
MULTI: DebuggingCommandReference

Green Hills Software
30 West Sola Street

Santa Barbara, California 93101
USA

Tel: 805-965-6044
Fax: 805-965-6343

www.ghs.com

DISCLAIMER
GREEN HILLS SOFTWARE MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR ANY PARTICULAR PURPOSE. Further, Green Hills Software reserves the right to revise this
publication and to make changes from time to time in the content hereof without obligation of Green Hills Software to
notify any person of such revision or changes.

Copyright © 1983-2014 by Green Hills Software. All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without prior written permission from Green Hills Software.

Green Hills, the Green Hills logo, CodeBalance, GMART, GSTART, INTEGRITY, MULTI, and Slingshot are registered
trademarks of Green Hills Software. AdaMULTI, Built with INTEGRITY, EventAnalyzer, G-Cover, GHnet, GHnetLite,
Green Hills Probe, Integrate, ISIM, u-velOSity, PathAnalyzer, Quick Start, ResourceAnalyzer, Safety Critical Products,
SuperTrace Probe, TimeMachine, TotalDeveloper, DoubleCheck, and velOSity are trademarks of Green Hills Software.

All other company, product, or service names mentioned in this book may be trademarks or service marks of their respective
owners.

PubID: debug_cmd-506382
Branch: http://toolsvc/branches/release-branch-60
Date: April 24, 2014

Contents

Preface xv
About This Book . xvi
The MULTI 6 Document Set . xvii
Conventions Used in the MULTI Document Set xviii

1. Using Debugger Commands 1
Availability of Debugger Commands . 2
Getting Help Information about Debugger Commands 2
Finding Debugger Commands in This Book . 3
Debugger Command Conventions . 3
Using Address Expressions in Debugger Commands 5

Specifying Line Numbers . 7
Name Resolution . 8

Identifying Breakpoints in Debugger Commands . 10
Breakpoint IDs and Labels . 10
Breakpoint Ranges and Lists . 11

Command Syntax . 12
Using Command Lists in Debugger Commands 12
Continuing Commands onto Subsequent Lines 13
Including Comments in Debugger Commands 13
Terminating Commands . 14

Default Search Path for Files Specified in Commands 14

2. General Debugger Command Reference 15
General Debugger Commands . 16

asm . 17
attach . 18
caches . 19
call . 19

iiiGreen Hills Software

dbnew . 19
debug . 20
detach . 20
loadsym . 21
mev . 22
monitor . 23
mrv . 23
multibar . 24
new . 24
output . 25
P . 27
q . 28
quit . 29
quitall . 30
restore . 30
save . 31
unloadsym . 31
wait . 31

3. Breakpoint Command Reference 35
Breakpoint Commands . 37

b . 38
B . 40
bA . 41
bi, bI . 41
bif . 42
bpload . 42
bpsave . 43
bpview, breakpoints . 43
bt . 44
bu, bU . 44
bx, bX . 45
d . 46
D . 47
dz . 48
edithwbp . 49
editswbp . 50
hardbrk . 50

MULTI: Debugging Command Referenceiv

Contents

rominithbp . 54
sb . 55
setbrk . 57
sethbp . 57
stopif . 58
stopifi . 59
tog . 59
Tog . 60
watchpoint . 61

4. Building Command Reference 63
Building Commands . 64

build . 64
builder . 64
wgutils . 65

5. Call Stack Command Reference 67
Call Stack Commands . 68

calls . 68
callsview . 69
cvconfig . 70

6. Configuration Command Reference 73
General Configuration Commands . 74

clearconfig . 75
configoptions . 75
configure . 76
configurefile . 76
fileextensions . 77
fontsize . 77
imagename . 78
loadconfigfromfile . 78
saveconfig . 78
saveconfigtofile . 79
setintegritydir . 79
setuvelositydir . 80
source . 80

vGreen Hills Software

Contents

sourceroot . 81
syncolor . 82

Button, Menu, and Mouse Commands . 82
-> . 83
customizemenus . 83
customizetoolbar . 84
debugbutton, editbutton . 84
inspect . 86
keybind . 87
menu . 87
mouse . 87

7. Debugger Note Command Reference 89
Debugger Note Commands . 90

notedel . 90
noteedit . 91
notelist . 91
notestate . 92
noteview . 92

8. Display and Print Command Reference 93
Display and Print Commands . 94

assem . 96
cat . 96
clear . 96
comeback . 97
components . 97
dbprint . 98
debugpane . 98
dumpfile . 99
E . 99
echo . 100
eval . 100
examine . 101
goaway . 101
l . 102
map . 103

MULTI: Debugging Command Referencevi

Contents

mprintf . 103
mrulist . 104
mute . 105
p, print . 105
printline . 106
printphys . 106
printwindow . 106
pwd . 107
Q . 107
savedebugpane . 107
windowcopy . 108
windowpaste, windowspaste . 108

9. Help and Information Command Reference 109
Help and Information Commands . 110

about . 110
aboutlic . 111
bugreport . 111
help . 111
info . 111
usage . 112

10. Memory Command Reference 113
General Memory Commands . 114

compare, compareb . 115
copy, copyb . 116
disassemble . 117
fill, fillb . 118
find, findb . 119
flash . 120
memdump . 122
memload . 123
memread . 124
memtest . 125
memwrite . 128
verify . 129

viiGreen Hills Software

Contents

11. Navigation Command Reference 131
Navigation Commands . 132

+ . 132
- . 133
e . 133
indexnext . 134
indexprev . 135
number . 135
scrollcommand . 135
switch . 137
uptosource . 137

12. Profiling Command Reference 139
Profiling Commands . 140

profdump . 140
profile . 141
profilemode . 141
profilereport . 144

13. Program Execution Command Reference 145
General Program Execution Commands . 146

g . 146
getargs . 146
setargs . 147

Continue Commands . 148
c . 149
cb . 150
cf . 150
cfb . 151
runtohere . 151

Halt Commands . 152
H . 152
halt . 152
k . 153

MULTI: Debugging Command Referenceviii

Contents

Run Commands . 153
bc . 154
r . 154
R . 155
rb, Rb . 155
restart . 156
resume . 156
rundir . 157
runtask . 157

Single-Stepping Commands . 158
bcU . 160
bprev . 160
bs . 160
bsi . 161
s . 161
cu, cU . 161
S, n . 162
si . 163
Si, ni . 163
sl . 163
Sl, nl . 164
stepinto . 164

Task Execution Commands . 165
taskaction . 165

Signal Commands . 166
signal . 166
zignal . 166

14. Register Command Reference 169
Register Commands . 170

regadd . 171
regappend . 171
regbasefile . 171
regload . 172
regtab . 172
regunload . 173
regvalload . 174

ixGreen Hills Software

Contents

regvalsave . 174
regview . 174

15. Scripting Command Reference 177
Command Manipulation and Macro Commands . 178

alias . 179
cedit . 179
define . 179
macrotrace . 181
return . 181
route . 181
sc . 182
shell . 182
substitute . 183
unalias . 184

Conditional Program Execution Commands . 185
break . 186
continue . 186
do . 186
for . 187
if . 187
while . 188

Dialog Commands . 189
alertdialog . 189
dialog . 189
directorydialog . 190
filedialog . 190

External Tool Commands . 192
evaltosocket . 192
make . 192
socket . 192

History Commands . 193
! . 194
!! . 195
backhistory . 195
forwardhistory . 196
h . 196

MULTI: Debugging Command Referencex

Contents

Hook Commands . 196
addhook . 197
clearhooks . 198
listhooks . 199

MULTI-Python Script Commands . 200
python, py . 201
pywin . 202

Object Structure Awareness (OSA) Commands . 202
osacmd . 203
osaexplorer . 203
_osaFillGuiWithObj . 205
osainject . 205
osasetup . 205
osatask . 206
osaview . 207
taskwindow . 207

Record and Playback Commands . 208
> . 209
>> . 210
< . 210

16. Search Command Reference 211
Search Commands . 212

/ . 213
? . 213
bsearch . 214
chgcase . 214
completeselection . 215
dialogsearch . 215
fsearch . 215
grep . 216
isearch . 217
isearchadd . 218
isearchreturn . 218
printsearch . 219

xiGreen Hills Software

Contents

17. Target Connection Command Reference 221
General Target Connection Commands . 222

change_binding . 223
connect . 223
connectionview . 226
disconnect . 226
iobuffer . 227
load . 227
prepare_target . 228
reset . 230
set_runmode_partner . 230
setup . 231
target, xmit . 232
targetinput, xmitio . 233
unload . 233

Serial Connection Commands . 233
serialconnect . 234
serialdisconnect . 234

18. Task Group Command Reference 235
Task Group Commands . 236

changegroup . 237
creategroup . 238
destroygroup . 239
groupaction . 239
listgroup . 240
setsync . 240
showsync . 241

19. Trace Command Reference 243
Trace Commands . 244

timemachine . 245
trace . 246
tracebrowse . 250
tracedata . 250
tracefunction . 251

MULTI: Debugging Command Referencexii

Contents

traceline . 251
traceload . 251
tracemevsys . 252
tracepath . 252
tracepro . 253
tracesave . 253
tracesavetext . 254
tracesubfunction . 254

20. Tracepoint Command Reference 257
Tracepoint Commands . 258

edittp . 258
passive . 259
tpdel . 259
tpenable . 260
tplist . 260
tpprint . 261
tppurge . 261
tpreset . 262
tpset . 262

21. View Command Reference 265
General View Commands . 266

browse . 267
browseref, xref . 269
diff . 270
edit . 270
editview . 271
heapview . 271
localsview . 272
memview . 273
showdef . 273
showhistory . 274
top . 274
update . 275
view . 275
viewdel . 277
viewlist . 277

xiiiGreen Hills Software

Contents

window . 278
Cache View Commands . 279

cachefind . 279
cacheview . 279

Data Visualization Commands . 280
dataview . 280
dvclear . 280
dvload . 281
dvprofile . 281

A. Deprecated Command Reference 283
Deprecated Commands . 284

Index 285

MULTI: Debugging Command Referencexiv

Contents

Preface

Contents
About This Book . xvi
The MULTI 6 Document Set . xvii
Conventions Used in the MULTI Document Set . xviii

This preface discusses the purpose of the manual, the MULTI documentation set,
and typographical conventions used.

About This Book

The MULTI: Debugging Command Reference book provides information about
using Debugger commands, and it provides a comprehensive listing of Debugger
commands. It is divided into the following chapters:

• Chapter 1: Using Debugger Commands describes the conventions used to
document the Debugger commands and explains some common concepts and
procedures related to using Debugger commands. See Chapter 1, “Using
Debugger Commands” on page 1.

• Remaining chapters document all commands that can be entered into the
Debugger command pane. Most of these commands correspond to actions that
can be performed from the graphical user interface, as described in Parts I
through VI of the MULTI: Debugging book. The last chapter documents
deprecated Debugger commands and the commands that have superseded them.
See Chapter 2, “General Debugger Command Reference” on page 15.

Note
New or updated information may have become available while this book
was in production. For additional material that was not available at press
time, or for revisions that may have become necessary since this book
was printed, please check your installation directory for release notes,
README files, and other supplementary documentation.

MULTI: Debugging Command Referencexvi

Preface

The MULTI 6 Document Set

The primary documentation for using MULTI is provided in the following books:

• MULTI: Getting Started — Provides an introduction to the MULTI Integrated
Development Environment and leads you through a simple tutorial.

• MULTI: Licensing — Describes how to obtain, install, and administer MULTI
licenses.

• MULTI: Managing Projects and Configuring the IDE — Describes how to
create and manage projects and how to configure the MULTI IDE.

• MULTI: Building Applications — Describes how to use the compiler driver
and the tools that compile, assemble, and link your code. Also describes the
Green Hills implementation of supported high-level languages.

• MULTI: Configuring Connections — Describes how to configure connections
to your target.

• MULTI: Debugging— Describes how to set up your target debugging interface
for use with MULTI and how to use the MULTI Debugger and associated tools.

• MULTI: Debugging Command Reference — Explains how to use Debugger
commands and provides a comprehensive reference of Debugger commands.

• MULTI: Scripting — Describes how to create MULTI scripts. Also contains
information about the MULTI-Python integration.

For a comprehensive list of the books provided with your MULTI installation, see
the Help → Manuals menu accessible from most MULTI windows.

Most books are available in the following formats:

• A printed book (select books are not available in print).
• Online help, accessible from most MULTI windows via the Help → Manuals

menu.
• An electronic PDF, available in the manuals subdirectory of your IDE or

Compiler installation.

xviiGreen Hills Software

The MULTI 6 Document Set

Conventions Used in the MULTI Document Set

All Green Hills documentation assumes that you have a working knowledge of your
host operating system and its conventions, including its command line and graphical
user interface (GUI) modes.

Green Hills documentation uses a variety of notational conventions to present
information and describe procedures. These conventions are described below.

