType sessionState;

 sessionState = Xcp_GetSessionStatus();

 if(0 != (sessionState & SS_CONNECTED))

 {

 /* Is the xcp actively used? */

 if(0 != (sessionState & (SS_DAQ | SS_POLLING)))

 {

 /* Yes, reaload timer */

 swTimer = XCP_TIMEOUT_TIMER_RELOAD;

 }

 }

 if(swTimer > 0)

 {

 /* No timeout so far */

 swTimer--;

 }

 else

 {

 /* Timer timeout happened, release xcp communication request */

 }

}

Please note that polling requests may happen erratically. Therefore it is important not to

choose the timeout value XCP_TIMEOUT_TIMER_RELOAD too small.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

30 / 94

4 Integration into the Application

This chapter describes the steps for the integration of the XCP Protocol Layer into an
application environment of an ECU.

4.1 Files of XCP Professional

The XCP Protocol Layer consists of the following files.

Files of the XCP Protocol Layer

Xcp.c XCP Professional source code.
This file must not be changed by the user!

Xcp.h API of XCP Professional.
This file must not be changed by the user!

_xcp_appl.c Template that contains the application callback functions of the XCP
Protocol Layer. It is just an example and has to be customized.

v_def.h General Vector definitions of memory qualifiers and types.
This file must not be changed by the application!

Additionally the following files are generated by the generation tool. If no generation tool or
if CANgen is used the XPC Protocol Layer has to be customized manually. In this case the
following files will be available as template.

Files generated by GENy

xcp_Cfg.h XCP Protocol Layer configuration file.

xcp_Lcfg.c Parameter definition for the XCP Protocol Layer.

xcp_Lcfg.h External declarations for the parameters.

Note that all files of XCP Professional must not be changed manually!

4.2 Version changes

Changes and the release versions of the XCP Protocol Layer are listed at the beginning of
the header and source code.

4.3 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions – the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following table contains the memory section names and the compiler abstraction
definitions defined for XCP, and illustrates their assignment among each other.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

31 / 94

Compiler Abstraction

Definitions

Memory Mapping

Sections

X
C

P
_
C

O
N

S
T

X
C

P
_
D

A
Q

_
D

A
T
A

X
C

P
_
M

T
A

_
D

A
T
A

X
C

P
_
A

P
P

L
_
D

A
T
A

X
C

P
_
C

O
D

E

XCP_START_SEC_CONST_16BIT 

XCP_START_SEC_CONST_8BIT 

XCP_START_SEC_VAR_NOINIT_UNSPECIFIED 

XCP_START_SEC_VAR_NOINIT_8BIT 

XCP_START_SEC_CODE 

XCP_START_SEC_VAR_INIT_UNSPECIFIED_SAFE 

Table 4-1 Compiler abstraction and memory mapping

Please see the document: “AUTOSAR_SWS_CompilerAbstraction.pdf” for details about
how to use these definitions.

4.4 Support of Vx1000 Integration

The XcpProf provides basic support for the Vx1000 Hardware which can be enabled in the
configuration tool. If enabled the code size is increased, yet the same API calls as used for
the XcpProf are reused for the Vx which minimizes integration effort.

When the option is enabled the sources provided with your Vx1000 hardware must be
integrated. The XcpProf includes the Vx1000.h header and makes use of the respective
macros.

If the Vx hardware is attached prior to ECU Initialization the XcpProf itself is deactivated,
hence no access via the bus interface is possible anymore. If you want to perform
measurement & calibration via the bus interface again, detach the Vx hardware and
perform an ECU reset.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

32 / 94

5 Feature List

This general feature list describes the overall feature set of the XCP Protocol Layer.

Description of the XCP functionality Functions

Initialization

Initialization Xcp_Init

ApplXcpInit

Task

Background task Xcp_MainFunction

XCP Command Processor

Command Processor Xcp_Command

Transmission and Confirmation of XCP Packets <Bus>Xcp_Send

Xcp_SendCallBack

Transmission of Response packets Xcp_SendCrm

Transmission of XCP Packets XcpAppl_SendStall

<Bus>Xcp_SendFlush

XCP Commands

Get Identification XcpAppl_GetIdData

Seed & Key XcpAppl_GetSeed

XcpAppl_Unlock

Short Download -

Modify Bits -

Write DAQ Multiple XcpAppl_CheckDAQAccess

Transport Layer Command <Bus>Xcp_TLService

Open Command Interface XcpAppl_OpenCmdIf

User command XcpAppl_UserService

Data Acquisition (DAQ)

Synchronous Data Acquisition and Stimulation Xcp_Event

XcpAppl_CheckDAQAccess

DAQ Timestamp XcpAppl_GetTimestamp

Resume Mode XcpAppl_DaqResume

XcpAppl_DaqResumeStore

XcpAppl_DaqResumeClear

XcpAppl_CalResumeStore

Online Data Calibration

Calibration page switching XcpAppl_GetCalPage

XcpAppl_SetCalPage

Copy calibration page XcpAppl_CopyCalPage

Freeze Mode XcpAppl_SetFreezeMode

XcpAppl_GetFreezeMode

Boot loader Download

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

33 / 94

Disable normal operation of ECU XcpAppl_DisableNormalOper

ation

Start of the boot loader XcpAppl_StartBootLoader

Flash Programming

Reset of ECU XcpAppl_Reset

Clear flash memory XcpAppl_FlashClear

Prepare flash programming XcpAppl_ProgramStart

Program flash memory XcpAppl_FlashProgram

Special Features

Interrupt Control ApplXcpInterruptEnable

ApplXcpInterruptDisable

Event Codes Xcp_SendEvent

Service Request Packets Xcp_Putchar

Xcp_Print

Disconnect XCP Xcp_Disconnect

Pointer conversion XcpAppl_GetPointer

EEPROM access XcpAppl_CheckReadEEPROM

XcpAppl_CheckWriteEEPROM

Write protection XcpAppl_CheckWriteAccess

Read protection XcpAppl_CheckReadAccess

Overwriteable macros Xcp_MemCpy

Xcp_MemSet

Xcp_MemClr

Xcp_SendDto

Access to internal data Xcp_GetXcpDataPointer

En-/Disable Calibration -

Programming Write Protection XcpAppl_CheckProgramAcces

s

Session Status Xcp_GetSessionStatus

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

34 / 94

6 Description of the API

The XCP Protocol Layer application programming interface consists of services, which are
realized by function calls. These services are called wherever they are required. They
transfer information to- or take over information from the XCP Protocol Layer. This
information is stored in the XCP Protocol Layer until it is not required anymore,
respectively until it is changed by other operations.

Examples for calling the services of the XCP Protocol Layer can be found in the
description of the services.

6.1 Version of the Source Code

The source code version of the XCP Protocol Layer is provided by three BCD coded
constants:

CONST(uint8, XCP_CONST) kXcpMainVersion =

(uint8)(CP_XCP_VERSION >> 8);

CONST(uint8, XCP_CONST) kXcpSubVersion =

(uint8)(CP_XCP_ VERSION);

CONST(uint8, XCP_CONST) kXcpReleaseVersion =

(uint8)(CP_XCP_RELEASE_VERSION);

Example
Version 1.00.00 is registered as:

kXcpMainVersion = 0x01;

kXcpSubVersion = 0x00;

kXcpReleaseVersion = 0x00;

These constants are declared as external and can be read by the application at any time.

Alternatively the Version can be obtained with the GetVersionInfo API if enabled:

void Xcp_GetVersionInfo (P2VAR(Std_VersionInfoType, AUTOMATIC,

XCP_APPL_DATA) XcpVerInfoPtr) (6.2.12)

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

35 / 94

6.2 XCP Services called by the Application

The following XCP services that are called by the application are all not reentrant. If they
are called within interrupt context at least the CAN-Interrupts have to be disabled.

6.2.1 Xcp_InitMemory: Initialization of the XCP Protocol Layer Memory

Xcp_InitMemory

Prototype

Single Channel

Single Receive Channel void Xcp_InitMemory (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

This service initializes the XCP Protocol Layer memory. It must be called from the application
program before any other XCP function is called. This is only required if the Startup Code does not
initialize the memory with zero.

Particularities and Limitations

> Call context: Task and interrupt level

> This service function has to be called after the initialization of XCP Transport Layer.

> The global interrupts have to be disabled while this service function is executed. This function
should be called during initialization of the ECU before the interrupts have been enabled
before.

6.2.2 Xcp_Init: Initialization of the XCP Protocol Layer

Xcp_Init

Prototype

Single Channel

Single Receive Channel void Xcp_Init (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

36 / 94

Functional Description

This service initializes the XCP Protocol Layer and its internal variables. It must be called from the
application program before any other XCP function is called.

Particularities and Limitations

> Call context: Task and interrupt level

> This service function has to be called after the initialization of XCP Transport Layer.

> The global interrupts have to be disabled while this service function is executed. This function
should be called during initialization of the ECU before the interrupts have been enabled
before.

6.2.3 Xcp_Event: Handling of a data acquisition event channel

Xcp_Event

Prototype

Single Channel

Single Receive Channel uint8 Xcp_Event (uint8 event)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

event Number of event channels to process

The event channel numbers have to start at 0 and have to be
continuous. The range is: 0..x

Return code

uint8 XCP_EVENT_NO : Inactive (DAQ not running, Event not configured)

XCP_EVENT_DAQ : DAQ active */

XCP_EVENT_DAQ_OVERRUN : DAQ queue overflow

XCP_EVENT_STIM : STIM active

XCP_EVENT_STIM_OVERRUN : STIM data not available

Functional Description

Calling Xcp_Event with a particular event channel number triggers the sampling and transmission
of all DAQ lists that are assigned to this event channel.

The event channels are defined by the ECU developer in the application program. An MCS (e.g.
CANape) must know about the meaning of the event channel numbers. These are usually
described in the tool configuration files or in the interface specific part of the ASAM MC2 (ASAP2)
database.

Example:

A motor control unit may have a 10ms, a 100ms and a crank synchronous event channel. In this
case, the three Xcp_Event calls have to be placed at the appropriate locations in the ECU’s
program:

Xcp_Event (0); /* 10ms cycle */
xcp_Event (1); /* 100ms cycle */
xcp_Event (2); /* Crank synchronous cycle */

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

37 / 94

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> Data acquisition has to be enabled: XCP_ENABLE_DAQ has to be defined

> Call context: Task and interrupt level (not reentrant)

6.2.4 Xcp_StimEventStatus: Check data stimulation events

Xcp_StimEventStatus

Prototype

Single Channel

Single Receive Channel uint8 Xcp_StimEventStatus (uint8 event, uint8 action)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

event Event channel number

action STIM_CHECK_ODT_BUFFER : check ODT buffer

STIM_RESET_ODT_BUFFER : reset ODT buffer

Return code

uint8 0 : stimulation data not available

1 : new stimulation data is available

Functional Description

Check if data stimulation (STIM) event can perform or delete the buffers.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> Data acquisition has to be enabled: XCP_ENABLE_STIM has to be defined

> Call context: Task and interrupt level (not reentrant)

6.2.5 Xcp_MainFunction: Background calculation of checksum

Xcp_MainFunction

Prototype

Single Channel

Single Receive Channel void Xcp_MainFunction (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

38 / 94

Return code

uint8 0 : background calculation finished

1 : background calculation is still in progress

Functional Description

If the XCP command for the calculation of the memory checksum has to be used for large memory
areas, it might not be appropriate to block the processor for a long period of time. Therefore, the

checksum calculation is divided into smaller sections that are handled in Xcp_MainFunction.

