XCP - The Standard Protocol
for ECU Development

Fundamentals and Application Areas

Andreas Patzer | Rainer Zaiser

vector’

Andreas Patzer | Rainer Zaiser
XCP - The Standard Protocol for ECU Development

_t~|>
Date April 2014 | Reproduction only with expressed permission from
Vector Informatik GmbH, Ingersheimer Str. 24, 70499 Stuttgart, Germany
© 2014 by Vector Informatik GmbH. All rights reserved. This book is only intended for personal use, but not for technical or
commercial use. It may not be used as a basis for contracts of any kind. Allinformation in this book was compiled with the
greatest possible care, but Vector Informatik does not assume any guarantee or warranty whatsoever for the correctness of the

information it contains. The liability of Vector Informatik is excluded, except for malicious intent or gross negligence, to the extent
that laws do not make it legally liable.

Information contained in this book may be protected by copyright and / or patent rights. Product names of software, hardware and
other product names that are used in this book may be registered brands or otherwise protected by branding laws, regardless of
whether or not they are identified as registered brands.

XCP -
The Standard Protocol
for ECU Development

Fundamentals and Application Areas

Andreas Patzer, Rainer Zaiser
Vector Informatik GmbH

Table of Contents

Introduction

1 Fundamentals of the XCP Protocol

1.1 XCP Protocol Layer

1.2

1.3

1.1.1 Identification Field
1.1.2 Time Stamp
1.1.3 Data Field

Exchange of CTOs

1.2.1 XCP Command Structure

1.2.2 CMD

1.2.3 RES

1.2.4 ERR

1.2.5 EV

1.2.6 SERV

1.2.7 Calibrating Parameters in the Slave

Exchanging DTOs - Synchronous Data Exchange
1.3.1 Measurement Methods: Polling versus DAQ
1.3.2 DAQ Measurement Method

1.3.3 STIM Calibration Method

1.3.4 XCP Packet Addressing for DAQ and STIM
1.3.5 Bypassing = DAQ + STIM

1.4 XCP Transport Layers

1.4.1 CAN
1.4.2 CAN FD
1.4.3 FlexRay
1.4.4 Ethernet
1.4.5 SxI
1.4.6 USB
1.4.7 LIN

1.5 XCP Services

1.5.1 Memory Page Swapping

1.5.2 Saving Memory Pages - Data Page Freezing
1.5.3 Flash Programming

1.5.4 Automatic Detection of the Slave

1.5.5 Block Transfer Mode for Upload, Download and Flashing
1.5.6 Cold Start Measurement (start of measurement during power-on)

1.5.7 Security Mechanisms with XCP

13

N
N[

no
N

DERIDCA LY
O | |V |

Njw |

NI
ININS)

N
¢

45

N
(o]

o wul N|lw|w]|w N | o N [P N | -
- (R RE] [N o (v, = |©

50

oo,
oW

(SN ES R RS N RS
00 |0 | |y

(o) 0 ko))
w |

2 ECU Description File A2L

2.1 Setting Up an A2L File for an XCP Slave
2.2 Manually Creating an A2L File
2.3 A2L Contents versus ECU Implementation

3 Calibration Concepts

3.1 Parameters in Flash

3.2 Parameters in RAM

3.3 Flash Overlay

3.4 Dynamic Flash Overlay Allocation

3.5 RAM Pointer Based Calibration Concept per AUTOSAR
3.5.1 Single Pointer Concept
3.5.2 Double Pointer Concept

3.6 Flash Pointer Based Calibration Concept

4 Application Areas of XCP

4.1 MIL: Model in the Loop

4.2 SIL: Software in the Loop

4.3 HIL: Hardware in the Loop

4.4 RCP: Rapid Control Prototyping

4.5 Bypassing

4.6 Shortening Iteration Cycles with Virtual ECUs

5 Example of an XCP Implementation

5.1 Description of Functions
5.2 Parameterization of the Driver

The Authors

Table of Abbreviations and Acronyms
Literature

Web Addresses

Table of Figures

Appendix - XCP Solutions at Vector
Index

(o)}
(Sa}

~ ~
w

N
0o | &

[o.] 00 | 0o
(Sal w N

o | Co
|

~ ~
o £ o

=
o
N

O |©
N =

95

104

Introduction

Introduction

In optimal parameterization (calibration) of electronic ECUs, you calibrate parameter values
during the system runtime and simultaneously acquire measured signals. The physical connec-
tion between the development tool and the ECU is via a measurement and calibration protocol.
XCP has become established as a standard here.

First, the fundamentals and mechanisms of XCP will be explained briefly and then the applica-
tion areas and added value for ECU calibration will be discussed.

First, some facts about XCP:

> XCP signifies “Universal Measurement and Calibration Protocol”. The “X” stands for the vari-
able and interchangeable transport layer.

> It was standardized by an ASAM working committee (Association for Standardisation of Auto-
mation and Measuring Systems). ASAM is an organization of automotive OEMs, suppliers and
tool producers.

> XCP is the protocol that succeeds CCP (CAN Calibration Protocol).

> The conceptual idea of the CAN Calibration Protocol was to permit read and write access to
internal ECU data over CAN. XCP was developed to implement this capability via different
transmission media. Then one speaks of XCP on CAN, XCP on FlexRay or XCP on Ethernet.

> The primary applications of XCP are measurement and calibration of internal ECU parameters.
Here, the protocol offers the ability to acquire measured values “event synchronous” to pro-
cesses in ECUs. This ensures consistency of the data between one another.

To visualize the underlying idea, we initially view the ECU and the software running in it as
a black box. In a black box, only the inputs into the ECU (e.g. CAN messages and sensor val-
ues) and the output from the ECU (e.g. CAN messages and actuator drives) are acquired. Details
about the internal processing of algorithms are not immediately apparent and can only be
determined from an analysis of the input and output data.

Now imagine that you had a look into the behavior of your ECU with every computation cycle. At
any time, you could acquire detailed information on how the algorithm is running. You would
no longer have a black box, but a white box instead with a full view of internal processes. That
is precisely what you get with XCP!

What contribution can XCP make for the overall development process? To check the functional-
ity of the attained development status, the developer can execute the code repeatedly. In this
way, the developer finds out how the algorithm behaves and what might be optimized. It does
not matter here whether a compiled code runs on a specific hardware or whether it is developed
in a model-based way and the application runs in the form of a model.

A central focus is on the evaluation of the algorithm process. For example, if the algorithm is
running as a model in a development environment, such as Simulink from The MathWorks, it
is helpful to developers if they can also acquire intermediate results to their applications, in
order to obtain findings about other changes. In the final analysis, this method enables noth-
ing other than read access to parameters so that they can be visualized and analyzed - and all
of this at model runtime or retrospectively after a time-limited test run has been completed. A
write access is needed if parameterizations are changed, e.g. if the proportional component of a

PID controller is modified to adapt the algorithm behavior to the system under control. Regard-
less of where your application runs - focal points are always the detailed analysis of algorithm
processes and optimization by changes to the parameterization.

This generalization can be made: The algorithms may exist in any type of executable form (code
or model description). Different systems may be used as the runtime environment (Simulink,
as DLL on the PC, on a rapid prototyping platform, in the ECU etc.). Process flows are analyzed
by read access to data and acquisition of its time-based flow. Parameter sets are modified iter-
atively to optimize algorithms. To simplify the representation, the acquisition of data can be
externalized to an external PC-based tool, although it is understood here that runtime environ-
ments themselves can even offer analysis capabilities.

Runtime Environment

PC Tool < > Fundamental
communication
with a runtime
environment

on [Meigen | rigure 1
Communication

The type of runtime environment and the form of communication generally differ from one
another considerably. The reason is that the runtime environments are developed by different
producers and are based on different solution approaches. Different types of protocols, con-
figurations, measurement data formats, etc. make it a futile effort to try to exchange parame-
ter sets and results in all development steps. In the end, however, all of these solutions can be
reduced to read and write access at runtime. And there is a standard for this: XCP.

XCP is an ASAM standard whose Version 1.0 was released in 2003. The acronym ASAM stands
for “Association for Standardisation of Automation and Measuring Systems.” Suppliers, vehicle
OEMs and tool manufacturers are all represented in the ASAM working group. The purpose of the
XCP working group is to define a generalized measurement and calibration protocol that can be
used independent of the specific transport medium. Experience gained from working with CCP
(CAN Calibration Protocol) flowed into the development as well.

XCP was defined based on the ASAM interfaces model. The following figure shows a measure-
ment and calibration tool’s interfaces to the XCP Slave, to the description file and the connec-
tion to a higher-level automation system.

Introduction

Upper Level
Automation System

IASAM MCD 3MC

Measurement and ASAM
Calibration System MCD 2MC w
XCP Driver

ECU Description File

ASAM MCD 1MC
ECU Figure 2:
The Interface Model
of ASAM

Interface 1: “ASAM MCD-1 MC” between the ECU and the measurement and calibration system
This interface describes the physical and the protocol-specific parts. Strictly speaking, a dis-
tinction was made between interfaces ASAP1a and ASAP1b here. The ASAP1b interface, how-
ever, never received general acceptance and for all practical purposes it has no relevance today.
The XCP protocol is so flexible that it can practically assume the role of a general manufacturer-
independentinterface. For example, today all measurement and calibration hardware manufac-
turers offer systems (xETK, VX1000, etc.) which can be connected via the XCP on Ethernet stan-
dard. An ASAP1b interface - as it was still described for CCP - is no longer necessary.

Interface 2: “ASAM MCD-2 MC" A2L ECU description file

As already mentioned, XCP works in an address-oriented way. Read or write accesses to objects
are always based on an address entry. Ultimately, however, this would mean that the user would
have to search for his ECU objects in the Master based on the address. That would be extremely
inconvenient. To let users work with symbolic object names, for example, a file is needed that
describes the relationship between the object name and the object address. The next chapter is
devoted to this A2L description file.

Interface 3: “ASAM M(D-3 MC” automation interface

This interface is used to connect another system to the measurement and calibration tool, e.g.
for test bench automation. The interface is not further explained in this document, because it is
irrelevant to understanding XCP.

Introduction

XCP is based on the Master-Slave principle. The ECU is the Slave and the measurement and cali-
bration tool is the Master. A Slave may only communicate with one Master at any given time; on
the other hand, the Master can simultaneous communicate with many Slaves.

xcpP

Master
Bus
xcp| [xep| [xep| [xcp| i
An XCP Master can
Slavre) Slavre) Slavre'> Slavre) i:,mml;:tua.:i::: lxith

multiple Slaves

To be able to access data and configurations over the entire development process, XCP must
be used in every runtime environment. Fewer tools would need to be purchased, operated and
maintained. This would also eliminate the need for manual copying of configurations from one
tool to another, a process that is susceptible to errors. This would simplify iterative loops, in
which results from later work steps are transferred back to prior work steps.

But let us turn our attention away from what might be feasible to what is possible today: every-
thing! XCP solutions are already used in a wide variety of work environments. It is the intention
of this book to describe the main properties of the measurement and calibration protocol and
introduce its use in the various runtime environments. What you will not find in this book: nei-
ther the entire XCP specification in detailed form, nor precise instructions for integrating XCP
drivers in a specific runtime environment. It explains the relationships, but not the individual
protocol and implementation details. Internet links in the appendix refer to openly available
XCP driver source code and sample implementations, which let you understand and see how the
implementation is made.

Screenshots of the PC tool used in this book were prepared using the CANape measurement and
calibration tool from Vector. Other process flows are also explained based on CANape, including
how to create an A2L file and even more. With a cost-free demo version, which is available to you
in the Download Center of the Vector website at www.vector.com/canape_demo, you can see for
yourself.

Introduction

1 Fundamentals of the XCP Protocol

1 Fundamentals of the XCP Protocol

1 Fundamentals of the XCP Protocol

Interface 1 of the ASAM interfaces model describes sending and receiving commands and data
between the Slave and the Master. To achieve independence from a specific physical transport
layer, XCP was subdivided into a protocol layer and a transport layer.

XCpP

CAN Ethernet FlexRay SxI USB

Figure 4: Subdivision of the XCP protocol into protocol layer and transport layer

Depending on the transport layer, one refers to XCP on CAN, XCP on Ethernet, etc. The extend-
ibility to new transport layers was proven as early as 2005 when XCP on FlexRay made its debut.
The current version of the XCP protocol is Version 1.1, which was approved in 2008.

Adherence to the following principles was given high priority in designing the protocol:
> Minimal resource usage in the ECU

> Efficient communication

> Simple Slave implementation

> Plug-and-play configuration with just a small number of parameters

> Scalability

1 Fundamentals of the XCP Protocol

A key functionality of XCP is that it enables read and write access to the memory of the Slave.

Read access lets users measure the time response of an internal ECU parameter. ECUs are sys-
tems with discrete time behavior, whose parameters only change at specific time intervals: only
when the processor recalculates the value and updates it in RAM. One of the great strengths of
XCP lies in acquiring measured values from RAM which change synchronously to process flows
or events in the ECU. This lets users evaluate direct relationships between time-based process
flows in the ECU and the changing values. These are referred to as event-synchronous measure-
ments. The related mechanisms will be explained later in detail.

Write access lets the user optimize parameters of algorithms in the Slave. The accesses are
address-oriented, i.e. the communication between Master and Slave references addresses in
memory. So, the measurement of a parameter is essentially implemented as a request of the
Master to the Slave: “Give me the value of memory location 0x1234"”. Calibration of a parameter
- the write access - to the Slave means: “Set the value at address 0x9876 to 5”.

An XCP Slave does not absolutely need to be used in ECUs. It may be implemented in differ-
ent environments: from a model-based development environment to hardware-in-the-loop and
software-in-the-loop environments to hardware interfaces that are used to access ECU memory
via debug interfaces such as JTAG, NEXUS and DAP.

Simulink

xcp

Slave

Prototype or
xcp ECU Hardware

Slave
Measurement/
HCP|__xcp XCP | catibration
Master Slave | Hardware*
xcp EXE/DLL
Slave
Figure 5:
xCcp HIL/SILSystems ycp Slaves can be
Slave used in many

different runtime
environments

* Debug Interfaces, Memory Emulator, ...

1 Fundamentals of the XCP Protocol

How can algorithms be optimized using read and write access to the ECU and what benefits
does this offer? To be able to modify individual parameters at runtime in the ECU, there must be
access to them. Not every type of memory permits this process. It is only possible to perform a
read and write access to memory addresses in RAM (intentionally excluding the EEPROM here).
The following is a brief summary of the differences between individual memory technologies:
knowledge of them is very important to understanding over the further course of this book.

Memory Fundamentals

Today, flash memories are usually integrated in the microcontroller chips for ECUs and are used
for long-term storage of code and data, even without power supply. The special aspect of a flash
memory is that read and write access to individual bytes is indeed possible at any time, but writ-
ing of new contents can only be done blockwise, usually in rather large blocks.

Flash memories have a limited life, which is specified in terms of a maximum number of erasure
cycles (depending on the specific technology the maximum may be up to one million cycles).
This is also the maximum number of write cycles, because the memory must always be erased as
a block before it can be written again. The reason for this lies in the memory structure: electrons
are “pumped” via tunnel diodes. A bit is stored at a memory location as follows: electrons must
be transported into the memory location over an electrically insulating layer. Once the elec-
trons are then behind the insulating layer, they form an electric field with their charge, which is
interpreted as a 1 when reading the memory location. If there are no electrons behind the layer,
the cell information is interpreted as a 0. A 1 can indeed be set in this way, but not a 0. Setting
to 0 (= erasing the 1) is performed in a separate erasing routine, in which electrons existing
behind the insulating layer are discharged. However, for architectural reasons, such an erasing
routine does not just act on single bytes, rather only on the group or block level. Depending on
the architecture, blocks of 128 or 256 bytes are usually used. If one wishes to overwrite a byte
within such a block, the entire block must first be erased. Then the entire contents of the block
can be written back.

When this erasing routine is repeated multiple times, the insulating layer (“Tunnel Oxide Film”)
can be damaged. This means that the electrons could slowly leak away, changing some of the
information from 1 to 0 over the course of time. Therefore, the number of allowable flash cycles
is severely limited in an ECU. In the production ECU, it is often only on the order of single digit
numbers. This restriction is monitored by the Flash Boot Loader, which uses a counter to keep
track of how many flash operations have already been executed. When the specified number is
exceeded, the Flash Boot Loader rejects another flash request.

A RAM (Random Access Memory) requires a permanent power supply; otherwise it loses its con-
tents. While flash memory serves the purpose of long-term storage of the application, the RAM
is used to buffer computed data and other temporary information. Shutting off the power sup-
ply causes the RAM contents to be lost. In contrast to flash memory, it is easy to read and write
to RAM.

1 Fundamentals of the XCP Protocol

This fact is clear: if parameters need to be changed at runtime, it must be assured that they are
located in RAM. It is really very important to understand this circumstance. That is why we will
look at the execution of an application in the ECU based on the following example:

In the application, the y parameters are computed from the sensor values x.

// Pseudo-code representation
a=b5;

b=2;

y=a*x+b;

Ifthe application is flashed in the ECU, the controller handles this code as follows after booting:
the values of the x parameters correspond to a sensor value. At some time point, the application
must therefore poll the sensor value and the value is then stored in a memory location assigned
to the x parameters. Since this value always needs to be rewritten at runtime, the memory loca-
tion can only lie in RAM.

The parameter y is computed. The values a and b, as factor and offset, are included as informa-
tion in flash memory. They are stored as constants there. The value of y must also be stored in
RAM, because once again thatis the only place where write access is possible. At precisely which
location in RAM the parameters x and y are located, or where a and b lie in flash, is set in the
compiler/linker run. This is where objects are allocated to unique addresses. The relationship
between object name, data type and address is documented in the linker-map file. The linker-
map file is generated by the Linker run and can exist in different formats. Common to all for-
mats, however, is that they contain the object name and address at a minimum.

In the example, if the offset b and factor a depend on the specific vehicle, the values of a and b
must be individually adapted to the specific conditions of the vehicle. This means that the algo-
rithm remains as it is, but the parameter values change from vehicle to vehicle.

In the normal operating mode of an ECU, the application runs from the flash memory. It does
not permit any write accesses to individual objects. This means that parameter values which are
located in the flash area cannot be modified at runtime. If a change to parameter values should
be possible during runtime, the parameters to be modified must lie in RAM and not in flash.
Now, how do the parameters and their initial values make their way into RAM? How does one
solve the problem of needing to modify more parameters than can be simultaneously stored in
RAM? These issues lead us to the topic of calibration concepts (see chapter 3).

1 Fundamentals of the XCP Protocol

Summary of XCP fundamentals

Read and write accesses to memory contents are available with the mechanisms of the XCP pro-
tocol. The accesses are made in an address-oriented way. Read access enables measurement of
parameters from RAM, and write access enables calibration of the parameters in RAM. XCP per-
mits execution of the measurement synchronous to events in the ECU. This ensures that the
measured values correlate with one another. With every restart of a measurement, the signals
to be measured can be freely selected. For write access, the parameters to be calibrated must be
stored in RAM. This requires a calibration concept.

This leads to two important questions:

> How does the user of the XCP protocol know the correct addresses of the measurement and
calibration parameters in RAM?

> What does the calibration concept look like?

The first question is answered in chapter 2 “ECUs description file A2L". The topic of the calibra-
tion concept is addressed in chapter 3.

1.1 XCP Protocol Layer

1.1 XCP Protocol Layer

XCP data is exchanged between the Master and Slave in a message-based way. The entire “XCP
message frame” is embedded in a frame of the transport layer (in the case of XCP on Ethernet
with UDP in a UDP packet). The frame consists of three parts: the XCP header, the XCP packet
and the XCP tail.

In the following figure, part of a message is shown in red. It is used to send the current XCP
frame. The XCP header and XCP tail depend on the transport protocol.