ExampleIndicationConvention

C:\MyProjectsFilename or pathnamebold type

setup commandCommand

-G optionOption

The Breakpoints windowWindow title

The File menuMenu name or menu choice

Working Directory:Field name

The Browse buttonButton name

-o filenameReplaceable textitalic type

A task may be called a process
or a thread

A new term

MULTI: DebuggingA book title

Type help command_nameText you should enter as presentedmonospace type

The wait [-global] command
blocks command processing,
where -global blocks
command processing for all
MULTI processes.

A word or words used in a
command or example

int a = 3;Source code

> print Test
Test

Input/output

GHS_System()A function

debugbutton [name]...The preceding argument or option
can be repeated zero or more times.

ellipsis (...)

(in command line
instructions)

MULTI: Debugging Command Referencexviii

Preface

ExampleIndicationConvention

> print Test
Test

Represents a prompt. Your actual
prompt may be a different symbol
or string. The > prompt helps to
distinguish input from output in
examples of screen displays.

greater than sign (>)

call proc | exprOne (and only one) of the
parameters or options separated by
the pipe or pipes should be
specified.

pipe (|)

(in command line
instructions)

.macro name [list]Optional argument, command,
option, and so on. You can either
include or omit the enclosed
elements. The square brackets
should not appear in your actual
command.

square brackets ([])

(in command line
instructions)

The following command description demonstrates the use of some of these
typographical conventions.

gxyz [-option]... filename

The formatting of this command indicates that:

• The command gxyz should be entered as shown.
• The option -option should either be replaced with one or more appropriate

options or be omitted.
• The word filename should be replaced with the actual filename of an

appropriate file.

The square brackets and the ellipsis should not appear in the actual command you
enter.

xixGreen Hills Software

Conventions Used in the MULTI Document Set

Chapter 1

Using Debugger Commands

Contents
Availability of Debugger Commands . 2
Getting Help Information about Debugger Commands . 2
Finding Debugger Commands in This Book . 3
Debugger Command Conventions . 3
Using Address Expressions in Debugger Commands . 5
Identifying Breakpoints in Debugger Commands . 10
Command Syntax . 12
Default Search Path for Files Specified in Commands . 14

This chapter describes the conventions used to document the Debugger commands
and explains some common concepts and procedures related to using Debugger
commands. The remainder of this manual describes all of the MULTI Debugger
commands. For a description of the command pane, the area of the main Debugger
window in which you enter Debugger commands, and shortcuts that can be used
in the command pane, see “The Command Pane” in Chapter 2, “The Main Debugger
Window” in the MULTI: Debugging book.

Availability of Debugger Commands

All of the Debugger commands can be executed from the Debugger command pane.
Many of these commands can also be invoked using Debugger menus, buttons, hot
keys, or mouse bindings, as noted in the description for each command.

Some Debugger commands are not available in non-GUI mode. These commands
are labeled GUI only. If a command is not marked GUI only, it is available in both
GUI and non-GUI mode. For more information about GUI and non-GUI modes,
see “Starting the Debugger in GUI Mode” in Chapter 1, “Introduction” in the
MULTI: Debugging book and “Starting the Debugger in Non-GUI Mode
(Linux/Solaris only)” in Chapter 1, “Introduction” in the MULTI: Debugging book.

A few Debugger commands are available only on Linux/Solaris or while debugging
Linux/Solaris-like targets, and are labeled Linux/Solaris only.

For a full explanation of other notational and usage conventions pertaining to the
Debugger commands, see “Debugger Command Conventions” on page 3.

Getting Help Information about Debugger Commands

The MULTI Debugger provides two commands that display help about Debugger
commands:

• help command — Opens the Help Viewer on documentation for the specified
command.

• usage command — Prints the basic syntax of the specified command to the
command pane.

MULTI: Debugging Command Reference2

Chapter 1. Using Debugger Commands

For more information about these and other help commands, see Chapter 9, “Help
and Information Command Reference” on page 109.

Finding Debugger Commands in This Book

The following chapters provide comprehensive documentation of all of the
commands available for use in the command pane of the MULTI Debugger. The
commands are grouped by function.

If you are looking for information about a specific command, consult the index for
the specific location of the relevant documentation. For an alphabetical list of all
Debugger commands, see the entry commands in the index.

For general information about using Debugger commands, and for an explanation
of the conventions used in the command syntax and descriptions, see “Debugger
Command Conventions” on page 3. For a description of the command pane, the
area of the main Debugger window in which you enter Debugger commands, and
shortcuts that can be used in the command pane, see “The Command Pane” in
Chapter 2, “The Main Debugger Window” in the MULTI: Debugging book.

Debugger Command Conventions

The following table describes symbols, placeholders, and concepts that are related
to Debugger commands and that are used in the following chapters.

Some Debugger commands accept one or more %bp_ID arguments,
where bp_ID is the breakpoint identification number assigned to a
breakpoint by MULTI when the breakpoint is created. For more
information, see “Breakpoint IDs and Labels” on page 10.

Breakpoint IDs in the form %bp_ID can be used to specify a single
breakpoint, a breakpoint range, or a breakpoint list related to the
execution of a specific command. For more information, see
“Breakpoint Ranges and Lists” on page 11.

%bp_ID

3Green Hills Software

Finding Debugger Commands in This Book

The b commands for setting breakpoints (for example, b, bi, bif, and
bx) accept %bp_label as an argument, where bp_label is the
user-specified name for the breakpoint. bp_label should not contain
spaces or special characters.

The following example sets a breakpoint labeled foo on line 24 of
procedure main:

> b %foo main#24

After a breakpoint has been created with a breakpoint label, other
commands (such as B, e, d, and tog) can use the breakpoint labels to
refer to that specific breakpoint. For example:

> d %foo

removes the breakpoint labeled foo.

Breakpoint labels can also be used to specify breakpoint lists and
ranges. For more information, see “Breakpoint Ranges and Lists”
on page 11.

%bp_label

The b commands for setting breakpoints (for example, b and bx)
accept @bp_count as an argument, where bp_count is an integer.

When a breakpoint's count is greater than 1, your process skips the
breakpoint, and the count is decremented by 1. When the count reaches
1, the breakpoint stops your process in accordance with the
breakpoint's other attributes. In this way, a breakpoint with a count
can be used to stop your process less frequently and reproduce
complex software conditions. Breakpoints with counts are especially
useful for debugging inner loops.

@bp_count

The c and cb commands use the @continue_count argument to
specify how many breakpoints the Debugger will pass before stopping.

For example, if continue_count is 4, the Debugger skips over the
next 3 breakpoints and stops the process at the fourth breakpoint.

Note: Only breakpoints that stop program execution are counted. A
conditional breakpoint whose condition is false or a breakpoint whose
commands resume a process are not counted.

For more information, see “Continue Commands” on page 148.

@continue_count

MULTI: Debugging Command Reference4

Chapter 1. Using Debugger Commands

Curly braces indicate a command list, where commands can be either
a single command or a list of commands with the syntax:

command; command; ...

Some Debugger commands, such as certain breakpoint commands,
accept command lists that specify other commands to be performed
at specific times. For more information, see “Using Command Lists
in Debugger Commands” on page 12.

{commands}

In the documentation describing the syntax for Debugger commands,
address_expression is a placeholder for an expression referring to a
specific location within your program. The Debugger accepts a variety
of address expressions. For examples of common address expression
formats, see “Using Address Expressions in Debugger Commands”
on page 5.

address_expression

The label GUI only indicates that a command is not available in
non-GUI mode. For more information about GUI and non-GUI modes,
see “Starting the Debugger in GUI Mode” in Chapter 1, “Introduction”
in the MULTI: Debugging book and “Starting the Debugger in
Non-GUI Mode (Linux/Solaris only)” in Chapter 1, “Introduction”
in the MULTI: Debugging book.

GUI only

The label Linux/Solaris only indicates that the command is only
available on Linux/Solaris or while debugging Linux/Solaris-like
target systems.

Linux/Solaris only

A number followed by an underscore refers to the specified level of
the call stack. For example, if the procedure main() calls foo(),
which calls bar(), which calls hum(), and in the Debugger you are
currently debugging hum(), the following command:

> e 2_

changes the current viewing location to foo(), because foo() is at
frame 2 in the current call stack.

stacklevel_

Using Address Expressions in Debugger Commands

In the documentation describing the syntax for Debugger commands,
address_expression is a placeholder for an expression referring to a specific
location within your program. Note that address expressions differ from standard
expressions, which are discussed in Chapter 14, “Using Expressions, Variables,
and Procedure Calls” in the MULTI: Debugging book.

5Green Hills Software

Using Address Expressions in Debugger Commands

The following table provides example address expressions, which are specified here
in conjunction with the e command. The e command navigates to the location
indicated by the given address expression (see “e” on page 133).

Note
When the address_expression refers to a line number, the meaning
of the expression varies depending on whether the configuration option
procRelativeLines is on (procedure-relative mode) or off (file-relative
mode). For more information about specifying line numbers, see
“Specifying Line Numbers” on page 7.

EffectCommand

Procedure-relative mode: Examines line number 10 in
the current procedure.

File-relative mode: Examines line number 10 in the
current file.

e 10

Examines ten lines after or before the current position,
respectively.

e +10 or -10

Examines the line at address 0x1234.e 0x1234

Examines procedure proc2.e proc2

Procedure-relative mode: Examines line 4 of procedure
proc2.

File-relative mode: Examines line 4 of the file containing
proc2, if that line exists within proc2.

e proc2#4

Examines line 4 of file file3.c.e "file3.c"#4

Examines procedure proc2 in file file3.c.e "file3.c"#proc2

Procedure-relative mode: Examines line 4 of procedure
proc2 in file file3.c.

File-relative mode: Examines line 4 of the file file3.c, if
that line exists within proc2.

e "file3.c"#proc2#4

Examines the address that is the value of the standard
expression foo.

e (foo)

Examines the source location where global_variable
is defined.

e global_variable

Examines the return address (exit point) of the current
procedure.

e ($retadr())

MULTI: Debugging Command Reference6

Chapter 1. Using Debugger Commands

EffectCommand

Examines the location of the breakpoint with ID = 1.e 1b

Examines the location of the breakpoint labeled
bp_label.

e %bp_label

Examines stack level 2.e 2_

Examines C Label label4 in procedure proc2 in file
file3.c.

e "file3.c"#proc2##label4

Examines C Label label4 in procedure proc2.e proc2##label4

Examines C Label label4 in the current procedure.e ##label4

Examines the procedure list (wildcard search).e *

Examines the address stored in the register
register_name.

e $register_name

Examines the address stored in the system variable
system_variable.

e $system_variable

For information about the way MULTI resolves names in address expressions, see
“Name Resolution” on page 8.

Specifying Line Numbers

The MULTI Debugger has two modes for interpreting line numbers:
procedure-relative mode and file-relative mode. By default, the Debugger uses
procedure-relative mode and interprets line numbers relative to a procedure rather
than to a file. To change from one mode to another, toggle the optionUse procedure
relative line numbers (vs. file relative), which appears on the Debugger tab of
the Options window. (From the command pane, use the syntax configure
procRelativeLines on | off.)

The following examples demonstrate how the same command will examine different
lines, depending on whether the Debugger is configured for procedure-relative or
file-relative mode.

Effect in File-Relative ModeEffect in Procedure-Relative
Mode

Command

Examines the source code at line 4
of file containing procedure proc3.
(The line must exist within proc3.)

Examines the source code at line 4
of procedure proc3.

e proc3#4

7Green Hills Software

Specifying Line Numbers

Effect in File-Relative ModeEffect in Procedure-Relative
Mode

Command

Examines the source code at line
number 4 in the current file.

Examines the source code at line
number 4 in the current procedure.

e 4

Examines the source code at line
number 4 in the current procedure.

Examines the source code at line
number 4 in the current file.

e #4

Name Resolution

When resolving names in address expressions, MULTI attempts to match the name
with a function, a global variable, or a program section. If attempting to match the
name with a function, MULTI generally searches fully qualified function names
first, then base names.

In C, the base name of a function and the fully qualified name are the same. In C++,
the fully qualified name consists of the function's name and argument type(s), while
the base name consists of the name only. Some examples follow.

int ex1(int arg1);

• Base name in C — ex1

• Fully qualified name in C — ex1

• Base name in C++ — ex1

• Fully qualified name in C++ — ex1(int)

int ex2();

• Base name in C — ex2

• Fully qualified name in C — ex2

• Base name in C++ — ex2

• Fully qualified name in C++ — ex2()

int ex3(int arg1, float arg2, short arg3, char * arg4);

• Base name in C — ex3

• Fully qualified name in C — ex3

• Base name in C++ — ex3

MULTI: Debugging Command Reference8

Chapter 1. Using Debugger Commands

• Fully qualified name in C++ — ex3(int, float, short, char *)

Names in standard address expressions are resolved as follows.

If you specified a file in the address expression, MULTI attempts, in the order
indicated below, to match the name with:

1. The fully qualified name of a function in the specified file
2. The base name of a function in the specified file
3. A global variable in the specified file

If you did not specify a file in the address expression, MULTI attempts, in the order
indicated below, to match the name with:

1. The fully qualified name of a static function in the current file
2. The fully qualified name of a non-static function in any file
3. An unresolved link symbol (generally a function name in a library that is not

yet loaded)
4. In C — The name of any function (including static functions) in the program

In C++ — The base name of any function in any class/namespace in the
program (If the name in the expression is prefixed with ::, MULTI searches
only the global namespace for a match. If the name in the expression is fully
qualified, MULTI uses the given qualifications in its search.)

