VECTOR >

MICROSAR WDGIF

Technical Reference

Version 1.1.0

Authors Christian Leder, Rene Isau

Status Released

VECTOR > Technical Reference MICROSAR WDGIF

Document Information

History
Author Date Version Remarks
Christian Leder, 2016-03-16 1.0.0 First version of the migrated Wdglf
Rene Isau Technical Reference
Christian Leder 2016-07-13 1.1.0 Update after introduction of native CFG5
generator
Reference Documents
No. Source Title Version
[1] AUTOSAR AUTOSAR_SWS_Watchdoginterface.pdf V2.3.0
[2] Vector Safety Manual
Informatik
[8] AUTOSAR AUTOSAR_TR_BSWModuleList.pdf V1.4.0

Caution

“ We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector's release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

© 2016 Vector Informatik GmbH Version 1.1.0
based on template version 5.12.0

N

VECTOR D> Technical Reference MICROSAR WDGIF

Contents
1 Component HISTOrY ... e a e e aaanes 6
2 INtrOdUCION..... .o e 7
21 ArchiteCture OVEIVIEWoooiiiiiieee e 8
2.2 Basic Functionality of the Wdglf..........coooiriiii e, 10
3 Functional DeScCription ... 1"
3.1 Features ... 11
3.1.1 DEVIAtioNS ... e 11
3.1.2 Additions/ EXIENSIONSuiiiieeiiieeiiies e e 12
3.2 Integration with Fully AUTOSAR Compliant Driverscccccoevveieiiiiiiiiiceeneeen, 12
3.3 Operation in Multi-Core SYStemSuuuuiiiiiiiiiiiiiiiiiiiiiiieeeeees 12
3.3.1 Independent Watchdog DevViCes............covvvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiieee 14
3.3.2 Wdglf with a State Combiner...........cc.ooooiiiii e, 15
3.3.2.1 Checking the Slave Trigger Pattern..........cccccccvvvvvvvnnnnn. 17
3.3.2.2 Operation of the State Combiner.............cccccceeeeiiiininn, 18
3.3.2.21 Synchronous Mode..............coooiviiieenn, 18
3.3.2.2.2 Asynchronous Modeccccccvvvvviirininnnnnn. 20
3.3.2.3 Worst Case Delay......ccccooeeeiiiiiiiiiiiiieeieee e, 23
3.3.2.4 Worst Case Evaluations...........ccccooeiviiviiiiiiiiieee, 24
3.3.2.5 Optimal TIMING.......cooviiiiiiiiiiiii 29
3.3.2.6 Start-up Phase.........coooeeiiii e, 30
3.3.2.7 Changing the Monitoring Period During Runtime 30
3.3.2.71 Changing the Monitoring Period in
Synchronous Mode............ccevvvvviiiiiiiinnnnnn. 30
3.3.2.7.2 Changing the Monitoring Period in
Asynchronous Modeccooooiiiiiiiinnnnnn. 31
3.3.2.8 Shared MeMOIYuviiiiiiecce e, 32
3.3.29 Limitations of the State Combiner Implementation.......... 33
3.4 MEMOIY SECLONSceviiiiiiiiiiiiiiiieei et 33
3.4.1 Code and Constantscccooeeieiiiiieee e 33
3.4.2 Module Variablesccooieeiiiiiiiii e 33
3.4.21 Module Variables with MICROSAR Os Gen6 /
AUTOSAR Os version 4.0.......ccooveeeeviiiiiiiiiieeeeeeeeeeeiiinn, 33
3.4.2.2 Module Variables with MICROSAR Os Gen7 /
AUTOSAR OS Version 4.2......cccoeeeieieeeeeeeeeeeeeeeeeeeeeeeeen 34
3.5 Error Handling.........oooo i 35
3.5.1 Development Error Reporting............ueeueeeiiiiiuiiiiiiiiiiiiiiiiiiiiiieiennennnnns 35
© 2016 Vector Informatik GmbH Version 1.1.0 3

based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

4 Nt gratioN ... 36

4.1.1 StatiC FileS ..o e 36

41.2 DYNamiC FleSuuuiiiiiiiiiiiiiiii e 36

B APIDeESCIIPLION... ..o e 37

5.1 Type DEfINItIONS .ovveei e 37

5.2 State Combiner Type Definitions ..o, 39

5.3 Services provided by WAGIfoeeiiiii e 42

5.3.1 WAGIF_SetMOdecoovveieeeeeeeeeeeeeeeeee e 42

5.3.2 Wdglf_SetTriggerConditioncoeiiiiiiiiiiiiiii e, 42

5.3.3 Wdglf_SetTriggerWindowcooevviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 43

534 WdgIf_GetVersionInfo ... 43

5.3.5 WdgIf_GetTickCoUNter.........cooiiiiiiei e, 44

54 Services used by WAGIf ... 44

6 Configuration ... 47

6.1 Configuration Variants.............oiiiiiiii e 47

6.2 Configuring the State ComMbINEr...........oooiiiiii e, 47

6.2.1 Manual Configuration for Synchronous Mode...............cccccvviiiiiinnnns 48

6.2.2 Automatic and Manual Configuration for Asynchronous Mode 49

7 Glossary and Abbreviations ... 51

71 GlOSSAIY ..ttt e e e e et e e e e e e e e et aaaaaaaaaae 51

7.2 ADDIeVIatioNS ... oo 52

- T 0« 3| - T P 53
© 2016 Vector Informatik GmbH Version 1.1.0 4

based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

lllustrations
Figure 2-1 AUTOSAR 4.x Architecture OVErviewcccccceviiiiiiiiiiiiii 8
Figure 2-2 Watchdog Manager Stack in an AUTOSAR environment...........cccccceeeee. 9
Figure 2-3 Layered structure of the Watchdog Interfacecccccoeeei i, 10
Figure 3-1 WdgM Stack on a multi-core system using Wdglf to address
independent watchdogs for each coreccooooiiiiiiiiii e, 14
Figure 3-2 WdgM Stack on a multi-core system using the State Combiner for a
combined COre reacCtionccooeieiiiiiiiieie e e 16
Figure 3-3 Master and slave run synchronously with a sufficient offset to avoid jitter
effects (EXaMPIE 1) ..o 19
Figure 3-4 Master and slave run synchronously with a sufficient offset (example 2)... 19
Figure 3-5 Master and slave run synchronously with a sufficient offset (example 3)... 20
Figure 3-6 Master and slave drifting apart although they have the same configured
PEFOA (P = Ps) e e 21
Figure 3-7 Master and slave do not drift from each other but jitter effects occur......... 22
Figure 3-8 Slave skipping one trigger is not necessarily detected by master in
ASYNCAroNOUS MOAEuuiiiiiiii e e e e e 22
Figure 3-9 Slave erroneously drifting from master but slowly enough so that no
failure is detectedovveiiiii s 23
Figure 3-10 Worst case delay of the State Combiner...........ccccooooiiiiiiii, 24
Figure 3-11 Worst case evaluation Case 2ccceeieiiiiiiiiiiiiiii e 26
Figure 3-12 Worst case evaluation Case 4cccccvvviiiiiiiii 28
Figure 3-13 Start-up phase, master starts before slaveccccocvvveeiiiiieee, 30
Figure 3-14 Start-up phase, master starts before slaveccccocvvveeiiiiieee, 31
Figure 3-15 Asynchronous mode — monitoring period change example (independent
CRANGE) e 32
Tables
Table 1-1 ComMPONENT NISTOMY......uuiiiiiiiiiiiiiiii e aeeeee 6
Table 3-1 Supported AUTOSAR standard conform features..............ccoovvviviiieennne.. 11
Table 3-2 Not supported AUTOSAR standard conform features..............cccccceeeee. 11
Table 3-3 Features provided beyond the AUTOSAR standard.............ccccoevvvveennnnn. 12
Table 3-4 Value selection if trigger window limits change during monitoring 25
Table 3-5 Combinations for worst case evaluation...............cccccuuiiiiiiiiiiiiiiiiii. 25
Table 3-6 Code and CoNStaNntS........ccooiiiiiiiiiie e 33
Table 3-7 WAgIf conStants..........ooooi 33
Table 3-8 Module variables with MICROSAR Os Gen6 / AUTOSAR Os version 4.0. 34
Table 3-9 Module variables MICROSAR Os Gen7 / AUTOSAR Os version 4.2........ 34
Table 3-10 SEIVICE IDS .. e 35
Table 3-11 Errors reported t0 DEToovnniiiii e e 35
Table 4-1 STALIC fIlES .. anannnne 36
Table 4-2 Generated fileSuuueiii i 36
Table 5-1 Wdglf Type Definitions ... 39
Table 5-2 State Combiner Type Definitions...........coooiiiiiiiiii 41
Table 5-3 WAGIF_SEtMOE.....cooiiiiiiee e 42
Table 5-4 Wdglf_SetTriggerCondition............cccciiiiiii 43
Table 5-5 WdgIf_SetTriggerWindOW ... 43
Table 5-6 WdgIf_GetVersionInfo.............ooiiiiiiii e 44
Table 5-7 Wdglf_GetTickCounter ... 44
Table 5-8 Services used by the WdgIf ... 46
Table 7-1 GIOSSANY ..ttt 51
Table 7-2 ADDIEVIAtIONS 52

© 2016 Vector Informatik GmbH

Version 1.1.0
based on template version 5.12.0

VECTOR > Technical Reference MICROSAR WDGIF

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version | New Features

1.00 Migration of the Wdglf to Vector Informatik GmbH
2.00 Introduction of native CFG5 generator

Table 1-1 Component history

© 2016 Vector Informatik GmbH Version 1.1.0 6
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module Wdglf as specified in [1].

Supported AUTOSAR Release*: 4.01
Supported Configuration Variants: pre-compile
Vendor ID: WDGIF_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: WDGIF_MODULE_ID 43 decimal

(according to ref. [3])
* For the detailed functional specification please also refer to the corresponding AUTOSAR SWS.

This user manual describes the Watchdog Interface (Wdglf), which is part of the Watchdog
Manager Stack, which is part of the AUTOSAR ECU Abstraction Layer. The main Wdglf
functionality consists of linking one or more Watchdog Drivers to the overlying Watchdog
Manager module (WdgM).

For multi-core systems, the Wdglf additionally offers the State Combiner functionality to
allow several WdgM instances, each running on a separate processor core, to share and
trigger a single watchdog device. The Wdglf was developed according to AUTOSAR
version 4.0.1 [1].