XCP Message (Frame)

_ XCP Header XCP Packet XCP Tail

><

- PID FILL DAQ TIMESTAMP

|
Identification Timestamp Data
Field Field Field

Figure 6: XCP packet

The XCP packet itself is independent of the transport protocol used. It always contains three
components: “Identification Field”, “Timestamp Field” and the current data field “Data Field”.
Each Identification Field begins with the Packet Identifier (PID), which identifies the packet.

The following overview shows which PIDs have been defined:

PID for frames PID for frames
from Master to Slave from Slave to Master
OXFF \ OXFF RES
OxFE ERR
CMD
OxFD EV
0xCo OxFC SERV
0xBF OxFB
absolute or absolute or
relative : relative
ODT number : ODT number
for STIM for STIM
0x00 0x00

Figure 7: Overview of XCP Packet Identifier (PID)

1 Fundamentals of the XCP protocol

Communication via the XCP packet is subdivided into one area for commands (CTO) and one area

for sending synchronous data (DTO).

XCP Master
PD
""""""""" cao | | | i] oo |
CMD RES ERR EV SERV DAQ STIM ¢
Command / Response / Error / Event / |1 DAQ STIM |
Service Request Processor Processor | Processor |

XCP Handler

Resources

PGM CAL

XCP Slave

DAQ

Figure 8:
XCP communication

The acronyms used here stand for

CMD
RES
ERR
EV
SERV
DAQ
STIM

Command Packet
Command Response Packet
Error

Event Packet

Service Request Packet
Data AcQuisition
Stimulation

model with CTO/DTO

sends commands

positive response

negative response
asynchronous event

service request

send periodic measured values
periodic stimulation of the Slave

Commands are exchanged via CTOs (Command Transfer Objects). The Master initiates contact in
this way, for example. The Slave must always respond to a CMD with RES or ERR. The other CTO
messages are sent asynchronously. The Data Transfer Objects (DTO) are used to exchange syn-
chronous measurement and stimulation data.

1.1 XCP Protocol Layer

1.1.1 Identification Field

XCP Packet R
PID FILL DAQ TIMESTAMP DATA
PN L Figure 9:
Identification Field Message

identification

When messages are exchanged, both the Master and Slave must be able to determine which
message was sent by the other. This is accomplished in the identification field. That is why each
message begins with the Packet Identifier (PID).

In transmitting CTOs, the PID field is fully sufficient to identify a CMD, RES or other CTO packet.
In Figure 7, it can be seen that commands from the Master to the Slave utilize a PID from 0xCO to
OxFF. The XCP Slave responds or informs the Master with PIDs from 0xFC to OxFF. This results in a
unique allocation of the PIDs to the individually sent CTOs.

When DTOs are transmitted, other elements of the identification field are used (see chapter
1.3.4 “XCP Packet Addressing for DAQ and STIM”).

1.1.2 Time Stamp

XCP Packet

A
v

PID FILL| DAQ DATA

Figure 10:
Time stamp

DTO packets use time stamps, but this is not possible in transmission of a CTO message. The
Slave uses the time stamp to supply time information with measured values. That is, the Mas-
ter not only has the measured value, but also the time point at which the measured value was
acquired. The amount of time it takes for the measured value to arrive at the Master is no lon-
ger important, because the relationship between the measured value and the time point comes
directly from the Slave.

Transmission of a time stamp from the Slave is optional. This topic is discussed further in
ASAM XCP Part 2 Protocol Layer Specification.

1 Fundamentals of the XCP protocol

1.1.3 Data Field

XCP Packet

PID|FILL DAQ TIMESTAMP
T T T T Figure 11:
Data Field Data field
in the XCP packet

Finally, the XCP packet also contains the data stored in the data field. In the case of CTO
packets, the data field consists of specific parameters for the different commands. DTO
packets contain the measured values from the Slave and when STIM data is sent the values from
the Master.

1.2 Exchange of CTOs

CTOs are used to transmit both commands from the Master to the Slave and responses from the
Slave to the Master.

1.2.1 XCP Command Structure

The Slave receives a command from the Master and must react to it with a positive or negative
response. The communication structure is always the same here:

Command (CMD):
Position Type Description
0 BYTE Command Packet Code CMD
1..MAX_CTO-1 BYTE Command specific Parameters

A unique number is assigned to each command. In addition, other specific parameters may be
sent with the command. The maximum number of parameters is defined as MAX_CTO-1 here.
MAX_CTO indicates the maximum length of the CTO packets in bytes.

Positive response:
Position Type Description
0 BYTE Command Positive Response Packet Code = RES OxFF
1..MAX_CTO-1 BYTE Command specific Parameters

1.2 Exchange of CTOs

Negative response:

Position Type Description
0 BYTE Error Packet Code = OxFE
1 BYTE Error code

2..MAX_CTO-1 BYTE Command specific Parameters

Specific parameters can be transmitted as supplementalinformation with negative responses as
well and not just with positive responses. One example is when the connection is made between
Master and Slave. At the start of a communication between Master and Slave, the Master sends
a connect request to the Slave, which in turn must respond positively to produce a continuous
point-to-point connection.

Master = Slave: Connect
Slave = Master: Positive response

Connect command:

Position Type Description
0 BYTE Command Code = OxFF
1 BYTE Mode

00 = Normal

01 = user defined

Mode 00 means that the Master wishes XCP communication with the Slave. If the Master uses
OxFF 0x01 when making the connection, the Master is requesting XCP communication with the
Slave. Simultaneously, it informs the Slave that it should switch to a specific - user-defined
- mode.

Positive response of the Slave:
Position Type Description
BYTE Packet ID: OxFF
BYTE RESOURCE
BYTE COMM_MODE_BASIC
BYTE MAX_CTO, Maximum CTO size [BYTE]
WORD MAX_DTO, Maximum DTO size [BYTE]
BYTE XCP Protocol Layer Version Number (most significant byte only)

~N O N W NN -, O

BYTE XCP Transport Layer Version Number (most significant byte only)

The positive response of the Slave can assume a somewhat more extensive form. The Slave
already sends communication-specific information to the Master when making the connection.
RESOURCE, for example, is information that the Slave gives on whether it supports such features
as page switching or whether flashing over XCP is possible. With MAX_DTO, the Slave informs the
Master of the maximum packet length it supports for transfer of the measured values, etc. You
will find details on the parameters in ASAM XCP Part 2 Protocol Layer Specification.

1 Fundamentals of the XCP protocol

XCP permits three different modes for exchanging commands and reactions between Master and
Slave: Standard, Block and Interleaved mode.

Standard Mode Block Mode Interleaved Mode

Master Slave Master Slave Master Slave

Request k
Request k N’ Request k
N} _L

MIN_ST

N’ W‘
Response k MAX_BS
y
Request k+1 Response k
Request k+1

Response k+1 Response k+1
Part1
Response k+1
Part2

Part3

v v v v v v
Time Time Time

Figure 12: The three modes of the XCP protocol: Standard, Block and Interleaved mode

In the standard communication model, each request to a Slave is followed by a single response.
Except with XCP on CAN, it is not permitted for multiple Slaves to react to a command from the
Master. Therefore, each XCP message can always be traced back to a unique Slave. This mode is
the standard case in communication.

The block transfer mode is optional and saves time in large data transfers (e.g. upload or
download operations). Nonetheless, performance issues must be considered in this mode
in the direction of the Slave. Therefore, minimum times between two commands (MIN_ST)
must be maintained and the total number of commands must be limited to an upper limit
MAX_BS. Optionally, the Master can read out these communication settings from the Slave with
GET_COMM_MODE_INFO. The aforementioned limitations do not need to be observed in block
transfer mode in the direction of the Master, because performance of the PC nearly always suf-
fices to accept the data from a microcontroller.

Theinterleaved mode is also provided for performance reasons. But this method is also optional
and - in contrast to block transfer mode - it has no relevance in practice.

1.2 Exchange of CTOs

1.2.2 CMD

XCP CTO Packet

d
<

v

PID DATA

Identification Field

Timestamp Field
empty for CTO

Data Field

Figure 13: Overview of the CTO packet structure

The Master sends a general request to the Slave over CMD. The PID (Packet Identifier) field
contains the identification number of the command. The additional specific parameters are
transported in the data field. Then the Master waits for a reaction of the Slave in the form of a
RESponse or an ERRor.

XCP is also very scalable in its implementation, so it is not necessary to implement every com-
mand. Inthe A2L file, the available CMDs are listed in what is known as the XCP IF_DATA. If there
is a discrepancy between the definition in the A2L file and the implementation in the Slave, the
Master can determine, based on the Slave’s reaction, that the Slave does not even support the
command. If the Master sends a command that is not implemented in the Slave, the Slave must
acknowledge with ERR_CMD_UNKNOWN and no further activities are initiated in the Slave. This
lets the Master know quickly that an optional command has not been implemented in the Slave.
Some other parameters are included in the commands as well. Please take the precise details
from the protocol layer specification in document ASAM XCP Part 2.

The commands are organized in groups: Standard, Calibration, Page, Programming and DAQ
measurement commands. If a group is not needed at all, its commands do not need to be imple-
mented. If the group is necessary, certain commands must always be available in the Slave,
while others from the group are optional.

The following overview serves as an example. The SET_CAL_PAGE and GET_CAL_PAGE commands
in the Page-Switching group are identified as not optional. This means that in an XCP Slave that
supports Page Switching at least these two commands must be implemented. If Page-Switching
supportis unnecessary in the Slave, these commands do not need to be implemented. The same
applies to other commands.

Standard commands:

Command PID

CONNECT OxFF
DISCONNECT OxFE
GET_STATUS 0xFD
SYNCH 0xFC
GET_COMM_MODE_INFO 0xFB
GET_ID OxFA
SET_REQUEST 0xF9
GET_SEED 0xF8
UNLOCK 0xF7
SET_MTA 0xF6
UPLOAD 0xF5
SHORT_UPLOAD OxF4
BUILD_CHECKSUM 0xF3
TRANSPORT_LAYER_CMD 0xF2
USER_CMD 0xF1

Calibration commands:

Command PID

DOWNLOAD 0xFO
DOWNLOAD_NEXT OxEF
DOWNLOAD_MAX OxEE
SHORT_DOWNLOAD OxED
MODIFY_BITS OxEC

Standard commands:

Command PID

SET_CAL_PAGE OxEB
GET_CAL_PAGE OxEA
GET_PAG_PROCESSOR_INFO OxE9
GET_SEGMENT_INFO OXE8
GET_PAGE_INFO OxE7
SET_SEGMENT_MODE OxE6
GET_SEGMENT_MODE OxE5

COPY_CAL_PAGE OxE4

1 Fundamentals of the XCP protocol

Optional

Optional
No
Yes
Yes
Yes
Yes

Optional
No
No
Yes
Yes
Yes
Yes
Yes
Yes

1.2 Exchange of CTOs

Periodic data exchange - basics:

Command PID Optional
SET_DAQ_PTR 0xE2 No
WRITE_DAQ OxE1 No
SET_DAQ_LIST_MODE OxEO No
START_STOP_DAQ_LIST OxDE No
START_STOP_SYNCH 0xDD No
WRITE_DAQ_MULTIPLE 0xC7 Yes
READ_DAQ 0xDB Yes
GET_DAQ_CLOCK 0xDC Yes
GET_DAQ_PROCESSOR_INFO 0xDA Yes
GET_DAQ_RESOLUTION_INFO 0xD9 Yes
GET_DAQ_LIST_INFO 0xD8 Yes
GET_DAQ_EVENT_INFO 0xD7 Yes

Periodic data exchange - static configuration:

Command PID Optional
CLEAR_DAQ_LIST OxE3 No
GET_DAQ_LIST_INFO 0xD8 Yes

Periodic data exchange — dynamic configuration:

Command PID Optional
FREE_DAQ 0xD6 Yes
ALLOC_DAQ 0xD5 Yes
ALLOC_ODT 0xD4 Yes

ALLOC_ODT_ENTRY 0xD3 Yes

1 Fundamentals of the XCP protocol

Flash programming:

Command PID Optional
PROGRAM_START 0xD2 No
PROGRAM_CLEAR 0xD1 No
PROGRAM 0xDO No
PROGRAM_RESET 0xCF No
GET_PGM_PROCESSOR_INFO OxCE Yes
GET_SECTOR_INFO 0xCD Yes
PROGRAM_PREPARE 0xCC Yes
PROGRAM_FORMAT 0xCB Yes
PROGRAM_NEXT 0xCA Yes
PROGRAM_MAX 0xC9 Yes
PROGRAM_VERIFY 0xC8 Yes
1.2.3 RES

If the Slave is able to successfully comply with a Master’s request, it gives a positive acknowl-
edge with RES.

Position Type Description
0 BYTE Packet Identifier = RES OxFF
1..MAX_CTO-1 BYTE Command response data

You will find more detailed information on the parameters in ASAM XCP Part 2 Protocol Layer
Specification.

1.2.4 ERR

If the request from the Master is unusable, it responds with the error message ERR and an error

code.
Position Type Description
0 BYTE Packet Identifier = ERR OxFE
1 BYTE Error code

2..MAX_CTO-1 BYTE Optional error information data

You will find a list of possible error codes in ASAM XCP Part 2 Protocol Layer Specification.

1.2 Exchange of CTOs

1.2.5EV

If the Slave wishes to inform the Master of an asynchronous event, an EV can be sent to do this.
Its implementation is optional.

Position Type Description
0 BYTE Packet Identifier = EV OxFD
1 BYTE Event code

2..MAX_CTO-1 BYTE Optional event information data

You will find more detailed information on the parameters in ASAM XCP Part 2 Protocol Layer
Specification.

Events will be discussed much more in relation to measurements and stimulation. This has noth-
ing to do with the action of the XCP Slave that initiates sending of an EVENT. Rather it involves
the Slave reporting a disturbance such as the failure of a specific functionality.

1.2.6 SERV

The Slave can use this mechanism to request that the Master execute a service.

Position Type Description
0 BYTE Packet Identifier = SERV 0xFC
1 BYTE Service request code

2..MAX_CTO-1 BYTE Optional service request data

You will find the Service Request Code table in ASAM XCP Part 2 Protocol Layer Specification.

1.2.7 Calibrating Parameters in the Slave

To change a parameter in an XCP Slave, the XCP Master must send the parameter’s location as
well as the value itself to the Slave.

XCP always defines addresses with five bytes: four for the actual address and one byte for the
address extension. Based on a CAN transmission, only seven useful bytes are available for XCP
messages. For example, if the calibrator sets a 4-byte value and wants to send both pieces of
information in one CAN message, there is insufficient space to do this. Since a total of nine
bytes are needed to transmit the address and the new value, the change cannot be transmit-
ted in one CAN message (seven useful bytes). The calibration request is therefore made with
two messages from Master to Slave. The Slave must acknowledge both messages and in sum four
messages are exchanged.

1 Fundamentals of the XCP protocol

The following figure shows the communication between Master and Slave, which is necessary to
set a parameter value. The actual message is located in the line with the envelope symbol. The
interpretation of the message is shown by “expanding” it with the mouse.

O, [17] Trace -0x
Time ID [Mame | Dir |Len | Data Kommatido Gerdt
=] 0s 1 am Tx 8 EG 00 00 00 84 00 OE 00 SET MTR addrext=0 addr=000E0084h ¥CPsim
% address extention = B
* address [HEX] = 000E0084
0.001185%s 2 RES Rx 1 FF 0k:SET_MTA HCPsim
-2 0.0000355 1 CMD Tx 6 FEO0 04 00 00 00 41 DOVHLORD size=1 HCPsim
* gize = 4
*+ pata [MEX]: = 00 00 00 41
- 0.0002568 2 RES Rx 1 FF OK:DOVHLOAD HCPsim
- 0.000039s 1 CMP Tx 8 F4 04 00 00 81 00 OE 00 SHORT UPLOAD size=1 ext=0 addr=000E0084h XCPsim
- * number of data elements to upload = 4
~* address extention = B
* address [HEX] = 000E0034
-6 0.000163s 2 BRES Rx 5 FF 00 00 00 41 0k:SHORT UPLOAD data=00h %CPsin
= data [MEX]: = 00 00 00 41

il Il ||.*

Figure 14: Trace example from a calibration process

In the first message of the Master (highlighted in gray in Figure 14), the Master sends the
command SET_MTA to the Slave with the address to which a new value should be written. In
the second message, the Slave gives a positive acknowledge to the command with Ok:SET_MTA.

The third message DOWNLOAD transmits the hex value as well as the valid number of bytes.
In this example, the valid number of bytes is four, because it is a float value. The Slave gives
another positive acknowledge in the fourth message.

This completes the current calibration process. In the Trace display, you can recognize a termi-
nating SHORT_UPLOAD - a special aspect of CANape, the measurement and calibration tool from
Vector. To make sure that the calibration was performed successfully, the value is read out again
after the process and the display is updated with the read-out value. This lets the user directly
recognize whether the calibration command was implemented. This command also gets a posi-
tive acknowledge with Ok:SHORT_UPLOAD.

When the parameter changes in the ECU’s RAM, the application processes the new value. A
reboot of the ECU, however, would lead to erasure of the value and overwriting of the value in
RAM with the original value from the flash (see chapter 3 “Calibration Concepts”). So, how can
the modified parameter set be permanently saved?

1.2 Exchange of CTOs

Essentially, there are two possibilities:

A) Save the parameters in the ECU

The changed data in RAM could for example be saved in the ECU’s EEPROM: either automatically
when ramping down the ECU, or manually by the user. A prerequisite is that the data can be
stored in a nonvolatile memory of the Slave. In an ECU, this would be the EEPROM or flash. ECUs
with thousands of parameters, however, are seldom able to provide so much unused EEPROM
memory space, so this method is rare.

Another possibility is to write the RAM parameters back into the ECU’s flash memory. This
method is relatively complex. A flash memory must first be erased before it can be rewritten.
This, in turn, can only be done as a block. Consequently, it is not simply a matter of writing back
individual bytes. You will find more on this topicin chapter 3 “Calibration Concepts”.

B) Save the parameters in the form of a file on the PC

Itis much more common to store the parameters on the PC. All parameters - or subsets of them
— are stored in the form of a file. Different formats are available for this; the simplest case is
that of an ASCII text file, which only contains the name of the object and its value. Other for-
mats also permit saving other information, such as findings about the maturity level of the
parameter of the history of revisions.

Scenario: After finishing his or her work, the calibrator wishes to enjoy a free evening. So, the
calibrator saves the executed changes in the ECU’s RAM in the form of a parameter set file on a
PC. The next day, the calibrator wants to continue working where he or she left off. The calibra-
tor starts the ECU. Upon booting, the parameters are initialized in RAM. However, the ECU does
this using values stored in flash. This means that the changes of the previous day are no longer
available in the ECU. To now continue where work was left off on the previous day, the calibra-
tor transfers the contents of the parameter set file to the ECU’s RAM by XCP using the DOWNLOAD
command.

O, [17] Trace -0x
Time ID |Mame Dir | Len |Data Kaommando Gerdt
05 1 @p Tx 8 F6 00 00 00 D6 03 OE 00 SET MTA addrext=0 addr—000E03D6h XCPsin [
(7 0.0001235 2 RES Rx 1 FF 0k: SET_MTA XCPsim ®
1 0.000032s 1 C(MD Tx & F0 06 01 02 03 04 05 06 DOWHLOID size=6 XCPsim
B 0.000227s 2 RES Rx 1 FF 0k: DOVHLOAD XCPsinm
0.000027s 1 CMD Tx & F0 06 07 08 01 02 03 04 DOWHLOAD size=6 XCPsim
(1 0.000215%8 2 RES Rx 1 FF Ok:DOVHLOAD XCPsim
1 0.000027s 1 C(MD Tx & F0 06 05 06 07 08 01 02 DOWHLOID size=6 XCPsim
(1 0.000213s 2 RES Rx 1 FF 0k: DOVHLOAD XCPsinm
0.000054s 1 CMD Tx & F0 06 03 04 05 06 07 08 DOWHLOAD size=6 XCPsim
(7 0.0002285 2 RES Rx 1 FF Ok:DOVHLOAD XCPsim
[0.000032s 1 (D Tx & F0 06 01 02 03 04 05 06 DOWHLOAD size=6 XCPsim
B 0.000215%s 2 RES Rx 1 FF 0k: DOVHLOAD XCPsinm
0.000031s 1 CMD Tx & F0 06 07 08 01 02 03 04 DOWHLOAD size=6 XCPsim
(] 0.000218s 2 RES Rx 1 FF 0k: DOVHLOAD XCPsim
[0.000030s 1 (D Tx & F0 06 05 06 07 06 01 02 DOWHLOMD size=6 XCPsim [se
< m i

Figure 15: Transfer of a parameter set file to an ECU’s RAM

1 Fundamentals of the XCP protocol

Saving parameter set file in hex files and flashing

Flashing an ECU is another way to change the parameters in flash. They are then written to RAM
as new parameters when the ECU is booted. A parameter set file can also be transferred toa C or
H file and be made into the new flash file with another compiler/linker run. However, depend-
ing on the parameters of the code, the process of generating a flashable hex file could take a
considerable amount of time. In addition, the calibrator might not have any ECU source code
- depending on the work process. That would prevent this method from being available to the
calibrator.