If MULTI finds more than one matching result, you may be asked to choose
one.

5. Any global variable (only if the name in the expression is not followed by #)
6. A section name on the target (only if the name in the expression is not followed

by #)

9Green Hills Software

Name Resolution

Identifying Breakpoints in Debugger Commands

You can use breakpoint IDs, breakpoint labels, breakpoint ranges, and breakpoint
lists to specify breakpoints in Debugger commands.

Breakpoint IDs and Labels

MULTI automatically assigns a breakpoint ID number to each breakpoint when it
is created. Breakpoints are numbered sequentially in the order in which they were
created, without respect to their location. To see a list of breakpoints by breakpoint
ID, use the B command. (For a full description of the information printed about
each breakpoint when this command is executed, see “B” on page 40.)

The breakpoint ID provides a way to refer to specific breakpoints. Some Debugger
commands accept one or more %bp_ID arguments, where bp_ID is the breakpoint
ID number. Breakpoint IDs in the form%bp_ID can also be used to specify a range
of breakpoints or a list of breakpoints, as described in “Breakpoint Ranges and
Lists” on page 11.

You can also specify a breakpoint label when you create a new breakpoint. Most
of the b commands for setting breakpoints (for example, b, bi, bif, and bx) accept
%bp_label as an argument to specify a name for a new breakpoint. bp_label
should not contain spaces or special characters.

The following example sets a breakpoint labeled foo on line 24 of procedure main:

> b %foo main#24

After a breakpoint has been created with a breakpoint label, other commands (such
as B, e, d, and tog) can use the breakpoint label to refer to that specific breakpoint.
For example:

> d %foo

removes the breakpoint labeled foo. For information about the B, d, and tog
commands, see “Breakpoint Commands” on page 37. For information about the e
command, see “Navigation Commands” on page 132.

To add a label after a breakpoint is created, use the Software Breakpoint Editor.
For more information, see “Creating and Editing Software Breakpoints” in Chapter

MULTI: Debugging Command Reference10

Chapter 1. Using Debugger Commands

8, “Executing and Controlling Your Program from the Debugger” in the MULTI:
Debugging book.

Like breakpoint IDs, breakpoint labels can also be used to specify breakpoint ranges
and breakpoint lists, as described in the next section.

Breakpoint Ranges and Lists

A breakpoint range has the format:

%bp_ID_or_bp_label_1:%bp_ID_or_bp_label_2

and refers to all of the breakpoints with breakpoint IDs between the IDs for the
breakpoints referred to by bp_ID_or_bp_label_1 and bp_ID_or_bp_label_2,
inclusive. For example, %3:%6 refers to the four breakpoints with breakpoint IDs
3, 4, 5, and 6. You can specify breakpoint labels in a breakpoint range. These will
be converted to the corresponding numerical ID in order to establish the range. The
breakpoint ID of the second breakpoint in the range must be greater than or equal
to the breakpoint ID of the first breakpoint in the range.

A breakpoint list is a comma-separated list of breakpoint IDs, breakpoint labels,
and/or breakpoint ranges. You can include one or more breakpoint ranges in a
breakpoint list. For example, the breakpoint list %3,%6:%8 refers to the four
breakpoints with identification numbers 3, 6, 7, and 8.

Some breakpoint commands, such as the B and d commands, can take breakpoint
lists as arguments. For example:

EffectCommand

Removes the breakpoints labeled foo, bar, and gamma.d %foo,%bar,%gamma

Removes the breakpoints with breakpoint IDs in the range
between the breakpoint ID of breakpoint labeled foo and the
breakpoint ID of the breakpoint labeled gamma. The breakpoint
ID of the second breakpoint in the range must be greater than or
equal to the ID of the first breakpoint in the range.

d %foo:%gamma

Removes the breakpoints with ID numbers 1, 4, 5, 6, and 7.d %1,%4:%7

For more information about breakpoint IDs and breakpoint labels, see “Breakpoint
IDs and Labels” on page 10. For information about the B and d commands, see
“Breakpoint Commands” on page 37.

11Green Hills Software

Breakpoint Ranges and Lists

Command Syntax

Using Command Lists in Debugger Commands

Some Debugger commands, such as certain breakpoint commands and conditional
execution commands, can contain a list of other commands to be performed when
certain conditions are met. Such commands are specified in a command list, which
is indicated by curly braces ({ }). A command list can contain either a single
command or a list of commands with the syntax: { command1; command2; ...}.

A command list can span multiple lines. That is, after the initial curly brace ({),
which must be included on the first line, you can continue to enter commands on
separate lines until you end the list with a closing curly brace (}).

For example, a valid if command can be written to span multiple lines as follows:

if ($test == 0) {
mprintf("Invalid value\n");

} else {
mprintf("Valid value\n");
}

The following if command, which also spans multiple lines, uses invalid syntax
(the curly braces begin new lines):

if ($test == 0)
{

mprintf("Invalid value\n");
} else
{

mprintf("Valid value\n");
}

Curly braces may contain other pairs of curly braces, as long as they are all paired
and closed correctly. For example, the following command will set a breakpoint
that checks the value of some global variables.

MULTI> b {
continued> mprintf("Fly = %d\n", fly);
continued> if (bar<9) {resume} else {echo Error: bar too high}
continued> }

MULTI: Debugging Command Reference12

Chapter 1. Using Debugger Commands

When the breakpoint is hit, the Debugger will first print:

Fly =

followed by the decimal value of the variable fly. Then, if the value of the variable
bar is less than nine, the process will continue to run. Otherwise, the Debugger
will print:

Error: bar too high

and the process will remain stopped at the breakpoint.

Continuing Commands onto Subsequent Lines

To issue a command that spans multiple lines:

• End every line but the last with a backslash (\), or
• Use an open curly brace ({) as documented in “Using Command Lists in

Debugger Commands” on page 12.

Including Comments in Debugger Commands

You can use C or C++ style comments in Debugger commands. For example:

> echo foo /* This is a C style comment */
foo
> echo bar // This is a C++ style comment
bar

These comments will be stripped out and ignored during command processing.

Note
C-style comments /* */ are allowed to span lines.

13Green Hills Software

Continuing Commands onto Subsequent Lines

Terminating Commands

All MULTI Debugger commands are assumed to be terminated by a new line or
by a semicolon (;) unless the new line or semicolon occurs inside a command list
(denoted by {}) or the new line is preceded by a backslash (\). See “Using Command
Lists in Debugger Commands” on page 12.

Default Search Path for Files Specified in Commands

MULTI maintains a search path that it uses when locating user-specified filenames
on the file system. The search path always contains the current directory (.) as its
final entry. To change this search path, do one of the following:

• Use the source command (see “source” on page 80).
• Use the -I command line option to MULTI. For more information, see “Using

the Command Line” in Chapter 1, “Introduction” in the MULTI: Debugging
book.

• From the main Debugger menu, choose View → Source Path.

MULTI uses the default search path when locating the following types of files:

• Source files
• Script files
• Object files

If a Debugger command uses the default search path, it will be indicated in its
description.

MULTI: Debugging Command Reference14

Chapter 1. Using Debugger Commands

Chapter 2

General DebuggerCommand
Reference

Contents
General Debugger Commands . 16

The commands in this chapter allow you to perform common Debugger operations
such as attaching to and detaching from a program, debugging a new program,
blocking command processing, and closing the Debugger or the MULTI IDE. For
information about using the Debugger, see the MULTI: Debugging book.

General Debugger Commands

The following list provides a brief description of each general Debugger command.
For a command's arguments and for more information, see the page referenced.

• asm— Assembles the given assembly instruction into machine code and prints
this machine code (see “asm” on page 17).

• attach— Attaches to a process running on an RTOS (see “attach” on page 18).
• caches — Enables or disables the use of the memory cache and the assembly

cache (see “caches” on page 19).
• call — Prints the value of the given procedure or expression (see “call”

on page 19).
• dbnew — Allows you to debug a different program (see “dbnew” on page 19).
• debug — Replaces the current program with the given program (see “debug”

on page 20).
• detach — Detaches the Debugger from the program it is currently debugging

(see “detach” on page 20).
• loadsym — Loads additional debug symbols from the given file and merges

them into the symbol table (see “loadsym” on page 21).
• mev — Requests the MULTI EventAnalyzer to perform the given operation

(see “mev” on page 22).
• monitor — Saves the command list commands to send to the Debugger every

time the process stops (see “monitor” on page 23).
• mrv — Launches or closes the MULTI ResourceAnalyzer (see “mrv”

on page 23).
• multibar — Starts the Launcher (see “multibar” on page 24).
• new — Adds the given program to the target list and loads it in the Debugger

window (see “new” on page 24).

MULTI: Debugging Command Reference16

Chapter 2. General Debugger Command Reference

• output — Redirects output normally sent to the Debugger into a file or to
standard output (see “output” on page 25).

• P — Sends commands to processes and/or lists information about processes
(see “P” on page 27).

• q — Prompts the user to quit MULTI (see “q” on page 28).
• quit — Closes the current Debugger window and exits MULTI if this is the

last window (see “quit” on page 29).
• quitall — Exits MULTI (see “quitall” on page 30).
• restore — Restores the state of the Debugger from the specified file (see

“restore” on page 30).
• save — Saves the state of the Debugger (see “save” on page 31).
• unloadsym — Unloads from the symbol table all the debugging symbols for

the specified file (see “unloadsym” on page 31).
• wait — Blocks command processing (see “wait” on page 31).

asm

asm [-replace addr [-force | -f]] [-opt "options"] inst

Select targets only

Assembles the given assembly instruction inst into the machine code it represents
and prints this machine code. (If this feature is not supported for the current target,
an error message will be printed instead). This command takes the following
arguments:

• -replace addr — Replaces the instruction at address addr with the
assembled version of inst (if the assembling is successful). Note that this may
fail if the instruction assembled has a different length than the instruction at
address addr; see -force to avoid this.

• -force | -f— Only valid when -replace is used. This forces the replacement
to proceed even if the instruction assembled has a different length than the
instruction at address addr.

• -opt "options" — Assembles inst with the indicated assembler options.
See the documentation for your target's assembler for more information about
possible options.

17Green Hills Software

asm

attach

attach [-addressSpace name] process_id|process_name [-halt|-nohalt] [-exec
executable]

GUI only

Attaches to a process running on an RTOS, adds a new target list entry for the
process, and loads the process in the Debugger window. Attaching to threads
advertised by hardware targets is a deprecated use of this command.

You can use this command for native Linux/Solaris debugging. Note that unless
you are logged in as root, you can only debug your own native processes.

Available options are:

• -addressSpace name — Specifies where the task (or process) is from on
the INTEGRITY operating system. If name contains a space or other special
characters, it should be enclosed in double quotation marks.

• process_id— Specifies the numeric ID of a task as displayed in the run-mode
Task Manager, freeze-modeOSAExplorer, or nativeProcess Viewerwindow.

• process_name — Specifies the name of a task as displayed in the run-mode
Task Manager or freeze-mode OSA Explorer window. If process_name
contains a space or other special characters, it should be enclosed in double
quotation marks.

• -halt and -nohalt— Specify whether or not to halt the process on the target
when the process is attached. If -halt or -nohalt is not specified, the behavior
depends on the corresponding debug server's setting. Note that -nohalt is
only supported with embedded debugging.

• -exec executable — Specifies the process's executable name. If no
executable is specified, MULTI tries to find the executable name for the process
and asks you to select one if it fails to do so.

The detach command detaches from a process (see “detach” on page 20).

Corresponds to: File → Attach to Process

MULTI: Debugging Command Reference18

Chapter 2. General Debugger Command Reference

caches

caches [on | off]

GUI only

Enables or disables the use of both the memory cache (_CACHE) and the assembly
cache (_ASMCACHE). For example, caches on is equivalent to _CACHE = 1;
_ASMCACHE = 1. For more information about _CACHE and _ASMCACHE, see “System
Variables” in Chapter 14, “Using Expressions, Variables, and Procedure Calls” in
the MULTI: Debugging book.

call

call proc | expr

Prints the value of the procedure proc or the expression expr. This command
allows you to call:

• a procedure with the same name as a MULTI command or
• an expression that contains one or more variables with the same name as a

MULTI command

This command does not use MULTI commands when resolving the name of the
given procedure or expression.

dbnew

dbnew [c | n]

GUI only

Allows you to debug a different program. The dbnew command prompts you to
select a new executable to debug. The selected executable is added to the target list
and loaded into the Debugger window, replacing the previous program. If c is
specified, the previous program is removed from the target list. If n is specified,
the previous program is not removed from the target list and its status is unaffected.
If you run this command without arguments, it has the same effect as dbnew n.
See also “debug” on page 20.