The Wdglf is compatible with this AUTOSAR version, but not fully compliant. For the
deviations, see section Deviations. In any case, if the Wdglf is used with AUTOSAR 4.0.1
or another version, all requirements described in the Safety Manual [2] must be fulfilled.

This user manual does not cover safety-related topics. For safety-related requirements for
the integration and the application of the Wdglf, refer to the Safety Manual [2].

© 2016 Vector Informatik GmbH Version 1.1.0 7
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

2.1 Architecture Overview
The following figure shows where the Wdglf is located in the AUTOSAR architecture.

E2E Protection Fp

SCHM RTE
SYS DIAG MEM LIBS
05 BSWM DCM EA coM IPDUM NM PDUR DIOHWAB! CAL (CPL)
COMM DEM FEE SENT! CRC
CSM (CRY) FIM MEMIF E2E
DET NV CAN LIN
Eﬁg: 119307P LINXCP? FRXCP ETHXCP DNS
CANXCP LINTP FRTP SOAD/DOIP EXI
WDGIF CANTP LINNM FRARTP TCPIP: HTTP
WDGM AMD CANNM LINSM FRNM ETHSM scc
DBG CANSM LINIF FRSM ETHIF 1LS
DT CANIF FRIF XML Security
RTM: Driver
AVTP
SRP
XCP PTP®
MCAL
ADCDRV DIODRV FLSDRV GPTDRV LINDRV PWMDRV SPIDRV CANTRCV FRTRCV
CANDRV EEPDRV FLSTST ICUDRY MCUDRV RAMIST WDGDRV DRVEXT? LINTRCV
CORTST ETHDRV FRDRV TICDRV! PORTDRV SHEDRV: ETHTRCV
Microcontroller
Vector Standard Software 3rd Party Software ! Available extensions for AUTOSAR

2 Includes EXTADC, EEPEXT, FLSEXT, and WDGEXT
* Functionality represented in ETHTSYN and STBM

Figure 2-1 AUTOSAR 4.x Architecture Overview

The WdgM Stack consists of the hardware-independent modules Watchdog Manager and
Watchdog Interface (blue rectangle) and a hardware-dependent module Watchdog Driver.
Figure 2-2 shows the WdgM Stack with its modules in an AUTOSAR environment.

© 2016 Vector Informatik GmbH Version 1.1.0 8
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

€h eck poi nt € heck po int

"Safe "Safe
Component 1" Component2”

-

SYS

coM

g

SafeContext

0S (SC3/4)

Ch eck poi nt
"Safe CDR"

J193BTP

Watchdog
Interface

Safe Complex D rivers

Internal)
W atchdog Microcontroller
Ch eck ing /P rot ection Safety Related Autosar
Fu nction Function Basic SW Component

Figure 2-2 Watchdog Manager Stack in an AUTOSAR environment

External

Watchdog

The WdgM controls, through the Wdglf and the Wdg, the hardware-implemented
watchdogs, which can be one or more internal or external watchdog devices.

Note
ﬂ A watchdog device requires a hardware-dependent Wdg driver.

© 2016 Vector Informatik GmbH Version 1.1.0 9
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

2.2 Basic Functionality of the Wdglf

The Wdglf is a platform-independent software module and provides an interface to one or
more Watchdog Driver modules for the WdgM. The WdgM addresses the watchdog
devices through the Wdglf using a device index parameter (DeviceIndex). The
DeviceIndex is used by the Wdglf to refer to a specific Wdg driver instance.

Figure 2-3 shows the layered structure of the WdgM Stack. The attached watchdog device
can be internal or external.

Applications
Watchdog
BSW's Manager user API
~
Watchdog
Manager

Watchdog

Manager < Watchdog

Stack Interface

Watchdog Watchdog Hardware
Driver 2 Driver 1 dependent
part
Software .
T Hardware em mm omo———-- O}
I
E xternal Internal
Watchdog de vice Watchdog
device
Figure 2-3 Layered structure of the Watchdog Interface
© 2016 Vector Informatik GmbH Version 1.1.0 10

based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
Wdglf.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

> Table 3-1 Supported AUTOSAR standard conform features

> Table 3-2 Not supported AUTOSAR standard conform features

Vector Informatik provides further Wdglf functionality beyond the AUTOSAR standard. The
corresponding features are listed in the table

> Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

The Wdglf provides uniform access to services of the underlying watchdog drivers like mode
switching and setting trigger conditions.

Table 3-1 Supported AUTOSAR standard conform features

3.1.1 Deviations
The following features specified in [1] are not supported:

Not Supported AUTOSAR Standard Conform Features

The Wdglf calls the function Appl Det ReportError () in order to report detected DET errors
instead of calling the function Det ReportError () specified in AUTOSAR. For details, see
section Services used by Wdglf.

Table 3-2 Not supported AUTOSAR standard conform features

© 2016 Vector Informatik GmbH Version 1.1.0 1
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

3.1.2 Additions/ Extensions
The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard ‘

The Wdglf module checks for development errors independently from the configuration
parameter WdgIfDevErrorDetect but reports to the AUTOSAR module Development Error
Tracer (DET) only if WdgIfDevErrorDetect is set to true.

In case of multi-core systems, the Wdglf supports the State Combiner functionality which is not
specified in AUTOSAR.

If the State Combiner functionality is used, then the Wdglf calls the functions GetSpinlock ()
/ ReleaseSpinlock () (if configuration parameter
WdgIfStateCombinerUseOsSpinlock is true) or the functions
Appl GetSpinlock() / Appl ReleaseSpinlock() (if configuration parameter
WdgIfStateCombinerUseOsSpinlockis false) in order to use spinlock functionality for
inter-core synchronization. For details, see section Services used by Wdglf.

Table 3-3 Features provided beyond the AUTOSAR standard

3.2 Integration with Fully AUTOSAR Compliant Drivers

In order to integrate the Wdglf with a fully AUTOSAR-compliant watchdog driver set the
configuration parameter WdgIfUseAutosarDrvApi to true. This will result in the
following:

> The AUTOSAR Wdg <infix> SetMode () is called by WdgIf SetMode (). The
parameter DeviceIndex is not passed, since it does not exist in AUTOSAR.

> The Wdg <infix> SetTriggerCondition () is called by
WdgIf SetTriggerCondition(). The parameters DeviceIndex and
WindowStart are not passed, since they do not exist in AUTOSAR.

> The Wdg <infix> SetTriggerCondition () is called by
WdgIf SetTriggerWindow (). The parameters DeviceIndex and WindowStart
are not passed, since they do not exist in AUTOSAR.

Note
ﬂ If the WdgM is the caller of the Wdglf (i.e. function WdgIf SetTriggerWindow () is
used to service the watchdog device), the parameter WindowStart
WdgMTriggerWindowStart) has no effect, because it cannot be passed to an
AUTOSAR-compliant driver. It is then good practice to set it to 0, because this would
be the functional meaning of its absence.

3.3 Operation in Multi-Core Systems

The Wdglf can also be integrated into multi-core systems. During the configuration of the
Wdglf on several cores, it is important to consider how to connect each WdgM instance
running on a processor core to the correct Wdg driver module or modules via the Wdglf.
There are two possible approaches for configuring the Wdglf for a multi-core system:

© 2016 Vector Informatik GmbH Version 1.1.0 12
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

>

Independent watchdog devices

Configuring the Wdglf module so, that the WdgM Stack instance on every processor
core triggers its own watchdog device independently from the other cores. An example
of such a system is a multi-core processor which has one internal watchdog device for
each core. A fault on a certain core results in a watchdog reaction from the core's own
watchdog device. Depending on its setup this might be a processor reset or only a
single core reset.

Wdglf with a State Combiner

Configuring the Wdglf module with a State Combiner so that the WdgM instances
running on different processor cores can share one watchdog device and use it to
cause a reset in case of an irreparable error. The watchdog device will be triggered
only if no WdgM Stack instance reports any error.

An example is a multi-core processor with an external watchdog connected to it. A
fault on any processor core results in a watchdog reset.

Note
ﬂ A combination of the two approaches above is also possible.

© 2016 Vector Informatik GmbH Version 1.1.0 13

based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

3.3.1 Independent Watchdog Devices

The Wdglf is configured to enable each WdgM Stack instance running on a separate
processor core to trigger its own watchdog device independently from the WdgM Stack
instances running on the other cores. Whether the watchdog device causes a processor
reset or a core reset depends on the device's configuration. In this case, the WdgM Stack
instance running on each processor core is acting as if it was running on an independent
single-core system. Configuring this scenario is also very similar to the single-core
configuration. However, it needs to be ensured that the watchdog device for a certain core
is connected to the correct WdgM Stack instance. Furthermore, the configuration
parameter WdgIfUseStateCombiner must be setto false.

deployment WdgM stack on multi-core - independent core reaction /

«device»
Microcontroller - independent core reaction
independet core reaction

«device» «device»
core 0 core 1
WdgM WdgM

| |

Vv v
Wdglf Wdglf

| |

V v

Wdg Wdg

1 1

| |

| |

| |

| |

} }

| |

| |

vV v

«device» «device»
int Wdg 0 int Wdg 1

Figure 3-1 WdgM Stack on a multi-core system using Wdglf to address independent watchdogs for each core

© 2016 Vector Informatik GmbH Version 1.1.0 14
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

3.3.2 Wdglf with a State Combiner

The State Combiner is a platform-independent piece of software that is implemented as
an optional feature of the Wdglf module. Its purpose is to enable WdgM instances running
on different processor cores to share one watchdog device. The State Combiner acts as
follows:

> If an error during the WdgM supervision is detected on a core, then the WdgM
instance on this core requests a reset, which the State Combiner retransmits to the
watchdog device.

> Furthermore, the State Combiner monitors the trigger pattern of the WdgM instances
in order to detect runtime errors such as trigger omissions (e.g. one of the processor
cores stopped working) or too frequent triggers (e.g. due to scheduling problems, an
WdgM instance is invoked too frequently).

> The State Combiner triggers the watchdog device only if none of the WdgM instances
requests a reset and the trigger patterns of all WdgM instances are correct.

> The State Combiner feature can be enabled by setting the configuration parameter
WdgIfUseStateCombiner to true.

