XCP Protocol Layer

Technical Reference

Version 2.05.00

2.05.00
m Released

vector”

Technical Reference XCP Protocol Layer vector

1 History

Date __Version Remarks

2005-01-17 1.00.00 ESCANO00009143: Initial draft
Warning Text added

2005-06-22 1.01.00 FAQ extended: ESCAN00012356, ESCANO00012314
ESCANO00012617: Add service to retrieve XCP state

2005-12-20 1.02.00 ESCANO00013883: Revise Resume Mode

2006-03-09 1.03.00 ESCANO00015608: Support command
TRANSPORT_LAYER_CMD
ESCANO00015609: Support XCP on FlexRay Transport Layer

2006-04-24 1.04.00 ESCANO00015913: Correct filenames
Data page banking support of application callback template
added

2006-05-08 1.05.00 ESCANO00016263: Describe support of reflected CRC16 CCITT
ESCANO00016159: Add demo disclaimer to XCP Basic

2006-05-29 1.06.00 ESCANO00016226: Support XCP on LIN Transport Layer

2006-07-20 1.07.00 ESCANO00012636: Add configuration with GENy
ESCANO00016956: Support AUTOSAR CRC module

2006-10-26 1.08.00 ESCANO00018115: DPRAM Support only available in XCP Basic
ESCANO00017948: Add paging support
ESCANO00017221: Documentation of reentrant capability of all
functions

2007-01-18 1.09.00 ESCANO00018809: Support data paging on Star12X / Cosmic
2007-05-07 1.10.00 Description of new features added
2007-09-14 1.11.00 Segment freeze mode now supported

2008-07-23 1.12.00 ESCAN00028586: Support of Program_Start callback
ESCANO00017955: Support MIN_ST_PGM
ESCANO00017952: Open Interface for command processing

2008-09-10 1.13.00 Additional pending return value of call backs added
MIN_ST configuration added

2008-12-01 1.14.00 ESCANO00018157: SERV_RESET is not supported
ESCANO00032344: Update of XCP Basic Limitations

2009-05-14 1.15.00 ESCANO00033909: New features implemented: Prog Write
Protection, Timestamps, Calibration activation

2009-07-30 1.15.01 Fixed some editorial errors

2009-11-13 1.16.00 Added AUTOSAR Compiler Abstraction

2010-04-30 1.16.01 Fixed some editorial errors

2010-07-27 1.16.02 Fixed some editorial errors

2010-08-19 1.17.00 ESCANO00044693: New callbacks XcpCalibrationWrite and

XcpCalibrationRead
ESCANO00042867: Support Multiple Transport Layers

©2016, Vector Informatik GmbH Version: 2.05.00 2/94

Technical Reference XCP Protocol Layer vector

2010-12-10 1.18.00 ESCANO00045981: Add support to read out FR Parameters

2011-07-20 1.19.00 ESCANO00049542: Describe IDT_VECTOR_MAPNAMES format
in TechRef
ESCANO00043487: XCP shall support user selectable behaviour
of Send Queue overrun

2011-08-04 ESCANO00052564: Adapt ReadCcConfig Parameter to ASR3.2.1

2012-02-20 1.19.01 ESCANO00055214: DAQ Lists can be extended after
START_STOP_SYNCH

2012-09-03 1.19.02 ESCANO00061159: Provide an API to detect XCP state and usage
2012-11-08 1.19.03 Added Option for AMD Runtime Measurement

2011-03-23 2.00.00 ESCANO00049471: Create branch for AUTOSAR 4

2013-02-11 2.01.01 Editorial Changes

2013-07-08 2.02.00 ESCANO00068035: Xcp_SetTransmissionMode not supported

ESCANO00070127: AR4-322/AR3_2552: Support of Vx1000
System

ESCANO00070082: The API ApplXcpDagResumeStore has a
wrong description

ESCANO00069019: Mapping to critical sections not described in
detail for Protocol Layer

ESCANO00068639: Describe data consistency on ODT Level
ESCANO00067332: Document the usage of the
Xcp_MainFunction/XcpBackground

2013-12-04 2.03.00 ESCANO00072401: Support custom CRC Cbk
ESCANO00072326: Support Generic GET_ID

2014-08-15 2.03.01 ESCANO00077231: AR3-2679: Description BCD-coded return-
value of Xcp_GetVersioninfo() in TechRef
ESCANO00077813: Specify supported ASAM Version

2015-02-02 2.03.02 ESCANO00080981: SET_CAL_PAGE is limited to synchronous
operation

2015-06-09 2.04.00 ESCANO00082215: FEAT-1450: Basic MultiCore XCP

2016-02-18 2.04.01 ESCANO00087492: New API
ApplXcpMeasurementRead/ApplXcpCalibrationWrite not

documented
ESCANO00087496: Return code description of ApplXcp call-backs
incomplete

2016-10-04 2.05.00 Replaced Xcp_Control API by variable.

ESCANO00091747: FEAT-1980: Add Multi Client / Multi
Connection support

ESCANO00092229: Support API to modify Protection State

©2016, Vector Informatik GmbH Version: 2.05.00 3/94

Technical Reference XCP Protocol Layer vector

| Please note

. We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

| Note for XCP Basic

. Please note, that the demo and example programs only show special aspects of the
software. With regard to the fact that these programs are meant for demonstration
purposes only, Vector Informatik’s liability shall be expressly excluded in cases of
ordinary negligence, to the extent admissible by law or statute.

©2016, Vector Informatik GmbH Version: 2.05.00 4/94

Technical Reference XCP Protocol Layer vector

Contents
U 5 153 o SRS 2
b O 1 =Y V- SR 1
2.1 Abbreviations and Items used in this paper..........ccccccvvviiiii 11
2.2 Naming CoNVENTIONS.........cooiiiiiiiii 13
3 Functional DeScCription ... 14
3.1 Overview of the Functional SCOPE..........ccuuiiiiiiiiiiiicce e, 14
3.2 Communication Mode INfOuuuuiiiiiiiiiiiiiiiiiii e 14
3.3 Block Transfer Communication Model (XCP Professional only)ccc........ 14
3.4 Slave Device [dentifiCationuuuiiiiiiiiiiiiiiiiii e 14
3.4.1 XCP Station Identifier............oovvviiiiiiiiiiii 14
3.4.2 XCP Generic ldentificationcccooiiiiiiiiiiiii e 15
343 Identification of FlexRay Parameters............cccooeeeiiiiiiiiiiiiiiiieeecneinn, 15
3.5 SEEA & KBY ...ttt 15
3.6 Checksum CalCulationoouuiiiiiie e e e aaaees 17
3.6.1 Custom CRC calculationccoooeeiieiiieieeeee e, 17
3.7 MaINFUNCLION ... e e e e s s e e e e e eeaenes 17
3.8 Memory Protection (XCP Professional only) ..., 18
3.9 Memory Access by AppPliCation...........oooiiiiiiiiiii e 18
3.9.1 Special use case “Type Safe Copy”cooovivieeeiieee 18
O V=T o 7 0o [18
3.1 Service REQUEST MESSAQESuuuuuuuuuiiiiiiiiiiiiiiiiiiininnannrennnnnenneennnenrnsnnnnnnnnnnnnne 19
3.12 User Defined Command............ouuuiiiiiiiiiiees e e e 19
3.13 Transport Layer Commandccooiiiiiiiiiiiiiiiie e e e aannes 19
3.14 Synchronous Data Transfer ... 20
3.14.1 Synchronous Data Acquisition (DAQ).........ccoovviimiiiiiiiiiiiniiiiiieeen 20
K Tt 7 37 © VX @ B T g T3 =T o o J 20
3.14.3 Power-Up Data Transfer ... 21
3.14.4 Send QUEUE.......coiiiiiiieieie et 21
3.14.5 Data Stimulation (STIM)cooiiiiiiiiiii e 22
3.14.6 BYPASSING ..uuiiiiiiiiiiiiiiiiiiiiiiii e 22
3.14.7 Data Acquisition Plug & Play Mechanismsccccooiiiiiiiiiiinnnnnnns 22
3.14.8 Event Channel Plug & Play Mechanismccccccuvviiiiiiiiiiiiinninnnns 23
3.14.9 Data CONSISIENCY.......uuuiiiiiiiiiiiiiiiiiiiiiiiii i 23
3.15 The Online Data Calibration Modeluuuumiiiimiiiiiiiiiiiiiiiiiiiieenn. 24
3.15.1 Page SWItChingeiii i 24
3.156.2 Page Switching Plug & Play Mechanismcccccccoiiiiiiiiiiiiiinnnnnns 24
3.15.3 Calibration Data Page COpYiNgccuuieeriiiiiiiiiiiieeeeeiiiiiiieiee e 24

©2016, Vector Informatik GmbH Version: 2.05.00 5/94

Technical Reference XCP Protocol Layer

3.15.4 Freeze Mode Handling.............uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeineeeee 24

3.16 Flash Programming.......cccocceeiiiiiiiiiiii ettt e e e e e e et e s e e e e e aeannes 25
3.16.1 Flash Programming by the ECU’s Applicationcccccccvviiinnnnns 25

3.16.2 Flash Programming with a Flash Kernel...............cccccciiiiiiiininn, 26

3.16.3 Flash Programming Write Protection............ccccooooiiiiiiiii s 26

317 EEPROM ACCESS ...cciiiiiiiiiieeee ettt et s e e e e ettt s s e e e e e e eeeataa e s e e eeeeennnes 26
3.18 Parameter CRECKuuuuuiiiiiiiiiiiiiiiiiiiii bbb nbnnnee 27
3.19 Performance OptimizationS...........cooviiiiiiiiiii e 27
3.20 Interrupt LOCKS / EXCIUSIVE AF€AScceeeiieeiiiiee e 27
3.20.1 XCP_EXCLUSIVE_AREA 0uuttiiiiiiiiiiiiiiiiiiiieiieeiiiiinnnnneennennnnnnnens 28

3.20.2 XCP_EXCLUSIVE_AREA 1. .oiiiiiiiiiiiiiiiiiiiiiiinnieieniennnnnnnnssnnnnnnnnnnnns 28

3.20.3 XCP_EXCLUSIVE_AREA 2......outtiiiiiiiiiiuiiiiiineieienninnnnnnnsnnnnnnnnnnnnn. 28

3.21 Basic Multi Core SUPPOI..........oouiiiiii et e e e aaaens 28
3.21.1 TYPE SAf COPY ..o 28

3.22 Accessing internal data...........coooviiiiiii 28
3.23 En-/Disabling the XCP mModUIE.........cccoiiiiiiiiiiii e 28
3.24 XCP measurement during the follow up timecccccoiiiiiiiiiiiiiiiiiiis 29
4 Integration into the Application ... 30
4.1 Files of XCP Professional ... 30
4.2 VErsion ChaNgEs ..o 30
4.3 Compiler Abstraction and Memory Mapping........ccovvveuviiiiiieeeeeieiiceen e eeeeeeeees 30
4.4 Support of VX1000 INtegration..............ueuueeeeemuieiiiiiiiiiiiiiieiiiieeieiieneeeeeeneeeees 31
B Feature List ... e 32
6 Description of the APl ... e 34
6.1 Version of the Source Codeooooveiiiiiiii 34
6.2 XCP Services called by the Application ..., 35
6.2.1 Xcp_InitMemory: Initialization of the XCP Protocol Layer Memory ... 35

6.2.2 Xcp_Init: Initialization of the XCP Protocol Layer...........cccccoeeeevrnenns 35

6.2.3 Xcp_Event: Handling of a data acquisition event channel 36

6.2.4 Xcp_StimEventStatus: Check data stimulation events 37

6.2.5 Xcp_MainFunction: Background calculation of checksum................ 37

6.2.6 Xcp_SendEvent: Transmission of event codes..........cccccvvvvvvvvvennnnn.. 38

6.2.7 Xcp_Putchar: Put a char into a service request packet 38

6.2.8 Xcp_Print: Transmission of a service request packet 39

6.2.9 Xcp_Disconnect: Disconnect from XCP master..........cccccceeeieeeeinnnns 40

6.2.10 Xcp_SendCrm: Transmit response or error packet.................c...oee. 40

6.2.11 Xcp_GetXcpDataPointer: Request internal data pointer................... 41

6.2.12 Xcp_GetVersioninfo: Request module version information............... 41

©2016, Vector Informatik GmbH Version: 2.05.00

vector’

6/94

Technical Reference XCP Protocol Layer

6.3

6.4

6.5

6.2.13 Xcp_ModifyProtectionStatus: Influence seed&key behaviour-........... 42
XCP Protocol Layer Functions, called by the XCP Transport Layer.................. 42
6.3.1 Xcp_Command: Evaluation of XCP packets and command

QY =Ty o] =] (= P 43
6.3.2 Xcp_SendCallBack: Confirmation of the successful transmission of

A XCP PACKEL ... 43
6.3.3 Xcp_GetSessionStatus: Get session state of XCP............ceeee. 44
6.3.4 Xcp_SetActiveTl: Set the active Transport Layer............cccccooeeeens 45
6.3.5 Xcp_GetActiveTl: Get the currently active Transport Layer 45
XCP Transport Layer Services called by the XCP Protocol Layer 46
6.4.1 <Bus>Xcp_Send: Request for the transmission of a DTO or CTO

g T=TSTST= o = P 46
6.4.2 <Bus>Xcp_SendFlush: Flush transmit bufferccconiil. 46
6.4.3 XcpAppl_InterruptEnable: Enable interrupts........ccocoovviiiiiiiiinnnnnnnnn, 47
6.44 XcpAppl_InterruptDisable: Disable interrupts.......c..ccoievivviiiiniennnnnn, 48
6.4.5 <Bus>Xcp_TLService: Transport Layer specific commands............. 48
Application Services called by the XCP Protocol Layer...............cccoeeeeeeieennnn. 49
6.5.1 XcpAppl_GetPointer: Pointer conversioncccccovviiiieneeencciinn, 49
6.5.2 XcpAppl_GetldData: Get Identification............ccccoeeeeiiiiiiiiiencnnnn, 50
6.5.3 XcpAppl _GetSeed: Generate a seedcccoeeeviviiiiiiiiiiiiceciee e, 50
6.5.4 XcpAppl_Unlock: Valid key and unlock resource.............ccccvvveeeennn. 51
6.5.5 XcpAppl _CheckReadEEPROM: Check read access from

] O Y 52
6.5.6 XcpAppl_CheckWriteEEPROM: Check write access to the

] O Y R 53
6.5.7 XcpAppl_CheckWriteAccess: Check address for valid write access. 53
6.5.8 XcpAppl_CheckReadAccess: Check address for valid read access. 54
6.5.9 XcpAppl_CheckDAQAccess: Check address for valid read or write

= Lol ot =L SRS 55
6.5.10 XcpAppl_CheckProgramAccess: Check address for valid write

= Lot oL F PP PP 55
6.5.11 XcpAppl_UserService: User defined command............ccccceeeeeeeeeees 56
6.5.12 XcpAppl_OpenCmdIf: XCP command extension interface 56
6.5.13 XcpAppl_SendStall: Resolve a transmit stall condition..................... 57
6.5.14 XcpAppl_DisableNormalOperation: Disable normal operation of the

O PR 58
6.5.15 XcpAppl_StartBootLoader: Start of boot loader............cccccoeeeeeenn. 58
6.5.16 XcpAppl_Reset: Perform ECU resetccccvvvviviiieiiviiiiiiiiiiiiinninnnns 59
6.5.17 XcpAppl_ProgramStart: Prepare flash programming........................ 59
6.5.18 XcpAppl_FlashClear: Clear flash memory............ccccccoviiiiiiiiiinnnnnnns 60
6.5.19 XcpAppl_FlashProgram: Program flash memory..............ccccccccooe 60
6.5.20 XcpAppl_DagResume: Resume automatic data transfer.................. 61
6.5.21 XcpAppl_DagResumeStore: Store DAQ lists for resume mode........ 62

©2016, Vector Informatik GmbH Version: 2.05.00

vector’

7194

Technical Reference XCP Protocol Layer

6.5.22 XcpAppl_DagResumeClear: Clear stored DAQ lists........ccccoeevvennnn.n. 62
6.5.23 XcpAppl_CalResumeStore: Store Calibration data for resume

4 o = 63
6.5.24 XcpAppl_GetTimestamp: Returns the current timestamp................. 64
6.5.25 XcpAppl_GetCalPage: Get calibration page.........ccccceevvviciiiieeennnnnns 64
6.5.26 XcpAppl_SetCalPage: Set calibration pagecccccvvveeeiieeennninnn, 65
6.5.27 XcpAppl_CopyCalPage: Copying of calibration data pages 66

6.5.28 XcpAppl_SetFreezeMode: Setting the freeze mode of a segment.... 66
6.5.29 XcpAppl_GetFreezeMode: Reading the freeze mode of a segment. 67

6.5.30 XcpAppl_Read: Read a single byte from memoryc....cceeveeee 67
6.5.31 XcpAppl_Write: Write a single byte to RAM...........coooiiiiiiiies 68
6.5.32 XcpAppl_MeasurementRead: Read multiple bytes from memory..... 68
6.5.33 XcpAppl_CalibrationWrite: Write multiple bytes to memory 69
6.5.34 XcpAppl_ReadChecksumValue: Read checksum value................... 70
6.5.35 XcpAppl_CalculateChecksum: Custom checksum calculation 70
6.6 XCP Protocol Layer Functions that can be overwritten...............c...innnn. 71
6.6.1 Xcp_MemCpy: Copying of a memory range..........ccoevvvvieeeeeeeeeennnns 71
6.6.2 Xcp_MemSet: Initialization of a memory rangecccccvvvvvvveenene. 72
6.6.3 Xcp_MemClr: Clear @ memory rangeoeevevvveeeeieieieeieieeeeeeeeeeeen 72
6.7 AUTOSAR CRC Module Services called by the XCP Protocol Layer (XCP
Professional Only).........cooo i 73
6.8 Configuration without Generation TOOIuuuuiiiiiiiiiiiiiiiis 75
6.8.1 Compiler SWItChESccooviiiii e 75
6.8.2 Configuration of Constant Definitions ..., 78
6.8.3 Configuration of the CPU Type......ccooviiiiiiieeeeeeeeeeeeeeeee e, 80
6.8.4 Configuration of Slave Device Identificationc..ooovvviiiiinnnnnn. 80
6.8.5 Configuration of the Event Channel Plug & Play Mechanism 82
6.8.6 Configuration of the DAQ Time Stamped Mode...............ccovvvvevinnnnn. 83
6.8.7 Configuration of the Flash Programming Plug & Play Mechanism.... 84
6.8.8 Configuration of the Page Switching Plug & Play Mechanism 85
6.8.9 Configuration of the used Transport Layer ..., 85
Resource ReqUIremMents......... ... 87
LimiItatioNs ..o e 88
8.1 General LimitationSoi oo 88
8.2 Limitations Regarding Platforms, Compilers and Memory Models.................... 89
O 90
9.1 Invalid Time Stamp Unit ... 90
9.2 Support of small and medium memory modeleevveeiiiiiiiiiiiiiiiiiiiiiiieinnnn. 90
9.3 Small memory model on ST10/ XC16X / C16X with Tasking Compiler............ 91

©2016, Vector Informatik GmbH Version: 2.05.00

vector’

8/94

Technical Reference XCP Protocol Layer vector

9.4 Data Page Banking on Star12X / Metrowerksccccccovvviiiiiiiiiiiiiiiiiiiiieee, 91
9.5 Memory model banked on Star12X / COSMICcccevvviiiiiiiie e, 91
9.6 Reflected CRC16 CCITT Checksum Calculation Algorithmcccoevvvveeeen. 92
10 BibliograpRhy ... 93
B T 0o 1 - o 94

©2016, Vector Informatik GmbH Version: 2.05.00 9/94

Technical Reference XCP Protocol Layer vector

lllustrations

Figure 3-1 Data CONSISIENCYevviiiiiiiiiiiiiiiie e nnnnnnnnes 23

©2016, Vector Informatik GmbH Version: 2.05.00 10/94

Technical Reference XCP Protocol Layer vector

2 Overview

This document describes the features, API, configuration and integration of the XCP
Protocol Layer. Both XCP versions: XCP Professional and XCP Basic are covered by this
document. Chapters that are only relevant for XCP Professional are marked.