19Green Hills Software

caches

Corresponds to: File → Debug Program as New Entry

debug

debug [program_name] [core_file]

Replaces your current program with a new program to debug given by
program_name. If no new program is given, the current program's name is used.
This command will have no effect unless the current process has executed. All
monitors and monitor windows are deleted and any child processes of the current
program are also killed.

The optional core_file argument applies only to Linux/Solaris. If core_file
is specified, the Debugger will display the location of the program counter recorded
in the core file. Otherwise, the Debugger will display the main routine. For more
information, see “Core File Debugging (Linux/Solaris only)” in Chapter 7,
“Preparing Your Target” in the MULTI: Debugging book.

The named files will be located using the default search path. See “Default Search
Path for Files Specified in Commands” on page 14.

Corresponds to:

Corresponds to: File → Debug Program

detach

detach [-run|-norun] [pr=num]

In run mode, detaches the Debugger from the current process and selects the next
program in the target list. In a native environment, the entry for the current process
is removed from the target list, but the debug server remains connected. All
breakpoints are removed before detaching. See also “attach” on page 18.

• -run and -norun — Specify whether or not to resume the process on the
target when the process is detached. If you do not specify one of these options,
the behavior depends on the debug server, which usually resumes the process.
(Note that the detach command may halt a currently running process before
resuming it. This behavior depends on the debug server.)

MULTI: Debugging Command Reference20

Chapter 2. General Debugger Command Reference

• pr=num — Specifies that the process you want to detach from is placed in the
Debugger's internal process slot number num. If no process slot is specified,
the process on which the command is executed is detached.

Corresponds to: File → Detach from Process

loadsym

loadsym filename [text_offset [data_offset]]

Loads additional debug symbols from the file specified by filename and merges
them into the symbol table. filename is searched for using the default search path
(see “Default Search Path for Files Specified in Commands” on page 14). If the
optional text and data offset values are supplied, the text and data addresses are
offset by the given values.

You can use this command in target environments where new code, typically
position-independent code, is loaded to the target at run time. For example:

> loadsym a.out 0x20000

This command loads symbol information into the Debugger, but does not affect the
target. You can load additional symbol information for a module during a debugging
session.

Warning
Do not use this command to specify the primary executable that you want
to debug. Instead, use the debug command followed by the
prepare_target command (see “debug” on page 20 and “prepare_target”
on page 228). For example, if you connect to a target on which your
program is already loaded, first select Direct hardware access for the
core that is running the program, and then issue the following commands:

> debug my_program
> prepare_target -verify=none

See also “unloadsym” on page 31.

21Green Hills Software

loadsym

mev

mev -close [data_file]

mev [-title title_string] [-noreload] [-raisewindow] data_file

mev [-title title_string] -newwindow [data_file]

mev [-oid object_id] -time position_to_scroll_to [-raisewindow] [data_file]

Requests the MULTI EventAnalyzer to perform the given operation, where:

• -close [data_file] — Closes the EventAnalyzer window displaying the
data file data_file. If data_file is not specified, all EventAnalyzer
windows are closed.

• data_file — Displays the specified data file, data_file, in an
EventAnalyzer window. The following options can be placed before the
data_file argument.

○ -title title_string — Specifies the title for the EventAnalyzer
window displaying data_file.

○ -noreload— Indicates that the specified data file should not be reloaded
if it is already being displayed in an EventAnalyzer window.

○ -raisewindow— Raises the existing EventAnalyzer window displaying
the specified data file to the top.

○ -newwindow — Opens a new EventAnalyzer window to display the
specified data file. If you do not specify a data file, an empty EventAnalyzer
opens. No more than one empty EventAnalyzer can be displayed at a time.

• -time position_to_scroll_to — Scrolls the EventAnalyzer window to
the time specified by position_to_scroll_to. The following arguments
can also be used with the -time option.

○ -oid object_id — Specifies the object ID, object_id, for the
EventAnalyzer window to scroll to. This option should come before -time.

○ -raisewindow — Raises a previously launched EventAnalyzer window
to the top.

○ data_file — Specifies which data file to display in the EventAnalyzer
and scroll in. If no data file is specified, all EventAnalyzer windows are
scrolled to the specified time on the specified object, if applicable.

MULTI: Debugging Command Reference22

Chapter 2. General Debugger Command Reference

monitor

monitor [0 | {commands} | num [{commands}]]

GUI only

Saves the command list commands to send to the Debugger every time the process
stops. An unlimited number of monitors can be active at any time.

This command has five forms:

• monitor — Lists all of the monitors in order.
• monitor num — Deletes monitor number num. This does not renumber the

current monitors. Thus, if you have four monitors and delete number 3, the
remaining three will be numbered 1, 2, 4, creating an “empty slot” where 3
was formerly located.

• monitor {commands} — Inserts a monitor with the given command list in the
first available empty slot.

• monitor num {commands} — Puts a monitor with the given command list in
the num slot. It replaces any existing monitor in that position.

• monitor 0 — (The number zero.) Deletes all monitors.

See also “window” on page 278. For information about command lists, see “Using
Command Lists in Debugger Commands” on page 12.

mrv

mrv [-title string] [-log log_filename] [-timeout seconds] [-port port_num] target

mrv -close [[-port port_num] target]

GUI only

Launches or closes the MULTI ResourceAnalyzer. The first format of the command
launches the ResourceAnalyzer and the second format closes it.

23Green Hills Software

monitor

Available options are:

• -title string — Specifies the string that appears in the title bar of the
MULTI ResourceAnalyzer.

• -log log_filename — Specifies that messages from the target should be
logged to log_filename.

• -timeout seconds — Specifies the timeout period (in seconds) for
connecting to the target. If not specified, the host's default value is used.

• -port port_num — Specifies the port to connect to on target. If you do
not specify a port, MULTI uses the default port used by the INTEGRITY target.

• target — Specifies the target you want to connect to.
• -close [[-port port_num] target] — Disconnects the MULTI

ResourceAnalyzer from port_num on target. If you do not specify a port,
MULTI disconnects from the default port used by the INTEGRITY target. If
you do not specify target, the connection for the current ResourceAnalyzer
is closed.

multibar

multibar

Starts the Launcher.

Corresponds to: Tools → Launcher

new

new [[-alias component_alias]... [-bind component_alias]... program_name [pr=num]
[core_file]]

GUI only

Adds the program program_name to the target list and loads the program in the
Debugger window. Available options are:

• -alias component_alias — Adds the alias component_alias for the
Debugger component program_name so that you can route commands to the

MULTI: Debugging Command Reference24

Chapter 2. General Debugger Command Reference

component (see “route” on page 181). To list components and their aliases, use
the components command (see “components” on page 97).

• -bind component_alias — Associates the program program_name with
the CPU and connection represented by the given Debugger component. This
argument is only supported if there is no pre-existing association between the
connection and another executable. See also “Associating Your Executable
with a Connection” in Chapter 7, “Preparing Your Target” in the MULTI:
Debugging book.

• program_name — Adds the program program_name to the target list and
loads the program in the Debugger window.

• pr=num — Specifies that the program program_name be placed in MULTI's
internal program slot numbered num. If num is not specified, MULTI uses the
first empty slot. If num is specified and that program slot is in use, the target
list entry for that slot is reused to debug the new program. To see which program
slots are in use, issue the P command (see “P” on page 27).

• core_file (Linux/Solaris only) — Specifies a core file for the program
program_name. For more information, see “Core File Debugging
(Linux/Solaris only)” in Chapter 7, “Preparing Your Target” in the MULTI:
Debugging book.

If no arguments are specified, MULTI adds another instance of the current program
to the target list and loads the program in the Debugger window.

output

output [-show] -server|-io|-multi [-prefix prefix_string|-noprefix] [-append]
[-copytopane yes|no] [filename|-normal]

Redirects output normally sent to the Debugger into a file or to standard output.
You may optionally copy the redirected output to the Debugger.

When a string is redirected to a file or to standard output, a prefix is automatically
printed before the text in order to distinguish it from different sources. You can
change or disable the prefix with the -prefix or -noprefix options, respectively.

The options are:

• -show — Displays the current output settings.

25Green Hills Software

output

• -server — Sets the destination for output normally sent to the target pane of
the Debugger window (see “The Target Pane” in Chapter 2, “The Main
Debugger Window” in the MULTI: Debugging book).

• -io — Sets the destination for output normally sent to the I/O pane of the
Debugger window (see “The I/O Pane” in Chapter 2, “The Main Debugger
Window” in the MULTI: Debugging book).

Note
Because I/O is handled by the underlying operating system in a native
environment, you cannot use the output command to redirect output
from a native process. On Linux/Solaris, the output is displayed in
the terminal from which the Debugger was launched.

• -multi — Sets the destination for output normally sent to the command pane
of the Debugger window (see “The Command Pane” in Chapter 2, “The Main
Debugger Window” in the MULTI: Debugging book).

• -prefix — Specifies the prefix string that is printed before the output.
• -noprefix — Indicates that no prefix is printed before the output.
• -append — Appends output to preexisting text in the specified destination

file. If you do not specify this option, the output overwrites any preexisting
text.

• -copytopane yes— Copies redirected output to the MULTI Debugger pane
(target, I/O, or command) that serves as the default destination for the output
source (see the description of the -normal option below). This is the default
behavior.

• -copytopane no — Does not copy redirected output to a MULTI Debugger
pane.

• filename — Specifies the destination file for an output source.
• -normal— Resets the destination for the specified output source to its default

destination, as listed below:

○ Debug server output is sent to the MULTI target pane.
○ Output from the process being debugged is sent to the MULTI I/O pane.

(This does not apply if you are debugging in a native environment. See
the description of -io earlier in this section.)

MULTI: Debugging Command Reference26

Chapter 2. General Debugger Command Reference

○ MULTI output is sent to the MULTI command pane.

If neither a filename nor the -normal option is specified, the output source is
redirected to standard output.

Note
On Windows, MULTI Debugger output that is redirected to stdout via
the output command is not usually visible unless you redirect stdout.
For example, when launching the Debugger from the command line, you
could redirect the Debugger's stdout to a file named myout.txt:

multi a.out > myout.txt

P

P [[pr=num] subcommands]

Sends subcommands to a process and then lists information about the process, or,
if issued with no arguments, lists information (including process slot numbers)
about all processes.

This command is used exclusively for multiprocess debugging, and most of the
subcommands are used exclusively for native debugging.

If specified, the commands subcommands are sent to the process num, where num
is MULTI's internal slot number for the process. For example, the command P
pr=1 b toggles the state of the b flag in the process with slot number 1. If no
process slot number is specified, the process currently being debugged is used. In
either case, this command lists information about the process after sending
subcommands to it.

Valid subcommand values for native debugging are:

• b — Toggles the flag causing breakpoint inheritance after forking. If the flag
is set, children of the current process inherit all breakpoints set at the time of
the fork.

• c— Toggles the flag causing children to be debugged. If the flag is set, children
of the current process are added to the list of processes under control of MULTI.

27Green Hills Software

P

• e — Toggles the flag causing children to stop upon execution of the exec()
system call. If the flag is set, this acts as if a breakpoint were encountered at
the first instruction of routine main() in the exec'd program.

• f — Toggles the flag causing children to stop upon execution of the fork()
system call. If the flag is set, this acts as if a breakpoint were encountered
immediately following the fork.

• i — Toggles the flag that makes the child process inherit its settings from the
parent. This will only have an effect if the c flag is also set.

After a fork() or exec() of a process, MULTI prints a message indicating that
this has happened.

Valid subcommand values for native or embedded debugging are:

• h — Toggles the flag causing MULTI to halt a task when it is attached.
• r — Toggles the flag causing MULTI to resume a task when it is detached.

Valid subcommand values for INTEGRITY run-mode debugging are:

• d — Toggles the flag causing MULTI to debug a newly created task on target.
• t — Toggles the flag causing the target to stop a newly created task.

The following subcommand is deprecated in this version and remains for
compatibility. The signal command should be used instead (see “signal” on page 166).

• s num (Linux/Solaris only) — Sends signal num to the current process.

q

q

Non-GUI only

Prompts the user to quit MULTI. This command works only in non-GUI mode.
When prompted, your choices are as follows.

• n — Cancels the quit request. This is the default choice.

MULTI: Debugging Command Reference28

Chapter 2. General Debugger Command Reference

• s — Saves breakpoints and the directory list to the file named multistate, and
then exits MULTI.

• y — Exits MULTI.

quit

quit [all] [this] [ask | confirm | auto | force] [window | entry]

Closes the current Debugger window or removes the current target list entry. If this
is the last entry, the Debugger exits. If you do not specify any arguments and a
process has started, MULTI prompts you to kill the process or, if the target allows,
detaches the Debugger from the process and lets it run. If you do not specify any
arguments and no process has started, the Debugger closes without prompting you.

You can specify one of the following arguments to modify the behavior of this
command:

• all — Is equivalent to the quitall command except that MULTI prompts you
before killing an active process or, if the target allows, detaches the Debugger
from the process and lets the process run (see “quitall” on page 30).

