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Introduction

In optimal parameterization (calibration) of electronic ECUs, you calibrate parameter values 
during the system runtime and simultaneously acquire measured signals. The physical connec-
tion between the development tool and the ECU is via a measurement and calibration protocol. 
XCP has become established as a standard here.
First, the fundamentals and mechanisms of XCP will be explained briefly and then the applica-
tion areas and added value for ECU calibration will be discussed.

First, some facts about XCP:
>	� XCP signifies “Universal Measurement and Calibration Protocol”. The “X” stands for the vari-

able and interchangeable transport layer.
>	� It was standardized by an ASAM working committee (Association for Standardisation of Auto-

mation and Measuring Systems). ASAM is an organization of automotive OEMs, suppliers and 
tool producers.

>	� XCP is the protocol that succeeds CCP (CAN Calibration Protocol).
>	� The conceptual idea of the CAN Calibration Protocol was to permit read and write access to 

internal ECU data over CAN. XCP was developed to implement this capability via different 
transmission media. Then one speaks of XCP on CAN, XCP on FlexRay or XCP on Ethernet. 

>	� The primary applications of XCP are measurement and calibration of internal ECU parameters. 
Here, the protocol offers the ability to acquire measured values “event synchronous” to pro-
cesses in ECUs. This ensures consistency of the data between one another.

To visualize the underlying idea, we initially view the ECU and the software running in it as 
a black box. In a black box, only the inputs into the ECU (e.g. CAN messages and sensor val-
ues) and the output from the ECU (e.g. CAN messages and actuator drives) are acquired. Details 
about the internal processing of algorithms are not immediately apparent and can only be 
determined from an analysis of the input and output data. 

Now imagine that you had a look into the behavior of your ECU with every computation cycle. At 
any time, you could acquire detailed information on how the algorithm is running. You would 
no longer have a black box, but a white box instead with a full view of internal processes. That 
is precisely what you get with XCP! 

What contribution can XCP make for the overall development process? To check the functional-
ity of the attained development status, the developer can execute the code repeatedly. In this 
way, the developer finds out how the algorithm behaves and what might be optimized. It does 
not matter here whether a compiled code runs on a specific hardware or whether it is developed 
in a model-based way and the application runs in the form of a model.

A central focus is on the evaluation of the algorithm process. For example, if the algorithm is 
running as a model in a development environment, such as Simulink from The MathWorks, it 
is helpful to developers if they can also acquire intermediate results to their applications, in 
order to obtain findings about other changes. In the final analysis, this method enables noth-
ing other than read access to parameters so that they can be visualized and analyzed – and all 
of this at model runtime or retrospectively after a time-limited test run has been completed. A 
write access is needed if parameterizations are changed, e.g. if the proportional component of a 
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PID controller is modified to adapt the algorithm behavior to the system under control. Regard-
less of where your application runs – focal points are always the detailed analysis of algorithm 
processes and optimization by changes to the parameterization.

This generalization can be made: The algorithms may exist in any type of executable form (code 
or model description). Different systems may be used as the runtime environment (Simulink, 
as DLL on the PC, on a rapid prototyping platform, in the ECU etc.). Process flows are analyzed 
by read access to data and acquisition of its time-based flow. Parameter sets are modified iter-
atively to optimize algorithms. To simplify the representation, the acquisition of data can be 
externalized to an external PC-based tool, although it is understood here that runtime environ-
ments themselves can even offer analysis capabilities.

Figure 1: 
Fundamental  
communication  
with a runtime 
environment

Application

Operating System

Runtime Environment

CommunicationPC Tool

The type of runtime environment and the form of communication generally differ from one 
another considerably. The reason is that the runtime environments are developed by different 
producers and are based on different solution approaches. Different types of protocols, con-
figurations, measurement data formats, etc. make it a futile effort to try to exchange parame-
ter sets and results in all development steps. In the end, however, all of these solutions can be 
reduced to read and write access at runtime. And there is a standard for this: XCP.

XCP is an ASAM standard whose Version 1.0 was released in 2003. The acronym ASAM stands 
for “Association for Standardisation of Automation and Measuring Systems.” Suppliers, vehicle 
OEMs and tool manufacturers are all represented in the ASAM working group. The purpose of the 
XCP working group is to define a generalized measurement and calibration protocol that can be 
used independent of the specific transport medium. Experience gained from working with CCP 
(CAN Calibration Protocol) flowed into the development as well.

XCP was defined based on the ASAM interfaces model. The following figure shows a measure-
ment and calibration tool’s interfaces to the XCP Slave, to the description file and the connec-
tion to a higher-level automation system. 
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Measurement and
Calibration System

ASAM MCD 3MC

ASAM MCD 1MC

ASAM

MCD 2MC *.a2L 

ECU Description File

Upper Level
Automation System

ECU 

XCP Driver

XCP Driver

Figure 2:
The Interface Model 
of ASAM

Interface 1: “ASAM MCD-1 MC” between the ECU and the measurement and calibration system
This interface describes the physical and the protocol-specific parts. Strictly speaking, a dis-
tinction was made between interfaces ASAP1a and ASAP1b here. The ASAP1b interface, how-
ever, never received general acceptance and for all practical purposes it has no relevance today. 
The XCP protocol is so flexible that it can practically assume the role of a general manufacturer-
independent interface. For example, today all measurement and calibration hardware manufac-
turers offer systems (xETK, VX1000, etc.) which can be connected via the XCP on Ethernet stan-
dard. An ASAP1b interface – as it was still described for CCP – is no longer necessary. 

Interface 2: “ASAM MCD-2 MC” A2L ECU description file 
As already mentioned, XCP works in an address-oriented way. Read or write accesses to objects 
are always based on an address entry. Ultimately, however, this would mean that the user would 
have to search for his ECU objects in the Master based on the address. That would be extremely 
inconvenient. To let users work with symbolic object names, for example, a file is needed that 
describes the relationship between the object name and the object address. The next chapter is 
devoted to this A2L description file.

Interface 3: “ASAM MCD-3 MC” automation interface 
This interface is used to connect another system to the measurement and calibration tool, e.g. 
for test bench automation. The interface is not further explained in this document, because it is 
irrelevant to understanding XCP. 
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XCP is based on the Master-Slave principle. The ECU is the Slave and the measurement and cali-
bration tool is the Master. A Slave may only communicate with one Master at any given time; on 
the other hand, the Master can simultaneous communicate with many Slaves.

Figure 3:
An XCP Master can 
simultaneously  
communicate with  
multiple Slaves

Bus

Master

SlaveSlave Slave Slave

To be able to access data and configurations over the entire development process, XCP must 
be used in every runtime environment. Fewer tools would need to be purchased, operated and 
maintained. This would also eliminate the need for manual copying of configurations from one 
tool to another, a process that is susceptible to errors. This would simplify iterative loops, in 
which results from later work steps are transferred back to prior work steps. 

But let us turn our attention away from what might be feasible to what is possible today: every-
thing! XCP solutions are already used in a wide variety of work environments. It is the intention 
of this book to describe the main properties of the measurement and calibration protocol and 
introduce its use in the various runtime environments. What you will not find in this book: nei-
ther the entire XCP specification in detailed form, nor precise instructions for integrating XCP 
drivers in a specific runtime environment. It explains the relationships, but not the individual 
protocol and implementation details. Internet links in the appendix refer to openly available 
XCP driver source code and sample implementations, which let you understand and see how the 
implementation is made. 

Screenshots of the PC tool used in this book were prepared using the CANape measurement and 
calibration tool from Vector. Other process flows are also explained based on CANape, including 
how to create an A2L file and even more. With a cost-free demo version, which is available to you 
in the Download Center of the Vector website at www.vector.com/canape_demo, you can see for 
yourself.
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Interface 1 of the ASAM interfaces model describes sending and receiving commands and data 
between the Slave and the Master. To achieve independence from a specific physical transport 
layer, XCP was subdivided into a protocol layer and a transport layer. 

Figure 4: Subdivision of the XCP protocol into protocol layer and transport layer

CAN Ethernet FlexRay SxI USB ...

Depending on the transport layer, one refers to XCP on CAN, XCP on Ethernet, etc. The extend-
ibility to new transport layers was proven as early as 2005 when XCP on FlexRay made its debut. 
The current version of the XCP protocol is Version 1.1, which was approved in 2008.

Adherence to the following principles was given high priority in designing the protocol:
>	 Minimal resource usage in the ECU
>	 Efficient communication
>	 Simple Slave implementation 
>	 Plug-and-play configuration with just a small number of parameters
>	 Scalability
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A key functionality of XCP is that it enables read and write access to the memory of the Slave. 

Read access lets users measure the time response of an internal ECU parameter. ECUs are sys-
tems with discrete time behavior, whose parameters only change at specific time intervals: only 
when the processor recalculates the value and updates it in RAM. One of the great strengths of 
XCP lies in acquiring measured values from RAM which change synchronously to process flows 
or events in the ECU. This lets users evaluate direct relationships between time-based process 
flows in the ECU and the changing values. These are referred to as event-synchronous measure-
ments. The related mechanisms will be explained later in detail.

Write access lets the user optimize parameters of algorithms in the Slave. The accesses are 
address-oriented, i.e. the communication between Master and Slave references addresses in 
memory. So, the measurement of a parameter is essentially implemented as a request of the 
Master to the Slave: “Give me the value of memory location 0x1234”. Calibration of a parameter 
– the write access – to the Slave means: “Set the value at address 0x9876 to 5”.

An XCP Slave does not absolutely need to be used in ECUs. It may be implemented in differ-
ent environments: from a model-based development environment to hardware-in-the-loop and 
software-in-the-loop environments to hardware interfaces that are used to access ECU memory 
via debug interfaces such as JTAG, NEXUS and DAP.

Figure 5: 
XCP Slaves can be 
used in many 
different runtime 
environments

Slave

Slave

Slave

Slave

Slave

PC

XCP Measurement/
Calibration 
Hardware*

* Debug Interfaces, Memory Emulator, ...

HIL/SIL Systems

EXE/DLL

Prototype or
ECU Hardware

Simulink

Master
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How can algorithms be optimized using read and write access to the ECU and what benefits 
does this offer? To be able to modify individual parameters at runtime in the ECU, there must be 
access to them. Not every type of memory permits this process. It is only possible to perform a 
read and write access to memory addresses in RAM (intentionally excluding the EEPROM here). 
The following is a brief summary of the differences between individual memory technologies: 
knowledge of them is very important to understanding over the further course of this book.

Memory Fundamentals

Today, flash memories are usually integrated in the microcontroller chips for ECUs and are used 
for long-term storage of code and data, even without power supply. The special aspect of a flash 
memory is that read and write access to individual bytes is indeed possible at any time, but writ-
ing of new contents can only be done blockwise, usually in rather large blocks. 

Flash memories have a limited life, which is specified in terms of a maximum number of erasure 
cycles (depending on the specific technology the maximum may be up to one million cycles). 
This is also the maximum number of write cycles, because the memory must always be erased as 
a block before it can be written again. The reason for this lies in the memory structure: electrons 
are “pumped” via tunnel diodes. A bit is stored at a memory location as follows: electrons must 
be transported into the memory location over an electrically insulating layer. Once the elec-
trons are then behind the insulating layer, they form an electric field with their charge, which is 
interpreted as a 1 when reading the memory location. If there are no electrons behind the layer, 
the cell information is interpreted as a 0. A 1 can indeed be set in this way, but not a 0. Setting 
to 0 (= erasing the 1) is performed in a separate erasing routine, in which electrons existing 
behind the insulating layer are discharged. However, for architectural reasons, such an erasing 
routine does not just act on single bytes, rather only on the group or block level. Depending on 
the architecture, blocks of 128 or 256 bytes are usually used. If one wishes to overwrite a byte 
within such a block, the entire block must first be erased. Then the entire contents of the block 
can be written back.

When this erasing routine is repeated multiple times, the insulating layer (“Tunnel Oxide Film”) 
can be damaged. This means that the electrons could slowly leak away, changing some of the 
information from 1 to 0 over the course of time. Therefore, the number of allowable flash cycles 
is severely limited in an ECU. In the production ECU, it is often only on the order of single digit 
numbers. This restriction is monitored by the Flash Boot Loader, which uses a counter to keep 
track of how many flash operations have already been executed. When the specified number is 
exceeded, the Flash Boot Loader rejects another flash request.

A RAM (Random Access Memory) requires a permanent power supply; otherwise it loses its con-
tents. While flash memory serves the purpose of long-term storage of the application, the RAM 
is used to buffer computed data and other temporary information. Shutting off the power sup-
ply causes the RAM contents to be lost. In contrast to flash memory, it is easy to read and write 
to RAM. 
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This fact is clear: if parameters need to be changed at runtime, it must be assured that they are 
located in RAM. It is really very important to understand this circumstance. That is why we will 
look at the execution of an application in the ECU based on the following example: 

In the application, the y parameters are computed from the sensor values x. 

// Pseudo-code representation
a = 5;
b = 2;
y = a * x + b;

If the application is flashed in the ECU, the controller handles this code as follows after booting: 
the values of the x parameters correspond to a sensor value. At some time point, the application 
must therefore poll the sensor value and the value is then stored in a memory location assigned 
to the x parameters. Since this value always needs to be rewritten at runtime, the memory loca-
tion can only lie in RAM. 

The parameter y is computed. The values a and b, as factor and offset, are included as informa-
tion in flash memory. They are stored as constants there. The value of y must also be stored in 
RAM, because once again that is the only place where write access is possible. At precisely which 
location in RAM the parameters x and y are located, or where a and b lie in flash, is set in the 
compiler/linker run. This is where objects are allocated to unique addresses. The relationship 
between object name, data type and address is documented in the linker-map file. The linker-
map file is generated by the Linker run and can exist in different formats. Common to all for-
mats, however, is that they contain the object name and address at a minimum. 

In the example, if the offset b and factor a depend on the specific vehicle, the values of a and b 
must be individually adapted to the specific conditions of the vehicle. This means that the algo-
rithm remains as it is, but the parameter values change from vehicle to vehicle.

In the normal operating mode of an ECU, the application runs from the flash memory. It does 
not permit any write accesses to individual objects. This means that parameter values which are 
located in the flash area cannot be modified at runtime. If a change to parameter values should 
be possible during runtime, the parameters to be modified must lie in RAM and not in flash. 
Now, how do the parameters and their initial values make their way into RAM? How does one 
solve the problem of needing to modify more parameters than can be simultaneously stored in 
RAM? These issues lead us to the topic of calibration concepts (see chapter 3).
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Summary of XCP fundamentals

Read and write accesses to memory contents are available with the mechanisms of the XCP pro-
tocol. The accesses are made in an address-oriented way. Read access enables measurement of 
parameters from RAM, and write access enables calibration of the parameters in RAM. XCP per-
mits execution of the measurement synchronous to events in the ECU. This ensures that the 
measured values correlate with one another. With every restart of a measurement, the signals 
to be measured can be freely selected. For write access, the parameters to be calibrated must be 
stored in RAM. This requires a calibration concept.

This leads to two important questions:
>	� How does the user of the XCP protocol know the correct addresses of the measurement and 

calibration parameters in RAM?
>	 What does the calibration concept look like?

The first question is answered in chapter 2 “ECUs description file A2L”. The topic of the calibra-
tion concept is addressed in chapter 3.
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1.1 XCP Protocol Layer

XCP data is exchanged between the Master and Slave in a message-based way. The entire “XCP 
message frame” is embedded in a frame of the transport layer (in the case of XCP on Ethernet 
with UDP in a UDP packet). The frame consists of three parts: the XCP header, the XCP packet 
and the XCP tail. 

In the following figure, part of a message is shown in red. It is used to send the current XCP 
frame. The XCP header and XCP tail depend on the transport protocol.