Therefore Xcp_MainFunction should be called periodically whenever the ECU’s CPU is idle.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly

> Call context: Task level

6.2.6 Xcp_SendEvent: Transmission of event codes

Xcp_SendEvent

Prototype

Single Channel

Single Receive Channel void Xcp_SendEvent (uint8 Xcp_Channel, uint8 evc, ROMBYTEPTR
c, uint8 len)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

evc event code

c pointer to event data

len event data length

Return code

- -

Functional Description

Transmission of event codes via event packets (EV).

Please refer to chapter 3.10 Event Codes.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> Data acquisition has to be enabled: XCP_ENABLE_SEND_EVENT has to be defined

> Call context: Task and interrupt level

6.2.7 Xcp_Putchar: Put a char into a service request packet

Xcp_Putchar

Prototype

Single Channel

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

39 / 94

Single Receive Channel void Xcp_Putchar (uint8 Xcp_Channel, const uint8 c)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

c character that is put in a service request packet

Return code

- -

Functional Description

Put a char into a service request packet (SERV).

The service request packet is transmitted if either the maximum packet length is reached (the
service request message packet is full) or the character 0x00 is out in the service request packet.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> The switch XCP_ENABLE_SERV_TEXT_PUTCHAR has to be defined

> Call context: Task and interrupt level (not reentrant)

6.2.8 Xcp_Print: Transmission of a service request packet

Xcp_Print

Prototype

Single Channel

Single Receive Channel void Xcp_Print (uint8 Xcp_Channel, P2CONST(uint8, AUTOMATIC,
XCP_APPL_DATA) str)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

str pointer to a string that is terminated by 0x00

Return code

- -

Functional Description

Transmission of a service request packet (SERV).

The string str is sent via service request packets. The string has to be terminated by 0x00.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> The switch XCP_ENABLE_SERV_TEXT_PRINT has to be defined

> Call context: Task and interrupt level (not reentrant)

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

40 / 94

6.2.9 Xcp_Disconnect: Disconnect from XCP master

Xcp_Disconnect

Prototype

Single Channel

Single Receive Channel void Xcp_Disconnect (uint8 Xcp_Channel)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

If the XCP slave is connected to a XCP master a call of this function discontinues the connection
(transition to disconnected state). If the XCP slave is not connected this function performs no
action.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> Call context: Task and interrupt level (not reentrant)

6.2.10 Xcp_SendCrm: Transmit response or error packet

Xcp_SendCrm

Prototype

Single Channel

Single Receive Channel void Xcp_SendCrm (uint8 Xcp_Channel)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

Transmission of a command response packet (RES), or error packet (ERR) if no other packet is
pending.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly, XCP is in connected state and a
command packet (CMD) has been received.

> Call context: Task and interrupt level (not reentrant)

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

41 / 94

6.2.11 Xcp_GetXcpDataPointer: Request internal data pointer

Xcp_GetXcpDataPointer

Prototype

Single Channel

Single Receive Channel void Xcp_GetXcpDataPointer (tXcpData ** pXcpData)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

pXcpData pointer to store the pointer to the module internal data

Return code

- -

Functional Description

With this function the pointer to the module internal data can be received. With this pointer the
internal variable can be set to a certain configuration (e.g. after entering a boot mode where no
connection shall be established again). As this pointer allows the access to all internal data it must
be handled with care.

Particularities and Limitations

> The switch XCP_ENABLE_GET_XCP_DATA_POINTER has to be defined

6.2.12 Xcp_GetVersionInfo: Request module version information

Xcp_GetVersionInfo

Prototype

Single Channel

Single Receive Channel void Xcp_GetVersionInfo (P2VAR(Std_VersionInfoType, AUTOMATIC,
XCP_APPL_DATA) XcpVerInfoPtr)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

XcpVerInfoPtr Pointer to the location where the Version information shall be stored.

Return code

- -

Functional Description

Xcp_GetVersionInfo() returns version information, vendor ID and AUTOSAR module ID of the
component. The versions are BCD-coded.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

42 / 94

Particularities and Limitations

 The switch XCP_ENABLE_VERSION_INFO_API has to be defined

> Call context: task level (Re-entrant)

6.2.13 Xcp_ModifyProtectionStatus: Influence seed&key behaviour

Xcp_ModifyProtectionStatus

Prototype

Single Channel

Single Receive Channel void Xcp_ModifyProtectionStatus (uint8 Xcp_Channel, uint8
andState, uint8 orState)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro XCP_CHANNEL_IDX to get the channel index.

andState The following flags: RM_CAL_PAG, RM_DAQ, RM_STIM and
RM_PGM can be used to clear the protection state of the respective
resource. The modified state is persistent until Xcp_Init.

orState The following flags: RM_CAL_PAG, RM_DAQ, RM_STIM and
RM_PGM can be used to set the protection state of the respective
resource. The modified state is persistent until Xcp_Init.

Return code

- -

Functional Description

This method can be used to enable or disable the protection state of an individual resource during
runtime. The newly set protection state is persistent until the next call of the Xcp_Init function
where all flags are set again.

Particularities and Limitations

 The switch XCP_ENABLE_VERSION_INFO_API has to be defined

> Call context: task level (Re-entrant)

6.3 XCP Protocol Layer Functions, called by the XCP Transport Layer

For using the following functions there are some limitations which have to be taken into
consideration – especially when using an operation system like, i.e. OSEK OS:

> The ISR level for the transmission and reception of CAN messages has to be the same.

> Interrupts must be mutually

> No nested calls of these functions are allowed. (i.e. these functions are not reentrant)

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

43 / 94

All functions provided by the application must match the required interfaces. This can be
ensured by including the header file in the modules which provide the required functions. If
these interfaces do not match unexpected run-time behavior may occur.

6.3.1 Xcp_Command: Evaluation of XCP packets and command interpreter

Xcp_Command

Prototype

Single Channel

Single Receive Channel void Xcp_Command (uint8 Xcp_Channel, P2CONST(uint32,
AUTOMATIC, XCP_APPL_DATA) pCommand)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

pCommand Pointer to the XCP protocol message, which must be extracted from
the XCP protocol packet.

Return code

- -

Functional Description

Every time the XCP Transport Layer receives a XCP CTO Packet this function has to be called.
The parameter is a pointer to the XCP protocol message, which must be extracted from the XCP
protocol packet.

Particularities and Limitations

> The XCP Protocol Layer has to be initialized correctly.

> Call context: Task and interrupt level (not reentrant)

6.3.2 Xcp_SendCallBack: Confirmation of the successful transmission of a XCP
packet

Xcp_SendCallBack

Prototype

Single Channel

Single Receive Channel uint8 Xcp_SendCallBack (uint8 Xcp_Channel)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

44 / 94

Return code

uint8 0 : if the XCP Protocol Layer is idle (no transmit messages are

pending)

Functional Description

The XCP Protocol Layer does not call <Bus>Xcp_Send again, until Xcp_SendCallBack has

confirmed the successful transmission of the previous message. Xcp_SendCallBack transmits

pending data acquisition messages by calling <Bus>Xcp_Send again.

Note that if Xcp_SendCallBack is called from inside <Bus>Xcp_Send a recursion occurs, which

assumes enough space on the call stack.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly.

> Call context: Task and interrupt level (not reentrant)

6.3.3 Xcp_GetSessionStatus: Get session state of XCP

Xcp_GetSessionStatus

Prototype

Single Channel

Single Receive Channel SessionStatusType Xcp_GetSessionStatus (uint8
Xcp_Channel)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

SS_CONNECTED XCP is connected

SS_DAQ DAQ measurement is running

SS_POLLING Polling is running (depending on polling rate this flag is not
always set)

Functional Description

This service can be used to get the session state of the XCP Protocol Layer. The session state is
returned as bit mask where the individual bits can be tested.

E.g. this service is used by the XCP on CAN Transport Layer to determine the connection state in
case multiple CAN channels are used and can be used by the application to prevent an ECU
shutdown.

Particularities and Limitations

> The XCP Protocol Layer has to be initialized correctly.

> Call context: Task and interrupt level (not reentrant)

> Enabled/Disabled by XCP_xxx_GET_SESSION_STATUS_API

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

45 / 94

6.3.4 Xcp_SetActiveTl: Set the active Transport Layer

Xcp_SetActiveTl

Prototype

Single Channel

Single Receive Channel void Xcp_SetActiveTl (uint8 Xcp_Channel, uint8 MaxCto, uint8
MaxDto, uint8 ActiveTl)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

MaxCto Max CTO used by the respective XCP Transport Layer

MaxDto Max DTO used by the respective XCP Transport Layer

ActiveTl XCP_TRANSPORT_LAYER_CAN: XCP on CAN Transport Layer

XCP_TRANSPORT_LAYER_FR: XCP on Fr Transport Layer

XCP_TRANSPORT_LAYER_ETH: XCP on Ethernet Transport Layer

Return code

- -

Functional Description

Set the active Transport Layer the XCP Protocol Layer uses.

This service is used by the XCP Transport Layers to set the Transport Layer to be used by the
XCP Protocol Layer

Particularities and Limitations

> The XCP Protocol Layer has to be initialized correctly.

> Call context: Task and interrupt level (not reentrant)

6.3.5 Xcp_GetActiveTl: Get the currently active Transport Layer

Xcp_GetActiveTl

Prototype

Single Channel

Single Receive Channel uint8 Xcp_GetActiveTl (uint8 Xcp_Channel)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

uint8 XCP_TRANSPORT_LAYER_CAN: XCP on CAN Transport Layer

XCP_TRANSPORT_LAYER_FR: XCP on Fr Transport Layer

XCP_TRANSPORT_LAYER_ETH: XCP on Ethernet Transport Layer

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

46 / 94

Functional Description

Get the active Transport Layer the XCP Protocol Layer uses.

This service is used by the XCP Transport Layers to get the currently active Transport Layer used
by the XCP Protocol Layer

Particularities and Limitations

> The XCP Protocol Layer has to be initialized correctly.

> Call context: Task and interrupt level (not reentrant)

6.4 XCP Transport Layer Services called by the XCP Protocol Layer

The prototypes of the functions that are required by the XCP Protocol Layer can be found in the
component’s header.

6.4.1 <Bus>Xcp_Send: Request for the transmission of a DTO or CTO message

<Bus>Xcp_Send

Prototype

Single Channel

Single Receive Channel void <Bus>Xcp_Send (uint8 Xcp_Channel, uint8 len, ROMBYTEPTR
msg)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

len Length of message data

msg Pointer to message

Return code

uint8 0 : if the XCP Protocol Layer is idle (no transmit messages are

pending)

Functional Description

Requests for the transmission of a command transfer object (CTO) or data transfer object (DTO).

Xcp_SendCallBack must be called after the successful transmission of any XCP message. The

XCP Protocol Layer will not request further transmissions, until Xcp_SendCallBack has been

called.

