
MULTI: Developing for ThreadX

Green Hills Software
30 West Sola Street

Santa Barbara, California 93101
USA

Tel: 805-965-6044
Fax: 805-965-6343

www.ghs.com

LEGAL NOTICES AND DISCLAIMERS
GREEN HILLS SOFTWARE MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Green Hills Software reserves the right to revise this
publication and to make changes from time to time in the content hereof without obligation of Green Hills Software to
notify any person of such revision or changes.

Copyright © 1983-2015 by Green Hills Software. All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without prior written permission from Green Hills Software.

Green Hills, the Green Hills logo, CodeBalance, GMART, GSTART, INTEGRITY, MULTI, and Slingshot are registered
trademarks of Green Hills Software. AdaMULTI, Built with INTEGRITY, EventAnalyzer, G-Cover, GHnet, GHnetLite,
Green Hills Probe, Integrate, ISIM, u-velOSity, PathAnalyzer, Quick Start, ResourceAnalyzer, Safety Critical Products,
SuperTrace Probe, TimeMachine, TotalDeveloper, DoubleCheck, and velOSity are trademarks of Green Hills Software.

All other company, product, or service names mentioned in this book may be trademarks or service marks of their respective
owners.

For a partial listing of Green Hills Software and periodically updated patent marking information, please visit
http://www.ghs.com/copyright_patent.html.

PubID: threadx-544152
Branch: http://toolsvc/branches/release-branch-70-bto
Date: October 21, 2015

http://www.ghs.com/copyright_patent.html

Contents

Preface vii
About This Book . viii
MULTI for ThreadX . ix
The MULTI Document Set . ix
Conventions Used in the MULTI Document Set . x

Part I. Using MULTI with ThreadX 1

1. Running MULTI for ThreadX 3
ThreadX and Green Hills Tools Compatibility . 4
Debugging ThreadX Applications . 4
Manipulating ThreadX Windows . 5

Alignment Restrictions . 6
Timeout Values . 6

The ThreadX Information Window . 6
Checking Thread Stack Usage . 9

Configuring Stack Use Checking . 9
Analyzing ThreadX Memory Allocation . 10
The MULTI EventAnalyzer . 10
Performance Issues . 10

2. Threads 13
The Thread List Window . 14

Multithreaded Debugging . 14
Contents of the Thread List Window . 15

The Thread Ready List Window . 17
The Thread Information Window . 19

iiiGreen Hills Software

The Current Thread Information Window . 23
The Thread Stack Check List Window . 24
The Stack Check Information Window . 25

3. Message Queues 27
The Queue List Window . 28
The Queue Information Window . 29

4. Semaphores 33
The Semaphore List Window . 34
The Semaphore Information Window . 35

5. Mutexes 37
The Mutex List Window . 38
The Mutex Information Window . 39

6. Event Flags Groups 43
The Event Flags List Window . 44
The Event Flags Information Window . 45

7. Memory Block Pools 49
The Block Pool List Window . 50
The Block Pool Information Window . 52
The Block Pool Contents Window . 55

8. Memory Byte Pools 57
The Byte Pool List Window . 58
The Byte Pool Information Window . 59
The Byte Pool Contents Window . 62

9. Application Timers 65
The Timer List Window . 66

MULTI: Developing for ThreadXiv

Contents

The Timer Information Window . 68

Part II. Using the MULTI EventAnalyzer for
ThreadX 71

10. Introduction to the MULTI EventAnalyzer for
ThreadX 73

Basic Operation . 75
The Effect of Event Logging on Run-Time Performance 78

Basic Logging Instrumentation . 78
Quantity of Event Types . 78

11. Collecting Event Logging Data 79
Control and Filtering of Event Logging . 80
User-Defined Events . 82

Modify the Application . 83
Modify the Configuration File . 83

Retrieving Event Logging Data from the Target 84
Modifying the Target Event Log Location . 85

12. Viewing Event Data 87
Launching the EventAnalyzer . 88
The EventAnalyzer Window . 89
Selecting Data . 93

Selecting a Point in Time . 93
Selecting a Range of Time . 94
Zooming to a Range Selection . 94
Creating a Reference Line . 94
Jumping to a Time Selection . 95

Viewing Event Data . 96
Using the Legend . 96
View Event, and Status and Thread Details 98
Viewing Context Switch Details . 100

vGreen Hills Software

Contents

Search for Event, Status, and Context Switches 101
Changing the Hidden Task List . 103

Generating Reports . 104
Configuration Menu Operations . 104

Changing the Canvas Name . 104
Time Unit Settings . 104

13. EventAnalyzer Configuration Files 107
Thread Status . 109
Defining Events . 110

Specifying Extra Data . 110
Event Categories . 113
Unknown Events . 114
Miscellaneous Configuration Options . 114

Event Overlap Icon . 114
Status Line Position . 115
Tick Value Display . 115
Warning for Unused Extra Data . 116
Warning for Missing Extra Data . 116

Reserved Keywords . 116

14. ThreadX Services Reference 119
Memory Block Pool Services . 120
Memory Byte Pool Services . 121
Event Flags Services . 122
Interrupt Services . 123
Mutex Services . 123
Message Queue Services . 124
Semaphore Services . 125
Thread Services . 126
Application Timer Services . 128

Index 129

MULTI: Developing for ThreadXvi

Contents

Preface

Contents
About This Book . viii
MULTI for ThreadX . ix
The MULTI Document Set . ix
Conventions Used in the MULTI Document Set . x

This preface discusses the purpose of the manual, the MULTI documentation set,
and typographical conventions used.

About This Book

This book describes settings, filenames, and procedures that apply specifically to
developing with MULTI for ThreadX. For more comprehensive documentation of
MULTI features, consult the other books in the documentation set, as described in
“The MULTI Document Set” on page ix.

This book is divided into two parts:

• Part I: UsingMULTI with ThreadX explains how to debug ThreadX applications
and describes specialized windows for viewing ThreadX kernel components.
See Part I. Using MULTI with ThreadX on page 1.

• Part II: Using the MULTI EventAnalyzer for ThreadX describes how to collect
and view event logging data in the EventAnalyzer. See Part II. Using the
MULTI EventAnalyzer for ThreadX on page 71.

Note
New or updated information may have become available while this book
was in production. For additional material that was not available at press
time, or for revisions that may have become necessary since this book
was printed, please check your installation directory for release notes,
README files, and other supplementary documentation.

MULTI: Developing for ThreadXviii

Preface

MULTI for ThreadX

ThreadX is a high-performance real-time embedded kernel developed by Express
Logic, Inc. The MULTI Integrated Development Environment works seamlessly
with ThreadX to provide detailed kernel-aware and thread-aware debugging for
developers, including full C, C++, and Embedded C++ source and
assembly-language debugging.

All eight ThreadX kernel components are recognized by MULTI:

• Threads
• Message queues
• Semaphores
• Mutexes
• Event flags groups
• Memory block pools
• Memory byte pools
• Application timers

Each kernel component type has at least two associated MULTI windows: a list
window that summarizes all created kernel components of that component type and
an information window that shows detailed information about a specific component.
The thread, block pool, and byte pool kernel components also have additional
associated windows that provide further information. All of these windows are
described in detail in the following chapters.

The MULTI Document Set

The primary documentation for using MULTI is provided in the following books:

• MULTI: Getting Started — Provides an introduction to the MULTI Integrated
Development Environment and leads you through a simple tutorial.

• MULTI: Licensing — Describes how to obtain, install, and administer MULTI
licenses.

• MULTI: Managing Projects and Configuring the IDE — Describes how to
create and manage projects and how to configure the MULTI IDE.

ixGreen Hills Software

MULTI for ThreadX

• MULTI: Building Applications — Describes how to use the compiler driver
and the tools that compile, assemble, and link your code. Also describes the
Green Hills implementation of supported high-level languages.

• MULTI: Configuring Connections — Describes how to configure connections
to your target.

• MULTI: Debugging— Describes how to set up your target debugging interface
for use with MULTI and how to use the MULTI Debugger and associated tools.

• MULTI: Debugging Command Reference — Describes how to use Debugger
commands and provides a comprehensive reference of Debugger commands.

• MULTI: Scripting — Describes how to create MULTI scripts. Also contains
information about the MULTI-Python integration.

For a comprehensive list of the books provided with your MULTI installation, see
the Help → Manuals menu accessible from most MULTI windows.

All books are available in one or more of the following formats:

• Print.
• Online help, accessible from most MULTI windows via the Help → Manuals

menu.
• PDF, available in the manuals subdirectory of your MULTI or compiler

installation.

Conventions Used in the MULTI Document Set

All Green Hills documentation assumes that you have a working knowledge of your
host operating system and its conventions, including its command line and graphical
user interface (GUI) modes.

Green Hills documentation uses a variety of notational conventions to present
information and describe procedures. These conventions are described below.

MULTI: Developing for ThreadXx

Preface

ExampleIndicationConvention

C:\MyProjectsFilename or pathnamebold type

setup commandCommand

-G optionOption

The Breakpoints windowWindow title

The File menuMenu name or menu choice

Working Directory:Field name

The Browse buttonButton name

-o filenameReplaceable textitalic type

A task may be called a process
or a thread

A new term

MULTI: DebuggingA book title

Type help command_nameText you should enter as presentedmonospace type

The wait [-global] command
blocks command processing,
where -global blocks
command processing for all
MULTI processes.

A word or words used in a
command or example

int a = 3;Source code

> print Test
Test

Input/output

GHS_System()A function

debugbutton [name]...The preceding argument or option
can be repeated zero or more times.

ellipsis (...)

(in command line
instructions)

> print Test
Test

Represents a prompt. Your actual
prompt may be a different symbol
or string. The > prompt helps to
distinguish input from output in
examples of screen displays.

greater than sign (>)

call func | exprOne (and only one) of the
parameters or options separated by
the pipe or pipes should be
specified.

pipe (|)

(in command line
instructions)

xiGreen Hills Software

Conventions Used in the MULTI Document Set

ExampleIndicationConvention

.macro name [list]Optional argument, command,
option, and so on. You can either
include or omit the enclosed
elements. The square brackets
should not appear in your actual
command.

square brackets ([])

(in command line
instructions)

The following command description demonstrates the use of some of these
typographical conventions.

gxyz [-option]... filename

The formatting of this command indicates that:

• The command gxyz should be entered as shown.
• The option -option should either be replaced with one or more appropriate

options or be omitted.
• The word filename should be replaced with the actual filename of an

appropriate file.

The square brackets and the ellipsis should not appear in the actual command you
enter.

MULTI: Developing for ThreadXxii

Preface

Part I

UsingMULTI with ThreadX

Chapter 1

Running MULTI for ThreadX

Contents
ThreadX and Green Hills Tools Compatibility . 4
Debugging ThreadX Applications . 4
Manipulating ThreadX Windows . 5
The ThreadX Information Window . 6
Checking Thread Stack Usage . 9
Analyzing ThreadX Memory Allocation . 10
The MULTI EventAnalyzer . 10
Performance Issues . 10

This chapter provides a basic overview of how to use MULTI to debug ThreadX
applications.

ThreadX and Green Hills Tools Compatibility

MULTI and the Green Hills Compilers are compatible with ThreadX 5.5 and later.

For a project built with ThreadX, if you customize system libraries, remove the
following files from your libsys.gpj subproject:

• ind_thrd.c
• ind_lock.c
• ind_except.c

ThreadX-specific versions of the routines contained in these files are included with
ThreadX.

Debugging ThreadX Applications

When you debug a ThreadX application with MULTI, a ThreadX icon () appears
in the MULTI Debugger toolbar:

MULTI: Developing for ThreadX4

Chapter 1. Running MULTI for ThreadX

Click the ThreadX icon to open the ThreadX Information window, the main
control window for MULTI kernel-aware debugging for ThreadX. See “The ThreadX
Information Window” on page 6 for more information about using this window.

To learn more about MULTI for ThreadX, use MULTI to create a product
demonstration program. You must have a licensed copy of ThreadX installed on
your system to build a ThreadX program.

Manipulating ThreadX Windows

The following information applies to all ThreadX windows except theThread List
window.

• Clicking the blue Freeze button () located near the top right corner of the
window freezes the window and changes the button into a snowflake ().

5Green Hills Software

Manipulating ThreadX Windows

Clicking the snowflake makes the window active again. An active window is
updated each time the target is stopped. See “Performance Issues” on page 10
for more information about the Freeze button.

• Entering Ctrl+d when a window is in view freezes the window and creates a
duplicate, active copy of it.

• Clicking a button for a particular component displays more details about that
component.

• Double-clicking any item in a list displays information about it. If no useful
information exists for an item, double-clicking the item may have no effect.

Alignment Restrictions

It is best to ensure 4-byte alignment and sizes for most component options that refer
to addresses or size in memory. To ensure correct alignment, ThreadX pads certain
size parameters to be multiples of 4 bytes or adjusts beginning or ending pointers
to be 4-byte aligned.

This alignment restriction can sometimes explain differences between what is
specified when a component is created and what is displayed when it is viewed.
For example, a memory block pool created with a pool size of 258 bytes is not able
to make use of any more than 256 bytes. Similarly, creating a block pool with a
block size of 10 bytes results in an actual block size of 12 bytes.

Timeout Values

References to thread time slices and suspended thread timeout values, as well as to
application timer values inside ThreadX windows, refer only to the timeout values
contained in the underlying data structures. These entries do not necessarily count
down as time elapses. Counting down every one of these values on each timer tick
would compromise the real-time performance of ThreadX.

The ThreadX Information Window

The ThreadX Information window is the main control window for MULTI
kernel-aware debugging for ThreadX. To open this window, click the ThreadX
button () in the MULTI Debugger window.

MULTI: Developing for ThreadX6

Chapter 1. Running MULTI for ThreadX

The ThreadX Information window shows useful system parameters such as
individual component counts, the name of the current thread, the version ID string,
and the status of the system clock and stack pointer. Buttons in the window open
other windows that contain lists for each component type or detailed information
about the current thread. Each field and button is described more specifically in the
table below.

Shows the number of created threads in the system, which
corresponds to the system variable _tx_thread_created_count.
Clicking the Threads button opens the Thread List window (see
“The Thread List Window” on page 14).

Threads

Shows the number of created message queues in the system, which
corresponds to the system variable _tx_queue_created_count.
Clicking theMessageQueues button opens theQueueListwindow
(see “The Queue List Window” on page 28).

Message Queues

Shows the number of created semaphores in the system, which
corresponds to the system variable
_tx_semaphore_created_count. Clicking the Semaphores
button opens the Semaphore List window (see “The Semaphore
List Window” on page 34).

Semaphores

7Green Hills Software

The ThreadX Information Window

Shows the number of created event flags groups in the system, which
corresponds to the system variable
_tx_event_flags_created_count. Clicking the Event Flag
Groups button opens theEvent Flags Listwindow (see “The Event
Flags List Window” on page 44).

Event Flag Groups

Shows the number of created mutexes in the system, which
corresponds to the system variable _tx_mutex_created_count.
Mutex objects are available starting with ThreadX version 4.0.
Clicking the Mutexes button opens the Mutex List window (see
“The Mutex List Window” on page 38).

Mutexes

Shows the number of created block pools in the system, which
corresponds to the system variable
_tx_block_pool_created_count. Clicking the Block Pools
button opens theBlock Pool Listwindow (see “The Block Pool List
Window” on page 50).

Block Pools

Shows the number of created byte pools in the system, which
corresponds to the system variable
_tx_byte_pool_created_count. Clicking theByte Pools button
opens theByte Pool Listwindow (see “The Byte Pool List Window”
on page 58).

Byte Pools

Shows the number of created application timers in the system, which
corresponds to the system variable _tx_timer_created_count.
Clicking the Application Timers button opens the Timer List
window (see “The Timer List Window” on page 66).

Application Timers

Opens the Thread Stack Check List window, which displays stack
information for all threads in the system (see “The Thread Stack
Check List Window” on page 24).

Stack Check List

Opens the Thread Ready List window, which shows a list of all
threads that are at the same priority level as the currently executing
thread and are ready to execute (see “The Thread Ready List
Window” on page 17).

Ready List

Shows the current executing thread, which corresponds to the thread
pointed to by the system variable _tx_thread_current_ptr. If
the system is not within a thread, then (System) is displayed.

Clicking the Current Thread button opens the Current Thread
Informationwindow (aThread Informationwindow on the thread
that was executing when the system was stopped). See “The Current
Thread Information Window” on page 23 and “The Thread
Information Window” on page 19 for more information.

Current Thread

Shows the version ID string of the system. This value corresponds
to the string pointed to by the system variable _tx_version_id.

Version ID

MULTI: Developing for ThreadX8

Chapter 1. Running MULTI for ThreadX

Shows in timer ticks the system clock status. This value corresponds
to the system variable _tx_timer_system_clock.

System Clock

Shows the value of the system stack pointer. This value corresponds
to the system variable _tx_thread_system_stack_ptr.

System SP

Checking Thread Stack Usage

Stack overflow is a common problem that MULTI helps diagnose.

The Stack Use field in any thread window shows how much stack is currently in
use by each thread and how much stack space is available for each thread. This
information can help you to identify threads that are using more stack space than
anticipated and to adjust their stack sizes to guard against overflow before problems
occur.

MULTI for ThreadX also provides peak stack checking. You can check peak stack
use for a single thread by viewing the StackCheck Informationwindow (see “The
Stack Check Information Window” on page 25) or for all threads by viewing the
Thread Stack Check List window (see “The Thread Stack Check List Window”
on page 24). In either case, MULTI displays the peak stack usage as determined
by the highest point in the stack that has changed since the thread was created. Peak
stack use checking occurs by executing code on the target itself, which is usually
much faster than uploading large portions of target memory to the host.