Figure 6: XCP packet

XCP Header

XCP Message (Frame)

XCP Packet

PID

Identification
Field

Timestamp
Field

Data 
Field

FILL DAQ TIMESTAMP DATA

XCP Tail

The XCP packet itself is independent of the transport protocol used. It always contains three 
components: “Identification Field”, “Timestamp Field” and the current data field “Data Field”. 
Each Identification Field begins with the Packet Identifier (PID), which identifies the packet. 

The following overview shows which PIDs have been defined:

0xFF

CMD

PID for frames 
from Master to Slave

PID for frames 
from Slave to Master

absolute or 
relative 
ODT number 
for STIM

0xC0

0xBF

0x00

..
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..
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SERV

0xFB
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..
..

Figure 7: Overview of XCP Packet Identifier (PID)
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Communication via the XCP packet is subdivided into one area for commands (CTO) and one area 
for sending synchronous data (DTO). 

XCP Master

XCP Slave

CMD SERVRES ERR EV
CTO

STIM
DTO

Command / Response / Error / Event /
Service Request Processor 

DAQ
Processor

STIM
Processor

DAQ STIMPGM CAL

BypassXCP Handler

Resources

DAQ

XCP Driver

Figure 8: 
XCP communication 
model with CTO/DTO

The acronyms used here stand for

CMD	 Command Packet 	 sends commands 

RES	 Command Response Packet	 positive response

ERR	 Error	 negative response

EV	 Event Packet	 asynchronous event

SERV 	 Service Request Packet	 service request

DAQ	 Data AcQuisition	 send periodic measured values

STIM	 Stimulation	 periodic stimulation of the Slave

Commands are exchanged via CTOs (Command Transfer Objects). The Master initiates contact in 
this way, for example. The Slave must always respond to a CMD with RES or ERR. The other CTO 
messages are sent asynchronously. The Data Transfer Objects (DTO) are used to exchange syn-
chronous measurement and stimulation data. 



211.1 XCP Protocol Layer

1.1.1 Identification Field

Figure 9:  
Message 
identification

XCP Packet

PID

Identification Field

FILL DAQ TIMESTAMP DATA

When messages are exchanged, both the Master and Slave must be able to determine which 
message was sent by the other. This is accomplished in the identification field. That is why each 
message begins with the Packet Identifier (PID).

In transmitting CTOs, the PID field is fully sufficient to identify a CMD, RES or other CTO packet. 
In Figure 7, it can be seen that commands from the Master to the Slave utilize a PID from 0xC0 to 
0xFF. The XCP Slave responds or informs the Master with PIDs from 0xFC to 0xFF. This results in a 
unique allocation of the PIDs to the individually sent CTOs.
When DTOs are transmitted, other elements of the identification field are used (see chapter 
1.3.4 “XCP Packet Addressing for DAQ and STIM”).

1.1.2 Time Stamp

Figure 10:
Time stamp

XCP Packet

TIMESTAMPPID FILL DAQ DATA

DTO packets use time stamps, but this is not possible in transmission of a CTO message. The 
Slave uses the time stamp to supply time information with measured values. That is, the Mas-
ter not only has the measured value, but also the time point at which the measured value was 
acquired. The amount of time it takes for the measured value to arrive at the Master is no lon-
ger important, because the relationship between the measured value and the time point comes 
directly from the Slave. 
Transmission of a time stamp from the Slave is optional. This topic is discussed further in  
ASAM XCP Part 2 Protocol Layer Specification. 



22 1 Fundamentals of the XCP protocol

1.1.3 Data Field 

Figure 11: 
Data field  
in the XCP packet

XCP Packet

DATA

Data Field

PID FILL DAQ TIMESTAMP

Finally, the XCP packet also contains the data stored in the data field. In the case of CTO  
packets, the data field consists of specific parameters for the different commands. DTO  
packets contain the measured values from the Slave and when STIM data is sent the values from 
the Master.

1.2 Exchange of CTOs 

CTOs are used to transmit both commands from the Master to the Slave and responses from the 
Slave to the Master. 

1.2.1 XCP Command Structure

The Slave receives a command from the Master and must react to it with a positive or negative 
response. The communication structure is always the same here:

Command (CMD):
Position	 Type	 Description
0	 BYTE	 Command Packet Code CMD

1..MAX_CTO-1	 BYTE	 Command specific Parameters

A unique number is assigned to each command. In addition, other specific parameters may be 
sent with the command. The maximum number of parameters is defined as MAX_CTO-1 here. 
MAX_CTO indicates the maximum length of the CTO packets in bytes. 

Positive response:
Position	 Type	 Description
0	 BYTE	 Command Positive Response Packet Code = RES 0xFF

1..MAX_CTO-1	 BYTE	 Command specific Parameters 
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Negative response:
Position	 Type	 Description
0	 BYTE	 Error Packet Code = 0xFE

1	 BYTE	 Error code

2..MAX_CTO-1	 BYTE	 Command specific Parameters

Specific parameters can be transmitted as supplemental information with negative responses as 
well and not just with positive responses. One example is when the connection is made between 
Master and Slave. At the start of a communication between Master and Slave, the Master sends 
a connect request to the Slave, which in turn must respond positively to produce a continuous 
point-to-point connection.

Master à Slave: Connect 
Slave à Master: Positive response	

Connect command:
Position	 Type	 Description
0	 BYTE	 Command Code = 0xFF
1	 BYTE	 Mode 
		  00 = Normal
		  01 = user defined

Mode 00 means that the Master wishes XCP communication with the Slave. If the Master uses 
0xFF 0x01 when making the connection, the Master is requesting XCP communication with the 
Slave. Simultaneously, it informs the Slave that it should switch to a specific – user-defined 
– mode. 

Positive response of the Slave:
Position	 Type	 Description
0	 BYTE	 Packet ID: 0xFF

1	 BYTE	 RESOURCE

2	 BYTE	 COMM_MODE_BASIC

3	 BYTE	 MAX_CTO, Maximum CTO size [BYTE]

4	 WORD	 MAX_DTO, Maximum DTO size [BYTE]

6	 BYTE	 XCP Protocol Layer Version Number (most significant byte only)

7	 BYTE	 XCP Transport Layer Version Number (most significant byte only)

The positive response of the Slave can assume a somewhat more extensive form. The Slave 
already sends communication-specific information to the Master when making the connection. 
RESOURCE, for example, is information that the Slave gives on whether it supports such features 
as page switching or whether flashing over XCP is possible. With MAX_DTO, the Slave informs the 
Master of the maximum packet length it supports for transfer of the measured values, etc. You 
will find details on the parameters in ASAM XCP Part 2 Protocol Layer Specification.
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XCP permits three different modes for exchanging commands and reactions between Master and 
Slave: Standard, Block and Interleaved mode.

Figure 12: The three modes of the XCP protocol: Standard, Block and Interleaved mode
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In the standard communication model, each request to a Slave is followed by a single response. 
Except with XCP on CAN, it is not permitted for multiple Slaves to react to a command from the 
Master. Therefore, each XCP message can always be traced back to a unique Slave. This mode is 
the standard case in communication.

The block transfer mode is optional and saves time in large data transfers (e.g. upload or 
download operations). Nonetheless, performance issues must be considered in this mode 
in the direction of the Slave. Therefore, minimum times between two commands (MIN_ST) 
must be maintained and the total number of commands must be limited to an upper limit  
MAX_BS. Optionally, the Master can read out these communication settings from the Slave with  
GET_COMM_MODE_INFO. The aforementioned limitations do not need to be observed in block 
transfer mode in the direction of the Master, because performance of the PC nearly always suf-
fices to accept the data from a microcontroller.

The interleaved mode is also provided for performance reasons. But this method is also optional 
and – in contrast to block transfer mode – it has no relevance in practice. 
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1.2.2 CMD 

Figure 13: Overview of the CTO packet structure

XCP CTO Packet

PID DATA

Data Field
Identification Field

Timestamp Field
empty for CTO

The Master sends a general request to the Slave over CMD. The PID (Packet Identifier) field 
contains the identification number of the command. The additional specific parameters are 
transported in the data field. Then the Master waits for a reaction of the Slave in the form of a 
RESponse or an ERRor.

XCP is also very scalable in its implementation, so it is not necessary to implement every com-
mand. In the A2L file, the available CMDs are listed in what is known as the XCP IF_DATA. If there 
is a discrepancy between the definition in the A2L file and the implementation in the Slave, the 
Master can determine, based on the Slave’s reaction, that the Slave does not even support the 
command. If the Master sends a command that is not implemented in the Slave, the Slave must 
acknowledge with ERR_CMD_UNKNOWN and no further activities are initiated in the Slave. This 
lets the Master know quickly that an optional command has not been implemented in the Slave. 
Some other parameters are included in the commands as well. Please take the precise details 
from the protocol layer specification in document ASAM XCP Part 2. 
 
The commands are organized in groups: Standard, Calibration, Page, Programming and DAQ 
measurement commands. If a group is not needed at all, its commands do not need to be imple-
mented. If the group is necessary, certain commands must always be available in the Slave, 
while others from the group are optional.

The following overview serves as an example. The SET_CAL_PAGE and GET_CAL_PAGE commands 
in the Page-Switching group are identified as not optional. This means that in an XCP Slave that 
supports Page Switching at least these two commands must be implemented. If Page-Switching 
support is unnecessary in the Slave, these commands do not need to be implemented. The same 
applies to other commands.
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Standard commands:
Command	 PID	 Optional
CONNECT	 0xFF	 No

DISCONNECT	 0xFE	 No

GET_STATUS	 0xFD	 No

SYNCH	 0xFC	 No

GET_COMM_MODE_INFO	 0xFB	 Yes

GET_ID	 0xFA	 Yes

SET_REQUEST	 0xF9	 Yes

GET_SEED	 0xF8	 Yes

UNLOCK	 0xF7	 Yes

SET_MTA	 0xF6	 Yes

UPLOAD	 0xF5	 Yes

SHORT_UPLOAD	 0xF4	 Yes

BUILD_CHECKSUM	 0xF3	 Yes

TRANSPORT_LAYER_CMD	 0xF2	 Yes

USER_CMD	 0xF1	 Yes

Calibration commands:
Command	 PID	 Optional
DOWNLOAD	 0xF0	 No

DOWNLOAD_NEXT	 0xEF	 Yes

DOWNLOAD_MAX	 0xEE	 Yes

SHORT_DOWNLOAD	 0xED	 Yes

MODIFY_BITS	 0xEC	 Yes

Standard commands:
Command	 PID	 Optional
SET_CAL_PAGE	 0xEB	 No

GET_CAL_PAGE	 0xEA	 No

GET_PAG_PROCESSOR_INFO	 0xE9	 Yes

GET_SEGMENT_INFO	 0xE8	 Yes

GET_PAGE_INFO	 0xE7	 Yes

SET_SEGMENT_MODE	 0xE6	 Yes

GET_SEGMENT_MODE	 0xE5	 Yes

COPY_CAL_PAGE	 0xE4	 Yes
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Periodic data exchange – basics:
Command	 PID	 Optional
SET_DAQ_PTR	 0xE2	 No

WRITE_DAQ	 0xE1	 No

SET_DAQ_LIST_MODE	 0xE0	 No

START_STOP_DAQ_LIST	 0xDE	 No

START_STOP_SYNCH	 0xDD	 No

WRITE_DAQ_MULTIPLE	 0xC7	 Yes

READ_DAQ	 0xDB	 Yes

GET_DAQ_CLOCK	 0xDC	 Yes

GET_DAQ_PROCESSOR_INFO	 0xDA	 Yes

GET_DAQ_RESOLUTION_INFO	 0xD9	 Yes

GET_DAQ_LIST_INFO	 0xD8	 Yes

GET_DAQ_EVENT_INFO	 0xD7	 Yes

Periodic data exchange – static configuration: 
Command	 PID	 Optional
CLEAR_DAQ_LIST	 0xE3	 No

GET_DAQ_LIST_INFO	 0xD8	 Yes

Periodic data exchange – dynamic configuration: 
Command	 PID	 Optional
FREE_DAQ	 0xD6	 Yes

ALLOC_DAQ	 0xD5	 Yes

ALLOC_ODT	 0xD4	 Yes

ALLOC_ODT_ENTRY	 0xD3	 Yes
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Flash programming:
Command	 PID	 Optional
PROGRAM_START	 0xD2	 No

PROGRAM_CLEAR	 0xD1	 No

PROGRAM	 0xD0	 No

PROGRAM_RESET	 0xCF	 No

GET_PGM_PROCESSOR_INFO	 0xCE	 Yes

GET_SECTOR_INFO	 0xCD	 Yes

PROGRAM_PREPARE	 0xCC	 Yes

PROGRAM_FORMAT	 0xCB	 Yes

PROGRAM_NEXT	 0xCA	 Yes

PROGRAM_MAX	 0xC9	 Yes

PROGRAM_VERIFY	 0xC8	 Yes

1.2.3 RES 

If the Slave is able to successfully comply with a Master’s request, it gives a positive acknowl-
edge with RES. 

Position	 Type	 Description
0	 BYTE	 Packet Identifier = RES 0xFF

1..MAX_CTO-1	 BYTE	 Command response data

You will find more detailed information on the parameters in ASAM XCP Part 2 Protocol Layer 
Specification.

1.2.4 ERR 

If the request from the Master is unusable, it responds with the error message ERR and an error 
code. 

Position	 Type	 Description
0	 BYTE	 Packet Identifier = ERR 0xFE

1	 BYTE	 Error code

2..MAX_CTO-1	 BYTE	 Optional error information data

You will find a list of possible error codes in ASAM XCP Part 2 Protocol Layer Specification.
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1.2.5 EV 

If the Slave wishes to inform the Master of an asynchronous event, an EV can be sent to do this. 
Its implementation is optional.

Position	 Type	 Description
0	 BYTE	 Packet Identifier = EV 0xFD

1	 BYTE	 Event code

2..MAX_CTO-1	 BYTE	 Optional event information data

You will find more detailed information on the parameters in ASAM XCP Part 2 Protocol Layer 
Specification.

Events will be discussed much more in relation to measurements and stimulation. This has noth-
ing to do with the action of the XCP Slave that initiates sending of an EVENT. Rather it involves 
the Slave reporting a disturbance such as the failure of a specific functionality.

1.2.6 SERV 

The Slave can use this mechanism to request that the Master execute a service. 

Position	 Type	 Description
0	 BYTE	 Packet Identifier = SERV 0xFC

1	 BYTE	 Service request code

2..MAX_CTO-1	 BYTE	 Optional service request data

You will find the Service Request Code table in ASAM XCP Part 2 Protocol Layer Specification. 

1.2.7 Calibrating Parameters in the Slave

To change a parameter in an XCP Slave, the XCP Master must send the parameter’s location as 
well as the value itself to the Slave.
XCP always defines addresses with five bytes: four for the actual address and one byte for the 
address extension. Based on a CAN transmission, only seven useful bytes are available for XCP 
messages. For example, if the calibrator sets a 4-byte value and wants to send both pieces of 
information in one CAN message, there is insufficient space to do this. Since a total of nine 
bytes are needed to transmit the address and the new value, the change cannot be transmit-
ted in one CAN message (seven useful bytes). The calibration request is therefore made with 
two messages from Master to Slave. The Slave must acknowledge both messages and in sum four 
messages are exchanged.
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The following figure shows the communication between Master and Slave, which is necessary to 
set a parameter value. The actual message is located in the line with the envelope symbol. The 
interpretation of the message is shown by “expanding” it with the mouse. 

Figure 14: Trace example from a calibration process

In the first message of the Master (highlighted in gray in Figure 14), the Master sends the  
command SET_MTA to the Slave with the address to which a new value should be written. In 
the second message, the Slave gives a positive acknowledge to the command with Ok:SET_MTA.

The third message DOWNLOAD transmits the hex value as well as the valid number of bytes. 
In this example, the valid number of bytes is four, because it is a float value. The Slave gives 
another positive acknowledge in the fourth message.