Particularities and Limitations

> Call context: Task and interrupt level (not reentrant)

> <Bus>Xcp_Send is not defined as macro

6.4.2 <Bus>Xcp_SendFlush: Flush transmit buffer

<Bus>Xcp_SendFlush

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

47 / 94

Prototype

Single Channel

Single Receive Channel void <Bus>Xcp_SendFlush (uint8 Xcp_Channel)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

Flush the transmit buffer.

Particularities and Limitations

-

6.4.3 XcpAppl_InterruptEnable: Enable interrupts

XcpAppl_InterruptEnable

Prototype

Single Channel

Single Receive Channel void XcpAppl_InterruptEnable (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

Enabling of the global interrupts.

Particularities and Limitations

> XCP is initialized correctly

> Call context: Task and interrupt level

> This function is reentrant!

> The function XcpAppl_InterruptEnable can be overwritten by the macro

XcpAppl_InterruptEnable.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

48 / 94

6.4.4 XcpAppl_InterruptDisable: Disable interrupts

XcpAppl_InterruptDisable

Prototype

Single Channel

Single Receive Channel void XcpAppl_InterruptDisable (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

Disabling of the global interrupts.

Particularities and Limitations

> XCP is initialized correctly

> Call context: Task and interrupt level

> This function is reentrant!

> The function XcpAppl_InterruptDisable can be overwritten by the macro

XcpAppl_InterruptDisable.

6.4.5 <Bus>Xcp_TLService: Transport Layer specific commands

<Bus>Xcp_TLService

Prototype

Single Channel

Single Receive Channel uint8 <Bus>Xcp_TLService (uint8 Xcp_Channel, ROMBYTEPTR
pCmd)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

pCmd Pointer to COMMAND that has been received by the XCP Slave.

Return code

uint8 XCP_CMD_OK : Done

XCP_CMD_PENDING : Call Xcp_SendCrm() when done

XCP_CMD_SYNTAX : Error

XCP_CMD_BUSY : not executed

XCP_CMD_UNKNOWN : not implemented optional command

XCP_CMD_OUT_OF_RANGE : command parameters out of range

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

49 / 94

Functional Description

Transport Layer specific command that is processed within the XCP Transport Layer.

Particularities and Limitations

> XCP is initialized correctly

> Call context: Task and interrupt level

> The switch XCP_ENABLE_TL_COMMAND has to be defined

6.5 Application Services called by the XCP Protocol Layer

The prototypes of the functions that are required by the XCP Protocol Layer can be found
in the header.

The XCP Protocol Layer provides application callback functions in order to perform
application and hardware specific tasks.

Note: All services within this chapter are called from task or interrupt level. All services are
not reentrant.

6.5.1 XcpAppl_GetPointer: Pointer conversion

XcpAppl_GetPointer

Prototype

Single Channel

Single Receive Channel MTABYTEPTR XcpAppl_GetPointer (uint8 addr_ext, uint32 addr)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

addr_ext 8 bit address extension

addr 32 bit address

Return code

MTABYTEPTR Pointer to the address specified by the parameters

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

50 / 94

Functional Description

This function converts a memory address from XCP format (32-bit address plus 8-bit address
extension) to a C style pointer. An MCS like CANape usually reads this memory addresses from
the ASAP2 database or from a linker map file.

The address extension may be used to distinguish different address spaces or memory types. In
most cases, the address extension is not used and may be ignored.

This function is used for memory transfers like DOWNLOAD and UPLOAD.

Example:

The following code shows an example of a typical implementation of XcpAppl_GetPointer:

MTABYTEPTR XcpAppl_GetPointer(uint8 addr_ext, uint32 addr)

{

 return (MTABYTEPTR)addr;

}

Particularities and Limitations

> XCP is initialized correctly and in connected state

> This function can be overwritten by defining XcpAppl_GetPointer as macro.

6.5.2 XcpAppl_GetIdData: Get Identification

XcpAppl_GetIdData

Prototype

Single Channel

Single Receive Channel uint32 XcpAppl_GetIdData (MTABYTEPTR *pData, uint8 id)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

pData Returns a pointer to a pointer of MAP file names

id Identification of the requested information/identification

Return code

uint32 length of the MAP file names

Functional Description

Returns a pointer to a pointer of MAP file names.

Refer to chapter 3.4.2 (XCP Generic Identification).

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_GET_ID_GENERIC has to be defined

6.5.3 XcpAppl_GetSeed: Generate a seed

XcpAppl_GetSeed

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

51 / 94

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_GetSeed (uint8 Xcp_Channel, const uint8 resource,
 P2VAR(uint8, AUTOMATIC, XCP_APPL_DATA) seed)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro XCP_CHANNEL_IDX to get the channel index.

Resource Resource for which the seed has to be generated

XCP Professional and XPC Basic

RM_CAL_PAG : to unlock the resource calibration/paging

RM_DAQ : to unlock the resource data acquisition

XCP Professional only

RM_STIM : to unlock the resource stimulation

RM_PGM : to unlock the resource programming

Seed Pointer to RAM where the seed has to be generated to.

Return code

uint8 The length of the generated seed that is returned by seed.

Functional Description

Generate a seed for the appropriate resource.

The seed has a maximum length of MAX_CTO-2 bytes.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_SEED_KEY has to be defined

6.5.4 XcpAppl_Unlock: Valid key and unlock resource

XcpAppl_Unlock

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_Unlock (uint8 Xcp_Channel, P2CONST(uint8,
AUTOMATIC, XCP_APPL_DATA) key, const uint8 length)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro XCP_CHANNEL_IDX to get the channel index.

key Pointer to the key.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

52 / 94

length Length of the key.

Return code

uint8 XCP Professional and XPC Basic

0 : if the key is not valid

RM_CAL_PAG : to unlock the resource calibration/paging

RM_DAQ : to unlock the resource data acquisition

XCP Professional only

RM_STIM : to unlock the resource stimulation

RM_PGM : to unlock the resource programming

Functional Description

Check the key and return the resource that has to be unlocked.

Only one resource may be unlocked at one time.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_SEED_KEY has to be defined

6.5.5 XcpAppl_CheckReadEEPROM: Check read access from EEPROM

XcpAppl_CheckReadEEPROM

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_CheckReadEEPROM (MTABYTEPTR addr,
 uint8 size,
 BYTEPTR data)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

addr Address that is checked

size Number of bytes

data Pointer to data
(if the address is on the EEPROM the data is written here)

Return code

uint8 XCP_CMD_OK : EEPROM read

XCP_CMD_DENIED : This is not EEPROM

XCP_CMD_PENDING : EEPROM read in progress, call Xcp_SendCrm

 when done

Functional Description

Checks whether the address lies within the EEPROM memory or in the RAM area.

If the area is within the EEPROM area size data byte are read from addr and written to data.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

53 / 94

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_READ_EEPROM has to be defined

6.5.6 XcpAppl_CheckWriteEEPROM: Check write access to the EEPROM

XcpAppl_CheckWriteEEPROM

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_CheckWriteEEPROM (uint8 Xcp_Channel,
MTABYTEPTR addr, uint8 size, ROMBYTEPTR data)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro XCP_CHANNEL_IDX to get the channel index.

addr Address that is checked

size number of bytes

data pointer to data

(if addr is on the EEPROM this data is written to addr)

Return code

uint8 XCP_CMD_OK : EEPROM written

XCP_CMD_DENIED : This is not EEPROM

XCP_CMD_PENDING : EEPROM write in progress, call XcpSendCrm

 when done

Functional Description

Checks whether the address addr is within the EEPROM memory. If not, the function returns

XCP_CMD_DENIED. If it lies within, EEPROM programming is performed. The function may return

during programming with XCP_CMD_PENDING or may wait until the programming sequence has

finished and then returns with XCP_CMD_OK.

If the programming sequence has finished, the Xcp_SendCrm function must be called.

Xcp_SendCrm is an internal function of the XCP Protocol Layer.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_WRITE_EEPROM has to be defined

6.5.7 XcpAppl_CheckWriteAccess: Check address for valid write access

XcpAppl_CheckWriteAccess

Prototype

Single Channel

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

54 / 94

Single Receive Channel uint8 XcpAppl_CheckWriteAccess (MTABYTEPTR address,
 uint8 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

address address

size number of bytes

Return code

uint8 XCP_CMD_DENIED : if access is denied

XCP_CMD_OK : if access is granted

Functional Description

Check addresses for valid write access. A write access is enabled with the

XCP_ENABLE_WRITE_PROTECTION, it should be only used, if write protection of memory

areas is required

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_WRITE_PROTECTION has to be defined

> Can be overwritten by the macro XcpAppl_CheckWriteAccess

6.5.8 XcpAppl_CheckReadAccess: Check address for valid read access

XcpAppl_CheckReadAccess

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_CheckReadAccess (MTABYTEPTR address,
 uint8 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

address address

size number of bytes

Return code

uint8 XCP_CMD_DENIED : if access is denied

XCP_CMD_OK : if access is granted

Functional Description

Check addresses for valid read access. A read access is enabled with the

XCP_ENABLE_READ_PROTECTION, it should be only used, if read protection of memory areas

is required

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

55 / 94

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_READ_PROTECTION has to be defined

> Can be overwritten by the macro XcpAppl_CheckReadAccess

6.5.9 XcpAppl_CheckDAQAccess: Check address for valid read or write access

XcpAppl_CheckDAQAccess

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_CheckDAQAccess (DAQBYTEPTR address,
 uint8 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

address address

size number of bytes

Return code

uint8 XCP_CMD_DENIED : if access is denied

XCP_CMD_OK : if access is granted

Functional Description

Check addresses for valid read or write access. This callback is called when a WRITE_DAQ
command is performed. Therefore it is not possible to know whether this is a read or write
access. Out of this reason this unified function is called.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_READ_PROTECTION or XCP_ENABLE_WRITE_PROTECTION has to

be defined

6.5.10 XcpAppl_CheckProgramAccess: Check address for valid write access

XcpAppl_CheckProgramAccess

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_CheckProgramAccess (MTABYTEPTR address,
 uint32 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

address address

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

56 / 94

size number of bytes

Return code

uint8 XCP_CMD_DENIED : if access is denied

XCP_CMD_OK : if access is granted

Functional Description

Check addresses for valid write access. A write access is enabled with the

XCP_ENABLE_PROGRAMMING_WRITE_PROTECTION, it should be only used, if write protection

of memory areas is required

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_PROGRAMMING_WRITE_PROTECTION has to be defined

> Can be overwritten by the macro XcpAppl_CheckWriteAccess

6.5.11 XcpAppl_UserService: User defined command

XcpAppl_UserService

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_UserService (uint8 Xcp_Channel, ROMBYTEPTR
pCmd)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro XCP_CHANNEL_IDX to get the channel index.

pCmd Pointer to XCP command packet

Return code

uint8 XCP_CMD_OK : positive response

XCP_CMD_PENDING : Call XcpSendCrm() when done

XCP_CMD_SYNTAX : negative response

Functional Description

Application specific user command.

Please refer to 3.12 User Defined Command.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_USER_COMMAND has to be defined

6.5.12 XcpAppl_OpenCmdIf: XCP command extension interface

XcpAppl_OpenCmdIf

Prototype

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

57 / 94

Single Channel

Single Receive Channel uint8 XcpAppl_OpenCmdIf (uint8 Xcp_Channel, ROMBYTEPTR
pCmd

BYTEPTR pRes, BYTEPTR pLength)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.