Configuring Stack Use Checking

MULTI Debugger-based stack use checking is enabled by default in ThreadX. In
ThreadX versions 3 and 4, stack use checking can be disabled by compiling tx_tc.c
with the preprocessor symbol TX_DISABLE_STACK_CHECKING defined. In
ThreadX version 5, stack use checking can be disabled by rebuilding the ThreadX
library with the TX_DISABLE_STACK_FILLING configuration option.

When stack use checking is enabled, the tx_thread_create service fills a thread's
stack with an 0xEF data pattern that is used by the MULTI Debugger to calculate
stack usage. This function can be bypassed , which results in threads being created
more quickly.

9Green Hills Software

Checking Thread Stack Usage

ThreadX version 5 also contains a separate run-time stack checking feature. That
feature can be enabled or disabled separately from the MULTI Debugger-based
stack use checking.

Analyzing ThreadX Memory Allocation

MULTI for ThreadX contains enhanced views of memory block pools and byte
pools to help developers find problems with dynamic memory allocation.

To view this enhanced information, click In Use in a Block Pool Information
window or Byte Pool Information window. This opens a Contents window that
lists the pool's memory blocks or fragments by their location in memory and indicates
whether each is In Use or Available. For byte pools, the window also displays
the size of each byte pool fragment. These memory contents windows make it easy
to observe the effects of dynamic memory allocation and to detect the causes of
byte pool fragmentation. See “The Block Pool Contents Window” on page 55 or
“The Byte Pool Contents Window” on page 62 for more information.

The MULTI EventAnalyzer

The MULTI EventAnalyzer can display ThreadX event information that allows
users of ThreadX to analyze the complex, real-time interactions occurring in their
target systems. For more information about configuring and using the EventAnalyzer,
please refer to the second part of this book, “Using the MULTI EventAnalyzer for
ThreadX”.

Performance Issues

All ThreadX windows except Stack Check windows are automatically updated
each time the target is halted, hits a breakpoint, or stops for any other reason. Thus,
the more ThreadX windows you have displayed, the more target data is uploaded
to the host system each time the target stops, and the slower your debugging
performance may be. To maximize debugging performance, close any unnecessary
ThreadX windows.

Another way to speed debugging is to use the blue Freeze button () located near
the upper right-hand corner of each ThreadX window to selectively freeze windows

MULTI: Developing for ThreadX10

Chapter 1. Running MULTI for ThreadX

that do not need updating. Click the button to freeze the window. The button is
replaced by a snowflake (). Click the snowflake to make the window active again.
An active window updates every time the target stops; frozen windows are not
updated with target data. To force an update of all active windows, use the update
command in the MULTI Debugger.

11Green Hills Software

Performance Issues

Chapter 2

Threads

Contents
The Thread List Window . 14
The Thread Ready List Window . 17
The Thread Information Window . 19
The Current Thread Information Window . 23
The Thread Stack Check List Window . 24
The Stack Check Information Window . 25

This chapter describes windows that display detailed information about the threads
in your application.

The Thread List Window

The Thread List window shows a list of all threads in the kernel, in the order in
which they were created.

To display this window, click theThreads button in the mainThreadX Information
window.

The list is generated by following a linked list, starting with the thread pointed to
by the global variable _tx_thread_created_ptr and continuing with the
tx_thread_created_next field of each thread control block TX_THREAD. A total
of _tx_thread_created_count threads are shown.

When a thread is deleted, it disappears from the Thread List window and from the
Debugger's target list.

Multithreaded Debugging

The Thread List window can be used for freeze-mode multithreaded debugging.
To display a thread in the MULTI Debugger, single-click it in the Debugger's target
list, or double-click it in the Thread List window.

MULTI: Developing for ThreadX14

Chapter 2. Threads

For further information about working with the Thread List window, refer to the
documentation about freeze-mode debugging and OS-awareness in the MULTI:
Debugging book.

Contents of the Thread List Window

The Thread List window displays up to seven columns: Name, Thread ID, State,
Priority, Stack Use, Run Count, and Suspended On. Each of these columns is
described below.

Note
Not all columns are shown by default; right-click the column header to
open a menu that will allow you to display or hide any of the available
columns.

Displays the name of the thread, as given in the call to
tx_thread_create. If a 0 (null pointer) was passed as the name_ptr
argument, this entry displays the address of the thread control block
TX_THREAD. This entry corresponds to the tx_thread_name field of
TX_THREAD.

Name

Displays the address of the thread control block TX_THREAD, as given
in the call to tx_thread_create.

Thread ID

Indicates the current execution state of the thread. This entry corresponds
to the tx_thread_state field of TX_THREAD. The thread can be in one
of five states:

• Executing — The thread is executing.
• Ready— The thread is ready and will execute when it is the highest

priority thread.
• Suspended— The thread cannot run because it is waiting. Threads

can wait for time, message queues, event flags, semaphores,
mutexes, and memory, or can be placed in a suspended state upon
thread creation.

• Terminated — The thread was terminated by a
tx_thread_terminate call.

• Completed — The thread has returned from its entry function.

State

15Green Hills Software

Contents of the Thread List Window

Gives information about the priority of the thread. The first number is
the priority level of the thread, which corresponds to the
tx_thread_priority field in TX_THREAD. The second number, in
parentheses, is the preemption threshold of the thread and corresponds
to the tx_thread_preempt_threshold field in TX_THREAD.

Priority

Indicates the amount of stack currently in use by the thread. Two numbers
separated by a forward slash (/) are displayed. The first number indicates
the amount of stack the thread has used and is derived from the difference
between the tx_thread_stack_end field in TX_THREAD and the current
thread stack pointer. The second number indicates the total amount of
stack space allocated to the thread and is the difference between the
tx_thread_stack_end and tx_thread_stack_start fields in TX_THREAD.

Stack Use

Indicates how many times the thread has been scheduled. When this
field is increasing, the thread is being scheduled and run. A run counter
that stays the same may indicate a thread that is unable to run for some
reason. This field corresponds to the tx_thread_run_count field of
TX_THREAD.

Run Count

Indicates the type (Queue, Semaphore, Mutex, Event Flags Group,
Block Pool, Byte Pool, Sleep, or Suspend Call) of the component
on which the thread is suspended and its name (as given when that
component was created; if a 0 (null pointer) was passed as the name_ptr
argument, the address of the control block is displayed).

The name portion of this field is derived from the appropriate name field
of the component pointed to by the tx_thread_suspend_control_block
field of TX_THREAD. The component type portion of this field is
derived from the tx_thread_state field of TX_THREAD.

This field shows N/A if the execution state is anything other than
Suspended.

Suspended On

MULTI: Developing for ThreadX16

Chapter 2. Threads

The Thread Ready List Window

The Thread Ready List window shows a list of all threads that are at the same
priority level as the currently executing thread and are ready to execute.

To display this window, click the Ready List button in the ThreadX Information
window.

The list is generated by following a linked list, starting with the thread pointed to
by the global variable _tx_thread_current_ptr and continuing with the
tx_thread_ready_next field of each thread control block TX_THREAD.

When a thread is deleted, it disappears from this list.

You can double-click any thread in the Thread Ready List to display a Thread
Information window (see “The Thread Information Window” on page 19).

The Thread Ready List has four columns: Name, State, Time Slice, and Stack
Use. Each of these is described below.

Displays the name of the thread, as given in the call to
tx_thread_create. If a 0 (null pointer) was passed as the name_ptr
argument, this entry displays the address of the thread control block
TX_THREAD. This entry corresponds to the tx_thread_name field of
TX_THREAD.

Name

Indicates the current execution state of the thread. The thread can be in
one of two states:

• Executing — The thread is executing.
• Ready — The thread is ready and will execute when it is the

highest priority thread.

State

17Green Hills Software

The Thread Ready List Window

Displays the timer ticks remaining and the timer ticks given to the
thread. Two numbers separated by a forward slash (/) are displayed.
The first number indicates the remaining timer ticks in the slice and
corresponds to the tx_thread_time_slice field of TX_THREAD. The
second number indicates how many timer ticks the thread will receive
when it is subsequently scheduled after it exhausts its current time slice.
This number is the time_slice parameter passed to tx_thread_create
and corresponds to the tx_thread_new_time_slice field of
TX_THREAD.

Time Slice

Indicates the amount of stack currently in use by the thread. Two
numbers separated by a forward slash (/) are displayed. The first number
indicates the amount of stack the thread has used and is derived from
the difference between the tx_thread_stack_end field in TX_THREAD
and the current thread stack pointer. The second number indicates the
total amount of stack space allocated to the thread and is derived from
the difference between the tx_thread_stack_end and
tx_thread_stack_start fields in TX_THREAD.

Stack Use

MULTI: Developing for ThreadX18

Chapter 2. Threads

The Thread Information Window

The Thread Informationwindow shows detailed information about an individual
thread.

To display this window, double-click a thread in the Thread Ready List window,
right-click a thread in the Thread List window, or view a variable of type
TX_THREAD in the MULTI Debugger window. The information in this window
is derived from various fields within the thread control block TX_THREAD.

If a thread is deleted while aThread Informationwindow for it exists, the window
does not disappear; the window continues to show the contents of the thread control
block.

Each of the fields and buttons in the Thread Information window is described
next.

19Green Hills Software

The Thread Information Window

Displays the name of the thread, as given in the call to
tx_thread_create. If a 0 (null pointer) was passed as the name_ptr
argument, this field displays (None). This field corresponds to the
tx_thread_name field of TX_THREAD.

Thread Name

Gives the name of the function in which the thread is currently
executing. If no debugging information is available for that location,
this field may be displayed as an offset from a known label or as an
address in hexadecimal format. This field is derived from one of the
following:

1. The system program counter (PC), if the thread is currently
executing.

2. A PC value as stored on the stack, if the thread is not currently
executing.

Clicking the Current PC button displays the current PC location.

Current PC

Identifies the current stack pointer of the thread, displayed as a
hexadecimal address. For threads that are not currently executing, this
field corresponds to the tx_thread_stack_ptr field of TX_THREAD.
For the currently executing thread, this field displays the processor's
stack pointer register. Clicking the Current SP button displays a
memory view of the thread's stack.

Current SP

Indicates the amount of stack currently in use by the thread. Two
numbers separated by a forward slash (/) are displayed. The first number
indicates the amount of stack the thread has used and is derived from
the difference between the tx_thread_stack_end field in TX_THREAD
and the current thread stack pointer. The second number indicates the
total amount of stack space allocated to the thread and is derived from
the difference between the tx_thread_stack_end and
tx_thread_stack_start fields in TX_THREAD.

Stack Use

Displays the stack range as two hexadecimal addresses. This field is
derived from the tx_thread_stack_start and tx_thread_stack_end fields
in TX_THREAD.

Stack Extent

Gives information about the priority of the thread. The first number is
the priority level of the thread, which corresponds to the
tx_thread_priority field in TX_THREAD. The second number, in
parentheses, is the preemption threshold of the thread and corresponds
to the tx_thread_preempt_threshold field in TX_THREAD.

Priority (PT)

MULTI: Developing for ThreadX20

Chapter 2. Threads

Displays the timer ticks remaining and the timer ticks given to the
thread. Two numbers separated by a forward slash (/) are displayed.
The first number indicates the remaining timer ticks in the slice and
corresponds to the tx_thread_time_slice field of TX_THREAD. The
second number indicates how many timer ticks the thread will receive
when it is subsequently scheduled after it exhausts its current time slice.
This number is the time_slice parameter passed to tx_thread_create and
corresponds to the tx_thread_new_time_slice field of TX_THREAD.

Time Slice

Indicates the current execution state of the thread. This entry is derived
from the tx_thread_state field of TX_THREAD and by comparing the
global variable _tx_thread_current_ptr with the address of
TX_THREAD. The thread can be in one of five states:

• Executing — The thread is executing.
• Ready — The thread is ready and will execute when it is the

highest priority thread.
• Suspended— The thread cannot run because it is waiting. Threads

can wait for time, message queues, event flags, semaphores,
mutexes, and memory, or can be placed or created in a suspended
state.

• Terminated — The thread was terminated by a
tx_thread_terminate call.

• Completed — The thread has returned from its entry function.

Execution State

Names the component type (Queue, Semaphore, Mutex, Event Flags
Group, Block Pool, Byte Pool, Sleep, or Suspend Call) on
which the thread is suspended. This field is derived from the
tx_thread_state field of TX_THREAD and shows N/A if the execution
state is anything other than Suspended.

Suspended on

Indicates the name of the component on which the thread is suspended,
as given when that component was created. If a 0 (null pointer) was
passed as the name_ptr argument, this field displays the address of
the control block. This field is derived from the appropriate name field
of the component pointed to by the tx_thread_suspend_control_block
field of TX_THREAD and shows N/A if the execution state is anything
other than Suspended. Clicking the Name button displays a view of
the component on which the thread is suspended.

Name

21Green Hills Software

The Thread Information Window

Indicates the number of ticks specified in whatever action caused the
suspend. After these ticks elapse, the thread will no longer be suspended.
If the suspension was caused by an attempt to access another kernel
component, a suitable error value will be returned from the service call.
This field shows Forever if TX_WAIT_FOREVER was specified as the
wait value in the service call that caused the thread to be suspended.
This field corresponds to the tx_timer_internal_remaining_ticks field
of the tx_thread_timer structure within TX_THREAD and shows N/A
if the execution state is anything other than Suspended.

Timeout

Shows particular information about why a thread is suspended on a
queue, event flags group, or byte pool.

• For a queue, this field displays Receive or Send.
• For an event flags group, this field shows the particular flags being

requested, as well as TX_AND, TX_AND_CLEAR, TX_OR, or
TX_OR_CLEAR, as appropriate.

• For byte pool allocation requests, this field shows the number of
bytes requested.

This field is derived from the tx_thread_suspend_option and
tx_thread_suspend_info fields of TX_THREAD, except in the case of
queues, when it is derived from the tx_queue_enqueued field of
TX_QUEUE. This field shows N/A if the thread is not suspended on a
queue, event flags group, or byte pool access.

Condition

Gives the name of the function called upon thread startup. If no
debugging information is available for that location, then this field may
be displayed as an offset from a known label or as an address in
hexadecimal format. This field corresponds to the
tx_thread_entry_function field of TX_THREAD. Clicking the Entry
Point button displays the entry point function.

Entry Point

Gives a count of how many times a thread has been scheduled. When
this field is increasing, the thread is being scheduled and run. A run
count that stays the same may indicate a thread that is unable to run for
some reason. This field corresponds to the tx_thread_run_count field
of TX_THREAD.

Run Count

Shows the address of the thread control block, which is a variable of
type TX_THREAD. See the ThreadX header file tx_api.h for the
definition of this type. Clicking theControl Block button opens aData
Explorer window on the thread control block. The Data Explorer
window displays useful information that is not included in the Thread
Information window (for more information, see the documentation
about the Data Explorer in the MULTI: Debugging book).

Control Block

MULTI: Developing for ThreadX22

Chapter 2. Threads

Displays the Stack Check Informationwindow, which shows the peak
stack usage of the thread. If stack checking is not enabled, this button
has no effect. See “Checking Thread Stack Usage” on page 9 and
“The Stack Check Information Window” on page 25 for more
information about stack checking.

Stack Check

Displays the Thread List window, which contains a list of all threads
in the system (see “The Thread List Window” on page 14).

Thread List

The Current Thread Information Window

The Current Thread Information window includes the same fields and buttons
as the Thread Information window. The Current Thread Information window,
however, displays information corresponding to the currently executing thread
rather than a specifically selected thread. The information in this window is derived
from the _tx_thread_current_ptr global variable. See “The Thread Information
Window” on page 19 for a description of the fields in the Current Thread
Information window.

23Green Hills Software

The Current Thread Information Window

The Thread Stack Check List Window

The Thread Stack Check List window shows all threads in the system together
with their maximum stack usage, arranged in the order the threads were created.
To open this window, click StackCheck List in theThreadX Informationwindow.

The list is generated by following a linked list, starting with the thread pointed to
by the global variable _tx_thread_created_ptr and continuing with the
tx_thread_created_next field of each thread control block TX_THREAD. A total
of _tx_thread_created_count threads are shown.

This list is frozen immediately upon its creation because it causes code to be executed
on the target system, which may not always be desirable. For information about
refreshing this window, and all others, see “Performance Issues” on page 10. See
“Checking Thread Stack Usage” on page 9 for more information about using this
list.

From the Thread Stack Check List window, you can double-click any listed task
to display a Thread Informationwindow (see “The Thread Information Window”
on page 19).

The Thread Stack Check List has three columns: Name, Peak Use, and Current
Use. Each of these is described next.

Displays the name of the thread, as given in the call to
tx_thread_create. If a 0 (null pointer) was passed as the
name_ptr argument, this entry displays the address of the thread
control block TX_THREAD. This field corresponds to the
tx_thread_name field of TX_THREAD.

Name

MULTI: Developing for ThreadX24

Chapter 2. Threads

Indicates the maximum amount of stack ever used by a thread.
Two numbers separated by a forward slash (/) are displayed. The
first number indicates the amount of stack the thread has used. The
second number indicates the total amount of stack space allocated
to the thread. This value is determined by examining the stack and
finding the highest point on the stack that was changed from its
original value of 0xef.