This completes the current calibration process. In the Trace display, you can recognize a termi-
nating SHORT_UPLOAD – a special aspect of CANape, the measurement and calibration tool from 
Vector. To make sure that the calibration was performed successfully, the value is read out again 
after the process and the display is updated with the read-out value. This lets the user directly 
recognize whether the calibration command was implemented. This command also gets a posi-
tive acknowledge with Ok:SHORT_UPLOAD. 

When the parameter changes in the ECU’s RAM, the application processes the new value. A 
reboot of the ECU, however, would lead to erasure of the value and overwriting of the value in 
RAM with the original value from the flash (see chapter 3 “Calibration Concepts”). So, how can 
the modified parameter set be permanently saved?
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Essentially, there are two possibilities: 

A) Save the parameters in the ECU
The changed data in RAM could for example be saved in the ECU’s EEPROM: either automatically 
when ramping down the ECU, or manually by the user. A prerequisite is that the data can be 
stored in a nonvolatile memory of the Slave. In an ECU, this would be the EEPROM or flash. ECUs 
with thousands of parameters, however, are seldom able to provide so much unused EEPROM 
memory space, so this method is rare.

Another possibility is to write the RAM parameters back into the ECU’s flash memory. This 
method is relatively complex. A flash memory must first be erased before it can be rewritten. 
This, in turn, can only be done as a block. Consequently, it is not simply a matter of writing back 
individual bytes. You will find more on this topic in chapter 3 “Calibration Concepts”. 

B) Save the parameters in the form of a file on the PC
It is much more common to store the parameters on the PC. All parameters – or subsets of them 
– are stored in the form of a file. Different formats are available for this; the simplest case is 
that of an ASCII text file, which only contains the name of the object and its value. Other for-
mats also permit saving other information, such as findings about the maturity level of the 
parameter of the history of revisions. 

Scenario: After finishing his or her work, the calibrator wishes to enjoy a free evening. So, the 
calibrator saves the executed changes in the ECU’s RAM in the form of a parameter set file on a 
PC. The next day, the calibrator wants to continue working where he or she left off. The calibra-
tor starts the ECU. Upon booting, the parameters are initialized in RAM. However, the ECU does 
this using values stored in flash. This means that the changes of the previous day are no longer 
available in the ECU. To now continue where work was left off on the previous day, the calibra-
tor transfers the contents of the parameter set file to the ECU’s RAM by XCP using the DOWNLOAD 
command.

Figure 15: Transfer of a parameter set file to an ECU’s RAM
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Saving parameter set file in hex files and flashing

Flashing an ECU is another way to change the parameters in flash. They are then written to RAM 
as new parameters when the ECU is booted. A parameter set file can also be transferred to a C or 
H file and be made into the new flash file with another compiler/linker run. However, depend-
ing on the parameters of the code, the process of generating a flashable hex file could take a 
considerable amount of time. In addition, the calibrator might not have any ECU source code 
– depending on the work process. That would prevent this method from being available to the 
calibrator. 

As an alternative, the calibrator can copy the parameter set file into the existing flash file. 

Figure 16: Hex window

In the flash file, there is a hex file that contains both the addresses and the values. Now a 
parameter file can be copied to a hex file. To do this, CANape takes the address and the value 
from the parameter set file and updates the parameter value at the relevant location in the 
hex file. This results in a new hex file, which contains the changed parameter values. However, 
this Hex file must now possibly run through further process steps to obtain a flashable file. 
One recurring problem here is the checksums, which the ECU checks to determine whether it 
received the data correctly. If the flashable file exists, it can be flashed in the ECU and after the 
reboot the new parameter values are available in the ECU. 

1.3 Exchanging DTOs – Synchronous Data Exchange 

As depicted in Figure 8, DTOs (Data Transfer Objects) are available for exchanging synchronous 
measurement and calibration data. Data from the Slave are sent to the Master by DAQ – synchro-
nous to internal events. This communication is subdivided into two phases: 
In an initialization phase, the Master communicates to the Slave which data the Slave should 
send for different events. After this phase, the Master initiates the measurement in the Slave 
and the actual measurement phase begins. From this point in time, the Slave sends the desired 
data to the Master, which only listens until it sends a “measurement stop” to the Slave. Trigger-
ing of measurement data acquisition and transmission is controlled by events in the ECU.
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The Master sends data to the Slave by STIM. This communication also consists of two phases:
In the initialization phase, the Master communicates to the Slave which data it will send to the 
Slave. After this phase, the Master sends the data to the Slave and the STIM processor saves the 
data. As soon as a related STIM event is triggered in the Slave, the data is transferred to the 
application memory. 

1.3.1 Measurement Methods: Polling versus DAQ 

Before explaining how event-synchronous, correlated data is measured from a Slave, here is a 
brief description of another measurement method known as Polling. It is not based on DTOs, but 
on CTOs instead. Actually, this topic should be explained in a separate chapter, but a description 
of polling lets us derive, in a very elegant way, the necessity of DTO-based measurement, so a 
minor side discussion at this point makes sense. 

The Master can use the SHORT_UPLOAD command to request the value of a measurement para
meter from the Slave. This is referred to as polling. This is the simplest case of a measure
ment: sending the measured value of a measurement parameter at the time at which the  
SHORT_UPLOAD command has been received and executed. 

In the following example, the measurement parameter “Triangle” is measured from the Slave: 

Figure 17: 
Address information 
of the parameter 
“Triangle” from the 
A2L file

The address 0x60483 is expressed as an address with five bytes in the CAN frame: one byte for 
the address extension and four bytes for the actual address.
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Figure 18: Polling communication in the CANape Trace window 

The XCP specification sets a requirement for polling: that the value of each measurement param-
eter must be polled individually. For each value to be measured via polling, two messages must 
go over the bus: the Master’s request to the Slave and the Slave’s response to the Master.

Besides this additional bus load, there is another disadvantage of the polling method: When 
polling multiple data values, the user normally wants the data to correlate to one another. How-
ever, multiple values that are measured sequentially with polling do not necessarily stand in 
correlation to one another, i.e. they might not originate from the same ECU computing cycle. 
This limits the suitability of polling for measurement, because it produces unnecessarily high 
data traffic and the measured values are not evaluated in relation to the process flows in the 
ECU. 

So, an optimized measurement must solve two tasks:
>	 Bandwidth optimization during the measurement
>	 Assurance of data correlation

This task is handled by the already mentioned DAQ method. DAQ stands for Data Acquisition and 
it is implemented by sending DTOs (Data Transfer Objects) from the Slave to the Master.

1.3.2 DAQ Measurement Method 

The DAQ method solves the two problems of polling as follows:
>	� The correlation of measured values is achieved by coupling the acquisition of measured val-

ues to the events in the ECU. The measured values are not acquired and transferred until it has 
been assured that all computations have been completed.

>	� To reduce bus load, the measurement process is subdivided into two phases: In a configu
ration phase, the Master communicates which values it is interested in to the Slave and the 
second phase just involves transferring the measured values of the Slave to the Master. 
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How can the acquisition of measured values now be coupled to processes in the ECU? Figure 19 
shows the relationship between calculation cycles in the ECU and the changes in parameters X 
and Y.
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Figure 19:
Events in the ECU

Let’s have a look at the sequence in the ECU: When event E1 (= end of computation cycle) is 
reached, then all parameters have been acquired and calculations have been made. This means 
that all values must match one another and correlate at this time point. This means that we 
use an event-synchronous measurement method. This is precisely what is implemented with the 
help of the DAQ mechanism: When the algorithm in the Slave reaches the “Computational cycle 
completed” event, the XCP Slave collects the values of the measurement parameters, saves them 
in a buffer and sends them to the Master. This assumes that the Slave knows which parameters 
should be measured for which event. 

An event does not absolutely have to be a cyclic, time-equidistant event, rather in the case of 
an engine controller, for example, it might be angle-synchronous. This makes the time inter-
val between two events dependent on the engine rpm. A singular event, such as activation of a 
switch by the driver, is also an event that is not by any means equidistant in time. 

The user selects the signals. Besides the actual measurement object, the user must select the 
underlying event for the measurement parameters. The events as well as the possible assign-
ments of the measurement objects to the events must be stored in the A2L file.

Figure 20:  
Event definition  
in an A2L
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In the normal case, it does not make any sense to be able to simultaneously assign a measured 
value to multiple events. Generally, a parameter is only modified within a single cycle (e.g. only 
at 10-ms intervals) and not in multiple cycles (e.g. at 10-ms and 100-ms intervals). 

 

Figure 21: 
Allocation of 
“Triangle” to possible 
events in the A2L

Figure 21 shows that the “Triangle” parameter can in principle be measured with the 1 ms,  
10 ms and 100 ms events. The default setting is 10 ms.

Measurement parameters are allocated to events in the ECU during measurement configuration 
by the user.

 Figure 22: Selecting 
events (measurement 
mode) for each  
measurement parameter

After configuring the measured signals, the user starts the measurement. The XCP Master lists 
the desired measurement parameters in what are known as DAQ lists. In these lists, the mea-
sured signals are each allocated to selected events. This configuration information is sent to the 
Slave before the actual start of measurement. Then the Slave knows which addresses it should 
read out and transmit when an event occurs. This distribution of the measurement into a con-
figuration phase and a measurement phase was already mentioned at the very beginning of this 
chapter. 

This solves both problems that occur in polling: bandwidth is used optimally, because the Mas-
ter no longer needs to poll each value individually during the measurement and the measured 
values correlate with one another. 
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Figure 23: Excerpt from the CANape Trace window of a DAQ measurement

Figure 23 illustrates an example of command-response communication (color highlighting) 
between Master and Slave (overall it is significantly more extensive and is only shown in part 
here for reasons of space). This involves transmitting the DAQ configuration to the Slave. After-
wards, the measurement start is triggered and the Slave sends the requested values while the 
Master just listens. 

Until now, the selection of a signal was described based on its name and allocation to a mea-
surement event. But how exactly is the configuration transferred to the XCP Slave?

Let us look at the problem from the perspective of memory structure in the ECU: The user has 
selected signals and wishes to measure them. So that sending a signal value does not require 
the use of an entire message, the signals from the Slave are combined into message packets. The 
Slave does not create this definition of the combination independently, or else the Master would 
not be able to interpret the data when it received the messages. Therefore, the Slave receives 
an instruction from the Master describing how it should distribute the values to the messages. 

The sequence in which the Slave should assemble the bytes into messages is defined in what 
are known as Object Description Tables (ODTs). The address and object length are important to 
uniquely identify a measurement object. An ODT provides the allocations of RAM contents from 
the Slave to assemble a message on the bus. According to the communication model, this mes-
sage is transmitted as a DAQ DTO (Data Transfer Object).
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Figure 24: 
ODT: Allocation  
of RAM addresses  
to DAQ DTO

Stated more precisely, an entry in an ODT list references a memory area in RAM by the address 
and length of the object. 

After receiving the measurement start command, at some point an event occurs that is asso-
ciated with a measurement. The XCP Slave begins to acquire the data. It combines the indi-
vidual objects into packets and sends them on the bus. The Master reads the bus message and 
can interpret the individual data, because it has defined the allocation of individual objects to  
packets itself and therefore it knows their relationships. 

However, each packet has a maximum number of useful bytes, which depends on the trans-
port medium that is used. In the case of CAN, this amounts to seven bytes. If more data needs 
to be measured, an ODT is no longer sufficient. If two or more ODTs need to be used to trans-
mit the measured values, then the Slave must be able to copy the data into the correct ODT and 
the Master must be able to uniquely identify the received ODTs. If multiple measurement inter-
vals of the ECU are used, the relationship between ODT and measurement interval must also be 
uniquely identifiable. 
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The ODTs are combined into DAQ lists in the XCP protocol. Each DAQ list contains a number of 
ODTs and is assigned to an event.
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Figure 25: 
DAQ list 
with three ODTs

For example, if the user uses two measurement intervals (= two different events in the ECU), 
then two DAQ lists are used as well. One DAQ list is needed per event used. Each DAQ list contains 
the entries related to the ODTs and each ODT contains references to the values in the RAM cells.

DAQ lists are subdivided into the types: static, predefined and dynamic. 

Static DAQ lists:
If the DAQ lists and ODT tables are permanently defined in the ECU, as is familiar from CCP, they 
are referred to as static DAQ lists. There is no definition of which measurement parameters exist 
in the ODT lists, rather only the framework that can be filled (in contrast to this, see predefined 
DAQ lists).

In static DAQ lists, the definitions are set in the ECU code and are described in the A2L. Figure 
26 shows an excerpt of an A2L, in which static DAQ lists are defined:

Figure 26: 
Static DAQ lists

In the above example, there is a DAQ list with the number 0, which is allocated to a 10-ms event 
and can carry a maximum of two ODTs. The DAQ list with the number 1 has four ODTs and is linked 
to the 100 ms event.
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The A2L matches the contents of the ECU. In the case of static DAQ lists, the number of DAQ lists 
and the ODT lists they each contain are defined with the download of the application into the 
ECU. If the user now attempts to measure more signals with an event than fit in the allocated 
DAQ list, the Slave in the ECU will not be able to fulfill the requirements and the configuration 
attempt is terminated with an error. It does not matter that the other DAQ list is still fully avail-
able and therefore actually still has transmission capacity.

Predefined DAQ lists:
Entirely predefined DAQ lists can also be set up in the ECU. However, this method is practically 
never used in ECUs due to the lack of flexibility for the user. It is different for analog measure-
ment systems which transmit their data by XCP: Flexibility is unnecessary here, since the physi-
cal structure of the measurement system remains the same over its life.

Dynamic DAQ lists: 
A special aspect of the XCP protocol are the dynamic DAQ lists. It is not the absolute parameters 
of the DAQ and ODT lists that are permanently defined in the ECU code here, but just the param-
eters of the memory area that can be used for the DAQ lists. The advantage is that the measure-
ment tool has more latitude in putting together the DAQ lists  and it can manage the structure 
of the DAQ lists dynamically.

Various functions especially designed for this dynamic management are available in XCP such as 
ALLOC_ODT which the Master can use to define the structure of a DAQ list in the Slave.

DAQ0
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MIN_DAQ + DAQ_COUNT

ODT_ENTERIES_COUNT

AL
LO

C_
OD

T

GRANULARITY_ODT_ENTRY_SIZE_DAQ

ODT_COUNT

ALLOC_ODT_ENTRY

ALLOC_DAQ

Figure 27: 
Dynamic DAQ lists

In putting together the DAQ lists, the Master must be able to distinguish whether dynamic or 
static DAQ lists are being used, how the parameters and structures of the DAQ lists look, etc.
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1.3.3 STIM Calibration Method

The XCP calibration method was already introduced in the chapter about exchanging CTOs. This 
type of calibration exists in every XCP driver and forms the basis for calibrating objects in the 
ECU. However, no synchronization exists between sending a calibration command and an event 
in the ECU.

In contrast to this, the use of STIM is not based on exchanging CTOs, rather on the use of DTOs 
with communication that is synchronized to an event in the Slave. The Master must therefore 
know to which events in the Slave it can even synchronize at all. This information must also exist 
in the A2L. 

Figure 28: Event for DAQ and STIM

If the Master sends data to the Slave by STIM, the XCP Slave must be informed of the location in 
the packets at which the calibration parameters can be found. The same mechanisms are used 
here as are used for the DAQ lists.
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1.3.4 XCP Packet Addressing for DAQ and STIM 

Addressing of the XCP packets was already discussed at the beginning of this chapter. Now that 
the concepts of DAQ, ODT and STIM have been introduced, XCP packet addressing will be pre-
sented in greater detail. 