Please use the macro XCP_CHANNEL_IDX to get the channel index.

pCmd Pointer to COMMAND that has been received by the XCP Slave.

pRes Pointer to response buffer that will be sent by the XCP Slave.

pLength Number of bytes that will be sent in the response.

Return code

uint8 XCP_CMD_OK : Done

XCP_CMD_PENDING : Call Xcp_SendCrm() when done

XCP_CMD_ERROR : Error

Functional Description

Call back that can be used to extend the XCP commands of the XCP protocol layer.

Particularities and Limitations

> XCP is initialized correctly

> Call context: Task and interrupt level

> The switch XCP_ENABLE_OPENCMDIF has to be defined

6.5.13 XcpAppl_SendStall: Resolve a transmit stall condition

XcpAppl_SendStall

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_SendStall (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

uint8 0 : if not successful

> 0 : successful

Functional Description

Resolve a transmit stall condition in Xcp_Putchar or Xcp_SendEvent.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

58 / 94

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_SEND_EVENT or XCP_ENABLE_SERV_TEXT_PUTCHAR and

XCP_ENABLE_SEND_QUEUE are defined

> The function can be overwritten by the macro XcpAppl_SendStall()

6.5.14 XcpAppl_DisableNormalOperation: Disable normal operation of the ECU

XcpAppl_DisableNormalOperation

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_DisableNormalOperation (MTABYTEPTR a,
 uint16 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

a Address (where the flash kernel is downloaded to)

size Size (of the flash kernel)

Return code

uint8 XCP_CMD_OK : download of flash kernel confirmed

XCP_CMD_DENIED : download of flash kernel refused

Functional Description

Prior to the flash kernel download has the ECU’s normal operation to be stopped in order to
avoid misbehavior due to data inconsistencies.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_BOOTLOADER_DOWNLAOD has to be defined

6.5.15 XcpAppl_StartBootLoader: Start of boot loader

XcpAppl_StartBootLoader

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_StartBootLoader (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

59 / 94

Return code

uint8 This function should not return.

XCP_CMD_OK : positive response

XCP_CMD_BUSY : negative response

Functional Description

Start of the boot loader.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_BOOTLOADER_DOWNLAOD has to be defined

6.5.16 XcpAppl_Reset: Perform ECU reset

XcpAppl_Reset

Prototype

Single Channel

Single Receive Channel void XcpAppl_Reset (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

Perform an ECU reset after reprogramming of the application.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_PROGRAM has to be defined

6.5.17 XcpAppl_ProgramStart: Prepare flash programming

XcpAppl_ProgramStart

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_ProgramStart (void)

Multi Channel

Indexed not supported

Code replicated not supported

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

60 / 94

Parameter

- -

Return code

uint8 XCP_CMD_OK : Preparation done

XCP_CMD_PENDING : Call Xcp_SendCrm() when done

XCP_CMD_ERROR : Flash programming not possible

Functional Description

Prepare the ECU for flash programming.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_PROGRAM has to be defined

6.5.18 XcpAppl_FlashClear: Clear flash memory

XcpAppl_FlashClear

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_FlashClear (MTABYTEPTR address,
 uint32 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

address Address

size Size

Return code

uint8 XCP_CMD_OK : Flash memory erase done

XCP_CMD_PENDING : Call Xcp_SendCrm() when done

XCP_CMD_ERROR : Flash memory erase error

Functional Description

Clear the flash memory, before the flash memory will be reprogrammed.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_PROGRAM has to be defined

6.5.19 XcpAppl_FlashProgram: Program flash memory

XcpAppl_FlashProgram

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

61 / 94

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_FlashProgram (ROMBYTEPTR data,
 MTABYTEPTR address,
 uint8 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

data Pointer to data

address Address

size Size

Return code

uint8 XCP_CMD_OK : Flash memory programming finished

XCP_CMD_PENDING : Flash memory programming in progress.

 Xcp_SendCrm has to be called when done.

Functional Description

Program the cleared flash memory.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_PROGRAM has to be defined

6.5.20 XcpAppl_DaqResume: Resume automatic data transfer

XcpAppl_DaqResume

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_DaqResume (uint8 Xcp_Channel, tXcpDaq * daq)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro XCP_CHANNEL_IDX to get the channel index.

daq Pointer to dynamic DAQ list structure

Return code

uint8 0 : No resume mode data available

>0 : Resume mode initialization ok

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

62 / 94

Functional Description

Resume the automatic data transfer.

The whole dynamic DAQ list structure that had been stored in non-volatile memory within the

service XcpAppl_DaqResumeStore(..) has to be restored to RAM.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_RESUME are defined

6.5.21 XcpAppl_DaqResumeStore: Store DAQ lists for resume mode

XcpAppl_DaqResumeStore

Prototype

Single Channel

Single Receive Channel void XcpAppl_DaqResumeStore (uint8 Xcp_Channel,
P2CONST(tXcpDaq, AUTOMATIC, XCP_APPL_DATA) daq , uint16
size, uint8 measurementStart)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro XCP_CHANNEL_IDX to get the channel index.

daq Pointer to dynamic DAQ list structure.

size Size of DAQ data that needs to be stored

MeasurementStart If > 0 then set flag to start measurement during next init

Return code

- -

Functional Description

This application callback service has to store the whole dynamic DAQ list structure in non-
volatile memory for the DAQ resume mode. Any old DAQ list configuration that might have
been stored in non-volatile memory before this command, must not be applicable anymore.

After a cold start or reset the dynamic DAQ list structure has to be restored by the application

callback service XcpAppl_DaqResume(..)when the flag measurementStart is > 0.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_RESUME are defined

6.5.22 XcpAppl_DaqResumeClear: Clear stored DAQ lists

XcpAppl_DaqResumeClear

Prototype

Single Channel

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

63 / 94

Single Receive Channel void XcpAppl_DaqResumeClear (uint8 Xcp_Channel)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro XCP_CHANNEL_IDX to get the channel index.

Return code

- -

Functional Description

The whole dynamic DAQ list structure that had been stored in non-volatile memory within the

service XcpAppl_DaqResumeStore(..) has to be cleared.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_RESUME are defined

6.5.23 XcpAppl_CalResumeStore: Store Calibration data for resume mode

XcpAppl_CalResumeStore

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_CalResumeStore (uint8 Xcp_Channel)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro XCP_CHANNEL_IDX to get the channel index.

Return code

uint8 0 : Storing not yet finished (STORE_CAL_REQ flag kept)

>0 : Storing finished (STORE_CAL_REQ flag cleared)

Functional Description

This application callback service has to store the current calibration data in non-volatile
memory for the resume mode.

After a cold start or reset the calibration data has to be restored by the application.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_RESUME are defined

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

64 / 94

6.5.24 XcpAppl_GetTimestamp: Returns the current timestamp

XcpAppl_GetTimestamp

Prototype

Single Channel

Single Receive Channel XcpDaqTimestampType XcpAppl_GetTimestamp (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

XcpDaqTimestampType timestamp

Functional Description

Returns the current timestamp.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_TIMESTAMP are defined

> The parameter kXcpDaqTimestampSize defines the timestamp size. It can either be
DAQ_TIMESTAMP_BYTE, DAQ_TIMESTAMP_WORD, DAQ_TIMESTAMP_DWORD

6.5.25 XcpAppl_GetCalPage: Get calibration page

XcpAppl_GetCalPage

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_GetCalPage (uint8 Xcp_Channel, uint8 segment,
uint8 mode)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro XCP_CHANNEL_IDX to get the channel index.

segment Logical data segment number

mode Access mode

The access mode can be one of the following values:

CAL_ECU : ECU access

CAL_XCP : XCP access

Return code

uint8 Logical data page number

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

65 / 94

Functional Description

This function returns the logical number of the calibration data page that is currently activated
for the specified access mode and data segment.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_TIMESTAMP are defined

6.5.26 XcpAppl_SetCalPage: Set calibration page

XcpAppl_SetCalPage

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_SetCalPage (uint8 Xcp_Channel, uint8 segment,
 uint8 page, uint8 mode)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro XCP_CHANNEL_IDX to get the channel index.

segment Logical data segment number

Page Logical data page number

mode Access mode

CAL_ECU : the given page will be used by the slave device application

CAL_XCP : the slave device XCP driver will access the given page

Both flags may be set simultaneously or separately.

Return code

uint8 XCP_CMD_OK : Operation completed successfully

XCP_CMD_PENDING : Call Xcp_SendCrm() when done

CRC_OUT_OF_RANGE : segment out of range

(only one segment supported)

CRC_PAGE_NOT_VALID : Selected page not available

CRC_PAGE_MODE_NOT_VALID : Selected page mode not available

Functional Description

Set the access mode for a calibration data segment.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_TIMESTAMP are defined

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

66 / 94

6.5.27 XcpAppl_CopyCalPage: Copying of calibration data pages

XcpAppl_CopyCalPage

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_CopyCalPage (uint8 Xcp_Channel, uint8 srcSeg,

 uint8 srcPage, uint8 destSeg, uint8 destPage)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro XCP_CHANNEL_IDX to get the channel index.

srcSeg Source segment

srcPage Source page

destSeg Destination segment

destPage Destination page

Return code

uint8 XCP_CMD_OK : Operation completed successfully

XCP_CMD_PENDING : Call XcpSendCrm() when done

CRC_PAGE_NOT_VALID : Page not available

CRC_SEGMENT_NOT_VALID : Segment not available

CRC_WRITE_PROTECTED : Destination page is write protected.

Functional Description

Copying of calibration data pages.

The pages are copied from source to destination.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_PAGE_COPY and XCP_ENABLE_DAQ_TIMEOUT are defined

6.5.28 XcpAppl_SetFreezeMode: Setting the freeze mode of a segment

XcpAppl_SetFreezeMode

Prototype

Single Channel

Single Receive Channel void XcpAppl_SetFreezeMode (uint8 segment, uint8 mode)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

segment Segment to set freeze mode

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

67 / 94

mode New freeze mode

Return code

- -

Functional Description

Setting the freeze mode of a certain segment. Application must store the current freeze mode
of each segment.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_PAGE_FREEZE is defined

6.5.29 XcpAppl_GetFreezeMode: Reading the freeze mode of a segment

XcpAppl_GetFreezeMode

Prototype

Single Channel

Single Receive Channel uint8 XcpAppl_GetFreezeMode (uint8 segment)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

segment Segment to read freeze mode

Return code

uint8 Return the current freeze mode, set by XcpAppl_SetFreezeMode().