• this — Closes the current target list entry. MULTI prompts you first.
• ask — Uses the promptQuitDebugger configuration option to determine

whether or not to prompt you before quitting the Debugger. The default setting
is to prompt only if a process has started. See “The More Debugger Options
Dialog” in Chapter 8, “Configuration Options” in the MULTI: Managing
Projects and Configuring the IDE book.

• confirm — Always prompts you before quitting the Debugger.
• auto — Quits the current Debugger window. If a process has started, MULTI

prompts you to kill the process or, if the target allows, detaches the Debugger
from the process and lets it run. If no process has started, MULTI closes the
Debugger without prompting you.

• force — Closes the current Debugger window and kills the current process
without prompting.

• window — Closes the current Debugger window, but does not detach from or
terminate any process unless the current Debugger window is the only one
remaining. If the current Debugger window is the only one remaining, MULTI
detaches from run-mode processes and terminates non-run-mode processes

29Green Hills Software

quit

when it closes the window. This option corresponds to and File → Close
Debugger Window.

• entry — Removes the currently selected entry from the target list. In run
mode, MULTI detaches from the process. If you are not debugging in run
mode, MULTI terminates the process. If the entry is the only remaining entry
in the target list, all Debugger windows close and the Debugger exits. This
option corresponds to File → Close Entry.

quitall

quitall

Causes MULTI to exit. This closes all of MULTI's windows. If you have edits that
have not been saved, you will be given the chance to save them before exiting. The
Debugger does not prompt you before killing active processes.

Corresponds to: File → Exit All

restore

restore [filename]

GUI only

Restores the state of the Debugger from the file filename, or from the file
multistate if filename is not specified. This file must have been created with the
save command (see “save” on page 31). If you were connected to a debug server
when you issued the save command and are not currently connected to the server,
this command also reconnects you to that debug server.

MULTI searches for filename using the default search path. See “Default Search
Path for Files Specified in Commands” on page 14.

Note
This command may not be able to restore group breakpoints.

Corresponds to: Config → State → Restore State

MULTI: Debugging Command Reference30

Chapter 2. General Debugger Command Reference

save

save [filename]

Saves the state of the Debugger. This writes out breakpoints and source directories
as set by the source command (see “source” on page 80), and the current target
connection, if any, to the file filename or to the file multistate if no filename is
specified on the command line. This file may later be used by the restore command
to restore the state of the Debugger (see “restore” on page 30). (Note that this
command may not be able to restore group breakpoints.)

Corresponds to: Config → State → Save State

unloadsym

unloadsym filename

Unloads from the symbol table all of the debugging symbols for the file filename.

You can use this command with the loadsym command to load debugging
information for a stripped executable at run time (see “loadsym” on page 21).

For example:

> debug a.out.stripped
> loadsym a.out.debug
> unloadsym a.out.stripped

The filename will be searched for using the default search path. See “Default Search
Path for Files Specified in Commands” on page 14.

wait

wait [-global] [-time milliseconds] [-lastWindow] [-search] [-stop] [[-not]
-multiStatus status_name_or_value] [-py [-all | -cmd | -pane]] [[-show | -goaway]
[optional_arguments] -taskName task_name | -taskid task_id] [-runmode_partner]

Blocks command processing. While command processing is blocked, MULTI cannot
accept new commands. However, it can still refresh its windows and handle target
events. To abort the wait command, press the Esc key.

31Green Hills Software

save

The available arguments are:

• -global— Blocks command processing for all MULTI processes in the same
MULTI session. If you do not specify -global, only the current process is
blocked. This argument may be used in conjunction with any other argument.

• -time milliseconds — Blocks command processing for milliseconds.
If used in conjunction with another argument, milliseconds represents the
maximum period of time that command processing is blocked, whether or not
the action specified by the second argument has occurred.

• -lastwindow — Blocks command processing until the last GUI window is
fully displayed.

• -search — Blocks command processing until the search in progress (if any)
has finished.

• -stop — Blocks command processing until the current process halts. This is
the default behavior if you do not specify any argument to the wait command.
It is also a special case of the -multiStatus syntax, described next.

• [-not] -multiStatus status_name_or_value — Blocks command
processing until the MULTI process enters the specified status or until it exits
the specified status. The status name/value possibilities follow.

○ Nil/1
○ Stopped/2
○ Running/3
○ Dying/4
○ Fork/5
○ Exec/6
○ Continue/7
○ Zombie/8
○ targetFrozen

The status name targetFrozen indicates the target's system halted status.
The other names are normal statuses for MULTI processes, and the numeric
values are MULTI-internal values. For information about accessing the current
process status, see the _STATE variable in “System Variables” in Chapter 14,

MULTI: Debugging Command Reference32

Chapter 2. General Debugger Command Reference

“Using Expressions, Variables, and Procedure Calls” in theMULTI: Debugging
book.

• -py— Blocks command processing until pending Python statements complete.
Use the following optional arguments to specify the source of the pending
Python statements. If you do not specify one of the following arguments, -all
is the default behavior.

Optional arguments to -py are:
○ -all — Indicates that the Python statements may come from any source.

This is the default.
○ -cmd — Indicates that the Python statements come from the python or
py Debugger command. For information about these commands, see
“python, py” on page 201.

○ -pane — Indicates that the Python statements come from the Debugger's
Python pane.

• -show and -goaway— Blocks command processing until the specified object
appears in the Task Manager window or until the specified object disappears
from the Task Manager window. Use the following optional and required
arguments to specify an object. If you give an object but do not enter -show
or -goaway, -show is the default behavior.

optional_arguments to -show|-goaway are:
○ -taskStack — Specifies that stack information for the task task_name

or task_id is the object. When used with -show, this will block command
processing until the specified task has stack information. This option is
not generally useful with -goaway.

○ -taskStatus status | integer_value — Specifies that the status
status for the task task_name or task_id is the object. Examples of
status are running, pended, and suspended. If status contains a
space, you must enclose it with quotation marks. The integer value
corresponds to the status. If you do not know the integer value, use the
string status.

○ -addressSpace address_space_name — Specifies that the task
task_name or task_id located in the address space
address_space_name is the object.

33Green Hills Software

wait

One of the following arguments to -show or -goaway is required:
○ -taskName task_name — Specifies that the task task_name is the

object. If used in conjunction with an optional_argument, task_name
may be a modifier. For example, if you type wait -show -taskStack
-taskName foo, MULTI blocks command processing until stack
information for the task foo appears in the Task Manager window.

○ -taskid task_id — Specifies that the task task_id is the object. If
used in conjunction with an optional_argument, task_id may be a
modifier.

• -runmode_partner — Blocks command processing until the freeze-mode
connection's run-mode partner has been created and initialized. See
“Automatically Establishing Run-Mode Connections” in Chapter 4, “INDRT2
(rtserv2) Connections” in the MULTI: Debugging book.

For more information about the Task Manager window, see Chapter 25, “Run-Mode
Debugging” in the MULTI: Debugging book.

The wait command can be useful when scripting test cases or in a situation like the
following. Suppose you are debugging in run-mode and want to attach to a task
named My Task when it appears in the Task Manager window. You can enter:

> wait -taskname "My Task"; attach "My Task"

MULTI: Debugging Command Reference34

Chapter 2. General Debugger Command Reference

Chapter 3

Breakpoint Command
Reference

Contents
Breakpoint Commands . 37

The Debugger provides a variety of commands for setting and removing breakpoints.
These breakpoint commands each have a similar syntax, since all breakpoints have
similar attributes.

Every breakpoint must be associated with an address. Most of the breakpoint
commands take an optional address expression that specifies the location of the
breakpoint. (For more information about the address_expression argument,
see “Using Address Expressions in Debugger Commands” on page 5.) If an address
is not specified, the current line is used. In GUI mode, the current line is indicated
by the blue arrow.

A breakpoint can also have a breakpoint count, which causes it to be skipped a
specified number of times before it stops the process. The breakpoint count is
decremented by 1 each time the breakpoint is skipped. When the breakpoint count
reaches 1, the breakpoint stops the process (and continues to stop the process every
subsequent time it is reached). To set a breakpoint count, add the argument
@bp_count before the command list. For example, the following command sets a
breakpoint with a count of 4:

> b @4

In this example, the breakpoint will be hit the fourth time the line of code is executed,
and will continue to be hit every subsequent time that line is executed.

In all of the two letter breakpoint commands, if the second character is uppercase
(for example bU), the breakpoint is temporary.

All breakpoint commands that contain the argument {commands} can take a list of
commands. The commands in the list are executed when the breakpoint is hit. See
“Using Command Lists in Debugger Commands” on page 12 for more information.)

The commands in this chapter allow you to set, edit, and remove breakpoints. (For
information about setting breakpoints using the GUI, see “Using Breakpoints and
Tracepoints” in Chapter 8, “Executing and Controlling Your Program from the
Debugger” in the MULTI: Debugging book.)

MULTI: Debugging Command Reference36

Chapter 3. Breakpoint Command Reference

Breakpoint Commands

The following list provides a brief description of each breakpoint command. For a
command's arguments and for more information, see the page referenced.

• b — Sets a breakpoint at the specified location (see “b” on page 38).
• B — Lists information about breakpoints (see “B” on page 40).
• bA — Sets a temporary breakpoint (see “bA” on page 41).
• bi, bI — Sets a permanent or temporary breakpoint at the specified location,

where the Debugger resolves procedure names to the beginning of the
procedure's stack setup code (see “bi, bI” on page 41).

• bif — Sets a conditional breakpoint that will stop the process if the given
condition evaluates to true (see “bif” on page 42).

• bpload— Loads breakpoints from the specified file (see “bpload” on page 42).
• bpsave — Saves breakpoints to the specified file (see “bpsave” on page 43).
• bpview, breakpoints — Opens the Breakpoints window (see“bpview,

breakpoints” on page 43).
• bt — Displays a message every time the specified procedure is entered or exits

(see “bt” on page 44).
• bu, bU — Sets a permanent or temporary up-level breakpoint (see “bu, bU”

on page 44).
• bx, bX — Sets a permanent or temporary breakpoint at the exit point of a

function (see “bx, bX” on page 45).
• d — Deletes the software breakpoint at the specified address expression or

with the given label (see “d” on page 46).
• D — Deletes software breakpoints (see “D” on page 47).
• dz — Allows you to restore, view, or permanently remove previously deleted

breakpoints (see “dz” on page 48).
• edithwbp — Opens a dialog box that you can use to edit the hardware

breakpoint at the current source line (see “edithwbp” on page 49).
• editswbp— Opens a dialog box that you can use to edit the software breakpoint

at the current source line (see “editswbp” on page 50).

37Green Hills Software

Breakpoint Commands

• hardbrk — Lists, deletes, or sets hardware breakpoints (see “hardbrk”
on page 50).

• rominithbp — Sets or removes the post-initialization hardware breakpoint
used in ROM and ROM-to-RAM copy debugging (see “rominithbp”
on page 54).

• sb — Sets target-specific breakpoints (see “sb” on page 55).
• setbrk — Sets a new breakpoint or removes an existing breakpoint at the

current line or at the current address (see “setbrk” on page 57).
• sethbp — Sets a hardware execute breakpoint at the current location in your

program code (see “sethbp” on page 57).
• stopif— Sets a conditional breakpoint at the line number specified (see “stopif”

on page 58).
• stopifi — Sets a conditional breakpoint on the machine instruction at the

specified address (see “stopifi” on page 59).
• tog — Toggles the active status of the given address expression or breakpoints

(see “tog” on page 59).
• Tog — Toggles the active status of all breakpoints (see “Tog” on page 60).
• watchpoint — Sets a watchpoint on the address indicated, which causes the

process to halt when the address is written to (see “watchpoint” on page 61).

b

b [%bp_label] [@bp_count] [&] [/s] [/off] [/type_gt [@task_group] [/trigger
@task_group]] [address_expression] [{commands}]

Sets a breakpoint at the specified location, where:

• %bp_label — Specifies a breakpoint label (see “Breakpoint IDs and Labels”
on page 10).

• @bp_count — Specifies a breakpoint count (see “Debugger Command
Conventions” on page 3).

• & — Causes the breakpoint to beep when it is hit.
• /s — Suppresses messages when the breakpoint is hit.

MULTI: Debugging Command Reference38

Chapter 3. Breakpoint Command Reference

• /off — Inactivates the breakpoint. This allows you to set a breakpoint on a
running target without halting the target.

• /type_gt [@task_group] — Sets a group breakpoint for the specified task
group. Any task in the task group can hit the breakpoint. If @task_group is
not present, MULTI uses a temporary group that contains only the task itself
to create the group breakpoint. If task_group contains spaces, enclose it with
double quotation marks. The {commands} and /type_gt [@task_group]
arguments are mutually exclusive. The breakpoint count (@bp_count) of group
breakpoints must be 1 (default). See “Setting Breakpoints for Task Groups”
in Chapter 25, “Run-Mode Debugging” in the MULTI: Debugging book.

• /trigger @task_group— Specifies the task group that stops when a group
breakpoint is hit. All tasks in the task group stop along with the task that hits
the breakpoint. If task_group contains spaces, enclose it with double quotation
marks. See “Setting Breakpoints for Task Groups” in Chapter 25, “Run-Mode
Debugging” in the MULTI: Debugging book.