If enabled, the State Combiner instance on one processor core is configured to work in
master mode, which triggers the actual watchdog device, while State Combiner instances
on the other processor cores are configured to work in slave mode. In the following the
State Combiner instance configured to work in master mode is referred to as master and
the State Combiner instance(s) configured to work in slave mode as slave(s). The slaves
do not trigger a watchdog device but only communicate with the master via shared
memory. The master triggers the actual watchdog device if the global status of the WdgM
instances on all cores is other than STOPPED. Therefore, as soon as the WdgM Stack
instance on at least one core has reached the global status STOPPED (i.e. an irreparable
error was detected), the watchdog device is — depending on the configuration — reset or
not triggered anymore.

Note
ﬂ The State Combiner is not visible to the upper layer - the WdgM instances on each
processor core.

The trigger process in case of a State Combiner is as follows:

> The WdgM instance on a processor core sends a trigger request to its underlying
Wdglf instance. No watchdog device is triggered, but the corresponding State
Combiner instance is invoked - either the master or a slave.

> The slave does not trigger but rather signals to the master the trigger request from the
upper layer. The signaling is performed via shared memory.

> If the slave detects an error, it will send a reset request to the State Combiner, also via
shared memory.

> Based on the trigger pattern of the slave (the sequence of the slave's trigger request
signals over a certain period of time), the master evaluates whether the slave is
running correctly.

© 2016 Vector Informatik GmbH Version 1.1.0 15
based on template version 5.12.0

VECTOR >

>

Technical Reference MICROSAR WDGIF

The master triggers the actual watchdog device if:

>

>

the master's overlying WdgM instance requested a valid watchdog trigger,

no slave requested a reset (no error reported by the slave's overlying WdgM

instance), and

the trigger pattern of each slave is correct (based on the configuration).

deployment WdgM stack on multi-core - combined core reaction/

«device»

Microcontroller - combined core reaction

combined core reaction

«device»
core 0

«device»
core 1

«device»
core 2

«device»
core 3

WdgM WdgM WdgM WdgM
I I I |
v v v v
Wdglf Wdglf wdglf wdglf
State Combiner State Combiner State Combiner
(master) (slave) (slave)
T T T
[\ / |
[\\ /’ [
| N |
V N, \ - V
read state of write core 1 write core
slave cores state \ 2 gtate El
Wdg ext. < / Wadg int.
\ /
NN P
T
|
| «device» T
: Shared Memory \|,
|
: «device»
| Wadg int.
|
|
|
1
vV
«device»
Wdg ext.

Figure 3-2 WdgM Stack on a multi-core system using the State Combiner for a combined core reaction

The following must be configured so that the State Combiner is used by the overlying
WdgM instances to trigger a single watchdog device for all processor cores:

>

The WdgM instance running on the processor core that controls the physical watchdog
device must be configured to send a trigger request to the master. (In the WdgM’s
be linked to a
WdgIfStateCombinerMaster container of Wdglf instead of a WdgIfDevice
container.) The trigger window needs to be set up according to the actual watchdog
device.

ECU configuration,

© 2016 Vector Informatik GmbH

Version 1.1.0

the WdgIfDeviceRef parameter

based on template version 5.12.0

16

VECTOR D> Technical Reference MICROSAR WDGIF

> The WdgM instances running on the other processor cores must be configured to send
a trigger request to a slave. (In the WdgM’s ECU configuration, the WdgIfDeviceRef
parameter must be linked to a WdgIfStateCombinerSlave container of Wdglf
instead of a WdgIfDevice container.)

Note
ﬂ The trigger window for a slave must match its invocation period.

The slave is invoked by the WdgM MainFunction() of the overlying WdgM
instance.

> The master must be configured to trigger the watchdog device. (In the Wdglf's ECU
configuration the parameter WdgIfStateCombinerMasterWdgRef must reference
the watchdog device’s driver.) The trigger window with which it will trigger is given by
the overlying WdgM and retransmitted to the watchdog device by the master.

> Following this configuration, the master checks the trigger requests of each slave and
triggers the watchdog device only if each slave triggers correctly, no slave explicitly
requested a reset, and the master was triggered correctly.

> Areset occurs in the following cases:

> The WdgM instance triggering the master requests a reset — the reset request is
immediately retransmitted to the watchdog device.

> The WdgM instance triggering a slave requests a reset — the reset request is
retransmitted to the watchdog device with the next invocation of the master.

> The master detects a shared memory corruption — it checks the shared memory
each time it is invoked — then the master immediately sends a reset request to the
watchdog device.

3.3.2.1 Checking the Slave Trigger Pattern

Checking the trigger patterns of the slaves by the master is based on slave trigger
counters which are stored in shared memory. Each counter contains the number of
triggers for a specific slave. The slave increases its trigger counter each time it is being
invoked with a valid trigger request by its overlying WdgM instance. The master checks the
slave trigger counter once per master period or once per a multiple of the master period.
This multiplicity factor is called reference cycle and the duration of time in which the
master checks a slave once is called check interval. E.g., if the master checks a slave
each time the master is invoked, then the reference cycle is 1 and the check interval is one
master period; if the master checks the slave every other time the master is invoked, then
the reference cycle is 2 and the check interval is 2 times the master period.

The master expects that the slave increases its trigger counter in every check interval by a
certain number. This number depends on the master period, the slave period and their
ratio to one another. The increase of the slave trigger counter must be at least 1.
Otherwise the error case of a total slave outage cannot be detected.

© 2016 Vector Informatik GmbH Version 1.1.0 17
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

Note
The reference cycle as well as the number of expected slave triggers might be different
for each slave.

3.3.2.2 Operation of the State Combiner

There are two possible operation modes — synchronous or asynchronous mode. In the
synchronous mode a check interval exists such that the number of slave invocations in
one check interval is always constant. Therefore the master can be configured to expect a
constant number of slave trigger counter increments. In the asynchronous mode no such
check interval exists and the number of slave invocations in one check interval is variable.
Therefore the master can only expect that the number of slave counter increments lies
within a configured or dynamically calculated interval.

3.3.2.2.1 Synchronous Mode

Synchronous mode is given if a check interval can be chosen in which the number of slave
triggers is always constant. This is the case if both following conditions apply:

> No drifting. The master and slave invocations do not drift apart. The ratio between
master and slave period remains constant.

> Sufficient invocation offset. The slave invocation is done with a sufficient offset from
the master invocation so that their invocation order is not affected by jitter (jitter effects
are avoided).

The jitter effects can be avoided if the offset between master and slave invocations is
greater than the sum of the maximum possible jitter of the master invocation (jm) and
the maximum possible jitter of the slave invocation (js). Note that these are the jitters of
the respective WdgM main functions invoking master and slave. Two offsets need to
be considered:

> The offset from the master invocation in which the master checks the slave to the
next slave invocation must be greater than jm + js.

> The offset from the slave invocation to the next master invocation in which the
master checks this slave must be greater than jm + js as well.

The benefit of the synchronous mode is the shorter interval in which the master can check
the number of slave triggers (leading to a shorter reaction time) as well as the guaranteed
detection of all slave trigger errors. Furthermore, if the jitter becomes bigger than the
configured offset, this will be detected as an error.

The drawback of the synchronous mode is that if the timing of the system must be
changed during runtime (e.g. low power mode), then the ratio between master and slave
invocation period must remain the same.

Following scenarios illustrate typical examples of the synchronous mode.

Figure 3-3 depicts an example of a scenario where master and slave have the same
period (P, = Ps). The master checks the slave once in each master period (reference cycle

© 2016 Vector Informatik GmbH Version 1.1.0 18
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

is 1) and it expects exactly one slave triggering. The offset is sufficient to avoid jitter
effects.

Jitter
Pm window
Master / ;
. NN >
: Offset > jm + Js Pntjm
i \ .
| 1
: * Ps =Py
Slave | | N ¢
I | 1 ~
0 k_Y_J -~
1 /s

Figure 3-3 Master and slave run synchronously with a sufficient offset to avoid jitter effects (example 1)

Figure 3-4 shows an example of a scenario where the slave's period is a multiple of the
master's period (in the example Ps = 2*P,). As a consequence, the number of slave
triggers within the check interval (reference cycle is 2) is always constant — one in this
example. The offset is sufficient to avoid jitter effects.

Note

ﬂ When master and slave periods are referred in this text, the configured periods are
meant. Due to jitter, the actual periods might, of course, be slightly different. However, it
is important that the conditions for synchronous mode apply.

State combiner master

checks once in 2 cycles

P, / ,
winaow
Master ‘
l L t
' — ; >
' Offset>jy,+j > Vi !
I ﬁ Im* s Pm +im "
| I 1
|) 1
| 1
! * P = 2*Pp, 1
Slave | !
[! | t
l b ¥ I ~
o g
*Js
Figure 3-4 Master and slave run synchronously with a sufficient offset (example 2)
© 2016 Vector Informatik GmbH Version 1.1.0 19

based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

Figure 3-5 shows an example of a scenario where the master's period is a multiple of the
slave's period (in the example P, = 2*Ps). Again, the number of slave triggers within a
master's check interval (reference cycle is 1) is always constant — two in this example.

lItter

Pm WIiNnaow
Master /
1 | t
1 . ,I >
. . T
: _— Offset>jm+js —__ P+,
- <37 = .
! I
: | Ps = Pp, I
Slave | :
1 :] ! t
i + >
0 -
% s

Figure 3-5 Master and slave run synchronously with a sufficient offset (example 3)

The Synchronous Mode is strongly recommended, because it results in the most accurate
slave monitoring that can be reached with a software State Combiner as well as in the
shortest worst case reaction time in case of slave trigger errors. Furthermore, it detects
every kind of trigger error because the exact number of expected triggers is known.

3.3.2.2.2 Asynchronous Mode

Asynchronous mode is given if the synchronous mode cannot be applied — in
asynchronous mode no check interval can be chosen such that the number of slave
triggers is constant in each check interval. This is the case if at least one of the following
applies:

> Drifting. Master and Slave invocations drift from one another.

> Insufficient invocation offset resulting in jitter effects. The offset between master and
slave invocations is such that the jitter effects result in a variable invocation pattern
(number of slave triggers changes between check intervals).

As a consequence, the master can only check whether the actual number of slave triggers
is within a certain interval.

The benefit of the asynchronous mode is that if the timing of the system must be changed
during runtime, then the ratio between master and slave invocation period need not remain
the same. In this case, the State Combiner is usually configured to compute the expected
number of slave triggers dynamically.