Functional Description

Reading the freeze mode of a certain segment. Application must store the current freeze mode
of each segment and report it by the return value of this function.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_PAGE_FREEZE is defined

6.5.30 XcpAppl_Read: Read a single byte from memory

XcpAppl_Read

Prototype

Single Channel

Single Channel uint8 XcpAppl_Read (uint32 addr)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

addr 32 Bit address

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

68 / 94

Return code

uint8 Pointer to the address specified by the parameters

Functional Description

Read a single byte from the memory.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_MEM_ACCESS_BY_APPL is defined

6.5.31 XcpAppl_Write: Write a single byte to RAM

XcpAppl_Write

Prototype

Single Channel

Single Channel void XcpAppl_Write (uint32 addr, uint8 data)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

addr 32 Bit address

data data to be written to memory

Return code

- -

Functional Description

Write a single byte to RAM.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_MEM_ACCESS_BY_APPL is defined

6.5.32 XcpAppl_MeasurementRead: Read multiple bytes from memory

XcpAppl_MeasurementRead

Prototype

Single Channel

Single Channel uint8 XcpAppl_MeasurementRead (P2VAR(void, AUTOMATIC,
XCP_APPL_DATA) dst, P2CONST(void, AUTOMATIC,
XCP_APPL_DATA) src, uint8 len)

Multi Channel

Indexed not supported

Code replicated not supported

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

69 / 94

Parameter

dst Address pointer

len Number of bytes to read

src Pointer to data

Return code

uint8 XCP_CMD_OK if read operation was successful otherwise return

protection code, e.g. XCP_CMD_DENIED

Functional Description

Read multiple bytes from memory. This service is used in MultiCore use case for type safe read
operation.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_CALIBRATION_MEM_ACCESS_BY_APPL or

XCP_ENABLE_TYPESAVE_COPY is defined

6.5.33 XcpAppl_CalibrationWrite: Write multiple bytes to memory

XcpAppl_CalibrationWrite

Prototype

Single Channel

Single Channel uint8 XcpAppl_CalibrationWrite (P2VAR(void, AUTOMATIC,
XCP_APPL_DATA) dst, P2CONST(void, AUTOMATIC,
XCP_APPL_DATA) src, uint8 len)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

dst Address pointer

len Number of bytes to write

src Pointer to data

Return code

uint8 Protection code, XCP_CMD_OK if write operation was successful

Functional Description

Write multiple bytes to memory. This service is used in MultiCore use case for type safe write
operation.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_CALIBRATION_MEM_ACCESS_BY_APPL or

XCP_ENABLE_TYPESAVE_COPY is defined

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

70 / 94

6.5.34 XcpAppl_ReadChecksumValue: Read checksum value

XcpAppl_ReadChecksumValue

Prototype

Single Channel

Single Channel tXcpChecksumAddType XcpAppl_ReadChecksumValue (uint32
addr)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Addr Address pointer

Return code

tXcpChecksumAddType New value for checksum calculation

Functional Description

This function is used to access checksum values when no direct access to memory is allowed.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_CALIBRATION_MEM_ACCESS_BY_APPL is defined

6.5.35 XcpAppl_CalculateChecksum: Custom checksum calculation

XcpAppl_CalculateChecksum

Prototype

Single Channel

Single Channel uint8 XcpAppl_CalculateChecksum (uint8 Xcp_Channel,
ROMBYTEPTR pMemArea, BYTEPTR pRes, uint32 length)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro XCP_CHANNEL_IDX to get the channel index.

pMemArea Address pointer

pRes Pointer to response string

Length Length of mem area, used for checksum calculation

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

71 / 94

Return code

uint8 XCP_CMD_OK : CRC calculation performed successfully

XCP_CMD_PENDING : Pending response, triggered by call of

Xcp_SendCrm

XCP_CMD_DENIED : CRC calculation not possible

Functional Description

Normally the XCP uses internal checksum calculation functions. If the internal checksum
calculation does not fit the user requirements this call-back can be used to calculate the
checksum by the application.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_CHECKSUM and XCP_ENABLE_CUSTOM_CRC is defined

6.6 XCP Protocol Layer Functions that can be overwritten

The following functions are defined within the XCP Protocol Layer and can be overwritten
for optimization purposes.

Note: All services within this chapter are called from task or interrupt level. All services are
not reentrant.

6.6.1 Xcp_MemCpy: Copying of a memory range

Xcp_MemCpy

Prototype

Single Channel

Single Receive Channel void Xcp_MemCpy (DAQBYTEPTR dest,
ROMDAQBYTEPTR src, uint8 n)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

dest pointer to destination address

src pointer to source address

n number of data bytes to copy

Return code

- -

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

72 / 94

Functional Description

General memory copy function that copies a memory range from source to destination.

This function is used in the inner loop of Xcp_Event for data acquisition sampling.

This function is already defined in the XCP Protocol Layer, but can be overwritten by a macro or
function for optimization purposes. E.g. it would be possible to use DMA for faster execution.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly.

> This function can be overwritten Xcp_MemCpy is defined.

6.6.2 Xcp_MemSet: Initialization of a memory range

Xcp_MemSet

Prototype

Single Channel

Single Receive Channel void Xcp_MemSet (BYTEPTR p, uint16 n, uint8 b)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

p pointer to start address

n number of data bytes

b data byte to initialize with

Return code

- -

Functional Description

Initialization of n bytes starting from address p with b.

This function is already defined in the XCP Protocol Layer, but can be overwritten by a macro or
function for optimization purposes. E.g. it would be possible to use DMA for faster execution.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly.

> This function can be overwritten if Xcp_MemSet is defined.

6.6.3 Xcp_MemClr: Clear a memory range

Xcp_MemClr

Prototype

Single Channel

Single Receive Channel static void Xcp_MemClr (BYTEPTR p, uint16 n)

Multi Channel

Indexed not supported

Code replicated not supported

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

73 / 94

Parameter

p pointer to start address

n number of data bytes

Return code

- -

Functional Description

Initialize n data bytes starting from address p with 0x00.

This function is already defined in the XCP Protocol Layer, but can be overwritten by a macro or
function for optimization purposes. E.g. it would be possible to use DMA for faster execution.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly.

> This function can be overwritten if Xcp_MemClr is defined.

6.7 AUTOSAR CRC Module Services called by the XCP Protocol Layer (XCP
Professional Only)

The following services of the AUTOSAR CRC Module are called by the XCP Protocol
Layer:

Crc_CalculateCRC16(…)

Crc_CalculateCRC32(…)

A detailed description of the API can be found in the software specification of the CRC
Module [VII].

6.7.1.1 Generated a2l files

The GenTool also generates multiple a2l files which can be used in the Master tool for
easier integration. The following files are generated:

 XCP.a2l (general protocol layer settings)

 XCP_daq.a2l (DAQ specific settings)

 XCP_events.a2l (DAQ event info)

 XCP_Checksum.a2l (Checksum information)

Example Master.a2l:

...

/begin IF_DATA XCP

 /include XCP.a2l

 /begin DAQ

 /include XCP_daq.a2l

 /include XCP_events.a2l

 /include XCP_checksum.a2l

 ...

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

74 / 94

 /end DAQ

 /include CanXCPAsr.a2l

/end IF_DATA

...

/include bsw.a2l

...

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

75 / 94

6.8 Configuration without Generation Tool

The configuration of the configuration switches and constants is done in the file

Xcp_Cfg.h.

6.8.1 Compiler Switches

Compiler switches are used to enable/disable optional functionalities in order to save code
space and RAM.

In the following table you will find a complete list of all configuration switches, used to
control the functional units. The default values are bold.

Configuration switches Value Description

XCP_xxx_DAQ ENABLE, DISABLE Enables/disables
synchronous data
acquisition.

XCP_xxx_DAQ_PRESCALER ENABLE, DISABLE Enables/disables the
DAQ prescaler.

XCP_xxx_DAQ_OVERRUN_INDICATION ENABLE, DISABLE Enables/disables the
DAQ overrun
detection.

XCP_xxx_DAQ_HDR_ODT_DAQ2 ENABLE, DISABLE The 2 Byte DAQ/ODT
XCP Packet
identification is used
instead of the PID.

Enabled: Relative
ODT number,
absolute list number
(BYTE)

Disabled: Absolute
ODT number

XCP_xxx_DAQ_PROCESSOR_INFO ENABLE, DISABLE Plug & play
mechanism for the
data acquisition
processor.

XCP_xxx_DAQ_RESOLUTION_INFO ENABLE, DISABLE Plug & play
mechanism for the
data acquisition
resolution.

XCP_xxx_DAQ_EVENT_INFO ENABLE, DISABLE Plug & play
mechanism for the
event definitions.

XCP_xxx_DAQ_TIMESTAMP ENABLE, DISABLE DAQ timestamps

2
 The XCP Protocol allows three identification field types for DTOs: ‘absolute ODT number’, ‘relative ODT

number and absolute DAQ list number’, ‘empty identification field’ (not supported)

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

76 / 94

XCP_xxx_DAQ_TIMESTAMP_FIXED ENABLE, DISABLE Slave always sends
DTO Packets in time
stamped mode.
Otherwise are
timestamps used
individual by each
DAQ-list.

kXcpDaqTimestampSize DAQ_TIMESTAMP_BYTE,

DAQ_TIMESTAMP_WORD,

DAQ_TIMESTAMP_DWORD

The size of
timestamps which can
either be 1Byte,
2Bytes or 4Bytes.

XCP_xxx_SEED_KEY ENABLE, DISABLE Seed & key access
protection

XCP_xxx_CHECKSUM ENABLE, DISABLE Calculation of
checksum

XCP_xxx_CUSTOM_CRC ENABLE, DISABLE Enable call-back for
custom CRC
calculation

XCP_xxx_CRC16CCITT_REFLECTED ENABLE, DISABLE Enable/disable
reflected CRC16
CCITT checksum
calculation algorithm.

Also refer to 6.8.2.1
‘Table of Checksum
Calculation Methods’.

XCP_xxx_AUTOSAR_CRC_MODULE ENABLE, DISABLE Usage of CRC
algorithms of
AUTOSAR CRC
module.

XCP_xxx_PARAMETER_CHECK ENABLE, DISABLE Parameter check

XCP_xxx_SEND_QUEUE ENABLE, DISABLE Transmission send
queue
(shall be used in
conjunction with
synchronous data
acquisition and
stimulation).

XCP_xxx_SEND_EVENT ENABLE, DISABLE Transmission of event
packets (EV)

XCP_xxx_USER_COMMAND ENABLE, DISABLE User defined
command

XCP_xxx_GET_ID_GENERIC ENABLE, DISABLE ECU identification

XCP_xxx_TL_COMMAND ENABLE, DISABLE Transport Layer
command

XCP_xxx_COMM_MODE_INFO ENABLE, DISABLE Communication mode
info

XCP_xxx_CALIBRATION_PAGE ENABLE, DISABLE Calibration data page
switching

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

77 / 94

XCP_xxx_PAGE_INFO ENABLE, DISABLE Calibration data page
plug & play
mechanism

XCP_xxx_PAGE_COPY ENABLE, DISABLE Calibration data page
copying

XCP_xxx_PAGE_FREEZE ENABLE, DISABLE Segment freeze mode
handling

XCP_xxx_DPRAM3 ENABLE, DISABLE Supports the usage of
dual port RAM

XCP_xxx_BLOCK_UPLOAD ENABLE, DISABLE Enables/disables the
slave block transfer.

XCP_xxx_BLOCK_DOWNLOAD ENABLE, DISABLE Enables/disables the
master block transfer.