This option is only applicable if /type_gt is specified.
• address_expression — Specifies an address (see “Using Address

Expressions in Debugger Commands” on page 5). In GUI mode, if
address_expression is ambiguous, the b command opens a dialog box
listing all procedures that match the wildcard pattern address_expression.
You can pick some, all, or none of the procedures listed. For more information
about the dialog box, see “Procedure Ambiguities and the Browse Dialog Box”
in Chapter 12, “Browsing Program Elements” in theMULTI: Debugging book.
If you do not specify an address expression, the breakpoint is set at the location
of the blue current line pointer ().

• {commands} — Specifies a list of commands to be performed (see “Using
Command Lists in Debugger Commands” on page 12). The /type_gt
[@task_group] and {commands} arguments are mutually exclusive.

The options you specify determine what breakpoint marker is displayed on the left
side of the source pane. See “Breakdots, Breakpoint Markers, and Tracepoint
Markers” in Chapter 8, “Executing and Controlling Your Program from the
Debugger” in the MULTI: Debugging book.

If a procedure name is specified (for example with the command b Fly), the
breakpoint is not set at the first machine instruction of the procedure, but rather at
the first machine instruction after the procedure's stack setup code, if any exists.

39Green Hills Software

b

This ensures that the arguments and local variables of a procedure are read correctly
when you stop in that procedure. (See “The Call Stack Window and Procedure
Prologues and Epilogues” in Chapter 18, “Using Other View Windows” in the
MULTI: Debugging book.) For information about stopping at the first machine
instruction of a procedure, see “bi, bI” on page 41.

B

B [address_expression | breakpoint_list]

Lists information about breakpoints. The information is listed in the following order:

ID bp_label location address count: flags commands

If no argument is specified, this command lists information about all breakpoints.
You can also specify an address or a list of breakpoints. For more information, see
“Using Address Expressions in Debugger Commands” on page 5 and “Breakpoint
Ranges and Lists” on page 11.

Example:
> b main#5
> b %my_bp_name main#6 { print "Here I am"; }
> b main#7 { print "main#7" }
> tog main#5
> B
0 main#5: 0x10204 count: 1 (inactive)
1 my_bp_name main#6: 0x01220 count: 1 <{ print "Here I am"; }>
2 main#7: 0x1022c count: 1 <{ print "main#7" }>
> B %my_bp_name:%2
1 my_bp_name main#6: 0x10220 count: 1 <{ print "Here I am"; }>
2 main#7: 0x1022c count: 1 <{ print "main#7" }>

Note
Entering the l b (lowercase L lowercase B) command is the same as
entering B in the command pane (see “l” on page 102).

Note
You can list information about deleted breakpoints by using the dz -list
command (see “dz” on page 48).

MULTI: Debugging Command Reference40

Chapter 3. Breakpoint Command Reference

bA

bA [%bp_label] [@bp_count] [&] [/s] [address_expression] [{commands}]

Sets a temporary breakpoint using many of the same options as the b command
(see “b” on page 38). A temporary breakpoint is automatically removed when it is
hit.

bi, bI

bi [%bp_label] [@bp_count] [address_expression] [{commands}]

bI [%bp_label] [@bp_count] [address_expression] [{commands}]

(The second command contains an uppercase i.)

Sets a breakpoint at the specified location. (The bI command sets a temporary
breakpoint; the bi command sets a permanent breakpoint.)

• %bp_label — Specifies a breakpoint label (see “Breakpoint IDs and Labels”
on page 10).

• @bp_count — Specifies a breakpoint count (see “Debugger Command
Conventions” on page 3).

• address_expression — Specifies a location (see “Using Address
Expressions in Debugger Commands” on page 5). If a procedure name is
specified, the breakpoint is set on the first instruction of the procedure's stack
setup code (if any). Otherwise it is set on the first instruction of the procedure.

• {commands} — Specifies a list of commands to be performed (see “Using
Command Lists in Debugger Commands” on page 12).

41Green Hills Software

bA

bif

bif [%bp_label] [@bp_count] address_expression condition

Sets a conditional breakpoint that will stop the process if condition evaluates to
true.

• %bp_label — Specifies a breakpoint label (see “Breakpoint IDs and Labels”
on page 10).

• @bp_count — Specifies a breakpoint count (see “Debugger Command
Conventions” on page 3).

• address_expression — See “Using Address Expressions in Debugger
Commands” on page 5.

• condition — Expression in the current language.

For example:

> bif funcname {i != 0}
Stop if i != 0 set at 0x20e6b8.

will stop the process when the function funcname is entered, if the variable i is
nonzero.

See also “stopif” on page 58.

bpload

bpload filename

Loads breakpoints from filename, where filename is a file created with bpsave
(see “bpsave” on page 43).

You can also use the Load button in the Breakpoints window to achieve the same
results.

Note
This command and button may not be able to correctly load group
breakpoints.

MULTI: Debugging Command Reference42

Chapter 3. Breakpoint Command Reference

bpsave

bpsave filename [breakpoint_list]

Saves breakpoint_list to filename. If breakpoint_list is not specified,
all breakpoints are saved. The breakpoints are generally preserved in the form
file#proc#line to provide maximal portability between debugging sessions.

For example, after a debugging session, you can issue the following command:

> bpsave brkpts.lst

This saves the breakpoints to the file brkpts.lst. (You can also use the Save button
in the Breakpoints window to achieve the same results.)

Later, when you restart the Debugger, you can issue the following command:

> bpload brkpts.lst

This restores the breakpoints from the previous debugging session.

See also “bpload” on page 42.

bpview, breakpoints

bpview

breakpoints

GUI only

Opens the Breakpoints window, which you can use to add, change, or delete
software breakpoints, hardware breakpoints, and tracepoints. See “Viewing
Breakpoint and Tracepoint Information” in Chapter 8, “Executing and Controlling
Your Program from the Debugger” in the MULTI: Debugging book.

Corresponds to:

Corresponds to: View → Breakpoints

43Green Hills Software

bpsave

bt

bt [@bp_count] proc_name

Displays a message every time the specified procedure is entered or exits, where:

• @bp_count — Specifies a breakpoint count (see “Debugger Command
Conventions” on page 3).

• proc_name — Specifies a procedure name.

The displayed message states whether the procedure is entered or exited. The
message printed on exit also provides the return value of the specified procedure.

Note
This command may produce unexpected behavior if your compiler
optimization settings result in proc_name having multiple exit points or
if the exit point cannot be found.

bu, bU

bu [@bp_count] [stacklevel] [{commands}]

bU [@bp_count] [stacklevel] [{commands}]

Sets an up-level breakpoint. The breakpoint is permanent if you use bu and
temporary if you use bU.

• @bp_count — Specifies a breakpoint count (see “Debugger Command
Conventions” on page 3).

• stacklevel — Call stack trace level.
• {commands} — See “Using Command Lists in Debugger Commands”

on page 12.

MULTI: Debugging Command Reference44

Chapter 3. Breakpoint Command Reference

The breakpoint is set immediately after the return to the level specified by
stacklevel. The stacklevel is specified with a numeric value without an
underscore (for example, 5; see Chapter 5, “Call Stack Command Reference”
on page 67). If stacklevel is not specified, the breakpoint is set one level up
from the current procedure. For example, a way to recover after accidentally
single-stepping into a procedure is:

> bU; c

to set a temporary, up-level breakpoint and continue.

The bu and bU commands rely on the Debugger's ability to generate a partial stack
trace. They may not work correctly (for example, they may set a breakpoint at the
wrong address) if the stack trace obtained by the Debugger is incorrect. For
restrictions on tracing the call stack, see “Viewing Call Stacks” in Chapter 18,
“Using Other View Windows” in the MULTI: Debugging book.

See also “cu, cU” on page 161.

bx, bX

bx [%bp_label] [@bp_count] [address_expression] [{commands}]

bX [%bp_label] [@bp_count] [address_expression] [{commands}]

Sets a breakpoint at the exit point of a function. The breakpoint is permanent if you
use bx and temporary if you use bX.

• %bp_label — Specifies a breakpoint label (see “Breakpoint IDs and Labels”
on page 10).

• @bp_count — Specifies a breakpoint count (see “Debugger Command
Conventions” on page 3).

• address_expression — If a call stack level is specified in the address
expression, this command sets a breakpoint at the exit point of the function at
the specified stack level. See Chapter 5, “Call Stack Command Reference”
on page 67. If a procedure name is specified as the address expression, this
command sets a breakpoint at the exit point of the procedure. For more
information about address expressions, see “Using Address Expressions in
Debugger Commands” on page 5.

45Green Hills Software

bx, bX

• {commands} — The specified commands are executed when the breakpoint
is hit. For more information, see “Using Command Lists in Debugger
Commands” on page 12.

If no arguments are specified, this command sets a breakpoint at the exit point of
the current function. The exit point is where all returns from this function will go
through.

The following are two examples of this command:

> bx foo

> bx "foo.c"#a_routine

The first command sets a breakpoint at the exit point of procedure foo. The second
command sets a breakpoint at the exit point of the procedure a_routine, which
is located in file foo.c.

Note
This command may produce unexpected behavior if your compiler
optimization settings result in the function having multiple exit points or
if the exit point cannot be found.

d

d [[/force] address_expression | breakpoint_list | %bp_label]

Deletes one or more software breakpoints at the specified address_expression,
in the specified breakpoint_list, or with the specified bp_label, where:

• /force — Removes all software breakpoints that match
address_expression.

• address_expression — Specifies the address (see “Using Address
Expressions in Debugger Commands” on page 5). In GUI mode, if
address_expression is ambiguous and /force is not specified, the d
command opens a dialog box listing all software breakpoints in procedures
that match the wildcard pattern address_expression. You can delete some,
all, or none of the software breakpoints listed.

MULTI: Debugging Command Reference46

Chapter 3. Breakpoint Command Reference

• breakpoint_list — Specifies a list of software breakpoints. For more
information, see “Breakpoint Ranges and Lists” on page 11.

• %bp_label— Specifies a software breakpoint label (see “Breakpoint IDs and
Labels” on page 10).

If no arguments are given, all software breakpoints at the current line are removed.

This command removes software breakpoints and all of their associated attributes.
If you want to temporarily disable a breakpoint without deleting it, use the tog
command (see “tog” on page 59).

D

D

Deletes software breakpoints:

• If the OSA master process is selected in the target list — Deletes all normal
software breakpoints (except group breakpoints) in the master process. For
more information, see “Working with Freeze-Mode Breakpoints” in Chapter
26, “Freeze-Mode Debugging and OS-Awareness” in the MULTI: Debugging
book.

• If a run-mode AddressSpace is selected in the target list and you are using
INTEGRITY 10 or later — Deletes all any-task breakpoints in the
AddressSpace.

• If a task is selected in the target list — Deletes all task-specific software
breakpoints in the task.

Corresponds to: Debug → Remove All Breakpoints

47Green Hills Software

D

dz

dz [soft | hard | sobp] [bp_ID_list]

dz -gui [soft | hard | sobp]

dz -line [list] soft | hard

dz -list [all] [soft | hard | sobp]

dz -clear [soft | hard | sobp] [bp_ID_list]

The first format of the dz command restores breakpoints deleted in the last breakpoint
deletion operation or, if bp_ID_list is specified, the breakpoints whose IDs are
listed.

The second format of the dz command opens the Breakpoints Restore window,
which allows you to view and restore deleted breakpoints.

The third format of this command restores breakpoints deleted from the current
line's last breakpoint deletion operation, or, if list is specified, it lists the
breakpoints that were last deleted from the current line.

The fourth format prints a list of breakpoints that have been deleted and that can
be restored.

The fifth format removes breakpoints permanently.

The following options can be used with the dz command:

• -gui — Opens the Breakpoints Restore window, from which you can view
and restore deleted breakpoints. If specified in conjunction with soft, hard,
or sobp, the window opens on the Software tab (the default), the Hardware
tab, or the Shared Object tab, respectively. For information about the
Breakpoints Restore window, see “The Breakpoints Restore Window” in
Chapter 8, “Executing and Controlling Your Program from the Debugger” in
the MULTI: Debugging book.

• -line — Restores the software or hardware breakpoint(s) last deleted from
the line where the current line pointer () is located, or, if specified in
conjunction with list, lists the software or hardware breakpoint(s) last deleted
from the line where the current line pointer is located but does not restore them.

MULTI: Debugging Command Reference48

Chapter 3. Breakpoint Command Reference

• -list and list — Prints a list of breakpoints that have been deleted and that
can be restored. If specified in conjunction with the all option, all restorable,
deleted breakpoints are printed to the command pane. Otherwise, only those
removed in the last deletion operation are printed to the command pane.

• -clear — Permanently removes all applicable breakpoints. For example, if
specified in conjunction with the soft option, all previously deleted software
breakpoints (not only those deleted in the last deletion operation) are
permanently deleted and can no longer be restored. This option is useful if you
want to remove one or more breakpoints from the list of deleted breakpoints
(see the -list and list options).