This document does not cover the XCP Transport Layers for CAN, FlexRay and LIN, which
are available at Vector Informatik.

Please refer to [IV] for further information about XCP on CAN and the integration of XCP
on CAN with the Vector CANbedded software components. Further information about XCP
on FlexRay Transport Layer and XCP on LIN Transport Layer can be found in its
documentation.

Please also refer to “The Universal Measurement and Calibration Protocol Family”
specification by ASAM e.V.

The XCP Protocol Layer is a hardware independent protocol that can be ported to almost
any hardware. Due to there are numerous combinations of micro controllers, compilers
and memory models it cannot be guaranteed that it will run properly on any of the above
mentioned combinations.

Please note that in this document the term Application is not used strictly for the user
software but also for any higher software layer, like e.g. a Communication Control Layer.
Therefore, Application refers to any of the software components using XCP.

The API of the functions is described in a separate chapter at the end of this document.
Referred functions are always shown in the single channel mode.

Info

The source code of the XCP Protocol Layer, configuration examples and
documentation are available on the Internet at www.vector-informatik.de in a
functional restricted form.

2.1 Abbreviations and Items used in this paper

A2L File Extension for an ASAM 2MC Language File

AML ASAM 2 Meta Language

API Application Programming Interface

ASAM Association for Standardization of Automation and Measuring Systems

BYP BYPassing

CAN Controller Area Network

CAL CALibration

CANape Calibration and Measurement Data Acquisition for Electronic Control
Systems

©2016, Vector Informatik GmbH Version: 2.05.00 11/94

http://www.vector-informatik.de/

Technical Reference XCP Protocol Layer vector

CMD Command

CTO Command Transfer Object

DAQ Synchronous Data Acquistion

DLC Data Length Code (Number of data bytes of a CAN message)
DLL Data link layer

DTO Data Transfer Object

ECU Electronic Control Unit

ERR Error Packet

EV Event packet

ID Identifier (of a CAN message)

Identifier Identifies a CAN message

ISR Interrupt Service Routine

MCS Master Calibration System

Message One or more signals are assigned to each message.
oDT Object Descriptor Table

OEM Original equipment manufacturer (vehicle manufacturer)
PAG PAGing

PID Packet Identifier

PGM Programming

RAM Random Access Memory

RES Command Response Packet

ROM Read Only Memory

SERV Service Request Packet

STIM Stimulation

TCPI/IP Transfer Control Protocol / Internet Protocol

UDP/IP Unified Data Protocol / Internet Protocol

uUsB Universal Serial Bus

XCP Universal Measurement and Calibration Protocol

Vi Vector Informatik GmbH

Also refer to ‘AN-AND-1-108 Glossary of CAN Protocol Terminology.pdf’, which can be
found in the download area of http://www.vector-informatik.de.

©2016, Vector Informatik GmbH Version: 2.05.00 12/94

http://www.vector-group.net/support/appnotes/AN-AND-1-108_glossary_of_can_protocol_terminology.pdf
http://www.vector-informatik.de/

Technical Reference XCP Protocol Layer vector

2.2 Naming Conventions

The names of the access functions provided by the XCP Protocol Layer always start with a
prefix that includes the characters Xcp. The characters Xcp are surrounded by an
abbreviation which refers to the service or to the layer which requests a XCP service. The
designation of the main services is listed below:

Naming conventions

Xcp_ ... It is mandatory to use all functions beginning with Xcp...
These services are called by either the data link layer or the application.
They are e.g. used for the initialization of the XCP Protocol Layer and for the
cyclic background task.

XcpAppl ... The functions, starting with ApplXcp... are functions that are provided
either by any XCP Transport Layer or the application and are called by the
XCP Protocol Layer.

These services are user callback functions that are application specific and have
to be implemented depending on the application.

©2016, Vector Informatik GmbH Version: 2.05.00 13/94

Technical Reference XCP Protocol Layer vector

3 Functional Description

3.1 Overview of the Functional Scope

The Universal Measurement and Calibration Protocol (XCP) is standardized by the
European ASAM working committee for standardization of interfaces used in calibration
and measurement data acquisition. XCP is a higher level protocol used for communication
between a measurement and calibration system (MCS, i.e. CANape) and an electronic
control unit (ECU). The implementation supports the ASAM XCP 1.1 Specification.

3.2 Communication Mode Info

In order to gather information about the XCP Slave device, e.g. the implementation version
number of the XCP Protocol Layer and supported communications models, the
communication mode info can be enabled by the switch XCP_ ENABLE COMM_MODE_INFO.

3.3 Block Transfer Communication Model (XCP Professional only)

In the standard communication model, each request packet is responded by a single
response packet or an error packet. To speed up memory uploads, downloads and flash
programming the XCP commands UPLOAD, DOWNLOAD and PROGRAM support a
block transfer mode similar to ISO/DIS 15765-2.

In the Master Block Transfer Mode can the master transmit subsequent (up to the
maximum block size MAX_BS) request packets to the slave without getting any response
in between. The slave responds after transmission of the last request packet of the block.

In Slave Block Transfer Mode the slave can respond subsequent (there is no limitation) to
a request without additional requests in between.

Refer to chapter 6.8.1 for configuration details.

3.4 Slave Device ldentification

3.4.1 XCP Station Identifier

The XCP station identifier is an ASCII string that identifies the ECU’s software program
version.

The MCS can interpret this identifier as file name for the ECU database. The ECU
developer should change the XCP station identifier with each program change. This will
prevent database mix-ups and grant the correct access of measurement and calibration
objects from the MCS to the ECU. Another benefit of the usage of the XCP station
identifier is the automatic assignment of the correct ECU database at program start of the
MCS via the plug & play mechanism. The plug & play mechanism prevents the user from
selecting the wrong ECU database.

Refer to chapter 6.8.4.1 (ldentification by ASAM-MC2 Filename without Path and
Extension) for configuration details.

©2016, Vector Informatik GmbH Version: 2.05.00 14 /94

Technical Reference XCP Protocol Layer vector

3.4.2 XCP Generic Identification

The XCP provides a generic mechanism for identification by the GET_ID command. For
this purpose a call-back exist which can be implemented by the user to provide the
requested information. The following function

uint32 XcpAppl GetIdData (MTABYTEPTR *pData, uint8 id) (6.5.2)

has to set a pointer to the identification information based on the requested id and return
the length of this information.

Refer to chapter 6.8.4.2 (Automatic Session Configuration with MAP Filenames) for an
example implementation.

3.4.3 Identification of FlexRay Parameters

If the “Virtual FlexRay Parameters” feature is enabled, the parameters can be read out in a
platform independent way. They will be provided as virtual measurement values that can
be read at fixed memory locations with a configurable Address Extension.

To calculate the memory address for each parameter please read the Technical Reference
and the AUTOSAR specification of the FlexRay Driver. Each FlexRay parameter is defined
with a unique ID to be used as parameter for the API call. Use this ID and multiply it with
four to get the address where this variable can be measured at.

If this parameter is enabled the API:

Std ReturnType FrIf ReadCCConfig (uint38 ClusterIdx, uints8
FrIf CCLLParamIndex, P2VAR (uint32, AUTOMATIC, FRIF APPL DATA)
FrIf CCLLParamValue)

will be called. The FlexRay parameters can be measured from CAN and FlexRay but the
APl is only provided if the FlexRay Interface is present.

3.5 Seed & Key

The seed and key feature allows individual access protection for calibration, flash
programming, synchronous data acquisition and data stimulation. The MCS requests a
seed (a few data bytes) from the ECU and calculates a key based on a proprietary
algorithm and sends it back to the ECU.

The seed & key functionality can be enabled with the switch XCP_ ENABLE SEED_KEY and
disabled with XCP DISABLE SEED KEY in order to save ROM. Also refer to chapter 6.8.1.

The application callback function

uint8 XcpAppl GetSeed(uint8 Xcp Channel, MEMORY ROM uint8
resourceMask, BYTEPTR seed) (6.5.3)

returns a seed that is transferred to the MCS. The callback function

uint8 XcpAppl Unlock(uint8 Xcp Channel, MEMORY ROM uint8 *key,
MEMORY ROM uint8 length) (6.5.4)

has to verify a received key and if appropriate return the resource that shall be unlocked.
The service:

©2016, Vector Informatik GmbH Version: 2.05.00 15/94

Technical Reference XCP Protocol Layer vector

uint8 Xcp_ModifyProtectionStatus (uint8 Xcp Channel, uint8
andState, uint8 orState) (6.2.13)

can be used to modify the protection state by software.

Annotation for the usage of CANape

The calculation of the key is done in a DLL named SEEDKEY1.DLL, which is developed by
the ECU manufacturer and which must be located in the EXEC directory of CANape.
CANape can access the ECU only if the ECU accepts the key. If the key is not valid, the
ECU stays locked.

Example Implementation for SEEDKEY1.DLL

The function call of ASAP1A_XCP_ComputeKeyFromSeed() is standardized by the ASAM
committee.

Y Example
iz FILE SEEDKEY1.H
#ifndef SEEDKEY H_

#define SEEDKEY H
#ifndef DllImport

#define DllImport declspec(dllimport)
#endif

#ifndef DllExport

#define DllExport declspec (dllexport)
#endif

#ifdef SEEDKEYAPI IMPL

#define SEEDKEYAPI DllExport cdecl
#else

#define SEEDKEYAPI DllImport _ cdecl
#endif

#ifdef cplusplus

extern "C" {

#endif

BOOL SEEDKEYAPI ASAPIA XCP ComputeKeyFromSeed(BYTE *seed,
unsigned short sizeSeed,
BYTE *key,
unsigned short maxSizeKey,
unsigned short *sizeKey
);
#ifdef cplusplus
}
fendif
#endif

FILE SEEDKEY1.C
#include <windows.h>
#define SEEDKEYAPI IMPL
#include "SeedKeyl.h"

extern "C" {

BOOL SEEDKEYAPI ASAP1A XCP ComputeKeyFromSeed(BYTE *seed,
unsigned short sizeSeed,

©2016, Vector Informatik GmbH Version: 2.05.00 16/94

Technical Reference XCP Protocol Layer vector

BYTE *key,

unsigned short maxSizeKey,

unsigned short *sizeKey

)

{ // in that example sizeSeed == 4 is expected only

if(sizeSeed != 4) return FALSE;
if(maxSizeKey < 4) return FALSE;
((unsigned long) key) *= 3;
((unsigned long)key) &= 0x55555555;
((unsigned long)key) *= 5;
*sizeKey = 4;
return TRUE;

3.6 Checksum Calculation

The XCP Protocol Layer supports calculation of a checksum over a specific memory
range. The XCP Protocol Layer supports all XCP ADD algorithms and the CRC16CCITT
checksum calculation algorithm.

XCP Professional allows the usage of the AUTOSAR CRC Module [VII]. If the AUTOSAR
CRC Module is used also the XCP CRC32 algorithm can be used.

Also refer to 6.8.2.1 ‘Table of Checksum Calculation Methods’.
If checksum calculation is enabled the background task has to be called cyclically.

3.6.1 Custom CRC calculation

The Protocol Layer also allows the calculation of the CRC by the application. For this the
call-back:

uint8 XcpAppl CalculateChecksum(uint8 Xcp Channel, ROMBYTEPTR
pMemArea, BYTEPTR pRes, uint32 length)

is called. This call-back can either calculate the checksum synchronously and return
XCP_CMD_OK Or it can trigger the calculation and return xce _cup peENDING fOr asynchronous
calculation of the checksum. In every case the response frame has to be assembled.

3.7 MainFunction
The Xcp provides a MainFunction:

void Xcp MainFunction(void) (6.2.5)
which must be called cyclically and performs the following tasks:

e Checksum calculation which is done asynchronously in configurable chunks to
prevent extensive runtime

e Resume Mode Handling

The Xcp MainFunction is normally called by the SchM. If you use a 3™ party SchM you
must configure it accordingly such that the function is called cyclically.

©2016, Vector Informatik GmbH Version: 2.05.00 17 /94

Technical Reference XCP Protocol Layer vector

3.8 Memory Protection (XCP Professional only)

If XCP_ENABLE WRITE PROTECTION is defined write access of specific RAM areas can
be checked with the function

uint8 XcpAppl CheckWriteAccess (MTABYTEPTR addr, uint8 size)(6.5.7)
It should only be used, if write protection of memory areas is required.

If XCP_ENABLE_READ PROTECTION is defined read access of specific RAM areas can be
checked with the function

uint8 XcpAppl CheckReadAccess (MTABYTEPTR addr, uint8 size)(6.5.8)
It should only be used, if read protection of memory areas is required.

While the first two functions are used during polling, the following function is used for
DAQ/STIM access:

uint8 XcpAppl CheckDAQAccess (DAQBYTEPTR addr, uint8 size) (6.5.9)

These functions can be used to protect memory areas that are not allowed to be
accessed, e.g. memory mapped registers or the xcp memory itself.

3.9 Memory Access by Application

There are two APls available that allow memory access by application. Those APIs can be
enabled by setting xcp ENABLE CALIBRATION MEM ACCESS BY ApPL. Please note that these
API are only used for polling access. DAQ/STIM still uses direct memory access.

uint8 XcpAppl CalibrationWrite (P2VAR (void, AUTOMATIC,
XCP_APPL DATA) dst, P2CONST (void, AUTOMATIC, XCP_APPL DATA) src,
uint8 len) (6.5.33)
uint8 XcpAppl MeasurementRead (P2VAR (void, AUTOMATIC,
XCP_APPL DATA) dst, P2CONST (void, AUTOMATIC, XCP_APPL DATA) src,
uint8 len) (6.5.32)
If the option xcP ENABLE DAQ MEM ACCESS BY APPL is set the function

XcpAppl MeasurementRead is also called for DAQ measurement.

3.9.1 Special use case “Type Safe Copy”

The above mentioned APIs will also be used if the feature “Type Safe Copy” is enabled. If
this is the case polling as well as DAQ/STIM measurement will use these functions to
read/write data. The template code for these functions performs read/write access in an
atomic way. See 3.21.1 for further information.

3.10 Event Codes

The slave device may report events by sending asynchronous event packets (EV), which
contain event codes, to the master device. The transmission is not guaranteed due to the
fact that these event packets are not acknowledged.

The transmission of event codes is enabled with XCP ENABLE SEND EVENT. The
transmission is done by the service

void Xcp_SendEvent (uint8 evc, ROMBYTEPTR c, uint8 len) (6.2.6)

©2016, Vector Informatik GmbH Version: 2.05.00 18/94

Technical Reference XCP Protocol Layer vector

The event codes can be found in the following table.

Event ______ Code Description

EV_RESUME MODE 0x00 The slave indicates that it is starting in RESUME mode.

EV_CLEAR_DAQ 0x01 The slave indicates that the DAQ configuration in non-
volatile memory has been cleared.

EV_STORE_DAQ 0x02 The slave indicates that the DAQ configuration has been
stored into non-volatile memory.

EV_STORE CAL 0x03 The slave indicates that the calibration data has been
stored.

EV_CMD PENDING 0x05 The slave requests the master to restart the time-out
detection.

EV_DAQ OVERLOAD 0x06 The slave indicates an overload situation when

transferring DAQ lists.

EV_SESSION TERMINATED O0xO07 The slave indicates to the master that it autonomously
decided to disconnect the current XCP session.

EV_USER OxFE User-defined event.
EV_TRANSPORT OxFFE Transport layer specific event.

3.11 Service Request Messages

The slave device may request some action to be performed by the master device. This is
done by the transmission of a Service Request Packet (SERV) that contains the service
request code. The transmission of service request packets is asynchronous and not
guaranteed due to these packets are not being acknowledged.

The service request messages can be sent by the following functions
void Xcp_ PutChar (const uint8 c) (6.2.7)
void Xcp_ Print (const uint8 *str)

Refer to 6.8.1 for the configuration of the service request message.

3.12 User Defined Command

The XCP Protocol allows having a user defined command with an application specific
functionality. The user defined command is enabled by setting
XCP_ENABLE USER COMMAND and upon reception of the user command the following
callback function is called by the XCP command processor:

uint8 XcpAppl UserService (uint8 Xcp Channel, ROMBYTEPTR pCmd
) (6.5.11)

3.13 Transport Layer Command

The transport layer commands are received by the XCP Protocol Layer and processed by
the XCP Transport Layer. The XCP Protocol Layer transmits the XCP response packets
(RES) or XCP error packets (ERR).

©2016, Vector Informatik GmbH Version: 2.05.00 19/94

Technical Reference XCP Protocol Layer vector

The transport layer command is enabled by setting XCP_ ENABLE TL COMMAND.
Upon reception of any transport layer command the following callback function is called by
the XCP command processor:

uint8 ApplXcpTLService (ROMBYTEPTR pCmd) (6.4.5)

3.14 Synchronous Data Transfer

3.14.1 Synchronous Data Acquisition (DAQ)

The synchronous data transfer can be enabled with the compiler switch
XCP_ENABLE DAQ. In this mode, the MCS configures tables of memory addresses in the
XCP Protocol Layer. These tables contain pointers to measurement objects, which have
been configured previously for the measurement in the MCS. Each configured table is
assigned to an event channel.

The function Xcp Event (x) has to be called cyclically for each event channel with the
corresponding event channel number as parameter. The application has to ensure that
Xcp_ Event is called with the correct cycle time, which is defined in the MCS. Note that
the event channel numbers are given by the GenTool when the Event Info feature is used.

The ECU automatically transmits the current value of the measurement objects via
messages to the MCS, when the function Xcp Event is executed in the ECU’s code with
the corresponding event channel number. This means that the data can be transmitted at
any particular point of the ECU code when the data values are valid.

The data acquisition mode can be used in multiple configurations that are described within
the next chapters.

Annotation for the usage of CANape

It is recommended to enable both data acquisition plug & play mechanisms to detect the
DAQ settings.

3.14.2 DAQ Timestamp
There are two methods to generate timestamps for data acquisition signals.

1. By the MCS tool on reception of the message
2. By the ECU (XCP slave)

The time precision of the MCS tool is adequate for the most applications; however, some
applications like the monitoring of the OSEK operating system or measurement on
FlexRay with an event cycle time smaller than the FlexRay cycle time require higher
precision timestamps. In such cases, ECU generated timestamps are recommended.

The timestamp must be implemented in a call-back which returns the current value:
XcpDagTimestampType XcpAppl GetTimestamp (void) (6.5.24)
There are several possibilities to implement such a timestamp:

e 16bit Counter variable, incremented by software in a fast task (.e.g. 1ms task) for
applications where such a resolution is sufficient and returned in the above
mentioned call-back

©2016, Vector Informatik GmbH Version: 2.05.00 20 /94

Technical Reference XCP Protocol Layer vector

e 32bit General Purpose Timer of the used uC, configured to a certain repetition rate
(e.g. 1us increment) for applications that require a high resolution of the timestamp
and returned in the above mentioned call-back

The resolution and increment value of this timer must be configured in the configuration
Tool (e.g. GENy) accordingly.