Peak Use

Gives the amount of stack currently in use by the thread. Two
numbers separated by a forward slash (/) are displayed. The first
number indicates the amount of stack the thread has used, and the
second number indicates the total amount of stack space allocated
to the thread.

Current Use

The Stack Check Information Window

The Stack Check Information window shows the maximum stack usage of a
thread.

To open this window, click the Stack Check button in the Thread Information
window. The Stack Check Information window is frozen immediately upon its
creation because it causes code to be executed on the target system, which may not
always be desirable. For information about refreshing this window, and all others,
see “Performance Issues” on page 10. See “Checking Thread Stack Usage”
on page 9 for more information about stack checking.

If a thread is deleted while a Stack Check Information window for that thread
exists, the window does not automatically disappear; the window continues to
display stack check information.

The two fields of the Stack Check Information window are described below.

Gives the name of thread, as given in the call to tx_thread_create. If
a 0 (null pointer) was passed as the name_ptr argument, this entry
displays the address of the thread control block TX_THREAD. This
field corresponds to the tx_thread_name field of TX_THREAD.

Thread Name

25Green Hills Software

The Stack Check Information Window

Indicates the maximum amount of stack ever used by the thread. This
is determined by examining the stack and finding the highest point
on the stack that was changed from its original value of 0xef. Two
numbers separated by a forward slash (/) are displayed. The first
number indicates the amount of stack the thread has used, and the
second number indicates the total amount of stack space allocated to
the thread.

Peak Stack Use

MULTI: Developing for ThreadX26

Chapter 2. Threads

Chapter 3

Message Queues

Contents
The Queue List Window . 28
The Queue Information Window . 29

This chapter describes windows that display detailed information about the message
queues in your application.

The Queue List Window

The Queue List window shows a list of all message queues in the system, arranged
in the order in which they were created. To display this window, click the Message
Queues button in the ThreadX Information window.

The information in the list is generated by following a linked list, starting with the
message queue pointed to by the global variable _tx_queue_created_ptr and
continuing with the tx_queue_created_next field of each queue control block
TX_QUEUE. A total of _tx_queue_created_countmessage queues are shown.

When a queue is deleted, it is removed from this list.

You can double-click any message queue in the Queue List window to display a
Queue Information window (see “The Queue Information Window” on page 29).

TheQueue Listwindow has four columns:Name,Msg Size, Full, and Suspended.
Each of these is described below.

Displays the name of the queue, as given in the call to tx_queue_create.
If a 0 (null pointer) was passed as the name_ptr argument, this entry
displays the address of the queue control block TX_QUEUE. This
entry corresponds to the tx_queue_name field of TX_QUEUE.

Name

Indicates the size of each message in the queue. Message sizes range
from one to sixteen 32-bit words (ULONGs). Valid message sizes are
1, 2, 4, 8, and 16 words. This entry corresponds to the
tx_queue_message_size field of TX_QUEUE.

Msg Size

MULTI: Developing for ThreadX28

Chapter 3. Message Queues

Shows the number of messages currently stored in the queue awaiting
a call to tx_queue_receive. Two numbers separated by a forward
slash (/) are displayed. The first number indicates the number of
messages currently stored in the queue, and the second number
indicates the total number of messages. These numbers are derived
from the tx_queue_enqueued and tx_queue_available_storage fields
of TX_QUEUE.

Full

Shows the number of threads currently suspended on attempted
accesses to the message queue, or displays None if no threads are
suspended. This field corresponds to the tx_queue_suspended_count
field of TX_QUEUE.

Suspended

The Queue Information Window

The Queue Information window shows detailed information about an individual
message queue.

To display this window, double-click any queue in theQueue Listwindow, or view
a variable of type TX_QUEUE in the MULTI Debugger window. The information
in the Queue Information window is derived from various fields within the queue
control block TX_QUEUE.

29Green Hills Software

The Queue Information Window

If a message queue is deleted while a Queue Information window for it exists, the
window does not automatically disappear; the window continues to show the contents
of the queue control block.

Each of the fields and buttons in the Queue Information window is described
below.

Displays the name of the queue, as given in the call to
tx_queue_create. If a 0 (null pointer) was passed as the
name_ptr argument, this field displays (None). This field
corresponds to the tx_queue_name field of TX_QUEUE.

Queue Name

Indicates the size of each message in the queue. Message sizes range
from one to sixteen 32-bit words (ULONGs). Valid message sizes
are 1, 2, 4, 8, and 16 words. This field corresponds to the
tx_queue_message_size field of TX_QUEUE.

Message Size

Shows the number of messages currently stored in the queue awaiting
a call to tx_queue_receive. Two numbers separated by a forward
slash (/) are displayed. The first number indicates the number of
messages currently stored in the queue, and the second number
indicates the total number of messages. The number of available
messages (the total number of messages minus the number of
messages stored in the queue) is also shown after this pair of
numbers. All of these numbers are derived from the
tx_queue_enqueued and tx_queue_available_storage fields of
TX_QUEUE.

Filled

Gives the address of the next message that will be read with
tx_queue_receive. This field corresponds to the tx_queue_read field
of TX_QUEUE.

Read

Gives the address where the next message sent with tx_queue_send
will be stored. This field corresponds to the tx_queue_write field of
TX_QUEUE.

Write

Gives the address of the beginning of the message queue storage
area. This field corresponds to the tx_queue_start field of
TX_QUEUE.

Start

Gives the address of the end of the message queue storage area. This
field corresponds to the tx_queue_end field of TX_QUEUE.

Queue End

MULTI: Developing for ThreadX30

Chapter 3. Message Queues

Displays the address of the queue control block, which is a variable
of type TX_QUEUE. See the ThreadX header file tx_api.h for the
definition of this type. Clicking the Control Block button opens a
Data Explorer window on the queue control block. The Data
Explorer window displays useful information that is not included
in the Queue Information window (for more information, see the
documentation about the Data Explorer in the MULTI: Debugging
book).

Control Block

Indicates the number of threads currently suspended on an attempt
to access the queue. This field corresponds to the
tx_queue_suspended_count field of TX_QUEUE. If the queue is
empty, the threads listed are suspended on calls to tx_queue_receive.
If the queue is full, the threads listed are suspended on calls to
tx_queue_send.

Suspended Threads

Gives information about any threads currently suspended on an
attempt to access the queue. Each column in the list is described
below.

Double-click any listed thread to display a Thread Information
window for that thread (see “The Thread Information Window”
on page 19).

• Name— Gives the name of the thread. If a 0 (null pointer) was
passed as the name_ptr argument to tx_thread_create, this
entry displays the address of its thread control block.

• Timeout — Indicates the number of timer ticks before the
thread will abort the attempted queue access with a return value
of TX_QUEUE_EMPTY or TX_QUEUE_FULL. This entry shows
Forever if TX_WAIT_FOREVERwas passed as thewait_option
to tx_queue_receive or tx_queue_send.

• Stack Use — Shows the amount of stack currently in use by
the thread.

Suspended Threads
List

Displays theQueue Listwindow, which contains a list of all message
queues in the system (see “The Queue List Window” on page 28).

Queue List

31Green Hills Software

The Queue Information Window

Chapter 4

Semaphores

Contents
The Semaphore List Window . 34
The Semaphore Information Window . 35

This chapter describes windows that display detailed information about the
semaphores in your application.

The Semaphore List Window

The Semaphore Listwindow shows a list of all semaphores in the system, arranged
in the order in which they were created. To display this window, click the
Semaphores button in the ThreadX Information window.

The list is generated by following a linked list, starting with the semaphore pointed
to by the global variable _tx_semaphore_created_ptr and continuing with the
tx_semaphore_created_next field of each semaphore control block
TX_SEMAPHORE. A total of _tx_semaphore_created_count semaphores
are shown.

When a semaphore is deleted, it disappears from this list.

You can double-click any semaphore in the Semaphore List window to display a
Semaphore Information window (see “The Semaphore Information Window”
on page 35).

The Semaphore List has three columns: Name, Count, and Suspended. Each of
these is described next.

Displays the name of the semaphore, as given in the call to
tx_semaphore_create. If a 0 (null pointer) was passed as the
name_ptr argument, this entry displays the address of the semaphore
control block TX_SEMAPHORE. This entry corresponds to the
tx_semaphore_name field of TX_SEMAPHORE.

Name

Gives the count of the semaphore. Semaphore counts range from 0 to
0xffffffff. This entry corresponds to the tx_semaphore_count field
of TX_SEMAPHORE.

Count

MULTI: Developing for ThreadX34

Chapter 4. Semaphores

Indicates the number of threads currently suspended on an attempt to
get the semaphore with a call to tx_semaphore_get, or displays
None if no threads are suspended. This entry corresponds to the
tx_semaphore_suspended_count field of TX_SEMAPHORE.

Suspended

The Semaphore Information Window

The Semaphore Information window shows detailed information about an
individual semaphore.

To display this window, double-click a semaphore in the Semaphore List window,
or view a variable of type TX_SEMAPHORE in the MULTI Debugger window.
The information in the Semaphore Information window is derived from various
fields within the semaphore control block TX_SEMAPHORE.

If a semaphore is deleted while a Semaphore Information window for it exists,
the window does not automatically disappear; the window continues to show the
contents of the semaphore control block.

Each field and button of the Semaphore Information window is described below.

Displays the name of the semaphore, as given in the call to
tx_semaphore_create. If a 0 (null pointer) was passed as
the name_ptr argument, this field displays (None). This field
corresponds to the tx_semaphore_name field of
TX_SEMAPHORE.

Semaphore Name

35Green Hills Software

The Semaphore Information Window

Gives the count of the semaphore. Semaphore counts range
from 0 to 0xffffffff. This field corresponds to the
tx_semaphore_count field of TX_SEMAPHORE.

Semaphore Count

Displays the address of the semaphore control block, which is
a variable of type TX_SEMAPHORE. See the ThreadX header
file tx_api.h for the definition of this type. Clicking theControl
Block button opens aData Explorerwindow on the semaphore
control block. The Data Explorer window displays useful
information that is not included in the Semaphore Information
window (for more information, see the documentation about
the Data Explorer in the MULTI: Debugging book).

Control Block

Indicates the number of threads currently suspended on an
attempt to get the semaphore with a call to
tx_semaphore_get. This field corresponds to the
tx_semaphore_suspended_count field of TX_SEMAPHORE.

Suspended Threads

Gives information regarding threads that are currently suspended
on an attempt to get the semaphore. Each column in the list is
described below. Double-click any listed thread to display a
Thread Information window (see “The Thread Information
Window” on page 19).

• Name— Gives the name of the thread. If a 0 (null pointer)
was passed as the name_ptr argument to
tx_thread_create, this entry displays the address of
the thread control block.

• Timeout— Indicates the number of timer ticks before the
thread will abort the attempted semaphore get. This entry
shows Forever if TX_WAIT_FOREVER was passed as the
wait_option to tx_semaphore_get.

• Stack Use — Shows the amount of stack currently in use
by the thread.

Suspended Threads List

Displays the Semaphore List window, which contains a list of
all semaphores in the system (see “The Semaphore List
Window” on page 34).

Semaphore List

MULTI: Developing for ThreadX36

Chapter 4. Semaphores

Chapter 5

Mutexes

Contents
The Mutex List Window . 38
The Mutex Information Window . 39

This chapter describes windows that display detailed information about the mutexes
in your application.

The Mutex List Window

The Mutex List window shows a list of all mutexes in the system, arranged in the
order in which they were created. To display this window, click theMutexes button
in the ThreadX Information window.

The Mutex List is generated by following a linked list, starting with the mutex
pointed to by the global variable _tx_mutex_created_ptr and continuing with
the tx_mutex_created_next field of each mutex control block TX_MUTEX. A total
of _tx_mutex_created_count mutexes are shown.

When a mutex is deleted, it is removed from this list.

You can double-click any mutex in the Mutex List window to display a Mutex
Information window (see “The Mutex Information Window” on page 39).

The Mutex List has four columns: Name, Owner, Count, and Suspended. Each
of these is described next.

Displays the name of the mutex, as given in the call to tx_mutex_create.
If a 0 (null pointer) was passed as the name_ptr argument, this entry
displays the address of the mutex control block TX_MUTEX. This
entry corresponds to the tx_mutex_name field of TX_MUTEX.

Name

Gives the name of the thread that currently owns the mutex, or displays
(None) if the ownership count is zero. If a 0 (null pointer) was passed
as the name_ptr argument to tx_thread_create when the owner thread
was created, this entry displays the address of the thread control block.
This entry is derived from the tx_mutex_owner field of TX_MUTEX.

Owner

MULTI: Developing for ThreadX38

Chapter 5. Mutexes

Gives the mutex ownership count. This entry corresponds to the
tx_mutex_ownership_count field of TX_MUTEX.

Count

Indicates the number of threads currently suspended on attempts to
get the mutex, or displays None if no threads are suspended. This field
corresponds to the tx_mutex_suspended_count field of TX_MUTEX.

Suspended

The Mutex Information Window

The Mutex Information window shows detailed information about an individual
mutex.

To display this window, double-click a mutex in the Mutex List window, or view
a variable of type TX_MUTEX in the MULTI Debugger window. The information
in this window is derived from various fields within the mutex control block
TX_MUTEX.

If a mutex is deleted while a Mutex Information window for it exists, the window
does not automatically disappear; the window continues to show the contents of
the mutex control block.

Each of the fields and buttons in the Mutex Information window is described
below.

39Green Hills Software

The Mutex Information Window

Displays the name of the mutex, as given in the call to
tx_mutex_create. If a 0 (null pointer) was passed as the name_ptr
argument, this field displays (None). This field corresponds to the
tx_mutex_name field of TX_MUTEX.

Mutex Name

Gives the name of the thread that currently owns the mutex, or
displays (None) if the ownership count is zero. If a 0 (null pointer)
was passed as the name_ptr argument to tx_thread_create when the
owner thread was created, this field displays the address of the thread
control block. This field is derived from the tx_mutex_owner field
of TX_MUTEX.

Owner

Indicates the number of times the thread owner has called
tx_mutex_get without a corresponding tx_mutex_put. If the
ownership count is zero, no thread owns the mutex. This field
corresponds to the tx_mutex_ownership_count field of TX_MUTEX.

Ownership Count

Indicates whether the mutex supports priority inheritance. This field
corresponds to the tx_mutex_inherit field of TX_MUTEX.

Priority Inheritance

Gives the original priority information (before any priority inheritance
occurred) of the owner thread. Two numbers are displayed. The first
number is the original priority level of the thread, which corresponds
to the tx_mutex_original_priority field of TX_MUTEX. The second
number, in parentheses, is the original preemption threshold of the
thread and corresponds to the tx_mutex_original_threshold field of
TX_MUTEX.

Original Priority (PT)

Displays the address of the mutex control block, which is a variable
of type TX_MUTEX. See the ThreadX header file tx_api.h for the
definition of this type. Clicking the Control Block button opens a
Data Explorer window on the mutex control block. The Data
Explorer window displays useful information that is not included in
the Mutex Information window (for more information, see the
documentation about the Data Explorer in the MULTI: Debugging
book).

Control Block

Indicates the number of threads currently suspended on calls to
tx_mutex_get. This field corresponds to the
tx_mutex_suspended_count field of TX_MUTEX.

Suspended Threads

MULTI: Developing for ThreadX40

Chapter 5. Mutexes

Gives information about threads that are currently suspended on an
attempt to acquire the mutex with tx_mutex_get. Each column in
the list is described below. Double-click any listed thread to display
a Thread Information window (see “The Thread Information
Window” on page 19).

• Name — Gives the name of the thread. If a 0 (null pointer) was
passed as the name_ptr argument to tx_thread_create, this entry
displays the address of the thread control block.

• Timeout— Indicates the number of timer ticks before the thread
will abort the attempted mutex access with a return value of
TX_NOT_AVAILABLE. This entry shows Forever if
TX_WAIT_FOREVER was passed as the wait_option to
tx_mutex_receive or tx_mutex_send.

• Stack Use — Shows the amount of stack currently in use by the
thread.

Suspended Threads
List

Displays theMutex Listwindow, which contains a list of all mutexes
in the system (see “The Mutex List Window” on page 38).

Mutex List

41Green Hills Software

The Mutex Information Window

Chapter 6

Event Flags Groups

Contents
The Event Flags List Window . 44
The Event Flags Information Window . 45

This chapter describes windows that display detailed information about the event
flags in your application.

The Event Flags List Window

The Event Flags List window shows a list of all event flags groups in the system,
arranged in the order in which they were created. To display this window, click the
Event Flag Groups button in the ThreadX Information window.

TheEvent Flags List is generated by following a linked list, starting with the event
flags group pointed to by the global variable _tx_event_flags_created_ptr
and continuing with the tx_event_flags_group_created_next field of each event
flags group control block TX_EVENT_FLAGS_GROUP. A total of
_tx_event_flags_created_count event flags groups are shown.

When an event flags group is deleted, it is removed from this list.

You can double-click any event flags group in the Event Flags List to display an
Event Flags Information window (see “The Event Flags Information Window”
on page 45).

The Event Flags List has three columns: Name, Flags, and Suspended. Each of
these is described next.

Displays the name of the event flags group, as given in the call to
tx_event_flags_create. If a 0 (null pointer) was passed as the
name_ptr argument, this entry displays the address of the event flags
group control block TX_EVENT_FLAGS_GROUP. This entry
corresponds to the tx_event_flags_group_name field of
TX_EVENT_FLAGS_GROUP.