• soft — Applies the specified operation only to software breakpoints.
• hard — Applies the specified operation only to hardware breakpoints.
• sobp — Applies the specified operation only to shared object breakpoints.
• all — Applies the specified operation to all deleted breakpoints, not just to

those from the last breakpoint deletion operation.
• bp_ID_list — Applies the specified operation only to those deleted

breakpoints whose ID numbers are contained in this space-delimited list. When
you run the dz -list command, the breakpoint ID numbers of deleted breakpoints
precede the breakpoint descriptions. For more information about breakpoint
IDs, see “Breakpoint IDs and Labels” on page 10.

edithwbp

edithwbp

GUI only

Opens a dialog box that you can use to edit the hardware breakpoint at the current
source line. If no hardware breakpoint is set at the current line (as indicated by the
blue context arrow), you can use the dialog box to create a new hardware breakpoint.
If hardware breakpoints are not supported on the currently connected target, you
will not be able to set the breakpoint. See “Creating and Editing Hardware
Breakpoints” in Chapter 8, “Executing and Controlling Your Program from the
Debugger” in the MULTI: Debugging book.

49Green Hills Software

edithwbp

editswbp

editswbp

GUI only

Opens a dialog box that you can use to edit the software breakpoint at the current
source line. If no software breakpoint is set at the current line (as indicated by the
blue context arrow), you can use the dialog box to create a new software breakpoint.
See “Creating and Editing Software Breakpoints” in Chapter 8, “Executing and
Controlling Your Program from the Debugger” in the MULTI: Debugging book.

hardbrk

hardbrk [global]

hardbrk [global] delete= num | *

hardbrk [enabled | disabled] [rolling] [read] [write] [execute] [mask=mask]
[data=data_value [dmask=data_mask]] [vm] [global] [--] expr [:size] [{commands}]

The first format of the hardbrk command lists all currently set hardware breakpoints,
or, if global is specified, it lists all any-task hardware breakpoints. Each breakpoint
listed is allocated an identifying number.

The second format of the hardbrk command deletes one or more hardware
breakpoints.

The third format of the hardbrk command sets a hardware breakpoint. If no slots
remain on the target for a new hardware breakpoint, MULTI first disables an existing
hardware breakpoint that was set with the rolling attribute (if any), and then it sets
the hardware breakpoint. If no rolling hardware breakpoints are set on the target
and no slots are available, a hardware breakpoint is not set.

All formats of this command require that you pass the options in the order they are
presented above.

Note
Hardware breakpoints are implemented through direct hardware support.
Only a limited number of hardware breakpoints (usually fewer than four)

MULTI: Debugging Command Reference50

Chapter 3. Breakpoint Command Reference

may be set on targets that support them. If you are using a run-mode
connection to debug INTEGRITY, and hardware breakpoint resources
are unavailable when you try to set a hardware breakpoint, a virtual
memory breakpoint is set instead. For information about the limitations
of virtual memory breakpoints, see the description of the vm option below.

Note
Even targets that allow you to set hardware breakpoints may not support
all the breakpoint capabilities described here; neither do all targets support
the precise semantics described. For information about how your target
handles hardware breakpoints if you are using a Green Hills Probe or
SuperTrace Probe, see the documentation about target-specific hardware
breakpoint support in the Green Hills Debug Probes User's Guide. For
more information about hardware breakpoints, see “Working with
Hardware Breakpoints” in Chapter 8, “Executing and Controlling Your
Program from the Debugger” in the MULTI: Debugging book.

Note
MULTI removes all hardware breakpoints when detaching from a process.

The following options can be used with this command:

• global — On supported operating systems, specifies that the breakpoint is
an any-task hardware breakpoint. Normally, a hardware breakpoint can only
be hit by the task in which it is set. An any-task hardware breakpoint, on the
other hand, can be hit by any task in the address space in which it is set.

If this option is the only one specified (that is, hardbrk global), it lists all
any-task hardware breakpoints.

If this option is passed before the delete option, it deletes the any-task
hardware breakpoint(s) specified by num or *.

The global option is supported if you are using a run-mode connection to
debug INTEGRITY (version 10 or later) or VxWorks.

• delete=num|* — Deletes the hardware breakpoint numbered num or, if you
specify *, deletes all hardware breakpoints. (To list the number associated with
each hardware breakpoint, enter hardbrk with no arguments.)

51Green Hills Software

hardbrk

• enabled and disabled — Specify that the hardware breakpoint should
initially be enabled or disabled. A disabled hardware breakpoint does not
consume any target resources. These options are mutually exclusive. The default
is enabled.

• rolling — Indicates that the hardware breakpoint can be automatically
disabled to open a slot when you want to set a new hardware breakpoint in the
future.

• Any combination of the following attributes may be specified:

○ read — Causes the break to occur when reading from the given address.
○ write — Causes the break to occur when writing to the given address.
○ execute— Causes the break to occur if the instruction stored at the given

address is executed.

The default attribute for an address in a text section is execute. The defaults
for data and other sections are read and write. Often the break only occurs
after the read or write.

One advantage of a read or write hardware breakpoint (also known as a data
hardware breakpoint) is that you can set it on a specific memory location. When
that location is accessed, the process will be halted, regardless of what
instruction the process is executing.

• mask=mask — Specifies that the hardware breakpoint will be hit if the bitwise
AND of the mask and the address about to be accessed is equal to the bitwise
AND of the mask and the breakpoint address (expr). For example, you can
use this feature to stop on accesses to every 16th byte in an array by providing
a mask of 0x0000000F. By default, mask is defined as 0xFFFFFFFF.

• data=data_value — Specifies that the hardware breakpoint will be hit if
the value located at the given address and data_value (when masked with
dmask=data_mask, if specified) are equal.

• dmask=data_mask — Specifies that the hardware breakpoint will be hit if
the bitwise AND of the data mask and the value located at the given address
is equal to the bitwise AND of the data mask and the data value specified with
data=data_value.

• vm — Instructs INTEGRITY to use a virtual memory breakpoint to simulate
the hardware breakpoint. Because virtual memory breakpoints do not use any
target-specific hardware breakpoint resources (INTEGRITY implements the

MULTI: Debugging Command Reference52

Chapter 3. Breakpoint Command Reference

mechanism instead), they are useful when the target lacks such resources.
However, depending on access patterns, virtual memory breakpoints may
significantly impact performance. The vm option is only supported if you are
using a run-mode connection to debug INTEGRITY (version 10 or later) tasks
in virtual AddressSpaces.

• -- — Indicates the end of the options applied to the hardware breakpoint, and
signals that the following item is the address expression where the hardware
breakpoint should be located. For example:

hardbrk write -- data

sets a hardware breakpoint on writes on the variable named data. This option
is useful if the expression shares the name of a hardbrk option.

• expr[:size]— Specifies the location of the breakpoint and can be a memory
address, variable, or pointer name. Specifying a size forces the breakpoint to
cover an explicit number of bytes. Sizes available vary by target and may be
limited to 1, 2, and 4 bytes or to power-of-2 bytes. A size of 1, 2, 4, or 8 bytes
may also limit the memory accesses that hit the hardware breakpoint to accesses
of the same length (for example, size 2 stops on a write of a short, but not a
char or int). The default size is one byte for memory locations, and the size
of the object for variables.

• {commands} — Executes the list of commands each time the hardware
breakpoint is hit. For information about setting such lists of commands, see
“Using Command Lists in Debugger Commands” on page 12.

When a hardware breakpoint is reached, MULTI displays a message that shows the
breakpoint number and whether the break occurred on a read, write, or execute. For
example:

Stopped by hardware break on execute (main#12)

If the target system cannot support the requested breakpoint, an error message
appears.

Example uses of the hardbrk command follow.

To delete hardware breakpoint number two:

> hardbrk delete=2

53Green Hills Software

hardbrk

To delete all hardware breakpoints:

> hardbrk delete=*

To stop on any read from variable val:

> hardbrk read val

To stop on any read or write to locations 0x10000 to 0x1000f:

> hardbrk mask=0xfffffff0 0x10000

To stop on any write to the first sixteen bytes pointed to by string:

> hardbrk write *string:16

To print accessed variable val in the command window any time the variable
val is accessed, and then resume the process:

> hardbrk val {echo "accessed variable val"; resume}

To stop when the instruction at address 0x100ff is executed:

> hardbrk execute 0x100ff

rominithbp

rominithbp -setup [location] | -finish | -remove

Sets or removes the post-initialization hardware breakpoint used in ROM and
ROM-to-RAM copy debugging. This hardware breakpoint is used to signal to
MULTI that ROM initialization is complete. For ROM-only programs, this
breakpoint triggers the -after rominitDebugger hook (see “Hook Commands”
on page 196). For ROM-to-RAM copy programs, this breakpoint also indicates that
the program has been copied into RAM and that any ROM restrictions on debugging
are no longer necessary. When the post-initialization hardware breakpoint is hit,
MULTI performs all post-initialization actions and then resumes the target.

MULTI: Debugging Command Reference54

Chapter 3. Breakpoint Command Reference

Available options are:

• -setup [location] — Sets the post-initialization hardware breakpoint at
the specified location (if any). If you do not specify a location and if the
application is ROM-run, MULTI sets the breakpoint at the first source line of
main(). If the application is ROM-copy, MULTI sets the breakpoint at
__ghs_after_romcopy, which defaults to one of the first instructions in
RAM.

• -finish — Immediately performs all post-initialization actions (such as
triggering the -after rominitDebugger hook, setting software breakpoints,
etc.).

• -remove — Removes the post-initialization hardware breakpoint.

sb

sb task action [%bp_label] [@bp_count] [&] [/off] [address_expression]
[{commands}]

Sets target-specific breakpoints, where:

• task — Specifies which task(s) in the system the breakpoint is set on. The
task argument is required and must be replaced by exactly one of the following
letters:

○ a — Any task in the current address space.
○ d — Any attached task in the current address space.
○ t — The current task.
○ u — Any unattached task in the current address space.

Only the a and t options are supported with INTEGRITY.
• action — Specifies what action is taken when the breakpoint is hit. The
action argument is required and must be replaced by exactly one of the
following letters:

○ e — Stops every actor.
○ n — Notifies you.
○ s — Stops the system.

55Green Hills Software

sb

○ t — Stops the task that hit the breakpoint.

Only the t option is supported with INTEGRITY.

Note
The task and action arguments should not be separated by a space.

• %bp_label — Specifies a breakpoint label (see “Breakpoint IDs and Labels”
on page 10).

• @bp_count — Specifies a breakpoint count (see “Debugger Command
Conventions” on page 3).

• & — Causes the breakpoint to beep when it is hit.
• /off — Inactivates the breakpoint. This allows you to set a breakpoint on a

running target without halting the target.
• address_expression — Specifies an address (see “Using Address

Expressions in Debugger Commands” on page 5).
• {commands} — Specifies a list of commands to be performed (see “Using

Command Lists in Debugger Commands” on page 12).

Example uses of the sb command follow.

> sb tt foo#12

Sets a breakpoint at line 12 of the function foo. The breakpoint is triggered by the
current task and stops the current task (this is equivalent to a standard breakpoint).

> sb at bar#12

Sets a breakpoint at line 12 of the function bar. The breakpoint is triggered by any
task in the address space and stops the task that hit it.

MULTI: Debugging Command Reference56

Chapter 3. Breakpoint Command Reference

setbrk

setbrk

GUI only

Sets a new breakpoint or removes an existing breakpoint at the current line (pointed
to by the current line pointer) or at the current address. The current address exists
only in GUI mode and specifies the line where the mouse was last clicked in an
interlaced text/assembly view.

This command is very useful when bound to a mouse button (see “Customizing
Keys and Mouse Behavior” in Chapter 7, “Configuring and Customizing MULTI”
in the MULTI: Managing Projects and Configuring the IDE book).

As an alternative to using this command, you can click the breakdot to the left of
the line to set or remove a breakpoint.

The setbrk command is different from the tog command, which you can use to
toggle the status of an existing breakpoint (see “tog” on page 59).

The setbrk 0 command has been replaced by “runtohere” on page 151.

sethbp

sethbp [enabled | disabled] [rolling] [{commands}]

Sets a hardware execute breakpoint at the current location in your program code.
The hardware breakpoint will have the size of the instruction it is set on, an address
at the current code location, and an access type of execute. Hardware breakpoints
are implemented through direct hardware support and are only available on some
targets. MULTI removes all hardware breakpoints when detaching from a process.

If no slots remain on the target for this hardware breakpoint, MULTI will first
disable one of the existing hardware breakpoints that was set with the rolling
attribute and then set the hardware breakpoint. If no rolling hardware breakpoints
are set on the target and no slots are available, this hardware breakpoint will not be
set.

57Green Hills Software

setbrk

The following optional arguments can be used with this command:

• rolling — Indicates that this hardware breakpoint may be disabled
automatically to open a slot when you want to set a new hardware breakpoint
in the future.

• disabled — Indicates that this hardware breakpoint is initially disabled and
will consume no target resources.

• enabled — Indicates that this hardware breakpoint is initially enabled and
will operate normally. If neither the disabled or enabled attribute is specified,
this is the default.