XCP_xxx_WRITE_PROTECTION ENABLE, DISABLE Write access to RAM

XCP_xxx_READ_PROTECTION ENABLE, DISABLE Read access to RAM

XCP_xxx_READ_EEPROM ENABLE, DISABLE Read access to
EEPROM

XCP_xxx_WRITE_EEPROM ENABLE, DISABLE Write access to
EEPROM

XCP_xxx_PROGRAMMING_WRITE_PROTECTION ENABLE, DISABLE Write access to flash

XCP_xxx_PROGRAM ENABLE, DISABLE Flash programming

XCP_xxx_PROGRAM_INFO ENABLE, DISABLE Flash programming
plug & play
mechanism

XCP_xxx_BOOTLOADER_DOWNLOAD ENABLE, DISABLE Flash programming
with a flash kernel

XCP_xxx_STIM ENABLE, DISABLE Enables/disables data
stimulation.

(also
XCP_ENABLE_DAQ

has to be defined in
order to use data
stimulation)

XCP_xxx_DAQ_RESUME ENABLE, DISABLE Data acquisition
resume mode.

XCP_xxx_SERV_TEXT ENABLE, DISABLE Transmission of
service request codes

XCP_xxx_SERV_TEXT_PUTCHAR ENABLE, DISABLE Putchar function for
the transmission of
service request
messages

XCP_xxx_SERV_TEXT_PRINTF ENABLE, DISABLE Print function for the
transmission of
service request
messages

3
 Not supported by XCP Professional

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

78 / 94

XCP_xxx_MEM_ACCESS_BY_APPL ENABLE, DISABLE Memory access by
application

XCP_xxx_MODEL_PAGED ENABLE, DISABLE Support for paging /
banking

XCP_xxx_SHORT_DOWNLOAD ENABLE, DISABLE Support for
SHORT_DOWNLOAD
command

XCP_xxx_MODIFY_BITS ENABLE, DISABLE Support for
MODIFY_BITS
command

XCP_xxx_WRITE_DAQ_MULTIPLE ENABLE, DISABLE Write DAQ multiple
command

XCP_xxx_GET_XCP_DATA_POINTER ENABLE, DISABLE Enable API for
internal data access

XCP_xxx_CONTROL ENABLE, DISABLE Enable functionality to
en- / disable XCP
module

XCP_xxx_DEV_ERROR_DETECT ENABLE, DISABLE Enable Development
Error check

XCP_xxx_READCCCONFIG ENABLE, DISABLE Enable Read of
FlexRay Parameters

XCP_ADDR_EXT_READCCCONFIG 0x00…0xff Address Extension to
be used for FlexRay
Parameters

XCP_xxx_VECTOR_GENERICMEASUREMENT ENABLE, DISABLE Support for Generic
Measurement feature

XCP_xxx_GET_SESSION_STATUS_API ENABLE, DISABLE Enable API to acquire
the current session
status

6.8.2 Configuration of Constant Definitions

The configuration of constant definitions is done as described below.
The default values are bold.

Constant definitions Range Default Description

kXcpMaxCTOMax 8..255 8 Maximum length of XCP command transfer
objects (CTO).

The length of the CTO can be variable.
However it has to be configured according to the
used XCP Transport Layer.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

79 / 94

kXcpMaxDTOMax 8..2554 8 Maximum length of XCP data transfer objects
(DTO).

The length of the DTO can be variable.
However it has to be configured according to the
used XCP Transport Layer.

kXcpDaqMemSize 0..

0xFFFF

256 Define the amount of memory used for the DAQ
lists and buffers.
Also refer to chapter 7 (Resource
Requirements).

kXcpSendQueueMinSize 1..0x7F - The minimum queue size required for DAQ. The
queue size is the unallocated memory reserved
by kXcpDaqMemSize.

kXcpMaxEvent 0..0xFF5 - Number of available events in the slave (part of
event channel plug & play mechanism)
Also refer to chapter 6.8.5.

kXcpStimOdtCount 0..0xC0 0xC0 Maximum number of ODTs that may be used for
Synchronous Data Stimulation.

kXcpChecksumMethod - - Checksum calculation method.

Refer to chapter 6.8.2.1 ‘Table of Checksum
Calculation Methods’ for valid values.

kXcpChecksumBlockSize 1 ..

0xFFFF

256 Each call of Xcp_MainFunction calculates the

checksum on the amount of bytes specified by
kXcpChecksumBlockSize.

XCP_TRANSPORT_LAYER_V

ERSION

0..

0xFFFF

- Version of the XCP Transport Layer that is used.
(this version gets transferred to the MCS)

kXcpMaxSector 1..0xFF - Number of flash sectors

Also refer to chapter 6.8.7

kXcpMaxSegment 1 1 Number of memory segments

Also refer to chapter 6.8.8.

kXcpMaxPages 1..2 2 Number of pages

Also refer to chapter 6.8.8.

NUMBER_OF_TRANSPORTLA

YERS

1.. 1 Number of used Transport Layers

XCP_TRANSPORT_LAYER_C

AN

0.. 0 Index of Transport Layer

XCP_TRANSPORT_LAYER_F

R

0.. 1 Index of Transport Layer

XCP_TRANSPORT_LAYER_E

TH

0.. 2 Index of Transport Layer

6.8.2.1 Table of Checksum Calculation Methods

Constant Checksum calculation method

XCP_CHECKSUM_TYPE_ADD11 Add BYTE into a BYTE checksum, ignore overflows.

XCP_CHECKSUM_TYPE_ADD12 Add BYTE into a WORD checksum, ignore overflows

4
 Implementation specific range. The range is 8..0xFFFF according to XCP specification [I], [II].

5
 Implementation specific range. The range is 0..0xFFFE according to XCP specification [I], [II].

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

80 / 94

XCP_CHECKSUM_TYPE_ADD14 Add BYTE into a DWORD checksum, ignore overflows

XCP_CHECKSUM_TYPE_ADD22 Add WORD into a WORD checksum, ignore overflows, block
size must be modulo 2

XCP_CHECKSUM_TYPE_ADD24 Add WORD into a DWORD checksum, ignore overflows,
block size must be modulo 2

XCP_CHECKSUM_TYPE_ADD44 Add DWORD into DWORD, ignore overflows, block size
must be modulo 4

XCP_CHECKSUM_TYPE_CRC16CCITT CRC16 CCITT checksum calculation algorithm

Both the standard and the reflected algorithm are supported.
Please refer to chapter 9.6 ‘Reflected CRC16 CCITT
Checksum Calculation Algorithm’.

The CRC16 CCITT algorithm of the AUTOSAR CRC module
is only supported by XCP Professional.

XCP_CHECKSUM_TYPE_CRC32 CRC32 checksum calculation algorithm

The CRC32 algorithm is only supported in XCP Professional
if the AUTOSAR CRC module is used.

6.8.3 Configuration of the CPU Type

To provide platform independent code platform, the CPU type has to be defined.

Configuration switches Value Description

C_CPUTYPE_xxxENDIAN LITTLE,

BIG
Definition whether the CPU is little endian (Intel
format) or big endian (Motorola format).

XCP_xxx_UNALIGNED_MEM_ACCESS ENABLE,

DISABLE
Enables / disables unaligned memory access.

If XCP_DISBLE_UNALIGNED_MEM_ACCESS is

defined WORDs are located on WORD aligned and
DWORD are located on DWORD aligned addresses.

6.8.4 Configuration of Slave Device Identification

The configuration of the slave device identification and automatic session configuration is
described within this chapter. Only one of the following options can be used at one time.

6.8.4.1 Identification by ASAM-MC2 Filename without Path and Extension

If the slave device identification is done by identification with an ASAM-MC2 filename
without path and extension the filename length has to be defined:

#define kXcpStationIdLength length

and the station ID itself has to be defined as string:

const uint8 kXcpStationId[] = “station ID”

The range of kXcpStationIdLength is 0..0xFF.

6.8.4.2 Automatic Session Configuration with MAP Filenames

The automatic session configuration by transferring MAP filenames is a Vector specific
extension that works with CANape and can be enabled by the “XcpGetIdGeneric” attribute.

When this feature is enabled the API as described in 3.4.2 XCP Generic Identification is
enabled. This API will be called, should CANape request the MAP filename, and must be

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

81 / 94

implemented by the user accordingly. This feature must explicitly be enabled in CANape
as well!

Example

#define MAP_FORMAT 29

#define MAP_NAME "xcpsim"

uint8 MapTest[500];

uint32 MapTestSize;

uint32 XcpAppl_GetIdData(MTABYTEPTR *pData, uint8 id)

{

 if(id == IDT_VECTOR_MAPNAMES)

 {

 MapTestSize =

sprintf((char*)MapTest,"%c%c%s.map",MAP_FORMAT,0,MAP_NAME);

 /* Result: MapTest = ”290xcpsim.map” */

 *pData = MapTest;

 return MapTestSize;

 }

 else

 {

 return 0; /* Id not available */

 }

}

‘MAP_FORMAT’ represents the format of the MAP file. (See table below)

‘0’ is a counter that is used as address extension. Please set this parameter to 0.

Table of MAP file formats:

 1 = "BorlandC 16 Bit" 29 = "Microsoft standard"

 2 = "M166" 30 = "ELF/DWARF 16 Bit"

 3 = "Watcom" 31 = "ELF/DWARF 32 Bit"

 4 = "HiTech HC05" 32 = "Fujitsu Softune 3..8(.mps)"

 6 = "IEEE" 33 = "Microware Hawk"

 7 = "Cosmic" 34 = "TI C6711"

 8 = "SDS" 35 = "Hitachi H8S"

 9 = "Fujitsu Softune 1(.mp1)" 36 = "IAR HC12"

 10 = "GNU" 37 = "Greenhill Multi 2000"

 11 = "Keil 16x" 38 = "LN308(MITSUBISHI) for M16C/80"

 12 = "BorlandC 32 Bit" 39 = "COFF settings auto detected"

 13 = "Keil 16x (static)" 40 = "NEC CC78K/0 v35"

 14 = "Keil 8051" 41 = "Microsoft extended"

 15 = "ISI" 42 = "ICCAVR"

 16 = "Hiware HC12" 43 = "Omf96 (.m96)"

 17 = "TI TMS470" 44 = "COFF/DWARF"

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

82 / 94

 18 = "Archimedes" 45 = "OMF96 Binary (Tasking C196)"

 19 = "COFF" 46 = "OMF166 Binary (Keil C166)"

 20 = "IAR" 47 = "Microware Hawk Plug&Play ASCII"

 21 = "VisualDSP" 48 = "UBROF Binary (IAR)"

 22 = "GNU 16x" 49 = "Renesas M32R/M32192 ASCII"

 23 = "GNU VxWorks" 50 = "OMF251 Binary (Keil C251)"

 24 = "GNU 68k" 51 = "Microsoft standard VC8"

 25 = "DiabData" 52 = "Microsoft VC8 Release Build (MATLAB DLL)"

 26 = "VisualDSP DOS" 53 = "Microsoft VC8 Debug Build (MATLAB DLL)"

 27 = "HEW SH7055" 54 = "Microsoft VC8 Debug file (pdb)"

 28 = "Metrowerks"

6.8.5 Configuration of the Event Channel Plug & Play Mechanism

The event channel plug & play mechanism is enabled with the switch

XCP_ENABLE_DAQ_EVENT_INFO

A prerequisite for the event channel plug & play mechanism is the general data acquisition
plug & play mechanism. If the mechanism is enabled the following configurations items
have to be defined as described below:

Constant Range Description

kXcpMaxEvent 0..0xFF6 Number of available events in the slave
(part of event channel plug & play mechanism)

If the event numbers do not start at 0 or are not
continuous this is the maximum used event channel
number plus 1.

kXcpEventName[] kXcpMaxEvent List with pointers to the event channel names that are
defined as strings.

kXcpEventNameLength[] kXcpMaxEvent Length of the event channel names without the
terminating char.

kXcpEventCycle[] kXcpMaxEvent Cycle time of the event channels in milliseconds.

kXcpEventDirection[] kXcpMaxEvent Direction of the event channels.