The drawback of the asynchronous mode is the necessity of introducing a tolerance when
checking the slaves — the number of expected slave triggers lies within an interval. This
results in a greater reference cycle and in potentially overlooking slave trigger errors.

Simple scenarios for each of the two reasons that lead to asynchronous mode are
discussed below. After that, two examples illustrating the drawback of the asynchronous
mode — the potential overlooking of trigger errors — are presented.

© 2016 Vector Informatik GmbH Version 1.1.0 20
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

Scenario 1: Asynchronous Mode due to Drifting

Master and slave invocations drift from each other.

Invocations of
WdgM_MainFunction()
on the master core Drifting apart due
/ \ to different timer
sources
Master A .
— ~
-~
Invocations of WdgM MainFunction()
on the slave core
P, =P
Slave T £.om
| t
~
-

Figure 3-6 Master and slave drifting apart although they have the same configured period (Pm = Ps)

In this example, the master period and the slave period have the same configured length
but their clocks drift with some rate A (positive or negative). The master must check once
in n master periods whether the number of slave triggers is within an interval [tr1;

tr2].

Note
ﬂ The exact reference cycle n and the interval of the number of expected slave triggers
depend on the master and slave periods. With increasing jitter the reference cycle also

increases.

Scenario 2: Asynchronous Mode due to Insufficient Offset (Jitter)

Master and slave do not drift apart. But they are invoked at the same points of time or
close enough to one another so that the jitter affects their sequence. This is illustrated in

Figure 3-7.
Jitter
Pmn window
Master / ¢
_ NN !
P,+jn, EachWdgM_MainFunction()
invocation is in the jitter window
T P, =P,
Slave
! t
i 1 >
1_7_.1
PS i')'s
© 2016 Vector Informatik GmbH Version 1.1.0

based on template version 5.12.0

21

VECTOR D> Technical Reference MICROSAR WDGIF

Figure 3-7 Master and slave do not drift from each other but jitter effects occur

In this case, the master and slave are running synchronously, but due to the jitter and the
insufficient offset between master and slave invocations the trigger pattern is
unpredictable. For the master and a slave running with the same period the same values
are derived as for the asynchronous scenario with drifting above — the master checks the
slave once in every second master period (reference cycle is 2) and the number of
expected slave triggers lies in the interval between 1 and 3 inclusively.

Example of Overlooking Trigger Errors 1: Slave Trigger Omissions

Figure 3-8 shows an example of how a trigger omission can be overlooked by the master.
Let the expected slave trigger counter interval be [1; 2]. During the first check interval,
the slave is invoked correctly (as expected by the master). During the second check
interval, the slave should have triggered two times, but one trigger is omitted — the master
cannot detect this trigger error, since the trigger counter interval is not violated. The third
check interval shows zero triggers and this is out of the interval, hence the trigger error is
detected.

Note
ﬂ In this example, a minimum of two consecutive slave invocation omissions will always
be detected by the master.

Master

Slave | Ps , ,
L

NOT de

Figure 3-8 Slave skipping one trigger is not necessarily detected by master in asynchronous mode

Example of Overlooking Trigger Errors 2: Erroneous Slave Drifting

Another failure that might be missed by the master is the drifting of the slave, which results
in triggering outside of the configured slave trigger window. The latter is defined by the
parameters WindowStart and Timeout (corresponding to the configuration fields
WdgMTriggerWindowStart and WdgMTriggerConditionValue in the WdgM’s
configuration) with which the slave is invoked (depicted below as Wg and Ts, where the
subscript s indicates the slave). A significant deviation of the actual slave trigger window
from the configured slave trigger window parameters will eventually be detected by the
master. However, smaller deviations might remain undiscovered. This is visualized in

© 2016 Vector Informatik GmbH Version 1.1.0 22
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

Figure 3-9. The expected trigger interval is [1; 2], the reference cycle is 2. The slave is
drifting from the master, but does not violate the expected trigger interval; hence the
master cannot detect the drift.

Note
ﬂ If the master is drifting and triggers outside of its trigger window, the watchdog device
reacts.

Master

Slave I | l 1 I |

Figure 3-9 Slave erroneously drifting from master but slowly enough so that no failure is detected

Note
ﬂ Due to the drawbacks, using the asynchronous mode should be avoided and, if
possible, the synchronous mode should be used!

3.3.2.3 Worst Case Delay

The delay of the State Combiner is defined as the duration from the point in time when a
failure occurs on the slave and the point in time when this failure is escalated to the
watchdog device by the master. The failure on the slave can be a failure detected by the
WdgM running on the slave’s core or a failure which results in erroneous triggering of the
slave. Here, a failure on the slave is a slave trigger outage, i.e. discontinuation of the slave
triggers, and the worst case delay refers to this slave trigger error only.

Note

ﬂ Drifting of the slave triggering might lead to a longer detection time (in both,
synchronous and asynchronous mode) or might be overlooked by the master (in
asynchronous mode only). Occasional slave trigger omissions might be
overlooked by the master only in asynchronous mode, but they are detected in
synchronous mode.

Note

ﬂ Reset requests from the slave are detected by the master at the end of the
current master period (and not at the end of the current check interval) in both,
synchronous and asynchronous mode.

© 2016 Vector Informatik GmbH Version 1.1.0 23
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

The upper limit for the worst case delay of the State Combiner (WCD) in synchronous
mode is the double maximum duration of the check interval: WCD < 2*n*T.,, where Tp, is
the WdgM configuration parameter WdgMTriggerWindowCondition set on the master
core and n is the reference cycle with which the master checks the slave.

Note

ﬂ Tm Iis the worst case actual period of invocation of the master’s
WdgM MainFunction (), and it is limited by the watchdog device. T, can also
be expressed as the configured master invocation period plus the maximum
possible jitter of this invocation: T, = Pm + jm.

The worst case scenario happens under the following conditions (illustrated in Figure
3-10). The slave is triggered shortly after the master has successfully checked the slave
triggers. However, the slave fails right afterwards and is not being triggered anymore, it is
not able to directly inform the master of a failure either. At the end of the current check
interval the master still evaluates the slave as OK if the number of slave triggers is within
the expected interval despite the trigger error. Yet, the next time the master core checks
the slave core, it detects that the slave has stopped triggering (at the end of the third check
interval shown in the figure).

Master checks once every
- I
| second period

| (reference cycle =2)
I

| max=7Tm
S e

w !
L]
1
I

|]
| 1
! Slave triggers S '
Slave | T .‘._ : /I\ hl..;we 5.lop:~. !
: | nor mally ! triggering .
. 1
|]

worst case delay<2 *n *Tm

v

-
g

Figure 3-10 Worst case delay of the State Combiner

Note
Slave trigger errors that do not lead to violation of the expected number of slave
triggers interval cannot be detected by the master!

3.3.2.4 Worst Case Evaluations

The Wdglf Fault Reaction Time does not depend on the monitoring feature, but on the
following three aspects:

> whether a State Combiner is used or not,

> whether an immediate reset or discontinuing of triggers is configured,

© 2016 Vector Informatik GmbH Version 1.1.0 24
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

> whether the fault is detected in the master application SW or a slave application SW (if
a State Combiner is used).

The time also depends on the configured lengths of the trigger windows. If the trigger
window limits do change during monitoring, the according variable in the formulae shall be
set as follows:

Formula Variable Value Selection

WdgMTriggerWindowStart (master) Set with lowest possible value.
WdgMTriggerCondition (master) Set with highest possible value.
WdgMTriggerWindowStart (slave) Not used.
WdgMTriggerCondition (slave) Set with highest possible value.

Table 3-4 Value selection if trigger window limits change during monitoring

There exist 6 different combinations of the three aspects listed above:

Case | State Combiner used Escalation kind Fault occurs in

1 Yes Immediate Reset Master SW application
2 Yes Immediate Reset Slave SW application
3 Yes Discontinuing of Triggers = Master SW application
4 Yes Discontinuing of Triggers Slave SW application
5 No Immediate Reset n/a

6 No Discontinuing of Triggers n/a

Table 3-5 Combinations for worst case evaluation
The WdglIf Fault Reaction Time of every combination is discussed in the following:

Case 1 - State Combiner, immediate reset, fault in master, Case 5 - No State Combiner,
immediate reset:

The Wdglf escalates the reset request immediately to the Wdg device. The Wdglf Fault
Reaction Time for case 1 and case 5 is always 0 (in any case, there is no more cycle
consumed - not counting the code execution).

Case 2 - State Combiner, immediate reset, fault in slave:

> The slave writes an immediate reset request to the shared memory of the State
Combiner.

> The master reads the request at the next call of WdgM MainFunction () and initiates
the immediate reset.

The worst case happens
> when the master calls its WdgM MainFunction (),
> the slave writes the reset request immediately afterwards and

> the master calls its WdgM MainFunction() with max. possible delay
(WdgMTriggerConditionValue(master)).

© 2016 Vector Informatik GmbH Version 1.1.0 25
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

As Figure 3-11 shows, the Wdglf Fault Reaction Time is
WdgMTriggerConditionValue(master).

/:\ Slave writes
A E/ reset request A Master
ol ¢ a';/ initiates reset
@ = Bl
s' S
5§15 S\
4= 4| il |
he 4
Master 212 S
c cl c !
® 1 S 1 © \)
§I|§|| 2 1
1
S1s) s
op! ool op!
© :'D 1 oI
=3 =¥
(I b
Slave P :
— , >
<! WdgMTriggerConditionValue(master) !
WdgM Fault Reaction Time \:/ Wdglf Fault Reaction Time |

Figure 3-11 Worst case evaluation Case 2

Case 3 - State Combiner, discontinuing of triggers, fault in master, Case 6 - No State
Combiner, discontinuing of triggers:

There is no action or delay on the Wdglf level. The Wdglf Fault Reaction Time for case 3
and case 6 is always 0 (in any case, there is no more cycle consumed - not counting the
code execution).

© 2016 Vector Informatik GmbH Version 1.1.0 26
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

Case 4 - State Combiner, discontinuing of triggers, fault in slave:
> The slave discontinues triggering.

> With every call of WdgM MainFunction () on master side, the master checks how
often the slave has triggered since the previous check.

> As soon as the number of slave triggers is outside the expected range, the master
initiates an immediate reset. (This is not necessarily with the next call of
WdgM MainFunction () on master side.)