During transmission of CTOs, the use of a PID is fully sufficient to uniquely identify a packet; 
however, this is no longer sufficient for transmitting measured values. The following figure 
offers an overview of the possible addressing that could occur with the DTOs:

XCP DTO Packet

PID TS

FILL DAQ TIMESTAMP DATA

PID

PID

PID

DAQ

DAQ TS

Identification Field Timestamp Field Data Field

Figure 29:  
Structure of the  
XCP packet for DTO 
transmissions

Transmission type: “absolute ODT numbers”

Absolute means that the ODT numbers are unique throughout the entire communication – i.e. 
across all DAQ lists. In turn, this means that the use of absolute ODT numbers assumes a trans-
formation step that utilizes a so-called “FIRST_PID for the DAQ list.

If a DAQ list starts with the PID j, then the PID of the first packet has the value j, the second 
packet has the PID value j + 1, the third packet has the PID value j + 2, etc. Naturally, the Slave 
must ensure here that the sum of FIRST_PID + relative ODT number remains below the PID of the 
next DAQ list.

DAQ list: 0	 ≤ PID ≤ k
DAQ list: k + 1	 ≤ PID ≤ m
DAQ list: m + 1	≤ PID ≤ n
etc.
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In this case, the identification field is very simple:

Identification Field

absolute ODT number

PID Figure 30: 
Identification field 
with absolute  
ODT numbers

Transmission type: “relative ODT numbers and absolute DAQ lists numbers”

In this case, both the DAQ lists number and the ODT number can be transmitted in the Identi-
fication Field. However, there is still space left over in the number of bytes that is available for 
the information:

Identification Field

PID DAQ

absolute DAQ List number

relative ODT number

Figure 31: 
ID field with  
relative ODT and 
absolute DAQ  
numbers (one byte)

In the figure, one byte is available for the DAQ number and one byte for the ODT number.

The maximum number of DAQ lists can be transmitted using two bytes: 

Identification Field

PID DAQ

absolute DAQ list number

relative ODT number

Figure 32: 
ID field with  
relative ODT and 
absolute DAQ  
numbers (two bytes)
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If it is not possible to send three bytes, it is also possible to work with four bytes by using a fill 
byte:

Identification Field

PID FILL DAQ

absolute DAQ list number

for alignement

relative ODT number

Figure 33: 
ID field with relative 
ODT and absolute DAQ 
numbers as well as fill 
byte (total of four bytes)

How does the XCP Master now learn which method the Slave is using? First, by the entry in the 
A2L and second by the request to the Slave to determine which communication version it has 
implemented.

The response to the GET_DAQ_PROCESSOR_INFO request also sets the DAQ_KEY_BYTE that the 
Slave uses to inform the Master which transmission type is being used. If not only DAQ is being 
used, but also STIM, the Master must use the same method for STIM that the Slave uses for DAQ.

1.3.5 Bypassing = DAQ + STIM 

Bypassing can be implemented by joint use of DAQ and STIM (see Figure 8) and it represents 
a special form of a rapid prototyping solution. For a deeper understanding, however, further 
details are necessary, so this method is not explained until chapter 4.5 “Bypassing”.
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1.4 XCP Transport Layers 

A main requirement in designing the protocol was that it must support different transport lay-
ers. At the time this document was defined, the following layers had been defined: XCP on CAN, 
FlexRay, Ethernet, SxI and USB. The bus systems CAN, LIN and FlexRay are explained on the  
Vector E-Learning platform, as well as an introduction to AUTOSAR. For details see the website 
www.vector-elearning.com.

1.4.1 CAN 

XCP was developed as a successor protocol of the CAN Calibration Protocols (CCP) and must 
therefore absolutely satisfy the requirements of the CAN bus. The communication over the CAN 
bus is defined by the associated description file. Usually the DBC format is used, but in some 
isolated cases the AUTOSAR format ARXML is already being used. 

A CAN message is identified by a unique CAN identifier. The communication matrix is defined in 
the description file: Who sends which message and how are the eight useful bytes of the CAN bus 
being used? The following figure illustrates the process: 

Data
Frame

ID=0x12 Sender Receiver

ID=0x34

ID=0x52 Receiver

Receiver

ReceiverSender

Receiver

Receiver

Sender

Sender Receiver

Sender

Sender

Receiver

Receiver

Receiver

ReceiverID=0x67

ID=0xB4

ID=0x3A5

CAN
Node A

CAN
Node B

CAN
Node C

CAN
Node D

Figure 34: 
Definition of which 
bus nodes send 
which messages

The message with ID 0x12 is sent by CAN node A and all other nodes on the bus receive this mes-
sage. In the framework of acceptance testing, CAN nodes C and D conclude that they do not 
need the message and they reject it. CAN node B, on the other hand, determines that its higher-
level layers need the message and they provide them via the Rx buffer. The CAN nodes are inter-
linked as follows:
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Figure 35: 
Representation 
of a CAN network

The XCP messages are not described in the communication matrix! If measured values are sent 
from the Slave via dynamic DAQ lists, e.g. with the help of XCP, the messages are assembled 
according to the signals selected by the user. If the signal selection changes, the message con-
tents change as well. Nonetheless, there is a relationship between the communication matrix 
and XCP: CAN identifiers are needed to transmit the XCP messages over CAN. To minimize the 
number of CAN identifiers used, the XCP communication is limited to the use of just two CAN 
identifiers that are not being used in the DBC for “normal” communication. One identifier is 
needed to send information from the Master to the Slave; the other is used by the Slave for the 
response to the Master.

The excerpt from the CANape Trace window shows the CAN identifiers that are used under the 
“ID” column. In this example, just two different identifiers are used: 554 as the ID for the mes-
sage from Master to Slave (direction Tx) and 555 for sending messages from the Slave to the 
Master (direction Rx). 
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Figure 36: Example of XCP-on-CAN communication

In this example, the entire XCP communication is handled by the two CAN identifiers 554 and 
555. These two IDs may not be allocated for other purposes in this network. 

The CAN bus transmits a maximum of eight useful bytes per message. In the case of XCP, how-
ever, we need information on the command used or the sent response. This is provided in the 
first byte of the CAN useful data. This means that seven bytes are available per CAN message for 
transporting useful data. 

Figure 37: Representation of an XCP-on-CAN message

XCP Packet XCP Tail

Fill

XCP on CAN Message (Frame)

Control Field
for CAN

Control Field
 empty for CAN

XCP Header
empty for CAN PID FILL DAQ TIMESTAMP DATA

In CANape, you will find an XCP-on-CAN demo with the virtual ECU XCPsim. You can learn about 
more details of the standard in ASAM XCP on CAN Part 3 Transport Layer Specification.
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1.4.2 CAN FD

CAN FD (CAN with flexible data rate) is an extension of the CAN protocol developed by  
Robert Bosch GmbH. Its primary difference to CAN involves extending the useful data from 8 to 
64 bytes. CAN FD also offers the option of sending the useful data at a higher data rate. After 
the arbitration phase, the data bytes are sent at a higher transmission rate than during the 
arbitration phase. This covers the need for greater bandwidth in automotive networks while pre-
serving valuable experience gained from CAN development.
The XCP-on-CAN-FD specification was defined in the XCP-on-CAN description of the XCP stan-
dard, Version 1.2.0 (June 2013). 
 

Figure 38: Illustration of a CAN FD frame

Despite the largely similar modes of operation, this protocol requires extensions and modifica-
tions to the hardware and software. Among other things, CAN FD introduces three new bits to 
the control field:
>	 Extended Data Length (EDL)
>	 Bit Rate Switch (BRS) 
>	 Error State Indicator (ESI)
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A recessive EDL bit (High level) distinguishes frames in extended CAN-FD format from those in 
standard CAN format, because they are identified by a dominant EDL bit (low level). Similarly, a 
recessive BRS bit causes the transmission of the data field to be switched to the higher bit rate. 
The ESI bit identifies the error state of a CAN FD node. Another four bits make up what is known 
as the Data Length Code (DLC), which represents the extended useful data length as a possible 
value of 12, 16, 20, 24, 32, 48 and 64 bytes. 

The use of XCP on CAN FD assumes that a second transmission rate has been defined for the use-
ful data in the A2L file. This is fully transparent to the user, who gets a complete A2L parameter-
ization. A measurement configuration in the XCP master considers the maximum packet length, 
and the user does not need to make any other settings. 

CAN FD is supported in CANape, Version 12.0 and higher. Every CAN hardware product from 
Vector which begins with “VN” supports the CAN FD transport protocol.
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1.4.3 FlexRay

A basic idea in the development of FlexRay was to implement a redundant system with deter-
ministic time behavior. The connection redundancy was achieved by using two channels: chan-
nel A and channel B. If multiple FlexRay nodes (= ECUs) are redundantly interconnected and 
one branch fails, the nodes can switch over to the other channel to make use of the connection 
redundancy. 

Figure 39: Nodes K and L are redundantly interconnected

CH A

CH B

Node K Node L Node M Node N Node O

Deterministic behavior is achieved by transmitting data within defined time slots. Also defined 
here is which node sends which content in which time slot. These time slots are combined to 
form one cycle. The cycles repeat here, as long as the bus is active. The assembly of the time 
slots and their transport contents (who sends what at which time) is known as Scheduling. 

Frame: a Frame: b Frame: x Frame: a Frame: b Frame: x

t1
Slot 1 Slot 2 Slot 3 Slot 1 Slot 2 ... Real-time

t2 t3 t4 t5 t6

Communication Cycle Next Communication Cycle

x

Slot
1
3

Tx
Rx

a
Direction FrameSlot

1
3

Tx
Rx

a
b

Direction Frame

Node K Node L Node M

Slot
1
3

Tx
Rx x

Direction Frame
a

Figure 40: Communication by slot definition
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In the first communication cycle, node K sends frame a in slot 1. The scheduling is also stored in 
the software of nodes L and M. Therefore, the contents of frame a are passed to the next higher 
communication levels. 

Scheduling is consolidated in a description file. This is not a DBC file, as in the case of CAN, 
rather it is a FIBEX file. FIBEX stands for “Field Bus Exchange Format” and could also be used 
for other bus systems. However, its current use is practically restricted to the description of the 
FlexRay bus. FIBEX is an XML format and the XCP-on-FlexRay specification relates to FIBEX Ver-
sion 1.1.5 and FlexRay specification Version 2.1.
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Figure 41: Representation of a FlexRay communication matrix 

Another format for describing bus communication has been defined as a result of the develop-
ment of AUTOSAR solutions: the AUTOSAR Description File, which is available in XML format. The 
definition of XCP-on-FlexRay was taken into account in the AUTOSAR 4.0 specification. However, 
at the time of publication of this book this specification has not yet been officially approved and 
therefore it will not be discussed further.  

Due to other properties of the FlexRay bus, it is not sufficient to just give the slot number as 
a reference to the contents. One reason is that multiplexing is supported: whenever a cycle is 
repeated, the transmitted contents are not necessarily the same. Multiplexing might specify 
that a certain piece of information is only sent in the slot in every second pass. 
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Instead of indicating the pure slot number, “FlexRay Data Link Layer Protocol Data Unit Identi-
fiers” (FLX_LPDU_ID) are used, which can be understood as a type of generalized Slot ID. Four 
pieces of information are needed to describe such an LPDU:
>	 FlexRay Slot Identifier (FLX_SLOT_ID)
>	 Cycle Counter Offset (OFFSET)
>	 Cycle Counter Repetition (CYCLE_REPETITION)
>	 FlexRay Channel (FLX_CHANNEL)
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Figure 42: 
Representation of  
the FlexRay LPDUs

Scheduling also has effects on the use of XCP on FlexRay, because it defines what is sent pre-
cisely. This cannot be readily defined in XCP; not until the measurement runtime does the user 
define which measured values are sent by assembling signals. This means that it is only possible 
to choose which aspect of XCP communication can be used in which LPDU: CTO or DTO from Mas-
ter to Slave or from Slave to Master.

The following example illustrates this process: the XCP Master may send a command (CMD) in 
slot n and Slave A gives the response (RES) in slot n + 2. XCP-on-FlexRay messages are always 
defined using LPDUs.

The A2L description file is needed for access to internal ECU parameters; the objects with their 
addresses in the ECU are defined in this file. In addition, the FIBEX file is necessary, so that 
the XCP Master knows which LPDUs it may send and to which LPDUs the XCP Slaves send their 
responses. Communication between XCP Master and XCP Slave(s) can only function through 
combination of the two files, i.e. by having an A2L file reference a FIBEX file.
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Excerpt of an A2L with XCP-on-FlexRay parameter setting:
		  …
/begin XCP_ON_FLX
		  … 
„XCPsim.xml“
„Cluster_1“
		  …

In this example, “XCPsim.xml” is the reference from the A2L file to the FIBEX file. 
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Allocation of  
XCP communication 
to LPDUs

You can read more details about XCP on FlexRay in CANape’s online Help. Supplied with CANape 
is the FIBEX Viewer, which lets users conveniently view the scheduling. It is easy to allocate the 
XCP messages to the LPDUs by making driver settings for the XCP-on-FlexRay device in CANape.

The protocol is explained in detail in ASAM XCP on FlexRay Part 3 Transport Layer Specification. 
You will find an XCP-on-FlexRay demo in CANape with the virtual ECU XCPsim. The demo requires 
real Vector FlexRay hardware.

1.4.4 Ethernet

XCP on Ethernet can be used with either TCP/IP or UDP/IP. TCP is a protected transport protocol 
on Ethernet, in which the handshake method is used to detect any loss of a packet. In case of 
packet loss, TCP organizes a repetition of the packet. UDP does not offer this protection mech-
anism. If a packet is lost, UDP does not offer any mechanisms for repeated sending of the lost 
packet on the protocol level. 

Not only can XCP on Ethernet be used with real ECUs, it can also be used for measurement and 
calibration of virtual ECUs. Here, a virtual ECU is understood as the use of code that would other
wise run in the ECU as an executable program (e.g. DLL) on the PC. Entirely different resources 
are available here compared to an ECU (CPU, memory, etc.). 
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But first the actual protocol will be discussed. IP packets always contain the addresses of the 
sender and receiver. The simplest way to visualize an IP packet is as a type of letter that contains 
the addresses of the recipient and the sender. The addresses of individual nodes must always be 
unique. A unique address comprises the IP address and port number. 

Figure 44: XCP packet with TCP/IP or UDP/IP

XCP Header XCP Packet

LEN CTR

XCP on Ethernet (TCP/IP and UDP/IP) Message (Frame)

Length (LEN)Control Field
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(TCP/ IP and UDP/IP)  

Control Field
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(TCP&IP and UDP&IP)

XCP Tail
empty for Ethernet

(TCP/IP and UDP/IP)PID FILL DAQ TIMESTAMP DATA

The header consists of a Control Field with two words in Intel format (= four bytes). These words 
contain the length (LEN) and a counter (CTR). LEN indicates the number of bytes in the XCP 
packet. The CTR is used to detect the packet loss. UDP/IP is not a protected protocol. If a packet 
is lost, this is not recognized by the protocol layer. Packet loss is monitored by counter infor-
mation. When the Master sends its first message to the Slave, it generates a counter number 
that is incremented with each additional transmission of a frame. The Slave responds with the 
same pattern: It increments its own counter with each frame that it sends. The counters of the 
Slave and the Master operate independently of one another. UDP/IP is well suited for sending 
measured values. If a packet is lost, then the measured values it contains are lost, resulting in 
a measurement gap. If this occurs infrequently, the loss might just be ignored. But if the mea-
sured data is to be used as the basis for fast control, it might be advisable to use TCP/IP.

An Ethernet packet can transport multiple XCP packets, but an XCP packet may never exceed the 
limits of a UDP/IP packet. In the case of XCP on Ethernet, there is no “Tail”, i.e. an empty con-
trol field.

You will find more detailed information on the protocol in ASAM XCP on Ethernet Part 3 Trans-
port Layer Specification. In CANape, you will also find an XCP on Ethernet demo with the virtual 
ECU XCPsim or with virtual ECUs in the form of DLLs, which have been implemented by Simulink 
models and the Simulink Coder.
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1.4.5 SxI 

SxI is a collective term for SPI or SCI. Since they are not buses, but instead are controller inter-
faces which are only suited for point-to-point connections, there is no addressing in this type 
of transmission. The communication between any two nodes runs either synchronously or 
asynchronously.