For the configuration of the DAQ time stamped mode refer to chapter 6.8.6 (Configuration
of the DAQ Time Stamped Mode).

3.14.3 Power-Up Data Transfer

Power-up data transfer (also called resume mode) allows automatic data transfer (DAQ,
STIM) of the slave directly after power-up. Automotive applications would e.g. be
measurements during cold start.

The slave and the master have to store all the necessary communication parameters for
the automatic data transfer after power-up. Therefore the following functions have to be
implemented in the slave.

uint8 XcpAppl DagResume (uint8 Xcp Channel, tXcpDag * dag) (6.5.20)
void XcpAppl DagResumeStore (uint8 Xcp Channel, const tXcpDag

* daqg) (6.5.21)
void XcpAppl DagResumeClear (uint8 Xcp Channel) (6.5.22)
uint8 XcpAppl CalResumeStore (uint8 Xcp Channel) (6.5.23)

To use the resume mode the compiler switches XCP ENBALE DAQ and
XCP_ENABLE_RESUME MODE have to be defined.

Keep also in mind that the Xcp_MainFunction has to be called cyclically in order for the
resume mode to work. If Resume Mode is enabled by the Master Tool the before
mentioned call-back XcpAppl _DaqResumeStore is called by the MainFunction.

void Xcp MainFunction(void) (6.2.5)

Annotation for the usage of CANape

Start the resume mode with the menu command Measurement | Start and push the button
“Measure offline” on the dialog box.

3.14.4 Send Queue

The send queue is used to store measurement values until they can be transmitted on the
bus. This is required if the used Transport Layer does not perform buffering on its own.
Vector Transport Layers do not buffer any data and therefore this feature should be used.

The send queue size can be indirectly configured in the GenTool. It is defined by the
parameter “Memory Size” — the memory size used by the dynamic DAQ lists. As the DAQ
lists are created during runtime by the tool no detailed calculation is possible. A worst case
analysis can be made and the parameter should be chosen such that enough space is left
for the send queue.

Furthermore the behaviour of the send queue in case of an overrun condition can be
influenced. There are two possible options:

1. Throw away oldest element

©2016, Vector Informatik GmbH Version: 2.05.00 21/94

Technical Reference XCP Protocol Layer vector

- The oldest odt in the send queue is discarded and the new measurement value is
inserted. The send queue behaves as a ring buffer.

2. Throw away latest element

- The latest measurement values are discarded. The send queue behaves like a
linear buffer.

The GenTool option “Replace First Element” determines the default behaviour. The
behaviour can be changed during runtime by modifying the variable
xcp.Daq.SendQueueBehaviour. If this variable is zero linear mode is selected, if this variable
is one the ring buffer mode is selected. This variable can be modified by the Master Tool.

3.14.5 Data Stimulation (STIM)
Synchronous Data Stimulation is the inverse mode of Synchronous Data Acquisition.

The STIM processor buffers incoming data stimulation packets. When an event occurs
(Xcp_Event is called), which triggers a DAQ list in data stimulation mode, the buffered
data is transferred to the slave device’s memory.

To use data stimulation the compiler switches XCP_ENBALE DAQ and XCP_ENABLE STIM
have to be defined.

3.14.6 Bypassing

Bypassing can be realized by making use of Synchronous Data Acquisition (DAQ) and
Synchronous Data Stimulation (STIM) simultaneously.

State-of-the-art Bypassing also requires the administration of the bypassed functions. This
administration has to be performed in a MCS like e.g. CANape.

Also the slave should perform plausibility checks on the data it receives through data
stimulation. The borders and actions of these checks are set by standard calibration
methods. No special XCP commands are needed for this.

3.14.7 Data Acquisition Plug & Play Mechanisms
The XCP Protocol Layer comprises two plug & play mechanisms for data acquisition:

> general information on the DAQ processor
(enabled with XCP_ ENABLE_DAQ PROCESSOR_INFO)

> general information on DAQ processing resolution
(enabled with XCP_ENABLE_DAQ RESOLUTION INFO)

The general information on the DAQ processor contains:
> general properties of DAQ lists

> total number of available DAQ lists and event channels

The general information on the DAQ processing resolution contains:
> granularity and maximum size of ODT entries for both directions

> information on the time stamp mode

©2016, Vector Informatik GmbH Version: 2.05.00 22 /94

Technical Reference XCP Protocol Layer vector

3.14.8 Event Channel Plug & Play Mechanism

The XCP Protocol Layer supports a plug & play mechanism that allows the MCS to
automatically detect the available event channels in the slave.

Please refer to chapter 6.8.5 (Configuration of the Event Channel Plug & Play Mechanism)
for details about the configuration of this plug & play mechanism.

Annotation for the usage of CANape

If the plug & play mechanism is not built-in, you must open the dialog XCP Device Setup
with the menu command Tools|Driver parameters. Go to the Event tab. Make one entry for
each event channel. An event channel is an Xcp Event (x) function call in ECU source
code.

3.14.9 Data consistency

The Xcp supports a data consistency on ODT level. If a consistency on DAQ level is
required, interrupts must be disabled prior calling Xcp_Event and enabled again after the
function returns. The following example demonstrates the integrity on ODT level by
showing the XCP ODT frames as sent on the bus. Two Events (x, y) are configured with
DAQ list DAQ1 assigned to Event(x) and DAQ list DAQ2 assigned to Event(y). A call of the
Xcp_Event function with the respective event channel number will then trigger the
transmission of the associated DAQ list.

Example1: a call of Xcp_Event(x) is interrupted by a call of Xcp_Event(y). This is allowed
as long as the interrupt locks are provided by the Schedule Manager (default with
MICROSAR stack).

Example2: a call of Xcp_Event(x) is interrupted by a call of Xcp_Event(x). As a result a
DAQ list is interrupted by itself. This is not allowed and must be prevented by data
consistency on DAQ level. For this use a interrupt lock when calling Xcp_Event()

DAQ1 DAQ2
ODTO ODT3
ODT1 OoDT4
ODT2

Examplel ODTO ODT1|ODT3 ODT4|ODT2

Example2 ODTO ODT1|ODTO ODT1 ODT2|ODT2

Figure 3-1 Data consistency

©2016, Vector Informatik GmbH Version: 2.05.00 23 /94

Technical Reference XCP Protocol Layer vector

3.15 The Online Data Calibration Model

3.15.1 Page Switching

The MCS can switch between a flash page and a RAM page. The XCP command
SET_CAL_PAGE is used to activate the required page. The page switching is enabled with
the XCP_ ENABLE CALIBRATION PAGE definition.

The following application callback functions have to be implemented:
uint8 XcpAppl GetCalPage (uint8 Xcp Channel, uint8 segment,

uint8 mode) (6.5.25)
uint8 XcpAppl SetCalPage (uint8 Xcp Channel, uint8 segment,
uint8 page, uint8 mode) (6.5.26)

Annotation for the usage of CANape

Open the dialog XCP Device Setup with the menu command Tools|Driver Configuration.
Go to the tab “FLASH”. Activate page switching. Enter a flash selector value e.g. 1 and a
Ram selector e.g. 0.

3.15.2 Page Switching Plug & Play Mechanism

The MCS can be automatically configured if the page switching plug & play mechanism is
used. This mechanism comprises

> general information about the paging processor

Also refer to chapter 6.8.8 (Configuration of the Page Switching Plug & Play Mechanism)
and to the XCP Specification [lI].

The page switching plug & play mechanism is enabled with the switch
XCP ENABLE PAGE INFO.

3.15.3 Calibration Data Page Copying

Calibration data page copying is performed by the XCP command COPY_CAL_PAGE. To
enable this feature the compiler switch XCP_ ENABLE PAGE_COPY has to be set.

For calibration data page copying the following application callback function has to be
provided by the application:

uint8 XcpAppl CopyCalPage(uint8 Xcp Channel, uint8 srcSeg,
uint8 srcPage, uint8 destSeg, uint8
destPage) (6.5.27)

3.15.4 Freeze Mode Handling

Freeze mode handling is performed by the XCP commands SET_SEGMENT_MODE and
GET_SEGMENT MODE. To enable this feature the compiler switch
XCP_ENABLE PAGE FREEZE has to be set.

For freeze mode handling the following application callback functions have to be provided
by the application:

void XcpAppl SetFreezeMode (uint8 segment, uint8 mode) (6.5.28)
uint8 XcpAppl GetFreezeMode (uint8 segment) (6.5.29)

©2016, Vector Informatik GmbH Version: 2.05.00 24 /94

Technical Reference XCP Protocol Layer vector

3.16 Flash Programming
There are two methods available for the programming of flash memory.
> Flash programming by the ECU’s application

> Flash programming with a flash kernel

Depending on the hardware it might not be possible to reprogram an internal flash sector,
while a program is running from another sector. In this case the usage of a special flash
kernel is necessary.

3.16.1 Flash Programming by the ECU’s Application

If the internal flash has to be reprogrammed and the microcontroller allows to
simultaneously reprogram and execute code from the flash the programming can be
performed with the ECU’s application that contains the XCP. This method is also used for
the programming of external flash.

The flash programming is done with the following XCP commands PROGRAM_START,
PROGRAM_RESET, PROGRAM_CLEAR, PROGRAM, PROGRAM_NEXT,
PROGRAM_MAX, PROGRAM_RESET, PROGRAM_FORMAT?, PROGRAM_VERIFY".

The flash prepare, flash program and the clear routines are platform dependent and
therefore have to be implemented by the application.

uint8 XcpAppl ProgramStart(void) (6.5.17)
uint8 XcpAppl FlashClear (MTABYTEPTR a, uint32 size) (6.5.18)

uint8 XcpAppl FlashProgram(ROMBYTEPTR data,
MTABYTEPTR a, uint8 size) (6.5.19)

The flash programming is enabled with the switch XCP_ ENABLE PROGRAM.

Annotation for the usage of CANape

Open the dialog XCP Device Setup with the menu command Tools|Driver Configuration.
Go to the tab “FLASH” and select the entry “Direct” in the flash kernel drop down list.

3.16.1.1 Flash Programming Plug & Play Mechanism

The MCS (like e.g. CANape) can get information about the Flash and the Flash
programming process from the ECU. The following information is provided by the ECU:

> number of sectors, start address or length of each sector
> the program sequence number, clear sequence number and programming method
> additional information about compression, encryption

Also refer to chapter 6.8.7 (Configuration of the Flash Programming Plug & Play
Mechanism) and to the XCP Specification [l1].

The flash programming plug & play mechanism is enabled with the switch
XCP_ENABLE PROGRAM INFO.

! Command not supported

©2016, Vector Informatik GmbH Version: 2.05.00 25/94

Technical Reference XCP Protocol Layer vector

3.16.2 Flash Programming with a Flash Kernel

A flash kernel has to be used for the flash programming if it is not possible to
simultaneously reprogram and execute code from the flash. Even though the
reprogrammed sector and the sector the code is executed from are different sectors.

The application callback function

uint8 XcpAppl DisableNormalOperation (MTABYTEPTR a, uintl6 size
) (6.5.14)

is called prior to the flash kernel download in the RAM. Within this function the normal
operation of the ECU has to be stopped and the flash kernel download can be prepared.
Due to the flash kernel is downloaded in the RAM typically data gets lost and no more
normal operation of the ECU is possible.

The flash programming with a flash kernel is enabled with the switch
XCP_ENABLE BOOTLOADER DOWNLOAD.

Annotation for the usage of CANape

The flash kernel is loaded by CANape into the microcontroller’'s RAM via XCP whenever
the flash memory has to be reprogrammed. The flash kernel contains the necessary flash
routines, its own CAN-Driver and XCP Protocol implementation to communicate via the
CAN interface with CANape.

Every flash kernel must be customized to the microcontroller and the flash type being
used. CANape already includes some flash kernels for several microcontrollers. There is
also an application note available by Vector Informatik GmbH that describes the
development of a proprietary flash kernel.

Open the dialog XCP Device Setup with the menu command Tools|Driver Configuration.
Go to the tab “FLASH”, and select in the ‘flash kernel’ drop down list, the corresponding fk/
file for the microcontroller being used.

3.16.3 Flash Programming Write Protection

If XCP_ENABLE PROGRAMMING WRITE PROTECTION is defined write access of specific
FLASH areas can be checked with the function

uint8 XcpAppl CheckProgramAccess
(MTABYTEPTR addr, uint32 size) (6.5.10)

It should only be used, if write protection of flash areas is required.

3.17 EEPROM Access

For uploading data from the ECU to a MCS the XCP commands SHORT UPLOAD and
UPLOAD are used. The switch XCP_ENABLE READ EEPROM allows EEPROM access for
these commands.

Before reading from an address it is checked within the following callback function whether
EEPROM or RAM is accessed:

uint8 XcpAppl CheckReadEEPROM
(MTABYTEPTR addr, uint8 size, BYTEPTR data) (6.5.5)

The EEPROM access is directly performed within this function.

©2016, Vector Informatik GmbH Version: 2.05.00 26 /94

Technical Reference XCP Protocol Layer vector

For downloading data from the MCS to the ECU the XCP commands
SHORT_DOWNLOAD, DOWNLOAD, DOWNLOAD_NEXT and DOWNLOAD_MAX can be
used. The switch XCP_ENABLE WRITE EEPROM allows the EEPROM access for these
commands.

Also before writing to an address within the following callback function it is checked
whether EEPROM or RAM is accessed

uint8 XcpAppl CheckWriteEEPROM
(uint8 Xcp Channel, MTABYTEPTR addr, uint8 size,
ROMBYTEPTR data) (6.5.6)

3.18 Parameter Check

As long as the XCP Protocol Layer is not thoroughly tested together with the XCP
Transport Layer and the application, the parameter check should be enabled. This is done
by setting the compiler switch XCP_ ENABLE PARAMETER CHECK.

The parameter check may be removed in order to save code space.

3.19 Performance Optimizations

The XCP Protocol Layer is a platform comprehensive higher software layer and therefore
platform specific optimizations are not implemented. However it is possible to apply
platform specific optimizations.

The following memory access functions can be overwritten by either macros or functions:
void Xcp MemCpy (DAQBYTEPTR dest,

ROMDAQBYTEPTR src, uintl6 n) (6.6.1)
void Xcp MemSet(BYTEPTR p, uintl6 n, uint8 b) (6.6.2)
static void Xcp MemClr (BYTEPTR p, uintl6é n) (6.6.3)

It is recommended to use DMA access as far as possible for faster execution of these
services.

3.20 Interrupt Locks / Exclusive Areas

The functions Xcp Event, Xcp SendCallBack, Xcp MainFunction and
Xcp Command are not reentrant. If one of these functions may interrupt one of the others,
they must be protected against each other. See also 3.14.9.

For this purpose the Xcp Protocol Layer makes use of three exclusive areas. The SchM
must provide the following sections:

® XCP EXCLUSIVE AREA 0
® XCP_EXCLUSIVE AREA 1
® XCP EXCLUSIVE AREA 2

The individual exclusive areas must not be allowed to interrupt each other. The areas are
used for the following cases:

©2016, Vector Informatik GmbH Version: 2.05.00 27194

Technical Reference XCP Protocol Layer vector

3.20.1 XCP_EXCLUSIVE_AREA_O

Is used by functions Xcp SendCallBack, Xcp MainFunction and Xcp Command to
protect these non-reentrant functions.

3.20.2 XCP_EXCLUSIVE_AREA_1
Is used by Xcp Event during DAQ measurement.
3.20.3 XCP_EXCLUSIVE_AREA_2
Is used by Xcp Event during STIM measurement.

3.21 Basic Multi Core support

3.21.1 Type safe copy

The Xcp Protocol Layer supports a feature called “Type Safe Copy” which provides atomic
access to aligned uint16 and uint32 measurement values. This is important on multi core
platforms where one core is accessing a measurement value while the Xcp is trying to do
the same running from another core.

With this option disabled, access to measurement values is performed byte wise which is
not an atomic operation.

The following points must be taken into consideration when enabling this option:

e This option allows the Xcp to only read/write basic data types used on another core;
it cannot provide data consistency on ODT level.

e This option has a slightly higher runtime.

e Some Master Tools perform an optimization by grouping measurement values. This
option must be disabled, otherwise they do not represent unique data types
anymore.

3.22 Accessing internal data
The function

void Xcp_GetXcpDataPointer (P2VAR (tXcpData, AUTOMATIC,
XCP_APPL DATA) *pXcpData) (6.2.11)

provides access to the internal data structure of the XCP module. By means of this
function the internal data can be preset to a certain value. This can be used to process a
measurement further that has been started in application mode but is finished in boot
mode.

As the whole data can be accessed, it must be handled with care.

3.23 En-/ Disabling the XCP module
The variable Xcp_ControlState

can be used to en- or disable the XCP module during run time. Thus the XCP functionality
can be controlled by the application.

Furthermore two macros are available: XCP_ACTIVATE and XCP_DEACTIVATE. They
can be used to control the protocol and transport layer together, i.e. enabling or disabling

©2016, Vector Informatik GmbH Version: 2.05.00 28 /94

Technical Reference XCP Protocol Layer vector

them as a whole. It is recommended to use these macros. It is also recommended to
perform a Xcp_Disconnect() API call to bring the Xcp in a save state before it is disabled.

3.24 XCP measurement during the follow up time

In use cases where there is no further communication request except XCP measurement
the session state of the XCP can be determined to prevent an early shutdown of the ECU.
For this purpose the following API exist:

SessionStatusType Xcp_GetSessionStatus (void) (6.3.3)
An example implementation that is called cyclically could look like the following example:

A Example
is ;

SessionStatusType sessionState;

sessionState = Xcp GetSessionStatus();
if(0 != (sessionState & SS_CONNECTED))
{
/* Is the xcp actively used? */
if(0 != (sessionState & (SS _DAQ | SS POLLING)))
{
/* Yes, reaload timer */
swTimer = XCP_TIMEOUT TIMER RELOAD;

}

if(swTimer > 0)

{
/* No timeout so far */
swTimer--;

}

else
{

/* Timer timeout happened, release xcp communication request */

}

Please note that polling requests may happen erratically. Therefore it is important not to
choose the timeout value xcp _TiMEOUT TIMER RELOAD t0O small.

©2016, Vector Informatik GmbH Version: 2.05.00 29 /94

Technical Reference XCP Protocol Layer vector

4 Integration into the Application

This chapter describes the steps for the integration of the XCP Protocol Layer into an
application environment of an ECU.

4.1 Files of XCP Professional
The XCP Protocol Layer consists of the following files.

Files of the XCP Protocol Layer

Xcp.c XCP Professional source code.
This file must not be changed by the user!

Xcp.h API of XCP Professional. @
7]

This file must not be changed by the user!
_xcp_appl.c Template that contains the application callback functions of the XCP

Protocol Layer. It is just an example and has to be customized. —
v_def.h General Vector definitions of memory qualifiers and types. @
This file must not be changed by the application!

Additionally the following files are generated by the generation tool. If no generation tool or
if CANgen is used the XPC Protocol Layer has to be customized manually. In this case the
following files will be available as template.

Files generated by GENy

xcp_Cfg.h XCP Protocol Layer configuration file. @
xcp_Lcfg.c Parameter definition for the XCP Protocol Layer. @
xcp_Lcfg.h External declarations for the parameters. @

Note that all files of XCP Professional must not be changed manually!

4.2 Version changes

Changes and the release versions of the XCP Protocol Layer are listed at the beginning of
the header and source code.

4.3 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions — the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following table contains the memory section names and the compiler abstraction
definitions defined for XCP, and illustrates their assignment among each other.