As an alternative, the calibrator can copy the parameter set file into the existing flash file.

L:!)‘ [20] #CPsim HEX OD0EQOSS - DO0EOEF4
000E0D58 AR AR 00 32 44 65 66 61 75 6C 74 00 00 00
00 00 00 00 00 OO0 00 00 00 00 00 00 00 00

000E00&4 m 00 CO 40 00 00 C§ 42 00 00 00 00 00 00

40 00 20 41 00 00 20 41
A ees D=DDDEDDES

000E00BO 00 00 0 01 00 01 02 05 00
000E00CE 72 00T 00 00 00 01 00 00 00

O00EQODC 01 00 OO0 00 01 OO 00 00 0% 00 01 02 03 04

guquuur‘z 04 05 07 00 00 OO0 OO0 00 DO OO0 0D 0D 01 D2 . .
Figure 16: Hex window

In the flash file, there is a hex file that contains both the addresses and the values. Now a
parameter file can be copied to a hex file. To do this, CANape takes the address and the value
from the parameter set file and updates the parameter value at the relevant location in the
hex file. This results in a new hex file, which contains the changed parameter values. However,
this Hex file must now possibly run through further process steps to obtain a flashable file.
One recurring problem here is the checksums, which the ECU checks to determine whether it
received the data correctly. If the flashable file exists, it can be flashed in the ECU and after the
reboot the new parameter values are available in the ECU.

1.3 Exchanging DTOs - Synchronous Data Exchange

As depicted in Figure 8, DTOs (Data Transfer Objects) are available for exchanging synchronous
measurement and calibration data. Data from the Slave are sent to the Master by DAQ - synchro-
nous to internal events. This communication is subdivided into two phases:

In an initialization phase, the Master communicates to the Slave which data the Slave should
send for different events. After this phase, the Master initiates the measurement in the Slave
and the actual measurement phase begins. From this point in time, the Slave sends the desired
data to the Master, which only listens until it sends a “measurement stop” to the Slave. Trigger-
ing of measurement data acquisition and transmission is controlled by events in the ECU.

1.3 Exchanging DTOs - Synchronous Data Exchange

The Master sends data to the Slave by STIM. This communication also consists of two phases:

In the initialization phase, the Master communicates to the Slave which data it will send to the
Slave. After this phase, the Master sends the data to the Slave and the STIM processor saves the
data. As soon as a related STIM event is triggered in the Slave, the data is transferred to the
application memory.

1.3.1 Measurement Methods: Polling versus DAQ

Before explaining how event-synchronous, correlated data is measured from a Slave, here is a
brief description of another measurement method known as Polling. It is not based on DTOs, but
on CTOs instead. Actually, this topic should be explained in a separate chapter, but a description
of polling lets us derive, in a very elegant way, the necessity of DTO-based measurement, so a
minor side discussion at this point makes sense.

The Master can use the SHORT_UPLOAD command to request the value of a measurement para-
meter from the Slave. This is referred to as polling. This is the simplest case of a measure-
ment: sending the measured value of a measurement parameter at the time at which the
SHORT_UPLOAD command has been received and executed.

In the following example, the measurement parameter “Triangle” is measured from the Slave:

Measurement value Triangle E
a= General 4z Address
4z Address o
] Data Type Address (hex): 50483
= Physical Display
W) Display Link with MAP fle:
N Annotations
Bo Interface XCP MAP address: shyteTriangle
60453
P offzet [dec) 0
Figure 17:
A
Address information
of the parameter
[i3] [Abbrechen] [Hilie] ”Tr'iang[e” from the

A2L file

The address 0x60483 is expressed as an address with five bytes in the CAN frame: one byte for
the address extension and four bytes for the actual address.

1 Fundamentals of the XCP protocol

r’j [51] Trace
Time Id Mame Dir Len Data Command Device
B = 0. 20065 554 CMD Tx 8 F4 01 00 00 83 04 06 00 SHORT_UPLOAD size=1 ext=0 addr=00060433h XCPsim
.#= number of data elements to upload = 1

-* address extention = Q
: += address [HEX] = Q0060483
= 0. 2006ds 555 RES Rx & FF EZ Ok :SHORT_UPLOAD data=Egh HIPsim
: -= data [HEx]: = E&

Figure 18: Polling communication in the CANape Trace window

The XCP specification sets a requirement for polling: that the value of each measurement param-
eter must be polled individually. For each value to be measured via polling, two messages must
go over the bus: the Master’s request to the Slave and the Slave’s response to the Master.

Besides this additional bus load, there is another disadvantage of the polling method: When
polling multiple data values, the user normally wants the data to correlate to one another. How-
ever, multiple values that are measured sequentially with polling do not necessarily stand in
correlation to one another, i.e. they might not originate from the same ECU computing cycle.
This limits the suitability of polling for measurement, because it produces unnecessarily high
data traffic and the measured values are not evaluated in relation to the process flows in the
ECU.

So, an optimized measurement must solve two tasks:
> Bandwidth optimization during the measurement
> Assurance of data correlation

This task is handled by the already mentioned DAQ method. DAQ stands for Data Acquisition and
itis implemented by sending DTOs (Data Transfer Objects) from the Slave to the Master.

1.3.2 DAQ Measurement Method

The DAQ method solves the two problems of polling as follows:

> The correlation of measured values is achieved by coupling the acquisition of measured val-
ues to the eventsin the ECU. The measured values are not acquired and transferred until it has
been assured that all computations have been completed.

> To reduce bus load, the measurement process is subdivided into two phases: In a configu-
ration phase, the Master communicates which values it is interested in to the Slave and the
second phase just involves transferring the measured values of the Slave to the Master.

1.3 Exchanging DTOs - Synchronous Data Exchange

How can the acquisition of measured values now be coupled to processes in the ECU? Figure 19
shows the relationship between calculation cycles in the ECU and the changes in parameters X
and Y.

Calculation Calculation Calculation
cyclen cycle n+1 cycle n+2 time
R F—- —

Figure 19:
Events in the ECU

A Read sensor X @ CalculateY=X

Let’s have a look at the sequence in the ECU: When event E1 (= end of computation cycle) is
reached, then all parameters have been acquired and calculations have been made. This means
that all values must match one another and correlate at this time point. This means that we
use an event-synchronous measurement method. This is precisely what is implemented with the
help of the DAQ mechanism: When the algorithm in the Slave reaches the “Computational cycle
completed” event, the XCP Slave collects the values of the measurement parameters, saves them
in a buffer and sends them to the Master. This assumes that the Slave knows which parameters
should be measured for which event.

An event does not absolutely have to be a cyclic, time-equidistant event, rather in the case of
an engine controller, for example, it might be angle-synchronous. This makes the time inter-
val between two events dependent on the engine rpm. A singular event, such as activation of a
switch by the driver, is also an event that is not by any means equidistant in time.

The user selects the signals. Besides the actual measurement object, the user must select the

underlying event for the measurement parameters. The events as well as the possible assign-
ments of the measurement objects to the events must be stored in the A2L file.

Event List

General | Expert settings

i Event name Ewvent number | Fate | Unit Priarity | DALASTIM
| ey idh] fick cycic O DA
10ms oih 10 ms a DAGISTIM
100ms 0zh 100 ms o DAQISTIM i .
1ms 03h 1 ms i DAGISTIM Fi (LI 20:
| FilterBypassDag 04h 1} Mok cyclic 0 DAcISTIM Event defi n-itio n
| FilterBypassst 0sh 1] Mok cyclic 0 DAGQISTIM

in an A2L

1 Fundamentals of the XCP protocol

In the normal case, it does not make any sense to be able to simultaneously assign a measured
value to multiple events. Generally, a parameter is only modified within a single cycle (e.g. only
at 10-ms intervals) and not in multiple cycles (e.g. at 10-ms and 100-ms intervals).

Measurement value Triangle .
¥ General i Interface XCP
% Address
E| Data Type [¥] Dad events
o Physical Display =
10 ms [l
\;J z‘sp‘atvt' OFix 100ms = Jll
- Annotations i |
B Interface HCP A L‘.f,l!
(=) Variable 10 ms [
100ms =
Available: Tms = il
FilteRunasshan]|
[10ms [=]| i .
Defauk i ol Figure 21:

Allocation of
0K | [ebbrechen | [Hife | “Triangle” to possible
events in the A2L

Figure 21 shows that the “Triangle” parameter can in principle be measured with the 1 ms,
10 ms and 100 ms events. The default setting is 10 ms.

Measurement parameters are allocated to events in the ECU during measurement configuration
by the user.

Mo, Type | Active | Mame Measurement mode Default_Recorder Figure 2 2: SEleCﬁng
events (measurement

mode) for each
measurement parameter

Triangle 10 ms
12 B byted 100ms =]
13 172 Shifter_BO 1ms]

After configuring the measured signals, the user starts the measurement. The XCP Master lists
the desired measurement parameters in what are known as DAQ lists. In these lists, the mea-
sured signals are each allocated to selected events. This configuration information is sent to the
Slave before the actual start of measurement. Then the Slave knows which addresses it should
read out and transmit when an event occurs. This distribution of the measurement into a con-
figuration phase and a measurement phase was already mentioned at the very beginning of this
chapter.

This solves both problems that occur in polling: bandwidth is used optimally, because the Mas-
ter no longer needs to poll each value individually during the measurement and the measured
values correlate with one another.

1.3 Exchanging DTOs - Synchronous Data Exchange

[[51] Trace -ox
Tirne: Id Marne | Dir Len | Data Cornmand Device
[—0.251873s 554 CMD T= 4 DE 02 01 00 START_STOP_DAQ_LIST mode=02h dag=1 HCFsim EA
g -0.251844s 555 RES R 2 FF 01 Ok :START_STOP_DAQ LIST firstPid=01h HCPsim
= 0. 251645 554 CMD T= 2 EQ 10 02 00 03 00 01 00 SET_DAQ_LIST_MODE mode=10h dag=2 ewen... XCPsim
o[-0.251609s 555 RES R 1 FF Ok :SET_DAQ LIST_MODE HCPsim (]
[—0.251565s 554 CMD T= 4 DE 0z Oz 00 START_STOF_DAQ_LIST mode=02zh dag=2 HCRsim
[-0.251527s 555 RES R 2 R Ok :START_STOP_DAQ LIST firstPid=0zh HCPsim
o[0.0003895 554 CMD T 1 DC GET_DAG_CLOCK HCPsim
[0.0004155 555 RES R 8 FF 02 70 61 00 Q0 Q0 00 Ok:GET_DAQ CLOCK timestamp=0 HCPsim
= 0.000465 554 CMD T 2 DD 01 START_STOP_SYNCH mode=01h HCPsim
{ [0.00049s 555 REZ Rx 1 FF Ok :START_STOP_SYNCH HCFsim
gk 0.004179s Measurement started at
i 0.0088s 555 DAQ Rx 7 00 02 53 00 00 00 Od4 Data HCFsim
= 0.00882s G55 DAG R 7 00 02 54 00 00 00 04 Data HCPsim
i 0.00884s 555 DAQ Rx 7 00 02 54 00 00 00 Od4 Data HCFsim
oo 0. 00886s 555 DAQ R & 00 02 54 00 00 00 04 Data HCPsim
i 0.00888s 555 DAQ Rx 7 00 02 54 00 00 00 Od4 Data HCFsim
oo 0.0089s 555 DAQ R & 00 02 55 00 00 00 04 Data HZPsim
. [0.00892s 555 DAQ R 7 00 02 55 00 00 00 04 Data HCPsim
oo 0.00893s 555 DAQ R & 00 02 55 00 00 00 04 Data HZPsim [w!
< L [

Figure 23: Excerpt from the CANape Trace window of a DAQ measurement

Figure 23 illustrates an example of command-response communication (color highlighting)
between Master and Slave (overall it is significantly more extensive and is only shown in part
here for reasons of space). This involves transmitting the DAQ configuration to the Slave. After-
wards, the measurement start is triggered and the Slave sends the requested values while the
Master just listens.

Until now, the selection of a signal was described based on its name and allocation to a mea-
surement event. But how exactly is the configuration transferred to the XCP Slave?

Let us look at the problem from the perspective of memory structure in the ECU: The user has
selected signals and wishes to measure them. So that sending a signal value does not require
the use of an entire message, the signals from the Slave are combined into message packets. The
Slave does not create this definition of the combination independently, or else the Master would
not be able to interpret the data when it received the messages. Therefore, the Slave receives
an instruction from the Master describing how it should distribute the values to the messages.

The sequence in which the Slave should assemble the bytes into messages is defined in what
are known as Object Description Tables (ODTs). The address and object length are important to
uniquely identify a measurement object. An ODT provides the allocations of RAM contents from
the Slave to assemble a message on the bus. According to the communication model, this mes-
sage is transmitted as a DAQ DTO (Data Transfer Object).

1 Fundamentals of the XCP protocol

RAM Cells
\

« >

«—

0DT
address, length
address, length
address, length
address, length

pofo|1]2]3].]
Figure 24:
ODT: Allocation
of RAM addresses

to DAQ DTO

[CSAR SRR N)

Stated more precisely, an entry in an ODT list references a memory area in RAM by the address
and length of the object.

After receiving the measurement start command, at some point an event occurs that is asso-
ciated with a measurement. The XCP Slave begins to acquire the data. It combines the indi-
vidual objects into packets and sends them on the bus. The Master reads the bus message and
can interpret the individual data, because it has defined the allocation of individual objects to
packets itself and therefore it knows their relationships.

However, each packet has a maximum number of useful bytes, which depends on the trans-
port medium that is used. In the case of CAN, this amounts to seven bytes. If more data needs
to be measured, an 0DT is no longer sufficient. If two or more ODTs need to be used to trans-
mit the measured values, then the Slave must be able to copy the data into the correct 0DT and
the Master must be able to uniquely identify the received ODTs. If multiple measurement inter-
vals of the ECU are used, the relationship between ODT and measurement interval must also be
uniquely identifiable.

1.3 Exchanging DTOs - Synchronous Data Exchange

The ODTs are combined into DAQ lists in the XCP protocol. Each DAQ list contains a number of
0DTs and is assigned to an event.

00T #1 |0 |
h
ODT#0 | O | address, length nth :g:h
1 [address, length ngth g
2 | address, length ngth _> |PID=2| ° | ! | ? | ’ | |
3 | address, length || — lPo=1fof1]2]3].. | Figure 25:
— |P=0f o[1]2]3].. | DAQ list

with three ODTs

For example, if the user uses two measurement intervals (= two different events in the ECU),
then two DAQ lists are used as well. One DAQ listis needed per event used. Each DAQ list contains
the entries related to the ODTs and each ODT contains references to the values in the RAM cells.

DAQ lists are subdivided into the types: static, predefined and dynamic.

Static DAQ lists:

If the DAQ lists and ODT tables are permanently defined in the ECU, as is familiar from CCP, they
are referred to as static DAQ lists. There is no definition of which measurement parameters exist
in the ODT lists, rather only the framework that can be filled (in contrast to this, see predefined

DAQ lists).

In static DAQ lists, the definitions are set in the ECU code and are described in the A2L. Figure
26 shows an excerpt of an A2L, in which static DAQ lists are defined:

DAQ List
General | Bxended seitings | Expert Eeﬂingsl

General

DAQ configuration:

DAQlist No. Event channel DAQld. MAXODT MAXODT ENTRY

0 10ms DTOID 2 2 a .

1 100ms DO 4 4 Figure 26:
Static DAQ lists

In the above example, there is a DAQ list with the number 0, which is allocated to a 10-ms event
and can carry a maximum of two 0DTs. The DAQ list with the number 1 has four 0DTs and is linked
to the 100 ms event.

1 Fundamentals of the XCP protocol

The A2L matches the contents of the ECU. In the case of static DAQ lists, the number of DAQ lists
and the ODT lists they each contain are defined with the download of the application into the
ECU. If the user now attempts to measure more signals with an event than fit in the allocated
DAQ list, the Slave in the ECU will not be able to fulfill the requirements and the configuration
attempt is terminated with an error. It does not matter that the other DAQ list is still fully avail-
able and therefore actually still has transmission capacity.

Predefined DAQ lists:

Entirely predefined DAQ lists can also be set up in the ECU. However, this method is practically
never used in ECUs due to the lack of flexibility for the user. It is different for analog measure-
ment systems which transmit their data by XCP: Flexibility is unnecessary here, since the physi-
cal structure of the measurement system remains the same over its life.

Dynamic DAQ lists:

A special aspect of the XCP protocol are the dynamic DAQ lists. It is not the absolute parameters
of the DAQ and ODT lists that are permanently defined in the ECU code here, but just the param-
eters of the memory area that can be used for the DAQ lists. The advantage is that the measure-
ment tool has more latitude in putting together the DAQ lists and it can manage the structure
of the DAQ lists dynamically.

Various functions especially designed for this dynamic management are available in XCP such as
ALLOC_ODT which the Master can use to define the structure of a DAQ list in the Slave.

MIN_DAQ + DAQ_COUNT

ODT_ENTERIES_COUNT

ALLOC_0DT

GRANULARITY_ODT_ENTRY_SIZE_DAQ
Figure 27:
Dynamic DAQ lists

0DT_COUNT

In putting together the DAQ lists, the Master must be able to distinguish whether dynamic or
static DAQ lists are being used, how the parameters and structures of the DAQ lists look, etc.

1.3 Exchanging DTOs - Synchronous Data Exchange

1.3.3 STIM Calibration Method

The XCP calibration method was already introduced in the chapter about exchanging CT0s. This
type of calibration exists in every XCP driver and forms the basis for calibrating objects in the
ECU. However, no synchronization exists between sending a calibration command and an event
in the ECU.

In contrast to this, the use of STIM is not based on exchanging CTOs, rather on the use of DTOs
with communication that is synchronized to an event in the Slave. The Master must therefore
know to which eventsin the Slave it can even synchronize at all. This information must also exist
in the A2L.

(Event Dialog = |
Event
/begin EVENT
b Hahnacn "FilterBypassSt' /f Event Channel Name
Channel No: 0005 hex "FilterByp" /1 Event Channel Short Name
Rate: 10 LR TRy 0x0005 /1 Event Channel Number
. : DAQ_STIM /1 both directions for DAQ and STIM
G 0x01 J MAX_DAQ_LIST
[CIoAQ [@] sTIM 0x00 /I TIME_CYCLE
0x06 /I TIME_UNIT
0x00 /I PRIORITY
fend EVENT

Figure 28: Event for DAQ and STIM

If the Master sends data to the Slave by STIM, the XCP Slave must be informed of the location in
the packets at which the calibration parameters can be found. The same mechanisms are used
here as are used for the DAQ lists.

1 Fundamentals of the XCP protocol

1.3.4 XCP Packet Addressing for DAQ and STIM

Addressing of the XCP packets was already discussed at the beginning of this chapter. Now that
the concepts of DAQ, ODT and STIM have been introduced, XCP packet addressing will be pre-
sented in greater detail.