Figure 45: XCP-on-SxI packet
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The XCP header consists of a control field with two pieces of information: the length LEN and 
the counter. The length of these parameters may be in bytes or words (Intel format). LEN indi-
cates the number of bytes of the XCP packet. The CTR is used to detect the loss of a packet. This 
is monitored in the same way as for XCP on Ethernet: with counter information. Under certain 
circumstances it may be necessary to add fill bytes to the packet, e.g. if SPI is used in WORD or 
DWORD mode or to avoid the message being shorter than the minimal packet length. These fill 
bytes are appended in the control field.

You will find more detailed information on the protocol in ASAM XCP on SxI Part 3 Transport 
Layer Specification.

1.4.6 USB 

Currently, XCP on USB has no practical significance. Therefore, no further mention will be made 
of this topic; rather we refer you to ASAM documents that describe the standard: ASAM XCP on 
USB Part 3 Transport Layer Specification.

1.4.7 LIN 

At this time, ASAM has not yet defined an XCP-on-LIN standard. However, a solution exists from 
Vector (XCP-on-LIN driver and CANape as XCP-on-LIN Master), which violates neither the LIN nor 
the XCP specification and is already being used on some customer projects. For more detailed 
information, please contact Vector.
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1.5 XCP Services

This chapter contains a listing and explanation of other services that can be realized over XCP. 
They are all based on the already described mechanisms of communication with the help of CTOs 
and DTOs. Some XCP services have already been explained, e.g. synchronous data acquisition/
stimulation and read/write access to device memory. 
The XCP specification does indeed uniquely define the different services; at the same time it 
indicates whether the service always needs to be implemented or whether it is optional. For 
example, an XCP Slave must support “Connect” for the Master to set up a connection. On the 
other hand, flashing over XCP is not absolutely necessary and the XCP Slave does not need to 
support it. This simply depends on the requirements of the project and the software. All of the 
services described in this chapter are optional. 

1.5.1 Memory Page Swapping 

As already explained in the description of calibration concepts, parameters are normally located 
in flash memory and are copied to RAM as necessary. Some calibration concepts offer the option 
of swapping memory segment pages from RAM and Flash. XCP describes a somewhat more gen-
eral, generic approach, in which a memory segment may contain multiple swappable pages. 
Normally, this consists of a RAM page and a flash page. But multiple RAM pages or the lack of a 
flash page are conceivable as well. 

For a better understanding of the XCP commands for page swapping, the concepts of sector, seg-
ment and page will be explained once again at this point.
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From an XCP perspective, the memory of a Slave consists of a continuous memory that is 
addressed with a 40-bit width. The physical layout of the memory is based on sectors. Know
ledge of the flash sectors is absolutely necessary in flashing, because the flash memory can only 
be erased a block at a time. 

The logical structure is based on what are known as segments; they describe where calibration 
data is located in memory. The start address and parameters of a segment do not have to be 
aligned with the start addresses and parameters of the physical sectors. Each segment can be 
subdivided into multiple pages. The pages of a segment describe the same parameters at the 
same addresses. The values of these parameters and read/write rights can be controlled indi-
vidually for each page. 

The allocation of an algorithm to a page within a segment must always be unique. Only one page 
may be active in a segment at any given time. This page is known as the “active page for the 
ECU in this segment.” The particular page that the ECU and the XCP driver actively access can be 
individually switched. No interdependency exists between these settings. Similar to the nam-
ing convention for the ECU, the active page for XCP access is referred to as the “active page for 
XCP access in this segment”. 

In turn, this applies to each individual segment. Segments must be listed in the A2L file and 
each segment gets a number that is used to reference the segment. Within an XCP Slave, the 
SEGMENT_NUMBER must always begin at 0 and it is then incremented in consecutive numbers. 
Each segment has at least one page. The pages are also referenced by numbers. The first page 
is PAGE 0. One byte is available for the number, so that a maximum of 255 pages can be defined 
per segment. 

The Slave must initialize all pages for all segments. The master uses the command GET_CAL_PAGE 
to ask the Slave which page is currently active for the ECU and which page for XCP access. It 
can certainly be the case that mutual blocking may be necessary for the accesses. For exam-
ple, the XCP Slave may not access a page, if this page is currently active for the ECU. As men-
tioned, there may be a dependency – but not necessarily. It is a question of how the Slave has 
been implemented. 

If the Slave supports the optional commands GET_CAL_PAGE and SET_CAL_PAGE, then it also 
supports what is known as page swapping. These two commands let the Master poll which pages 
are currently being used and if necessary it can swap pages for the ECU and XCP access. The XCP 
Master has full control over swapping of pages. The XCP Slave cannot initiate swapping by itself. 
But naturally the Master must respect any restrictions of the Slave implementation. 

What is the benefit of swapping?
First, swapping permits very quick changing of entire parameter sets – essentially a before-and-
after comparison. Second, the plant remains in a stable state, while the calibrator performs 
extensive parameter changes on another page in the ECU. This prevents the plant from going 
into a critical or unstable state, e.g. due to incomplete datasets during parameter setting. 
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1.5.2 Saving Memory Pages – Data Page Freezing 

When a calibrator calibrates parameters on a page, there is the conceptual ability in XCP to save 
the data directly in the ECU. This involves saving the data of a RAM page to a page in nonvola-
tile memory. If the nonvolatile memory is flash, it must be taken into account that the segment 
start address and the segment size might not necessarily agree with the flash sectors, which 
represents a problem in erasing and rewriting the flash memory (see ASAM XCP Part 2 Protocol 
Layer Specification).

1.5.3 Flash Programming 

Flashing means writing data in an area of flash memory. This requires precise knowledge of how 
the memory is laid out. A flash memory is subdivided into multiple sectors (physical sections), 
which are described by a start address and a length. To distinguish them from one another, they 
each get a consecutive identification number. One byte is available for this number, resulting in 
a maximum of 255 sectors. 

SECTOR_NUMBER [0, 1, 2 … 255]

The information about the flash sectors is also part of the A2L data set.

Figure 47: 
Representation 
of driver settings  
for the flash area



591.5 XCP Services

Flashing can be implemented using what are referred to as “flash kernels”. A flash kernel is exe-
cutable code that is sent to the Slave’s RAM area before the actual flashing; the kernel then han-
dles communication with the XCP Master. It might contain the algorithm that is responsible for 
erasing the flash memory. For security and space reasons, very frequently this code is not per-
manently stored in the ECU’s flash memory. Under some circumstances, a converter might be 
used, e.g. if checksum or similar computations need to be performed.

Flashing with XCP roughly subdivides the overall flash process into three areas:
>	� Preparation (e.g. for version control and therefore to check whether the new contents
	 can even be flashed)
>	 Execution (the new contents are sent to the ECU) 
>	 Post-processing (e.g. checksum checking etc.)

In the XCP standard, the primary focus is directed to the actual execution of flashing. Any-
one who compares this operation to flashing over diagnostic protocols will discover that the 
process-specific elements, such as serial number handling with meta-data, are supported in 
a rather spartan fashion in XCP. Flashing in the development phase was clearly the main focus 
in its definition and not the complex process steps that are necessary in end-of-line flashing.

Therefore, what is important in the preparation phase is to determine whether the new con-
tents are even relevant to the ECU. There are no special commands for version control. Rather 
the practice has been to support those commands specific to the project. 

The following XCP commands are available:

PROGRAM_START: Beginning of the flash procedure
This command indicates the beginning of the flash process. If the ECU is in a state that does not 
permit flashing (e.g. vehicle speed > 0), the XCP Slave must acknowledge with an ERRor. The 
actual flash process may not begin until the PROGRAM_START has been successfully acknowl-
edged by the Slave.

PROGRAM_CLEAR: Call the current flash memory erasing routine 
Before flash memory can be overwritten with new contents, it must first be cleared. The call of 
the erasing routine via this command must be implemented in the ECU or be made available to 
the ECU with the help of the flash kernel.

PROGRAM_FORMAT: Select the data format for the flash data 
The XCP Master uses this command to define the format (e.g. compressed or encrypted) in which 
the data are transmitted to the Slave. If the command is not sent, the default setting is non-
compressed and non-encrypted transmission.

PROGRAM: Transfer the data to the XCP Slave
For the users who are very familiar with flashing via diagnostics: this command corresponds to 
TRANSFERDATA in diagnostics. Using this command, data is transmitted to the XCP Slave, which 
is then stored in flash memory.
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PROGRAM_VERIFY: Request to check the new flash contents
The Master can request that the Slave perform an internal check to determine whether the new 
contents are OK. 

PROGRAM_RESET: Reset request to the Slave
Request by the Master to the Slave to execute a Reset. Afterwards, the connection to the Slave 
is always terminated and a new CONNECT must be sent.

1.5.4 Automatic Detection of the Slave 

The XCP protocol lets the Master poll the Slave about its protocol-specific properties. A number 
of commands are available for this.

GET_COMM_MODE_INFO
The response to this command gives the Master information about the various communication 
options of the Slave, e.g. whether it supports block transfer or interleaved mode or which mini-
mum time intervals the Master must maintain between Requests in these modes. 

GET_STATUS
The response to this request returns all current status information of the Slave. Which resources 
(calibration, flashing, measurement, etc.) are supported? Are any types of memory activities 
(DAQ list configuration, etc.) still running currently? Are DTOs (DAQ, STIM) being exchanged 
right now?

GET_DAQ_PROCESSOR_INFO
The Master gets general information, which it needs to know about the Slave limitations: num-
ber of predefined DAQ lists, available DAQ lists and events, etc.

GET_DAQ_RESOLUTION_INFO
Other information about the DAQ capabilities of the Slave is exchanged via this command: max-
imum number of parameters for an ODT for DAQ and for STIM, granularity of the ODT entries, 
number of bytes in time stamp transmission, etc.

GET_DAQ_EVENT_INFO
When this command is used, the call is made once per ECU event. Information is transmitted 
here on whether the event can be used for DAQ, STIM or DAQ/STIM, whether the event occurs 
periodically and if so which cycle time it has, etc.
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1.5.5 Block Transfer Mode for Upload, Download and Flashing 

In the “normal” communication mode, each command from the Master is acknowledged by a 
response of the Slave. However, in some cases it may be desirable, for performance reasons, to 
use what is referred to as the block transfer mode. 

Time
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Figure 48: 
Representation  
of the block  
transfer mode

The use of such a method accelerates the procedure when transmitting large amounts of data 
(UPLOAD, SHORT_UPLOAD, DOWNLOAD, SHORT_DOWNLOAD and PROGRAM). The Master can find 
out whether the Slave supports this method with the request GET_COMM_MODE_INFO. You will 
find more on this in ASAM XCP Part 2 Protocol Layer Specification.
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1.5.6 Cold Start Measurement (start of measurement during power-on) 

Even with the capabilities of XCP described to this point, it would be impossible to implement 
an event-driven measurement that can in practice be executed early in the ECU’s start phase. 
The reason is that the measurement must be configured before the actual measurement takes 
place. If one attempts to do this, the ECU’s start phase has long been over by the time the first 
measured values are transmitted. The approach that is used to overcome this problem is based 
on a simple idea. 

It involves separating the configuration and the measurement in time. After the configura-
tion phase, the measurement is not started immediately; rather the ECU is shut down. After a 
reboot, the XCP Slave accesses the existing configuration directly and immediately begins to 
send the first messages. The difficulties associated with this are obvious: the configuration of 
the DAQ lists is stored in RAM, and therefore the information no longer exists after a reboot. 

To enable what is known as the RESUME mode to enable a Cold Start Measurement, a nonvolatile 
memory is needed in the XCP Slave which preserves its data even when it is not being supplied 
with power. EEPROMs are used in this method. In this context, it is irrelevant whether it is a real 
EEPROM or one that is emulated by a flash memory.

You will find more details in ASAM XCP Part 1 Overview Specification in the chapter 1.4.2.2 
“Advanced Features”.
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1.5.7 Security Mechanisms with XCP 

An unauthorized user should be prevented as much as possible from being able to make a con-
nection to an ECU. The “seed & key” method is available for checking whether or not a connec-
tion attempt is authorized. The three different access types can be protected by seed & key: 
measurement / stimulation, calibration and flashing.

The “seed & key” method operates as follows: in the connect request by the Master, the Slave 
sends a random number (= seed) to the Master. Now, the Master must use an algorithm to gen-
erate a response (= key). The key is sent to the Slave. The Slave also computes the expected 
response and compares the key of the Master with its own result. If the two results agree, both 
the Master and Slave have used the same algorithm. Then the Slave accepts the connection to 
the Master. If there is no agreement, the Slave declines communication with the Master.

Normally, the algorithm is available as a DLL in the Master. So, if a user has the “seed & key” 
DLL and the A2L file, nothing stands in the way of accessing the ECU’s memory. When the ECU 
is approaching a production launch, the XCP driver is often deactivated. A unique sequence of 
individual diagnostic commands is usually used to restore XCP access to the ECU. This makes 
the XCP driver largely available even in production vehicles, but it is normally deactivated to 
protect against unauthorized manipulation of the ECU (see ASAM XCP Part 2 Protocol Layer 
Specification). 

Whether or not seed & key or deactivation of the XCP driver is used in a project is implementa-
tion-specific and independent of the XCP specification. 
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2 ECU Description File A2L
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One reason why an A2L file is needed has already been named: to allocate symbolic names to 
addresses. For example, if a software developer has implemented a PID controller and assigned 
the names P1, I1 and D1 in his application for the proportional, integral and differential compo-
nents, then the calibrator should be able to access these parameters with their symbolic names. 
Let us take the following figure as an example:

Figure 49: 
Parameters in  
a calibration window

The user can conveniently modify values using symbolic names. Another example is provided by 
viewing signal variables that are measured from the ECU:

Figure 50: Signal response over time 
 

In the legend, the user can read the logical names of the signals. The addresses at which the 
parameters were located in the ECU are of secondary importance in the offline analysis of val-
ues. Naturally, the correct address is needed to request the values in the ECU, but the numeric 
value of the address itself is of no importance to the user. The user uses the logical name for 
selection and visualization purposes. That is, the user selects the object by its name and the XCP 
Master looks for the associated address and data type in the A2L.
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Another attribute of a parameter might be the definition of a minimum or maximum value. The 
value of the object would then have to lie within these limits. Imagine that you as the software 
developer define a parameter that has a direct effect on a power output stage. You must now 
prevent the user – whatever the user’s reasons might be – from configuring the output stage 
that would result in catastrophic damage. You can accomplish this by defining minimum and 
maximum values in the A2L to limit the permitted values. 

Rules for conversion between physical and raw values are also defined in the A2L. You can visu-
alize a simple example of such a conversion rule in a sensor that has an 8-bit value. The numeric 
values output by the sensor lie between 0 and 255, but you wish to see the value as a percent-
age value. Mapping of the sensor value [0 … 255] to [0 … 100 %] is performed with a conver-
sion rule, which in turn is stored in the A2L. If an object is measured, which exists as a raw value 
in the ECU and is also transmitted as such, the measurement and calibration tool uses the stored 
formula and visualizes the physical value.

Besides scalar parameters, characteristic curves and maps are frequently used. Some might uti-
lize a proximity sensor such as a Hall sensor, which determines distance as a function of mag-
netic field strength and you may wish to use this distance value in your algorithm. The magnetic 
field and distance value do not run linear to one another. This nonlinearity of values would make 
formulation of the algorithm unnecessarily difficult. With the help of a characteristic curve, you 
can first linearize the values before you input the values into your algorithm as input variables.