For XCP Basic valid values are:

- kXcpEventDirectionDaq

For XCP Professional valid values are:

- kXcpEventDirectionDaq

- kXcpEventDirectionStim

- kXcpEventDirectionDaqStim

Example

#define XCP_ENABLE_DAQ_EVENT_INFO

#define kXcpMaxEvent 3

CONST(uint8, XCP_CONST) kXcpEventName_0[] = "10ms";

6
 Implementation specific range. The range is 0..0xFFFE according to XCP specification [I], [II].

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

83 / 94

CONST(uint8, XCP_CONST) kXcpEventName_1[] = "100ms DAQ";

CONST(uint8, XCP_CONST) kXcpEventName_2[] = "100ms STIM";

CONSTP2CONST(uint8, XCP_CONST, XCP_CONST) kXcpEventName[] =

{

 &kXcpEventName_0[0],

 &kXcpEventName_1[0],

 &kXcpEventName_2[0]

};

CONST(uint8, XCP_CONST) kXcpEventNameLength[] =

{

 4,

 9,

 10

};

CONST(uint8, XCP_CONST) kXcpEventCycle[] =

{

 10,

 100,

 100

};

CONST(uint8, XCP_CONST) kXcpEventDirection[] =

{

 kXcpEventDirectionDaq,

 kXcpEventDirectionDaq,

 kXcpEventDirectionStim

};

6.8.6 Configuration of the DAQ Time Stamped Mode

Transmission of DAQ timestamps is enabled with XCP_ENABLE_DAQ_TIMESTAMP. If

XCP_ENABLE_DAQ_TIMESTAMP_FIXED is defined all DTO Packets will be transmitted in

time stamped mode.

Constant Range Description

kXcpDaqTimestampSize DAQ_TIMESTAMP_BYTE,

DAQ_TIMESTAMP_WORD,

DAQ_TIMESTAMP_DWORD

This parameter defines the
size of timestamps. It can
either be 1 byte, 2 bytes or 4
bytes.

XcpDaqTimestampType uint8, uint16 or uint32 Type of the timestamp
depends on the parameter
kXcpDaqTimestampSize.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

84 / 94

kXcpDaqTimestampUnit DAQ_TIMESTAMP_UNIT_1NS

DAQ_TIMESTAMP_UNIT_10NS

DAQ_TIMESTAMP_UNIT_100NS

DAQ_TIMESTAMP_UNIT_1US

DAQ_TIMESTAMP_UNIT_10US

DAQ_TIMESTAMP_UNIT_100US

DAQ_TIMESTAMP_UNIT_1MS

DAQ_TIMESTAMP_UNIT_10MS

DAQ_TIMESTAMP_UNIT_100MS

DAQ_TIMESTAMP_UNIT_1S

DAQ_TIMESTAMP_UNIT_1pS

DAQ_TIMESTAMP_UNIT_10pS

DAQ_TIMESTAMP_UNIT_100pS

Unit of the timestamp

(1 ns, 10 ns .. 1 s)

kXcpDaqTimestampTicksPerUnit 0..0xFFFF Time stamp ticks per unit

6.8.7 Configuration of the Flash Programming Plug & Play Mechanism

The flash programming plug & play mechanism is enabled with the switch

XCP_ENABLE_PROGRAM_INFO

If the plug & play mechanism is enabled the number of sectors and the start address and
end address of each sector has to be defined. The constants that have to be defined can
be found in the following table.

Constant Range Description

kXcpMaxSector 0..0xFF Number of available flash sectors in the slave

kXcpSectorName[] kXcpMaxSector List with pointers to the Sector names that are
defined as strings.

kXcpSectorNameLength kXcpMaxSector Length of the Sector names without the terminating
char.

kXcpProgramSectorStart[] kXcpMaxSector List with the start addresses of the sectors

kXcpProgramSectorEnd[] kXcpMaxSector List with the end address of the sectors

Example

#define XCP_ENABLE_PROGRAM_INFO

#define kXcpMaxSector 2

CONST(XcpCharType, XCP_CONST) kXcpSectorName_0[] = "Sector0";

CONST(XcpCharType, XCP_CONST) kXcpSectorName_1[] = "Sector1";

CONSTP2CONST(XcpCharType, XCP_CONST, XCP_CONST) kXcpSectorName[] =

{

 &kXcpSectorName_0[0],

 &kXcpSectorName_1[0]

};

CONST(uint8, XCP_CONST) kXcpSectorNameLength[] =

{

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

85 / 94

 7U,

 7U

};

CONST(uint32, XCP_CONST) kXcpProgramSectorStart [] =

{

 (uint32)0x000000u,

 (uint32)0x010000u,

};

CONST(uint32, XCP_CONST) kXcpProgramSectorEnd [] =

{

 (uint32)0x00FFFFu,

 (uint32)0x01FFFFu,

};

6.8.8 Configuration of the Page Switching Plug & Play Mechanism

The page switching plug & play mechanism is enabled with the switch

XCP_ENABLE_PAGE_INFO

If the plug & play mechanism is enabled the following configurations items have to be
defined as described below:

Constant Range Description

kXcpMaxSegment 0x01 Number of memory segments

kXcpMaxPages 0x01..0x02 Number of pages

6.8.9 Configuration of the used Transport Layer

The XCP Protocol Layer uses a jump table to call respective Transport Layer Functions.
This jump table has to contain certain Function names

Constant Range Description

Xcp_TlApi Number of TL Function Pointer table containing pointers to the
respective Transport Layer

Example

#define NUMBER_OF_TRANSPORTLAYERS 1

#define XCP_TRANSPORT_LAYER_CAN 0u

CONST(Xcp_TlApiType, XCP_CONST)
Xcp_TlApi[NUMBER_OF_TRANSPORTLAYERS] =

{

 {

 CanXcp_Send, /* ApplXcpSend */

 CanXcp_SendFlush /* ApplXcpSendFlush */

 #if defined (XCP_ENABLE_TL_COMMAND)

 ,

 CanXcp_TLService /* ApplXcpTLService */

 #endif

 }

};

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

86 / 94

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

87 / 94

7 Resource Requirements

The resource requirements of the XCP Protocol Layer mainly depend on the micro
controller, compiler options and configuration. Within this chapter only the configuration
specific resource requirements are taken in consideration.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

88 / 94

8 Limitations

8.1 General Limitations

The functional limitations of the XCP Professional Version are listed below:

> Bit stimulation is not supported

> Only dynamic DAQ list allocation supported

> The interleaved communication model is not supported

> Only default programming data format is supported

> GET_SECTOR_INFO does not return sequence numbers

> Program Verify and Program Format are not supported

> DAQ numbers are limited to byte size

> DAQ does not support address extension

> DAQ-list and event channel prioritization is not supported

> Event channels contain one DAQ-list

> ODT optimization not supported

> Assignments of CAN identifiers to DAQ lists is not supported

> MAX_DTO is limited to 0xFF

> The resume bits in DAQ lists are not set

> STORE_DAQ, CLEAR_DAQ and STORE_CAL do not send an event message

> Entering resume mode does not send an event message

> Overload indication by an event is not supported

> SERV_RESET is not supported

> The following checksum types are not supported

> XCP_CRC_16

> XCP_CRC_32

> XCP_USER_DEFINED

> Maximum checksum block size is 0xFFFF

> Page Info and Segment Info is not supported

> Only one segment and two pages are supported

> The seed size and key size must be equal or less MAX_CTO-2

> Consistency only supported on ODT level

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

89 / 94

Planned:

> User defined checksum calculations

> CRC16 and CRC32

> The AUTOSAR API Xcp_SetTransmissionMode is not supported

8.2 Limitations Regarding Platforms, Compilers and Memory Models

Even though the XCP is a Protocol Layer and therefore higher software layer, it
manipulates memory addresses and directly access the memory with these addresses.

This might cause issues for some combinations of platforms, compilers and memory
models. The following list provides all known restrictions on platforms, compilers and
linkers:

> CANoeOSEK Emulation is not supported

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

90 / 94

9 FAQ

9.1 Invalid Time Stamp Unit

FAQ
If using data acquisition CANape reports an error due to an invalid timestamp
unit.

If you are using CANape 5.5.x or an earlier version please define

#define XCP_ENABLE_CANAPE_5_5_X_SUPPORT

in your user config file.

9.2 Support of small and medium memory model

FAQ
How is the XCP Protocol Layer configured in order to access the whole memory
in the small and medium memory model?

By default The XCP Protocol Layer accesses the memory with a default pointer. I.e. in
small and medium memory model a near pointer is used. If the far memory (e.g. code or
read-only sections) needs to be accessed via the XCP Protocol the memory qualifiers
have to be defined as far pointers by the user within the user config file.
Two memory qualifiers are used to access the memory:

MTABYTEPTR

#define MTABYTEPTR P2VAR(uint8, AUTOMATIC, XCP_MTA_DATA)

This pointer is used to access memory for standard read and

write operations

DAQBYTEPTR

#define DAQBYTEPTR P2VAR(uint8, AUTOMATIC, XCP_DAQ_DATA)

This pointer is used to access memory for the Synchronous Data

Acquisition

Depending on the use case, microcontroller, memory model and compiler either

XCP_MEMORY_FAR or both memory qualifiers (DAQBYTEPTR and MTABYTEPTR) have to

be defined by the user. Alternatively the AUTOSAR Compiler Abstraction can be used. In
this case the pointer classes

XCP_MTA_DATA and

XCP_DAQ_DATA

Have to be defined as “far” according to the used compiler.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

91 / 94

9.3 Small memory model on ST10 / XC16X / C16X with Tasking Compiler

FAQ
How has XCP Protocol Layer to be configured in order to support small memory
model on the following microcontrollers: ST10, XC16X, C16X with Tasking

Compiler?

If the small memory model is used and the two least significant bits of the DPP register
where the data of XCP is located is not equal the default DPP register value (i.e. the two
least significant bits of DPPx are unequal x, x=0..3) the configuration of the XCP Protocol
Layer has to be adapted in the user config file

Disable type casts from pointers to integers :

#define XCP_ENABLE_NO_P2INT_CAST

9.4 Data Page Banking on Star12X / Metrowerks

FAQ
How has the XCP Protocol Layer to be configured in order to support data page
banking on the Star12X with Metrowerks compiler?

In order to use data page banking the following definition has to be added to the user
config file:

#define XCP_MEMORY_MODEL_PAGED

If this option is enabled far pointers are used for memory access, and address conversions

are carried out in the in the application callback template _xcp_appl.c. These address

conversions have to adapted to the used derivative.

Please note

The data page banking support is implemented in the template _xcp_appl.c for
the MC9S12XDP512. For other Star12X derivatives the template has to be
adapted.

9.5 Memory model banked on Star12X / Cosmic

FAQ
How has the XCP Protocol Layer to be configured in order to support the access
to far pages in the banked memory model on the Star12X with Cosmic compiler?