The worst case happens when
> the master checks the number of triggers on slave side since the previous check,

> the slave sends an allowed number of triggers (with respect to the next check on
master side) immediately afterwards,

> the WdgM Fault Reaction Time ends and the slave discontinues triggering immediately
afterwards.

Note
ﬂ Then the Wdglf Fault Reaction Time is (almost):

2 *WdgIfStateCombinerReferenceCycle * WdgMTriggerConditionValueyasier,

where WdgIfStateCombinerReferenceCycle is the number of
WdgMSupervisionCycle on master side between two checks of slave triggers.

Figure 3-12 demonstrates this:

> WdgIfStateCombinerReferenceCycle s 2,

> the slave sends an allowed number of triggers for the 1st check interval (i.e. one
trigger) before the end of the Wdglf Fault Reaction Time,

> the master checks the slave triggers every 2nd call of WdgM MainFunction (every
2nd WdgMTriggerConditionValue (Tw)),

> the discontinuing of slave triggers is detected at the end of the 2nd check interval.

© 2016 Vector Informatik GmbH Version 1.1.0 27
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

Master checks Master checks Master checks
slave triggers slave triggers slave triggers
‘ﬁ\ _A (ok) /:\ and initiates
& Trigger # reset
S ;g,/ discontinuation 2 CEI
o & 2! ol
E 1.9 g) : k3] :
151 c
Master 21 A = A 51
c: D ' = . o
[E N Py o | >
EII ‘© 1 3 §|| 5 =
1 1 51 s
s\ 2, £ S| £ sh
ool St 3! 001 31 0!
o] : tm: %: T _gﬂl el
=13 = 5 =
! ! 2! 1 21 1
Slave Vo g : 2 |
— : : : . >
1 Tw .~ Tm ! T | T 1
o W 0 i
1 1 1st Check Interval ' 2nd Cheok Interval '
] 1 §
1

WdgM Fault Reaction Tim

.)
B

Wdglf Faul{ Reaction Time
I

- MY

T~
1

Figure 3-12 Worst case evaluation Case 4

Note
The evaluation of the multiplication factor

WdgIfStateCombinerReferenceCycle is as follows:

If WDGIF_STATECOMBINER_MANUAL_MODE is STD_ON, then
WdgIfStateCombinerReferenceCycle is as stated in the field

wdgif StateCombiner_config_slavelD.WdglfStateCombinerReferenceCycle (for slave
with ID).

Otherwise, the value is automatically evaluated as:

WdgIfStateCombinerReferenceCycle = next larger natural number of
(WdgMTriggerConditionValue (on slave side) / WdgMTriggerWindowStart (on master
side)).

© 2016 Vector Informatik GmbH Version 1.1.0 28
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

3.3.2.5 Optimal Timing

The optimal timing results in minimal worst case delay. It can be reached when the
reference cycle is minimal — which is 1. This applies for both, synchronous and
asynchronous mode.

Following must apply so that the optimal reference cycle of 1 can be reached in
synchronous mode. The period of the WdgM main function invoking the master (Pp,) is a
multiple of the period of the WdgM main function invoking the slave (Ps). If Pm= n * Ps,
wheren = 1, 2, 3,.. thenthe master can check the slave in each master period.

> Example (synchronous mode):
> Master: P, = 20ms
> Slave: Ps = 10ms

Within one cycle of the master exactly 2 triggers of the slave are expected.
The WCD to a failure in the slave is 40 ms.

The following must apply so that the optimal reference cycle of 1 can be reached in
asynchronous mode. The master period must be longer than the slave period, which is
the case if (WS, > Ts), where WSy, is the WindowStart of the master and Ts is the
Timeout of the slave. (Note that for asynchronous mode Ts and WS, are used in the
example instead of master and slave invocation periods. This is necessary, since the State
Combiner calculates the number of expected slave triggers based on them when
configured for automatic calculation.)

> Example (asynchronous mode):
> Master: WSm = 19ms, Tm =21ms
> Slave: WSs = 16ms, Ts = 18ms
Within n = 1 cycles of the master (at most 21 ms) are 1 to 2 ticks of the slave expected.

The worst case delay for a failure inthe slaveis 2 * n * T, = 42 ms.

Note
Even with the optimal ratio between periods the drawbacks of the asynchronous
mode described in chapter Asynchronous Mode apply.

© 2016 Vector Informatik GmbH Version 1.1.0 29
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

3.3.2.6 Start-up Phase

If the slave starts together with or after the master, then the parameter
WdgIfStateCombinerStartUpSyncCycles should be set to some positive value n so
that the master starts evaluating the slave triggering not from the first time the master is
invoked after start up, but after the first n master periods.

Note

ﬂ n must be big enough so that the master starts evaluating the slaves as soon as
possible after the slaves started; and small enough so that the master does not
start to evaluate before the slaves started.

A typical start-up phase setup is illustrated in Figure 3-13:

S-Wdg

. S-WdgM /
Init Init M
; y
Master s [

(core A)

| S-WdgM
tart| | Init 4
Slave I ’

(core B)

Figure 3-13 Start-up phase, master starts before slave

The slave (running on some processor core B) starts later than the master (running on
processor core A). The WdgIfStateCombinerStartUpSyncCycles parameter is set to
2 so that the master starts checking the slave after the slave has started. Before the slave
starts, the master triggers the watchdog device only according to the trigger requests of
the master’s overlying main function. Note, however, that if a slave’s main function detects
a failure and explicitly requests a reset, then the master reacts even during the start-up
phase and retransmits the reset request to the watchdog device.

3.3.2.7 Changing the Monitoring Period During Runtime

Changing the monitoring period means that either the processor frequency or the period of
invocation of master or slave is changed.

3.3.2.7.1 Changing the Monitoring Period in Synchronous Mode

If the monitoring period in a synchronous mode needs to be changed, several things need
to be considered. It is assumed that the State Combiner is configured manually with
synchronous mode. For any change of the monitoring period or WdgM main functions’
period:

> the number of slave triggers within one check interval must remain the same and

> the change of the monitoring period must be made simultaneously on master and
slave.

© 2016 Vector Informatik GmbH Version 1.1.0 30
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

It is recommended that such a monitoring period change is not made while any instance of
the WdgM Stack is being executed.

Figure 3-14 shows an example of monitoring period change in synchronous mode.

Master expects exactly Master still expects

/ 1 slave trigger / ex actly 1 slgve t iage

/ /
20ms 1 20ms 40ms
Master :
. t
I 1 -~
1]
1 1
1]
1 1
Slave | :
| . t
1
:_ Simultaneous
Jrucr timing change
System
frequency frow

Figure 3-14 Start-up phase, master starts before slave

3.3.2.7.2 Changing the Monitoring Period in Asynchronous Mode

If the monitoring period in asynchronous mode needs to be changed, several things have
to be considered.

If the State Combiner is manually configured in asynchronous mode, then for any change
of the master period or slave period the following restriction applies:

> After the change the slave must not violate the interval of expected number of triggers.

In order to meet the previous restriction following recommendations apply:
> |t is recommended that the ratio between master and slave period remains the same.

> |t is recommended that the monitoring period change is done simultaneously for
master and slave.

> It is recommended that such a monitoring period change is not made while any
instance of the WdgM Stack is being executed.

If the State Combiner is configured for an asynchronous system in automatic mode, then
for any change of the master period or slave period there are no restrictions. Following
applies:

> The ratio between master and slave period need not remain the same as for the
previous case (the master is calculating the expected number of slave triggers
dynamically).

> The monitoring period change needs not to be made simultaneously for master and
slave as for the previous case.

> However, recommended is that such a monitoring period change is not made during
any part of the WdgM Stack is being executed.

© 2016 Vector Informatik GmbH Version 1.1.0 31
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

Figure 3-15 shows an example of a monitoring period change in asynchronous mode (with
automatic calculation of expected slave triggers) where first the master changes its
monitoring period independently from the slave. At some later point the slave changes its
monitoring period independently. For the invocation period of 20ms (fnicn) it is assumed
that both, master and slave are invoked with following parameters: WindowStart 18ms
and Timeout 22ms. For the invocation period of 40ms (fow) it is assumed that both,
master and slave are invoked with following parameters: WindowStart 36ms and
Timeout 44ms. Based on these monitoring periods, the master calculates the expected
number of slave triggers and the reference cycle as shown in the picture.

Note

ﬂ If the ratio between master and slave invocation period is the same, the
calculation leads to the same result for reference cycle and the expected
interval. This is the case if both master and slave run with fyey and then both
with £, ow (because the ratio 20/20 is equal to 40/40).

A
e
=

A
t
e
=
n
m

/ /
20ms 1 20ms 40ms
Master :
' t
! T
! 1
!]
! 1
! 1
!]
I A 40ms
Slave | !
1 | t
]
f . Simultaneous
HIGH I ..
System timing change
frequency fiow

Figure 3-15 Asynchronous mode — monitoring period change example (independent change)

3.3.2.8 Shared Memory

The State Combiner instances use shared memory to communicate. Every counter
increment of every slave is written to this memory area. The master reads out the shared
memory in order to check the counter increments against the expected counter
increments. The slave’s trigger requests increment the respective slave’s trigger counter in
shared memory. A reset request from the slave is also stored in the shared memory to
inform the master. All data in the shared memory is also stored with inverse value in order
to ensure the detection of memory corruption. The current slave's WindowStart and
Timeout values are also stored in the shared memory.

Access to the shared memory is protected against concurrent access. The shared memory
is only written by the slaves and only read by the master. This is achieved by a
mutex/semaphore that is configured for this shared memory block.

© 2016 Vector Informatik GmbH Version 1.1.0 32
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

3.3.2.9 Limitations of the State Combiner Implementation
The State Combiner layer has the following limitations:
> Only one watchdog device can be connected to the master and be triggered. Other

watchdog devices can, however, be directly connected with any Wdglf instance (ECU
description container WdgIfDevice) and not via State Combiner.

\%

It is not allowed to set the WindowStart parameter to O for the slave. If the user tries
to set it, an error code will be returned to the upper layer.