©2016, Vector Informatik GmbH Version: 2.05.00 30/94

Technical Reference XCP Protocol Layer vector

Compiler Abstraction
Definitions

Memory Mapping
Sections

XCP_DAQ_DATA
XCP_MTA_DATA
XCP_APPL_DATA

B XCP_CONST
XCP_CODE

XCP_START SEC CONST 16BIT

XCP_START SEC CONST 8BIT

XCP_START SEC_VAR NOINIT UNSPECIFIED
XCP_START SEC_VAR NOINIT 8BIT L
XCP_START SEC_CODE u
XCP_START SEC_VAR INIT UNSPECIFIED SAFE u

Table 4-1 Compiler abstraction and memory mapping

Please see the document: “AUTOSAR_SWS_ CompilerAbstraction.pdf’ for details about
how to use these definitions.

4.4 Support of Vx1000 Integration

The XcpProf provides basic support for the Vx1000 Hardware which can be enabled in the
configuration tool. If enabled the code size is increased, yet the same API calls as used for
the XcpProf are reused for the Vx which minimizes integration effort.

When the option is enabled the sources provided with your Vx1000 hardware must be
integrated. The XcpProf includes the Vx1000.h header and makes use of the respective
macros.

If the Vx hardware is attached prior to ECU Initialization the XcpProf itself is deactivated,
hence no access via the bus interface is possible anymore. If you want to perform
measurement & calibration via the bus interface again, detach the Vx hardware and
perform an ECU reset.

©2016, Vector Informatik GmbH Version: 2.05.00 31/94

Technical Reference XCP Protocol Layer

5 Feature List

vector’

This general feature list describes the overall feature set of the XCP Protocol Layer.

Description of the XCP functionality

Functions

Initialization

Initialization

Task

Background task

XCP Command Processor
Command Processor

Transmission and Confirmation of XCP Packets

Transmission of Response packets
Transmission of XCP Packets

XCP Commands
Get Identification
Seed & Key

Short Download

Modify Bits

Write DAQ Multiple

Transport Layer Command

Open Command Interface

User command

Data Acquisition (DAQ)

Synchronous Data Acquisition and Stimulation

DAQ Timestamp
Resume Mode

Online Data Calibration
Calibration page switching

Copy calibration page
Freeze Mode

Boot loader Download

©2016, Vector Informatik GmbH

Version: 2.05.00

Xcp Init
ApplXcpInit

Xcp MainFunction

Xcp Command

<Bus>Xcp_ Send
Xcp_ SendCallBack

Xcp SendCrm

XcpAppl Sendstall
<Bus>Xcp_ SendFlush

XcpAppl GetIdData

XcpAppl GetSeed
XcpAppl Unlock

XcpAppl CheckDAQAccess
<Bus>Xcp TLService
XcpAppl OpenCmdIf
XcpAppl UserService

Xcp Event

XcpAppl CheckDAQAccess
XcpAppl GetTimestamp
XcpAppl DagResume
XcpAppl DagResumeStore
XcpAppl DagResumeClear
XcpAppl CalResumeStore

XcpAppl GetCalPage
XcpAppl SetCalPage

XcpAppl CopyCalPage

XcpAppl SetFreezeMode
XcpAppl GetFreezeMode

32/94

Technical Reference XCP Protocol Layer

Disable normal operation of ECU

Start of the boot loader
Flash Programming
Reset of ECU

Clear flash memory
Prepare flash programming
Program flash memory
Special Features

Interrupt Control

Event Codes
Service Request Packets

Disconnect XCP
Pointer conversion
EEPROM access

Write protection
Read protection
Overwriteable macros

Access to internal data
En-/Disable Calibration
Programming Write Protection

Session Status

©2016, Vector Informatik GmbH

Version: 2.05.00

vector’

XcpAppl DisableNormalOper

ation

XcpAppl StartBootLoader

XcpAppl Reset
XcpAppl FlashClear
XcpAppl ProgramStart
XcpAppl FlashProgram

ApplXcpInterruptEnable
ApplXcpInterruptDisable

Xcp_SendEvent

Xcp Putchar

Xcp Print

Xcp_ Disconnect

XcpAppl GetPointer
XcpAppl CheckReadEEPROM
chAppl:CheckWriteEEPROM
XcpAppl CheckWriteAccess
XcpAppl CheckReadAccess
Xcp MemCpy

ch:MemSet

Xcp MemClr
Xcp SendDto

Xcp GetXcpDataPointer

XcpAppl CheckProgramAcces

S

Xcp GetSessionStatus

33/94

Technical Reference XCP Protocol Layer vector

6 Description of the API

The XCP Protocol Layer application programming interface consists of services, which are
realized by function calls. These services are called wherever they are required. They
transfer information to- or take over information from the XCP Protocol Layer. This
information is stored in the XCP Protocol Layer until it is not required anymore,
respectively until it is changed by other operations.

Examples for calling the services of the XCP Protocol Layer can be found in the
description of the services.

6.1 Version of the Source Code

The source code version of the XCP Protocol Layer is provided by three BCD coded
constants:

CONST (uint8, XCP CONST) kXcpMainVersion =
(uint8) (CP_XCP_VERSION >> 8);

CONST (uint8, XCP CONST) kXcpSubVersion =
(uint8) (CP_XCP_ VERSION) ;

CONST (uint8, XCP CONST) kXcpReleaseVersion =
(uint8) (CP_XCP_RELEASE VERSION) ;

A Example

iz Version 1.00.00 is registered as:
kXcpMainVersion = 0x01;
kXcpSubVersion = 0x00;
kXcpReleaseVersion = 0x00;

These constants are declared as external and can be read by the application at any time.
Alternatively the Version can be obtained with the GetVersionInfo API if enabled:

void Xcp_GetVersionInfo (P2VAR(Std VersionInfoType, AUTOMATIC,
XCP_APPL DATA) XcpVerInfoPtr) (6.2.12)

©2016, Vector Informatik GmbH Version: 2.05.00 34194

Technical Reference XCP Protocol Layer vector

6.2 XCP Services called by the Application

The following XCP services that are called by the application are all not reentrant. If they
are called within interrupt context at least the CAN-Interrupts have to be disabled.

6.2.1 Xcp_InitMemory: Initialization of the XCP Protocol Layer Memory
Xcp_InitMemory

Single Channel

Single Receive Channel |void Xcp_InitMemory (void)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Return code

Functional Description

This service initializes the XCP Protocol Layer memory. It must be called from the application
program before any other XCP function is called. This is only required if the Startup Code does not
initialize the memory with zero.

Particularities and Limitations
> Call context: Task and interrupt level
> This service function has to be called after the initialization of XCP Transport Layer.

> The global interrupts have to be disabled while this service function is executed. This function
should be called during initialization of the ECU before the interrupts have been enabled
before.

6.2.2 Xcp_Init: Initialization of the XCP Protocol Layer

Xcp_Init
Single Channel
Single Receive Channel |void Xcp_Init (void)
Multi Channel
Indexed not supported
Code replicated not supported

Return code

©2016, Vector Informatik GmbH Version: 2.05.00

35/94

Technical Reference XCP Protocol Layer vector

Functional Description

This service initializes the XCP Protocol Layer and its internal variables. It must be called from the
application program before any other XCP function is called.

Particularities and Limitations

> Call context: Task and interrupt level
> This service function has to be called after the initialization of XCP Transport Layer.

> The global interrupts have to be disabled while this service function is executed. This function
should be called during initialization of the ECU before the interrupts have been enabled
before.

6.2.3 Xcp_Event: Handling of a data acquisition event channel

Xcp_Event
Single Channel
Single Receive Channel | uint8 Xcp_Event (uint8 event)
Multi Channel
Indexed not supported
Code replicated not supported

Parameter

event Number of event channels to process

The event channel numbers have to start at 0 and have to be
continuous. The range is: 0..x

Return code

uint8 XCP_EVENT_NO : Inactive (DAQ not running, Event not configured)
XCP_EVENT_DAQ : DAQ active */

XCP_EVENT_DAQ_OVERRUN : DAQ queue overflow
XCP_EVENT_STIM : STIM active

XCP_EVENT_STIM_OVERRUN : STIM data not available

Functional Description

Calling Xcp_Event with a particular event channel number triggers the sampling and transmission
of all DAQ lists that are assigned to this event channel.

The event channels are defined by the ECU developer in the application program. An MCS (e.g.
CANape) must know about the meaning of the event channel numbers. These are usually
described in the tool configuration files or in the interface specific part of the ASAM MC2 (ASAP2)
database.

Example:

A motor control unit may have a 10ms, a 100ms and a crank synchronous event channel. In this
case, the three Xcp_Event calls have to be placed at the appropriate locations in the ECU’s
program:

Xcp_Event (0); /* 10ms cycle */

xcp_Event (1); /* 100ms cycle */

xcp_Event (2); /* Crank synchronous cycle */

©2016, Vector Informatik GmbH Version: 2.05.00

36 /94

Technical Reference XCP Protocol Layer vector

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.
> Data acquisition has to be enabled: XCP_ENABLE_DAQ has to be defined
> Call context: Task and interrupt level (not reentrant)

6.2.4 Xcp_StimEventStatus: Check data stimulation events
Xcp_StimEventStatus

Prototype
Single Channel

Single Receive Channel | uint8 Xcp_StimEventStatus (uint8 event, uint8 action)
Multi Channel

Indexed not supported

Code replicated not supported

event Event channel number

action STIM CHECK ODT BUFFER :check ODT buffer

STIM RESET ODT BUFFER :reset ODT buffer

Return code

uint8 0 : stimulation data not available
1 : new stimulation data is available

Functional Description
Check if data stimulation (STIM) event can perform or delete the buffers.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.
> Data acquisition has to be enabled: XCP_ENABLE_STIM has to be defined
> Call context: Task and interrupt level (not reentrant)

6.2.5 Xcp_MainFunction: Background calculation of checksum

Xcp_MainFunction

Single Channel

Single Receive Channel |void Xcp_MainFunction (void)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

©2016, Vector Informatik GmbH Version: 2.05.00 37/94

Technical Reference XCP Protocol Layer vector

Return code

0 : background calculation finished

1 : background calculation is still in progress

Functional Description

If the XCP command for the calculation of the memory checksum has to be used for large memory
areas, it might not be appropriate to block the processor for a long period of time. Therefore, the
checksum calculation is divided into smaller sections that are handled in Xcp MainFunction.

Therefore Xcp MainFunction should be called periodically whenever the ECU’s CPU is idle.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly
> Call context: Task level

6.2.6 Xcp_SendEvent: Transmission of event codes
Xcp_SendEvent

Single Channel

Single Receive Channel |void Xcp_SendEvent (uint8 Xcp_Channel, uint8 evc, ROMBYTEPTR
C, uint8 len)

Multi Channel

Indexed not supported

Code replicated not supported

evc event code

c pointer to event data

len event data length

Return code

Functional Description

Transmission of event codes via event packets (EV).
Please refer to chapter 3.10 Event Codes.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.
> Data acquisition has to be enabled: XCP_ENABLE_SEND_EVENT has to be defined
> Call context: Task and interrupt level

6.2.7 Xcp_Putchar: Put a char into a service request packet
Xcp_Putchar

Prototype
Single Channel

©2016, Vector Informatik GmbH Version: 2.05.00 38/94

Technical Reference XCP Protocol Layer vector

Single Receive Channel |void Xcp_Putchar (uint8 Xcp_Channel, const uint8 ¢)
Multi Channel
Indexed not supported

Code replicated not supported

Parameter

character that is put in a service request packet

Return code

Functional Description

Put a char into a service request packet (SERV).

The service request packet is transmitted if either the maximum packet length is reached (the
service request message packet is full) or the character 0x00 is out in the service request packet.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.
> The switch XCP_ENABLE SERV_TEXT PUTCHAR has to be defined

> Call context: Task and interrupt level (not reentrant)

6.2.8 Xcp_Print: Transmission of a service request packet
Xcp_Print
Single Channel

Single Receive Channel |void Xcp_Print (uint8 Xcp_Channel, P2CONST (uint8, AUTOMATIC,
XCP_APPL_DATA) str)

Multi Channel

Indexed not supported
Code replicated not supported

Parameter

str pointer to a string that is terminated by 0x00

Return code

Functional Description

Transmission of a service request packet (SERV).
The string str is sent via service request packets. The string has to be terminated by 0x00.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.
> The switch XCP_ ENABLE SERV_TEXT PRINT has to be defined
> Call context: Task and interrupt level (not reentrant)

©2016, Vector Informatik GmbH Version: 2.05.00 39/94

Technical Reference XCP Protocol Layer vector

6.2.9 Xcp_Disconnect: Disconnect from XCP master

Xcp_Disconnect

Single Channel

Single Receive Channel | void Xcp_Disconnect (uint8 Xcp_Channel)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Return code

Functional Description

If the XCP slave is connected to a XCP master a call of this function discontinues the connection
(transition to disconnected state). If the XCP slave is not connected this function performs no
action.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.
> Call context: Task and interrupt level (not reentrant)

6.2.10 Xcp_SendCrm: Transmit response or error packet
Xcp_SendCrm

Prototype

Single Channel

Single Receive Channel | void Xcp_SendCrm (uint8 Xcp_Channel)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Return code

Functional Description

Transmission of a command response packet (RES), or error packet (ERR) if no other packet is
pending.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly, XCP is in connected state and a
command packet (CMD) has been received.

> Call context: Task and interrupt level (not reentrant)

©2016, Vector Informatik GmbH Version: 2.05.00 40/94

Technical Reference XCP Protocol Layer vector

6.2.11 Xcp_GetXcpDataPointer: Request internal data pointer
Xcp_GetXcpDataPointer

Prototype
Single Channel

Single Receive Channel | void Xcp_GetXcpDataPointer (tXcpData ** pXcpData)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

pXcpData pointer to store the pointer to the module internal data

Return code

Functional Description

With this function the pointer to the module internal data can be received. With this pointer the
internal variable can be set to a certain configuration (e.g. after entering a boot mode where no
connection shall be established again). As this pointer allows the access to all internal data it must
be handled with care.

Particularities and Limitations

> The switch XCP_ENABLE GET XCP_DATA POINTER has to be defined

6.2.12 Xcp_GetVersionInfo: Request module version information
Xcp_GetVersioninfo
Single Channel

Single Receive Channel |void Xcp_GetVersionlnfo (P2VAR(Std_VersioninfoType, AUTOMATIC,
XCP_APPL_DATA) XcpVerInfoPtr)

Multi Channel
Indexed not supported
Code replicated not supported

Parameter
XcpVerInfoPtr Pointer to the location where the Version information shall be stored.

Return code
Functional Description

Xcp_GetVersionInfo() returns version information, vendor ID and AUTOSAR module ID of the
component. The versions are BCD-coded.

©2016, Vector Informatik GmbH Version: 2.05.00 41/94

Technical Reference XCP Protocol Layer vector

Particularities and Limitations

m The switch XCP_ ENABLE VERSION INFO API has to be defined
> Call context: task level (Re-entrant)

6.2.13 Xcp_ModifyProtectionStatus: Influence seed&key behaviour
Xcp_ModifyProtectionStatus

Prototype

Single Channel

Single Receive Channel |void Xcp_ModifyProtectionStatus (uint8 Xcp_Channel, uint8
andState, uint8 orState)

Multi Channel

Indexed not supported

Code replicated not supported

Xcp_ Channel A channel parameter, used when the multi client feature is active.
Please use the macro xcp_CHANNEL IDX to getthe channel index.

andState The following flags: RM_CAL_PAG, RM_DAQ, RM_STIM and

RM_PGM can be used to clear the protection state of the respective
resource. The modified state is persistent until Xcp_lInit.

orState The following flags: RM_CAL_PAG, RM_DAQ, RM_STIM and
RM_PGM can be used to set the protection state of the respective
resource. The modified state is persistent until Xcp_lInit.

Return code

Functional Description

This method can be used to enable or disable the protection state of an individual resource during
runtime. The newly set protection state is persistent until the next call of the Xcp_Init function
where all flags are set again.

Particularities and Limitations

m The switch XCP_ENABLE VERSION INFO API has to be defined
> Call context: task level (Re-entrant)

6.3 XCP Protocol Layer Functions, called by the XCP Transport Layer

For using the following functions there are some limitations which have to be taken into
consideration — especially when using an operation system like, i.e. OSEK OS:

> The ISR level for the transmission and reception of CAN messages has to be the same.
> Interrupts must be mutually
> No nested calls of these functions are allowed. (i.e. these functions are not reentrant)

©2016, Vector Informatik GmbH Version: 2.05.00 42794

Technical Reference XCP Protocol Layer vector

All functions provided by the application must match the required interfaces. This can be
ensured by including the header file in the modules which provide the required functions. If
these interfaces do not match unexpected run-time behavior may occur.

6.3.1 Xcp_Command: Evaluation of XCP packets and command interpreter

Xcp_Command

Prototype
Single Channel

Single Receive Channel |void Xcp_Command (uint8 Xcp_Channel, P2CONST (uint32,
AUTOMATIC, XCP_APPL_DATA) pCommand)

Multi Channel
Indexed not supported
Code replicated not supported

Parameter

pCommand Pointer to the XCP protocol message, which must be extracted from
the XCP protocol packet.

Return code

Functional Description

Every time the XCP Transport Layer receives a XCP CTO Packet this function has to be called.
The parameter is a pointer to the XCP protocol message, which must be extracted from the XCP
protocol packet.

Particularities and Limitations

> The XCP Protocol Layer has to be initialized correctly.
> Call context: Task and interrupt level (not reentrant)

6.3.2 Xcp_SendCallBack: Confirmation of the successful transmission of a XCP
packet

Xcp_SendCallBack

Single Channel

Single Receive Channel | uint8 Xcp_SendCallBack (uint8 Xcp_Channel)
Multi Channel

Indexed not supported

Code replicated not supported

©2016, Vector Informatik GmbH Version: 2.05.00 43794

Technical Reference XCP Protocol Layer vector

Return code

0 : if the XCP Protocol Layer is idle (no transmit messages are
pending)

Functional Description

The XCP Protocol Layer does not call <Bus>Xcp Send again, until Xcp SendCallBack has
confirmed the successful transmission of the previous message. Xcp SendCallBack transmits
pending data acquisition messages by calling <Bus>Xcp Send again.

Note that if Xcp SendCallBack is called from inside <Bus>Xcp Send a recursion occurs, which
assumes enough space on the call stack.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly.

> Call context: Task and interrupt level (not reentrant)

6.3.3 Xcp_GetSessionStatus: Get session state of XCP
Xcp_GetSessionStatus

Prototype

Single Channel

Single Receive Channel SessionStatusType Xcp_GetSessionStatus (uint8
Xcp_Channel)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Return code
SS_CONNECTED

XCP is connected

SS_DAQ DAQ measurement is running

§5_POLLING Polling is running (depending on polling rate this flag is not

always set)

Functional Description

This service can be used to get the session state of the XCP Protocol Layer. The session state is
returned as bit mask where the individual bits can be tested.

E.g. this service is used by the XCP on CAN Transport Layer to determine the connection state in
case multiple CAN channels are used and can be used by the application to prevent an ECU
shutdown.

Particularities and Limitations

> The XCP Protocol Layer has to be initialized correctly.
> Call context: Task and interrupt level (not reentrant)
> Enabled/Disabled by XCP_xxx GET SESSION STATUS API

©2016, Vector Informatik GmbH Version: 2.05.00 44194

Technical Reference XCP Protocol Layer

6.3.4 Xcp_SetActiveTl: Set the active Transport Layer

Xcp_SetActiveTl

Prototype
Single Channel

Single Receive Channel

void Xcp_SetActiveTl (uint8 Xcp_Channel, uint8 MaxCto, uint8
MaxDto, uint8 ActiveTl)

Parameter

Multi Channel
Indexed not supported
Code replicated not supported

MaxCto Max CTO used by the respective XCP Transport Layer
MaxDto Max DTO used by the respective XCP Transport Layer
ActiveTl XCP_TRANSPORT LAYER CAN: XCP on CAN Transport Layer

XCP_TRANSPORT LAYER FR: XCP on Fr Transport Layer
XCP_TRANSPORT LAYER ETH: XCP on Ethernet Transport Layer

Return code

Functional Description

Set the active Transport Layer the XCP Protocol Layer uses.