During transmission of CTOs, the use of a PID is fully sufficient to uniquely identify a packet;
however, this is no longer sufficient for transmitting measured values. The following figure
offers an overview of the possible addressing that could occur with the DTOs:

J XCP DTO Packet -
Identification Field| Timestamp Field Data Field
PID
PID [DAQ TS
FID| DAQ s Figure 29:
7 Structure of the
] PID |FILL DIIAQ TIIMESITAMII3 DATA XCP packet for DTO
transmissions

Transmission type: “absolute ODT numbers”

Absolute means that the ODT numbers are unique throughout the entire communication - i.e.
across all DAQ lists. In turn, this means that the use of absolute ODT numbers assumes a trans-
formation step that utilizes a so-called “FIRST_PID for the DAQ list.

If a DAQ list starts with the PID j, then the PID of the first packet has the value j, the second
packet has the PID value j + 1, the third packet has the PID value j + 2, etc. Naturally, the Slave
must ensure here that the sum of FIRST_PID + relative ODT number remains below the PID of the
next DAQ list.

DAQ list: 0 <PID<k
DAQ list: k+1 <PID=<=m
DAQ list: m+1 <PID<n
etc.

1.3 Exchanging DTOs - Synchronous Data Exchange

In this case, the identification field is very simple:

Identification Field

& »
<« »

PID

| absolute ODT number

Figure 30:
Identification field
with absolute

0DT numbers

Transmission type: “relative ODT numbers and absolute DAQ lists numbers”

In this case, both the DAQ lists number and the ODT number can be transmitted in the Identi-
fication Field. However, there is still space left over in the number of bytes that is available for

the information:

Identification Field

& »
<« »

PID | DAQ

| absolute DAQ List number
relative ODT number

Figure 31:

ID field with
relative ODT and
absolute DAQ
numbers (one byte)

In the figure, one byte is available for the DAQ number and one byte for the ODT number.

The maximum number of DAQ lists can be transmitted using two bytes:

Identification Field

< »

PID DAQ

| absolute DAQ list number

relative ODT number

Figure 32:

ID field with
relative ODT and
absolute DAQ
numbers (two bytes)

1 Fundamentals of the XCP protocol

Ifitis not possible to send three bytes, it is also possible to work with four bytes by using a fill

byte:

Identification Field

v

<

PID | FILL DAQ
. Figure 33:

| absolute DAQ list number ID field with relative
0DT and absolute DAQ
numbers as well as fill
byte (total of four bytes)

for alignement
relative ODT number

How does the XCP Master now learn which method the Slave is using? First, by the entry in the
A2L and second by the request to the Slave to determine which communication version it has
implemented.

The response to the GET_DAQ_PROCESSOR_INFO request also sets the DAQ_KEY_BYTE that the
Slave uses to inform the Master which transmission type is being used. If not only DAQ is being
used, but also STIM, the Master must use the same method for STIM that the Slave uses for DAQ.

1.3.5 Bypassing = DAQ + STIM
Bypassing can be implemented by joint use of DAQ and STIM (see Figure 8) and it represents

a special form of a rapid prototyping solution. For a deeper understanding, however, further
details are necessary, so this method is not explained until chapter 4.5 “Bypassing”.

1.4 XCP Transport Layers

1.4 XCP Transport Layers

A main requirement in designing the protocol was that it must support different transport lay-
ers. At the time this document was defined, the following layers had been defined: XCP on CAN,
FlexRay, Ethernet, SxI and USB. The bus systems CAN, LIN and FlexRay are explained on the
Vector E-Learning platform, as well as an introduction to AUTOSAR. For details see the website
www.vector-elearning.com.

1.4.1 CAN

XCP was developed as a successor protocol of the CAN Calibration Protocols (CCP) and must
therefore absolutely satisfy the requirements of the CAN bus. The communication over the CAN
bus is defined by the associated description file. Usually the DBC format is used, but in some
isolated cases the AUTOSAR format ARXML is already being used.

A CAN message is identified by a unique CAN identifier. The communication matrix is defined in
the description file: Who sends which message and how are the eight useful bytes of the CAN bus
being used? The following figure illustrates the process:

Data CAN CAN CAN CAN
Frame Node A Node B Node C Node D

ID=0x34 Sender Receiver | Receiver

ID=0x52 Receiver Sender

ID=0x67 Receiver | Receiver | Sender Receiver

ID=0xB4 Receiver Sender

Figure 34:
Definition of which
ID=0x3A5 Sender Receiver | Receiver | Receiver bus nodes send
which messages

The message with ID 0x12 is sent by CAN node A and all other nodes on the bus receive this mes-
sage. In the framework of acceptance testing, CAN nodes C and D conclude that they do not
need the message and they reject it. CAN node B, on the other hand, determines thatits higher-
level layers need the message and they provide them via the Rx buffer. The CAN nodes are inter-
linked as follows:

1 Fundamentals of the XCP protocol

CAN Node A CAN Node B
Host Host
CAN Interface CAN Interface
Tx ' Rx Tx ' Rx
Buffer | Buffer Buffer | Buffer
| |
| Acceptance | Acceptance
| Test | Test
Send I Receive Send I Receive
CAN
Receive | Send Receive | Send
| |
Acceptance | Acceptance |
Test | Test |
Rx | Tx Rx | Tx
Buffer) Buffer Buffer) Buffer
CAN Interface CAN Interface
ifosiE i35 Figure 35:
Representation
CAN Node C CAN Node D P

of a CAN network

The XCP messages are not described in the communication matrix! If measured values are sent
from the Slave via dynamic DAQ lists, e.g. with the help of XCP, the messages are assembled
according to the signals selected by the user. If the signal selection changes, the message con-
tents change as well. Nonetheless, there is a relationship between the communication matrix
and XCP: CAN identifiers are needed to transmit the XCP messages over CAN. To minimize the
number of CAN identifiers used, the XCP communication is limited to the use of just two CAN
identifiers that are not being used in the DBC for “normal” communication. One identifier is
needed to send information from the Master to the Slave; the other is used by the Slave for the
response to the Master.

The excerpt from the CANape Trace window shows the CAN identifiers that are used under the
“ID” column. In this example, just two different identifiers are used: 554 as the ID for the mes-
sage from Master to Slave (direction Tx) and 555 for sending messages from the Slave to the
Master (direction Rx).

1.4 XCP Transport Layers

L [20] Trace - KCP Cimlrd
Time D |Name Dir Len |Data Kommanda
g Im 7.520085 554 QWD T« 2 FF 0O CONNECT mode=0 [
o2 Im 7.5201265 555 RES Rx 8 FF 1D CO OB 08 00 01 01 Ok:CONNECT resource=1Dh commiode=COh ctoSize=8 dtoSizes=g protversl trar |
: [1m 7.5202285 554 MO T 1 FB GET_COMM_MODE_INFO
= 1m 7.5202515 555 RES Rx 8 FF 1D 01 08 2B 00 00 19 Ok :GET_COMM_MODE_INFO commWodeOptional =01h maxBs=43 minSt=0 queueSize=(
: [1m 7.5203255 554 MO Tx 1 FD GET_STATUS
= 1m 7.5203375 555 RES Rx & FF 0D 1D 08 00 OO0 Ok :GET_STATUS sessionStatus=00h protectionStatus=10h configurationID=0 =
2 1m 7.520414s 554 MD T 1 DA GET_DAQ_PROCESSOR_INFO
2 1m 7.5204285 555 RES Rx 8 FF 57 00 00 06 00 Q0 40 Ok :GET_DAG_PROCESSOR_INFO prop=57h maxDAQ1ists=0 evtChan=6 predefDAQlis
2 1m 7.520499s 554 MD T 1 D9 GET_DAQ_RESOLUTION_INFQ
2 1m 7.520511s 555 RES Rx 8 FF 01 06 01 06 44 QA 00 Ok :GET_DAG_RESOLUTION_INFO granularityODTEntryDAQ=1 maxSizeODTEntryDAQ=
[Im 7.520584s 554 MD ™ 4 D7 00 00 00 GET_DAQ_EVENT_INFO evertChannel=0
= 1m 7.5205955 555 RES Rx 7 FF 04 01 05 Q0 06 00 Ok :GET_DAQ_EVENT_INFO ewventProp=04h maxDAQLists=1 Tength=5 timeCycle=0
=2 1m 7.5206685 554 CMD Tx 2 F5 05 UPLOAD size=5
£ 1m 7.5206795 555 RES Rx B FF 4B 65 79 20 54 Ok:UPLOAD data=4Bh
= 1m 7.5209965 554 CMD ™= 4 D7 00 01 00 GET_DAQ_EVENT_INFOQ eventChannel=1
= 1m 7.5210095 555 RES Rx 7 FF OC 01 05 QA QB Q0 0Ok :GET_DAQ_EVENT_IMFO ewventProp=DCh maxDAQLists=1 Tength=5 timeCycle=1C
£ 1m 7.5210825 554 MD T 2 F5 05 UPLOAD size=5
= 1m 7.521098s 555 RES Rx 6 FF 31 30 20 éD 73 Ok:UPLOAD data=31h
5z Im 7.5211335 554 CMD Tx 4 D7 00 02 OO GET_DAQ_EVENT_INFO eventChanne]=2
5z Im 7.521166s 555 RES Rx 7 FF OC 01 05 64 06 00 Ok :GET_DAQ_EVENT_INFO evertProp=0Ch maxDAQLists=1 length=5 timeCyc]e=1C
5z Im 7.5211975 554 QMD Tk 2 F5 05 UPLOAD size=5
5z im 7.5212375 555 RES Rx 6 FF 31 30 30 éD 73 Ok:UPLOAD data=31h It
4w % catnoa- o4 wn T. 4 noonnonsoan T RAR PUENT THEA okl 3 ¢
&f Im | B

Figure 36: Example of XCP-on-CAN communication

In this example, the entire XCP communication is handled by the two CAN identifiers 554 and
555. These two IDs may not be allocated for other purposes in this network.

The CAN bus transmits a maximum of eight useful bytes per message. In the case of XCP, how-
ever, we need information on the command used or the sent response. This is provided in the
first byte of the CAN useful data. This means that seven bytes are available per CAN message for
transporting useful data.

XCP on CAN Message (Frame)
XCP Packet XCP Tail

A

»
>

A

XCP Header
empty for CAN | o1y e11 | pAQ | TIMESTAMP DATA Fill

— e < »>
Control Field Control Field
empty for CAN for CAN

Figure 37: Representation of an XCP-on-CAN message

In CANape, you will find an XCP-on-CAN demo with the virtual ECU XCPsim. You can learn about
more details of the standard in ASAM XCP on CAN Part 3 Transport Layer Specification.

1 Fundamentals of the XCP protocol

1.4.2 CAN FD

CAN FD (CAN with flexible data rate) is an extension of the CAN protocol developed by
Robert Bosch GmbH. Its primary difference to CAN involves extending the useful data from 8 to
64 bytes. CAN FD also offers the option of sending the useful data at a higher data rate. After
the arbitration phase, the data bytes are sent at a higher transmission rate than during the
arbitration phase. This covers the need for greater bandwidth in automotive networks while pre-
serving valuable experience gained from CAN development.

The XCP-on-CAN-FD specification was defined in the XCP-on-CAN description of the XCP stan-
dard, Version 1.2.0 (June 2013).

gl € (=128 £
: <
= =
1 11 1(1]1 1
Arbirtation phase Data phase Arbirtation phase
(standard bit rate) (optional high bit rate) (standard bit rate)
EDL = Extended Data Length: ESI = Error State Indicator:
CAN (dominant (0) = CAN frame Dominant (0) = CAN FD node is error active
Recessive (1) = CAN FD frame Recessive (1) = CAN FD node is error passive

BRS = Bit Rate Switch:
CAN FD data phase starts immediately at sampling point of BRS:
Dominant (0) = No change of bit rate for data phase
Recessive (1) = Change to higher bit rate for data phase

Figure 38: Illustration of a CAN FD frame

Despite the largely similar modes of operation, this protocol requires extensions and modifica-
tions to the hardware and software. Among other things, CAN FD introduces three new bits to
the control field:

> Extended Data Length (EDL)

> Bit Rate Switch (BRS)

> Error State Indicator (ESI)

1.4 XCP Transport Layers

A recessive EDL bit (High level) distinguishes frames in extended CAN-FD format from those in
standard CAN format, because they are identified by a dominant EDL bit (low level). Similarly, a
recessive BRS bit causes the transmission of the data field to be switched to the higher bit rate.
The ESI bit identifies the error state of a CAN FD node. Another four bits make up what is known
as the Data Length Code (DLC), which represents the extended useful data length as a possible
value of 12, 16, 20, 24, 32, 48 and 64 bytes.

The use of XCP on CAN FD assumes that a second transmission rate has been defined for the use-
ful datain the A2L file. This is fully transparent to the user, who gets a complete A2L parameter-
ization. A measurement configuration in the XCP master considers the maximum packet length,
and the user does not need to make any other settings.

CAN FD is supported in CANape, Version 12.0 and higher. Every CAN hardware product from
Vector which begins with “VN” supports the CAN FD transport protocol.

1.4.3 FlexRay

1 Fundamentals of the XCP protocol

A basic idea in the development of FlexRay was to implement a redundant system with deter-
ministic time behavior. The connection redundancy was achieved by using two channels: chan-
nel A and channel B. If multiple FlexRay nodes (= ECUs) are redundantly interconnected and
one branch fails, the nodes can switch over to the other channel to make use of the connection

redundancy.

Node K

%ﬁay’"
4

Node N

CHA [

CHB

Figure 39: Nodes K and L are redundantly interconnected

Deterministic behavior is achieved by transmitting data within defined time slots. Also defined
here is which node sends which content in which time slot. These time slots are combined to
form one cycle. The cycles repeat here, as long as the bus is active. The assembly of the time
slots and their transport contents (who sends what at which time) is known as Scheduling.

Node K

%ﬁay"‘ %ﬁay“

Slot [Direction| Frame Slot [Direction| Frame Slot [Direction| Frame

1 Tx a 1 Tx a 1 Tx a

3 Rx X 3 Rx__ [3 Rx

‘ ~
Frame: a Frame: x Frame:a Frame: x

4 st1 4 slt2 Sot3 4 Slot1 4 Stz 4 Real-time
t1 t2 t4 t5 t6 H
< e >

Communication Cycle

Figure 40: Communication by slot definition

Next Communication Cycle

1.4 XCP Transport Layers

In the first communication cycle, node K sends frame a in slot 1. The scheduling is also stored in
the software of nodes L and M. Therefore, the contents of frame a are passed to the next higher
communication levels.

Scheduling is consolidated in a description file. This is not a DBC file, as in the case of CAN,
rather it is a FIBEX file. FIBEX stands for “Field Bus Exchange Format” and could also be used
for other bus systems. However, its current use is practically restricted to the description of the
FlexRay bus. FIBEX is an XML format and the XCP-on-FlexRay specification relates to FIBEX Ver-
sion 1.1.5 and FlexRay specification Version 2.1.

Cycles
0 1 2 3 4 5 6 63
brep: 1] | b[rep: 1] | b rep: 1] | brep: 1] | b [rep: 1] | b [rep: 1] | b [rep: 1] b [rep: 1]
b [rep: 1] b [rep: 1] b [rep: 1] b [rep: 1] b [rep: 1] b [rep: 1] b [rep: 1] b [rep: 1]

Slot ECU Channel

Node K

Node M

Static Segment

afrep: 1] | afrep: 1] | afrep: 1] | afrep: 1] | afrep: 1] | a[rep: 1] | a [rep: 1] afrep: 1]
dfrep: 1] | dfrep: 1] | dfrep: 1] | d[rep: 1] | d frep: 1] | d [rep: 1] | d [rep: 1] d [rep: 1]
nifrep:1] | nfrep:1] | nfrep:1] | nfrep:1] | nrep: 1] | nfrep: 1] | n [rep: 1] n [rep: 1]

Node L

Node L
Node 0
Node N

m (rep: 1] | m [rep: 1] | m [rep: 1] | m [rep: 1] | m [rep: 1] | m [rep: 1] | m [rep: 1] m [rep: 1]
rlrep: 1] | rfrep:1] | rlrep:1] | rlrep: 1] | rlrep:1] | rlrep: 1] | r[rep: 1] rlrep: 1]

Node K
Node M

ofrep: 1] | ofrep: 1

ofrep: 1] | ofrep: 1] | ofrep: 1] | ofrep: 1] | o [rep: 1] o [rep: 1]

Dynamic Segment

Node L
Node L

w>|lw|l>|olx|ol> o> o> o> o> o>

Node 0

Figure 41: Representation of a FlexRay communication matrix

Another format for describing bus communication has been defined as a result of the develop-
ment of AUTOSAR solutions: the AUTOSAR Description File, which is available in XML format. The
definition of XCP-on-FlexRay was taken into accountin the AUTOSAR 4.0 specification. However,
at the time of publication of this book this specification has not yet been officially approved and
therefore it will not be discussed further.

Due to other properties of the FlexRay bus, it is not sufficient to just give the slot number as
a reference to the contents. One reason is that multiplexing is supported: whenever a cycle is
repeated, the transmitted contents are not necessarily the same. Multiplexing might specify
that a certain piece of information is only sentin the slot in every second pass.

1 Fundamentals of the XCP protocol

Instead of indicating the pure slot number, “FlexRay Data Link Layer Protocol Data Unit Identi-
fiers” (FLX_LPDU_ID) are used, which can be understood as a type of generalized Slot ID. Four
pieces of information are needed to describe such an LPDU:

> FlexRay Slot Identifier (FLX_SLOT_ID)

> Cycle Counter Offset (OFFSET)

> Cycle Counter Repetition (CYCLE_REPETITION)

> FlexRay Channel (FLX_CHANNEL)

LPDU_ID
N

Channel A
//H\\]] Channel B
- -
| 1

HEN [T[T TT] ;Lgpl:'rei::t:ationof

the FlexRay LPDUs

CycleID —»

Slot ID —»

Scheduling also has effects on the use of XCP on FlexRay, because it defines what is sent pre-
cisely. This cannot be readily defined in XCP; not until the measurement runtime does the user
define which measured values are sent by assembling signals. This means that it is only possible
to choose which aspect of XCP communication can be used in which LPDU: CTO or DTO from Mas-
ter to Slave or from Slave to Master.

The following example illustrates this process: the XCP Master may send a command (CMD) in
slot n and Slave A gives the response (RES) in slot n + 2. XCP-on-FlexRay messages are always
defined using LPDUs.

The A2L description file is needed for access to internal ECU parameters; the objects with their
addresses in the ECU are defined in this file. In addition, the FIBEX file is necessary, so that
the XCP Master knows which LPDUs it may send and to which LPDUs the XCP Slaves send their
responses. Communication between XCP Master and XCP Slave(s) can only function through
combination of the two files, i.e. by having an A2L file reference a FIBEX file.

1.4 XCP Transport Layers

Excerpt of an A2L with XCP-on-FlexRay parameter setting:
/begin XCP_ON_FLX

XCPsim.xml”
,Cluster_1“

In this example, “XCPsim.xml” is the reference from the A2L file to the FIBEX file.

XCP-dedicated LPDU_IDs

3 Channel A
E [T] Channel B
3 |
I Figure 43:
[[Allocation of
Slot ID —» XCP communication

to LPDUs

You can read more details about XCP on FlexRay in CANape’s online Help. Supplied with CANape
is the FIBEX Viewer, which lets users conveniently view the scheduling. It is easy to allocate the
XCP messages to the LPDUs by making driver settings for the XCP-on-FlexRay device in CANape.

The protocol is explained in detail in ASAM XCP on FlexRay Part 3 Transport Layer Specification.
You will find an XCP-on-FlexRay demo in CANape with the virtual ECU XCPsim. The demo requires
real Vector FlexRay hardware.

1.4.4 Ethernet

XCP on Ethernet can be used with either TCP/IP or UDP/IP. TCP is a protected transport protocol
on Ethernet, in which the handshake method is used to detect any loss of a packet. In case of
packet loss, TCP organizes a repetition of the packet. UDP does not offer this protection mech-
anism. If a packet is lost, UDP does not offer any mechanisms for repeated sending of the lost
packet on the protocol level.