Another application area for characteristic maps is their use as substitutes for complex compu-
tations. For example, if there is a relationship y = f(x) and the function f is associated with a lot 
of computing effort, it is often simpler to simply compute the values over the potential range of 
x in advance and store the results in the form of a table (= characteristic curve). If the value x 
is now in the ECU, the value y does not need to be computed at the controller’s runtime, rather 
the map returns the result y to the input variable x. It may be necessary to interpolate between 
two values, but that would be the extent of the calculations. 

How is this characteristic curve stored in memory? Are all x values input first and then all y val-
ues? Or does storage follow the pattern: x1, y1; x2, y2; x3, y3 …? Since various options are 
available, the type of memory storage is defined in a storage scheme in the A2L. 

The convenience for the user comes from the ability to work with symbolic names for parame-
ters, the direct look at the physical values and access to complex elements such as characteris-
tic maps, without having to concern oneself with complex storage schemes.

Another advantage is offered by the communication parameters. They are also defined in the 
A2L. In the communication between the measurement and calibration tool and the ECU, the 
parameter set from the A2L is used. The A2L contains everything that the measurement and cal-
ibration tool needs to communicate with the ECU. 



68 2 ECU Description File A2L

2.1 Setting Up an A2L File for an XCP Slave 

The A2L file is an ASCII-readable file, which describes the following with the help of keywords:
>	� Interface-specific parameters between measurement and calibration tool and A2L file (the 

description is located at the beginning of the A2L file and is located in what is referred to as 
the AML tree),

>	� Communication to the ECU,
>	� Storage scheme for characteristic curves and maps (keyword RECORD_LAYOUT),
>	� Conversion rules for converting raw values to physical values (keyword COMPU_METHOD),
>	� Measurement parameters (keyword MEASUREMENT),
>	� Calibration parameters (keyword CHARACTERISTIC) and
>	� Events that are relevant for triggering a measurement keyword EVENT),

A summary of parameters and measurement parameters is made with the help of groups (keyword 
GROUP).

Example of a measurement parameter with the name “Shifter_B3”:

    /begin MEASUREMENT Shifter_B3 “Single bit signal (bit from a byte shifting)”
      UBYTE HighLow 0 0 0 1
      READ_WRITE
      BIT_MASK 0x8
      BYTE_ORDER MSB_LAST
      ECU_ADDRESS 0x124C02
      ECU_ADDRESS_EXTENSION 0x0
      FORMAT “%.3”
      /begin IF_DATA CANAPE_EXT
        100
        LINK_MAP “byteShift” 0x124C02 0x0 0 0x0 1 0x87 0x0
        DISPLAY 0 0 20
      /end IF_DATA
    /end MEASUREMENT

Example of a parameter map with the name KF1:

    /begin CHARACTERISTIC KF1 “8*8 BYTE no axis”
      MAP 0xE0338 __UBYTE_Z 0 Factor100 0 2.55
      ECU_ADDRESS_EXTENSION 0x0
      EXTENDED_LIMITS 0 2.55
      BYTE_ORDER MSB_LAST
      BIT_MASK 0xFF
      /begin AXIS_DESCR
        FIX_AXIS NO_INPUT_QUANTITY BitSlice.CONVERSION 8 0 7
        EXTENDED_LIMITS 0 7
        READ_ONLY
        BYTE_ORDER MSB_LAST
        FORMAT “%.0”
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        FIX_AXIS_PAR_DIST 0 1 8
      /end AXIS_DESCR
      /begin AXIS_DESCR
        FIX_AXIS NO_INPUT_QUANTITY BitSlice.CONVERSION 8 0 7
        EXTENDED_LIMITS 0 7
        READ_ONLY
        BYTE_ORDER MSB_LAST
        FORMAT “%.0”
        FIX_AXIS_PAR_DIST 0 1 8
      /end AXIS_DESCR
      /begin IF_DATA CANAPE_EXT
        100
        LINK_MAP “map3_8_8_uc” 0xE0338 0x0 0 0x0 1 0x87 0x0
        DISPLAY 0 0 255
      /end IF_DATA
      FORMAT “%.3”
    /end CHARACTERISTIC

The ASCII text is not easy to understand. You will find a description of its structure in ASAM XCP 
Part 2 Protocol Layer Specification in chapter 2.

The sections below describe how to create an A2L. Let us focus on the actual contents of an A2L 
and their meanings and leave the details of the A2L description language to an editor. The A2L 
Editor that is supplied with CANape is used here. 

2.2 Manually Creating an A2L File 

The A2L mainly describes the contents of the memory of the XCP Slave. The contents depend on 
the application in the Slave, which was developed as C code. After the compiler/linker run of 
the application code, important elements of an A2L file already exist in the linker-map file: the 
names of the objects, their data types and memory addresses. Still lacking are the parameters 
for communication between XCP Master and Slave. Other information is usually needed such as 
minimum and maximum values of parameters, conversion rules, storage schemes for character-
istic maps etc.

Let us begin by creating an empty A2L and the communication parameters: If you wish to cre-
ate an A2L that describes an ECU with an XCP-on-CAN interface, for example, you create a new 
device in CANape and select XCP on CAN as the interface. Then you can supplement this with 
other communication-specific information (e.g. CAN identifiers). After saving the file, you have 
an A2L that contains the entire communication content of the A2L. Still lacking are the defini-
tions of the actual measurement and calibration parameters. 
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In the A2L Editor (available as part of CANape or as a separate tool), the linker-map file is asso-
ciated to the A2L. In a selection dialog, the user can now select those parameters from the map 
file which it needs in the A2L: scalar measurement and calibration parameters, characteristic 
curves and maps. The user can gradually add the desired parameters to the A2L step by step and 
group them. Other object-specific information is also added using the editor. 

What should be done when you modify your code, recompile it and link it? It is highly proba-
ble that the addresses of objects will change. Essentially, it is not necessary to generate a new 
A2L. If you wish to have objects just added to the code also be available in the A2L, you must of 
course add them to the A2L. Address updating is always necessary in the A2L. This is done with 
the editor; it searches for the relevant entry in the linker-map file based on the name of the A2L 
object, reads out the address and updates it in the A2L.

If your application changes very dynamically – objects are renamed, data types are adapted, 
parameters are deleted and others added – then the manual work method is impractical. To gen-
erate an A2L from a C code, other tools are available for automatic processing. 

On the Vector homepage you will find information on the “ASAP2 Tool-Set” with which you can 
automate the generation of A2Ls from the source code in a batch process.

2.3 A2L Contents versus ECU Implementation

When an XCP Master tool reads in an A2L that does not fully match the ECU, misunderstandings 
in the communication might occur. For example, another value related to time stamp resolution 
might be in the A2L file that differs from the value implemented in the ECU. If this is the case, 
the problem must be detected and solved. The user gets support from the Master, who can poll 
the Slave via the protocol to determine what was really implemented in the Slave. 

XCP offers a number of functions that were developed for automatic detection of the Slave. Of 
course, this assumes that automatic detection is implemented in the Slave. If the Master polls 
the Slave and the Slave’s responses do not agree with the parameter set of the A2L description 
file, the Master must decide which settings to use. In CANape, the information that is read out 
by the Slave is given a higher priority than the information from the A2L.
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Here is an overview of possible commands that are used to find out something about the XCP 
implementation in the Slave:

GET_DAQ_PROCESSOR_INFO
Returns general information on the DAQ lists: MAX_DAQ, MAX_EVENT_CHANNEL, MIN_DAQ

GET_DAQ_RESOLUTION_INFO 
Maximum parameter of an ODT entry for DAQ/STIM, time interval information

GET_DAQ_EVENT_INFO (Event_channel_number)
Returns information for a specific time interval: Name and resolution of the time interval, num-
ber of DAQ lists that may be assigned to this time interval …

GET_DAQ_LIST_INFO (DAQ_List_Number)
Returns information on the selected DAQ list: MAX_ODT, MAX_ODT_ENTRIES exist as predefined 
DAQ lists …
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ECU parameters are constant parameters that are adapted and optimized during the develop-
ment of the ECU or an ECU variant. This is an iterative process, in which the optimal value of a 
parameter is found by repeated measurements and changes. 

The calibration concept answers the question of how parameters in the ECU can be changed 
during an ECU’s development and calibration phases. There is not one calibration concept that 
exists, rather several. Which concept is utilized usually depends very much on the capabilities 
and resources of the microcontroller that is used. 
Normally, parameters are stored in the production ECU’s flash memory. The underlying program 
variables are defined as constants in the software. To make parameters modifiable at runtime 
during an ECU’s development, additional RAM memory is needed.

A calibration concept is concerned with such questions as these: How do the parameters initially 
find their way from flash to RAM? How is the microcontroller’s access to RAM rerouted? What 
does the solution look like when there are more parameters than can be simultaneously stored 
in RAM? How are the parameters copied back into flash? Are changes to the parameters persis-
tent, i.e. are they preserved when the ECU is turned off?
A distinction is made between transparent and non-transparent calibration concepts. Transpar-
ent means that the calibration tool does not need to be concerned with the above questions, 
because all necessary mechanisms are implemented in the ECU. 
Several methods are briefly introduced in the following.

3.1 Parameters in Flash

The software developer defines in the source code whether a parameter is a variable or a con-
stant, i.e. whether a parameter is stored in flash or in RAM memory.

C code example: 

const float factor = 0.5;	

The “factor” parameter represents a constant with the value 0.5. During compiling and linking 
of the code, memory space is provided in flash for the “factor” object. The object is allocated 
an address that lies in the data area of the flash memory. The value 0.5 is found at the relevant 
address in the hex file and the address appears in the linker-map file.

The simplest conceivable calibration concept involves modifying the value in C code, generating 
a new hex file and flashing. However, this method is very laborious, because every value change 
must be made in code, resulting in the need for a compiler/linker run with subsequent flashing. 
An alternative approach would be to only modify the value in the hex file and then reflash this 
file. Every calibration tool is capable of doing this. It is referred to as “offline calibration” of the 
hex file, which is a very commonly used method.
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Under some circumstances, with certain compilers it may be necessary to explicitly ensure that 
parameters are always also stored in flash memory and not integrated in the code, for exam-
ple and therefore do not appear at all in the linker-map file. Usually, one does not want to leave 
to chance where a constant is created in flash memory. The necessary means for accomplish-
ing this are almost always compiler-specific pragma instructions. To prevent the compiler from 
embedding them in the code, it is generally sufficient to use the “volatile” attribute for con-
stant parameters. A typical definition of a flash constant appears as in the following example:
 
C code example: 

#pragma section “FLASH_Parameter”
volatile const float factor = 0.5;	

It is normally not possible to calibrate parameters in flash online. Indeed, most microcontrollers 
are able to program their flash themselves, which is necessary for the purposes of re-program-
ming in the field. Nonetheless, flash memory always has the property of being organized into 
larger blocks (sectors), which can only be erased as a whole. It is practically impossible to flash 
just individual parameters, because the ECU normally does not have the resources to buffer the 
rest of the sector and reprogram it. In addition, this process would take too much time.

Some ECUs have the ability to store data in what is known as an EEPROM memory. In contrast to 
flash memories, EEPROM memories can erase and program each memory cell individually. The 
amount of available EEPROM memory is always considerably less than the available flash mem-
ory and it is usually limited to just a few kilobytes. EEPROM memory is often used to store pro-
grammable parameters in the service shop or to implement a persistence mechanism in the 
ECU, e.g. for the odometer. Online calibration would be conceivable here, but it is seldom used, 
because access to EEPROM cells is relatively slow and during the booting process EEPROM param-
eters are usually copied over to RAM memory, where it is possible to access them directly. ECUs 
which have no EEPROM memory often implement what is known as an EEPROM emulation. In 
this method, multiple small flash sectors are used in alternation to record parameter changes, 
so that the last valid value can always be determined. Online calibration would also be conceiv-
able with this method.
In both cases, the relevant memory accesses would then be intercepted in the software com-
ponents of the XCP driver and implemented with the software routines of the EEPROM or the 
EEPROM emulation. The Vector XCP Professional driver offers the software hooks needed for this.
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3.2 Parameters in RAM

The most frequently used approach to modifying parameters at runtime (“online calibration”) is 
to create the parameters in the available RAM memory. 

C code example: 

#pragma section “RAM_Parameter”
volatile float factor = 0.5;	

This defines the parameter “factor” as a RAM variable with the initial value 0.5. During compil-
ing and linking of the code, memory space is reserved for the object “factor” in RAM and the 
associated RAM address appears in the linker-map file. The initial value 0.5 is stored in flash 
memory and at the relevant location in the hex file. The addresses of the initial values in flash 
memory are defined by parameterization of the linker, but they do not appear in the linker-map 
file. 
During booting of the ECU, all RAM variables are initialized once with their initial values from 
flash memory. This is usually executed in the start-up code of the compiler producer and the 
application programmer does not need to be concerned with it. The application uses the val-
ues of parameters located in RAM and they can be modified via normal XCP memory accesses. 

From the perspective of the ECU software, calibration parameters in RAM are always still 
unchangeable, i.e. the application itself does not change them. Many compilers discover this 
fact by code analysis and simply optimize the necessary RAM memory space away. Normally, 
it is therefore also necessary to prevent the compiler from optimizing by using the “volatile” 
attribute.

From the perspective of the calibration tool, the RAM area in which the parameters are located 
is referred to as calibration RAM (memory that can be calibrated). 

FLASH RAM

Parameters

Calibration RAM

Figure 51: 
Initial parameter 
setting in RAM

The calibration RAM does not need to consist of a fully contiguous RAM area. It may also be dis-
tributed into multiple areas or even in any desired way. Nonetheless, it offers significant advan-
tages for organizing the parameters in just a few contiguous RAM areas and isolating them from 
other RAM parameters such as changing state variables and intermediate results. This is espe-
cially important if offline calibration of the calibration RAM with a hex file should be enabled. 
At the user’s request, the calibration tool must be able to load the parameters that were mod-
ified offline into the ECU during the transition from offline calibration to online calibration. 
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This case occurs very frequently. For example, when calibrators reconnect with their ECU on the 
next work day, they want to resume work at the point at which they stopped the evening before. 
However, booting of the ECU causes the flashed contents to be copied to the RAM as an initial 
dataset. To let users resume with work accomplished on the previous day, the parameter set 
file saved the previous evening in the ECU’s RAM must be loaded. This loading process may be 
time optimized by limiting the number of necessary transmissions to a minimum. It is advanta-
geous here if the tool can quickly and reliably determine – by forming a checksum over larger 
contiguous areas – whether there are differences. If there are no differences between the cal-
ibration RAM contents in the ECU and the file modified using the tool, this area does not need 
to be transferred. If the memory area with the calibration parameters is not clearly defined, or 
if it includes parameters that are modified by the ECU software, a checksum calculation always 
shows a difference and the parameter values are transmitted, either from the ECU to the XCP 
Master or in a reverse direction. Depending on the transmission speed and amount of data, this 
transmission could take several minutes. 

Another advantage of clearly defined memory segments is that the memory area for initial val-
ues in flash memory can be used for offline calibration. The contents of the flash memory are 
defined using flashable hex files. If the calibration tool knows the location of parameters in the 
hex file, it can modify their values and implement new initial values in the ECU by flashing the 
modified hex file. 
The calibration tool not only needs to know the location of parameters in RAM, but also the ini-
tial values in flash. A prerequisite is that the RAM memory segment must be initialized by copy-
ing from an identically laid out memory segment in flash, as is the usual practice in most com-
pilers/linkers. If the addresses of parameters in RAM are in the A2L file, it is only necessary to 
let the tool know the offset to the start address of the calibration RAM, which it must add to get 
to the start address of the relevant flash area. This offset then applies to each individual param-
eter in the A2L. 