This service is used by the XCP Transport Layers to set the Transport Layer to be used by the
XCP Protocol Layer

Particularities and Limitations

> The XCP Protocol Layer has to be initialized correctly.
> Call context: Task and interrupt level (not reentrant)

6.3.5 Xcp_GetActiveTl: Get the currently active Transport Layer
Xcp_GetActiveTl

Single Channel

Single Receive Channel | uint8 Xcp_GetActiveTl (uint8 Xcp_Channel)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Return code
uint8 XCP_TRANSPORT LAYER CAN: XCP on CAN Transport Layer
XCP_TRANSPORT LAYER FR: XCP on Fr Transport Layer

XCP_TRANSPORT LAYER ETH: XCP on Ethernet Transport Layer

©2016, Vector Informatik GmbH Version: 2.05.00

vector”

45/94

Technical Reference XCP Protocol Layer vector

Functional Description

Get the active Transport Layer the XCP Protocol Layer uses.

This service is used by the XCP Transport Layers to get the currently active Transport Layer used
by the XCP Protocol Layer

Particularities and Limitations

> The XCP Protocol Layer has to be initialized correctly.
> Call context: Task and interrupt level (not reentrant)

6.4 XCP Transport Layer Services called by the XCP Protocol Layer

The prototypes of the functions that are required by the XCP Protocol Layer can be found in the
component’s header.

6.4.1 <Bus>Xcp_Send: Request for the transmission of a DTO or CTO message
<Bus>Xcp_Send

Single Channel

Single Receive Channel |void <Bus>Xcp_Send (uint8 Xcp_Channel, uint8 len, ROMBYTEPTR
msg)

Multi Channel

Indexed not supported

Code replicated not supported

len Length of message data

msg Pointer to message

uints 0 : if the XCP Protocol Layer is idle (no transmit messages are
pending)

Functional Description
Requests for the transmission of a command transfer object (CTO) or data transfer object (DTO).
Xcp SendCallBack must be called after the successful transmission of any XCP message. The

XCP Protocol Layer will not request further transmissions, until Xcp SendCallBack has been
called.

Particularities and Limitations

> Call context: Task and interrupt level (not reentrant)
> <Bus>Xcp_Send is not defined as macro

6.4.2 <Bus>Xcp_SendFlush: Flush transmit buffer
<Bus>Xcp_SendFlush

©2016, Vector Informatik GmbH Version: 2.05.00

46 /94

Technical Reference XCP Protocol Layer vector

Prototype

Single Channel

Single Receive Channel |void <Bus>Xcp_SendFlush (uint8 Xcp_Channel)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Return code

Functional Description
Flush the transmit buffer.

Particularities and Limitations

6.4.3 XcpAppl_InterruptEnable: Enable interrupts
XcpAppl_InterruptEnable

Prototype

Single Channel

Single Receive Channel |void XcpAppl_InterruptEnable (void)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Return code

Functional Description
Enabling of the global interrupts.

Particularities and Limitations

> XCP is initialized correctly
> Call context: Task and interrupt level
> This function is reentrant!

> The function XcpAppl InterruptEnable can be overwritten by the macro
XcpAppl InterruptEnable.

©2016, Vector Informatik GmbH Version: 2.05.00 47194

Technical Reference XCP Protocol Layer vector

6.4.4 XcpAppl_InterruptDisable: Disable interrupts
XcpAppl_InterruptDisable

Single Channel

Single Receive Channel |void XcpAppl_InterruptDisable (void)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Return code
Functional Description
Disabling of the global interrupts.

Particularities and Limitations

> XCP is initialized correctly
> Call context: Task and interrupt level
> This function is reentrant!

> The function XcpAppl InterruptDisable can be overwritten by the macro
XcpAppl InterruptDisable.

6.4.5 <Bus>Xcp_TLService: Transport Layer specific commands
<Bus>Xcp_TLService

Single Channel

Single Receive Channel |uint8 <Bus>Xcp_TLService (uint8 Xcp_Channel, ROMBYTEPTR
pCmd)

Multi Channel

Indexed not supported

Code replicated not supported

Pointer to COMMAND that has been received by the XCP Slave.

uint8 XCP CMD OK : Done
XCP_CMD PENDING : Call Xcp_SendCrm() when done
XCP CMD SYNTAX : Error
XCP _CMD BUSY: not executed
XCP_CMD UNKNOWN : not implemented optional command
XCP_CMD OUT OF RANGE : command parameters out of range

©2016, Vector Informatik GmbH Version: 2.05.00 48 /94

Technical Reference XCP Protocol Layer vector

Transport Layer specific command that is processed within the XCP Transport Layer.

> XCP is initialized correctly
> Call context: Task and interrupt level
> The switch XCP_ ENABLE TL COMMAND has to be defined

6.5 Application Services called by the XCP Protocol Layer

The prototypes of the functions that are required by the XCP Protocol Layer can be found
in the header.

The XCP Protocol Layer provides application callback functions in order to perform
application and hardware specific tasks.

Note: All services within this chapter are called from task or interrupt level. All services are
not reentrant.

6.5.1 XcpAppl_GetPointer: Pointer conversion
XcpAppl_GetPointer

Prototype

Single Channel

Single Receive Channel | MTABYTEPTR XcpAppl_GetPointer (uint8 addr_ext, uint32 addr)
Multi Channel

Indexed not supported
Code replicated not supported
addr_ext 8 bit address extension
addr 32 bit address

Return code

MTABYTEPTR Pointer to the address specified by the parameters

©2016, Vector Informatik GmbH Version: 2.05.00 49/94

Technical Reference XCP Protocol Layer vector

Functional Description

This function converts a memory address from XCP format (32-bit address plus 8-bit address
extension) to a C style pointer. An MCS like CANape usually reads this memory addresses from
the ASAP2 database or from a linker map file.

The address extension may be used to distinguish different address spaces or memory types. In
most cases, the address extension is not used and may be ignored.

This function is used for memory transfers like DOWNLOAD and UPLOAD.

Example:

The following code shows an example of a typical implementation of XcpAppl GetPointer:
MTABYTEPTR XcpAppl GetPointer (uint8 addr ext, uint32 addr)

{
return (MTABYTEPTR) addr;

‘

Particularities and Limitations

> XCP is initialized correctly and in connected state

> This function can be overwritten by defining XcpAppl GetPointer as macro.

6.5.2 XcpAppl_GetldData: Get Identification
XcpAppl_GetldData

Prototype

Single Channel

Single Receive Channel | uint32 XcpAppl_GetldData (MTABYTEPTR *pData, uint8 id)
Multi Channel

Indexed not supported

Code replicated not supported

pData Returns a pointer to a pointer of MAP file names

id Identification of the requested information/identification

Return code
uint32 length of the MAP file names

Functional Description

Returns a pointer to a pointer of MAP file names.
Refer to chapter 3.4.2 (XCP Generic Identification).

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switch XCP_ ENABLE GET ID GENERIC has to be defined

6.5.3 XcpAppl_GetSeed: Generate a seed
XcpAppl_GetSeed

©2016, Vector Informatik GmbH Version: 2.05.00

50794

Technical Reference XCP Protocol Layer

Prototype
Single Channel

Single Receive Channel

uint8 XcpAppl_GetSeed (uint8 Xcp_Channel, const uint8 resource,
P2VAR(uint8, AUTOMATIC, XCP_APPL_DATA) seed)

Parameter
Xcp Channel

Resource

Seed

Return code
uint8

Functional Description

Multi Channel
Indexed not supported
Code replicated not supported

Generate a seed for the appropriate resource.
The seed has a maximum length of MAX_CTO-2 bytes.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switch XCP_ENABLE SEED KEY has to be defined

A channel parameter, used when the multi client feature is active.
Please use the macro xcp_CHANNEL IDX to getthe channel index.

Resource for which the seed has to be generated
XCP Professional and XPC Basic
RM CAL PAG: to unlock the resource calibration/paging

RM DAQ: to unlock the resource data acquisition
XCP Professional only

RM STIM: to unlock the resource stimulation

RM PGM: to unlock the resource programming

Pointer to RAM where the seed has to be generated to.

The length of the generated seed that is returned by seed.

6.5.4 XcpAppl_Unlock: Valid key and unlock resource

XcpAppl_Unlock

Prototype
Single Channel

Single Receive Channel

uint8 XcpAppl_Unlock (uint8 Xcp_Channel, P2CONST(uint8,
AUTOMATIC, XCP_APPL_DATA) key, const uint8 length)

Parameter
Xcp Channel

key

©2016, Vector Informatik GmbH

Multi Channel
Indexed not supported
Code replicated not supported

A channel parameter, used when the multi client feature is active.
Please use the macro xcp_CHANNEL IDX to getthe channel index.

Pointer to the key.

Version: 2.05.00

vector’

51794

Technical Reference XCP Protocol Layer
length Length of the key.

Return code
uint8

XCP Professional and XPC Basic
0: if the key is not valid
RM CAL PAG: tounlock the resource calibration/paging

RM DAQ: to unlock the resource data acquisition
XCP Professional only

RM STIM: to unlock the resource stimulation

RM PGM: to unlock the resource programming

Functional Description

Check the key and return the resource that has to be unlocked.
Only one resource may be unlocked at one time.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switch XCP_ENABLE SEED KEY has to be defined

6.5.5 XcpAppl_CheckReadEEPROM: Check read access from EEPROM
XcpAppl_CheckReadEEPROM

Prototype
Single Channel
Single Receive Channel

uint8 XcpAppl_CheckReadEEPROM (MTABYTEPTR addr,
uint8 size,
BYTEPTR data)

Parameter
addr

size

data

Return code

uint8

Functional Description

©2016, Vector Informatik GmbH

Multi Channel
Indexed not supported
Code replicated not supported

Address that is checked
Number of bytes

Pointer to data
(if the address is on the EEPROM the data is written here)

XCP CMD OK: EEPROM read
XCP_CMD DENIED : This is not EEPROM

XCP_CMD PENDING : EEPROM read in progress, call Xcp SendCrm
when done

Checks whether the address lies within the EEPROM memory or in the RAM area.
If the area is within the EEPROM area size data byte are read from addr and written to data.

Version: 2.05.00

vector”

52794

Technical Reference XCP Protocol Layer vector

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switch XCP_ ENABLE READ EEPROM has to be defined

6.5.6 XcpAppl_CheckWriteEEPROM: Check write access to the EEPROM
XcpAppl_CheckWriteEEPROM

Prototype
Single Channel

Single Receive Channel |uint8 XcpAppl_CheckWriteEEPROM (uint8 Xcp_Channel,
MTABYTEPTR addr, uint8 size, ROMBYTEPTR data)

Multi Channel

Indexed not supported

Code replicated not supported

Xcp Channel A channel parameter, used when the multi client feature is active.
Please use the macro xcp_CHANNEL IDX to getthe channel index.

addr Address that is checked

size number of bytes

data pointer to data

(if addr is on the EEPROM this data is written to addr)

Return code
uint8 XCP_CMD OK: EEPROM written
XCP_CMD DENIED : This is not EEPROM

XCP CMD PENDING : EEPROM write in progress, call XcpSendCrm
when done

Functional Description

Checks whether the address addr is within the EEPROM memory. If not, the function returns
XCP_CMD DENIED. If it lies within, EEPROM programming is performed. The function may return
during programming with XCP_CMD PENDING or may wait until the programming sequence has
finished and then returns with XCP_CMD OK.

If the programming sequence has finished, the Xcp SendCrm function must be called.

Xcp_ SendCrm is an internal function of the XCP Protocol Layer.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switch XCP_ ENABLE WRITE EEPROM has to be defined

6.5.7 XcpAppl_CheckWriteAccess: Check address for valid write access
XcpAppl_CheckWriteAccess

Prototype
Single Channel

©2016, Vector Informatik GmbH Version: 2.05.00 53/94

Technical Reference XCP Protocol Layer

Single Receive Channel

uint8 XcpAppl_CheckWriteAccess (MTABYTEPTR address,

Parameter
address
size
Return code

uint8

uint8 size)
Multi Channel
Indexed not supported
Code replicated not supported

address
number of bytes

if access is denied

vector”

XCP_CMD_DENIED :
XCP_CMD_OK :

if access is granted

Functional Description

Check addresses for valid write access. A write access is enabled with the
XCP_ENABLE WRITE PROTECTION, it should be only used, if write protection of memory
areas is required

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switch XCP_ENABLE WRITE PROTECTION has to be defined

> Can be overwritten by the macro XcpAppl CheckWriteAccess

6.5.8 XcpAppl_CheckReadAccess: Check address for valid read access

XcpAppl_CheckReadAccess

Single Channel

Single Receive Channel |uint8 XcpAppl_CheckReadAccess (MTABYTEPTR address,
uint8 size)

Multi Channel

Indexed not supported

Code replicated not supported

Return code

uint8

Functional Description

is required

©2016, Vector Informatik GmbH

address address
size number of bytes

Check addresses for valid read access. A read access is enabled with the
XCP_ENABLE READ PROTECTION, it should be only used, if read protection of memory areas

if access is denied
if access is granted

XCP_CMD DENIED :
XCP_CMD OK :

Version: 2.05.00

54194

vector”

Technical Reference XCP Protocol Layer

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switch XCP_ ENABLE READ PROTECTION has to be defined
> Can be overwritten by the macro XcpAppl CheckReadAccess

6.5.9 XcpAppl_CheckDAQAccess: Check address for valid read or write access
XcpAppl_CheckDAQAccess

Single Channel

Single Receive Channel |uint8 XcpAppl_CheckDAQAccess (DAQBYTEPTR address,
uint8 size)

Multi Channel

Indexed not supported

Code replicated not supported

address address
size number of bytes

Return code

uint8 if access is denied

if access is granted

XCP CMD DENIED :
XCP_CMD OK :

Functional Description

Check addresses for valid read or write access. This callback is called when a WRITE_DAQ
command is performed. Therefore it is not possible to know whether this is a read or write
access. Out of this reason this unified function is called.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE READ PROTECTION or XCP_ENABLE WRITE PROTECTION has to
be defined

6.5.10 XcpAppl_CheckProgramAccess: Check address for valid write access
XcpAppl_CheckProgramAccess

Single Channel

Single Receive Channel |uint8 XcpAppl_CheckProgramAccess (MTABYTEPTR address,
uint32 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

address address

©2016, Vector Informatik GmbH

Version: 2.05.00

55/94

Technical Reference XCP Protocol Layer vector

number of bytes

Return code

XCP_CMD DENIED: if access is denied
XCP _CMD OK : if access is granted

Functional Description

Check addresses for valid write access. A write access is enabled with the
XCP_ENABLE PROGRAMMING WRITE PROTECTION, it should be only used, if write protection
of memory areas is required

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE PROGRAMMING WRITE PROTECTION has to be defined
> Can be overwritten by the macro XcpAppl CheckWriteAccess

6.5.11 XcpAppl_UserService: User defined command
XcpAppl_UserService

Single Channel

Single Receive Channel |uint8 XcpAppl_UserService (uint8 Xcp_Channel, ROMBYTEPTR
pCmd)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_ Channel A channel parameter, used when the multi client feature is active.
Please use the macro xcp _cHANNEL IDX to getthe channel index.

pCmd Pointer to XCP command packet
Return code
uint8 XCP_CMD OK: positive response

XCP_CMD PENDING : Call XcpSendCrm() when done
XCP CMD SYNTAX : negative response

Functional Description

Application specific user command.
Please refer to 3.12 User Defined Command.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switch XCP_ ENABLE USER COMMAND has to be defined

6.5.12 XcpAppl_OpenCmdIf: XCP command extension interface
XcpAppl_OpenCmdlIf

©2016, Vector Informatik GmbH Version: 2.05.00 56 /94

Technical Reference XCP Protocol Layer

Single Channel

Single Receive Channel

uint8 XcpAppl_OpenCmdIf (uint8 Xcp_Channel, ROMBYTEPTR
pCmd

BYTEPTR pRes, BYTEPTR pLength)

Xcp Channel

Multi Channel
Indexed not supported
Code replicated not supported

A channel parameter, used when the multi client feature is active.
Please use the macro xcp_CHANNEL IDX to getthe channel index.

vector”

pCmd Pointer to COMMAND that has been received by the XCP Slave.
pRes Pointer to response buffer that will be sent by the XCP Slave.
pLength Number of bytes that will be sent in the response.
Retumcode
uint8 XCP_CMD OK : Done
XCP_CMD PENDING : Call Xcp_SendCrm() when done
XCP_CMD ERROR: Error

Call back that can be used to extend the XCP commands of the XCP protocol layer.

> XCP is initialized correctly
> Call context: Task and interrupt level
> The switch XCP_ ENABLE OPENCMDIF has to be defined

6.5.13 XcpAppl_SendStall: Resolve a transmit stall condition
XcpAppl_SendStall

Single Channel

Single Receive Channel | uint8 XcpAppl_SendStall (void)
Multi Channel

Indexed not supported

Code replicated not supported

Return code

uints8 0: if not successful
> 0 : successful

Functional Description

Resolve a transmit stall condition in Xcp Putchar or Xcp SendEvent.

©2016, Vector Informatik GmbH Version: 2.05.00 57 /94

Technical Reference XCP Protocol Layer vector

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE SEND EVENT or XCP_ENABLE_SERV_TEXT PUTCHAR and
XCP_ENABLE_ SEND QUEUE are defined

> The function can be overwritten by the macro XcpAppl SendStall ()

6.5.14 XcpAppl_DisableNormalOperation: Disable normal operation of the ECU
XcpAppl_DisableNormalOperation

Single Channel

Single Receive Channel |uint8 XcpAppl_DisableNormalOperation (MTABYTEPTR a,
uint16 size)

Multi Channel

Indexed not supported

Code replicated not supported

a Address (where the flash kernel is downloaded to)

size Size (of the flash kernel)

Return code

uint8 XCP CMD OK: download of flash kernel confirmed
XCP_CMD DENIED : download of flash kernel refused

Functional Description

Prior to the flash kernel download has the ECU’s normal operation to be stopped in order to
avoid misbehavior due to data inconsistencies.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switch XCP_ENABLE BOOTLOADER DOWNLAOD has to be defined

6.5.15 XcpAppl_StartBootLoader: Start of boot loader
XcpAppl_StartBootLoader

Single Channel

Single Receive Channel | uint8 XcpAppl_StartBootLoader (void)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

©2016, Vector Informatik GmbH Version: 2.05.00 58 /94

Technical Reference XCP Protocol Layer vector

Return code

This function should not return.
XCP _CMD OK: positive response
XCP_CMD BUSY : negative response

Functional Description
Start of the boot loader.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switch XCP. ENABLE BOOTLOADER DOWNLAOD has to be defined

6.5.16 XcpAppl_Reset: Perform ECU reset
XcpAppl_Reset

Single Channel

Single Receive Channel |void XcpAppl_Reset (void)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Return code

Functional Description
Perform an ECU reset after reprogramming of the application.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switch XCP_ ENABLE PROGRAM has to be defined

6.5.17 XcpAppl_ProgramStart: Prepare flash programming
XcpAppl_ProgramsStart

Prototype

Single Channel

Single Receive Channel | uint8 XcpAppl_ProgramStart (void)
Multi Channel

Indexed not supported

Code replicated not supported

©2016, Vector Informatik GmbH Version: 2.05.00 59/94

Technical Reference XCP Protocol Layer vector

Parameter

Return code

uint8 XCP _CMD OK: Preparation done
XCP_CMD PENDING : Call Xcp_SendCrm() when done
XCP_CMD ERROR: Flash programming not possible

Functional Description
Prepare the ECU for flash programming.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switch XCP_ENABLE PROGRAM has to be defined

6.5.18 XcpAppl_FlashClear: Clear flash memory
XcpAppl_FlashClear

Single Channel

Single Receive Channel |uint8 XcpAppl_FlashClear (MTABYTEPTR address,
uint32 size)

Multi Channel

Indexed not supported

Code replicated not supported

address Address

size Size

Return code
uint8 XCP CMD OK : Flash memory erase done
XCP_CMD PENDING : Call Xcp_SendCrm() when done
XCP_CMD ERROR: Flash memory erase error

Functional Description
Clear the flash memory, before the flash memory will be reprogrammed.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switch XCP_ ENABLE PROGRAM has to be defined

6.5.19 XcpAppl_FlashProgram: Program flash memory
XcpAppl_FlashProgram

©2016, Vector Informatik GmbH Version: 2.05.00

60 /94

Technical Reference XCP Protocol Layer

Prototype

Single Channel

Single Receive Channel |uint8 XcpAppl_FlashProgram (ROMBYTEPTR data,
MTABYTEPTR address,
uint8 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter
data

address

size

Return code

uint8

Functional Description

Program the cleared flash memory.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switch XCP_ENABLE PROGRAM has to be defined

Pointer to data

Address
Size

XCP CMD OK: Flash memory programming finished

XCP_CMD PENDING :Flash memory programming in progress.
Xcp_ SendCrm has to be called when done.