Not only can XCP on Ethernet be used with real ECUs, it can also be used for measurement and
calibration of virtual ECUs. Here, a virtual ECU is understood as the use of code that would other-
wise run in the ECU as an executable program (e.g. DLL) on the PC. Entirely different resources
are available here compared to an ECU (CPU, memory, etc.).

1 Fundamentals of the XCP protocol

But first the actual protocol will be discussed. IP packets always contain the addresses of the
sender and receiver. The simplest way to visualize an IP packet is as a type of letter that contains
the addresses of the recipient and the sender. The addresses of individual nodes must always be
unique. A unique address comprises the IP address and port number.

P XCP on Ethernet (TCP/IP and UDP/IP) Message (Frame)

 XCPHeader _| XCP Packet | xeprail

h i | empty for Ethernet

PID|FILL| DAQ | TIMESTAMP paTA |(TCP/IPand UDP/IP)
PEL NP | | | 1
" Control Field Length (LEN) Control Field
for Ethernet empty for Ethernet

(TCP/ IP and UDP/IP) (TCP&IP and UDP&IP)

Figure 44: XCP packet with TCP/IP or UDP/IP

The header consists of a Control Field with two words in Intel format (= four bytes). These words
contain the length (LEN) and a counter (CTR). LEN indicates the number of bytes in the XCP
packet. The CTRis used to detect the packet loss. UDP/IP is not a protected protocol. If a packet
is lost, this is not recognized by the protocol layer. Packet loss is monitored by counter infor-
mation. When the Master sends its first message to the Slave, it generates a counter number
that is incremented with each additional transmission of a frame. The Slave responds with the
same pattern: It increments its own counter with each frame that it sends. The counters of the
Slave and the Master operate independently of one another. UDP/IP is well suited for sending
measured values. If a packet is lost, then the measured values it contains are lost, resulting in
a measurement gap. If this occurs infrequently, the loss might just be ignored. But if the mea-
sured data is to be used as the basis for fast control, it might be advisable to use TCP/IP.

An Ethernet packet can transport multiple XCP packets, but an XCP packet may never exceed the
limits of a UDP/IP packet. In the case of XCP on Ethernet, there is no “Tail”, i.e. an empty con-
trol field.

You will find more detailed information on the protocol in ASAM XCP on Ethernet Part 3 Trans-
port Layer Specification. In CANape, you will also find an XCP on Ethernet demo with the virtual
ECU XCPsim or with virtual ECUs in the form of DLLs, which have been implemented by Simulink
models and the Simulink Coder.

1.4 XCP Transport Layers

1.4.5 SxI

SxIis a collective term for SPI or SCI. Since they are not buses, but instead are controller inter-
faces which are only suited for point-to-point connections, there is no addressing in this type
of transmission. The communication between any two nodes runs either synchronously or
asynchronously.

P XCP on Sxl Message (Frame) R
o L
< XCP Header | XCP Packet =|< XCP Tail >
PID |[FILL| DAQ TIMESTAMP DATA
| | |

< —p i< > ¢ |

Control Field Length (LEN) Control Field

for SxI for SxI

d LI
l VI

Checksum (CS)

Figure 45: XCP-on-SxI packet

The XCP header consists of a control field with two pieces of information: the length LEN and
the counter. The length of these parameters may be in bytes or words (Intel format). LEN indi-
cates the number of bytes of the XCP packet. The CTR is used to detect the loss of a packet. This
is monitored in the same way as for XCP on Ethernet: with counter information. Under certain
circumstances it may be necessary to add fill bytes to the packet, e.g. if SPI is used in WORD or
DWORD mode or to avoid the message being shorter than the minimal packet length. These fill
bytes are appended in the control field.

You will find more detailed information on the protocol in ASAM XCP on SxI Part 3 Transport
Layer Specification.

1.4.6 USB

Currently, XCP on USB has no practical significance. Therefore, no further mention will be made
of this topic; rather we refer you to ASAM documents that describe the standard: ASAM XCP on
USB Part 3 Transport Layer Specification.

1.4.7 LIN

At this time, ASAM has not yet defined an XCP-on-LIN standard. However, a solution exists from
Vector (XCP-on-LIN driver and CANape as XCP-on-LIN Master), which violates neither the LIN nor
the XCP specification and is already being used on some customer projects. For more detailed
information, please contact Vector.

1 Fundamentals of the XCP protocol

1.5 XCP Services

This chapter contains a listing and explanation of other services that can be realized over XCP.
They are all based on the already described mechanisms of communication with the help of CTOs
and DTOs. Some XCP services have already been explained, e.g. synchronous data acquisition/
stimulation and read/write access to device memory.

The XCP specification does indeed uniquely define the different services; at the same time it
indicates whether the service always needs to be implemented or whether it is optional. For
example, an XCP Slave must support “Connect” for the Master to set up a connection. On the
other hand, flashing over XCP is not absolutely necessary and the XCP Slave does not need to
support it. This simply depends on the requirements of the project and the software. All of the
services described in this chapter are optional.

1.5.1 Memory Page Swapping

As already explained in the description of calibration concepts, parameters are normally located
in flash memory and are copied to RAM as necessary. Some calibration concepts offer the option
of swapping memory segment pages from RAM and Flash. XCP describes a somewhat more gen-
eral, generic approach, in which a memory segment may contain multiple swappable pages.
Normally, this consists of a RAM page and a flash page. But multiple RAM pages or the lack of a
flash page are conceivable as well.

For a better understanding of the XCP commands for page swapping, the concepts of sector, seg-
ment and page will be explained once again at this point.

lXCP access
Segment 1 E Segment 1 Segment 1

o Page 0 5 Page 1 Page 2

2 A

]

- ECU access T

o

M|| Segment0 E

» Page 0 5

5 %)
g

=

2 Figure 46:
A address Memory

representation

1.5 XCP Services

From an XCP perspective, the memory of a Slave consists of a continuous memory that is
addressed with a 40-bit width. The physical layout of the memory is based on sectors. Know-
ledge of the flash sectors is absolutely necessary in flashing, because the flash memory can only
be erased a block at a time.

The logical structure is based on what are known as segments; they describe where calibration
data is located in memory. The start address and parameters of a segment do not have to be
aligned with the start addresses and parameters of the physical sectors. Each segment can be
subdivided into multiple pages. The pages of a segment describe the same parameters at the
same addresses. The values of these parameters and read/write rights can be controlled indi-
vidually for each page.

The allocation of an algorithm to a page within a segment must always be unique. Only one page
may be active in a segment at any given time. This page is known as the “active page for the
ECU in this segment.” The particular page that the ECU and the XCP driver actively access can be
individually switched. No interdependency exists between these settings. Similar to the nam-
ing convention for the ECU, the active page for XCP access is referred to as the “active page for
XCP access in this segment”.

In turn, this applies to each individual segment. Segments must be listed in the A2L file and
each segment gets a number that is used to reference the segment. Within an XCP Slave, the
SEGMENT_NUMBER must always begin at 0 and it is then incremented in consecutive numbers.
Each segment has at least one page. The pages are also referenced by numbers. The first page
is PAGE 0. One byte is available for the number, so that a maximum of 255 pages can be defined
per segment.

The Slave must initialize all pages for all segments. The master uses the command GET_CAL_PAGE
to ask the Slave which page is currently active for the ECU and which page for XCP access. It
can certainly be the case that mutual blocking may be necessary for the accesses. For exam-
ple, the XCP Slave may not access a page, if this page is currently active for the ECU. As men-
tioned, there may be a dependency - but not necessarily. It is a question of how the Slave has
been implemented.

If the Slave supports the optional commands GET_CAL_PAGE and SET_CAL_PAGE, then it also
supports what is known as page swapping. These two commands let the Master poll which pages
are currently being used and if necessary it can swap pages for the ECU and XCP access. The XCP
Master has full control over swapping of pages. The XCP Slave cannot initiate swapping by itself.
But naturally the Master must respect any restrictions of the Slave implementation.

What is the benefit of swapping?

First, swapping permits very quick changing of entire parameter sets — essentially a before-and-
after comparison. Second, the plant remains in a stable state, while the calibrator performs
extensive parameter changes on another page in the ECU. This prevents the plant from going
into a critical or unstable state, e.g. due to incomplete datasets during parameter setting.

1 Fundamentals of the XCP protocol

1.5.2 Saving Memory Pages - Data Page Freezing

When a calibrator calibrates parameters on a page, there is the conceptual ability in XCP to save
the data directly in the ECU. This involves saving the data of a RAM page to a page in nonvola-
tile memory. If the nonvolatile memory is flash, it must be taken into account that the segment
start address and the segment size might not necessarily agree with the flash sectors, which
represents a problem in erasing and rewriting the flash memory (see ASAM XCP Part 2 Protocol
Layer Specification).

1.5.3 Flash Programming
Flashing means writing data in an area of flash memory. This requires precise knowledge of how
the memory is laid out. A flash memory is subdivided into multiple sectors (physical sections),
which are described by a start address and a length. To distinguish them from one another, they
each get a consecutive identification number. One byte is available for this number, resulting in
a maximum of 255 sectors.

SECTOR_NUMBER [0, 1, 2 ... 255]

The information about the flash sectors is also part of the A2L data set.

Memory Hash

General | Bpent settings

Start End Size: Concatenation
EZUQUUDh 20A2DDh 12DER False

Flash options
[0x00 Optimization CCP Flash kernel type

OxFF Optimization Flash Kernel:

Flash signature
Enable flash signature Figure 47
Address: E105C | hex Length: [18 Representation
of driver settings
for the flash area

1.5 XCP Services

Flashing can be implemented using what are referred to as “flash kernels”. A flash kernel is exe-
cutable code thatis sent to the Slave’s RAM area before the actual flashing; the kernel then han-
dles communication with the XCP Master. It might contain the algorithm that is responsible for
erasing the flash memory. For security and space reasons, very frequently this code is not per-
manently stored in the ECU’s flash memory. Under some circumstances, a converter might be
used, e.g. if checksum or similar computations need to be performed.

Flashing with XCP roughly subdivides the overall flash process into three areas:

> Preparation (e.g. for version control and therefore to check whether the new contents
can even be flashed)

> Execution (the new contents are sent to the ECU)

> Post-processing (e.g. checksum checking etc.)

In the XCP standard, the primary focus is directed to the actual execution of flashing. Any-
one who compares this operation to flashing over diagnostic protocols will discover that the
process-specific elements, such as serial number handling with meta-data, are supported in
a rather spartan fashion in XCP. Flashing in the development phase was clearly the main focus
in its definition and not the complex process steps that are necessary in end-of-line flashing.

Therefore, what is important in the preparation phase is to determine whether the new con-
tents are even relevant to the ECU. There are no special commands for version control. Rather
the practice has been to support those commands specific to the project.

The following XCP commands are available:

PROGRAM_START: Beginning of the flash procedure

This command indicates the beginning of the flash process. If the ECU is in a state that does not
permit flashing (e.g. vehicle speed > 0), the XCP Slave must acknowledge with an ERRor. The
actual flash process may not begin until the PROGRAM_START has been successfully acknowl-
edged by the Slave.

PROGRAM_CLEAR: Call the current flash memory erasing routine

Before flash memory can be overwritten with new contents, it must first be cleared. The call of
the erasing routine via this command must be implemented in the ECU or be made available to
the ECU with the help of the flash kernel.

PROGRAM_FORMAT: Select the data format for the flash data

The XCP Master uses this command to define the format (e.g. compressed or encrypted) in which
the data are transmitted to the Slave. If the command is not sent, the default setting is non-
compressed and non-encrypted transmission.

PROGRAM: Transfer the data to the XCP Slave

For the users who are very familiar with flashing via diagnostics: this command corresponds to
TRANSFERDATA in diagnostics. Using this command, data is transmitted to the XCP Slave, which
is then stored in flash memory.

m 1 Fundamentals of the XCP protocol

PROGRAM_VERIFY: Request to check the new flash contents
The Master can request that the Slave perform an internal check to determine whether the new
contents are OK.

PROGRAM_RESET: Reset request to the Slave
Request by the Master to the Slave to execute a Reset. Afterwards, the connection to the Slave
is always terminated and a new CONNECT must be sent.

1.5.4 Automatic Detection of the Slave

The XCP protocol lets the Master poll the Slave about its protocol-specific properties. A number
of commands are available for this.

GET_COMM_MODE_INFO

The response to this command gives the Master information about the various communication
options of the Slave, e.g. whether it supports block transfer or interleaved mode or which mini-
mum time intervals the Master must maintain between Requests in these modes.

GET_STATUS

The response to this request returns all current status information of the Slave. Which resources
(calibration, flashing, measurement, etc.) are supported? Are any types of memory activities
(DAQ list configuration, etc.) still running currently? Are DTOs (DAQ, STIM) being exchanged
right now?

GET_DAQ_PROCESSOR_INFO
The Master gets general information, which it needs to know about the Slave limitations: num-
ber of predefined DAQ lists, available DAQ lists and events, etc.

GET_DAQ_RESOLUTION_INFO

Other information about the DAQ capabilities of the Slave is exchanged via this command: max-
imum number of parameters for an ODT for DAQ and for STIM, granularity of the ODT entries,
number of bytes in time stamp transmission, etc.

GET_DAQ_EVENT_INFO

When this command is used, the call is made once per ECU event. Information is transmitted
here on whether the event can be used for DAQ, STIM or DAQ/STIM, whether the event occurs
periodically and if so which cycle time it has, etc.

1.5 XCP Services

1.5.5 Block Transfer Mode for Upload, Download and Flashing

In the “normal” communication mode, each command from the Master is acknowledged by a
response of the Slave. However, in some cases it may be desirable, for performance reasons, to
use what is referred to as the block transfer mode.

Master Slave
Request k
Partl
\Pm‘ 1
MIN_ST

Part3 —r

MAX_BS
‘W
Request k+1
Figure 48:

Representation
Y v of the block
Time

transfer mode

The use of such a method accelerates the procedure when transmitting large amounts of data
(UPLOAD, SHORT_UPLOAD, DOWNLOAD, SHORT_DOWNLOAD and PROGRAM). The Master can find
out whether the Slave supports this method with the request GET_COMM_MODE_INFO. You will
find more on this in ASAM XCP Part 2 Protocol Layer Specification.

1 Fundamentals of the XCP protocol

1.5.6 Cold Start Measurement (start of measurement during power-on)

Even with the capabilities of XCP described to this point, it would be impossible to implement
an event-driven measurement that can in practice be executed early in the ECU’s start phase.
The reason is that the measurement must be configured before the actual measurement takes
place. If one attempts to do this, the ECU’s start phase has long been over by the time the first
measured values are transmitted. The approach that is used to overcome this problem is based
on a simple idea.

It involves separating the configuration and the measurement in time. After the configura-
tion phase, the measurement is not started immediately; rather the ECU is shut down. After a
reboot, the XCP Slave accesses the existing configuration directly and immediately begins to
send the first messages. The difficulties associated with this are obvious: the configuration of
the DAQ lists is stored in RAM, and therefore the information no longer exists after a reboot.

To enable what is known as the RESUME mode to enable a Cold Start Measurement, a nonvolatile
memory is needed in the XCP Slave which preserves its data even when it is not being supplied
with power. EEPROMs are used in this method. In this context, itis irrelevant whether it is a real
EEPROM or one that is emulated by a flash memory.

You will find more details in ASAM XCP Part 1 Overview Specification in the chapter 1.4.2.2
“Advanced Features”.

1.5 XCP Services

1.5.7 Security Mechanisms with XCP

An unauthorized user should be prevented as much as possible from being able to make a con-
nection to an ECU. The “seed & key” method is available for checking whether or not a connec-
tion attempt is authorized. The three different access types can be protected by seed & key:
measurement /stimulation, calibration and flashing.

The “seed & key” method operates as follows: in the connect request by the Master, the Slave
sends a random number (= seed) to the Master. Now, the Master must use an algorithm to gen-
erate a response (= key). The key is sent to the Slave. The Slave also computes the expected
response and compares the key of the Master with its own result. If the two results agree, both
the Master and Slave have used the same algorithm. Then the Slave accepts the connection to
the Master. If there is no agreement, the Slave declines communication with the Master.

Normally, the algorithm is available as a DLL in the Master. So, if a user has the “seed & key”
DLL and the A2L file, nothing stands in the way of accessing the ECU’s memory. When the ECU
is approaching a production launch, the XCP driver is often deactivated. A unique sequence of
individual diagnostic commands is usually used to restore XCP access to the ECU. This makes
the XCP driver largely available even in production vehicles, but it is normally deactivated to
protect against unauthorized manipulation of the ECU (see ASAM XCP Part 2 Protocol Layer
Specification).

Whether or not seed & key or deactivation of the XCP driver is used in a project is implementa-
tion-specific and independent of the XCP specification.

2 ECU Description File A2L

2 ECU Description File A2L

m 2 ECU Description File A2L

One reason why an A2L file is needed has already been named: to allocate symbolic names to
addresses. For example, if a software developer has implemented a PID controller and assigned
the names P1,I1and D1in his application for the proportional, integral and differential compo-
nents, then the calibrator should be able to access these parameters with their symbolic names.
Let us take the following figure as an example:

G. [18] Parameter =0OX

- 7B = | & [Py 1. 7e+

Name Value

P1 123 | X

= o — Figure 49:

D1 | 05 Parameters in

a calibration window

The user can conveniently modify values using symbolic names. Another example is provided by
viewing signal variables that are measured from the ECU:

De [14] Graphic

Name \falue... Scaling ... Gradient 3

v o= P _Level |8 2Volt 1 2 9

0,20 £
[+ B= PwWhFiltered | 50 10 50
| 01000 | E
icd B 100 |10 |00 :
| 10,1001 . E
v & Triangle 9 10 1

[-50,501

1=12.15859s

Figure 50: Signal response over time

In the legend, the user can read the logical names of the signals. The addresses at which the
parameters were located in the ECU are of secondary importance in the offline analysis of val-
ues. Naturally, the correct address is needed to request the values in the ECU, but the numeric
value of the address itself is of no importance to the user. The user uses the logical name for
selection and visualization purposes. That is, the user selects the object by its name and the XCP
Master looks for the associated address and data type in the A2L.

2 ECU Description File A2L

Another attribute of a parameter might be the definition of a minimum or maximum value. The
value of the object would then have to lie within these limits. Imagine that you as the software
developer define a parameter that has a direct effect on a power output stage. You must now
prevent the user — whatever the user’s reasons might be — from configuring the output stage
that would result in catastrophic damage. You can accomplish this by defining minimum and
maximum values in the A2L to limit the permitted values.

Rules for conversion between physical and raw values are also defined in the A2L. You can visu-
alize a simple example of such a conversion rulein a sensor that has an 8-bit value. The numeric
values output by the sensor lie between 0 and 255, but you wish to see the value as a percent-
age value. Mapping of the sensor value [0 ... 255] to [0 ... 100 %] is performed with a conver-
sion rule, which in turn is stored in the A2L. If an object is measured, which exists as a raw value
in the ECU and is also transmitted as such, the measurement and calibration tool uses the stored
formula and visualizes the physical value.

Besides scalar parameters, characteristic curves and maps are frequently used. Some might uti-
lize a proximity sensor such as a Hall sensor, which determines distance as a function of mag-
netic field strength and you may wish to use this distance value in your algorithm. The magnetic
field and distance value do not run linear to one another. This nonlinearity of values would make
formulation of the algorithm unnecessarily difficult. With the help of a characteristic curve, you
can first linearize the values before you input the values into your algorithm as input variables.

Another application area for characteristic maps is their use as substitutes for complex compu-
tations. For example, if there is a relationship y = f(x) and the function fis associated with a lot
of computing effort, it is often simpler to simply compute the values over the potential range of
x in advance and store the results in the form of a table (= characteristic curve). If the value x
is now in the ECU, the value y does not need to be computed at the controller’s runtime, rather
the map returns the result y to the input variable x. It may be necessary to interpolate between
two values, but that would be the extent of the calculations.