Name

Gives the status of the current event flags in hexadecimal format. Each
event flags group contains 32 binary event flags. This entry corresponds
to the tx_event_flags_group_current field of
TX_EVENT_FLAGS_GROUP.

Flags

MULTI: Developing for ThreadX44

Chapter 6. Event Flags Groups

Indicates the number of threads currently suspended while waiting for
event flags to satisfy conditions specified in a call to
tx_event_flags_get, or displays None if no threads are suspended.
This entry corresponds to the tx_event_flags_group_suspended_count
field of TX_EVENT_FLAGS_GROUP.

Suspended

The Event Flags Information Window

The Event Flags Information window shows detailed information about an
individual event flags group.

To display this window, double-click an event flags group in the Event Flags List,
or view a variable of type TX_EVENT_FLAGS_GROUP in the MULTI Debugger
window. The information in this window is derived from various fields within the
event flags group control block TX_EVENT_FLAGS_GROUP.

If an event flags group is deleted while an Event Flags Information window for
it exists, the window does not automatically disappear; the window continues to
show the contents of the event flags group control block.

The information provided in the Event Flags Information window is described
below.

Displays the name of the event flags group, as given in the call to
tx_event_flags_create. If a 0 (null pointer) was passed as the
name_ptr argument, this field displays (None). This field
corresponds to the tx_event_flags_group_name field of
TX_EVENT_FLAGS_GROUP.

Event Flags Name

45Green Hills Software

The Event Flags Information Window

Indicates the status of the current event flags in hexadecimal format.
Each event flags group contains 32 binary event flags. This field
corresponds to the tx_event_flags_group_current field of
TX_EVENT_FLAGS_GROUP.

Current Event Flags

Displays the address of the event flags group control block, which is
a variable of type TX_EVENT_FLAGS_GROUP. See the ThreadX
header file tx_api.h for the definition of this type. Clicking the
Control Block button opens a Data Explorer window on the event
flags group control block. TheData Explorerwindow displays useful
information that is not included in the Event Flags Information
window (for more information, see the documentation about the Data
Explorer in the MULTI: Debugging book).

Control Block

Indicates the number of threads currently suspended while waiting
for event flags to satisfy conditions specified in a call to
tx_event_flags_get. This field corresponds to the
tx_event_flags_group_suspended_count field of
TX_EVENT_FLAGS_GROUP.

Suspended Threads

MULTI: Developing for ThreadX46

Chapter 6. Event Flags Groups

Gives information about threads that are currently suspended while
waiting for event flags to satisfy conditions specified in a call to
tx_event_flags_get. Each column in the list is described below.
Double-click any listed thread to display a Thread Information
window (see “The Thread Information Window” on page 19).

• Name — Gives the name of the thread. If a 0 (null pointer) was
passed as the name_ptr argument to tx_thread_create, this entry
displays the address of the thread control block.

• Flags Selected — Identifies the event flags that will satisfy the
waiting thread's conditions. Two values are displayed. The first
value, given in hexadecimal format, shows the flags that the
thread requested. The second value contains one or two
characters that show whether the thread is waiting for all or any
of the event flags and whether the event flags will be cleared
once the thread's requested event flags are satisfied. The first of
these characters can be an & or | character, where & means that
the thread is waiting for all of its requested event flags and |
means that the thread will be satisfied by any one of its event
flags being set. The second character is a C if the event flags
specified by the thread will be cleared (set to zero) after they
satisfy a thread's request. Otherwise, the second character is
blank.

• Timeout— Indicates the number of timer ticks before the thread
will abort waiting for the event flags group to satisfy the thread's
specified conditions. This entry shows Forever if
TX_WAIT_FOREVER was passed as the wait_option to
tx_event_flags_get.

• Stack Use — Shows the amount of stack currently in use by the
thread.

Suspended Threads
List

Displays the Event Flags List window, which contains a list of all
event flags groups in the system (see “The Event Flags List Window”
on page 44).

Event Flags List

47Green Hills Software

The Event Flags Information Window

Chapter 7

Memory Block Pools

Contents
The Block Pool List Window . 50
The Block Pool Information Window . 52
The Block Pool Contents Window . 55

This chapter describes windows that display detailed information about the memory
block pools in your application.

The Block Pool List Window

The Block Pool List window shows a list of all memory block pools in the system,
arranged in the order in which they were created. To display this window, click the
Block Pools button in the ThreadX Information window.

The Block Pools List is generated by following a linked list, starting with the
memory block pool pointed to by the global variable
_tx_block_pool_created_ptr and continuing with the
tx_block_pool_created_next field of each memory block pool control block
TX_BLOCK_POOL. A total of _tx_block_pool_created_count pools are
shown.

When a memory block pool is deleted, it is removed from this list.

You can double-click any memory block pool in the Block Pool List window to
display a Block Pool Information window (see “The Block Pool Information
Window” on page 52).

The Block Pool List has four columns: Name, Block Size, Full, and Suspended.
Each of these is described next.

Displays the name of the memory block pool, as given in the call to
tx_block_pool_create. If a 0 (null pointer) was passed as the
name_ptr argument, this entry displays the address of the memory
block pool control block TX_BLOCK_POOL. This entry corresponds
to the tx_block_pool_name field of TX_BLOCK_POOL.

Name

MULTI: Developing for ThreadX50

Chapter 7. Memory Block Pools

Gives the size, in bytes, of each memory block in the pool. Block
sizes displayed here are rounded up by the ThreadX kernel to an
even multiple of 4 bytes in order to allow suitable alignment for the
one pointer of overhead. This entry corresponds to the
tx_block_pool_block_size field of TX_BLOCK_POOL.

Block Size

Indicates the number of memory blocks currently allocated. Two
numbers separated by a forward slash (/) are displayed. The first
number indicates the number of blocks currently allocated, and the
second number indicates the total number of memory blocks. This
entry is derived from the tx_block_pool_available and
tx_block_pool_total fields of TX_BLOCK_POOL.

Full

Indicates the number of threads currently suspended on an attempt
to allocate a block with a call to tx_block_allocate, or displays
None if no threads are suspended. This entry corresponds to the
tx_block_pool_suspended_count field of TX_BLOCK_POOL.

Suspended

51Green Hills Software

The Block Pool List Window

The Block Pool Information Window

The Block Pool Information window shows detailed information about an
individual memory block pool.

To display this window, double-click a memory block pool in the Block Pool List
window, or view a variable of type TX_BLOCK_POOL in the MULTI Debugger
window. The information in the Block Pool Information window is derived from
various fields within the memory block pool control block TX_BLOCK_POOL.

If a memory block pool is deleted while a Block Pool Information window for it
exists, the window does not automatically disappear; the window continues to show
the contents of the memory block pool control block.

To view detailed information about the memory blocks in a pool, click the In Use
button to display the Block Pool Contents window (see “The Block Pool Contents
Window” on page 55).

The fields and buttons in the Block Pool Information window are described next.

Displays the name of the memory block pool, as given in the call to
tx_block_pool_create. If a 0 (null pointer) was passed as the
name_ptr argument, this field displays (None). This field
corresponds to the tx_block_pool_name field of TX_BLOCK_POOL.

Block Pool Name

MULTI: Developing for ThreadX52

Chapter 7. Memory Block Pools

Gives the size, in bytes, of each memory block in the pool. Block
sizes displayed here are rounded up by the ThreadX kernel to an even
multiple of 4 bytes to allow suitable alignment for the one pointer of
overhead. This field corresponds to the tx_block_pool_block_size
field of TX_BLOCK_POOL.

Block Size

Shows the number of memory blocks currently allocated. Two
numbers separated by a forward slash (/) are displayed. The first
number indicates the number of blocks currently allocated, and the
second number indicates the total number of memory blocks. The
number of available blocks (the total number of memory blocks minus
the number of blocks allocated) is also shown after this pair of
numbers. All of these numbers are derived from the
tx_block_pool_available and tx_block_pool_total fields of
TX_BLOCK_POOL. Clicking the In Use button displays a Block
Pool Contentswindow that shows which specific blocks are allocated
(see “The Block Pool Contents Window” on page 55).

In Use

Points to the first available memory block, or zero if the block pool
is completely allocated. The address displayed is actually 4 bytes
before the memory block that will be allocated upon a call to
tx_block_allocate. These 4 bytes of overhead contain a pointer.
Available memory blocks are kept in a singly-linked list starting with
the first available block. In allocated blocks, the pointer points to the
memory block pool control block, which allows blocks to be released
on a call to tx_block_release without specifying the block pool
from which the block was allocated. This field corresponds to the
tx_block_pool_available_list field of TX_BLOCK_POOL.

First Available

Shows the number of bytes in the memory block pool storage area.
This field corresponds to the tx_block_pool_size field of
TX_BLOCK_POOL.

Pool Size

Gives the address of the memory block pool control block, which is
a variable of type TX_BLOCK_POOL. See the ThreadX header file
tx_api.h for the definition of this type. Clicking the Control Block
button opens a Data Explorer window on the memory block pool
control block. TheData Explorerwindow displays useful information
that is not included in theBlock Pool Informationwindow (for more
information, see the documentation about the Data Explorer in the
MULTI: Debugging book).

Control Block

Indicates the number of threads currently suspended on an attempt
to allocate a block from the memory pool with a call to
tx_block_allocate. This field corresponds to the
tx_block_pool_suspended_count field of TX_BLOCK_POOL.

Suspended Threads

53Green Hills Software

The Block Pool Information Window

Gives information about threads that are currently suspended on an
attempt to allocate a block from the memory pool. Each column in
the list is described below. Double-click any listed thread to display
a Thread Information window (see “The Thread Information
Window” on page 19).

• Name — Gives the name of the thread. If a 0 (null pointer) was
passed as the name_ptr argument to tx_thread_create, this entry
displays the address of the thread control block.

• Timeout— Indicates the number of timer ticks before the thread
will abort the tx_block_allocate call with a return value of
TX_NO_MEMORY. This entry shows Forever if
TX_WAIT_FOREVER was passed as the wait_option to
tx_block_allocate.

• Stack Use — Shows the amount of stack currently in use by the
thread.

Suspended Threads
List

Displays the Block Pool List window, which contains a list of all
memory block pools in the system (see “The Block Pool List Window”
on page 50).

Block Pool List

MULTI: Developing for ThreadX54

Chapter 7. Memory Block Pools

The Block Pool Contents Window

The Block Pool Contents window shows a list of all blocks in a memory block
pool. To display this window, click the In Use button in theBlock Pool Information
window.

The information in theBlock Pool Contentswindow is derived from various fields
within the memory block pool control block TX_BLOCK_POOL.

You can double-click any memory block listed in theBlock Pool Contentswindow
to view the contents of memory at that location.

The fields and buttons of the Block Pool Contents window are described below.

Displays the name of the memory block pool, as given in the call to
tx_block_pool_create. If a 0 (null pointer) was passed as the
name_ptr argument, this entry displays the address of the memory block
pool control block TX_BLOCK_POOL. This entry corresponds to the
tx_block_pool_name field of TX_BLOCK_POOL. Clicking the Block
Pool Name button displays the Block Pool Information window for the
memory block pool (see “The Block Pool Information Window”
on page 52).

Block Pool Name

55Green Hills Software

The Block Pool Contents Window

Gives information about the memory blocks in the block pool. Each column
in the list is described below. Double-clicking any listed memory block
displays the contents of memory at that location.

• Address — Gives the address in memory where the block resides.
The 4 bytes preceding this address contain a pointer. If this pointer
points to the memory block pool control block, the block is in use.
Otherwise, the block is available.

• Status — Displays either In Use or Available depending on the
value of the pointer preceding the memory block, as described above.

Memory Block
List

MULTI: Developing for ThreadX56

Chapter 7. Memory Block Pools

Chapter 8

Memory Byte Pools

Contents
The Byte Pool List Window . 58
The Byte Pool Information Window . 59
The Byte Pool Contents Window . 62

This chapter describes windows that display detailed information about the memory
byte pools in your application.

The Byte Pool List Window

The Byte Pool List window shows a list of all memory byte pools in the system,
arranged in the order in which they were created. To display this window, click the
Byte Pools button in the ThreadX Information window.

The list is generated by following a linked list, starting with the memory byte pool
pointed to by the global variable _tx_byte_pool_created_ptr and continuing
with the _tx_byte_pool_created_next field of each memory byte pool control block
TX_BYTE_POOL. A total of _tx_byte_pool_created_count pools are shown.

When a memory byte pool is deleted, it is removed from this list.

You can double-click any memory byte pool in theByte Pool List to display aByte
Pool Informationwindow (see “The Byte Pool Information Window” on page 59).

The Byte Pool List has three columns: Name, Full, and Suspended. Each of these
is described next.

Displays the name of the memory byte pool, as given in the call to
tx_byte_pool_create. If a 0 (null pointer) was passed as the
name_ptr argument, this entry displays the address of the memory
byte pool control block TX_BYTE_POOL. This entry corresponds to
the tx_byte_pool_name field of TX_BYTE_POOL.

Name

Shows the number of bytes currently allocated from the pool. Two
numbers separated by a forward slash (/) are displayed. The first number
indicates the number of bytes currently allocated, and the second number
indicates the total number of bytes. These numbers are derived from
the tx_byte_pool_available and tx_byte_pool_size fields of
TX_BYTE_POOL.

Full

MULTI: Developing for ThreadX58

Chapter 8. Memory Byte Pools

Shows the number of threads currently suspended on an attempt to
allocate memory from the pool with a call to tx_byte_allocate, or
displays None if no threads are suspended. This entry corresponds to
the tx_byte_pool_suspended_count field of TX_BYTE_POOL.

Suspended

The Byte Pool Information Window

TheByte Pool Informationwindow shows detailed information about an individual
memory byte pool.

To display this window, double-click a byte pool in the Byte Pool List, or view a
variable of type TX_BYTE_POOL in the MULTI Debugger window. The
information in this window is derived from various fields within the memory byte
pool control block TX_BYTE_POOL.

If a memory byte pool is deleted while a Byte Pool Information window for it
exists, the window does not automatically disappear; the window continues to show
the contents of the memory byte pool control block.

To view detailed information about the fragments in a byte pool, click the In Use
button to display the Byte Pool Contents window (see “The Byte Pool Contents
Window” on page 62).

59Green Hills Software

The Byte Pool Information Window

The fields and buttons of the Byte Pool Information window are described in the
table below.

Gives the name of the memory byte pool, as given in the call to
tx_byte_pool_create. If a 0 (null pointer) was passed as the
name_ptr argument, this field displays (None). This field
corresponds to the tx_byte_pool_name field of TX_BYTE_POOL.

Byte Pool Name

Shows the number of bytes currently allocated. Two numbers
separated by a forward slash (/) are displayed. The first number
indicates the number of bytes currently allocated, and the second
number indicates the total number of bytes. The number of available
bytes (the total number of bytes minus the number of bytes
allocated) is shown after this pair of numbers. Note that the available
byte count does not compensate for the two pointers of overhead
that each memory fragment requires. The numbers in this field are
derived from the tx_byte_pool_available and tx_byte_pool_size
fields of TX_BYTE_POOL. Clicking the In Use button displays a
Byte Pool Contents window that shows all allocated and
unallocated fragments in the byte pool (see “The Byte Pool
Information Window” on page 59).

In Use

Indicates the number of fragments in the memory byte pool. This
value is derived from the tx_byte_pool_fragments field of
TX_BYTE_POOL.

Fragments

Points to the first unallocated memory fragment that will be searched
during tx_byte_allocate. The address is set to the last fragment that
was released. This field corresponds to the tx_byte_pool_search
field of TX_BYTE_POOL.

Search Address

Points to the start of the byte pool and corresponds to the
tx_byte_pool_start field of TX_BYTE_POOL.

Memory Start

Gives the address of the memory byte pool control block, which is
a variable of type TX_BYTE_POOL. See the ThreadX header file
tx_api.h for the definition of this type. Clicking theControl Block
button opens a Data Explorer window on the memory byte pool
control block. The Data Explorer window displays useful
information that is not included in the Byte Pool Information
window (for more information, see the documentation about the
Data Explorer in the MULTI: Debugging book).

Control Block

Indicates the number of threads currently suspended on an attempt
to allocate memory from the memory pool with a call to
tx_byte_allocate. This field corresponds to the
tx_byte_pool_suspended_count field of TX_BYTE_POOL.

Suspended Threads

MULTI: Developing for ThreadX60

Chapter 8. Memory Byte Pools

Gives information about threads that are currently suspended on an
attempt to allocate memory from the memory pool. Each column
in the list is described below. Double-click any listed thread to
display a Thread Information window (see “The Thread
Information Window” on page 19).

• Name — Gives the name of the thread. If a 0 (null pointer)
was passed as the name_ptr argument to tx_thread_create,
this entry displays the address of its thread control block.

• Request — Indicates the number of bytes requested in the
memory_size argument to tx_byte_allocate. Sometimes a
request causes a thread to suspend even though enough memory
appears to be available. This can occur if the two pointers
necessary in each memory fragment have not been allowed
for or if the pool is too fragmented to satisfy the request.

• Timeout — Indicates the number of timer ticks before the
thread will abort the tx_byte_allocate call with a return
value of TX_NO_MEMORY. This entry shows Forever if
TX_WAIT_FOREVER was passed as the wait_option to
tx_byte_allocate.

• Stack Use — Shows the amount of stack currently in use by
the thread.

Suspended Threads List

Displays the Byte Pool List window, which contains a list of all
memory byte pools in the system (see “The Byte Pool List Window”
on page 58).