6.5.20 XcpAppl_DagResume: Resume automatic data transfer

XcpAppl_DagqResume

Single Channel

Single Receive Channel | uint8 XcpAppl_DaqResume (uint8 Xcp_Channel, tXcpDaq * daq)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter
Xcp Channel

dag

Return code

uint8

©2016, Vector Informatik GmbH

A channel parameter, used when the multi client feature is active.
Please use the macro xcp_cHANNEL 1Dx to getthe channel index.

Pointer to dynamic DAQ list structure

0: No resume mode data available
>0: Resume mode initialization ok

Version: 2.05.00

vector”

61/94

Technical Reference XCP Protocol Layer vector

Functional Description

Resume the automatic data transfer.

The whole dynamic DAQ list structure that had been stored in non-volatile memory within the
service XcpAppl DagResumeStore (..) has to be restored to RAM.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switches XCP_ ENABLE DAQ and XCP_ENABLE DAQ RESUME are defined

6.5.21 XcpAppl_DagResumeStore: Store DAQ lists for resume mode
XcpAppl_DagResumeStore

Prototype
Single Channel

Single Receive Channel |void XcpAppl_DagResumeStore (uint8 Xcp_Channel,
P2CONST (tXcpDag, AUTOMATIC, XCP_APPL_DATA) daq , uint16
size, uint8 measurementStart)

Multi Channel

Indexed not supported

Code replicated not supported

Xcp_ Channel A channel parameter, used when the multi client feature is active.
Please use the macro xcp cHANNEL IDX to getthe channel index.

dag Pointer to dynamic DAQ list structure.

size Size of DAQ data that needs to be stored

MeasurementStart If > 0 then set flag to start measurement during next init

Return code

Functional Description

This application callback service has to store the whole dynamic DAQ list structure in non-
volatile memory for the DAQ resume mode. Any old DAQ list configuration that might have
been stored in non-volatile memory before this command, must not be applicable anymore.
After a cold start or reset the dynamic DAQ list structure has to be restored by the application
callback service XcpAppl DagResume (. .)Wwhen the flag measurementStart is > 0.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switches XCP_ENABLE DAQ and XCP_ENABLE DAQ RESUME are defined

6.5.22 XcpAppl_DagResumeClear: Clear stored DAQ lists
XcpAppl_DagResumeClear

Prototype
Single Channel

©2016, Vector Informatik GmbH Version: 2.05.00 62/94

Technical Reference XCP Protocol Layer vector

Single Receive Channel |void XcpAppl_DagResumeClear (uint8 Xcp_Channel)
Multi Channel
Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro xcp_CHANNEL IDX to get the channel index.

Return code

Functional Description

The whole dynamic DAQ list structure that had been stored in non-volatile memory within the
service XcpAppl DagResumeStore (..) has to be cleared.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switches XCP_ENABLE_DAQ and XCP_ENABLE DAQ RESUME are defined

6.5.23 XcpAppl_CalResumeStore: Store Calibration data for resume mode
XcpAppl_CalResumeStore

Prototype

Single Channel

Single Receive Channel | uint8 XcpAppl_CalResumeStore (uint8 Xcp_Channel)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Xcp_Channel A channel parameter, used when the multi client feature is active.
Please use the macro xcp cHANNEL IDX to getthe channel index.

Return code

uint8 0: Storing not yet finished (STORE_CAL_REQ flag kept)
>0 : Storing finished (STORE_CAL_REQ flag cleared)

Functional Description

This application callback service has to store the current calibration data in non-volatile
memory for the resume mode.

After a cold start or reset the calibration data has to be restored by the application.
Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switches XCP_ENABLE DAQ and XCP_ENABLE DAQ RESUME are defined

©2016, Vector Informatik GmbH Version: 2.05.00 63/94

Technical Reference XCP Protocol Layer vector

6.5.24 XcpAppl_GetTimestamp: Returns the current timestamp
XcpAppl_GetTimestamp

Prototype

Single Channel

Single Receive Channel |chDaqTimestampType XcpAppl_GetTimestamp (void)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Return code

XcpDagTimestampType |timestamp

Functional Description
Returns the current timestamp.

Particularities and Limitations
> XCP is initialized correctly and in connected state
> The switches XCP_ ENABLE DAQ and XCP_ENABLE DAQ TIMESTAMP are defined

> The parameter kXcpDagTimestampSize defines the timestamp size. It can either be
DAQ TIMESTAMP BYTE, DAQ TIMESTAMP WORD, DAQ TIMESTAMP DWORD

6.5.25 XcpAppl_GetCalPage: Get calibration page
XcpAppl_GetCalPage

Single Channel

Single Receive Channel |uint8 XcpAppl_GetCalPage (uint8 Xcp_Channel, uint8 segment,
uint8 mode)

Multi Channel

Indexed not supported

Code replicated not supported

Xcp Channel A channel parameter, used when the multi client feature is active.
Please use the macro xcp_cHANNEL 1Dx to getthe channel index.

segment Logical data segment number

mode Access mode

The access mode can be one of the following values:
CAL ECU : ECU access
CAL XCP : XCP access

Return code
uint8 Logical data page number

©2016, Vector Informatik GmbH Version: 2.05.00

64 /94

Technical Reference XCP Protocol Layer

Functional Description

This function returns the logical number of the calibration data page that is currently activated
for the specified access mode and data segment.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switches XCP_ ENABLE DAQ and XCP_ENABLE DAQ TIMESTAMP are defined

6.5.26 XcpAppl_SetCalPage: Set calibration page

Prototype
Single Channel

XcpAppl_SetCalPage

Single Receive Channel

uint8 XcpAppl_SetCalPage (uint8 Xcp_Channel, uint8 segment,
uint8 page, uint8 mode)

Parameter
Xcp Channel

segment
Page
mode

Return code

uint8

Functional Description

Multi Channel
Indexed not supported
Code replicated not supported

A channel parameter, used when the multi client feature is active.
Please use the macro xcp cHANNEL IDX to getthe channel index.

Logical data segment number

Logical data page number

Access mode

CAL_ECU : the given page will be used by the slave device application
CAL_XCP : the slave device XCP driver will access the given page
Both flags may be set simultaneously or separately.

XCP_CMD OK : Operation completed successfully
XCP_CMD PENDING : Call Xcp_SendCrm() when done

CRC_OUT OF RANGE : segment out of range
(only one segment supported)

CRC_PAGE NOT VALID : Selected page not available
CRC_PAGE MODE NOT VALID : Selected page mode not available

Set the access mode for a calibration data segment.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switches XCP_ ENABLE DAQ and XCP_ENABLE DAQ TIMESTAMP are defined

©2016, Vector Informatik GmbH

Version: 2.05.00

vector”

65/94

Technical Reference XCP Protocol Layer

6.5.27 XcpAppl_CopyCalPage: Copying of calibration data pages

XcpAppl_CopyCalPage

Prototype
Single Channel

Single Receive Channel

uint8 XcpAppl_CopyCalPage (uint8 Xcp_Channel, uint8 srcSeg,
uint8 srcPage, uint8 destSeg, uint8 destPage)

Parameter
Xcp Channel

srcSeg
srcPage
destSeg
destPage
Return code

uint8

Functional Description

Multi Channel
Indexed not supported
Code replicated not supported

Copying of calibration data pages.
The pages are copied from source to destination.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switches XCP_ ENABLE PAGE COPY and XCP_ENABLE DAQ TIMEOUT are defined

A channel parameter, used when the multi client feature is active.
Please use the macro xcp_CHANNEL 1Dx to getthe channel index.

Source segment
Source page
Destination segment
Destination page

XCP_CMD_OK : Operation completed successfully
XCP_CMD_PENDING : Call XcpSendCrm() when done
CRC_PAGE NOT VALID :Page not available
CRC_SEGMENT NOT VALID : Segment not available

CRC _WRITE PROTECTED : Destination page is write protected.

6.5.28 XcpAppl_SetFreezeMode: Setting the freeze mode of a segment

XcpAppl_SetFreezeMode

Single Channel

Single Receive Channel |void XcpAppl_SetFreezeMode (uint8 segment, uint8 mode)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

segment

©2016, Vector Informatik GmbH

Segment to set freeze mode

Version: 2.05.00

vector”

66 /94

Technical Reference XCP Protocol Layer vector

New freeze mode
Return code

Functional Description

Setting the freeze mode of a certain segment. Application must store the current freeze mode
of each segment.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switches XCP_ENABLE_PAGE_ FREEZE is defined

6.5.29 XcpAppl_GetFreezeMode: Reading the freeze mode of a segment
XcpAppl_GetFreezeMode

Prototype

Single Channel

Single Receive Channel | uint8 XcpAppl_GetFreezeMode (uint8 segment)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Segment to read freeze mode

Return code
Return the current freeze mode, set by XcpAppl_SetFreezeMode().
Functional Description

Reading the freeze mode of a certain segment. Application must store the current freeze mode
of each segment and report it by the return value of this function.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switches XCP_ ENABLE PAGE FREEZE is defined

6.5.30 XcpAppl_Read: Read a single byte from memory
XcpAppl_Read

Single Channel

Single Channel | uint8 XcpAppl_Read (uint32 addr)
Multi Channel

Indexed not supported

Code replicated not supported

Parameter

addr 32 Bit address

©2016, Vector Informatik GmbH Version: 2.05.00 67 /94

Technical Reference XCP Protocol Layer vector

Return code

Pointer to the address specified by the parameters

Functional Description
Read a single byte from the memory.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switches XCP_ ENABLE MEM ACCESS BY APPL is defined

6.5.31 XcpAppl_Write: Write a single byte to RAM
XcpAppl_Write

Single Channel

Single Channel | void XcpAppl_Write (uint32 addr, uint8 data)
Multi Channel

Indexed not supported

Code replicated not supported

addr 32 Bit address

data data to be written to memory

Return code

Functional Description
Write a single byte to RAM.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switches XCP_ENABLE MEM ACCESS BY APPL is defined

6.5.32 XcpAppl_MeasurementRead: Read multiple bytes from memory
XcpAppl_MeasurementRead

Prototype

Single Channel

Single Channel uint8 XcpAppl_MeasurementRead (P2VAR(void, AUTOMATIC,
XCP_APPL_DATA) dst, P2ZCONST(void, AUTOMATIC,
XCP_APPL_DATA) src, uint8 len)

Multi Channel

Indexed not supported

Code replicated not supported

©2016, Vector Informatik GmbH Version: 2.05.00 68 /94

Technical Reference XCP Protocol Layer

Parameter

dst

Address pointer

len

Number of bytes to read

Src

Return code

uint8

Pointer to data

xCP_cMD OK if read operation was successful otherwise return

Functional Description

operation.

> The switches XCP_ENA

Read multiple bytes from memory. This service is used in MultiCore use case for type safe read

Particularities and Limitations

> XCP is initialized correctly and in connected state

XCP_ENABLE TYPESAVE COPY is defined

protection code, €.g. XCP CMD DENIED

BLE CALIBRATION MEM ACCESS BY APPL oOr

6.5.33 XcpAppl_Calib

rationWrite: Write multiple bytes to memory
XcpAppl_CalibrationWrite

Prototype

Single Channel

Single Channel uint8 XcpAppl_CalibrationWrite (P2VAR(void, AUTOMATIC,
XCP_APPL_DATA) dst, P2CONST(void, AUTOMATIC,
XCP_APPL_DATA) src, uint8 len)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter
dst

Address pointer

len

Number of bytes to write

Src

Return code

Functional Description

Pointer to data

Protection code, xcp_cMD oK if write operation was successful

> The switches XCP_ENA

Write multiple bytes to memory. This service is used in MultiCore use case for type safe write
operation.

Particularities and Limitations

> XCP is initialized correctly and in connected state

XCP_ENABLE TYPESAVE COPY is defined

BLE CALIBRATION MEM ACCESS BY APPL or

©2016, Vector Informatik GmbH

Version: 2.05.00

vector”

69 /94

Technical Reference XCP Protocol Layer

6.5.34 XcpAppl_ReadChecksumValue: Read checksum value

Prototype

XcpAppl_ReadChecksumValue

Addr

Return code

Single Channel

Single Channel tXcpChecksumAddType XcpAppl_ReadChecksumValue (uint32
addr)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Address pointer

tXcpChecksumAddType | New value for checksum calculation

Functional Description

This function is used to access checksum values when no direct access to memory is allowed.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switches XCP_ ENABLE CALIBRATION MEM ACCESS BY APPL is defined

6.5.35 XcpAppl_CalculateChecksum: Custom checksum calculation

Prototype

Single Channel

XcpAppl_CalculateChecksum

Xcp Channel

pMemArea
pPRes
Length

©2016, Vector Informatik GmbH

Single Channel uint8 XcpAppl_CalculateChecksum (uint8 Xcp_Channel,
ROMBYTEPTR pMemArea, BYTEPTR pRes, uint32 length)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

A channel parameter, used when the multi client feature is active.
Please use the macro xcp CcHANNEL IDX to getthe channel index.

Address pointer

Pointer to response string

Length of mem area, used for checksum calculation

Version: 2.05.00

vector”

70794

Technical Reference XCP Protocol Layer vector

Return code

XCP_CMD OK : CRC calculation performed successfully

XCP CMD PENDING : Pending response, triggered by call of
Xcp_SendCrm
XCP _CMD DENIED :

CRC calculation not possible

Functional Description

Normally the XCP uses internal checksum calculation functions. If the internal checksum
calculation does not fit the user requirements this call-back can be used to calculate the
checksum by the application.

Particularities and Limitations

> XCP is initialized correctly and in connected state
> The switches XCP_ ENABLE CHECKSUM and XCP ENABLE CUSTOM CRC is defined

6.6 XCP Protocol Layer Functions that can be overwritten

The following functions are defined within the XCP Protocol Layer and can be overwritten
for optimization purposes.

Note: All services within this chapter are called from task or interrupt level. All services are
not reentrant.

6.6.1 Xcp_MemCpy: Copying of a memory range
Xcp_MemCpy

Prototype
Single Channel

Single Receive Channel |void Xcp_MemCpy (DAQBYTEPTR dest,
ROMDAQBYTEPTR src, uint8 n')

Multi Channel

Indexed not supported

Code replicated not supported

dest pointer to destination address
src pointer to source address

n number of data bytes to copy

Return code

©2016, Vector Informatik GmbH Version: 2.05.00 71/94

Technical Reference XCP Protocol Layer vector

Functional Description

General memory copy function that copies a memory range from source to destination.

This function is used in the inner loop of Xcp Event for data acquisition sampling.

This function is already defined in the XCP Protocol Layer, but can be overwritten by a macro or
function for optimization purposes. E.g. it would be possible to use DMA for faster execution.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly.
> This function can be overwritten Xcp MemCpy is defined.

6.6.2 Xcp_MemSet: Initialization of a memory range
Xcp_MemSet

Prototype

Single Channel

Single Receive Channel |void Xcp_MemSet (BYTEPTR p, uint16 n, uint8 b)
Multi Channel

Indexed not supported

Code replicated not supported

P pointer to start address
n number of data bytes

b data byte to initialize with

Return code

Functional Description

Initialization of n bytes starting from address p with b.

This function is already defined in the XCP Protocol Layer, but can be overwritten by a macro or
function for optimization purposes. E.g. it would be possible to use DMA for faster execution.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly.
> This function can be overwritten if Xcp MemsSet is defined.

6.6.3 Xcp_MemClr: Clear a memory range

Xcp_MemCir
Single Channel
Single Receive Channel | static void Xcp_MemClr (BYTEPTR p, uint16 n)
Multi Channel
Indexed not supported
Code replicated not supported

©2016, Vector Informatik GmbH Version: 2.05.00 72/94

Technical Reference XCP Protocol Layer vector

Parameter

P pointer to start address
n number of data bytes

Return code

Functional Description
Initialize n data bytes starting from address p with 0x00.

This function is already defined in the XCP Protocol Layer, but can be overwritten by a macro or
function for optimization purposes. E.g. it would be possible to use DMA for faster execution.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly.
> This function can be overwritten if Xcp MemC1r is defined.

6.7 AUTOSAR CRC Module Services called by the XCP Protocol Layer (XCP
Professional Only)

The following services of the AUTOSAR CRC Module are called by the XCP Protocol
Layer:

Crc CalculateCRC16 (..)

Crc_CalculateCRC32(..)

A detailed description of the API can be found in the software specification of the CRC
Module [VII].

6.7.1.1 Generated a2l files

The GenTool also generates multiple a2l files which can be used in the Master tool for
easier integration. The following files are generated:

e XCP.a2l (general protocol layer settings)

e XCP_daq.a2l (DAQ specific settings)

e XCP_events.a2l (DAQ event info)

e XCP_Checksum.a2l (Checksum information)

A Example Master.a2l:

/begin IF DATA XCP
/include XCP.a2l
/begin DAQ
/include XCP_daq.a2l
/include XCP_events.a2l
/include XCP_checksum.a2l

©2016, Vector Informatik GmbH Version: 2.05.00 73/94

Technical Reference XCP Protocol Layer vector

/end DAQ
/include CanXCPAsr.a2l
/end IF_DATA

/include bsw.a2l

©2016, Vector Informatik GmbH Version: 2.05.00 74194

Technical Reference XCP Protocol Layer vector

6.8 Configuration without Generation Tool

The configuration of the configuration switches and constants is done in the file
Xcp Cfg.h.

6.8.1 Compiler Switches

Compiler switches are used to enable/disable optional functionalities in order to save code
space and RAM.

In the following table you will find a complete list of all configuration switches, used to
control the functional units. The default values are bold.

Configuration switches Value Description

XCP_xxx_DAQ ENABLE, DISABLE Enpables/disables
synchronous data
acquisition.

XCP_xxx_DAQ PRESCALER ENABLE, DISABLE Enables/disables the
DAQ prescaler.