3.4 Memory Sections

3.4.1 Code and Constants
Following memory sections need to be set up for Wdglf's code:

Section Description

WDGIF START SEC CODE / Set up manually, e.g. in MemMap . h.
WDGIF STOP SEC_CODE

Table 3-6 Code and Constants

Following memory sections need to be set up for Wdglf's constants:

Section Description

WDGIF_START_SEC_CONST_ Set up manually, e.g. in MemMap . h.
UNSPECIFIED /

WDGIF STOP SEC CONST

UNSPECIFIED

Table 3-7 Wdglf constants

3.4.2 Module Variables

Following memory sections need to be set up for Wdglf's module variables if the State
Combiner functionality is used (otherwise the Wdglf uses no global variables):

3.4.21 Module Variables with MICROSAR Os Gen6 / AUTOSAR Os version 4.0

Section Description
WDGIF START SEC VAR 8BIT / If the configuration parameter
WDGIF_STOP_SEC_VAR_8BIT, WdgIfGlobalMemoryAppTaskRef is set, then these

sections are renamed according to the configured OS
WDGIF_START_SEC_VAR_16BIT / gpplication (the prefix "WDGIF " is converted to
WDGIF_STOP_SEC_VAR_16BIT, "<0SApp> ", where <0SApp> is the name of the OS
application) and generated as part of WdgIf MemMap.h.
Otherwise they need to be set up manually, e.g. in
MemMap. h.

WDGIF START SEC VAR 32BIT /
WDGIF_STOP_SEC VAR 32BIT

WDGIF_GLOBAL_SHARED_ START_S These sections are always assigned in the generated file

EC_VAR WdgIf MemMap.h to OS sections and renamed to:

UNSPECIFIED /
WDGIF GLOBAL SHARED STOP SE GlobalShared_START_SEC_VAR_UNSPECIFIED /

C VAR GlobalShared STOP SEC VAR UNSPECIFIED

UNSPECIFIED If other assignment is required, then they need to be set

© 2016 Vector Informatik GmbH Version 1.1.0 33
based on template version 5.12.0

VECTOR > Technical Reference MICROSAR WDGIF

Section Description

up manually, e.g. in MemMap . h.

Table 3-8 Module variables with MICROSAR Os Gen6 / AUTOSAR Os version 4.0

3.4.2.2 Module Variables with MICROSAR Os Gen7 / AUTOSAR Os version 4.2

Section Description
WDGIF START SEC VAR 8BIT / If the configuration parameter
WDGIF_STOP_SEC_VAR_ 8BIT, WdgIfGlobalMemoryAppTaskRef is set, then these

sections are renamed according to the configured OS
WDGIF_START_SEC_VAR_16BIT / gpplication (the prefix "WDGIF START SEC"is converted
WDGIF_STOP_SEC_VAR_16BIT, to "0OS_START SEC_<OSApp>" and "WDGIF STOP_ SEC"
is converted to "0S_STOP SEC_<OSApp> ", where
<0SApp> is the name of the OS application) and
generated as part of WdgIf MemMap.h. Otherwise they
need to be set up manually, e.g. in MemMap . h.

WDGIF START SEC VAR 32BIT /
WDGIF STOP SEC_ VAR 32BIT

WDGIF GLOBAL SHARED START S These sections are always assigned in the generated file

EC VAR WdgIf MemMap.h to OS sections and renamed to:

UNSPECIFIED /
WDGIF GLOBAL SHARED STOP SE OS_START SEC GLOBALSHARED VAR UNSPECIFIED

C VAR / 0S_STOP SEC_GLOBALSHARED VAR UNSPECIFIED

UNSPECIFIED If other assignment is required, then they need to be set

up manually, e.g. in MemMap . h.

Table 3-9 Module variables MICROSAR Os Gen7 / AUTOSAR Os version 4.2

© 2016 Vector Informatik GmbH Version 1.1.0 34
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

3.5 Error Handling

3.5.1 Development Error Reporting

By default, development errors are reported to the DET using the service
ApplDet ReportError () as specified in [1], if development error reporting is enabled
(i.e. pre-compile parameter WdgIf DEV_ERROR DETECT==STD ON).

If another module is used for development error reporting, the function prototype for

reporting the error can be configured by the integrator, but must have the same signature
as the service ApplDet ReportError ().

The reported Wdglf ID is 43.

The reported service IDs identify the services which are described in 0. The following table
presents the service IDs and the related services:

Service ID Service

0x01u Wdglf_SetMode

0x02u Wdglf_SetTriggerCondition
0x03u Wdglf_GetVersioninfo
0x04u Wdglf_SetTriggerWindow

Table 3-10 Service IDs

The errors reported to DET are described in the following table:

Error Code Description

0x01u API service called with wrong device index parameter
0x02u API service called with NULL_PTR as parameter

Table 3-11 Errors reported to DET

© 2016 Vector Informatik GmbH Version 1.1.0 35
based on template version 5.12.0

VECTOR > Technical Reference MICROSAR WDGIF

4 Integration

The delivery of the Wdglf contains the files which are described in the chapters 4.1.1 and
4.1.2:

4.1.1 Static Files

File Name Description

Wdglf.c W(dglf implementation

Wdglf.h Wdglf API definitions and function declarations

Wdglf Types.h ~ Wdglf type definitions

Wdglf _Cfg.h Type definitions for the configuration data in generated files

Table 4-1 Static files

4.1.2 Dynamic Files
The dynamic files are generated by the Wdglf generator.

File Name Description

Wdglf _Lcfg.c Generated configuration of the component.

Wdglf Lcfg.h Generated header file for the configuration of the component.
Wdglf_Cfg_Features.h This file contains all preprocessor options for the component.
Wdglf_MemMap.h This file contains memory sections relevant for the State Combiner

functionality .

Table 4-2 Generated files

© 2016 Vector Informatik GmbH Version 1.1.0 36
based on template version 5.12.0

VECTOR D>

5 API Description

Technical Reference MICROSAR WDGIF

This section describes the types, functions and interfaces that are imported or provided by

the Wdglf software layer.

5.1 Type Definitions

This section describes the types of the parameters passed to the API functions of the

Wdglf.

Wdglf_InterfaceFunctions c-struct
Type

Wdglf_InterfaceFunctions ¢-struct
PerWdgDeviceType

© 2016 Vector Informatik GmbH

Provides
pointers to the
platform-
specific APls.

Connects
platform-
dependent
functions to a
physical
watchdog in
order to allow
several

Version 1.1.0

Std ReturnType (*Wdg SetMode)
(uint8, WdgIf ModeType)

or:

Std ReturnType
(*Wdg_SetMode AR)

(WAdgIf ModeType)

Pointer to the platform-specific SetMode
function.

Note: Depending on the API type selected
via preprocessor switch
(WDGIF USE AUTOSAR DRV API), the
function prototype can be different

Std ReturnType
(*Wdg_SetTriggerWindow) (uint$§,
uintloe, uintlé6)

or:

void (*Wdg SetTriggerCondition A
R) (uintlé6)

Pointer to the platform-specific
SetTriggerWindow/

SetTriggerCondition function
Note: Depending on the API type selected
via preprocessor switch
(WDGIF USE AUTOSAR DRV API), the
function prototype can be different

const
WdgIf InterfaceFunctions
Type* WdgFunctions

Pointers to the platform-specific watchdog
driver functions.

Note: If the State Combiner is enabled,
the NULL pointer is set instead of a

37

based on template version 5.12.0

VECTOR >

Wdglf_InterfaceType

© 2016 Vector Informatik GmbH

c-struct

watchdogs of
the same
platform to
work
simultaneousl
y (e.g.,
external
watchdogs).

Main Wdglf
configuration
structure

Version 1.1.0

Technical Reference MICROSAR WDGIF

pointer to the driver functions.
uint8 WdgInstance

Index of the physical watchdog instance
within this platform.

Note: If the State Combiner is enabled,
the parameter WdgInstance is used to
address the State Combiner instance
instead of a physical watchdog device.
Note: This parameter is used only if the
preprocessor switch

WDGIF USE AUTOSAR DRV API is
STD OFF or if the State Combiner is used
(preprocessor switch

WDGIF USE STATECOMBINER is
STD_ON).

const uint8 NumOfWdgs

Number of watchdogs supported in the
Wdglf

const

WdgIf InterfaceFunctions
PerWdgDeviceType*
WdgFunctionsPerDevice

Reference to the watchdog driver
functions and watchdog device instances
const

WdgIf StateCombinerCommonConfig
Type
*WdgIfStateCombinerConfigCommon

Pointer to State Combiner common
specific configuration data.

Part of the structure only if State combiner
is used (WDGIF USE STATECOMBINER is
STD_ON).

const

WdgIf StateCombinerManualConfig
Type
**WdgIlfStateCombinerConfigManua
1

Pointer to an array of data for manual
configuration. One element for each slave.
Part of the structure only if State
Combiner is used

(WDGIF USE STATECOMBINER is

38

based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

STD ON) and configured manually
(WDGIF STATECOMBINER MANUAL
MODE is STD ON).

uint32
(*Wdg GetTickCounter)
(void)

Function pointer to the GetTickCounter
driver function if the internal tick counter is
switched on.

Wdglf_ModeType enum Mode of the WDGIF OFF MODE
Watchdog
Watchdog disabled

WDGIF SLOW_MODE

Long timeout period (slow triggering)
WDGIF FAST MODE

Short timeout period (fast triggering)

Table 5-1 Wdglf Type Definitions

5.2 State Combiner Type Definitions

This section describes the State Combiner types in case the State Combiner functionality
is enabled.

Type Name C-Type | Description Value Range

Wdglf _StateCombiner c-struct State Combiner global uint16 SlaveWindowStart

SharedMemory shared data. Read by
the master and written
by all slave devices. Current WindowStart value of the
Contains the current slave’s trigger request.

WindowStart and
Timeout values of the uintl6 SlaveWindowStart INV
slave devices and the
Counter values. This is
an array with an element
for each slave.

Inverted value of the current
WindowStart of the slave’s trigger
request.

uintl6 SlaveTimeout

Current Timeout value of the
slave’s trigger request.

uintl6 SlaveTimeout INV

Inverted value of the current
Timeout of the slave’s trigger
request.

© 2016 Vector Informatik GmbH Version 1.1.0 39
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

uintl6e SlaveCounterValue

Current slave’s trigger counter
value.

uintlo
SlaveCounterValue INV

Inverted value of the current
Timeout of the slave’s trigger
request.

Wdglf_StateCombiner c-struct State Combiner specific uint8

CommonConfigType configuration structure WdgIfStateCombinerNumberOfS
for the State Combiner - laves
common part

Number of slaves configured for the
State Combiner.