Byte Pool List

61Green Hills Software

The Byte Pool Information Window

The Byte Pool Contents Window

The Byte Pool Contents window shows a list of all fragments in a memory byte
pool.

To display this window, click the In Use button in the Byte Pool Information
window. The information in theByte Pool Contentswindow is derived from various
fields within the memory byte pool control block TX_BYTE_POOL.

You can double-click any fragment listed in the Byte Pool Contents window to
view the contents of memory at that location.

The information listed in the Byte Pool Contents window is described next.

Displays the name of the memory byte pool, as given in the call
to tx_byte_pool_create. If a 0 (null pointer) was passed as
the name_ptr argument, this entry displays the address of the
memory byte pool control block TX_BYTE_POOL. This entry
corresponds to the tx_byte_pool_name field of TX_BYTE_POOL.
Clicking the Byte Pool Name button displays the Byte Pool
Information window for the memory byte pool (see “The Byte
Pool Information Window” on page 59).

Byte Pool Name

MULTI: Developing for ThreadX62

Chapter 8. Memory Byte Pools

Gives information about the fragments in the byte pool. Each
column in this list is described below. Double-clicking any listed
fragment displays the contents of memory at that location.

• Address — Gives the address in memory of the fragment.
The location 8 bytes before this address contains a pointer.
If this pointer points to the memory byte pool control block,
the fragment is in use. Otherwise, the fragment is available.

• Status — Shows either In Use or Available depending
on whether the location 4 bytes before the fragment contains
the value TX_BYTE_BLOCK_FREE (Oxffffeeee).

• Size— Indicates the size of the byte pool fragment in bytes.
All byte pools end with a zero-byte fragment that is shown
as 0 (End).

Memory Byte List

63Green Hills Software

The Byte Pool Contents Window

Chapter 9

Application Timers

Contents
The Timer List Window . 66
The Timer Information Window . 68

This chapter describes windows that display detailed information about the
application timers in your application.

The Timer List Window

TheTimer Listwindow shows a list of all application timers in the system, arranged
in the order in which they were created. This list can be displayed by clicking the
Application Timers button in the ThreadX Information window.

The Timer List is generated by following a linked list, starting with the timer
pointed to by the global variable _tx_timer_created_ptr and continuing with
the tx_timer_created_next field of each timer control block TX_TIMER. A total of
_tx_timer_created_count timers are shown.

When a timer is deleted, it disappears from this list.

You can double-click any timer in the Timer List to display a Timer Information
window (see “The Timer Information Window” on page 68).

The Timer List has three columns: Name, Ticks, and Callback. Each of these is
described next.

Displays the name of the timer, as given in the call to tx_timer_create.
If a 0 (null pointer) was passed as the name_ptr argument, this entry displays
the address of the timer control block TX_TIMER. This entry corresponds
to the tx_timer_name field of TX_TIMER.

Name

MULTI: Developing for ThreadX66

Chapter 9. Application Timers

Indicates the number of initial timer ticks and the timer reschedule tick value
if the timer is active. If the timer is inactive, this field displays Inactive.
For active timers, two numbers separated by a forward slash (/) are displayed.
The first number specifies the current number of initial ticks, and the second
number specifies the number of ticks with which the timer will be rescheduled
after it expires. Both numbers range from 0 to 0xffffffff. A zero value
for the second number specifies a one-shot timer. The current tick value
corresponds to the tx_timer_internal_remaining_ticks field of the
tx_timer_internal structure within TX_TIMER. The reschedule tick value
corresponds to the tx_timer_internal_re_initialize_ticks of the
tx_timer_internal structure within TX_TIMER.

Ticks

Gives the name of the function called when the timer expires. If no debugging
information is available, this entry may be displayed as an offset from a
known label or as an address in hexadecimal format. This entry corresponds
to the tx_timer_internal_timeout_function of the tx_timer_internal structure
within TX_TIMER.

Callback

67Green Hills Software

The Timer List Window

The Timer Information Window

The Timer Information window shows detailed information about an individual
timer.

To display this window, double-click a timer in the Timer List window, or view a
variable of type TX_TIMER in the MULTI Debugger window. The information in
this window is derived from various fields within the timer control block
TX_TIMER.

Each of the fields and buttons in the Timer Information window is described
below.

Displays the name of the timer, as given in the call to
tx_timer_create. If a 0 (null pointer) was passed as the
name_ptr argument, this field displays (None). This field
corresponds to the tx_timer_name field of TX_TIMER.

Timer Name

Indicates the number of initial timer ticks and the timer reschedule
tick value. Two numbers are listed, separated by a forward slash
(/). The first number specifies the initial number of ticks when
the timer is created, and the second number specifies the number
of ticks for all timer expirations after the first. Both numbers range
from 0 to 0xffffffff. A zero value for the second number
specifies a one-shot timer. The initial tick value corresponds to
the tx_timer_internal_remaining_ticks field of the
tx_timer_internal structure within TX_TIMER. The reschedule
tick value corresponds to the tx_timer_internal_re_initialize_ticks
of the tx_timer_internal structure within TX_TIMER.

Ticks

MULTI: Developing for ThreadX68

Chapter 9. Application Timers

Shows the current state of the timer (Active or Inactive). This
value is derived from the tx_timer_internal_list_head field of the
tx_timer_internal structure within TX_TIMER. The timer is active
only if tx_timer_internal_list_head is non-zero.

State

Gives the name of the function called when the timer expires. If
no debugging information is available, then this field may be
displayed as an offset from a known label or as an address in
hexadecimal format. This field corresponds to the
tx_timer_internal_timeout_function of the tx_timer_internal
structure within TX_TIMER. Clicking theCallback button shows
the callback function.

Callback

Indicates the parameter passed to the callback function when the
timer expires. This field corresponds to the
tx_timer_internal_timeout_param field of the tx_timer_internal
structure within TX_TIMER.

Parameter

Shows the address of the timer control block, which is a variable
of type TX_TIMER. See the ThreadX header file tx_api.h for
the definition of this type. Clicking the Control Block button
opens a Data Explorer window on the timer control block. The
Data Explorer window displays useful information that is not
included in the Timer Information window (for more
information, see the documentation about the Data Explorer in
the MULTI: Debugging book).

Control Block

Clicking this button displays the Timer List window, which
contains a list of all timers in the system (see “The Timer List
Window” on page 66).

Timer List

69Green Hills Software

The Timer Information Window

Part II

Using the MULTI
EventAnalyzer for

ThreadX

Chapter 10

Introduction to the MULTI
EventAnalyzer for ThreadX

Contents
Basic Operation . 75
The Effect of Event Logging on Run-Time Performance 78

The MULTI EventAnalyzer helps developers understand the dynamic behavior of
a target that uses the ThreadX real-time kernel by providing a graphical
representation of system activities as they occur over time. The EventAnalyzer
complements the MULTI Debugger, which displays detailed system information
at a single point in time.

The event logging feature available with the ThreadX kernel allows the system to
record specific event information such as ThreadX service calls, context switches,
interrupts, and user-defined events as they occur. This event data is transferred to
the host system and is viewed and analyzed with the MULTI EventAnalyzer.

The EventAnalyzer displays details about the status of each thread and about events
related to that thread, and includes a variety of controls that enable you to view the
event data.

MULTI: Developing for ThreadX74

Chapter 10. Introduction to the MULTI EventAnalyzer for ThreadX

Basic Operation

When event logging is enabled, the ThreadX kernel logs events and status changes
to a target-resident buffer as they occur. At any point, this memory region can be
retrieved from the target and saved to a data file on the host. The EventAnalyzer
can then display the data graphically.

The EventAnalyzer reads the data file as a series of events and states. The various
threads on the target system can change execution state as the target runs. System
events occur depending on the behavior of the program and of the system.

The main display of the EventAnalyzer (pictured below) provides a graphical
depiction of events, context switches, and status changes as they occur over time.

To view additional details about an event, click any object in the view graph canvas.

Every event displayed by the EventAnalyzer has an "object view" that is displayed
by double-clicking the event icon in the EventAnalyzer canvas or by using the

75Green Hills Software

Basic Operation

right-click menu choice ShowObject. The object view displays the extra data along
with other pertinent, event-specific information.

An example of the object view for an event is shown below. Note the extra data
displayed in the More Info field.

The standard ThreadX system events are classified as follows:

• Thread context switches — A context switch refers to the moment when the
kernel changes the current thread running on the CPU. This can occur when
one thread preempts another, when the running thread suspends itself, or when
the running thread suspends on a resource. In the EventAnalyzer canvas, a
vertical dashed line represents a thread context switch, and horizontal lines
with differing line styles indicate the status of each thread.

• Exceptions and interrupts — An exception is an event that causes the
processor to suspend its current operation immediately and perform some
processing to service the exception. Exceptions caused by external devices are
called hardware interrupts. These can occur asynchronously with respect to the
execution of code. Other exceptions may be caused by the synchronous
execution of code. Some examples of synchronous exceptions are division by

MULTI: Developing for ThreadX76

Chapter 10. Introduction to the MULTI EventAnalyzer for ThreadX

zero, memory protection violations, illegal instructions, and unaligned access
exceptions.

• Service calls — A service call is an event that occurs when a thread calls a
ThreadX service function, thus causing the kernel to perform an operation on
behalf of the thread. Common examples include operations on semaphores,
sending and receiving messages, and thread manipulation. Because ThreadX
service calls are the interface to the kernel, logging and analysis of these events
is usually the most important function of the EventAnalyzer.

• User events — You can insert code into your application to log events and
record specific system data, such as the values of particular variables or
expressions related to those events. For more information, see “User-Defined
Events” on page 82.

Between the time it is created and destroyed, a thread will be in one of the following
states at any given moment:

• Ready — The thread is ready for execution, but the ThreadX scheduler is
currently running a higher-priority thread or another same-priority thread. A
typical system might contain several ready threads; however, the scheduler
executes only one thread at a time, based on priority and the order in which
they became ready.

• Executing — The thread is currently executing on the CPU.
• Suspended — The thread is not ready for execution.
• Completed — The thread has returned from its entry function.
• Terminated — The thread has been terminated (either by itself or another

thread) by a call to tx_thread_terminate.

When the status of a thread changes (for example, a Ready thread is set Executing
by the scheduler), this information is logged as a thread status change event.

77Green Hills Software

Basic Operation

The Effect of Event Logging on Run-Time Performance

Event logging requires a small amount of system overhead, which is directly
proportional to the number of events logged.

This section discusses factors that may affect the level of intrusion into the target
system. For more information, see Chapter 11, “Collecting Event Logging Data”
on page 79.

Basic Logging Instrumentation

With event logging support present and disabled, the effect on run-time performance
is minimal. When the preprocessor symbol TX_ENABLE_EVENT_LOGGING is set
while building the kernel, ThreadX includes the kernel instrumentation necessary
for event logging. Therefore, even when event logging is disabled and no data is
being logged, a small amount of overhead exists due to run-time checks by the
system to determine if logging is enabled.

The ThreadX library can be built without logging support, which removes all event
logging overhead.

Quantity of Event Types

The optional event logging filter allows you to include or exclude certain types of
events. This allows you to log only the events necessary for meaningful analysis.
Logging more events uses up more of the available target memory.

MULTI: Developing for ThreadX78

Chapter 10. Introduction to the MULTI EventAnalyzer for ThreadX

Chapter 11

Collecting Event Logging
Data

Contents
Control and Filtering of Event Logging . 80
User-Defined Events . 82
Retrieving Event Logging Data from the Target . 84
Modifying the Target Event Log Location . 85

This chapter discusses issues relating to configuring your program for event logging.

Control and Filtering of Event Logging

Event logging is controlled at compile-time via conditional compilation. To
implement event logging, use the following defines when compiling ThreadX or
application source:

• TX_ENABLE_EVENT_LOGGING — (Main option) Enables event logging for
any or all of the ThreadX source code. If this option is used anywhere, the
tx_initialize_high_level.c file must be compiled with it as well.

• TX_NO_EVENT_INFO— (Sub-option) Suppresses the collection of "extra data"
that ThreadX collects for each event. Each ThreadX event returns a
predetermined set of information about the event, including the Event Name,
the thread ID, the time at which the event occurred, and, in many cases, some
extra data related to the event. Defining this symbol suppresses the collection
of extra data.

• TX_ENABLE_EVENT_FILTERS— (Sub-option) Enables event filters, allowing
you to control the types of events that are logged.

Note
By default, ThreadX's event logging code supports 16 thread names in
applications. If you need to track more than 16 threads, change the value
of the TX_EL_TNIS macro, which is defined in the tx_el.h include file.
Then rebuild the ThreadX library.

ThreadX provides three routines that can be used to control event logging at run-time
from within the application software. These routines require that event filtering be
enabled as described above.

• void _tx_el_event_log_on(void); Instructs ThreadX to begin logging
events, by clearing the internal event logging filter.

• void _tx_el_event_log_off(void); Instructs ThreadX to stop logging
events, by setting all the event flag logging filters.

• void _tx_el_event_filter_set(UINT filter); Sets the logging event
filter, which specifies the types of events to be excluded from logging. You
will typically want to view only certain types of events. For example, in some

MULTI: Developing for ThreadX80

Chapter 11. Collecting Event Logging Data

systems, interrupts and status events can occur frequently. Logging all of these
events could return more data than can be reasonably analyzed or overflow the
memory buffer. (The capacity of the target memory limits the quantity of data
that can be retained.) In these cases, suppressing certain event types will allow
enough memory for the desired events.

The event types that can be filtered and their bit mask values (which can be
combined through a bitwise OR to filter out more events) are as follows:

○ TX_EL_FILTER_STATUS_CHANGE (0x0001) — Events describing thread
status changes such as when a thread changes from suspended to ready.

○ TX_EL_FILTER_INTERRUPTS (0x0002) — Interrupt or exception events.
In some systems, interrupts can occur at a very high rate, causing a flood
of event data that may make the other data more difficult to visualize or
may generate more events than the logging mechanism can handle. It might
also be the case that these events should be removed in the actual ThreadX
source code modules - typically the interrupt logic is isolated to a few
assembly files in most versions of ThreadX.

○ TX_EL_FILTER_THREAD_CALLS (0x0004) — Events associated with
thread services in ThreadX (e.g., tx_thread_resume,
tx_thread_suspend, etc.).

○ TX_EL_FILTER_TIMER_CALLS (0x0008) — Events associated with
application timer services in ThreadX (e.g., tx_timer_activate,
tx_timer_deactivate, etc.).

○ TX_EL_FILTER_EVENT_FLAG_CALLS (0x0010) — Events associated
with event flag services in ThreadX (e.g., tx_event_flags_get,
tx_event_flags_set, etc.).

○ TX_EL_FILTER_SEMAPHORE_CALLS (0x0020) — Events associated with
semaphore services in ThreadX (e.g., tx_semaphore_get,
tx_semaphore_put, etc.).

○ TX_EL_FILTER_QUEUE_CALLS (0x0040) — Events associated with
queue services in ThreadX (e.g., tx_queue_send, tx_queue_receive,
etc.).

○ TX_EL_FILTER_BLOCK_CALLS (0x0080) — Events associated with
memory block pool services in ThreadX (e.g., tx_block_allocate,
tx_block_release, etc.).

81Green Hills Software

Control and Filtering of Event Logging

○ TX_EL_FILTER_BYTE_CALLS (0x0100) — Events associated with
memory byte pool services in ThreadX (e.g., tx_byte_allocate,
tx_byte_release, etc.).

○ TX_EL_FILTER_MUTEX_CALLS (0x0200) — Events associated with
mutex services in ThreadX (e.g., tx_mutex_get,
tx_mutex_prioritize, etc.).

○ TX_EL_FILTER_ALL_EVENTS (0xFFFF) — Disables collection of all
events.

○ TX_EL_ENABLE_ALL_EVENTS (0x0000) — [default] Enables collection
of all events.

Note
Filtering events while the application runs is distinct from changing the
visibility attribute of an event in the EventAnalyzer application. The
event filter actually prevents the system from logging particular events;
consequently, those events are not written to the data file. The visibility
attribute merely turns off the selected event in the EventAnalyzer display
canvas, but the event is logged, takes up memory, and will be present in
the data file.

User-Defined Events

User-defined events allow the target to log events that are specific to your
application. You can use user-defined events to enhance event logging capabilities.
For example, if you need to determine when a particular piece of code executes, a
user event can be logged in the code at that point. Such modifications can be useful
in order to better understand how the target system is operating.

To implement a user-defined event you must:

• Modify the Application
• Modify the Configuration File

MULTI: Developing for ThreadX82

Chapter 11. Collecting Event Logging Data

Modify the Application

The API service for logging a user-defined event in ThreadX is as follows:

VOID _tx_el_user_event_insert(UINT sub_type, ULONG info_1,
ULONG info_2, ULONG info_3, ULONG info_4);

The parameters supplied to this service are defined by the application. ThreadX
simply places this information along with the current thread pointer and time-stamp
into the next entry in the event log.

For example, to track the time it takes to process an application buffer, you might
insert code as follows:

/*Buffer is received, record a user-defined event.
* Note that BUFFER_RECEIVED and my_buffer_ptr are defined
* outside of this scope. */
_tx_el_user_event_insert(BUFFER_RECEIVED,

(ULONG) my_buffer_ptr);
/* ... a bunch of processing */
/* Buffer is processed, record a user-defined event. Note
* that BUFFER_PROCESSED is defined outside of this scope.*/
_tx_el_user_event_insert(BUFFER_PROCESSED,

(ULONG) my_buffer_ptr);

Modify the Configuration File

For an event to appear in the EventAnalyzer, it must be defined in the ThreadX
configuration file (threadx.mc).