XCP_xxx DAQ OVERRUN_ INDICATION ENABLE, DISABLE Enables/disables the
DAQ overrun
detection.

XCP xxx_DAQ HDR ODT DAQ’ ENABLE, DISABLE The 2 Byte DAQ/ODT
XCP Packet

identification is used
instead of the PID.

Enabled: Relative
ODT number,
absolute list number
(BYTE)

Disabled: Absolute
ODT number
XCP_xxx_ DAQ PROCESSOR INFO ENABLE, DISABLE Pjyg & play
mechanism for the
data acquisition
processor.
XCP_xxx_ DAQ RESOLUTION INFO ENABLE, DISABLE Pjyug & play
mechanism for the
data acquisition
resolution.
XCP_xxx_ DAQ EVENT INFO ENABLE, DISABLE Pjyg & play
mechanism for the
event definitions.

XCP_xxx DAQ TIMESTAMP ENABLE, DISABLE DAQ timestamps

% The XCP Protocol allows three identification field types for DTOs: ‘absolute ODT number’, ‘relative ODT
number and absolute DAQ list number’, ‘empty identification field’ (not supported)

©2016, Vector Informatik GmbH Version: 2.05.00 75194

Technical Reference XCP Protocol Layer

XCP_xxx DAQ TIMESTAMP FIXED

kXcpDaqTimestampSize

XCP_ xxx SEED KEY
XCP_xxx CHECKSUM

XCP_xxx CUSTOM CRC

XCP xxx CRC16CCITT REFLECTED

XCP xxx AUTOSAR CRC MODULE

XCP_xxx_ PARAMETER CHECK
XCP_xxx_SEND QUEUE

XCP_xxx_SEND EVENT
XCP_xxx_USER COMMAND

XCP_xxx GET_ ID GENERIC
XCP_xxx_TL_COMMAND

XCP_xxx_COMM MODE_INFO

XCP_xxx CALIBRATION PAGE

©2016, Vector Informatik GmbH

ENABLE, DISABLE

DAQ TIMESTAMP BYTE,
DAQ TIMESTAMP WORD,
DAQ TIMESTAMP DWORD

ENABLE,

ENABLE,

DISABLE

DISABLE

vector’

Slave always sends
DTO Packets in time
stamped mode.
Otherwise are
timestamps used
individual by each
DAQ-list.

The size of
timestamps which can
either be 1Byte,
2Bytes or 4Bytes.

Seed & key access
protection

Calculation of
checksum

ENABLE,

ENABLE,

ENABLE,

ENABLE,
ENABLE,

ENABLE,

ENABLE,

ENABLE,
ENABLE,

ENABLE,

ENABLE,

DISABLE

DISABLE

DISABLE

DISABLE
DISABLE

DISABLE

DISABLE

DISABLE
DISABLE

DISABLE

DISABLE

Version: 2.05.00

Enable call-back for
custom CRC
calculation

Enable/disable
reflected CRC16
CCITT checksum
calculation algorithm.
Also refer to 6.8.2.1
‘Table of Checksum
Calculation Methods’.

Usage of CRC
algorithms of
AUTOSAR CRC
module.

Parameter check

Transmission send
queue

(shall be used in
conjunction with
synchronous data
acquisition and
stimulation).

Transmission of event
packets (EV)

User defined
command

ECU identification

Transport Layer
command

Communication mode
info

Calibration data page
switching

76/94

Technical Reference XCP Protocol Layer

XCP_xxx PAGE_INFO

XCP_xxx PAGE COPY
XCP_xxx PAGE FREEZE

XCP_ xxx DPRAM’

XCP_xxx BLOCK_UPLOAD
XCP_xxx BLOCK_DOWNLOAD

XCP_xxx WRITE PROTECTION
XCP_xxx READ PROTECTION
XCP xxx READ EEPROM

XCP_xxx WRITE EEPROM

XCP_xxx_ PROGRAMMING WRITE PROTECTION
XCP_xxx_ PROGRAM
XCP_xxx_ PROGRAM INFO

XCP_xxx BOOTLOADER DOWNLOAD

XCP_xxx STIM

XCP_xxx_DAQ RESUME
XCP_xxx_SERV_TEXT

XCP_xxx_SERV_TEXT PUTCHAR

XCP_xxx_SERV_TEXT PRINTF

® Not supported by XCP Professional

©2016, Vector Informatik GmbH

ENABLE,

ENABLE,

ENABLE,

ENABLE,

ENABLE,

ENABLE,

ENABLE,
ENABLE,
ENABLE,

ENABLE,

ENABLE,
ENABLE,
ENABLE,

ENABLE,

ENABLE,

ENABLE,

ENABLE,

ENABLE,

ENABLE,

DISABLE

DISABLE

DISABLE

DISABLE

DISABLE

DISABLE

DISABLE
DISABLE
DISABLE

DISABLE

DISABLE

DISABLE

DISABLE

DISABLE

DISABLE

DISABLE

DISABLE

DISABLE

DISABLE

Version: 2.05.00

vector’

Calibration data page
plug & play
mechanism
Calibration data page
copying

Segment freeze mode
handling

Supports the usage of
dual port RAM

Enables/disables the
slave block transfer.

Enables/disables the
master block transfer.

Write access to RAM
Read access to RAM

Read access to
EEPROM

Write access to
EEPROM

Write access to flash
Flash programming

Flash programming
plug & play
mechanism

Flash programming
with a flash kernel

Enables/disables data
stimulation.

(also
XCP_ENABLE_DAQ
has to be defined in
order to use data
stimulation)

Data acquisition
resume mode.

Transmission of
service request codes

Putchar function for
the transmission of
service request
messages

Print function for the
transmission of
service request
messages

77194

Technical Reference XCP Protocol Layer vector

XCP_ xxx MEM ACCESS BY APPL ENABLE, DISABLE Memory access by
application

XCP_xxx MODEL PAGED ENABLE, DISABLE Sypport for paging /
banking

XCP_xxx_ SHORT DOWNLOAD ENABLE, DISABLE Sypport for

SHORT_DOWNLOAD
command

XCP xxx MODIFY BITS ENABLE, DISABLE Support for
MODIFY_BITS
command

XCP xxx WRITE DAQ MULTIPLE ENABLE, DISABLE \Vrite DAQ multiple
command

XCP_xxx GET XCP DATA POINTER ENABLE, DISABLE Enpable API for
internal data access

XCP_ xxx_CONTROL ENABLE, DISABLE Enable functionality to

en- / disable XCP
module

XCP_xxx_ DEV_ERROR DETECT ENABLE, DISABLE Engble Development
Error check

XCP_xxx_ READCCCONFIG ENABLE, DISABLE Enpable Read of
FlexRay Parameters

XCP_ADDR EXT READCCCONFIG 0x00..0xff Address Extension to

be used for FlexRay
Parameters

XCP_xxx VECTOR GENERICMEASUREMENT ENABLE, DISABLE Sypport for Generic
Measurement feature
XCP_xxx GET SESSION STATUS API ENABLE, DISABLE Enable API to acquire

the current session
status

6.8.2 Configuration of Constant Definitions

The configuration of constant definitions is done as described below.
The default values are bold.

Constant definitions Range Default Description

kXcpMaxCTOMax 8..255 8 Maximum length of XCP command transfer
objects (CTO).
The length of the CTO can be variable.
However it has to be configured according to the
used XCP Transport Layer.

©2016, Vector Informatik GmbH Version: 2.05.00 78194

Technical Reference XCP Protocol Layer vector

kXcpMaxDTOMax 8..255% 8 Maximum length of XCP data transfer objects
(DTO).
The length of the DTO can be variable.
However it has to be configured according to the

used XCP Transport Layer.
kXcpDagMemSize 0.. 256 Define the amount of memory used for the DAQ
OxFFEF lists and buffers.

Also refer to chapter 7 (Resource
Requirements).

The minimum queue size required for DAQ. The
queue size is the unallocated memory reserved
by kxcpbDagMemSize

kXcpSendQueueMinSize 1..0x7F

kXcpMaxEvent 0..0xFF°> - Number of available events in the slave (part of
event channel plug & play mechanism)
Also refer to chapter 6.8.5.

kXcpStimOdtCount 0..0xCO 0xCO Maximum number of ODTs that may be used for
Synchronous Data Stimulation.

kXcpChecksumMethod - - Checksum calculation method.

Refer to chapter 6.8.2.1 ‘Table of Checksum
Calculation Methods’ for valid values.

kXcpChecksumBlockSize 1 .. 256 Each call of xcp MainFunction calculates the

OxFFFF checksum on the amount of bytes specified by
kXcpChecksumBlockSize.
XCP_TRANSPORT LAYER V O.. - Version of the XCP Transport Layer that is used.
ERSION OXFFFF (this version gets transferred to the MCS)
kXcpMaxSector 1..0xFF - Number of flash sectors
Also refer to chapter 6.8.7
kXcpMaxSegment 1 1 Number of memory segments
Also refer to chapter 6.8.8.
kXcpMaxPages 1..2 2 Number of pages
Also refer to chapter 6.8.8.
NUMBER OF TRANSPORTLA 1.. 1 Number of used Transport Layers
YERS
XCP TRANSPORT LAYER C O.. 0 Index of Transport Layer
AN
XCP_TRANSPORT LAYER F O.. 1 Index of Transport Layer
R
XCP_TRANSPORT LAYER E O.. 2 Index of Transport Layer
TH

6.8.2.1 Table of Checksum Calculation Methods

Constant Checksum calculation method

XCP_CHECKSUM_TYPE ADDI1 Add BYTE into a BYTE checksum, ignore overflows.
XCP_CHECKSUM_TYPE_ADD12 Add BYTE into a WORD checksum, ignore overflows

4 Implementation specific range. The range is 8..0xFFFF according to XCP specification [1], [II].
° Implementation specific range. The range is 0..0xFFFE according to XCP specification [I], [lI].

©2016, Vector Informatik GmbH Version: 2.05.00 791794

Technical Reference XCP Protocol Layer vector

XCP_CHECKSUM_TYPE_ADDI14 Add BYTE into a DWORD checksum, ignore overflows
XCP_CHECKSUM_TYPE_ADDZ2 Add WORD into a WORD checksum, ignore overflows, block
size must be modulo 2
XCP_CHECKSUM_TYPE_ADD24 Add WORD into a DWORD checksum, ignore overflows,

block size must be modulo 2
XCP_CHECKSUM TYPE_ADD44 Add DWORD into DWORD, ignore overflows, block size

must be modulo 4

XCP_CHECKSUM_TYPE_CRC16CCITT CRC16 CCITT checksum calculation algorithm

Both the standard and the reflected algorithm are supported.
Please refer to chapter 9.6 ‘Reflected CRC16 CCITT
Checksum Calculation Algorithm’.

The CRC16 CCITT algorithm of the AUTOSAR CRC module
is only supported by XCP Professional.

XCP_CHECKSUM_TYPE_CRC32 CRC32 checksum calculation algorithm

The CRC32 algorithm is only supported in XCP Professional
if the AUTOSAR CRC module is used.

6.8.3 Configuration of the CPU Type
To provide platform independent code platform, the CPU type has to be defined.

C CPUTYPE xxxENDIAN LITTLE, Definition whether the CPU is little endian (Intel
- - BIG format) or big endian (Motorola format).

XCP xxx UNALIGNED MEM AcCESss ENABLE, Enables / disables unaligned memory access.
DISABLE |f XCP_DISBLE UNALIGNED MEM ACCESS is
defined WORDs are located on WORD aligned and
DWORD are located on DWORD aligned addresses.

6.8.4 Configuration of Slave Device ldentification

The configuration of the slave device identification and automatic session configuration is
described within this chapter. Only one of the following options can be used at one time.

6.8.4.1 Identification by ASAM-MC2 Filename without Path and Extension

If the slave device identification is done by identification with an ASAM-MC2 filename
without path and extension the filename length has to be defined:

#define kXcpStationIdLength Iength
and the station ID itself has to be defined as string:

const uint8 kXcpStationId[] = “station ID”
The range of kXcpStationIdLengthis 0. .0xFF.

6.8.4.2 Automatic Session Configuration with MAP Filenames

The automatic session configuration by transferring MAP filenames is a Vector specific
extension that works with CANape and can be enabled by the “XcpGetldGeneric” attribute.

When this feature is enabled the APl as described in 3.4.2 XCP Generic ldentification is
enabled. This API will be called, should CANape request the MAP filename, and must be

©2016, Vector Informatik GmbH Version: 2.05.00 80 /94

Technical Reference XCP Protocol Layer

vector’

implemented by the user accordingly. This feature must explicitly be enabled in CANape

as well!

Example

@)

#define MAP_FORMAT 29
#define MAP NAME "xcpsim"

uint8 MapTest[500];
uint32 MapTestSize;

uint32 XcpAppl GetIdData(MTABYTEPTR *pData, uint8 id)

{

if(id == IDT VECTOR MAPNAMES)

{
MapTestSize

sprintf ((char*)MapTest, "$c%c%s.map",MAP FORMAT, O,MAP NAME) ;

/* Result: MapTest

*pData = MapTest;

return MapTestSize;

}

else

{

”290xcpsim.map” */

return 0; /* Id not available */

}

‘MAP_FORMAT’ represents the format of the MAP file. (See table below)

‘0’ is a counter that is used as address extension. Please set this parameter to 0.
Table of MAP file formats:

"Microsoft standard"

"Fujitsu Softune 3..8(.mps)"

"Greenhill Multi 2000"

"LN308 (MITSUBISHI) for M16C/80"

"COFF settings auto detected"

1 = "BorlandC 16 Bit" 29

2 = "Mleo6" 30 "ELF/DWARF 16 Bit"
3 = "Watcom" 31 "ELF/DWARF 32 Bit"
4 = "HiTech HCO5" 32

6 = "IEEE" 33 "Microware Hawk"

7 = "Cosmic" 34 "TI Ce711"

8 = "SDsS" 35 "Hitachi H8S"

9 = "Fujitsu Softune 1 (.mpl)" 36 "IAR HC12"

10 = "GNU" 37

11 = "Keil 1le6x" 38

12 = "BorlandC 32 Bit" 39

13 = "Keil 16x (static)" 40 "NEC CC78K/0 v35"
14 = "Keil 8051" 41

"Microsoft extended"

15 = "ISsI" 42 "ICCAVR"
16 = "Hiware HC12" 43 "Omf96 (.m96)"
17 = "TI TMS470" 44 "COFF/DWARE"

©2016, Vector Informatik GmbH

Version: 2.05.00

81/94

Technical Reference XCP Protocol Layer vector

18 = "Archimedes" 45 = "OMF96 Binary (Tasking C196)"

19 = "COFF" 46 = "OMF166 Binary (Keil C166)"

20 = "IAR" 47 = "Microware Hawk Plug&Play ASCII"

21 = "VisualDSP" 48 = "UBROF Binary (IAR)"

22 = "GNU 1lé6x" 49 = "Renesas M32R/M32192 ASCII"

23 = "GNU VxWorks" 50 = "OMF251 Binary (Keil C251)"

24 = "GNU 68k" 51 = "Microsoft standard VC8"

25 = "DiabData" 52 = "Microsoft VC8 Release Build (MATLAB DLL)"
26 = "VisualDSP DOS" 53 = "Microsoft VC8 Debug Build (MATLAB DLL)"
27 = "HEW SH7055" 54 = "Microsoft VC8 Debug file (pdb)"

28 = "Metrowerks"

6.8.5 Configuration of the Event Channel Plug & Play Mechanism
The event channel plug & play mechanism is enabled with the switch
XCP_ENABLE DAQ EVENT INFO

A prerequisite for the event channel plug & play mechanism is the general data acquisition
plug & play mechanism. If the mechanism is enabled the following configurations items
have to be defined as described below:

Range Description

kXcpMaxEvent 0..0xFF* Number of available events in the slave
(part of event channel plug & play mechanism)

If the event numbers do not start at O or are not
continuous this is the maximum used event channel
number plus 1.

kXcpEventName [] kXcpMaxEvent [Ljst with pointers to the event channel names that are
defined as strings.

kXcpEventNameLength[] kXcpMaxEvent Length of the event channel names without the
terminating char.
kXcpEventCycle[] kXcpMaxEvent — Cycle time of the event channels in milliseconds.
kXcpEventDirection(] kXcpMaxEvent Dijrection of the event channels.
For XCP Basic valid values are:
- kXcpEventDirectionDaqg
For XCP Professional valid values are:
- kXcpEventDirectionDaqg
- kXcpEventDirectionStim
- kXcpEventDirectionDagStim

Y Example
[1]
=== | #define XCP_ENABLE DAQ EVENT INFO

#define kXcpMaxEvent 3

CONST (uint8, XCP CONST) kXcpEventName O[] = "10ms";

6 Implementation specific range. The range is 0..0xFFFE according to XCP specification [I], [lI].

©2016, Vector Informatik GmbH Version: 2.05.00 82/94

Technical Reference XCP Protocol Layer

vector’

CONST (uint8,
CONST (uint8,

XCP_CONST)
XCP_CONST)

{
&kXcpEventName 0[0],
&kXcpEventName 1[0],
&kXcpEventName 2[0]
}:

CONST (uint8, XCP_CONST)

CONST (uint8,
{

10,

100,

100
}s

XCP_CONST)

CONST (uints8,

{
kXcpEventDirectionDaq,
kXcpEventDirectionDaq,
kXcpEventDirectionStim

bi

XCP_CONST)

CONSTP2CONST (uint8, XCP_ |

kXcpEventName 1[]
kXcpEventName 2[]
CONST, XCP CONST)

kXcpEventNameLength[]

kXcpEventCycle[]

kXcpEventDirection|[]

= "100ms DAQ";
= "100ms STIM";
kXcpEventName []

6.8.6 Configuration of the DAQ Time Stamped Mode

Transmission of DAQ timestamps is enabled with XCP_ENABLE DAQ TIMESTAMP. If
XCP_ENABLE DAQ TIMESTAMP FIXED is defined all DTO Packets will be transmitted in

time stamped mode.

Constant
kXcpDagTimestampSize

DAQ TIMESTAMP WORD,
DAQ TIMESTAMP DWORD

XcpDaqTimestampType

©2016, Vector Informatik GmbH

uints,

Version: 2.05.00

uintl6 or uint32

Range Description

DAQ TIMESTAMP BYTE,

This parameter defines the
size of timestamps. It can
either be 1 byte, 2 bytes or 4
bytes.

Type of the timestamp

depends on the parameter
kXcpDagTimestampSize.

83794

Technical Reference XCP Protocol Layer vector

kXcpDagTimestampUnit DAQ TIMESTAMP UNIT 1INS lJnﬂofthetknesUnnp

DAQ_TIMESTAMP_UNIT_10NS (1ps, 10ns..1s)
DAQ TIMESTAMP UNIT 100NS

DAQ TIMESTAMP UNIT 1US

DAQ TIMESTAMP UNI T_l 0Us

DAQ TIMESTAMP UNIT 100US

DAQ TIMESTAMP UNIT 1MS

DAQ TIMESTAMP UNIT 10MS

DAQ T IMESTAMP_UNIT_]_ 00MS

DAQ TIMESTAMP UNIT 1S

DAQ TIMESTAMP UNIT 1pS

DAQ TIMESTAMP UNIT 10pS

DAQ T IMESTAMP_UNIT_l 00pS

kXcpDagTimestampTicksPerUnit O0..0xFFFF Time stamp ticks per unit

6.8.7 Configuration of the Flash Programming Plug & Play Mechanism
The flash programming plug & play mechanism is enabled with the switch
XCP ENABLE PROGRAM INFO

If the plug & play mechanism is enabled the number of sectors and the start address and
end address of each sector has to be defined. The constants that have to be defined can
be found in the following table.