How is this characteristic curve stored in memory? Are all x values input first and then ally val-
ues? Or does storage follow the pattern: x1, y1; x2, y2; x3, y3 ...? Since various options are
available, the type of memory storage is defined in a storage scheme in the A2L.

The convenience for the user comes from the ability to work with symbolic names for parame-
ters, the direct look at the physical values and access to complex elements such as characteris-
tic maps, without having to concern oneself with complex storage schemes.

Another advantage is offered by the communication parameters. They are also defined in the
A2L. In the communication between the measurement and calibration tool and the ECU, the
parameter set from the A2Lis used. The A2L contains everything that the measurement and cal-
ibration tool needs to communicate with the ECU.

m 2 ECU Description File A2L

2.1 Setting Up an A2L File for an XCP Slave

The A2L file is an ASCII-readable file, which describes the following with the help of keywords:

> Interface-specific parameters between measurement and calibration tool and A2L file (the
description is located at the beginning of the A2L file and is located in what is referred to as
the AML tree),

> Communication to the ECU,

> Storage scheme for characteristic curves and maps (keyword RECORD_LAYOUT),

> Conversion rules for converting raw values to physical values (keyword COMPU_METHOD),

> Measurement parameters (keyword MEASUREMENT),

> Calibration parameters (keyword CHARACTERISTIC) and

> Events that are relevant for triggering a measurement keyword EVENT),

A summary of parameters and measurement parameters is made with the help of groups (keyword
GROUP).

Example of a measurement parameter with the name “Shifter_B3":

/begin MEASUREMENT Shifter_B3 “Single bit signal (bit from a byte shifting)”
UBYTE HighLow 000 1
READ_WRITE
BIT_MASK 0x8
BYTE_ORDER MSB_LAST
ECU_ADDRESS 0x124C02
ECU_ADDRESS_EXTENSION 0x0
FORMAT “%.3"
/begin IF_DATA CANAPE_EXT
100
LINK_MAP “byteShift” 0x124C02 0x0 0 0x0 1 0x87 0x0
DISPLAY 00 20
/end IF_DATA
/end MEASUREMENT

Example of a parameter map with the name KF1:

/begin CHARACTERISTIC KF1 “8*8 BYTE no axis”
MAP 0xE0338 __UBYTE_Z 0 Factor100 0 2.55
ECU_ADDRESS_EXTENSION 0x0
EXTENDED_LIMITS 0 2.55
BYTE_ORDER MSB_LAST
BIT_MASK OxFF
/begin AXIS_DESCR

FIX_AXIS NO_INPUT_QUANTITY BitSlice. CONVERSION 8 0 7
EXTENDED_LIMITS 0 7

READ_ONLY

BYTE_ORDER MSB_LAST

FORMAT “%.0"

2.2 Manually Creating an A2L File

FIX_AXIS_PAR_DIST0138

/end AXIS_DESCR

/begin AXIS_DESCR
FIX_AXIS NO_INPUT_QUANTITY BitSlice.CONVERSION 8 0 7
EXTENDED_LIMITS 0 7
READ_ONLY
BYTE_ORDER MSB_LAST
FORMAT “%.0"
FIX_AXIS_PAR_DIST0138

/end AXIS_DESCR

/begin IF_DATA CANAPE_EXT
100
LINK_MAP “map3_8_8_uc” 0xE0338 0x0 0 0x0 1 0x87 0x0
DISPLAY 0 0 255

/end IF_DATA

FORMAT “%.3"

/end CHARACTERISTIC

The ASCII text is not easy to understand. You will find a description of its structure in ASAM XCP
Part 2 Protocol Layer Specification in chapter 2.

The sections below describe how to create an A2L. Let us focus on the actual contents of an A2L
and their meanings and leave the details of the A2L description language to an editor. The A2L
Editor that is supplied with CANape is used here.

2.2 Manually Creating an A2L File

The A2L mainly describes the contents of the memory of the XCP Slave. The contents depend on
the application in the Slave, which was developed as C code. After the compiler/linker run of
the application code, important elements of an A2L file already exist in the linker-map file: the
names of the objects, their data types and memory addresses. Still lacking are the parameters
for communication between XCP Master and Slave. Other information is usually needed such as
minimum and maximum values of parameters, conversion rules, storage schemes for character-
istic maps etc.

Let us begin by creating an empty A2L and the communication parameters: If you wish to cre-
ate an A2L that describes an ECU with an XCP-on-CAN interface, for example, you create a new
device in CANape and select XCP on CAN as the interface. Then you can supplement this with
other communication-specific information (e.g. CAN identifiers). After saving the file, you have
an A2L that contains the entire communication content of the A2L. Still lacking are the defini-
tions of the actual measurement and calibration parameters.

2 ECU Description File A2L

In the A2L Editor (available as part of CANape or as a separate tool), the linker-map file is asso-
ciated to the A2L. In a selection dialog, the user can now select those parameters from the map
file which it needs in the A2L: scalar measurement and calibration parameters, characteristic
curves and maps. The user can gradually add the desired parameters to the A2L step by step and
group them. Other object-specific information is also added using the editor.

What should be done when you modify your code, recompile it and link it? It is highly proba-
ble that the addresses of objects will change. Essentially, it is not necessary to generate a new
A2L. If you wish to have objects just added to the code also be available in the A2L, you must of
course add them to the A2L. Address updating is always necessary in the A2L. This is done with
the editor; it searches for the relevant entry in the linker-map file based on the name of the A2L
object, reads out the address and updates it in the A2L.

If your application changes very dynamically - objects are renamed, data types are adapted,
parameters are deleted and others added - then the manual work method is impractical. To gen-
erate an A2L from a C code, other tools are available for automatic processing.

On the Vector homepage you will find information on the “ASAP2 Tool-Set” with which you can
automate the generation of A2Ls from the source code in a batch process.

2.3 A2L Contents versus ECU Implementation

When an XCP Master tool reads in an A2L that does not fully match the ECU, misunderstandings
in the communication might occur. For example, another value related to time stamp resolution
might be in the A2L file that differs from the value implemented in the ECU. If this is the case,
the problem must be detected and solved. The user gets support from the Master, who can poll
the Slave via the protocol to determine what was really implemented in the Slave.

XCP offers a number of functions that were developed for automatic detection of the Slave. Of
course, this assumes that automatic detection is implemented in the Slave. If the Master polls
the Slave and the Slave’s responses do not agree with the parameter set of the A2L description
file, the Master must decide which settings to use. In CANape, the information that is read out
by the Slave is given a higher priority than the information from the A2L.

2.3 A2L Contents versus ECU Implementation

Here is an overview of possible commands that are used to find out something about the XCP
implementation in the Slave:

GET_DAQ_PROCESSOR_INFO
Returns general information on the DAQ lists: MAX_DAQ, MAX_EVENT_CHANNEL, MIN_DAQ

GET_DAQ_RESOLUTION_INFO
Maximum parameter of an ODT entry for DAQ/STIM, time interval information

GET_DAQ_EVENT_INFO (Event_channel_number)
Returns information for a specific time interval: Name and resolution of the time interval, num-
ber of DAQ lists that may be assigned to this time interval ...

GET_DAQ_LIST_INFO (DAQ_List_Number)
Returns information on the selected DAQ list: MAX_ODT, MAX_ODT_ENTRIES exist as predefined
DAQ lists ...

3 Calibration Concepts

3 Calibration Concepts

3 Calibration Concepts

ECU parameters are constant parameters that are adapted and optimized during the develop-
ment of the ECU or an ECU variant. This is an iterative process, in which the optimal value of a
parameter is found by repeated measurements and changes.

The calibration concept answers the question of how parameters in the ECU can be changed
during an ECU’s development and calibration phases. There is not one calibration concept that
exists, rather several. Which concept is utilized usually depends very much on the capabilities
and resources of the microcontroller that is used.

Normally, parameters are stored in the production ECU’s flash memory. The underlying program
variables are defined as constants in the software. To make parameters modifiable at runtime
during an ECU’s development, additional RAM memory is needed.

A calibration concept is concerned with such questions as these: How do the parameters initially
find their way from flash to RAM? How is the microcontroller’s access to RAM rerouted? What
does the solution look like when there are more parameters than can be simultaneously stored
in RAM? How are the parameters copied back into flash? Are changes to the parameters persis-
tent, i.e. are they preserved when the ECU is turned off?

A distinction is made between transparent and non-transparent calibration concepts. Transpar-
ent means that the calibration tool does not need to be concerned with the above questions,
because all necessary mechanisms are implemented in the ECU.

Several methods are briefly introduced in the following.

3.1 Parameters in Flash

The software developer defines in the source code whether a parameter is a variable or a con-
stant, i.e. whether a parameter is stored in flash or in RAM memory.

C code example:
const float factor = 0.5;

The “factor” parameter represents a constant with the value 0.5. During compiling and linking
of the code, memory space is provided in flash for the “factor” object. The object is allocated
an address that lies in the data area of the flash memory. The value 0.5 is found at the relevant
address in the hex file and the address appears in the linker-map file.

The simplest conceivable calibration concept involves modifying the value in C code, generating
a new hex file and flashing. However, this method is very laborious, because every value change
must be made in code, resulting in the need for a compiler/linker run with subsequent flashing.
An alternative approach would be to only modify the value in the hex file and then reflash this
file. Every calibration toolis capable of doing this. It is referred to as “offline calibration” of the
hex file, which is a very commonly used method.

3.1 Parameters in Flash

Under some circumstances, with certain compilers it may be necessary to explicitly ensure that
parameters are always also stored in flash memory and not integrated in the code, for exam-
ple and therefore do not appear at all in the linker-map file. Usually, one does not want to leave
to chance where a constant is created in flash memory. The necessary means for accomplish-
ing this are almost always compiler-specific pragma instructions. To prevent the compiler from
embedding them in the code, it is generally sufficient to use the “volatile” attribute for con-
stant parameters. A typical definition of a flash constant appears as in the following example:

C code example:

#pragma section “FLASH_Parameter”
volatile const float factor = 0.5;

Itis normally not possible to calibrate parametersin flash online. Indeed, most microcontrollers
are able to program their flash themselves, which is necessary for the purposes of re-program-
ming in the field. Nonetheless, flash memory always has the property of being organized into
larger blocks (sectors), which can only be erased as a whole. It is practically impossible to flash
justindividual parameters, because the ECU normally does not have the resources to buffer the
rest of the sector and reprogram it. In addition, this process would take too much time.

Some ECUs have the ability to store data in what is known as an EEPROM memory. In contrast to
flash memories, EEPROM memories can erase and program each memory cell individually. The
amount of available EEPROM memory is always considerably less than the available flash mem-
ory and it is usually limited to just a few kilobytes. EEPROM memory is often used to store pro-
grammable parameters in the service shop or to implement a persistence mechanism in the
ECU, e.g. for the odometer. Online calibration would be conceivable here, but it is seldom used,
because access to EEPROM cells is relatively slow and during the booting process EEPROM param-
eters are usually copied over to RAM memory, where it is possible to access them directly. ECUs
which have no EEPROM memory often implement what is known as an EEPROM emulation. In
this method, multiple small flash sectors are used in alternation to record parameter changes,
so that the last valid value can always be determined. Online calibration would also be conceiv-
able with this method.

In both cases, the relevant memory accesses would then be intercepted in the software com-
ponents of the XCP driver and implemented with the software routines of the EEPROM or the
EEPROM emulation. The Vector XCP Professional driver offers the software hooks needed for this.

3 Calibration Concepts

3.2 Parameters in RAM

The most frequently used approach to modifying parameters at runtime (“online calibration”) is
to create the parameters in the available RAM memory.

C code example:

#pragma section “RAM_Parameter”
volatile float factor = 0.5;

This defines the parameter “factor” as a RAM variable with the initial value 0.5. During compil-
ing and linking of the code, memory space is reserved for the object “factor” in RAM and the
associated RAM address appears in the linker-map file. The initial value 0.5 is stored in flash
memory and at the relevant location in the hex file. The addresses of the initial values in flash
memory are defined by parameterization of the linker, but they do not appear in the linker-map
file.

During booting of the ECU, all RAM variables are initialized once with their initial values from
flash memory. This is usually executed in the start-up code of the compiler producer and the
application programmer does not need to be concerned with it. The application uses the val-
ues of parameters located in RAM and they can be modified via normal XCP memory accesses.

From the perspective of the ECU software, calibration parameters in RAM are always still
unchangeable, i.e. the application itself does not change them. Many compilers discover this
fact by code analysis and simply optimize the necessary RAM memory space away. Normally,
it is therefore also necessary to prevent the compiler from optimizing by using the “volatile”
attribute.

From the perspective of the calibration tool, the RAM area in which the parameters are located
is referred to as calibration RAM (memory that can be calibrated).

FLASH

RAM
- -} Calibration RAM

I Parameters

Figure 51:
Initial parameter
setting in RAM

The calibration RAM does not need to consist of a fully contiguous RAM area. It may also be dis-
tributed into multiple areas or even in any desired way. Nonetheless, it offers significant advan-
tages for organizing the parameters in just a few contiguous RAM areas and isolating them from
other RAM parameters such as changing state variables and intermediate results. This is espe-
cially important if offline calibration of the calibration RAM with a hex file should be enabled.
At the user’s request, the calibration tool must be able to load the parameters that were mod-
ified offline into the ECU during the transition from offline calibration to online calibration.

3.2 Parameters in RAM

This case occurs very frequently. For example, when calibrators reconnect with their ECU on the
next work day, they want to resume work at the point at which they stopped the evening before.
However, booting of the ECU causes the flashed contents to be copied to the RAM as an initial
dataset. To let users resume with work accomplished on the previous day, the parameter set
file saved the previous evening in the ECU’s RAM must be loaded. This loading process may be
time optimized by limiting the number of necessary transmissions to a minimum. It is advanta-
geous here if the tool can quickly and reliably determine - by forming a checksum over larger
contiguous areas — whether there are differences. If there are no differences between the cal-
ibration RAM contents in the ECU and the file modified using the tool, this area does not need
to be transferred. If the memory area with the calibration parameters is not clearly defined, or
if itincludes parameters that are modified by the ECU software, a checksum calculation always
shows a difference and the parameter values are transmitted, either from the ECU to the XCP
Master orin a reverse direction. Depending on the transmission speed and amount of data, this
transmission could take several minutes.

Another advantage of clearly defined memory segments is that the memory area for initial val-
ues in flash memory can be used for offline calibration. The contents of the flash memory are
defined using flashable hex files. If the calibration tool knows the location of parameters in the
hex file, it can modify their values and implement new initial values in the ECU by flashing the
modified hex file.

The calibration tool not only needs to know the location of parameters in RAM, but also the ini-
tial values in flash. A prerequisite is that the RAM memory segment must be initialized by copy-
ing from an identically laid out memory segment in flash, as is the usual practice in most com-
pilers/linkers. If the addresses of parameters in RAM are in the A2L file, it is only necessary to
let the tool know the offset to the start address of the calibration RAM, which it must add to get
to the start address of the relevant flash area. This offset then applies to each individual param-
eterin the A2L.

The calibration tool can then either generate flashable hex files for this area itself, or it can
place them directly on the original hex files of the linker to modify the initial values of param-
eters in the hex file.

3 Calibration Concepts

3.3 Flash Overlay

Many microcontrollers offer options for overlaying memory areas in flash with internal or exter-

nal RAM. This process is referred to as flash emulation or flash overlay. A lot is possible, from

the use of a Memory Management Unit all the way to dedicated mechanisms that precisely serve

this purpose. In this case the parameters are created as parameters in flash just as in calibra-

tion concept 1. This method offers enormous advantages compared to the described calibration

concept 2 “Parameters in RAM”:

> No distinction is made between flash and RAM addresses. The flash addresses are always
located in the A2L file, the hex file and linker-map file. This produces clear relationships, the
hex file is directly flashable and the A2L file matches it exactly.

> The overlay can be activated or deactivated as a whole, which enables lightning-quick swap-
ping between values in flash and those in RAM. They are referred to as the RAM page and the
flash page of a memory segment. XCP supports control of memory page swapping with special
commands.

> The memory pages might be swapped separately, e.g. for XCP access and ECU access, i.e. XCP
could access a memory page while the ECU software works with the other page. This permits
such operations as downloading of the offline calibration data to RAM, while the ECU is still
working with the flash data; this avoids potential inconsistencies that could be problematic
on a running ECU.

> The overlay with RAM does not need to be complete and it can be adapted to the application
case. It is possible to work with less RAM than with flash. More on this later.

A typical procedure for connecting the calibration tool to the ECU with the subsequent down-
load of values that were calibrated offline appears as follows:

Connects to the ECU CONNECT
Connects XCP Master to RAM page SET_CAL_PAGE XCP to RAM
Checksum calculation CALC_CHECKSUM

When a difference has been detected in the checksum calculation over the RAM area, first the
useris normally asked how to proceed. Should the contents of ECU RAM be sent to the Master, or
should the contents of a file on the Master page be sent to the ECU’s RAM? If the user decides to
write the offline changes to the ECU, the subsequent process appears as follows:

ECU should use the dataset of the flash page ~ SET_CAL_PAGE ECU to FLASH
Copy file from Master to the RAM page DOWNLOAD ...
ECU should use the dataset of the RAM page SET_CAL_PAGE ECU to RAM

Afterwards, the memory page is always switched over to RAM, so that parameters can be
modified. But the user can also explicitly indicate which memory page should be active in the
ECU. For example, the behavior of the RAM parameter set can be compared to that of the flash
parameter set, orin an emergency it can be switched back to a proven parameter set in flash at
lightning speed.

3.4 Dynamic Flash Overlay Allocation

3.4 Dynamic Flash Overlay Allocation

The concepts for calibration RAM described so far are unproblematic if sufficient RAM is avail-
able for all parameters. But what if the total number of parameters does not fit into the avail-
able RAM area?

Here, it is advisable to overlay flash with RAM dynamically and do not overlay the affected flash
memory with RAM until the actual write access to a parameter. This procedure can occur with a
certain granularity and - depending on the implementation - it may be transparent to the cal-
ibration tool from the XCP perspective. If the XCP driver detects a write access to flash in the
ECU which would lead to a change, a part of calibration RAM is used to copy over the relevant
part of flash and activate the overlay mechanism for this part. This involves allocating the RAM,
i.e. in a fixed layout and it is identified as utilized. However, the resources of the calibration
RAM are limited. During the calibration process, RAM area that has already been allocated is
no longer released, so the available calibration RAM dwindles with further requests. If the RAM
resources are used up and a new allocation is required, the user is informed of the exhausted
RAM resources. The user is offered the option of flashing or saving the changes made up to that
point. This frees up the allocated RAM area again and the user can once again calibrate. The
variant in which the ECU autonomously flashes the previously changed parameters is usually
ruled out here for the reasons already cited in calibration concept “Parameter in Flash”.

In some cases, the download of a parameter set created offline might not be executable due
to insufficient RAM resources. The only alternative is to flash it. The user can always cancel the
changes from the tool and this releases the allocated RAM blocks again.

In this concept, page swapping between the RAM and flash pages is also possible without any
limitations.

The parameters should be organized together in flash according to function, so that the avail-
able RAM blocks can be used as efficiently as possible. The software developer then specifies
that the parameters, which belong together thematically, also lie in a contiguous memory area.
After copying to RAM, the parameters needed for tuning the particular function are fully ready
for use.

m 3 Calibration Concepts

3.5 RAM Pointer Based Calibration Concept per AUTOSAR

This concept does not require the use of an AUTOSAR operating system; it can even be used in a
different environment - e.g. without an operating system. The concept exhibits a key similar-
ity to the previous concept. The primary difference is that the substitution of flash for RAM is
not implemented by hardware mechanisms, but by software mechanisms instead. The calibra-
tion parameters are always referenced by pointers from the ECU software. Flash or RAM con-
tents are accessed by changing this pointer. The flash parameters to be modified are copied to
a defined block with available RAM. This method can be implemented fully transparently from
the XCP perspective, just as in the previous method. As an alternative, the user of the calibra-
tion tool can explicitly select the parameters to be modified by preselecting the desired param-
eters. The advantage of this is that resource utilization and loading are visible to the user and
the user is not surprised by a lack of memory in the midst of working.