The calibration tool can then either generate flashable hex files for this area itself, or it can 
place them directly on the original hex files of the linker to modify the initial values of param-
eters in the hex file.
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3.3 Flash Overlay

Many microcontrollers offer options for overlaying memory areas in flash with internal or exter-
nal RAM. This process is referred to as flash emulation or flash overlay. A lot is possible, from 
the use of a Memory Management Unit all the way to dedicated mechanisms that precisely serve 
this purpose. In this case the parameters are created as parameters in flash just as in calibra-
tion concept 1. This method offers enormous advantages compared to the described calibration 
concept 2 “Parameters in RAM”:
>	� No distinction is made between flash and RAM addresses. The flash addresses are always 

located in the A2L file, the hex file and linker-map file. This produces clear relationships, the 
hex file is directly flashable and the A2L file matches it exactly.

>	� The overlay can be activated or deactivated as a whole, which enables lightning-quick swap-
ping between values in flash and those in RAM. They are referred to as the RAM page and the 
flash page of a memory segment. XCP supports control of memory page swapping with special 
commands. 

>	� The memory pages might be swapped separately, e.g. for XCP access and ECU access, i.e. XCP 
could access a memory page while the ECU software works with the other page. This permits 
such operations as downloading of the offline calibration data to RAM, while the ECU is still 
working with the flash data; this avoids potential inconsistencies that could be problematic 
on a running ECU.

>	� The overlay with RAM does not need to be complete and it can be adapted to the application 
case. It is possible to work with less RAM than with flash. More on this later.

A typical procedure for connecting the calibration tool to the ECU with the subsequent down-
load of values that were calibrated offline appears as follows:

Connects to the ECU	 CONNECT

Connects XCP Master to RAM page	 SET_CAL_PAGE XCP to RAM

Checksum calculation	 CALC_CHECKSUM

When a difference has been detected in the checksum calculation over the RAM area, first the 
user is normally asked how to proceed. Should the contents of ECU RAM be sent to the Master, or 
should the contents of a file on the Master page be sent to the ECU’s RAM? If the user decides to 
write the offline changes to the ECU, the subsequent process appears as follows:

ECU should use the dataset of the flash page 	 SET_CAL_PAGE ECU to FLASH

Copy file from Master to the RAM page 	 DOWNLOAD …

ECU should use the dataset of the RAM page	 SET_CAL_PAGE ECU to RAM

Afterwards, the memory page is always switched over to RAM, so that parameters can be  
modified. But the user can also explicitly indicate which memory page should be active in the 
ECU. For example, the behavior of the RAM parameter set can be compared to that of the flash 
parameter set, or in an emergency it can be switched back to a proven parameter set in flash at 
lightning speed.
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3.4 Dynamic Flash Overlay Allocation

The concepts for calibration RAM described so far are unproblematic if sufficient RAM is avail-
able for all parameters. But what if the total number of parameters does not fit into the avail-
able RAM area? 

Here, it is advisable to overlay flash with RAM dynamically and do not overlay the affected flash 
memory with RAM until the actual write access to a parameter. This procedure can occur with a 
certain granularity and – depending on the implementation – it may be transparent to the cal-
ibration tool from the XCP perspective. If the XCP driver detects a write access to flash in the 
ECU which would lead to a change, a part of calibration RAM is used to copy over the relevant 
part of flash and activate the overlay mechanism for this part. This involves allocating the RAM, 
i.e. in a fixed layout and it is identified as utilized. However, the resources of the calibration 
RAM are limited. During the calibration process, RAM area that has already been allocated is 
no longer released, so the available calibration RAM dwindles with further requests. If the RAM 
resources are used up and a new allocation is required, the user is informed of the exhausted 
RAM resources. The user is offered the option of flashing or saving the changes made up to that 
point. This frees up the allocated RAM area again and the user can once again calibrate. The 
variant in which the ECU autonomously flashes the previously changed parameters is usually 
ruled out here for the reasons already cited in calibration concept “Parameter in Flash”.

In some cases, the download of a parameter set created offline might not be executable due 
to insufficient RAM resources. The only alternative is to flash it. The user can always cancel the 
changes from the tool and this releases the allocated RAM blocks again.

In this concept, page swapping between the RAM and flash pages is also possible without any 
limitations.
The parameters should be organized together in flash according to function, so that the avail-
able RAM blocks can be used as efficiently as possible. The software developer then specifies 
that the parameters, which belong together thematically, also lie in a contiguous memory area. 
After copying to RAM, the parameters needed for tuning the particular function are fully ready 
for use. 
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3.5 RAM Pointer Based Calibration Concept per AUTOSAR

This concept does not require the use of an AUTOSAR operating system; it can even be used in a 
different environment – e.g. without an operating system. The concept exhibits a key similar-
ity to the previous concept. The primary difference is that the substitution of flash for RAM is 
not implemented by hardware mechanisms, but by software mechanisms instead. The calibra-
tion parameters are always referenced by pointers from the ECU software. Flash or RAM con-
tents are accessed by changing this pointer. The flash parameters to be modified are copied to 
a defined block with available RAM. This method can be implemented fully transparently from 
the XCP perspective, just as in the previous method. As an alternative, the user of the calibra-
tion tool can explicitly select the parameters to be modified by preselecting the desired param-
eters. The advantage of this is that resource utilization and loading are visible to the user and 
the user is not surprised by a lack of memory in the midst of working.

3.5.1 Single Pointer Concept

The pointer table is located in RAM. When booting the ECU, all pointers indicate the parame-
ter values in flash. The location and parameters of the calibration RAM are indeed known, but 
it does not yet contain any parameter values after booting. Initially, the application works 
entirely from flash. 

FLASH RAMPointertable

Parameters

Figure 52: 
Initial situation  
after booting

When the user selects a parameter from the A2L file for the first time after booting and wishes 
to write access it, this triggers a copying operation within the ECU first. The XCP Slave deter-
mines that the address to which the access should be made is located in the flash area, and it 
copies the parameter value to the calibration RAM. A change is also made in the pointer table 
to ensure that the application no longer gets the parameter value from flash, but instead from 
the RAM area: 



813.5 RAM Pointer Based Calibration Concept per AUTOSAR

FLASH RAMPointertable

Parameters

Figure 53: 
Pointer change and 
copying to RAM

The application continues to get the parameter value via the pointer table. But since the pointer 
indicates the RAM address, the value is retrieved from there. As a result, the user can change 
the parameter value via XCP and observe the effects of the change in the measurement. The dis-
advantage of this method is that an entry in a pointer table must be available for each parame-
ter and in turn the method is associated with substantial additional RAM memory requirements 
for the pointer table. 

The next figure illustrates the problem. Three parameters of a PID controller (P, I and D) are con-
tained in an ECU’s flash area. The RAM addresses and parameter values in RAM are also already 
changed in the pointer table.

Figure 54: Pointer table for individual parameters

Flash

0x11

0x22

0x33

0x0000100A 

0x000012BC 

0x00007234 

Parameter

P

I

D

Pointertable

0x000A100A

0x000A100B

0x000A100C

RAM

0x44

0x55

0x66

0x000A100A

0x000A100B

0x000A100C

Addr. Addr. Addr.Content Content

Calibration concepts are very important, because RAM resources are scarce. Large RAM pointer 
tables would make a concept self-defeating. 

To avoid having to create a pointer for each individual parameter and having the method be 
used as such, the parameters can be combined into structures. This requires just one pointer 
per structure. When the user selects a parameter, not only is this parameter copied to RAM, but 
so is the entire associated structure. The granularity of the structures is of key importance here. 
With large structures only a few pointers are necessary. In turn, this means that with the deci-
sion for a specific parameter, a rather large associated structure is copied to the RAM area and 
this can cause the limits of calibration RAM space to be reached quickly. 
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Example: 
The calibration RAM should be 400 bytes in size. Four structures are defined in the software with 
the following parameters:

Structure A: 250 bytes
Structure B: 180 bytes
Structure C: 120 bytes
Structure D: 100 bytes

When the user selects a parameter from structure A, the 250 bytes are copied from flash to the 
calibration RAM, and the user has XCP access to all parameters located in structure A. If the cali-
bration task is limited to the parameters of this structure, the calibration RAM is fully sufficient. 
However, if the user selects another parameter located in a different structure, e.g. structure 
C, these 120 bytes must also be copied to the calibration RAM. Since the calibration RAM can  
handle 400 bytes, the user can access all parameters of structures A and C simultaneously.

If another selected parameter is not located in structure C, but rather in structure B, the 180 
bytes of structure B would have to be copied to RAM in addition to the 250 bytes of structure A. 
However, since the space in RAM is inadequate for this, the user indeed has access to the param-
eters of structure A, but not to the data of structure B, because the ECU cannot execute the copy 
command.

You can learn more about how this approach works in CANape. Start CANape with the “AUTOSAR 
Single Pointered Demo” project. You will find more information on its use in CANape on the 
“Introduction” page of the project.

You will find a source code example under the “Demos” category at the Vector Download Center. 
A code example on how to use the calibration concept is contained in the “XCP Sample Imple-
mentation” under <Installation DIR>\Samples\CAN\CAN MPC55xx\XCPDemo. 

3.5.2 Double Pointer Concept

A disadvantage of the single pointer concept is that memory page swapping is not easy to imple-
ment. The calibration tool could simply describe the pointer table completely for page swap-
ping, but this is not feasible in a short period of time without resulting in temporary inconsis-
tencies and side effects. A tool-transparent implementation would double the memory space 
requirement for the pointer table, because when swapping the memory page into flash, a copy 
of the previous pointer table would have to be created with RAM pointers.

For applications with large pointer tables, a transparent implementation or a fully consistent 
swapping, there is the option of extending the method to a double pointer concept. To explain 
how this is done, we return once again to the initial RAM setting. 
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Figure 55 represents the pointer table. It lies in RAM. As already mentioned, this table must be 
copied from flash into RAM. As a result, this table lies in flash memory. If another pointer is now 
used (a table pointer), which points to either the pointer table in RAM or in flash, one arrives 
at a double pointer solution. 

FLASH RAM
RAM

Pointertable

Tablepointer

FLASH
Pointertable

Figure 55: 
Double pointer concept

The parameter values are initially accessed via the table pointer. If the table pointer indicates 
the pointer table in RAM, the application essentially accesses the actual parameters via the con-
tents of the RAM pointer table. The low access speed and the creation of more program code are 
disadvantages of this solution.

3.6 Flash Pointer Based Calibration Concept 

This method was patented several years ago by the company ZF Friedrichshafen under the name 
“InCircuit2” and bears a strong resemblance to the pointer-based concept of AUTOSAR. Here 
too, the application in the ECU accesses parameter data using a pointer table. However, this 
pointer table is not located in RAM, but in flash instead. Changes to the pointer table can there-
fore only be made by flash programming. A tool-transparent implementation is not possible. 
The advantage lies in the RAM memory that is saved since it no longer contains the pointer 
table.

You can find out how this approach works in CANape. Start CANape with the “InCircuit2” project. 
You will find more information on its use in CANape on the “Introduction” page of the project.
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When ECU calibrators think about the use of XCP, they are usually fixated on use of the proto-
col in the ECU.

Slave
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Hardware*

* Debug Interfaces, Memory Emulator, ...

HIL/SIL Systems

EXE/DLL
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ECU Hardware

Simulink
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Figure 56:  
Application areas and 
application cases

In a survey of development processes, one encounters many different solution approaches for 
the development of electronics and software. HIL (Hardware in the Loop), SIL (Software in the 
Loop) and Rapid Prototyping are keywords here and they describe different scenarios. They 
always have a “plant” and a “controller” in common. 

Figure 57: Plants and controllers
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In the context of automotive development, the controller is represented by the ECU and the 
plant is the physical system to be controlled such as the transmission, engine, side mirrors, etc.

The rough subdivision is made between different development approaches according to whether 
the controller or the plant runs in real or simulated mode. Some combinations will be described 
in greater detail. 
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4.1 MIL: Model in the Loop 

Plant ModelController Model

Simulink

Figure 58: 
Model in the Loop  
in Simulink

In this development environment, both the controller and the plant are simulated as a model. In 
the example shown, both models run in Simulink as the runtime environment. The capabilities 
of the Simulink runtime environment are available to you for analyzing the behavior. 

To realize the convenience of a measurement and calibration tool like CANape in an early devel-
opment phase, an XCP Slave can be integrated in the controller model. In an authoring step, 
the Slave generates the A2L that matches the model and the user already has the full range of 
convenient operating features with visualization of process flows in graphic windows, access to 
characteristic curves and maps and much more.

Plant ModelController Model

Simulink

Simulink
XCP Server

CANape

A2L

Figure 59: 
CANape as  
measurement and  
calibration tool with 
Simulink models

Neither a code generation step nor instrumentation of the model is necessary for this. Time 
stamps are also included with transmissions over XCP. CANape completely adapts to the time 
behavior of the Simulink runtime environment here. Whether the model is running faster or 
slower than in real time is of no consequence. For example, if the functional developer uses the 
Simulink Debugger in the model to step through the model, CANape still takes the time trans-
mitted via XCP as the reference time. 



88 4 Application Areas of XCP

4.2 SIL: Software in the Loop 

Plant ModelController Model

Controller Model
Windows DLL

Simulink

Code generation

Figure 60: 
Software in the  
Loop with Simulink 
environment

In this development step, code is generated from the model of the controller, which is then 
used in a PC-based runtime environment. Naturally, the controller may also have been devel-
oped without any sort of model-based approach. The plant continues to be simulated. XCP can 
be used to measure and calibrate the controller. If the controller originates from a Simulink 
model, a code generation step (Simulink Coder with the target “CANape”) is used to generate 
the C code for a DLL and the associated A2L. If the Controller development is conducted based 
on manually written code, it is embedded in a C++ project that is delivered with CANape.

After compiling and linking, the DLL is used in the CANape context. With the support of the XCP 
connection, the algorithms in the DLL can be measured and calibrated exactly as if the applica-
tion were already integrated in an ECU.

Plant ModelController Model

Controller Model
Windows DLL

Simulink

Code generation

CANapeA2L

Figure 61:  
CANape as SIL  
development platform



894.3 HIL: Hardware in the Loop

4.3 HIL: Hardware in the Loop 

Many different kinds of HIL systems are available. They range from very simple, cost-effective 
systems all the way to very large and expensive expansion stages. The following figure shows 
the rough concept:

Plant Model

HIL Platform

ECU

I/O

Controller Model

Figure 62: 
HIL solution

The controller algorithm runs in a microcontroller platform (e.g. the ECU), while the plant con-
tinues to be simulated. Depending on the parameters and the complexity of the plant and the 
necessary I/O, requirements of the HIL platform and the associated costs can rise steeply. Since 
the ECU runs in real time, the model of the plant must also be computed in real time.

To now introduce XCP for optimization appears trivial, because another ECU is being added. The 
whole system looks like this:

CANape

A2L

Plant Model

HIL Platform

ECU

I/O

Controller Model

Figure 63:
HIL with CANape  
as measurement  
and calibration tool

From CANape, the user has access to the algorithms in the ECU over XCP. 
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The Vector Tool CANoe is also used by many customers as a HIL system. With CANoe, a HIL sys-
tem might look like this:

CANoe RT User PC
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Digital I/O Analog I/O
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A2L

ECU
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Plant Model

Figure 64: 
CANoe as HIL system

The ability to access XCP data directly from CANoe for testing purposes results in the following 
variant as well:

CANoe RT User PC
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CAN

LIN

MOST

FlexRay

A2L

ECU

XCPPlant Model

Figure 65: 
CANoe as HIL  
system with XCP 
access to the ECU

Here the model of the plant runs on the CANoe real-time server. At the same time, XCP access 
to the ECU is also realized from CANoe. This gives a tool simultaneous access to the plant and 
the controller. 
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To round out the picture, yet another HIL solution option should be mentioned. The plant might 
also run as a DLL in CANape. This gives the user full access to the plant and to the controller 
over XCP. 

Figure 66: CANape as HIL solution
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4.4 RCP: Rapid Control Prototyping 

In this development phase, the control algorithm runs on real-time hardware instead of an ECU. 
This situation often occurs when the necessary ECU hardware is not yet available. Several plat-
forms come in question as suitable hardware: from simple evaluation boards all the way to spe-
cial automotive-level hardware solutions, depending on which additional requirements need to 
be fulfilled. Here too, integration with XCP helps in setting up an OEM-independent tool chain.