WdgIf StateCombinerSpinlock
IdType

WdgIfStateCombinerSpinlockI
d

Spinlock ID for synchronizing the
access to the shared memory
section.

uintl6

WdgIfStateCombinerStartUpSy
ncCycles

Number of master cycles during
start-up in which the master does
not check the slave triggers.

const

WdgIf InterfaceFunctionsTyp
e
*WdgIfStateCombinerFunction
S

Pointer to the functions of the
watchdog device driver connected to
the master.

WdgIf StateCombinerSharedMe
mory
*WdgIfStateCombinerSData

Pointer to the shared memory.
Wdglf_StateCombiner c-struct Configuration structure uintlé

ManualConfigType for configuring State WdgIfStateCombinerReference
Combiner manually. Cycle
© 2016 Vector Informatik GmbH Version 1.1.0 40

based on template version 5.12.0

VECTOR >

Table 5-2 State Combiner Type Definitions

© 2016 Vector Informatik GmbH

Technical Reference MICROSAR WDGIF

Used only if

preprocessor switch Defines the reference cycle with
WDGIF_STATECOMBINE which the master will check the
R MANUAL MODE is slave.

STD_ON. Thisis anarray .i,+16
with an element for each

WdgIfStateCombinerSlavelIncr
slave.

ementsMin

Minimal number of expected slave
triggers in one master check
interval.

uintlo

WdgIfStateCombinerSlaveIncr
ementsMax

Maximal number of expected slave
triggers in one master check
interval.

Version 1.1.0 41
based on template version 5.12.0

VECTOR > Technical Reference MICROSAR WDGIF

5.3 Services provided by Wdglf
5.3.1 Wdglf_SetMode

Prototype

Std ReturnType WAgIf SetMode (uint8 DevicelIndex, WdgIf ModeType Mode)

DeviceIndex Identifies the watchdog instance
Mode WDGIF_OFF_MODE: Watchdog disabled

WDGIF_SLOW_MODE: Long timeout period (slow triggering)
WDGIF_FAST_MODE: Short timeout period (fast triggering)

Return code

Std_ReturnType E OK: API finished successfully
E NOT OK: An error occurred during execution

Functional Description

This function maps the setMode service to the corresponding physical watchdog implementation
according to the parameter DeviceIndex.

Particularities and Limitations

> Service ID: see table 'Service IDs'
> This function is synchronous.
> This function is non-reentrant.

Expected Caller Context
> This service is expected to be called in task context.

Table 5-3 Wdglf_SetMode

5.3.2 Wdglf_SetTriggerCondition
Prototype

Std_ReturnType WdgIf_ SetTriggerCondition (uint8 Devicelndex, uint16 Timeout)

DeviceIndex Identifies the watchdog instance
Timeout Timeout value in milliseconds for setting the trigger

Return code

Std ReturnType E OK: API finished successfully
E NOT OK: An error occurred during execution

Functional Description

This function maps the SsetTriggerCondition service to the corresponding physical watchdog
according to the parameter DeviceIndex.

© 2016 Vector Informatik GmbH Version 1.1.0 4
based on template version 5.12.0

N

VECTOR > Technical Reference MICROSAR WDGIF

Particularities and Limitations

> Service ID: see table 'Service IDs'
> This function is synchronous.
> This function is non-reentrant.

Expected Caller Context
> This service is expected to be called in task context.

Table 5-4 Wdglf_SetTriggerCondition

5.3.3 Wdglf_SetTriggerWindow
Prototype

Std_ReturnType WdgIf SetTriggerWindow (
uint8 Devicelndex,

uint16 WindowStart,

uint16 Timeout

‘

Parameter

DeviceIndex Identifies the watchdog instance

WindowStart Minimum time until next watchdog service is allowed in milliseconds
Timeout Timeout value in milliseconds for setting the trigger

Return code

Std_ReturnType E OK: API finished successfully

E NOT OK: An error occurred during execution

Functional Description

This function maps the SetTriggerWindow service to the corresponding physical watchdog according to
the parameter DeviceIndex.

Particularities and Limitations

> Service ID: see table 'Service IDs'
> This function is synchronous.
> This function is non-reentrant.

Expected Caller Context
> This service is expected to be called in task context.

Table 5-5 Wdglf_SetTriggerWindow

5.3.4 Wdglf_GetVersioninfo
Prototype

void WdgIf GetVersionInfo (Std_VersioninfoType* VersionInfoPtr)

Parameter
VersionInfoPtr Pointer to where to store the version information of this module
© 2016 Vector Informatik GmbH Version 1.1.0 43

based on template version 5.12.0

VECTOR > Technical Reference MICROSAR WDGIF

Return code

Functional Description
WdgIf GetVersionInfo returns the version information of this module.

Particularities and Limitations

‘

Service ID: see table 'Service IDs'

\%

This function is synchronous.
This function is non-reentrant.

vV Vv

This function is only available if preprocessor switch WDGIF VERSION INFO API setto
STD ON.

Expected Caller Context
> This service is expected to be called in task context.

Table 5-6 Wdglf_GetVersioniInfo

5.3.5 Wdglf GetTickCounter
Prototype

uint32 WdgIf GetTickCounter (void)

Parameter

Return code

uint32 The current hardware timebase tick counter

Functional Description
This function returns the current hardware tick counter.

Particularities and Limitations

\

Service ID: see table 'Service IDs'
This function is synchronous.
This function is non-reentrant.

This function is only available if the preprocessor switch WDGIF INTERNAL TICK COUNTER
is setto STD_ON, i.e. a valid Wdg is referenced in WdglflnternalTickCounterRef.

VvV Vv

\%

Expected Caller Context
> This service is expected to be called in task context.

Table 5-7 Wdglf_GetTickCounter

5.4 Services used by Wdglf

In Table 5-8 services provided by other components, which are used by the Wdglf are
listed. For details about prototype and functionality refer to the documentation of the
providing component.

© 2016 Vector Informatik GmbH Version 1.1.0 4
based on template version 5.12.0

N

VECTOR D>

Technical Reference MICROSAR WDGIF

The external functions must not degrade the quality level of the Wdglf. Hence, the
possibility to use wrapper functions is provided so that either:

> the wrapper function calls the external function (e.g. context switch), or

> the wrapper function provides an alternative implementation of the external function.

Note

In both cases each wrapper function must be implemented according to the

required quality level of the system (e.g. ASIL D). For more information about
how to implement the wrapper functions listed below, refer to the Safe
Watchdog Interface Safety Manual. [2]

All wrapper functions have the prefix “Appl ".

”

Component __ Function ________|Deseription

Det / Appl Det ReportError ()
Appl Det
0s GetSpinlock () /

ReleaseSpinlock ()

© 2016 Vector Informatik GmbH

If the preprocessor option

WDGIF DEV_ ERROR DETECT is set to
STD_ON, the Wdglf calls the function
Appl Det ReportError().

Expected declaration included with

Appl Det.h:

void Appl Det ReportError (uintlé
ModuleId,_uinES InstanceId, uint8
Apild, uint8 ErrorId);

Note: If the preprocessor option

WDGIF DEV ERROR DETECT is set to

STD OFF, the Wdglf performs the consistency
checks but does not report to DET.

If the State Combiner functionality is used
(preprocessor option

WDGIF USE STATECOMBINER iS STD ON)
and if the preprocessor option

WDGIF STATECOMBINER USE OS SPIN LO
CK is STD_ON, these OS functions are used in
order to synchronize the State Combiner
instances running on different processor
cores. The declaration is included with Os . h.

Note: If these functions do not meet the target
quality level of the system, then the wrapper
functions Appl GetSpinlock () and

Appl ReleaseSpinlock () must be used.

Note: These functions use the spinlock ID
configured with the configuration parameter
WdgIfStateCombinerSpinlockID. This
spinlock must be initialized before the Wdglf is
invoked for the first time (i.e. the overlying
WdgM main function is invoked for the first
time after system start-up).

Version 1.1.0 45

based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

Appl_Spinlo Appl GetSpinlock() / If the State Combiner functionality is used

ck Appl ReleaseSpinlock() (preprocessor option
WDGIF USE STATECOMBINER S STD ON)
and if the preprocessor option
WDGIF STATECOMBINER USE OS SPIN LO
CK is STD_OFF, these user defined functions
are used in order to synchronize the State
Combiner instances running on different
processor cores.
The expected declarations are included with
Appl Spinlock.h: Std ReturnType
Appl GetSpinlock (uint32 ID);
Std ReturnType
Appl ReleaseSpinlock (uint32 int
ID);
Note: These functions use the spinlock ID
configured with configuration parameter
WdgIfStateCombinerSpinlockID. This
spinlock must be initialized before the Wdglf is
invoked for the first time (i.e. the overlying
WdgM main function is invoked for the first
time after system start-up).

Table 5-8 Services used by the Wdglf

© 2016 Vector Informatik GmbH Version 1.1.0 46
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

6 Configuration

This section describes the configuration of the Wdglf. Only link time configuration is used
for the Wdglf.

6.1 Configuration Variants
The Wdglf supports the configuration variants
> VARIANT-PRE-COMPILE

The configuration classes of the Wdglf parameters depend on the supported configuration
variants. For their definitions please see the Wdglf bswmd.arxml file.

The Wdglf can be configured using the following tool:

> DaVinci Configurator 5 (AUTOSAR 4 packages only). Parameters are explained within
the tool.

The outputs of the configuration and generation process are the configuration source files.

6.2 Configuring the State Combiner

There are two main configuration possibilities for the reference cycle and the expected
counter increments interval: manual and automatic.

> Manual configuration allows that the reference cycle as well as the number of
expected slave triggers is entered manually per slave. Following applies for the
manual configuration:

> Manual configuration is designed for synchronous mode.

> Allows the user to determine and configure the values for reference cycle and
number of expected triggers per trigger. Can be used to optimize reaction time.

> Does not allow changing the master or slave period unless the ratio between them
stays the same.

> The State Combiner in manual mode checks whether the number of slave triggers
corresponds to the configuration — the system integrator must make sure that the
configured values are correct!

> Automatic configuration sets the State Combiner to calculate reference cycle and the
number of expected slave triggers automatically. Following applies for the automatic
configuration:

> Automatic configuration is designed for asynchronous mode.

> Automatic calculation does not optimize reaction time (because the State
Combiner cannot take the offset into account when calculating the reference
cycle).

> Allows change of master period and slave period independently from one another.