The ThreadX configuration file already includes definitions for standard ThreadX
events. User-defined events can be added by using the following syntax:

MEV_Event:4:0:MyUserEvent:userevent:MEV_Extra="count=%4D":MEV_Visible

This configuration file entry tells how to display a user-defined event, called
MyUserEvent in this example. The MEV_Event:4 field entries indicate that this
entry describes a user-defined event. The subtype field, which in this example is
0, corresponds to the sub_type argument passed to the
_tx_el_user_event_insert service. The userevent field entry indicate that
the standard user-defined event icon should be used in the EventAnalyzer display.
The display of any extra data is indicated by the count=%4D string.

83Green Hills Software

Modify the Application

Other kinds of user-defined events with different extra data formats can be defined
by adding a new event with a different subtype to the threadx.mc file.

For more information about the configuration files, see Chapter 13, “EventAnalyzer
Configuration Files” on page 107 To create extra data for events, see “Specifying
Extra Data” on page 110.

Note
You must restart the EventAnalyzer for changes to your configuration
file to take effect.

Retrieving Event Logging Data from the Target

See “Launching the EventAnalyzer” on page 88 for the typical way of retrieving
and viewing event log data.

To perform the event log data retrieval, postprocessing, and EventAnalyzer actions
separately, follow these steps:

1. Establish a debugging connection capable of reading the target memory.
2. Use the MULTI memdump command to retrieve the contents of the event log

and write it to a file on the host computer system. For more information about
this and other commands, see the MULTI: Debugging Command Reference
book.

For example, to dump the ThreadX event log into a file called my_events on the
host, enter the following:

memdump raw my_event_dump __ghsbegin_eventlog \
(__ghsend_eventlog-__ghsbegin_eventlog)

The above operation places the contents of the event log into the file,
my_event_dump, located on the host. If the Debugger generates an unknown
symbol error (because the Debugger cannot find either of the special __ghsbegin
symbols), examine the application map file or use the MULTI map command to
determine the location and size of the .eventlog section. Then use explicit address
and size arguments in the memdump command.

MULTI: Developing for ThreadX84

Chapter 11. Collecting Event Logging Data

Once the event log has been placed into a host file, you must convert it into a format
that is compatible with the EventAnalyzer. Do this by using the txundump utility
provided with your distribution. The following shell command converts the raw
event log into the proper format for the EventAnalyzer:

txundump my_event_dump my_events

The resulting my_events.mes file is ready to view with the EventAnalyzer.

Then use the Debugger mev command to launch the EventAnalyzer:

mev my_events

Modifying the Target Event Log Location

By default, ThreadX uses a statically-allocated buffer to store the event log. The
size of the target buffer limits the number of events that can be acquired during an
event logging session. If the buffer becomes full, the oldest events are overwritten
with new events.

The memory buffer used to hold the event log data is found in the special program
section, .eventlog. The size of this section determines the size of the event logging
buffer and can be configured by changing the linker file.

You can store the event log in a more permanent location (for example off-board
memory), by modifying the ThreadX code in tx_el.c.

85Green Hills Software

Modifying the Target Event Log Location

Chapter 12

Viewing Event Data

Contents
Launching the EventAnalyzer . 88
The EventAnalyzer Window . 89
Selecting Data . 93
Viewing Event Data . 96
Generating Reports . 104
Configuration Menu Operations . 104

Once you have collected event data for your application in a data file, you can view
a graphical representation of the events in the EventAnalyzer. This chapter describes
how to use the features of the EventAnalyzer to navigate the event log and select
and view event data.

Launching the EventAnalyzer

The simplest way to retrieve and view event logging data is to use one of the
following two methods:

• From the Debugger choose Tools → MULTI EventAnalyzer
• From the Debugger, click the EventAnalyzer button ()

These will automatically dump any event log data from the .eventlog section to
a file, postprocess that file, and launch the EventAnalyzer.

If you need to perform the event log data retrieval, postprocessing, and
EventAnalyzer steps separately, see “Retrieving Event Logging Data from the
Target” on page 84.

MULTI: Developing for ThreadX88

Chapter 12. Viewing Event Data

The EventAnalyzer Window

When you launch the EventAnalyzer, the following window appears:

The EventAnalyzer window contains the following components:

• Thread name region — Lists each thread for which events were logged during
the event logging session. The first thread to appear in the data file appears at
the top of the list and the last at the bottom.

• Canvas — Displays a line graph covering a time range that contains the
following items:

○ Threads — Represented as horizontal line segments with different colors
and line styles. For example, a thread that is executing may be
represented by a thick green line. A change in the line color or style
indicates a change in status.

89Green Hills Software

The EventAnalyzer Window

○ Events — Represented by icons along the horizontal line segments.
○ Context switches— Represented by vertical line segments between threads.

The canvas reads from left (earliest event) to right (latest event). The colors
and styles of the line segments and the icons can be customized. You can zoom
into the canvas to display events in greater detail or zoom out to display events
over a greater time range. For more information about customizing the interface,
see “Using the Legend” on page 96.

• Ticks display field — Indicates the elapsed time. To the left of the scale, the
selected time unit of measure is displayed along with the scale reference time.
The scale reference time provides the first several numerals of the scale value
and the remaining numerals are found on the scale itself. For example, if the
ticks display field reads 12.34XX Seconds and a point on the time scale is
55, the elapsed time at that point in the canvas is 12.3455 seconds. By displaying
numbers in this format, a greater number of axis labels can be displayed in the
same space.

• Canvas coordinate fields — Indicate the exact time range currently visible in
the canvas. Reading from left to right, the view fields display the starting time,
the ending time, and the total time span visible. The time unit of measure is
the same as that displayed in the ticks display field.

The starting and ending times refer only to the time currently visible in the
canvas and not necessarily the starting or ending time of the entire data file.

View coordinates may also be entered into any of the view fields. After entering
new coordinates, press Enter to update the canvas. When a new coordinate is
entered into a view range field, the program updates the view ending time to
reflect the newly selected view range.

• Selection area coordinate fields — Indicate the exact time or time range
currently selected in the canvas. Reading from left to right, these fields display
the starting time, the ending time and the total time span selected. Selection
coordinates may also be entered into any of the selection fields. After entering
new coordinates, press Enter to update the selection area.

• Total time — Displays the time period of the entire data file in the time unit
listed in the ticks display field.

• Status bar — Displays system information such as error messages and
application information.

MULTI: Developing for ThreadX90

Chapter 12. Viewing Event Data

• Toolbar — Provides shortcuts to the most commonly used functions.

○ — Opens the Read From dialog to read in a data file. Browse to the
desired data file and clickRead. Note that the EventAnalyzer never writes
to the data file, so when a data file is closed, the program does not prompt
you to save changes. However, the program will prompt you to save
changes affecting the configuration file (for example, changes to the
viewing options made in the Legend).

○ and — Modify the range displayed in the canvas to show more or
less time. When zooming in, one half the existing range will be displayed;
when zooming out, twice the range will be displayed. The center of the
screen remains constant when zooming. You can zoom out to display the
entire data file or zoom in to a range as small as 0.001 nanoseconds.

○ — Adjusts the canvas to display only the selected range. To select a
range, click the left mouse button and hold it down while moving your
cursor horizontally across the canvas. Then click this button and the canvas
will display the same range as the selection area.

○ — Changes the unit of measure in the ticks display field, the coordinates
field, the selection area coordinates field, and the time scale. With each
click of this button, the EventAnalyzer chooses a different measurement
unit (Second, Millisecond, Microsecond, or Nanosecond). By default, the
EventAnalyzer displays an appropriate time unit whenever the view is
changed. Clicking the change time unit icon overrides selections made by
the Auto Adjust Time Unit feature (see “Time Unit Settings” on page 104).

○ — Displays theLegendwindow describing the various labels used for
each status indicator and recorded thread. Line colors, line styles, and
icons can be modified (see “Using the Legend” on page 96).

○ — Provides advanced controls for searching events, states, and context
switches (see “Search for Event, Status, and Context Switches”
on page 101).

○ — This searching feature is not available for ThreadX.
○ Browse history buttons — Navigate to the earliest (), previous (),

next (), and latest () views in your view history. The EventAnalyzer
stores up to 50 views. These buttons function like Back and Forward
buttons in a web browser.

○ — This feature is not available with ThreadX.

91Green Hills Software

The EventAnalyzer Window

○ — Launches online help.

MULTI: Developing for ThreadX92

Chapter 12. Viewing Event Data

Selecting Data

This section describes how to read the EventAnalyzer display, how to display
additional data about threads, events, and states, and how to customize the
EventAnalyzer display.

Selecting a Point in Time

To select a point in time, click the mouse pointer within the canvas. A solid vertical
line appears indicating a Point in Time selection. When a single point in time is
selected, the selection area coordinates beginning and ending fields contain the
same value, and the range field is zero.

93Green Hills Software

Selecting Data

Selecting a Range of Time

To select a range of time, click the left mouse button and hold it down while moving
your cursor horizontally across the canvas. When a range of time is selected, the
selection area coordinates beginning and ending values contain different values and
the range field indicates the amount of time selected.

Zooming to a Range Selection

To display only the selected range in the canvas, choose View → Zoom To Range
or click after a range of time has been selected. The canvas adjusts to display
only the selected range.

Creating a Reference Line

To create a temporary reference line in the canvas, press the Shift key and click the
mouse pointer. This displays a vertical line that can be useful in analyzing event
data. The line remains for as long as the left mouse button is pressed. The temporary
reference line will not cancel a point in time or range of time selection.

MULTI: Developing for ThreadX94

Chapter 12. Viewing Event Data

Jumping to a Time Selection

The following mouse commands bring the mouse pointer to a selection. This is
useful for quickly returning to a selection when, after scrolling, that time selection
no longer appears within the view range.

• Shift+Right-click — Jumps to a point in time selection or to the start of a
range of time selection. If the shortcut menu appears, it can be cleared with a
Shift+Left-click.

• Ctrl+Right-click — Jumps to a point in time selection or to the end of a range
of time selection. If the shortcut menu appears, it can be cleared with
Shift+Left-click.

95Green Hills Software

Jumping to a Time Selection

Viewing Event Data

This section describes how to customize the display of event data to show the events
of interest, hide events that are not of interest, and view details about specific events.

Using the Legend

The Legend provides a reference for displaying and modifying the meaning of the
various line colors, line styles and icons appearing in the canvas.

To open the legend, select Config → Legend or click . The ThreadX Events
Legend appears:

The legend displays the names of all system events and thread states, the icon or
line style displayed for each event or status, and the visibility attribute for each
event or status. The event/status list is sorted by categories. In the Legend depicted
above, Mutex, Misc, and Interrupt are categories.

MULTI: Developing for ThreadX96

Chapter 12. Viewing Event Data

Note
Categories are defined in the configuration file. For information about
defining categories, see Chapter 13, “EventAnalyzer Configuration Files”
on page 107.

The Legend lists each status first and displays an example segment of its associated
line color and style.

To change an event icon, click the icon to view the MULTI internal icon library.
Select the desired replacement and click OK.

To modify line color and style, click the example line segment in the Legend
window. The line configuration (RGB) window appears:

The Red, Green, and Blue fields determine the line color by the conventional RGB
color scheme, with values ranging from 0 to 255 for the intensity of each color.
Choosing the values Red 0, Green 0, Blue 0 would result in black. The RGB values
can be specified in hexadecimal (prefixed by 0x) or decimal.

Select the desired line thickness and choose a line style from the drop-down list.
Click OK and the Legend appears with the new line color and/or style.

The last column of theLegendwindow displays the visibility attribute of each event
or status. Click the word to toggle the attribute between Visible and Invisible.
Invisible items do not appear in the canvas. To toggle the visibility attribute for an
entire category of events, click the visibility attribute of the category. Changes made
to event or status visibility do not actually change the data file; the invisibility

97Green Hills Software

Using the Legend

attribute only determines whether that event or status will be displayed in the
EventAnalyzer canvas.

The EventAnalyzer can save changes made in the EventAnalyzer legend to the
configuration file. If changes were made in the Legend, the EventAnalyzer will ask
whether to save or discard changes upon exiting the program.

View Event, and Status and Thread Details

You can double-click any icon or line in the canvas to open the object view
displaying detailed information about the event or status. You can also right-click
an event or status and choose View Object, Zoom In, Zoom Out, or (if a range
has been selected) Zoom into Selection. You can double-click any thread in the
thread name region to open the Thread Info dialog box displaying detailed
information about the thread.

The object view provides detailed information about a particular event, status, or
thread as well as advanced search capabilities to allow more ways to analyze and
troubleshoot the target system.

Multiple object views can be opened simultaneously. ChooseView→DeleteObject
Views to close all object views as well as any open Search Results windows.

Viewing Event Details

The Event View dialog box shows details of a specific event:

MULTI: Developing for ThreadX98

Chapter 12. Viewing Event Data

This dialog box shows the Event Name, Thread ID, and the time at which the
event occurred. The More Info field displays extra data about the event. For a list
of the extra data associated with all standard ThreadX services, see Chapter 14,
“ThreadX Services Reference” on page 119. For information about defining and
logging custom events and displaying extra event information for them, see “Defining
Events” on page 110.

Use the following buttons in the dialog to browse to the object view for adjacent
events:

• Sequential — Shows the next/previous event of any type for any thread.
• Same Event— Shows the next/previous event of the same type for any thread.
• Same Thread — Shows the next/previous event of any type for the same

thread.
• Same Thread/Event — Shows the next/previous event of the same type for

the same thread.
• Goto Canvas— Brings the EventAnalyzer canvas to the foreground and places

the mouse pointer on the event icon.

Viewing Status Details

The Status View dialog box shows details of a status line:

This dialog box shows the Status Name, the Thread ID of the thread to which the
status applies, the times at which the status started and ended, and the duration
(Length) of that status.

99Green Hills Software

View Event, and Status and Thread Details

Use the following buttons to navigate to the Status View for other states.

• Same Thread — Shows the next/previous status of any type for the same
system thread.

• Same Thread/Status — Shows the next/previous status of the same type for
the same thread.

• Go— Brings the EventAnalyzer canvas to the foreground and places the mouse
pointer on the status line.

Viewing Thread Details

The Thread Info dialog box shows details of a particular thread:

This dialog box shows the Thread Name, the Thread ID, and the priority of the
thread.

Use the Prev and Next buttons to scroll through all threads in the order they appear
in the thread name region.

Viewing Context Switch Details

To view details of a context switch, double-click the context switch object in the
canvas. The object view for a context switch displays the thread from which the
system changed, the thread to which it changed, and the time at which the change
occurred.

Use the Prev and Next buttons to jump sequentially between context switches
throughout the data file.

MULTI: Developing for ThreadX100

Chapter 12. Viewing Event Data

Click Go to bring the EventAnalyzer canvas to the foreground and place the mouse
pointer on the context switch.

Search for Event, Status, and Context Switches

The advanced search features of the EventAnalyzer enable you to scan the event
data for all instances of any particular event, status, or context switch. You can
restrict the search to a specific time range. The EventAnalyzer displays a list of
matching events that can be used to control the focus of the canvas. Selecting an
item from the list causes the canvas to jump to that item.

To use the search feature, select View → Search (or click) to open the Select
Threads dialog box:

This dialog box lists all the threads recorded in the data file. Select the thread or
threads on which to search. Click OK to open the Select Object Type dialog box:

101Green Hills Software

Search for Event, Status, and Context Switches

MULTI: Developing for ThreadX102

Chapter 12. Viewing Event Data

Choose one of the following options, specify a time range, if desired, and click OK
to start the search:

• Event, Event Pattern, or Status — Opens another dialog in which you must
specify the event, event pattern, or status for which to search. When you click
OK in this dialog, the Search Resultswindow will open and display the results
of the search. Click any item in the list and the canvas jumps to that event,
event pattern, or status.

• Context Switch — Opens the Search Results window and displays a list of
all context switches for the selected thread. Click any item in the list and the
canvas jumps to that context switch.

Multiple Search Results windows can be open simultaneously. Choose View →
Delete Object Views to close all Search Results windows as well as any open
object view windows.

Changing the Hidden Task List

The MULTI EventAnalyzer allows you to hide selected threads so that they do not
appear in the canvas, even though events and status changes for the thread have
been logged.

To hide threads, choose View → Change Hidden Thread List to open the Hidden
Task list:

TheDisplayed Threads are displayed on the left side of the window and theHidden
Threads are displayed on the right. Select threads from either list, then click Hide
or Show.

103Green Hills Software

Changing the Hidden Task List

The Show All button moves all threads to the Displayed Threads list. The Hide
all button moves all threads to the Hidden Threads list.

Click OK to apply your changes.

Generating Reports

The EventAnalyzer generates a variety of reports in user-defined time frames.

A report displays the number and percentage of occurrences of each event compared
to the total number of events in the time frame. For thread status reports, the time
spent in each status is displayed in time units and as a percentage of the total time
frame. This can be used to show how much time threads spend executing and in
the other states.

The reports are available from the Report menu.

Configuration Menu Operations

This section describes how to change the Canvas name and the time units used in
the canvas.

For information about changing the format of lines and icons in the canvas, see
“Using the Legend” on page 96.

Changing the Canvas Name

To change the canvas name (displayed in the title bar of the EventAnalyzer), select
Config → Canvas name, enter the new canvas name, and click OK. The new
canvas name appears in the main screen.