3.5.1 Single Pointer Concept
The pointer table is located in RAM. When booting the ECU, all pointers indicate the parame-
ter values in flash. The location and parameters of the calibration RAM are indeed known, but

it does not yet contain any parameter values after booting. Initially, the application works
entirely from flash.

FLASH Pointertable RAM

m

Figure 52:
Bl Parameters Initial situation
after booting

When the user selects a parameter from the A2L file for the first time after booting and wishes
to write access it, this triggers a copying operation within the ECU first. The XCP Slave deter-
mines that the address to which the access should be made is located in the flash area, and it
copies the parameter value to the calibration RAM. A change is also made in the pointer table
to ensure that the application no longer gets the parameter value from flash, but instead from
the RAM area:

3.5 RAM Pointer Based Calibration Concept per AUTOSAR

FLASH Pointertable RAM
—
—0
—0
—
—

Figure 53:
B Parameters Pointer change and

copying to RAM

The application continues to get the parameter value via the pointer table. But since the pointer
indicates the RAM address, the value is retrieved from there. As a result, the user can change
the parameter value via XCP and observe the effects of the change in the measurement. The dis-
advantage of this method is that an entry in a pointer table must be available for each parame-
ter and in turn the method is associated with substantial additional RAM memory requirements
for the pointer table.

The next figureillustrates the problem. Three parameters of a PID controller (P, Iand D) are con-
tained in an ECU’s flash area. The RAM addresses and parameter values in RAM are also already
changed in the pointer table.

Parameter Flash Pointertable RAM
Addr. Content Addr. Addr. Content
P 0x0000100A 0x11 0x000A100A —>» O0x000A100A Ox44
I 0x000012BC 0x22 0x000A100B —» 0x000A100B 0%X°°
D 0x00007234 0x33 0x000A100C —>» 0x000A100C 0x66

Figure 54: Pointer table for individual parameters

Calibration concepts are very important, because RAM resources are scarce. Large RAM pointer
tables would make a concept self-defeating.

To avoid having to create a pointer for each individual parameter and having the method be
used as such, the parameters can be combined into structures. This requires just one pointer
per structure. When the user selects a parameter, not only is this parameter copied to RAM, but
so is the entire associated structure. The granularity of the structures is of key importance here.
With large structures only a few pointers are necessary. In turn, this means that with the deci-
sion for a specific parameter, a rather large associated structure is copied to the RAM area and
this can cause the limits of calibration RAM space to be reached quickly.

3 Calibration Concepts

Example:
The calibration RAM should be 400 bytes in size. Four structures are defined in the software with
the following parameters:

Structure A: 250 bytes
Structure B: 180 bytes
Structure C: 120 bytes
Structure D: 100 bytes

When the user selects a parameter from structure A, the 250 bytes are copied from flash to the
calibration RAM, and the user has XCP access to all parameters located in structure A. If the cali-
bration task is limited to the parameters of this structure, the calibration RAM is fully sufficient.
However, if the user selects another parameter located in a different structure, e.g. structure
C, these 120 bytes must also be copied to the calibration RAM. Since the calibration RAM can
handle 400 bytes, the user can access all parameters of structures A and C simultaneously.

If another selected parameter is not located in structure C, but rather in structure B, the 180
bytes of structure B would have to be copied to RAM in addition to the 250 bytes of structure A.
However, since the space in RAM is inadequate for this, the userindeed has access to the param-
eters of structure A, but not to the data of structure B, because the ECU cannot execute the copy
command.

You can learn more about how this approach works in CANape. Start CANape with the “AUTOSAR
Single Pointered Demo” project. You will find more information on its use in CANape on the
“Introduction” page of the project.

You will find a source code example under the “Demos” category at the Vector Download Center.
A code example on how to use the calibration concept is contained in the “XCP Sample Imple-
mentation” under <Installation DIR>\Samples\CAN\CAN MPC55xx\XCPDemo.

3.5.2 Double Pointer Concept

A disadvantage of the single pointer concept is that memory page swapping is not easy to imple-
ment. The calibration tool could simply describe the pointer table completely for page swap-
ping, but this is not feasible in a short period of time without resulting in temporary inconsis-
tencies and side effects. A tool-transparent implementation would double the memory space
requirement for the pointer table, because when swapping the memory page into flash, a copy
of the previous pointer table would have to be created with RAM pointers.

For applications with large pointer tables, a transparent implementation or a fully consistent
swapping, there is the option of extending the method to a double pointer concept. To explain
how this is done, we return once again to the initial RAM setting.

3.6 Flash Pointer Based Calibration Concept

Figure 55 represents the pointer table. It lies in RAM. As already mentioned, this table must be
copied from flash into RAM. As a result, this table lies in flash memory. If another pointer is now
used (a table pointer), which points to either the pointer table in RAM or in flash, one arrives
at a double pointer solution.

FLASH RAM
Pointertable FLASH Pointertable RAM
e
e =
I ———— I

—— —
——

N
v
Tablepointer

Figure 55:
Double pointer concept

The parameter values are initially accessed via the table pointer. If the table pointer indicates
the pointer table in RAM, the application essentially accesses the actual parameters via the con-
tents of the RAM pointer table. The low access speed and the creation of more program code are
disadvantages of this solution.

3.6 Flash Pointer Based Calibration Concept

This method was patented several years ago by the company ZF Friedrichshafen under the name
“InCircuit2” and bears a strong resemblance to the pointer-based concept of AUTOSAR. Here
too, the application in the ECU accesses parameter data using a pointer table. However, this
pointer table is not located in RAM, but in flash instead. Changes to the pointer table can there-
fore only be made by flash programming. A tool-transparent implementation is not possible.
The advantage lies in the RAM memory that is saved since it no longer contains the pointer
table.

You can find out how this approach works in CANape. Start CANape with the “InCircuit2” project.
You will find more information on its use in CANape on the “Introduction” page of the project.

4 Application Areas of XCP

4 Application Areas of XCP

m 4 Application Areas of XCP

When ECU calibrators think about the use of XCP, they are usually fixated on use of the proto-
colin the ECU.

Simulink

xCp

Slave

Prototype or
xcp ECU Hardware
Slave

Measurement/
xcp XCP xcp Calibration
Master Slave | Hardware*

xCp EXE/DLL
Slave

HIL/SIL Systems
XCP 7 V!

Slave Figure 56:
Application areas and
application cases

* Debug Interfaces, Memory Emulator, ...

In a survey of development processes, one encounters many different solution approaches for
the development of electronics and software. HIL (Hardware in the Loop), SIL (Software in the
Loop) and Rapid Prototyping are keywords here and they describe different scenarios. They
always have a “plant” and a “controller” in common.

Manipulated Disturbance

Offset Variable Variable
Reference Variable N » NeonEolEs » Plant Controlled Variable

(Set Value) (Actual Value)

{

Figure 57: Plants and controllers

In the context of automotive development, the controller is represented by the ECU and the
plantis the physical system to be controlled such as the transmission, engine, side mirrors, etc.

The rough subdivision is made between different development approaches according to whether
the controller or the plant runs in real or simulated mode. Some combinations will be described
in greater detail.

4.1 MIL: Modelin the Loop

4.1 MIL: Model in the Loop

Simulink

Controller Model H Plant Model Figure 58

Model in the Loop
in Simulink

In this development environment, both the controller and the plant are simulated as a model. In
the example shown, both models run in Simulink as the runtime environment. The capabilities
of the Simulink runtime environment are available to you for analyzing the behavior.

To realize the convenience of a measurement and calibration tool like CANape in an early devel-
opment phase, an XCP Slave can be integrated in the controller model. In an authoring step,
the Slave generates the A2L that matches the model and the user already has the full range of
convenient operating features with visualization of process flows in graphic windows, access to
characteristic curves and maps and much more.

Simulink

Controller Model ﬁ Plant Model
(WET X
Figure 59:

CANape as
measurement and
calibration tool with
Simulink models

Simulink
XCP Server

ml

Neither a code generation step nor instrumentation of the model is necessary for this. Time
stamps are also included with transmissions over XCP. CANape completely adapts to the time
behavior of the Simulink runtime environment here. Whether the model is running faster or
slower than in real time is of no consequence. For example, if the functional developer uses the
Simulink Debugger in the model to step through the model, CANape still takes the time trans-
mitted via XCP as the reference time.

4 Application Areas of XCP

4.2 SIL: Software in the Loop

Simulink

Controller Model ﬁ Plant Model

l Code generation

Controller Model
Windows DLL

Figure 60:
Software in the
Loop with Simulink
environment

In this development step, code is generated from the model of the controller, which is then
used in a PC-based runtime environment. Naturally, the controller may also have been devel-
oped without any sort of model-based approach. The plant continues to be simulated. XCP can
be used to measure and calibrate the controller. If the controller originates from a Simulink
model, a code generation step (Simulink Coder with the target “CANape”) is used to generate
the C code for a DLL and the associated A2L. If the Controller development is conducted based
on manually written code, it is embedded in a C++ project that is delivered with CANape.

After compiling and linking, the DLL is used in the CANape context. With the support of the XCP
connection, the algorithms in the DLL can be measured and calibrated exactly as if the applica-
tion were already integrated in an ECU.

Simulink

Controller Model ﬁ Plant Model

i1 Code generation
S
L/

Controller Model
Windows DLL

Figure 61:
CANape as SIL
development platform

4.3 HIL: Hardware in the Loop

4.3 HIL: Hardware in the Loop

Many different kinds of HIL systems are available. They range from very simple, cost-effective
systems all the way to very large and expensive expansion stages. The following figure shows
the rough concept:

Controller Model
v HIL Platform
= /0
\% Plant Model
ECU Figure 62:

HIL solution

The controller algorithm runs in a microcontroller platform (e.g. the ECU), while the plant con-
tinues to be simulated. Depending on the parameters and the complexity of the plant and the
necessary I/0, requirements of the HIL platform and the associated costs can rise steeply. Since
the ECU runs in real time, the model of the plant must also be computed in real time.

To now introduce XCP for optimization appears trivial, because another ECU is being added. The
whole system looks like this:

I / v HIL Platform
P I
CANape Qg = A Figure 63:
_ Plant Model HIL with CANape

as measurement
and calibration tool

From CANape, the user has access to the algorithms in the ECU over XCP.

m 4 Application Areas of XCP

The Vector Tool CANoe is also used by many customers as a HIL system. With CANoe, a HIL sys-
tem might look like this:

CANoe RT User PC

Ethernet

CANoe RT Server

Digital I/0

| = XCP

\#4—» CANape
=
ECU

Figure 64:
CANoe as HIL system

The ability to access XCP data directly from CANoe for testing purposes results in the following
variant as well:

B
CANoe RT User PC «— m

Ethernet
CANoe RT Server

XCP

|_/Q : Figure 65:
\?«, CANoe as HIL
— system with XCP

access to the ECU

Here the model of the plant runs on the CANoe real-time server. At the same time, XCP access
to the ECU is also realized from CANoe. This gives a tool simultaneous access to the plant and
the controller.

4.4 RCP: Rapid Control Prototyping

To round out the picture, yet another HIL solution option should be mentioned. The plant might
also run as a DLL in CANape. This gives the user full access to the plant and to the controller
over XCP.

Plant Model

)
ECU .
Windows DLL
)

Figure 66: CANape as HIL solution

4.4 RCP: Rapid Control Prototyping

In this development phase, the control algorithm runs on real-time hardware instead of an ECU.
This situation often occurs when the necessary ECU hardware is not yet available. Several plat-
forms come in question as suitable hardware: from simple evaluation boards all the way to spe-
cial automotive-level hardware solutions, depending on which additional requirements need to
be fulfilled. Here too, integration with XCP helps in setting up an OEM-independent tool chain.

Controller Model

Figure 67: RCP solution

The concepts “Rapid” and “Prototyping” describe the task very well. The aim is to develop a
functional prototype as quickly as possible, to use and test it in the runtime environment. This
just requires simple work steps throughout the entire process.

4 Application Areas of XCP

In the literature, the RCP approach is frequently subdivided into two areas: fullpassing and
bypassing.

As depicted in Figure 67, the entire controller runs on separate real-time hardware. This method
is known as fullpassing, because the entire controller runs on the controller hardware. It must
have the necessary I/0 to be able to interface with the plant. Very often, it is only possible to
fulfill technical requirements for the 1/0 with suitable power electronics.

Itis not only the I/0 that represents a challenge; often functional elements of the ECU software
(e.g. network management) are needed to enable functionality in a more complex network.
However, if a complete ECU is used for Rapid Control Prototyping instead of a general control-
ler platform, the complexity of the flash process, the size of the overall software, etc. all work
against the requirement for “Rapid” development.

In summary: the use of an entire ECU as the runtime environment for the controller offers the
advantage that the necessary hardware and software infrastructure for the plant exists. The dis-
advantage lies in the high degree of complexity.

The concept of bypassing was developed to exploit the advantages of the ECU infrastructure
without being burdened by the disadvantages of high complexity.

4.5 Bypassing

In Figure 68, the ECU is connected to the plant. The necessary I/0 and software components are
available in the ECU. In the bypassing hardware, an algorithm A1 runs, which occurs in Version
A of the ECU. Alis a new variant of the algorithm and should now be tried out on the real plant.

XCP :
Bypassing Hardware
CANape G ypassing

a
«
Bypassing -

Hardware m

XCP
Controller Model \Q)
—_— q : 4
ECU

Figure 68: Basic principle of bypassing

The bypassing hardware (a VN8900 device in the figure) and the ECU are interconnected over
XCP. One goal here is to get the data needed for algorithm A1 from the ECU by DAQ; another
goalis to stimulate the results of A1 backinto the ECU. The following figure illustrates the sche-
matic flow:

Bypassing Hardware

2 Algorithm A1
Bypassing :
Coordinator < 3
A :
1.| XCP |4
— PN -
Algorithm A
ECU Figure 69:

Bypassing flow

Depicted in the ECU is a blue function block in which the algorithm A runs. To ensure that A1 can
now be used, the data enters algorithm A as an input variable and it is measured from the ECU
by DAQ. In step 1, the bypassing coordinator accepts the data and in step 2 it passes the data to
algorithm A1. Alis computed by the bypassing hardware and in step 3 the result is passed back
to the bypassing coordinator; in step 4, it is transmitted to the ECU by STIM. The data is written
to the “location” at which the next function block in the Slave expects its input variables. This
makes it possible to use the value computed by algorithm Al and not from A in the ECU’s over-
all control process. This method permits using a combination of the rapid substitution of algo-
rithms on the bypassing hardware that incorporates the I/0 and the ECU’s basic software.

4 Application Areas of XCP

Of course, the performance limits of an XCP-on-CAN driver also affect bypassing. If short bypass-
ing times are needed, access to the ECU by DAQ and STIM may also be performed via the con-
troller’s debugging or trace interfaces. The Vector VX1000 measurement and calibration hard-
ware converts the data into an XCP-on-Ethernet data stream from the controller interface. In
this process, up to one megabyte of data can be transported into the ECU.

Bypassing C O CANape xcp Bypassing Hardware
Hardware m
XCP

Measurement & Calibration
Hardware VX1000

4 1/0

Controller Model \\
—_— ; g’

ECU

Figure 70: Bypassing with real-time bypassing hardware and fast ECU access

4.6 Shortening Iteration Cycles with Virtual ECUs

4.6 Shortening Iteration Cycles with Virtual ECUs

Stimulation with data is necessary to optimize the algorithm in the ECU with the help of XCP.
This can be done in the ECU in the framework of test drives. But there is yet another solution
that is available with XCP, in which the algorithm does not run on an ECU; rather it runs on the
PCin the form of executable code or as a model in Simulink in the form of a “virtual ECU.” This
virtual ECU does not need to runin real time, because in this case no connection to a real system
exists. It can run significantly faster - depending on the PC’s computing power.

The algorithm is stimulated by a previously logged measurement file, which contains all signals
that are needed as input signals for the algorithm. The connection to CANape is set up over XCP.
The user can perform the parameterization and measurement configuration. Afterwards, exe-
cution is started. Here the data from the test drive is fed into the algorithm as stimulation and
the desired measurement parameters from the application are simultaneously measured out and
saved to a measurement file.

Application
5. Analyze 1. Set parameters _
2. Start »| Simulink/
3. Send test drive data _ DLL
4. Measurement data xcp
Slave

Figure 71:

Short calibration
cycles with
virtual ECUs

m 4 Application Areas of XCP

After the calculation has been completed, a new measurement file is available to the user for
analysis of ECU behavior. The length of time of the new measurement file precisely matches the
length of the input measurement file. If the duration of a test drive is one hour, the algorithm
on the PC might calculate the entire test drive in just a few seconds. Then a measurement result
exists, which corresponds to a test of one hour duration. Based on the data analysis, the user
makes decisions about parameterization and the iteration cycle is repeated.

CANape Application as EXE or DLL on PC
Parameterization R Setvaluesin
> via XCP workspace
Start —> Start

v v

Send mggigrement e Calculate model

v v

Receive new Send measurement

measurement data ¢ values from the model
Analyze the End model calculation
new data

Y

i Figure 72:

New software version Process flow

with virtual ECUs

To shorten the iteration cycles, the algorithm is always stimulated with the same data. That
makes the results with different parameters much more comparable, because the results are
only influenced by the parameters that differ.

This process can of course be automated. The integrated script language of CANape performs an
analysis of the measurement results, from which parameter calibration settings are derived and
automatically executed. It is also possible to have the process controlled by an external optimi-
zation tool such as MATLAB over the CANape automation interface.

4.6 Shortening Iteration Cycles with Virtual ECUs

5 Example of an XCP Implementation

5 Example of an XCP Implementation

5 Example of an XCP Implementation

To make it possible for an ECU to communicate over XCP, it is necessary to integrate an XCP driver
in the ECU’s application. The example described below is of the XCP driver which you can down-
load free of charge at the Download Center of the Vector website (www.vector.com/xcp-driver).
This packet also contains some sample implementations for various transport layers and tar-
get platforms. The driver consists of the protocol-Layer with the basic functionality needed for
measurement and calibration. It does not include features such as Cold Start Measurement,
Stimulation or flashing. You can purchase a full implementation as a product that is integrated
in the Vector CANbedded or AUTOSAR environment.

The XCP protocol layer is placed over the XCP transport layer, which in turn is based on the actual
bus communication. The implementation of the XCP protocol layer only consists of a single C
file and a few H files (xcpBasix.c, xcpBasic.h, xcp_def.h and xcp_cfg.h). The examples include
implementations for various transport layers, e.g. Ethernet and RS232. In the case of CAN, the
transport layer is normally very simple and the various XCP message types are mapped directly
to CAN messages. There are then separate fixed identifiers for the Tx and Rx directions.

The software interface between the transport and protocol layers is very simple. It contains just

a few functions:

> When the Slave receives an XCP message over the bus, it first arrives in the communication
driver, which routes the message to the XCP transport layer. The transport layer informs the
protocol layer about the message with the function call XcpCommand().

> If the XCP protocol layer wishes to send a message (e.g. a response to an XCP command from
the Master or a DAQ message), the message is routed to the transport layer by a call of the
ApplXcpSend() function.

> The transport layer informs the protocol layer that the message was successfully sent by the
function call XcpSendCallBack().

5 Example of an XCP Implementation

Application

A A
S
(]
-+
o | £
c S
3| &
s &
-
v
5| = S| & 5
> S Tl X S
L — o o
ol | o £ a2
O Q Q o S o
<| x<X| xX| < © O
v VvV V ';'{:“
23
XCP Protocol Layer =
S
A A S &
'_‘:>ﬁ
T 5
~ o
[E) =
=| 3 &
2| 2| = <
o| | 5§
2] E|l 5
5l gl 2
|
)l o
| O Q
<| x| =<
v

XCP Transport Layer

Physical Layer
. . Figure 73:

Incorporating
the XCP Slave
in the ECU code

Bus

The interface between the application and the protocol layer can only be implemented via four
functions:

> The application activates the XCP driver with the help of XcpInit(). This call is made once in
the starting process.