> The State Combiner in automatic mode checks the slave triggering according to
the trigger window provided by the overlying WdgM instance. The system

© 2016 Vector Informatik GmbH Version 1.1.0 47
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

integrator must make sure that the trigger window values configured for WdgM are
correct!

Note
ﬂ Manual configuration supports the configuration of a counter increment interval. Hence,
it can also be used for asynchronous mode.

Note
ﬂ Using automatic configuration for synchronous mode is not recommended, because
the resulting reaction time is higher than necessary.

6.2.1 Manual Configuration for Synchronous Mode

In synchronous mode, the reference cycle and the minimum and maximum expected slave
triggers are usually configured manually.

In order to configure the State Combiner manually for synchronous mode following
parameters must be configured in the ECU description:

> SetWdgIfUseStateCombiner to true (enable State Combiner).
> Set WdglfStateCombinerUseManualMode to true.

> Set WdgIfStateCombinerReferenceCycle to the expected number of slave
triggers.

> Set WdgIfStateCombinerSlaveIncrementsMin to the constant number of
expected slave triggers.

> Set WdgIfStateCombinerSlaveIncrementsMax to the constant number of
expected slave triggers as well.

Note
ﬂ The last three parameters are set for each slave.

Note

ﬂ WdgIfStateCombinerSlaveIncrementsMin and
WdgIfStateCombinerSlaveIncrementsMax must have the same value for
synchronous mode!

Example scenario 1: Assume that the necessary conditions for synchronous mode apply,
the master period is 20ms and the slave period is 20ms. The following configuration is
recommended for the State Combiner:

> WdgIfUseStateCombiner = true

> WdgIfStateCombinerUseManualMode = true

© 2016 Vector Informatik GmbH Version 1.1.0 48
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

> WdglfStateCombinerReferenceCycle = 1

> WdgIfStateCombinerSlaveIncrementsMin 1

> WdgIlfStateCombinerSlavelIncrementsMax = 1

Example scenario 2: Assume that the necessary conditions for synchronous mode apply,
the master period is 20ms and the slave period is 40ms. The following configuration is
recommended for the State Combiner:

> WdgIlfUseStateCombiner = true
> WdgIfStateCombinerUseManualMode = true

> WdgIfStateCombinerReferenceCycle = 2
1

> WdgIfStateCombinerSlaveIncrementsMin
> WdgIfStateCombinerSlaveIncrementsMax = 1

Example scenario 3: Assume that the necessary conditions for synchronous mode apply,
the master period is 30ms and the slave period is 10ms. The following configuration is
recommended for the State Combiner:

> WdgIfUseStateCombiner = true
> WdgIfStateCombinerUseManualMode = true

> WdgIfStateCombinerReferenceCycle =1
3

> WdgIfStateCombinerSlaveIncrementsMin
> WdgIfStateCombinerSlaveIncrementsMax = 3

6.2.2 Automatic and Manual Configuration for Asynchronous Mode

There are two possible ways of configuring the State Combiner for asynchronous mode —
it can either be configured to calculate the reference cycle and number of expected slave
triggers automatically, or these parameters can be configured manually.

If the State Combiner is configured to calculate the number of expected slave triggers
automatically, then the number of expected slave triggers as well as the reference cycle is
calculated during runtime. The calculation is based on the window start and timeout with
which both master and slave are being invoked by the WdgM main functions on their
respective cores. Following needs to be configured to enable automatic calculation:

> WdgIfUseStateCombiner to true (enable State Combiner)

> WdgIfStateCombinerUseManualMode to false

Note

ﬂ Since the automatic calculation is performed dynamically, the ratio between master and
slave periods can be changed during runtime without causing a fault reaction (provided
the respective window start and timeout with which master and slave are invoked
change according to the new master and slave periods).

© 2016 Vector Informatik GmbH Version 1.1.0 49
based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

If the State Combiner is configured manually for asynchronous mode, then the reference
cycle and the maximum and the minimum numbers of expected slave triggers are entered
as part of the configuration. Following needs to be configured:

> WdgIfUseStateCombiner to true (enable State Combiner).

> WdgIfStateCombinerUseManualMode to true.

> WdgIfStateCombinerReferenceCycle to the required value.

> WdgIfStateCombinerSlavelIncrementsMin to the required value.

> WdgIfStateCombinerSlaveIncrementsMax to the required value.

Note
ﬂ The last three parameters have to be set for each slave.

Example scenario 1 — automatic configuration:

Assume that the necessary conditions for synchronous mode do not apply. The following
configuration is chosen for the State Combiner:

> WdgIfUseStateCombiner = true
> WdgIfStateCombinerUseManualMode = false

The value of the slave trigger counter is expected to rise within every check interval. The
expected number of counter increments is computed dynamically based on the trigger
window of the slave compared to the trigger window of the master (the WindowStart and
Timeout parameters with which the master and slave are invoked). The reference cycle is
calculated as the smallest value that guarantees that at least one counter increment from
the slave occurs within the check interval.

Example scenario 2 — manual configuration:

Assume that the necessary conditions for synchronous mode apply, the master period is
20ms and the slave period is 20ms. Jitter for both master and slave is maximum 2ms.
Following configuration is optimal for the State Combiner:

> WdgIfUseStateCombiner = true
> WdgIfStateCombinerUseManualMode = true

> WdgIfStateCombinerReferenceCycle = 2

> WdgIfStateCombinerSlaveIncrementsMin = 1
> WdgIfStateCombinerSlaveIncrementsMax = 3
© 2016 Vector Informatik GmbH Version 1.1.0 50

based on template version 5.12.0

VECTOR D> Technical Reference MICROSAR WDGIF

7 Glossary and Abbreviations

7.1 Glossary

Term _______Descripton

<infix> A placeholder with this name is interpreted as follows:
> In case of AUTOSAR 4 compatible environment the <infix>
placeholder consists of the vendor ID and device name string
of the configured Watchdog driver.

> In case of AUTOSAR 3 compatible environment the <infix>
placeholder consists of the device name string of the
configured Watchdog driver.

Check interval The duration between two consecutive points in time when the master
checks a slave trigger counter. It is the reference cycle multiplied by the
master invocation period.

Master State Combiner instance which is configured to work in master mode.
Slave State Combiner instance which is configured to work in slave mode.
Master / Slave In the WdgM Stack, this is the point in time when the

invocation WdgM_MainFunction of the overlying WdgM is invoked — this main

function eventually calls the master / slave.

Reference cycle The number of master periods between two consecutive checks of the
slave by the master. One means that the master checks a slave each
time the master is invoked; two means that the master checks a slave
every second time the master is invoked, etc. Note that for each slave the
reference cycle can be different. See also check interval.

Slave trigger errors They are:
> slave invocation omissions,

> slave invocation drifting,
> too frequent slave invocations and

> unscheduled triggers.

Trigger counter A variable in shared memory for each slave which starts from 0 and is
being incremented by its slave each time the slave is invoked with a
trigger request.

Number of slave The number of trigger requests of a slave during a given period of time.
triggers

Table 7-1 Glossary

© 2016 Vector Informatik GmbH Version 1.1.0 51
based on template version 5.12.0

VECTOR D>

7.2 Abbreviations

Technical Reference MICROSAR WDGIF

Abbreviation Description

API
AUTOSAR

DEM
DET
ECU
MCU
Wdg
Wdglf
WdgM

Table 7-2 Abbreviations

© 2016 Vector Informatik GmbH

Application Programming Interface

AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide
development partnership of car manufacturers, suppliers and other
companies from the electronics, semiconductor and software industry.

Diagnostic Event Manager
Development Error Tracer
Electronic Control Unit
Microcontroller Unit
Watchdog Driver
Watchdog Interface
Watchdog Manager

Version 1.1.0
based on template version 5.12.0

52

VECTOR D> Technical Reference MICROSAR WDGIF

8 Contact

Visit our website for more information on

> News

> Products

> Demo software
> Support

> Training data

> Addresses

www.vector.com

© 2016 Vector Informatik GmbH Version 1.1.0 53
based on template version 5.12.0

	1 Component History
	2 Introduction
	2.1 Architecture Overview
	2.2 Basic Functionality of the WdgIf

	3 Functional Description
	3.1 Features
	3.1.1 Deviations
	3.1.2 Additions/ Extensions

	3.2 Integration with Fully AUTOSAR Compliant Drivers
	3.3 Operation in Multi-Core Systems
	3.3.1 Independent Watchdog Devices
	3.3.2 WdgIf with a State Combiner
	3.3.2.1 Checking the Slave Trigger Pattern
	3.3.2.2 Operation of the State Combiner
	3.3.2.2.1 Synchronous Mode
	3.3.2.2.2 Asynchronous Mode

	3.3.2.3 Worst Case Delay
	3.3.2.4 Worst Case Evaluations
	3.3.2.5 Optimal Timing
	3.3.2.6 Start-up Phase
	3.3.2.7 Changing the Monitoring Period During Runtime
	3.3.2.7.1 Changing the Monitoring Period in Synchronous Mode
	3.3.2.7.2 Changing the Monitoring Period in Asynchronous Mode

	3.3.2.8 Shared Memory
	3.3.2.9 Limitations of the State Combiner Implementation

	3.4 Memory Sections
	3.4.1 Code and Constants
	3.4.2 Module Variables
	3.4.2.1 Module Variables with MICROSAR Os Gen6 / AUTOSAR Os version 4.0
	3.4.2.2 Module Variables with MICROSAR Os Gen7 / AUTOSAR Os version 4.2

	3.5 Error Handling
	3.5.1 Development Error Reporting

	4 Integration
	4.1.1 Static Files
	4.1.2 Dynamic Files

	5 API Description
	5.1 Type Definitions
	5.2 State Combiner Type Definitions
	5.3 Services provided by WdgIf
	5.3.1 WdgIf_SetMode
	5.3.2 WdgIf_SetTriggerCondition
	5.3.3 WdgIf_SetTriggerWindow
	5.3.4 WdgIf_GetVersionInfo
	5.3.5 WdgIf_GetTickCounter

	5.4 Services used by WdgIf

	6 Configuration
	6.1 Configuration Variants
	6.2 Configuring the State Combiner
	6.2.1 Manual Configuration for Synchronous Mode
	6.2.2 Automatic and Manual Configuration for Asynchronous Mode

	7 Glossary and Abbreviations
	7.1 Glossary
	7.2 Abbreviations

	8 Contact