Time Unit Settings

The unit of measure used to display times in the canvas can be seconds, milliseconds,
microseconds, or nanoseconds. The EventAnalyzer's Auto Adjust Time Unit feature
selects a time unit appropriate to the amount of data displayed in the canvas.

MULTI: Developing for ThreadX104

Chapter 12. Viewing Event Data

To enable or disable the Auto Adjust Time Unit feature, select Config → Time
Unit, select or clear the Auto Adjust check box, and click OK.

You can override the Auto Adjust Time Unit selection at any time by clicking the
Time Unit icon on the toolbar one or more times to iterate through the available
unit options.

105Green Hills Software

Time Unit Settings

Chapter 13

EventAnalyzer Configuration
Files

Contents
Thread Status . 109
Defining Events . 110
Event Categories . 113
Unknown Events . 114
Miscellaneous Configuration Options . 114
Reserved Keywords . 116

An EventAnalyzer configuration file lists every event or status native to the ThreadX
RTOS and defines display properties such as the status line colors or event icons.

Some display parameters, such as the thread status line colors or event icons, can
be changed either by using the EventAnalyzer Legend window (see “Using the
Legend” on page 96) or by modifying the configuration file. Other parameters
(such as the icon used to indicate overlapping events) can only be changed by editing
the configuration file.

If your application logs user-defined events, the configuration file must be updated
so that the EventAnalyzer recognizes those events and includes the necessary event
data. For information about adding user-defined events, see “User-Defined Events”
on page 82.

The initial installation of MULTI contains a complete EventAnalyzer configuration
file set to default conditions. No modifications to the configuration file are required
to use the EventAnalyzer. To customize the display, the configuration file can be
edited. This chapter describes each parameter contained in the configuration file.
Except where noted, these parameters can also be defined using the EventAnalyzer.

The configuration file defines the following ThreadX events:

• Thread Status
• Event
• Event Category
• Overlap

You can modify the configuration file to include other events, as necessary, or to
change display parameters of these previously defined events.

Each line of the configuration file describes a single event. The following sections
describe the formatting conventions of each object type. The configuration file
format is case-insensitive.

The configuration file threadx.mc contains the ThreadX-specific configuration.
When the EventAnalyzer is invoked, it attempts to locate a user-specific version of
this file in:

• Windows — user_dir\Application Data\GHS\event_analyzer\

MULTI: Developing for ThreadX108

Chapter 13. EventAnalyzer Configuration Files

• Linux/Solaris — user_dir/.ghs/event_analyzer/

If a user-specific version of threadx.mc is not available, mevgui searches for the
file in the defaults\event_analyzer\ subdirectory of the MULTI installation. Any
manual edits to the file located in the MULTI installation affect all users of the
installation who do not have a user-specific version of threadx.mc. Any changes
saved via the GUI cause the user-specific file to be created or updated, and do not
affect other users.

Thread Status

The format for defining a thread status is as follows:

MEV_Object:MEV_Status:id:status_name:rgb:style:thickness:visibility

where:

• MEV_Object and MEV_Status— Are keywords and must be entered as shown
above for all thread status settings.

• id — Is an integer used to identify the thread status on the target.
• status_name — Is a string, such as ready, executing, or terminated,

corresponding to the thread status.
• rgb — Determines the status line color. Enter the hexadecimal value

representing the desired color.
• style — Refers to the line style used to represent the status of the thread in

the EventAnalyzer Canvas. The available line styles are:

○ MEV_Solid

○ MEV_Dot

○ MEV_Dash

○ MEV_DashDot

○ MEV_DashDotDot

• thickness — Determines the thickness of the line in pixels.
• visibility — Indicates whether the status will be displayed in the

EventAnalyzer Canvas. Enter either MEV_Visible (the default) or
MEV_Invisible.

109Green Hills Software

Thread Status

Defining Events

The format for defining an event is:

MEV_Event:type:sub_type:event_name:icon_name:[extra_data:]visibility

where:

• MEV_Event — Is a keyword and should be entered as shown above.
• type and sub_type — Are two numbers used by ThreadX to identify an

event. For example a type of 0x3 and a sub_type of 0x16 corresponds to
the tx_thread_create event.

• event_name — Is the name of the event, such as tx_byte_allocate,
tx_event_flags_create, or tx_semaphore_delete.

• icon_name — Is the name of the icon or the filename of an external graphic
icon file used to represent the event in the EventAnalyzer. MULTI provides
many built-in icons. The EventAnalyzer Legend window displays a list of
these icons and the icon names. To specify one of these icons, enter the icon's
name. Do not include a .bmp file extension.

You can also use an icon other than one provided by MULTI, by specifying
an external graphic icon filename. The file must be in the .bmp format. Enter
the filename of the graphic icon file, including the .bmp file extension. Enclose
the filename in quotation marks if it contains whitespace or a colon.

• extra_data — Specifies optional, additional data that can be useful in
understanding an event. For example, if a semaphore is created, the new
Semaphore ID can be recorded as extra data for the logged semaphore create
event. Subsequent operations on the semaphore can also log the Semaphore
ID so that operations on the same semaphore can be located easily. (See the
next section for more information.)

• visibility — Indicates whether the status will be displayed in the
EventAnalyzer Canvas. Enter either MEV_Visible (default) or
MEV_Invisible.

Specifying Extra Data

The event window displays extra data relating to the selected event as defined in
the configuration file. When an event occurs, the system logs the standard event

MULTI: Developing for ThreadX110

Chapter 13. EventAnalyzer Configuration Files

data (event name, thread ID, and elapsed time) and any extra data defined. This
extra data should be described by the configuration file. All of this data can then
be viewed in an EventAnalyzer event window, as pictured below.

The format for the extra_data field entry is the character sequence MEV_Extra=
followed by a string enclosed in quotation marks.

Format strings of the following types are permitted:

• %C — Indicates that the next data item is a 1-byte character value.
• %1D — Indicates that the next data item is a 1-byte integer displayed as a

decimal value.
• %1X — Indicates that the next data item is a 1-byte integer displayed as a

hexadecimal value.
• %2D — Indicates that the next data item is a 2-byte integer displayed as a

decimal value.
• %2X — Indicates that the next data item is a 2-byte integer displayed as a

hexadecimal value.
• %4D — Indicates that the next data item is a 4-byte integer displayed as a

decimal value.
• %4X — Indicates that the next data item is a 4-byte integer displayed as a

hexadecimal value.
• %S — Indicates that the next data item is an array of a basic type. Arrays can

be specified as:

111Green Hills Software

Specifying Extra Data

array_length%Sarray_element

MULTI: Developing for ThreadX112

Chapter 13. EventAnalyzer Configuration Files

where:
○ array_length is a data item that indicates the length of the array.
○ array_element is a data item that indicates the type of each array

element.

For example, a character string whose length is specified as a 4-byte integer is
expressed as:

%4X%S1C

Some examples of extra data configurations follow:

...:MEV_Extra="queue_ptr=%4X":...

...:MEV_Extra="semaphore_ptr=%4X initial_value=%4X":...

Event Categories

The EventAnalyzer allows related events to be grouped into categories. The format
for defining an event category is:

MEV_Event_Category:category_name:visibility

where:

• MEV_Event_Category — Is a keyword and should be entered in the
configuration file as shown above.

• category_name — Is the name of the category as defined by the user. Some
examples of event categories in the ThreadX kernel are Block Pool, Event
Flags, and Queue.

• visibility — Indicates whether or not the threads within the category will
be displayed in the EventAnalyzer Canvas. If not defined, the default value is
MEV_Visible. Categories that include visible and invisible objects require no
visibility distinction. The attribute selected at the category level applies to all
the events in that category. Category and object visibility can also be modified
from the Legend window.

113Green Hills Software

Event Categories

Below the category definition line, list each of the events to be included in that
category. For example:

MEV_Event_Category:Thread:MEV_Visible
MEV_Event:0x3:0x16:tx_thread_create:tx_t_create:MEV_Extra="thread_ptr=
%4X statck_start=%4X stack_size=%4X priority=%4X":MEV_Visible

MEV_Event:0x3:0x17:tx_thread_delete:tx_t_delete:MEV_Extra="thread_ptr=
%4X":MEV_Visible

All events following an event category definition are considered to be part of the
event category, until another event category is defined.

An event can be included in multiple event categories. To do this, include a
description line for the event in each category. In case of conflicting event
definitions, the event description line appearing last in the configuration file
determines the visibility attribute of the object.

Unknown Events

The EventAnalyzer employs an unknown object to represent any events or states
not defined, or not defined fully in the ThreadX configuration file.

You can also specify unknown as the type for any object, for example:

MEV_Object:MEV_Status:0xa:unknown:0xff0000:MEV_Solid:5:MEV_Visible
MEV_Event:0x0:0x0:unknown:questionmark:MEV_Visible

Miscellaneous Configuration Options

Event Overlap Icon

If two events occur within a short amount of time, the event icons may overlap in
the display and, as a result, be difficult to read. By modifying the overlap setting,
the EventAnalyzer can display a single icon indicating that two or more icons
overlap. The correct event icons will be shown when the display is expanded to a
resolution at which the icons no longer overlap

Using the overlap feature increases the redraw speed in the canvas.

MULTI: Developing for ThreadX114

Chapter 13. EventAnalyzer Configuration Files

By default, event overlap is not enabled. It can be enabled by setting the icon as
described below. The format is as follows:

MEV_Misc:MEV_Overlap:icon_name

The Legend window displays all the available icons and their filenames. Select an
appropriate icon from the Legend and enter its name in the icon_name section of
the overlap icon definition in the configuration file.

The overlap icon definition is a special entry in the configuration file that cannot
be changed using the Legend window at run time. Therefore, this feature must be
enabled or disabled prior to starting the EventAnalyzer.

Status Line Position

If the MEV_Center_Status option is true, status lines are vertically centered behind
event icons. If this option is false, status lines are displayed below event icons. This
option defaults to false, but the default configuration file sets it to true.

The format for this option is:

MEV_Misc:MEV_Center_Status:true|false

Tick Value Display

If the MEV_Tick_Pattern option is true, common digits in tick values are displayed
in the ticks display field, as described in “The EventAnalyzer Window” on page 89.
If this option is false, the full tick value is displayed in the canvas. This option
defaults to true.

The format for this option is:

MEV_Misc:MEV_Tick_Pattern:true|false

115Green Hills Software

Status Line Position

Warning for Unused Extra Data

If the MEV_Unused_Extra_Data_Warning option is true, a warning is printed
when an event contains extra_data that is not specified in the corresponding
MEV_Event entry. If this option is false, no warning is printed. This option defaults
to true.

The format for this option is:

MEV_Misc:MEV_Unused_Extra_Data_Warning:true|false

Warning for Missing Extra Data

If the MEV_Extra_Data_Warning option is true, a warning is printed when an
MEV_Event entry specifies extra_data that is not contained in the event. If this
option is false, no warning is printed. This option defaults to true, but the default
configuration file sets it to false.

The format for this option is:

MEV_Misc:MEV_Extra_Data_Warning:true|false

Reserved Keywords

The EventAnalyzer configuration file reserves the following keywords:

• MEV_Object

• MEV_Event_Category

• MEV_Event

• MEV_Status

• MEV_Misc

• Context Switch

• running

• MEV_Visible

• MEV_Invisible

• unknown

MULTI: Developing for ThreadX116

Chapter 13. EventAnalyzer Configuration Files

• MEV_Refresh_Interval

117Green Hills Software

Reserved Keywords

Chapter 14

ThreadX Services Reference

Contents
Memory Block Pool Services . 120
Memory Byte Pool Services . 121
Event Flags Services . 122
Interrupt Services . 123
Mutex Services . 123
Message Queue Services . 124
Semaphore Services . 125
Thread Services . 126
Application Timer Services . 128

This chapter lists each ThreadX service in alphabetical order and provides the extra
data included for that service. For example, when a semaphore operation is
performed, the extra data indicates which semaphore is being operated upon.

Memory Block Pool Services

• — tx_block_allocate:
○ Pool Address — Address of the block pool control block
○ Pointer Address — Address of the return block pointer
○ Block Address — Address of the block allocated

• — tx_block_pool_create:
○ Pool Address — Address of the block pool control block
○ Pool Memory Area Address — Address of the block pool memory area
○ Pool Size — Number of bytes in the block pool

• — tx_block_pool_delete:
○ Pool Address — Address of the block pool control block

• — tx_block_pool_info_get:
○ Pool Address — Address of the block pool control block

• — tx_block_pool_performance_info_get:
○ Pool Address — Address of the block pool control block

• — tx_block_pool_performance_system_info_get:
○ (No extra information)

• — tx_block_pool_prioritize:
○ Pool Address — Address of the block pool control block

• — tx_block_release:
○ Pool Address — Address of the block pool control block
○ Block Address — Address of the block being released

MULTI: Developing for ThreadX120

Chapter 14. ThreadX Services Reference

Memory Byte Pool Services

• — tx_byte_allocate:
○ Pool Address — Address of the byte pool control block
○ Pointer Address — Address of the return memory pointer
○ Request Size — Number of bytes in the request
○ Memory Address — Address of the memory being allocated

• — tx_byte_pool_create:
○ Pool Address — Address of the byte pool control block
○ Pool Memory Area Address — Address of the byte pool memory area
○ Pool Size — Number of bytes in the byte pool memory area

• — tx_byte_pool_delete:
○ Pool Address — Address of the byte pool control block

• — tx_byte_pool_info_get:
○ Pool Address — Address of the byte pool control block

• — tx_byte_pool_performance_info_get:
○ Pool Address — Address of the byte pool control block

• — tx_byte_pool_performance_system_info_get:
○ (No extra information)

• — tx_byte_pool_prioritize:
○ Pool Address — Address of the byte pool control block

• — tx_byte_release:
○ Pool Address — Address of the byte pool control block
○ Memory Address — Address of the memory being released

121Green Hills Software

Memory Byte Pool Services

Event Flags Services

• — tx_event_flags_create:
○ Event Group — Pointer to event flags group control block

• — tx_event_flags_delete:
○ Event Group — Pointer to event flags group control block

• — tx_event_flags_get:
○ Event Group — Pointer to event flags group control block
○ Requested Flags — Flags requested for the get operation
○ Option — Get option that was specified

• — tx_event_flags_info_get:
○ Event Group — Pointer to event flags group control block

• — tx_event_flags_performance_info_get:
○ Event Group — Pointer to event flags group control block

• — tx_event_flags_performance_system_info_get:
○ (No extra information)

• — tx_event_flags_set:
○ Event Group — Pointer to event flags group control block
○ Flags — Flags to apply to the event flags group
○ Option — Set option that was specified

• — tx_event_flags_set_notify:
○ Event Group — Pointer to event flags group control block
○ Notify — Pointer to notification callback function

MULTI: Developing for ThreadX122

Chapter 14. ThreadX Services Reference

Interrupt Services

• — tx_interrupt_control:
○ New Posture — New interrupt posture to apply

Mutex Services

• — tx_mutex_create:
○ Mutex Pointer — Pointer to the mutex control block
○ Priority Inheritance — Priority inheritance setting

• — tx_mutex_delete:
○ Mutex Pointer — Pointer to the mutex control block

• — tx_mutex_get:
○ Mutex Pointer — Pointer to the mutex control block
○ Owner — Pointer to the thread control block of the mutex owner
○ Ownership Count — Current mutex ownership count

• — tx_mutex_info_get:
○ Mutex Pointer — Pointer to the mutex control block

• — tx_mutex_performance_info_get:
○ Mutex Pointer — Pointer to the mutex control block

• — tx_mutex_performance_system_info_get:
○ (No extra information)

• — tx_mutex_prioritize:
○ Mutex Pointer — Pointer to the mutex control block

• — tx_mutex_put:
○ Mutex Pointer — Pointer to the mutex control block
○ Owner — Pointer to the thread control block of the mutex owner
○ Ownership Count — Current mutex ownership count

123Green Hills Software

Interrupt Services

Message Queue Services

• — tx_queue_create:
○ Queue Pointer — Pointer to the queue control block
○ Queue Address — Address of the start of the queue memory area
○ Queue Size — Size of queue memory area
○ Message Size — Size of queue messages

• — tx_queue_delete:
○ Queue Pointer — Pointer to the queue control block

• — tx_queue_flush:
○ Queue Pointer — Pointer to the queue control block

• — tx_queue_front_send:
○ Queue Pointer — Pointer to the queue control block
○ Source Address — Pointer to the message to send

• — tx_queue_info_get:
○ Queue Pointer — Pointer to the queue control block

• — tx_queue_performance_info_get:
○ Queue Pointer — Pointer to the queue control block

• — tx_queue_performance_system_info_get:
○ (No extra information)

• — tx_queue_prioritize:
○ Queue Pointer — Pointer to the queue control block

• — tx_queue_receive:
○ Queue Pointer — Pointer to the queue control block
○ Destination Address — Pointer to the receive message destination

• — tx_queue_send:
○ Queue Pointer — Pointer to the queue control block
○ Source Address — Pointer to the message to send

• — tx_queue_send_notify:
○ Queue Pointer — Pointer to the queue control block

MULTI: Developing for ThreadX124

Chapter 14. ThreadX Services Reference

○ Notify — Pointer to notification callback function

Semaphore Services

• — tx_semaphore_ceiling_put:
○ Semaphore Pointer — Pointer to the semaphore control block
○ Current Count — Current semaphore count
○ Ceiling — Maximum limit

• — tx_semaphore_create:
○ Semaphore Pointer — Pointer to the semaphore control block
○ Initial Count — The initial semaphore count

• — tx_semaphore_delete:
○ Semaphore Pointer — Pointer to the semaphore control block