Figure 67: RCP solution
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The concepts “Rapid” and “Prototyping” describe the task very well. The aim is to develop a 
functional prototype as quickly as possible, to use and test it in the runtime environment. This 
just requires simple work steps throughout the entire process.
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In the literature, the RCP approach is frequently subdivided into two areas: fullpassing and 
bypassing.

As depicted in Figure 67, the entire controller runs on separate real-time hardware. This method 
is known as fullpassing, because the entire controller runs on the controller hardware. It must 
have the necessary I/O to be able to interface with the plant. Very often, it is only possible to 
fulfill technical requirements for the I/O with suitable power electronics. 

It is not only the I/O that represents a challenge; often functional elements of the ECU software 
(e.g. network management) are needed to enable functionality in a more complex network. 
However, if a complete ECU is used for Rapid Control Prototyping instead of a general control-
ler platform, the complexity of the flash process, the size of the overall software, etc. all work 
against the requirement for “Rapid” development. 

In summary: the use of an entire ECU as the runtime environment for the controller offers the 
advantage that the necessary hardware and software infrastructure for the plant exists. The dis-
advantage lies in the high degree of complexity.
The concept of bypassing was developed to exploit the advantages of the ECU infrastructure 
without being burdened by the disadvantages of high complexity. 

4.5 Bypassing 

In Figure 68, the ECU is connected to the plant. The necessary I/O and software components are 
available in the ECU. In the bypassing hardware, an algorithm A1 runs, which occurs in Version 
A of the ECU. A1 is a new variant of the algorithm and should now be tried out on the real plant.
 

Figure 68: Basic principle of bypassing
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The bypassing hardware (a VN8900 device in the figure) and the ECU are interconnected over 
XCP. One goal here is to get the data needed for algorithm A1 from the ECU by DAQ; another 
goal is to stimulate the results of A1 back into the ECU. The following figure illustrates the sche-
matic flow:

2.

3.

Bypassing Hardware

ECU

Algorithm A1

Algorithm A

1. XCP 4.

Bypassing
Coordinator

Figure 69: 
Bypassing flow

Depicted in the ECU is a blue function block in which the algorithm A runs. To ensure that A1 can 
now be used, the data enters algorithm A as an input variable and it is measured from the ECU 
by DAQ. In step 1, the bypassing coordinator accepts the data and in step 2 it passes the data to 
algorithm A1. A1 is computed by the bypassing hardware and in step 3 the result is passed back 
to the bypassing coordinator; in step 4, it is transmitted to the ECU by STIM. The data is written 
to the “location” at which the next function block in the Slave expects its input variables. This 
makes it possible to use the value computed by algorithm A1 and not from A in the ECU’s over-
all control process. This method permits using a combination of the rapid substitution of algo-
rithms on the bypassing hardware that incorporates the I/O and the ECU’s basic software. 
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Of course, the performance limits of an XCP-on-CAN driver also affect bypassing. If short bypass-
ing times are needed, access to the ECU by DAQ and STIM may also be performed via the con-
troller’s debugging or trace interfaces. The Vector VX1000 measurement and calibration hard-
ware converts the data into an XCP-on-Ethernet data stream from the controller interface. In 
this process, up to one megabyte of data can be transported into the ECU.
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Figure 70: Bypassing with real-time bypassing hardware and fast ECU access
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4.6 Shortening Iteration Cycles with Virtual ECUs 

Stimulation with data is necessary to optimize the algorithm in the ECU with the help of XCP. 
This can be done in the ECU in the framework of test drives. But there is yet another solution 
that is available with XCP, in which the algorithm does not run on an ECU; rather it runs on the 
PC in the form of executable code or as a model in Simulink in the form of a “virtual ECU.” This 
virtual ECU does not need to run in real time, because in this case no connection to a real system 
exists. It can run significantly faster – depending on the PC’s computing power. 

The algorithm is stimulated by a previously logged measurement file, which contains all signals 
that are needed as input signals for the algorithm. The connection to CANape is set up over XCP. 
The user can perform the parameterization and measurement configuration. Afterwards, exe-
cution is started. Here the data from the test drive is fed into the algorithm as stimulation and 
the desired measurement parameters from the application are simultaneously measured out and 
saved to a measurement file.  
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Figure 71:  
Short calibration 
cycles with  
virtual ECUs
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After the calculation has been completed, a new measurement file is available to the user for 
analysis of ECU behavior. The length of time of the new measurement file precisely matches the 
length of the input measurement file. If the duration of a test drive is one hour, the algorithm 
on the PC might calculate the entire test drive in just a few seconds. Then a measurement result 
exists, which corresponds to a test of one hour duration. Based on the data analysis, the user 
makes decisions about parameterization and the iteration cycle is repeated. 
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Figure 72: 
Process flow  
with virtual ECUs

To shorten the iteration cycles, the algorithm is always stimulated with the same data. That 
makes the results with different parameters much more comparable, because the results are 
only influenced by the parameters that differ.

This process can of course be automated. The integrated script language of CANape performs an 
analysis of the measurement results, from which parameter calibration settings are derived and 
automatically executed. It is also possible to have the process controlled by an external optimi-
zation tool such as MATLAB over the CANape automation interface.  
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To make it possible for an ECU to communicate over XCP, it is necessary to integrate an XCP driver 
in the ECU’s application. The example described below is of the XCP driver which you can down-
load free of charge at the Download Center of the Vector website (www.vector.com/xcp-driver). 
This packet also contains some sample implementations for various transport layers and tar-
get platforms. The driver consists of the protocol-Layer with the basic functionality needed for  
measurement and calibration. It does not include features such as Cold Start Measurement, 
Stimulation or flashing. You can purchase a full implementation as a product that is integrated 
in the Vector CANbedded or AUTOSAR environment.

The XCP protocol layer is placed over the XCP transport layer, which in turn is based on the actual 
bus communication. The implementation of the XCP protocol layer only consists of a single C 
file and a few H files (xcpBasix.c, xcpBasic.h, xcp_def.h and xcp_cfg.h). The examples include 
implementations for various transport layers, e.g. Ethernet and RS232. In the case of CAN, the 
transport layer is normally very simple and the various XCP message types are mapped directly 
to CAN messages. There are then separate fixed identifiers for the Tx and Rx directions.

The software interface between the transport and protocol layers is very simple. It contains just 
a few functions:
>	� When the Slave receives an XCP message over the bus, it first arrives in the communication 

driver, which routes the message to the XCP transport layer. The transport layer informs the 
protocol layer about the message with the function call XcpCommand().

>	� If the XCP protocol layer wishes to send a message (e.g. a response to an XCP command from 
the Master or a DAQ message), the message is routed to the transport layer by a call of the 
ApplXcpSend() function.

>	� The transport layer informs the protocol layer that the message was successfully sent by the 
function call XcpSendCallBack().



1015 Example of an XCP Implementation

Application

XCP Protocol Layer 

XCP Transport Layer

Physical Layer

Bus

Xc
pE

ve
nt

Xc
pI

ni
t

Xc
pB

ac
kg

ro
un

d

Ap
pl

Xc
pG

et
Po

in
te

r

Xc
pC

om
m

an
d

Ap
pl

Xc
pS

en
d

Xc
pS

en
dC

al
lb

ac
k

Ap
pl

ic
at

io
n 

- X
CP

 T
ra

ns
po

rt
La

ye
r I

nt
er

fa
ce

 

Figure 73:
Incorporating 
the XCP Slave  
in the ECU code

The interface between the application and the protocol layer can only be implemented via four 
functions:
>	� The application activates the XCP driver with the help of XcpInit(). This call is made once in 

the starting process.
>	� With XcpEvent(), the application informs the XCP driver that a certain event has occurred 

(e.g. “End of a computational cycle reached”).
>	� The call XcpBackground() lets the XCP driver execute certain activities in background (e.g. 

calculation of a checksum).
>	� Since the addresses in A2L files are always defined as 40-bit values (32-bit address, 8-bit 

address extension), the XCP driver uses the function ApplXcpGetPointer() to obtain a pointer 
from a A2L-conformant address.

These interfaces are sufficient to integrate basic functionalities for measurement and calibra-
tion. Other interfaces are only needed for extended functions such as page swapping, identifi-
cation or seed & key. They are described in detail in documentation for the driver.
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5.1 Description of Functions 

void XcpInit (void)

Task:		
Initialize the XCP driver

Description:		
The application activates the XCP driver with XcpInit(). This command must be executed exactly 
once before any sort of XCP driver function may be called.

void XcpEvent (BYTE event)

Task:
The application informs the XCP driver about which event occurred. A unique event number is 
assigned to each event here.  

Description:
In setting up the measurement configuration in the measurement and calibration tool, the user 
selects which measured values should be synchronously acquired with which events. The infor-
mation on measured values and events originates from the A2L. The desired measurement con-
figuration is communicated to the XCP driver in the form of DAQ lists. 

Example of an event definition in an engine controller:
XcpEvent (1);	 // Event 1 stands for the 10-ms task
XcpEvent (2);	 // Event 2 stands for the 100-ms task
XcpEvent (5);	 // Event 5 stands for the 1-ms task
XcpEvent (8);	 // Event 8 is used for ignition angle synchronous measurements

BYTE XcpBackground (void)

Task:
Execute background activities of the XCP driver. 

Description:
This function should be called periodically in a background or idle task. It is used by the XCP 
driver, for example, to compute the checksum, because the computation of a longer checksum 
in XcpCommand() could take an unacceptably long time. With each call of XcpBackground(), a 
partial checksum of 256 bytes is computed. The duration of a checksum computation therefore 
depends on the call frequency of XcpBackground(). There are no other requirements for the call 
frequency or periodicity. The return value 1 indicates that a checksum computation is currently 
running. 
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void XcpCommand (DWORD* pCommand)

Task:
Interpret an XCP command.

Description:
This function must be called each time the transport layer receives a XCP frame. The parameter 
is a pointer to the frame. 

void ApplXcpSend (BYTE len, BYTE *msg)

Task:
Transfer a frame to be sent to the transport layer.

Description:
With this call, the protocol layer sends a message to the transport layer for transmission to the 
Master. The call XcpSendCallBack implements a handshake method between the protocol and 
transport layers. 

BYTE XcpSendCallBack (void)

Task:
The protocol layer uses this callback to inform the transport layer that the last message that was 
transferred to ApplXcpSend() was successfully transmitted.

Description:
The protocol layer does not call an ApplXcpSend() command until XcpSendCallBack() indicates 
that the prior message was successfully transmitted. XcpSendCallBack() returns the value 0 
(FALSE) if the XCP driver is in idle. If there are more frames to be sent, ApplXcpSend() is called 
directly from XcpSendCallBack().  

BYTE *ApplXcpGetPointer (BYTE addr_ext, DWORD addr)

Task:
Convert an A2L-conformant address to a pointer.

Description:
The function maps the 40-bit A2L-conformant addressing (32-bit address + 8-bit address exten-
sion) that is sent by the XCP Master to a valid pointer. The address extension can be used, for 
example, to distinguish different address areas or memory types.
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5.2 Parameterization of the Driver 

In many respects, the XCP driver is scalable and parameterizable to properly handle the wide 
variety of functional content, transport protocols and target platforms. All settings are made in 
the parameter file xcp_cfg.h. In the simplest case, they appear as follows:

/* Define protocol parameters */
#define kXcpMaxCTO     8      /* Maximum CTO Message Length */
#define kXcpMaxDTO     8      /* Maximum DTO Message Length */
#define C_CPUTYPE_BIGENDIAN   /* byte order Motorola */

/* Enable memory checksum */
#define XCP_ENABLE_CHECKSUM
#define kXcpChecksumMethod XCP_CHECKSUM_TYPE_ADD14

/* Enable calibration */
#define XCP_ENABLE_CALIBRATION
#define XCP_ENABLE_SHORT_UPLOAD

/* Enable data acquisition */
#define XCP_ENABLE_DAQ                   
#define kXcpDaqMemSize (512) /* Memory space reserved for DAQ */
#define XCP_ENABLE_SEND_QUEUE

For a CAN transport layer, the appropriate CTO and DTO parameters of eight bytes are set. The 
driver must know whether it is running on a platform with Motorola or Intel byte order, in this 
case a Motorola-CPU (Big Endian). The remaining parameters activate the functionalities: mea-
surement, calibration and checksum computation. The algorithm for checksum computation is 
configured (here summing of all bytes into a DWORD) and the parameter of the available mem-
ory is indicated for the measurement (here 512 bytes). The memory is primarily needed to store 
the DAQ lists and to buffer the data during the measurement. The parameter therefore deter-
mines the maximum possible number of measurement signals. In the driver documentation you 
will find more detailed information on estimating the necessary parameters.
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Appendix – XCP Solutions at Vector 

Vector made a significant effort in giving shape to the XCP standard. Its extensive know-how 
and vast experience were utilized to provide comprehensive XCP support:

Tools
>	� The primary use area of CANape is in optimal parameterization (calibration) of electronic 

control units (ECUs). During the system’s runtime, you calibrate parameter values and simul-
taneously acquire measured signals. The physical interface between CANape and the ECU is 
over XCP (for all standardized transport protocols) or CCP. 

>	� Complete tool chain for generating and managing the necessary A2L description files (ASAP2 
Tool-Set and CANape with the ASAP2 Editor that is also available as a stand-alone tool).

>	� You use CANoe.XCP to access internal ECU values for testing and analysis tasks.

ECU interfaces
The VX1000 measurement and calibration hardware offers the option of equipping ECUs with 
an XCP-on-Ethernet interface. This involves connecting a Plug on Device (POD) to the ECU for 
direct access to the controller, e.g. over DAP, JTAG, Nexus, etc. The POD transmits the data to a 
base module, which operates as an XCP Slave and provides the data to the XCP Master on the PC 
over XCP on Ethernet. This makes it unnecessary to have an XCP Slave in the ECU. The user ben-
efits from a high measurement data throughput rate of up to 30 Mbyte/sec and short measure-
ment intervals of less than 15 µs.

Embedded Software
Communication modules with separate transport layers for CAN, FlexRay and Ethernet:
>	� XCP Basic – free download at www.vector.com/xcp-driver, only contains basic XCP functions. 

Configuration of the XCP protocol and modification of the transport layer are performed man-
ually in the source code. You need to integrate XCP Basic in your project yourself.

>	� XCP Professional – contains useful extensions to the ASAM specification and enables tool-
based configuration. Available for Vector CANbedded basic software.

>	� MICROSAR XCP – contains the functional features of XCP Professional and is based on AUTO-
SAR specifications. Available for Vector MICROSAR basic software.

Services
>	 Consultation for using XCP in your projects 
>	 Integration of XCP in your ECU

Training
>	� You can learn about the underlying mechanisms and models of the protocol in the “XCP Funda-

mentals Seminar”.
>	� In the “CANape with XCP on FlexRay Workshop” you learn about FlexRay fundamentals 

and the special aspects of XCP on FlexRay are explained, in particular dynamic bandwidth 
management.
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Special XCP support by CANape
CANape was the first MCD tool to support the XCP 1.0 specification and was also the first XCP on 
FlexRay Master on the market.

A special technical feature of XCP on FlexRay is dynamic bandwidth management. Here, CANape 
identifies the available bandwidth provided for XCP in the FlexRay ClusterP and it allocates 
this bandwidth to the momentary application data traffic dynamically and very efficiently. The 
available bandwidth is thereby optimally used for XCP communication. 

Moreover, CANape has a DLL interface. It enables support of XCP on any desired (user-defined) 
transport layer. This lets you integrate any desired test instrumentation or proprietary pro-
tocols in CANape. A code generator supports you in creating the XCP-specific share of such a 
driver.
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