Range Description |

kXcpMaxSector 0..0xFF Number of available flash sectors in the slave

kXcpSectorName [] kXcpMaxSector List with pointers to the Sector names that are
defined as strings.

kXcpSectorNameLength kXcpMaxSector Length of the Sector names without the terminating
char.

kXcpProgramSectorStart[] kXcpMaxSector Lijst with the start addresses of the sectors

kXcpProgramSectorEnd[] kXcpMaxSector List with the end address of the sectors

'T‘I Example
I.

#define XCP_ENABLE PROGRAM INFO
#define kXcpMaxSector 2

CONST (XcpCharType, XCP _CONST) kXcpSectorName 0[] = "SectorO";
CONST (XcpCharType, XCP CONST) kXcpSectorName 1[] "Sectorl";

CONSTP2CONST (XcpCharType, XCP CONST, XCP CONST) kXcpSectorName[] =
{
&kXcpSectorName 0[0],
&kXcpSectorName 1[0]
i
CONST (uint8, XCP CONST) kXcpSectorNameLength[] =
{

©2016, Vector Informatik GmbH Version: 2.05.00 84 /94

Technical Reference XCP Protocol Layer

vector’

70,

70
}i
CONST (uint32, XCP _CONST) kXcpProgramSectorStart [] =
{

(uint32)0x000000u,

(uint32)0x010000u,
}i
CONST (uint32, XCP_CONST) kXcpProgramSectorEnd [] =
{

(uint32) 0x00FFFFu,

(uint32) 0x01FFFFu,

}:

6.8.8 Configuration of the Page Switching Plug & Play Mechanism
The page switching plug & play mechanism is enabled with the switch
XCP ENABLE PAGE INFO

If the plug & play mechanism is enabled the following configurations items have to be

defined as described below:

Constant Range Description
kXcpMaxSegment 0x01 Number of memory segments
kXcpMaxPages 0x01..0x02 Number of pages

6.8.9 Configuration of the used Transport Layer

The XCP Protocol Layer uses a jump table to call respective Transport Layer Functions.

This jump table has to contain certain Function names

Constant Range Description

Xcp_T1Api Number of TL Function Pointer table containing pointers to the

respective Transport Layer

Y Example
iz
el .
#define NUMBER OF TRANSPORTLAYERS 1
#define XCP_TRANSPORT LAYER CAN Ou

CONST(Xcp_TIApiType, XCP_CONST)
Xcp_TIAp[NUMBER_OF_TRANSPORTLAYERS] =

{
{
CanXcp_ Send, /* ApplXcpSend */
CanXcp_ SendFlush /* ApplXcpSendFlush */
#if defined (XCP_ENABLE TL COMMAND)
4
CanXcp TLService /* ApplXcpTLService */
#endif

©2016, Vector Informatik GmbH Version: 2.05.00

85/94

Technical Reference XCP Protocol Layer vector

©2016, Vector Informatik GmbH Version: 2.05.00 86 /94

Technical Reference XCP Protocol Layer vector

7 Resource Requirements

The resource requirements of the XCP Protocol Layer mainly depend on the micro
controller, compiler options and configuration. Within this chapter only the configuration
specific resource requirements are taken in consideration.

©2016, Vector Informatik GmbH Version: 2.05.00 87194

Technical Reference XCP Protocol Layer vector

8 Limitations

8.1 General Limitations
The functional limitations of the XCP Professional Version are listed below:
> Bit stimulation is not supported

> Only dynamic DAQ list allocation supported

> The interleaved communication model is not supported

> Only default programming data format is supported
> GET_SECTOR_INFO does not return sequence numbers

> Program Verify and Program Format are not supported

> DAQ numbers are limited to byte size
> DAQ does not support address extension
> DAQ-list and event channel prioritization is not supported
> Event channels contain one DAQ-list
> ODT optimization not supported
> Assignments of CAN identifiers to DAQ lists is not supported
> MAX_DTO is limited to OxFF
> The resume bits in DAQ lists are not set
> STORE_DAQ, CLEAR_DAQ and STORE_CAL do not send an event message
> Entering resume mode does not send an event message
> Overload indication by an event is not supported
> SERV_RESET is not supported
> The following checksum types are not supported
> XCP_CRC_16
> XCP_CRC_32
> XCP_USER_DEFINED
> Maximum checksum block size is OXFFFF
> Page Info and Segment Info is not supported
> Only one segment and two pages are supported
> The seed size and key size must be equal or less MAX_CTO-2

> Consistency only supported on ODT level

©2016, Vector Informatik GmbH Version: 2.05.00 88 /94

Technical Reference XCP Protocol Layer vector

Planned:
> User defined checksum calculations

> CRC16 and CRC32
> The AUTOSAR API Xcp_SetTransmissionMode is not supported

8.2 Limitations Regarding Platforms, Compilers and Memory Models

Even though the XCP is a Protocol Layer and therefore higher software layer, it
manipulates memory addresses and directly access the memory with these addresses.

This might cause issues for some combinations of platforms, compilers and memory
models. The following list provides all known restrictions on platforms, compilers and
linkers:

> CANoeOSEK Emulation is not supported

©2016, Vector Informatik GmbH Version: 2.05.00 89 /94

Technical Reference XCP Protocol Layer vector

9 FAQ

9.1 Invalid Time Stamp Unit

ﬂ%’ FAQ

If using data acquisition CANape reports an error due to an invalid timestamp
unit.

If you are using CANape 5.5.x or an earlier version please define
#define XCP ENABLE CANAPE 5 5 X SUPPORT

in your user config file.

9.2 Support of small and medium memory model

?b FAQ

How is the XCP Protocol Layer configured in order to access the whole memory
in the small and medium memory model?

By default The XCP Protocol Layer accesses the memory with a default pointer. l.e. in
small and medium memory model a near pointer is used. If the far memory (e.g. code or
read-only sections) needs to be accessed via the XCP Protocol the memory qualifiers
have to be defined as far pointers by the user within the user config file.

Two memory qualifiers are used to access the memory:

MTABYTEPTR
#define MTABYTEPTR P2VAR (uint8, AUTOMATIC, XCP_MTA DATA)
This pointer is used to access memory for standard read and
write operations

DAQBYTEPTR
#define DAQBYTEPTR P2VAR (uint8, AUTOMATIC, XCP_DAQ DATA)
This pointer is used to access memory for the Synchronous Data
Acquisition

Depending on the use case, microcontroller, memory model and compiler either
XCP_MEMORY FAR or both memory qualifiers (DAQBYTEPTR and MTABYTEPTR) have to
be defined by the user. Alternatively the AUTOSAR Compiler Abstraction can be used. In
this case the pointer classes

XCP_MTA DATA and
XCP_DAQ DATA

Have to be defined as “far” according to the used compiler.

©2016, Vector Informatik GmbH Version: 2.05.00 90 /94

Technical Reference XCP Protocol Layer vector

9.3 Small memory model on ST10/ XC16X / C16X with Tasking Compiler

FA
?5 Q

How has XCP Protocol Layer to be configured in order to support small memory
model on the following microcontrollers: ST10, XC16X, C16X with Tasking
Compiler?

If the small memory model is used and the two least significant bits of the DPP register
where the data of XCP is located is not equal the default DPP register value (i.e. the two
least significant bits of DPPx are unequal x, x=0..3) the configuration of the XCP Protocol
Layer has to be adapted in the user config file

Disable type casts from pointers to integers
#define XCP _ENABLE NO P2INT CAST

9.4 Data Page Banking on Star12X / Metrowerks

fa? FAQ

How has the XCP Protocol Layer to be configured in order to support data page
banking on the Star12X with Metrowerks compiler?

In order to use data page banking the following definition has to be added to the user
config file:

#define XCP_MEMORY MODEL PAGED

If this option is enabled far pointers are used for memory access, and address conversions
are carried out in the in the application callback template xcp appl.c. These address
conversions have to adapted to the used derivative.

| Please note

. The data page banking support is implemented in the template xcp appl.c for
the MC9S12XDP512. For other Star12X derivatives the template has to be
adapted.

9.5 Memory model banked on Star12X / Cosmic

?? FAQ

How has the XCP Protocol Layer to be configured in order to support the access
to far pages in the banked memory model on the Star12X with Cosmic compiler?

In order to access far pages or support data page banking the following definitions have to

be added to the user config file:
#define XCP MEMORY MODEL PAGED

©2016, Vector Informatik GmbH Version: 2.05.00 91/94

Technical Reference XCP Protocol Layer vector

#define XCP_ENABLE MEM ACCESS BY APPL

If this option is enabled far pointers are used for memory access, and address conversions
are carried out in the in the application callback template xcp appl.c. These address
conversions have to adapted to the used derivative.

| Please note

: The data page banking support is implemented in the template xcp appl.c for
the MC9S12XDP512. For other Star12X derivatives the template has to be
adapted.

9.6 Reflected CRC16 CCITT Checksum Calculation Algorithm

FAQ
?? How is the reflected CRC16 CCITT checksum calculation algorithm configured?

The XCP Protocol Layer supports both the standard CRC16 CCITT algorithm and the
reflected CRC16 CCITT algorithm. In order to use the reflected algorithm the following
definition has to be added to the user config file:

#define XCP ENABLE CRC16CCITT REFLECTED

| Please note
(. }L Up to CANape version 5.6.30.3 (SP3) the standard CRC16 CCITT algorithm is
not supported, but the reflected one.
However a user checksum calculation DLL can be used in order to use the
standard algorithm with former versions of CANape.

©2016, Vector Informatik GmbH Version: 2.05.00 92 /94

Technical Reference XCP Protocol Layer vector

10 Bibliography

This manual refers to the following documents:
[l XCP -Part 1 - Overview

Version 1.1

[l XCP -Part 2- Protocol Layer Specification
Version 1.1

[111] XCP -Part 5- Example Communication Sequences
Version 1.1

[IV] Technical Reference XCP on CAN Transport Layer
Version 1.6

[V] Technical Reference XCP on FlexRay Transport Layer
Version 1.9

[VI] Technical Reference XCP on LIN Transport Layer
Version 1.0

[VII] AUTOSAR Specification of CRC Routines
Release 2.0.0 of 2006-04-28

©2016, Vector Informatik GmbH Version: 2.05.00 93 /94

Technical Reference XCP Protocol Layer

11 Contact

Visit our website for more information on

News

Products
Demo software
Support
Training data
Addresses

VVVYVVYV

www.vector-informatik.com

©2016, Vector Informatik GmbH

Version: 2.05.00

vector’

94 /94

http://www.vector-informatik.com/

	1 History
	2 Overview
	2.1 Abbreviations and Items used in this paper
	2.2 Naming Conventions

	3 Functional Description
	3.1 Overview of the Functional Scope
	3.2 Communication Mode Info
	3.3 Block Transfer Communication Model (XCP Professional only)
	3.4 Slave Device Identification
	3.4.1 XCP Station Identifier
	3.4.2 XCP Generic Identification
	3.4.3 Identification of FlexRay Parameters

	3.5 Seed & Key
	3.6 Checksum Calculation
	3.6.1 Custom CRC calculation

	3.7 MainFunction
	3.8 Memory Protection (XCP Professional only)
	3.9 Memory Access by Application
	3.9.1 Special use case “Type Safe Copy”

	3.10 Event Codes
	3.11 Service Request Messages
	3.12 User Defined Command
	3.13 Transport Layer Command
	3.14 Synchronous Data Transfer
	3.14.1 Synchronous Data Acquisition (DAQ)
	3.14.2 DAQ Timestamp
	3.14.3 Power-Up Data Transfer
	3.14.4 Send Queue
	3.14.5 Data Stimulation (STIM)
	3.14.6 Bypassing
	3.14.7 Data Acquisition Plug & Play Mechanisms
	3.14.8 Event Channel Plug & Play Mechanism
	3.14.9 Data consistency

	3.15 The Online Data Calibration Model
	3.15.1 Page Switching
	3.15.2 Page Switching Plug & Play Mechanism
	3.15.3 Calibration Data Page Copying
	3.15.4 Freeze Mode Handling

	3.16 Flash Programming
	3.16.1 Flash Programming by the ECU’s Application
	3.16.1.1 Flash Programming Plug & Play Mechanism

	3.16.2 Flash Programming with a Flash Kernel
	3.16.3 Flash Programming Write Protection

	3.17 EEPROM Access
	3.18 Parameter Check
	3.19 Performance Optimizations
	3.20 Interrupt Locks / Exclusive Areas
	3.20.1 XCP_EXCLUSIVE_AREA_0
	3.20.2 XCP_EXCLUSIVE_AREA_1
	3.20.3 XCP_EXCLUSIVE_AREA_2

	3.21 Basic Multi Core support
	3.21.1 Type safe copy

	3.22 Accessing internal data
	3.23 En- / Disabling the XCP module
	3.24 XCP measurement during the follow up time

	4 Integration into the Application
	4.1 Files of XCP Professional
	4.2 Version changes
	4.3 Compiler Abstraction and Memory Mapping
	4.4 Support of Vx1000 Integration

	5 Feature List
	6 Description of the API
	6.1 Version of the Source Code
	6.2 XCP Services called by the Application
	6.2.1 Xcp_InitMemory: Initialization of the XCP Protocol Layer Memory
	6.2.2 Xcp_Init: Initialization of the XCP Protocol Layer
	6.2.3 Xcp_Event: Handling of a data acquisition event channel
	6.2.4 Xcp_StimEventStatus: Check data stimulation events
	6.2.5 Xcp_MainFunction: Background calculation of checksum
	6.2.6 Xcp_SendEvent: Transmission of event codes
	6.2.7 Xcp_Putchar: Put a char into a service request packet
	6.2.8 Xcp_Print: Transmission of a service request packet
	6.2.9 Xcp_Disconnect: Disconnect from XCP master
	6.2.10 Xcp_SendCrm: Transmit response or error packet
	6.2.11 Xcp_GetXcpDataPointer: Request internal data pointer
	1.1.1
	1.1.1
	6.2.12 Xcp_GetVersionInfo: Request module version information
	6.2.13 Xcp_ModifyProtectionStatus: Influence seed&key behaviour

	6.3 XCP Protocol Layer Functions, called by the XCP Transport Layer
	6.3.1 Xcp_Command: Evaluation of XCP packets and command interpreter
	6.3.2 Xcp_SendCallBack: Confirmation of the successful transmission of a XCP packet
	6.3.3 Xcp_GetSessionStatus: Get session state of XCP
	6.3.4 Xcp_SetActiveTl: Set the active Transport Layer
	6.3.5 Xcp_GetActiveTl: Get the currently active Transport Layer

	6.4 XCP Transport Layer Services called by the XCP Protocol Layer
	6.4.1 <Bus>Xcp_Send: Request for the transmission of a DTO or CTO message
	6.4.2 <Bus>Xcp_SendFlush: Flush transmit buffer
	6.4.3 XcpAppl_InterruptEnable: Enable interrupts
	6.4.4 XcpAppl_InterruptDisable: Disable interrupts
	6.4.5 <Bus>Xcp_TLService: Transport Layer specific commands

	6.5 Application Services called by the XCP Protocol Layer
	6.5.1 XcpAppl_GetPointer: Pointer conversion
	6.5.2 XcpAppl_GetIdData: Get Identification
	6.5.3 XcpAppl_GetSeed: Generate a seed
	6.5.4 XcpAppl_Unlock: Valid key and unlock resource
	6.5.5 XcpAppl_CheckReadEEPROM: Check read access from EEPROM
	6.5.6 XcpAppl_CheckWriteEEPROM: Check write access to the EEPROM
	6.5.7 XcpAppl_CheckWriteAccess: Check address for valid write access
	6.5.8 XcpAppl_CheckReadAccess: Check address for valid read access
	6.5.9 XcpAppl_CheckDAQAccess: Check address for valid read or write access
	6.5.10 XcpAppl_CheckProgramAccess: Check address for valid write access
	6.5.11 XcpAppl_UserService: User defined command
	6.5.12 XcpAppl_OpenCmdIf: XCP command extension interface
	6.5.13 XcpAppl_SendStall: Resolve a transmit stall condition
	6.5.14 XcpAppl_DisableNormalOperation: Disable normal operation of the ECU
	6.5.15 XcpAppl_StartBootLoader: Start of boot loader
	6.5.16 XcpAppl_Reset: Perform ECU reset
	6.5.17 XcpAppl_ProgramStart: Prepare flash programming
	6.5.18 XcpAppl_FlashClear: Clear flash memory
	6.5.19 XcpAppl_FlashProgram: Program flash memory
	6.5.20 XcpAppl_DaqResume: Resume automatic data transfer
	6.5.21 XcpAppl_DaqResumeStore: Store DAQ lists for resume mode
	6.5.22 XcpAppl_DaqResumeClear: Clear stored DAQ lists
	6.5.23 XcpAppl_CalResumeStore: Store Calibration data for resume mode
	6.5.24 XcpAppl_GetTimestamp: Returns the current timestamp
	6.5.25 XcpAppl_GetCalPage: Get calibration page
	6.5.26 XcpAppl_SetCalPage: Set calibration page
	6.5.27 XcpAppl_CopyCalPage: Copying of calibration data pages
	6.5.28 XcpAppl_SetFreezeMode: Setting the freeze mode of a segment
	6.5.29 XcpAppl_GetFreezeMode: Reading the freeze mode of a segment
	6.5.30 XcpAppl_Read: Read a single byte from memory
	6.5.31 XcpAppl_Write: Write a single byte to RAM
	6.5.32 XcpAppl_MeasurementRead: Read multiple bytes from memory
	6.5.33 XcpAppl_CalibrationWrite: Write multiple bytes to memory
	6.5.34 XcpAppl_ReadChecksumValue: Read checksum value
	6.5.35 XcpAppl_CalculateChecksum: Custom checksum calculation

	6.6 XCP Protocol Layer Functions that can be overwritten
	6.6.1 Xcp_MemCpy: Copying of a memory range
	6.6.2 Xcp_MemSet: Initialization of a memory range
	6.6.3 Xcp_MemClr: Clear a memory range

	6.7 AUTOSAR CRC Module Services called by the XCP Protocol Layer (XCP Professional Only)
	6.7.1.1 Generated a2l files

	6.8 Configuration without Generation Tool
	6.8.1 Compiler Switches
	6.8.2 Configuration of Constant Definitions
	6.8.2.1 Table of Checksum Calculation Methods

	6.8.3 Configuration of the CPU Type
	6.8.4 Configuration of Slave Device Identification
	6.8.4.1 Identification by ASAM-MC2 Filename without Path and Extension
	6.8.4.2 Automatic Session Configuration with MAP Filenames

	6.8.5 Configuration of the Event Channel Plug & Play Mechanism
	6.8.6 Configuration of the DAQ Time Stamped Mode
	6.8.7 Configuration of the Flash Programming Plug & Play Mechanism
	6.8.8 Configuration of the Page Switching Plug & Play Mechanism
	6.8.9 Configuration of the used Transport Layer

	7 Resource Requirements
	8 Limitations
	8.1 General Limitations
	8.2 Limitations Regarding Platforms, Compilers and Memory Models

	9 FAQ
	9.1 Invalid Time Stamp Unit
	9.2 Support of small and medium memory model

	Have to be defined as “far” according to the used compiler.
	9.3 Small memory model on ST10 / XC16X / C16X with Tasking Compiler
	9.4 Data Page Banking on Star12X / Metrowerks
	9.5 Memory model banked on Star12X / Cosmic
	9.6 Reflected CRC16 CCITT Checksum Calculation Algorithm

	10 Bibliography
	11 Contact