• — tx_semaphore_get:
○ Semaphore Pointer — Pointer to the semaphore control block
○ Current Count — Current semaphore count

• — tx_semaphore_info_get:
○ Semaphore Pointer — Pointer to the semaphore control block

• — tx_semaphore_performance_info_get:
○ Semaphore Pointer — Pointer to the semaphore control block

• — tx_semaphore_performance_system_info_get:
○ (No extra information)

• — tx_semaphore_prioritize:
○ Semaphore Pointer — Pointer to the semaphore control block

• — tx_semaphore_put:
○ Semaphore Pointer — Pointer to the semaphore control block
○ Current Count — Current semaphore count

• — tx_semaphore_put_notify:
○ Semaphore Pointer — Pointer to the semaphore control block
○ Notify — Pointer to notification callback function

125Green Hills Software

Semaphore Services

Thread Services

• — tx_thread_create:
○ Thread Pointer — Pointer to the thread control block
○ Stack Starting Address — Starting memory address of the thread's stack
○ Stack Size — Size of thread’s stack in bytes
○ Priority — Thread’s priority

• — tx_thread_delete:
○ Thread Pointer — Pointer to the thread control block

• — tx_thread_entry_exit_notify:
○ Thread Pointer — Pointer to the thread control block
○ Notify — Pointer to notification callback function

• — tx_thread_identify:
○ (No extra information)

• — tx_thread_info_get:
○ Thread Pointer — Pointer to the thread control block

• — tx_thread_performance_info_get:
○ Thread Pointer — Pointer to the thread control block

• — tx_thread_performance_system_info_get:
○ (No extra information)

• — tx_thread_preemption_change:
○ Thread Pointer — Pointer to the thread control block
○ Previous Threshold — Old preemption threshold
○ New Threshold — New preemption threshold

• — tx_thread_priority_change:
○ Thread Pointer — Pointer to the thread control block
○ Previous Priority — Old priority
○ New Priority — New priority

• — tx_thread_relinquish:
○ (No extra information)

MULTI: Developing for ThreadX126

Chapter 14. ThreadX Services Reference

• — tx_thread_reset:
○ Thread Pointer — Pointer to the thread control block to reset

• — tx_thread_resume:
○ Thread Pointer — Pointer to the thread control block to resume

• — tx_thread_sleep:
○ Ticks — Number of ticks to sleep

• — tx_thread_stack_error_notify:
○ Notify — Pointer to notification callback function

• — tx_thread_suspend:
○ Thread Pointer — Pointer to the thread control block to suspend

• — tx_thread_terminate:
○ Thread Pointer — Pointer to the thread control block to terminate

• — tx_thread_time_slice_change:
○ Thread Pointer — Pointer to the thread control block
○ Previous Time-slice — Thread’s old time-slice
○ New Time-slice — Thread’s new time-slice

• — tx_thread_wait_abort:
○ Thread Pointer — Pointer to the thread control block

127Green Hills Software

Thread Services

Application Timer Services

• — tx_time_get:
○ Current Time — Current time (tick) count

• — tx_time_set:
○ New time — New time (tick) count

• — tx_timer_activate:
○ Timer Pointer — Pointer to the timer control block

• — tx_timer_change:
○ Timer Pointer — Pointer to the timer control block
○ Initial Ticks — Number of ticks before initial expiration
○ Reschedule Ticks — Number of ticks for subsequent expirations

• — tx_timer_create:
○ Timer Pointer — Pointer to the timer control block
○ Initial Ticks — Number of ticks before initial expiration
○ Reschedule Ticks — Number of ticks for subsequent expirations
○ Activate — Auto-activation selection

• — tx_timer_deactivate:
○ Timer Pointer — Pointer to the timer control block

• — tx_timer_delete:
○ Timer Pointer — Pointer to the timer control block

• — tx_timer_info_get:
○ Timer Pointer — Pointer to the timer control block

• — tx_timer_performance_info_get:
○ Timer Pointer — Pointer to the timer control block

• — tx_timer_performance_system_info_get:
○ (No extra information)

MULTI: Developing for ThreadX128

Chapter 14. ThreadX Services Reference

Index

A
alignment restrictions, 6
application timers, ix, 66

B
Block Pool Contents window, 55

window components
Address, 56
Block Pool Name, 55
Block Pool Name button, 55
Memory Block List, 56
Status, 56

Block Pool Information window, 10, 52
window components

Block Pool List button, 54
Block Pool Name, 52
Block Size, 53
Control Block, 53
Control Block button, 53
First Available, 53
In Use, 53
In Use button, 53
Pool Size, 53
Suspended Threads, 53
Suspended Threads List, 54

Block Pool List window, 50
window components

Block Size, 51
Full, 51
Name, 50
Suspended, 51

byte alignment, 6
Byte Pool Contents window, 62

window components
Address, 63
Byte Pool Name, 62
Byte Pool Name button, 62
Memory Byte List, 63
Size, 63

Status, 63
Byte Pool Information window, 10, 59

window components
Byte Pool List button, 61
Byte Pool Name, 60
Control Block, 60
Control Block button, 60
Fragments, 60
In Use, 60
In Use button, 60
Memory Start, 60
Search Address, 60
Suspended Threads, 60
Suspended Threads List, 61

Byte Pool List window, 58
window components

Full, 58
Name, 58
Suspended, 59

C
component view, 21
conventions

typographical, x
Current Thread Information window, 23

D
debugging, 4

kernel-aware, ix
multithreaded, 14
performance, 10
thread-aware, ix
ThreadX applications, 4
with Thread List window, 14

document set, viii, ix

E
event flags groups, ix, 44

control block address, 46
count, 8
name, 44, 45
status, 44, 46

Event Flags Information window, 45
window components

Control Block, 46
Control Block button, 46
Current Event Flags, 46
Event Flags List button, 47
Event Flags Name, 45
Suspended Threads, 46

Suspended Threads List, 47
Event Flags List window, 44

window components
Flags, 44
Name, 44
Suspended, 45

event icons
customizing, 110

EventAnalyzer
configuring, 104, 108
defining events, 110
event logging for, 78, 80
filtering event logging for, 80
hidden tasks, 103
Introduction, 74
launching, 88
reports, 104
reserved keywords, 116
retrieving event data, 84
searching, 101
selecting data, 93
threads, number to support, 80
ThreadX services, 120
unknown events, 114
user-defined events, 82
using the legend, 96
viewing context switch details, 100
viewing event data, 88
viewing event details, 98
viewing status details, 99
viewing thread details, 100

EventAnalyzer, MULTI, 10
Express Logic, Inc., ix

F
fragments

address, 63
size, 63
status, 63

Freeze button, 5, 10
freezing windows, 10

K
kernel components, ix

application timers, ix, 66
event flags groups, ix, 44
memory block pools, ix, 50
memory byte pools, ix, 58
message queues, ix, 28
mutexes, ix, 38

semaphores, ix, 34
threads, ix, 14

M
memory allocation

analyzing, 10
memory block pools, ix, 10, 50

address, 56
allocated, 51, 53
available, 53
control block address, 53
count, 8
list of memory blocks, 56
name, 50, 52, 55
size, 51, 53
status, 56

memory byte pools, ix, 10, 58
allocated, 58, 60
control block address, 60
count, 8
fragments, 60, 63
name, 58, 60, 62
pointer, 60
suspended, 59
unallocated fragment, 60

memory view, 20
messages

address, 30
control block address, 31
name, 30
queue count, 7
queue read address, 30
queue start address, 30
queue write address, 30
queues, ix, 28, 30
size, 28, 30
total in queue, 29

MULTI
document set, ix
starting, 4

MULTI EventAnalyzer, 10
Mutex Information window, 39

window components
Control Block, 40
Control Block button, 40
Mutex List button, 41
Mutex Name, 40
Original Priority (PT), 40
Owner, 40
Owner button, 40

MULTI: Developing for ThreadX130

Event Flags Information window (continued)

Ownership Count, 40
Priority Inheritance, 40
Suspended Threads, 40
Suspended Threads List, 41

Mutex List window, 38
window components

Count, 39
Name, 38
Owner, 38
Suspended, 39

mutexes, ix, 38
control block address, 40
count, 8, 39
name, 40
owner, 38, 40
owner thread, 40
ownership count, 40
priority inheritance, 40

P
peak stack checking, 9
performance

debugging, 10

Q
Queue Information window, 29

window components
Control Block, 31
Control Block button, 31
Filled, 30
Message Size, 30
Queue End, 30
Queue List button, 31
Queue Name, 30
Read, 30
Read button, 30
Start, 30
Start button, 30
Suspended Threads, 31
Suspended Threads List, 31
Write, 30
Write button, 30

Queue List window, 28
window components

Full, 29
Msg Size, 28
Name, 28
Suspended, 29

S
Semaphore Information window, 35

window components
Control Block, 36
Control Block button, 36
Semaphore Count, 36
Semaphore List button, 36
Semaphore Name, 35
Suspended Threads, 36
Suspended Threads List, 36

Semaphore List window, 34
window components

Count, 34
Name, 34
Suspended, 35

semaphores, ix, 34
control block, 36
count, 7, 34, 36
name, 34, 35

Stack Check Information window, 9, 25
window components

Peak Stack Use, 26
Thread Name, 25

stack checking, 9
disabling maximum checking, 9
enabling maximum checking, 9

stack pointer, system, 9
stack range, 20
stack use, 9, 25

checking, 9
peak, 25, 26

starting MULTI, 4
system clock, 9
system variables, 7, 8, 9

T
Thread Information window, 19

window components
Condition, 22
Control Block, 22
Control Block button, 22
Current PC, 20
Current PC button, 20
Current SP, 20
Current SP button, 20
Entry Point, 22
Entry Point button, 22
Execution State, 21
Name, 21
Name button, 21

131Green Hills Software

Mutex Information window (continued)

Priority (PT), 20
Run Count, 22
Stack Check button, 23
Stack Extent, 20
Stack Use, 20
Suspended on, 21
Thread List button, 23
Thread Name, 20
Time Slice, 21
Timeout, 22

Thread List window, 14, 15
window components

Name, 15
Priority, 16
Run Count, 16
Stack Use, 16
State, 15
Suspended On, 16
Thread ID, 15

Thread Ready List window, 17
window components

Name, 17
Stack Use, 18
State, 17
Time Slice, 18

Thread Stack Check List window, 9, 24
window components

Current Use, 25
Name, 24
Peak Use, 25

threads, ix, 14
component type, 16, 21
control block address, 22
count, 7
execution state, 8, 15, 17, 21
function name, 20, 22
information, 19, 22
name, 15, 17, 20, 21, 24, 25, 28, 38
number supported, 80
priority, 16, 20
run count, 16
scheduling, 22
stack pointer, 20
stack range, 20
stack use, 16, 18, 20
suspended, 16, 21, 29, 31, 35, 36, 39, 40, 41, 45, 46, 47,

51, 53, 54, 60, 61
thread ID, 15

ThreadX, ix
debugging with MULTI, ix, 4

ThreadX Information window, 5, 6

window components
Application Timers button, 8
Application Timers Count, 8
Block Pools button, 8
Block Pools Count, 8
Byte Pools button, 8
Byte Pools Count, 8
Current Thread, 8
Current Thread button, 8
Event Flag Groups button, 8
Message Queues button, 7
Message Queues Count, 7
Mutexes button, 8
Mutexes Count, 8
Ready List button, 8
Semaphores button, 7
Semaphores Count, 7
Stack Check List button, 8
System Clock, 9
System SP, 9
Threads button, 7
Threads Count, 7
Version ID, 8

timeout values, 6
Timer Information window, 68

window components
Callback, 69
Callback button, 69
Control Block, 69
Control Block button, 69
Parameter, 69
State, 69
Ticks, 68
Timer List button, 69
Timer Name, 68

Timer List window, 66
window components

Callback, 67
Name, 66
Ticks, 67

timer ticks, 18, 21, 22, 67, 68
timers, application, ix, 66

control block address, 69
count, 8
name, 66, 67, 68, 69
parameter passed to callback function, 69
state, 69

TX_EL_ENABLE_ALL_EVENTS, 82
TX_EL_FILTER_ALL_EVENTS, 82
TX_EL_FILTER_BLOCK_CALLS, 81
TX_EL_FILTER_BYTE_CALLS, 82

MULTI: Developing for ThreadX132

Thread Information window (continued)

TX_EL_FILTER_EVENT_FLAG_CALLS, 81
TX_EL_FILTER_INTERRUPTS, 81
TX_EL_FILTER_MUTEX_CALLS, 82
TX_EL_FILTER_QUEUE_CALLS, 81
TX_EL_FILTER_SEMAPHORE_CALLS, 81
TX_EL_FILTER_STATUS_CHANGE, 81
TX_EL_FILTER_THREAD_CALLS, 81
TX_EL_FILTER_TIMER_CALLS, 81
typographical conventions, x

U
updating windows, 6, 10

V
version ID string, 8
void _tx_el_event_filter_set(UINT filter);, 80
void _tx_el_event_log_off(void);, 80
void _tx_el_event_log_on(void);, 80

W
windows

Block Pool Contents, 53, 55
Block Pool Information, 10, 52, 55
Block Pool List, 50, 54
Byte Pool Contents, 60, 62
Byte Pool Information, 10, 59, 62
Byte Pool List, 58, 61
common features, 5
component view, 21
Current Thread Information, 23
Data Explorer, 22, 31, 36, 40, 46, 53, 60, 69
Debugger, MULTI, 69
Event Flags Information, 45
Event Flags List, 44, 47
freezing, 6

and duplicating, 6
and unfreezing, 10

information, ix
list, ix
main control and information, 6
manipulating, 5
memory view, 20
Mutex Information, 39
Mutex List, 38, 41
Queue Information, 29
Queue List, 28, 31
Semaphore Information, 35
Semaphore List, 34, 36
Stack Check Information, 9, 25
Thread Information, 19

Thread List, 14, 15
Thread Ready List, 17
Thread Stack Check List, 9, 24
ThreadX Information, 5, 6
Timer List, 66, 69
updating, 6, 10

133Green Hills Software

TX_EL_FILTER_EVENT_FLAG_CALLS

	MULTI: Developing for ThreadX
	Contents
	Preface
	About This Book
	MULTI for ThreadX
	The MULTI Document Set
	Conventions Used in the MULTI Document Set

	Part I. Using MULTI with ThreadX
	Chapter 1. Running MULTI for ThreadX
	ThreadX and Green Hills Tools Compatibility
	Debugging ThreadX Applications
	Manipulating ThreadX Windows
	Alignment Restrictions
	Timeout Values

	The ThreadX Information Window
	Checking Thread Stack Usage
	Configuring Stack Use Checking

	Analyzing ThreadX Memory Allocation
	The MULTI EventAnalyzer
	Performance Issues

	Chapter 2. Threads
	The Thread List Window
	Multithreaded Debugging
	Contents of the Thread List Window

	The Thread Ready List Window
	The Thread Information Window
	The Current Thread Information Window
	The Thread Stack Check List Window
	The Stack Check Information Window

	Chapter 3. Message Queues
	The Queue List Window
	The Queue Information Window

	Chapter 4. Semaphores
	The Semaphore List Window
	The Semaphore Information Window

	Chapter 5. Mutexes
	The Mutex List Window
	The Mutex Information Window

	Chapter 6. Event Flags Groups
	The Event Flags List Window
	The Event Flags Information Window

	Chapter 7. Memory Block Pools
	The Block Pool List Window
	The Block Pool Information Window
	The Block Pool Contents Window

	Chapter 8. Memory Byte Pools
	The Byte Pool List Window
	The Byte Pool Information Window
	The Byte Pool Contents Window

	Chapter 9. Application Timers
	The Timer List Window
	The Timer Information Window

	Part II. Using the MULTI EventAnalyzer for ThreadX
	Chapter 10. Introduction to the MULTI EventAnalyzer for ThreadX
	Basic Operation
	The Effect of Event Logging on Run-Time Performance
	Basic Logging Instrumentation
	Quantity of Event Types

	Chapter 11. Collecting Event Logging Data
	Control and Filtering of Event Logging
	User-Defined Events
	Modify the Application
	Modify the Configuration File

	Retrieving Event Logging Data from the Target
	Modifying the Target Event Log Location

	Chapter 12. Viewing Event Data
	Launching the EventAnalyzer
	The EventAnalyzer Window
	Selecting Data
	Selecting a Point in Time
	Selecting a Range of Time
	Zooming to a Range Selection
	Creating a Reference Line
	Jumping to a Time Selection

	Viewing Event Data
	Using the Legend
	View Event, and Status and Thread Details
	Viewing Event Details
	Viewing Status Details
	Viewing Thread Details

	Viewing Context Switch Details
	Search for Event, Status, and Context Switches
	Changing the Hidden Task List

	Generating Reports
	Configuration Menu Operations
	Changing the Canvas Name
	Time Unit Settings

	Chapter 13. EventAnalyzer Configuration Files
	Thread Status
	Defining Events
	Specifying Extra Data

	Event Categories
	Unknown Events
	Miscellaneous Configuration Options
	Event Overlap Icon
	Status Line Position
	Tick Value Display
	Warning for Unused Extra Data
	Warning for Missing Extra Data

	Reserved Keywords

	Chapter 14. ThreadX Services Reference
	Memory Block Pool Services
	Memory Byte Pool Services
	Event Flags Services
	Interrupt Services
	Mutex Services
	Message Queue Services
	Semaphore Services
	Thread Services
	Application Timer Services

	Index