In order to access far pages or support data page banking the following definitions have to
be added to the user config file:

#define XCP_MEMORY_MODEL_PAGED

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

92 / 94

#define XCP_ENABLE_MEM_ACCESS_BY_APPL

If this option is enabled far pointers are used for memory access, and address conversions

are carried out in the in the application callback template _xcp_appl.c. These address

conversions have to adapted to the used derivative.

Please note

The data page banking support is implemented in the template _xcp_appl.c for

the MC9S12XDP512. For other Star12X derivatives the template has to be
adapted.

9.6 Reflected CRC16 CCITT Checksum Calculation Algorithm

FAQ
How is the reflected CRC16 CCITT checksum calculation algorithm configured?

The XCP Protocol Layer supports both the standard CRC16 CCITT algorithm and the
reflected CRC16 CCITT algorithm. In order to use the reflected algorithm the following
definition has to be added to the user config file:

#define XCP_ENABLE_CRC16CCITT_REFLECTED

Please note

Up to CANape version 5.6.30.3 (SP3) the standard CRC16 CCITT algorithm is
not supported, but the reflected one.
However a user checksum calculation DLL can be used in order to use the
standard algorithm with former versions of CANape.

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

93 / 94

10 Bibliography

This manual refers to the following documents:

[I] XCP -Part 1 - Overview
Version 1.1

[II] XCP -Part 2- Protocol Layer Specification
Version 1.1

[III] XCP -Part 5- Example Communication Sequences
Version 1.1

[IV] Technical Reference XCP on CAN Transport Layer
Version 1.6

[V] Technical Reference XCP on FlexRay Transport Layer
Version 1.9

[VI] Technical Reference XCP on LIN Transport Layer
Version 1.0

[VII] AUTOSAR Specification of CRC Routines
Release 2.0.0 of 2006-04-28

Technical Reference XCP Protocol Layer

2016, Vector Informatik GmbH Version: 2.05.00

94 / 94

11 Contact

Visit our website for more information on

> News
> Products
> Demo software
> Support
> Training data
> Addresses

www.vector-informatik.com

http://www.vector-informatik.com/

	1 History
	2 Overview
	2.1 Abbreviations and Items used in this paper
	2.2 Naming Conventions

	3 Functional Description
	3.1 Overview of the Functional Scope
	3.2 Communication Mode Info
	3.3 Block Transfer Communication Model (XCP Professional only)
	3.4 Slave Device Identification
	3.4.1 XCP Station Identifier
	3.4.2 XCP Generic Identification
	3.4.3 Identification of FlexRay Parameters

	3.5 Seed & Key
	3.6 Checksum Calculation
	3.6.1 Custom CRC calculation

	3.7 MainFunction
	3.8 Memory Protection (XCP Professional only)
	3.9 Memory Access by Application
	3.9.1 Special use case “Type Safe Copy”

	3.10 Event Codes
	3.11 Service Request Messages
	3.12 User Defined Command
	3.13 Transport Layer Command
	3.14 Synchronous Data Transfer
	3.14.1 Synchronous Data Acquisition (DAQ)
	3.14.2 DAQ Timestamp
	3.14.3 Power-Up Data Transfer
	3.14.4 Send Queue
	3.14.5 Data Stimulation (STIM)
	3.14.6 Bypassing
	3.14.7 Data Acquisition Plug & Play Mechanisms
	3.14.8 Event Channel Plug & Play Mechanism
	3.14.9 Data consistency

	3.15 The Online Data Calibration Model
	3.15.1 Page Switching
	3.15.2 Page Switching Plug & Play Mechanism
	3.15.3 Calibration Data Page Copying
	3.15.4 Freeze Mode Handling

	3.16 Flash Programming
	3.16.1 Flash Programming by the ECU’s Application
	3.16.1.1 Flash Programming Plug & Play Mechanism

	3.16.2 Flash Programming with a Flash Kernel
	3.16.3 Flash Programming Write Protection

	3.17 EEPROM Access
	3.18 Parameter Check
	3.19 Performance Optimizations
	3.20 Interrupt Locks / Exclusive Areas
	3.20.1 XCP_EXCLUSIVE_AREA_0
	3.20.2 XCP_EXCLUSIVE_AREA_1
	3.20.3 XCP_EXCLUSIVE_AREA_2

	3.21 Basic Multi Core support
	3.21.1 Type safe copy

	3.22 Accessing internal data
	3.23 En- / Disabling the XCP module
	3.24 XCP measurement during the follow up time

	4 Integration into the Application
	4.1 Files of XCP Professional
	4.2 Version changes
	4.3 Compiler Abstraction and Memory Mapping
	4.4 Support of Vx1000 Integration

	5 Feature List
	6 Description of the API
	6.1 Version of the Source Code
	6.2 XCP Services called by the Application
	6.2.1 Xcp_InitMemory: Initialization of the XCP Protocol Layer Memory
	6.2.2 Xcp_Init: Initialization of the XCP Protocol Layer
	6.2.3 Xcp_Event: Handling of a data acquisition event channel
	6.2.4 Xcp_StimEventStatus: Check data stimulation events
	6.2.5 Xcp_MainFunction: Background calculation of checksum
	6.2.6 Xcp_SendEvent: Transmission of event codes
	6.2.7 Xcp_Putchar: Put a char into a service request packet
	6.2.8 Xcp_Print: Transmission of a service request packet
	6.2.9 Xcp_Disconnect: Disconnect from XCP master
	6.2.10 Xcp_SendCrm: Transmit response or error packet
	6.2.11 Xcp_GetXcpDataPointer: Request internal data pointer
	1.1.1
	1.1.1
	6.2.12 Xcp_GetVersionInfo: Request module version information
	6.2.13 Xcp_ModifyProtectionStatus: Influence seed&key behaviour

	6.3 XCP Protocol Layer Functions, called by the XCP Transport Layer
	6.3.1 Xcp_Command: Evaluation of XCP packets and command interpreter
	6.3.2 Xcp_SendCallBack: Confirmation of the successful transmission of a XCP packet
	6.3.3 Xcp_GetSessionStatus: Get session state of XCP
	6.3.4 Xcp_SetActiveTl: Set the active Transport Layer
	6.3.5 Xcp_GetActiveTl: Get the currently active Transport Layer

	6.4 XCP Transport Layer Services called by the XCP Protocol Layer
	6.4.1 <Bus>Xcp_Send: Request for the transmission of a DTO or CTO message
	6.4.2 <Bus>Xcp_SendFlush: Flush transmit buffer
	6.4.3 XcpAppl_InterruptEnable: Enable interrupts
	6.4.4 XcpAppl_InterruptDisable: Disable interrupts
	6.4.5 <Bus>Xcp_TLService: Transport Layer specific commands

	6.5 Application Services called by the XCP Protocol Layer
	6.5.1 XcpAppl_GetPointer: Pointer conversion
	6.5.2 XcpAppl_GetIdData: Get Identification
	6.5.3 XcpAppl_GetSeed: Generate a seed
	6.5.4 XcpAppl_Unlock: Valid key and unlock resource
	6.5.5 XcpAppl_CheckReadEEPROM: Check read access from EEPROM
	6.5.6 XcpAppl_CheckWriteEEPROM: Check write access to the EEPROM
	6.5.7 XcpAppl_CheckWriteAccess: Check address for valid write access
	6.5.8 XcpAppl_CheckReadAccess: Check address for valid read access
	6.5.9 XcpAppl_CheckDAQAccess: Check address for valid read or write access
	6.5.10 XcpAppl_CheckProgramAccess: Check address for valid write access
	6.5.11 XcpAppl_UserService: User defined command
	6.5.12 XcpAppl_OpenCmdIf: XCP command extension interface
	6.5.13 XcpAppl_SendStall: Resolve a transmit stall condition
	6.5.14 XcpAppl_DisableNormalOperation: Disable normal operation of the ECU
	6.5.15 XcpAppl_StartBootLoader: Start of boot loader
	6.5.16 XcpAppl_Reset: Perform ECU reset
	6.5.17 XcpAppl_ProgramStart: Prepare flash programming
	6.5.18 XcpAppl_FlashClear: Clear flash memory
	6.5.19 XcpAppl_FlashProgram: Program flash memory
	6.5.20 XcpAppl_DaqResume: Resume automatic data transfer
	6.5.21 XcpAppl_DaqResumeStore: Store DAQ lists for resume mode
	6.5.22 XcpAppl_DaqResumeClear: Clear stored DAQ lists
	6.5.23 XcpAppl_CalResumeStore: Store Calibration data for resume mode
	6.5.24 XcpAppl_GetTimestamp: Returns the current timestamp
	6.5.25 XcpAppl_GetCalPage: Get calibration page
	6.5.26 XcpAppl_SetCalPage: Set calibration page
	6.5.27 XcpAppl_CopyCalPage: Copying of calibration data pages
	6.5.28 XcpAppl_SetFreezeMode: Setting the freeze mode of a segment
	6.5.29 XcpAppl_GetFreezeMode: Reading the freeze mode of a segment
	6.5.30 XcpAppl_Read: Read a single byte from memory
	6.5.31 XcpAppl_Write: Write a single byte to RAM
	6.5.32 XcpAppl_MeasurementRead: Read multiple bytes from memory
	6.5.33 XcpAppl_CalibrationWrite: Write multiple bytes to memory
	6.5.34 XcpAppl_ReadChecksumValue: Read checksum value
	6.5.35 XcpAppl_CalculateChecksum: Custom checksum calculation

	6.6 XCP Protocol Layer Functions that can be overwritten
	6.6.1 Xcp_MemCpy: Copying of a memory range
	6.6.2 Xcp_MemSet: Initialization of a memory range
	6.6.3 Xcp_MemClr: Clear a memory range

	6.7 AUTOSAR CRC Module Services called by the XCP Protocol Layer (XCP Professional Only)
	6.7.1.1 Generated a2l files

	6.8 Configuration without Generation Tool
	6.8.1 Compiler Switches
	6.8.2 Configuration of Constant Definitions
	6.8.2.1 Table of Checksum Calculation Methods

	6.8.3 Configuration of the CPU Type
	6.8.4 Configuration of Slave Device Identification
	6.8.4.1 Identification by ASAM-MC2 Filename without Path and Extension
	6.8.4.2 Automatic Session Configuration with MAP Filenames

	6.8.5 Configuration of the Event Channel Plug & Play Mechanism
	6.8.6 Configuration of the DAQ Time Stamped Mode
	6.8.7 Configuration of the Flash Programming Plug & Play Mechanism
	6.8.8 Configuration of the Page Switching Plug & Play Mechanism
	6.8.9 Configuration of the used Transport Layer

	7 Resource Requirements
	8 Limitations
	8.1 General Limitations
	8.2 Limitations Regarding Platforms, Compilers and Memory Models

	9 FAQ
	9.1 Invalid Time Stamp Unit
	9.2 Support of small and medium memory model

	Have to be defined as “far” according to the used compiler.
	9.3 Small memory model on ST10 / XC16X / C16X with Tasking Compiler
	9.4 Data Page Banking on Star12X / Metrowerks
	9.5 Memory model banked on Star12X / Cosmic
	9.6 Reflected CRC16 CCITT Checksum Calculation Algorithm

	10 Bibliography
	11 Contact