> With XcpEvent(), the application informs the XCP driver that a certain event has occurred
(e.g. “End of a computational cycle reached”).

> The call XcpBackground() lets the XCP driver execute certain activities in background (e.g.
calculation of a checksum).

> Since the addresses in A2L files are always defined as 40-bit values (32-bit address, 8-bit
address extension), the XCP driver uses the function ApplXcpGetPointer() to obtain a pointer
from a A2L-conformant address.

These interfaces are sufficient to integrate basic functionalities for measurement and calibra-
tion. Other interfaces are only needed for extended functions such as page swapping, identifi-
cation or seed & key. They are described in detail in documentation for the driver.

101

102

5 Example of an XCP Implementation

5.1 Description of Functions

void XcpInit (void)

Task:
Initialize the XCP driver

Description:
The application activates the XCP driver with XcpInit(). This command must be executed exactly
once before any sort of XCP driver function may be called.

void XcpEvent (BYTE event)

Task:
The application informs the XCP driver about which event occurred. A unique event number is
assigned to each event here.

Description:

In setting up the measurement configuration in the measurement and calibration tool, the user
selects which measured values should be synchronously acquired with which events. The infor-
mation on measured values and events originates from the A2L. The desired measurement con-
figuration is communicated to the XCP driver in the form of DAQ lists.

Example of an event definition in an engine controller:

XcpEvent (1); // Event 1 stands for the 10-ms task

XcpEvent (2); // Event 2 stands for the 100-ms task

XcpEvent (5); // Event 5 stands for the 1-ms task

XcpEvent (8); // Event 8is used for ignition angle synchronous measurements

BYTE XcpBackground (void)

Task:
Execute background activities of the XCP driver.

Description:

This function should be called periodically in a background or idle task. It is used by the XCP
driver, for example, to compute the checksum, because the computation of a longer checksum
in XcpCommand() could take an unacceptably long time. With each call of XcpBackground(), a
partial checksum of 256 bytes is computed. The duration of a checksum computation therefore
depends on the call frequency of XcpBackground(). There are no other requirements for the call
frequency or periodicity. The return value 1 indicates that a checksum computation is currently
running.

5.1 Description of Functions 103

void XcpCommand (DWORD* pCommand)

Task:
Interpret an XCP command.

Description:
This function must be called each time the transport layer receives a XCP frame. The parameter
is a pointer to the frame.

void ApplXcpSend (BYTE len, BYTE *msg)

Task:
Transfer a frame to be sent to the transport layer.

Description:

With this call, the protocol layer sends a message to the transport layer for transmission to the
Master. The call XcpSendCallBack implements a handshake method between the protocol and
transport layers.

BYTE XcpSendCallBack (void)

Task:
The protocol layer uses this callback to inform the transport layer that the last message that was
transferred to AppXcpSend() was successfully transmitted.

Description:

The protocol layer does not call an AppXcpSend() command until XcpSendCallBack() indicates
that the prior message was successfully transmitted. XcpSendCallBack() returns the value 0
(FALSE) if the XCP driver is in idle. If there are more frames to be sent, ApplXcpSend() is called
directly from XcpSendCallBack().

BYTE *ApplXcpGetPointer (BYTE addr_ext, DWORD addr)

Task:
Convert an A2L-conformant address to a pointer.

Description:

The function maps the 40-bit A2L-conformant addressing (32-bit address + 8-bit address exten-
sion) that is sent by the XCP Master to a valid pointer. The address extension can be used, for
example, to distinguish different address areas or memory types.

5 Example of an XCP Implementation

5.2 Parameterization of the Driver

In many respects, the XCP driver is scalable and parameterizable to properly handle the wide
variety of functional content, transport protocols and target platforms. All settings are made in
the parameter file xcp_cfg.h. In the simplest case, they appear as follows:

/* Define protocol parameters */

#tdefine kXcpMaxCTO 8 /* Maximum CTO Message Length */
#tdefine kXcpMaxDTO 8 /* Maximum DTO Message Length */
#tdefine C_CPUTYPE_BIGENDIAN /* byte order Motorola */

/* Enable memory checksum */
#define XCP_ENABLE_CHECKSUM
#define kXcpChecksumMethod XCP_CHECKSUM_TYPE_ADD14

/* Enable calibration */
#tdefine XCP_ENABLE_CALIBRATION
#tdefine XCP_ENABLE_SHORT_UPLOAD

/* Enable data acquisition */

#define XCP_ENABLE_DAQ

#define kXcpDagMemSize (512) /* Memory space reserved for DAQ */
#define XCP_ENABLE_SEND_QUEUE

For a CAN transport layer, the appropriate CTO and DTO parameters of eight bytes are set. The
driver must know whether it is running on a platform with Motorola or Intel byte order, in this
case a Motorola-CPU (Big Endian). The remaining parameters activate the functionalities: mea-
surement, calibration and checksum computation. The algorithm for checksum computation is
configured (here summing of all bytes into a DWORD) and the parameter of the available mem-
oryisindicated for the measurement (here 512 bytes). The memory is primarily needed to store
the DAQ lists and to buffer the data during the measurement. The parameter therefore deter-
mines the maximum possible number of measurement signals. In the driver documentation you
will find more detailed information on estimating the necessary parameters.

5.2 Parameterization of the Driver 105

106

The Authors

Andreas Patzer

Mr. Patzer graduated in Electrical Engineering from the Technical University of
Karlsruhe. In his studies he specialized in measurement and control engineering
and information and industrial engineering. In 2003, he joined Vector Informatik
GmbH in Stuttgart. Andreas Patzer has supported XCP projects from the very start,
since XCP was standardized by ASAM e.V. in the same year he was hired.

He currently manages the Customer Relations and Services area as a team leader
for the Measurement & Calibration product line.

The Authors

The Authors 107

Rainer Zaiser

Mr. Zaiser has a degree in Electrical Engineering from the University of Stuttgart.
After graduating, he came directly to Vector Informatik GmbH in autumn 1988,
where he has helped to create many of the standards that have become established
in the automotive industry such as DBC, MDF, CCP, A2L and to a large extent XCP.
From the start, he headed up the Measurement & Calibration and Network
Interfaces product lines.

108

Table of Abbreviations and Acronyms

Table of Abbreviations and Acronyms

A2L
AML
ASAM
BYP
CAL
CAN
ccp
CMD
cs
CT0
CTR
DAQ
DTO
ECU
ERR
EV
FIBEX
LEN
MCD
MTA
oDT
PAG
PGM
PID
RES
SERV
SPI
STD
STIM
TCP/IP
TS
UDP/IP
USB
XCP

Download
Upload

File extension for an ASAM 2MC language file
ASAM 2 Meta Language

Association for Standardisation of Automation and Measuring Systems
Bypassing

Calibration

Controller Area Network

CAN Calibration Protocol

Command

Checksum

Command Transfer Object

Counter

Data Acquisition, Data Acquisition Packet
Data Transfer Object

Electronic Control Unit

Error Packet

Event Packet

Field Bus Exchange Format

Length

Measurement Calibration and Diagnostics
Memory Transfer Address

Object Descriptor Table

Paging

Programming

Packet Identifier

Command Response Packet

Service Request Packet

Serial Peripheral Interface

Standard

Data Stimulation Packet

Transfer Control Protocol/Internet Protocol
Time Stamp

Unified Data Protocol/Internet Protocol
Universal Serial Bus

Universal Measurement and Calibration Protocol

Sending of data from Master to Slave
Sending of data from Slave to Master

Literature & Web Addresses 109

Literature

XCP is specified by ASAM (Association for Standardisation of Automation and Measuring Systems).
You will find details on the protocol and on ASAM at: www.asam.net

Web Addresses

Standardization committees:
> ASAM, XCP protocol-specific documents, A2L specification, www.asam.net

Supplier of development software:

> MathWorks, information on MATLAB, Simulink and Simulink Coder, www.mathworks.com

> Vector Informatik GmbH, demo version of CANape, free of charge and openly available XCP
driver (basic version), comprehensive information on the topics of ECU calibration, testing
and simulation, www.vector.com

110

Table of Figures

Table of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:

Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:

Fundamental communication with a runtime environment

The Interface Model of ASAM

An XCP Master can simultaneously communicate with multiple Slaves
Subdivision of the XCP protocol into protocol layer and transport layer
XCP Slaves can be used in many different runtime environments

XCP packet

Overview of XCP Packet Identifier (PID)

XCP communication model with CTO/DTO

Message identification

Time stamp

Data field in the XCP packet

The three modes of the XCP protocol: Standard, Block and Interleaved mode
Overview of the CTO packet structure

Trace example from a calibration process

Transfer of a parameter set file to an ECU’s RAM

Hex window

Address information of the parameter “Triangle” from the A2L file
Polling communication in the CANape Trace window

Events in the ECU

Event definition in an A2L

Allocation of “Triangle” to possible events in the A2L

Selecting events (measurement mode) for each measurement parameter
Excerpt from the CANape Trace window of a DAQ measurement

ODT: Allocation of RAM addresses to DAQ DTO

DAQ list with three ODTs

Static DAQ lists

Dynamic DAQ lists

Event for DAQ and STIM

Structure of the XCP packet for DTO transmissions

Identification field with absolute ODT numbers

ID field with relative ODT and absolute DAQ numbers (one byte)

ID field with relative ODT and absolute DAQ numbers (two bytes)

ID field with relative ODT and absolute DAQ numbers as well as fill byte
(total of four bytes)

Definition of which bus nodes send which messages
Representation of a CAN network

Example of XCP-on-CAN communication

Representation of an XCP-on-CAN message

Illustration of a CAN FD frame

Nodes K and L are redundantly interconnected

Communication by slot definition

Representation of a FlexRay communication matrix

Representation of the FlexRay LPDUs

Allocation of XCP communication to LPDUs

XCP packet with TCP/IP or UDP/IP

10
14
15
19
19
20
21
21
22
24
25
30
31
32
33
34
35
35
36
36
37
38
39
39
40
41
42
43
43
43

bt
45
46
47
47
48
50
50
51
52
53
54

Table of Figures m

Figure 45: XCP-on-SxI packet 55
Figure 46: Memory representation 56
Figure 47: Representation of driver settings for the flash area 58
Figure 48: Representation of the block transfer mode 61
Figure 49: Parameters in a calibration window 66
Figure 50: Signal response over time 66
Figure 51: Initial parameter setting in RAM 76
Figure 52: Initial situation after booting 80
Figure 53: Pointer change and copying to RAM 81
Figure 54: Pointer table for individual parameters 81
Figure 55: Double pointer concept 83
Figure 56: Application areas and application cases 86
Figure 57: Plants and controllers 86
Figure 58: Model in the Loop in Simulink 87
Figure 59: CANape as measurement and calibration tool with Simulink models 87
Figure 60: Software in the Loop with Simulink environment 88
Figure 61: CANape as SIL development platform 88
Figure 62: HIL solution 89
Figure 63: HIL with CANape as measurement and calibration tool 89
Figure 64: CANoe as HIL system 90
Figure 65: CANoe as HIL system with XCP access to the ECU 90
Figure 66: CANape as HIL solution 91
Figure 67: RCP solution 91
Figure 68: Basic principle of bypassing 92
Figure 69: Bypassing flow 93
Figure 70: Bypassing with real-time bypassing hardware and fast ECU access 94
Figure 71: Short calibration cycles with virtual ECUs 95
Figure 72: Process flow with virtual ECUs 96

Figure 73: Incorporating the XCP Slave in the ECU code 101

Appendix - XCP Solutions at Vector

Appendix - XCP Solutions at Vector

Vector made a significant effort in giving shape to the XCP standard. Its extensive know-how
and vast experience were utilized to provide comprehensive XCP support:

Tools

> The primary use area of CANape is in optimal parameterization (calibration) of electronic
control units (ECUs). During the system’s runtime, you calibrate parameter values and simul-
taneously acquire measured signals. The physical interface between CANape and the ECU is
over XCP (for all standardized transport protocols) or CCP.

> Complete tool chain for generating and managing the necessary A2L description files (ASAP2
Tool-Set and CANape with the ASAP2 Editor that is also available as a stand-alone tool).

> You use CANoe.XCP to access internal ECU values for testing and analysis tasks.

ECU interfaces

The VX1000 measurement and calibration hardware offers the option of equipping ECUs with
an XCP-on-Ethernet interface. This involves connecting a Plug on Device (POD) to the ECU for
direct access to the controller, e.g. over DAP, JTAG, Nexus, etc. The POD transmits the data to a
base module, which operates as an XCP Slave and provides the data to the XCP Master on the PC
over XCP on Ethernet. This makes it unnecessary to have an XCP Slave in the ECU. The user ben-
efits from a high measurement data throughput rate of up to 30 Mbyte/sec and short measure-
ment intervals of less than 15 ps.

Embedded Software

Communication modules with separate transport layers for CAN, FlexRay and Ethernet:

> XCP Basic - free download at www.vector.com/xcp-driver, only contains basic XCP functions.
Configuration of the XCP protocol and modification of the transport layer are performed man-
ually in the source code. You need to integrate XCP Basic in your project yourself.

> XCP Professional - contains useful extensions to the ASAM specification and enables tool-
based configuration. Available for Vector CANbedded basic software.

> MICROSAR XCP - contains the functional features of XCP Professional and is based on AUTO-
SAR specifications. Available for Vector MICROSAR basic software.

Services
> Consultation for using XCP in your projects
> Integration of XCP in your ECU

Training

> You can learn about the underlying mechanisms and models of the protocol in the “XCP Funda-
mentals Seminar”.

> In the “CANape with XCP on FlexRay Workshop” you learn about FlexRay fundamentals
and the special aspects of XCP on FlexRay are explained, in particular dynamic bandwidth
management.

Appendix — XCP Solutions at Vector 113

Special XCP support by CANape
CANape was the first MCD tool to support the XCP 1.0 specification and was also the first XCP on
FlexRay Master on the market.

A special technical feature of XCP on FlexRay is dynamic bandwidth management. Here, CANape
identifies the available bandwidth provided for XCP in the FlexRay ClusterP and it allocates
this bandwidth to the momentary application data traffic dynamically and very efficiently. The
available bandwidth is thereby optimally used for XCP communication.

Moreover, CANape has a DLL interface. It enables support of XCP on any desired (user-defined)
transport layer. This lets you integrate any desired test instrumentation or proprietary pro-
tocols in CANape. A code generator supports you in creating the XCP-specific share of such a
driver.

Index

A2L 9, 10, 25, 33, 35, 39, 40, 41, 52,
53, 57,58, 63, 65, 66, 67, 68, 69,
70, 88, 102, 103, 108

Address extension 29, 33, 38, 101, 103

AML 25, 68, 108
ASAM 7,8,9,55,108
ASAP2 Tool-Set 70
B
Bandwith optimization 34
Bus load 34
BYP 108
Bypassing 44,92,93, 94
C
CAN 7,8, 14, 24, 29, 33, 38, 45, 46, 47,
51, 69, 94, 108
CAN FD 48
CANape 95
CANoe 95
CANoe.XCP 95
ccp 7,8,39, 45,108
CMD 20, 25, 52, 108
Compiling 95
CT0 20, 21, 22, 25, 108
CTR 54,55, 108
CYCLE_REPETITION 52
D
DAQ 22,32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 60, 62, 71,
93, 94, 100, 102, 108
DBC 45
DOWNLOAD 30, 31, 61
DTO 20, 21, 22, 33, 37, 38, 42, 108
E
ECU 9, 68,90, 92, 93, 108
EEPROM 16, 31, 62
ERR 20, 25, 28, 108
EV 29, 108
Event 35, 39, 41, 60, 62, 71, 102

F
FIBEX

Flash memory
FLX_CHANNEL
FLX_LPDU_ID
FLX_SLOT_ID
Fullpassing

G
GET_CAL_PAGE

GET_DAQ_PROCESSOR_INFO

H
HIL

L
Linking
LPDU

M
MIL
MTA

0
oDT

OFFSET

P

PAG
Page
PGM
PID
Polling

R
RAM

Reboot
RES

Index

51,52, 53

16, 17, 56, 57, 58, 59, 62
52

52

52

92

25,57
44,60, 71

86, 89,90, 91

74, 88
52

87
30, 108

37, 38, 39, 40, 42, 43, 44, 60,
71, 108
52

108

95

108
8,19, 21, 25, 42, 108
33, 34, 36

16, 17, 18, 30, 31, 37, 38, 39,
58,62,74,76,79, 80, 82

32

20, 21, 28, 52, 108

Index

S
Segment 57, 58
SEGMENT_NUMBER 57
SERV 29, 108
SET_CAL_PAGE 25, 57
SHORT_UPLOAD 30, 33, 61
SIL 86, 88
STIM 33, 41, 42, 44, 60,71, 93,
94,95, 108
Stimulation 29, 63,95
T
Task 102
TCP/IP 53, 54, 108
U
UDP/IP 53, 54, 108
usB 55, 108
vV
VN8900 95
VX 94

VX1000 95

115

Get more Information!

Visit our Website for:
> News

> Products

> Demo Software

> Support

> Trainings Classes

> Addresses

www.vector.com

vector’

	Table of Contents
	Introduction
	1 Fundamentals of the XCP Protocol
	1.1 XCP Protocol Layer
	1.1.1 Identification Field
	1.1.2 Time Stamp
	1.1.3 Data Field

	1.2 Exchange of CTOs
	1.2.1 XCP Command Structure
	1.2.2 CMD
	1.2.3 RES
	1.2.4 ERR
	1.2.5 EV
	1.2.6 SERV
	1.2.7 Calibrating Parameters in the Slave

	1.3 Exchanging DTOs – Synchronous Data Exchange
	1.3.1 Measurement Methods: Polling versus DAQ
	1.3.2 DAQ Measurement Method
	1.3.3 STIM Calibration Method
	1.3.4 XCP Packet Addressing for DAQ and STIM
	1.3.5 Bypassing = DAQ + STIM

	1.4 XCP Transport Layers
	1.4.1 CAN
	1.4.2 CAN FD
	1.4.3 FlexRay
	1.4.4 Ethernet
	1.4.5 SxI
	1.4.6 USB
	1.4.7 LIN

	1.5 XCP Services
	1.5.1 Memory Page Swapping
	1.5.2 Saving Memory Pages – Data Page Freezing
	1.5.3 Flash Programming
	1.5.4 Automatic Detection of the Slave
	1.5.5 Block Transfer Mode for Upload, Download and Flashing
	1.5.6 Cold Start Measurement (start of measurement during power-on)
	1.5.7 Security Mechanisms with XCP

	2 ECU Description File A2L
	2.1 Setting Up an A2L File for an XCP Slave
	2.2 Manually Creating an A2L File
	2.3 A2L Contents versus ECU Implementation

	3 Calibration Concepts
	3.1 Parameters in Flash
	3.2 Parameters in RAM
	3.3 Flash Overlay
	3.4 Dynamic Flash Overlay Allocation
	3.5 RAM Pointer Based Calibration Concept per AUTOSAR
	3.5.1 Single Pointer Concept
	3.5.2 Double Pointer Concept

	3.6 Flash Pointer Based Calibration Concept

	4 Application Areas of XCP
	4.1 MIL: Model in the Loop
	4.2 SIL: Software in the Loop
	4.3 HIL: Hardware in the Loop
	4.4 RCP: Rapid Control Prototyping
	4.5 Bypassing
	4.6 Shortening Iteration Cycles with Virtual ECUs

	5 Example of an XCP Implementation
	5.1 Description of Functions
	5.2 Parameterization of the Driver

	The Authors
	Table of Abbreviations and Acronyms
	Literature
	Web Addresses
	Table of Figures
	Appendix – XCP Solutions at Vector
	Index