• {commands} — Specifies one or more commands that will be executed when
this hardware breakpoint is hit. See “Using Command Lists in Debugger
Commands” on page 12.

stopif

stopif [file_relative_line_number] condition

Sets a conditional breakpoint at the line number specified. If no line number is
specified, the current line number is used. (For more information, see “Specifying
Line Numbers” on page 7 and “Using Address Expressions in Debugger
Commands” on page 5.) The condition must be an expression in the current
language. When the process reaches the breakpoint, it will halt if condition
evaluates to true; otherwise it will continue. For example, the following command
stops the Debugger at line 20, if y is equal to five:

> stopif 20 y==5

If you omit the line number, avoid expressions that begin with a number; otherwise
the expression will be parsed incorrectly. For example, the following should not be
done:

> stopif 5==y /*INCORRECT*/

In this example, the Debugger will try to set a breakpoint on line 5 with the condition
(==y), which will fail. To properly set this breakpoint, enclose the expression in
parentheses, as follows.

> stopif (5==y) /*CORRECT*/

MULTI: Debugging Command Reference58

Chapter 3. Breakpoint Command Reference

MULTI will do limited syntax checking to make sure that the condition is a valid
expression.

See also “bif” on page 42.

stopifi

stopifi [address] condition

Sets a conditional breakpoint on the machine instruction at the specified address.
If address is not specified, the current machine instruction is used. The current
machine instruction is set when the target halts at a new location or when you display
a location using the /i or /I expression format. (For information about expression
formats, see “Expression Formats” in Chapter 14, “Using Expressions, Variables,
and Procedure Calls” in the MULTI: Debugging book.)

If issued with an address, this command is identical to the stopif command, except
that the breakpoint is placed on the instruction at the specified address rather than
on the specified line (see “stopif” on page 58).

tog

tog [q] [on | off | tog] hbp [[global] hbp_id | *]

tog [/force] [q] [on | off | tog] [b] [address_expression | breakpoint_list | *]

Toggles the active status of the specified breakpoint(s), where:

• q — Silent mode. Only error messages are printed.
• on — Activates all breakpoints matching the address_expression or
breakpoint_list.

• off — Deactivates all breakpoints matching the address_expression or
breakpoint_list.

• tog — Toggles the active status of all breakpoints matching the
address_expression or breakpoint_list. This is the default if neither
on nor off is specified.

• hbp — Toggles the status of a hardware breakpoint.

59Green Hills Software

stopifi

• global — Indicates that the hardware breakpoint specified by hbp_id is an
any-task hardware breakpoint.

• hbp_id — Numeric identifier of a hardware breakpoint.
• * — Use this to toggle all of the hardware or software breakpoints (hardware

if hbp is specified; software, otherwise).
• /force — Forces all breakpoints matching the address_expression to be

toggled.
• b — Toggles the status of a breakpoint. This is the default if hbp is not

specified.
• address_expression— The address expression that identifies a breakpoint

to toggle. See “Using Address Expressions in Debugger Commands”
on page 5.

• breakpoint_list — A list of breakpoints to toggle. For more information,
see “Breakpoint Ranges and Lists” on page 11.

Only existing breakpoints can be modified with this command. If there are none,
an error message is displayed.

Tog

Tog [q] [on | off | tog]

Toggles the status of all software breakpoints. If no arguments are specified, tog
is assumed.

• q — Silent mode. Only error messages are printed.
• on — Makes all software breakpoints active.
• off — Makes all software breakpoints inactive.
• tog — Toggles the active status of all software breakpoints.

This command is equivalent to:

tog /force [q] [on | off | tog] *

For more information, see “tog” on page 59.

Corresponds to: Debug → Toggle All Breakpoints

MULTI: Debugging Command Reference60

Chapter 3. Breakpoint Command Reference

watchpoint

watchpoint expr

watchpoint -delete

Sets a watchpoint on the address indicated by expr, causing the process to halt
when the address is written to.

This command is implemented in one of two ways:

• On systems that support hardware breakpoints, a hardware breakpoint is set at
the given address. See also “hardbrk” on page 50.

• If hardware breakpoints are not available, the watchpoint may be set using an
efficient software hook. Only one watchpoint of this type may be set at a time.
For information about enabling the software hook, see the documentation about
run-time error checks in the MULTI: Building Applications book.

To disable this software watchpoint, enter:

watchpoint -delete

The -delete option only applies to software watchpoints; it does not disable
hardware watchpoints.

If neither of these methods is available, the watchpoint is not set.

Corresponds to: Debug → Set Watchpoint

61Green Hills Software

watchpoint

Chapter 4

Building Command
Reference

Contents
Building Commands . 64

The commands in this chapter allow you to build a program, launch the MULTI
Project Manager, or launch the Utility Program Launcher. For more information,
see the MULTI: Managing Projects and Configuring the IDE book.

Building Commands

The following list provides a brief description of each building command. For a
command's arguments and for more information, see the page referenced.

• build — Attempts to build the specified program (see “build” on page 64).
• builder — Opens the MULTI Project Manager (see “builder” on page 64).
• wgutils — Opens the Utility Program Launcher, which provides a GUI

interface to Green Hills utility programs (see “wgutils” on page 65).

build

build [program_or_project_name]

GUI only

Attempts to build the given program_or_project_name. The build progress and
error messages are displayed in a window. If no program_or_project_name is
specified, the name of the current program is used.

Corresponds to: Tools → Rebuild

builder

builder

GUI only

Opens the MULTI Project Manager.

Corresponds to: Tools → Project Manager

MULTI: Debugging Command Reference64

Chapter 4. Building Command Reference

wgutils

wgutils

GUI only

Opens the Utility Program Launcher, which provides a GUI interface to Green
Hills utility programs. For more information, see the documentation about utility
programs in the MULTI: Building Applications book.

Corresponds to: Tools → Launch Utility Programs

65Green Hills Software

wgutils

Chapter 5

Call Stack Command
Reference

Contents
Call Stack Commands . 68

The commands in this chapter allow you to view call stacks (also known as call
stack traces or simply stack traces). A call stack lists the stack frames that are
currently active in your program. Each stack frame typically represents a function
call. Stack frames are shown in order from most to least recently created. For more
information about viewing call stacks in the Call Stack window, see “Viewing Call
Stacks” in Chapter 18, “Using Other View Windows” in the MULTI: Debugging
book.

Call Stack Commands

The following list provides a brief description of each call stack command. For a
command's arguments and for more information, see the page referenced.

• calls — Displays the current call stack (see “calls” on page 68).
• callsview — Displays the current call stack in the Call Stack window (see

“callsview” on page 69).
• cvconfig — Configures the Call Stack window specified (see “cvconfig”

on page 70).

calls

calls [maxdepth] [par | nopar] [pos | nopos] [local | nolocal] [showallframes |
noshowallframes]

Displays the current call stack, where:

• maxdepth — Specifies the maximum number of stack frames you want to
display. The default value of maxdepth is 20 and the maximum value is 32768.

• par | nopar — Specifies whether or not parameters passed to functions are
displayed. If neither argument is specified, the parameters are displayed.

• pos | nopos — Specifies whether or not source positions of functions are
displayed. If neither argument is specified, the source positions are displayed.

• local | nolocal — Specifies whether or not local variables used in functions
are displayed. If neither argument is specified, the local variables are not
displayed.

MULTI: Debugging Command Reference68

Chapter 5. Call Stack Command Reference

• showallframes | noshowallframes — Specifies whether or not the
Debugger displays stack frames before main(). If neither argument is specified,
stack frames before main() are not displayed.

You can view the call stack in its own window by using the callsview command
(see “callsview” on page 69).

callsview

callsview [%name] [maxdepth] [par | nopar] [pos | nopos] [win | nowin] [local
| nolocal] [showallframes | noshowallframes]

GUI only

Displays the current call stack in theCall Stackwindow, unless the nowin argument
is specified (see below).

The optional arguments allow you to specify what information should be displayed,
where:

• %name — Specifies a name for the window. name may be either a C string or
an identifier in the style permitted by C (letters, numbers and underscores,
beginning with a letter). namemust not be the same as the name of any existing
Call Stack window.

• maxdepth — Specifies the maximum number of stack frames you want to
display. If this argument is not specified, the previously defined value is used.
If no previously defined value exists, the default value is 20. The maximum
value is 32768.

• par | nopar — Specifies whether the parameters passed to functions are
displayed.

• pos | nopos — Specifies whether the source positions of functions are
displayed.

• win | nowin — Specifies where to display the call stack. If win is specified
(the default), a Call Stack window is created. If nowin is specified, the call
stack is printed to the command pane. %name should not be specified in
conjunction with nowin.

69Green Hills Software

callsview

• local | nolocal — Specifies whether or not the local variables used in
functions are displayed. (This option is only applicable if nowin has been
specified).

• showallframes | noshowallframes — Specifies whether or not the
Debugger displays stack frames before main().

At the beginning of a debugging session, this command defaults to the following
settings: par pos win noshowallframes. Subsequent calls to this command
default to the previous configuration of the Call Stack window, except that win is
always the default. Thus, if you change a setting other than nowin for the Call
Stackwindow, it will be remembered the next time you open theCall Stackwindow
(see “Viewing Call Stacks” in Chapter 18, “Using Other View Windows” in the
MULTI: Debugging book).

Corresponds to:

Corresponds to: View → Call Stack

cvconfig

cvconfig [%name] key [key]...

GUI only

Configures the Call Stack window identified by name. If no name is specified,
cvconfig configures the last Call Stack window that was created or configured.
(The name of a Call Stack window is the same as the caption that appears in its
title bar.)

This command is primarily intended for use in scripts, since the functionality it
provides is directly accessible from the GUI of the Call Stack window.

The key argument(s) can be directives with no arguments or parameters with
assigned values. Acceptable values for key and their meanings are listed below:

• stop — Freezes the Call Stack window.
• refresh — Unfreezes the Call Stack window.
• help — Opens online help for the Call Stack window.
• par — Shows parameters passed to the functions.

MULTI: Debugging Command Reference70

Chapter 5. Call Stack Command Reference

• nopar — Hides parameters passed to the functions.
• pos — Shows source position of functions.
• nopos — Hides source position of functions.
• showallframes — Shows stack frames before main().
• noshowallframes — Hides stack frames before main().
• edit — Opens an Editor on the function currently selected in the window.
• local — Reuses an existing Data Explorer (if any) or opens a Data Explorer

displaying all of the local variables of the function currently selected in the
window.

• copy — Copies the contents of the Call Stack window to the clipboard.
• print — Prints the Call Stack window.
• quit — Closes the Call Stack window.
• name=newname — Renames the Call Stack window to newname.
• mdepth=depth — Sets the maximum depth of the Call Stack window to
depth.

• select=num — Selects the stack level num within the Call Stack window.

Keys are handled sequentially in the order they are given. The keys stop, refresh,
help, copy, and quit terminate the command when they are encountered, causing
any remaining keys to be ignored. The same is true for any errors encountered
during processing of the keys.

Keys and key values are case-insensitive.

For more information, see “Viewing Call Stacks” in Chapter 18, “Using Other View
Windows” in the MULTI: Debugging book.

71Green Hills Software

cvconfig

Chapter 6

Configuration Command
Reference

Contents
General Configuration Commands . 74
Button, Menu, and Mouse Commands . 82

The configuration commands are broken up into two sections. The general
configuration commands in the first section allow you to configure the Debugger
or IDE. The button, menu, and mouse commands in the second section allow you
to access or configure menus, toolbar buttons, key bindings, and mouse buttons.

For more information about configuring various aspects of the MULTI IDE, see
Chapter 8, “Configuration Options” in the MULTI: Managing Projects and
Configuring the IDE book.

General Configuration Commands

The following list provides a brief description of each general configuration
command. For a command's arguments and for more information, see the page
referenced.

• clearconfig— Clears your default configuration for MULTI (see “clearconfig”
on page 75).

• configoptions — Opens the Options dialog box (see “configoptions”
on page 75).

• configure — Changes the value of a MULTI configuration option (see
“configure” on page 76).

• configurefile— Reads the specified file, which must be a MULTI configuration
file, and applies the options it describes to the current session (see
“configurefile” on page 76).

• fileextensions — Performs operations that affect the file type and extension
mappings used by the file choosers throughout MULTI (see “fileextensions”
on page 77).

• fontsize — Increases or decreases the font size (see “fontsize” on page 77).
• imagename — Specifies that an executable will be running from the specified

path, rather than from the source directory (see “imagename” on page 78).
• loadconfigfromfile — Opens a file chooser that allows you to select a MULTI

configuration file to load into MULTI (see “loadconfigfromfile” on page 78).
• saveconfig — Saves the current configuration settings to the default

configuration file (see “saveconfig” on page 78).

MULTI: Debugging Command Reference74

Chapter 6. Configuration Command Reference

• saveconfigtofile — Saves the current configuration settings to a specified file
(see “saveconfigtofile” on page 79).

• setintegritydir — Opens the Default INTEGRITY Distribution dialog box
(see “setintegritydir” on page 79).

• setuvelositydir — Opens the Default u-velOSity Distribution dialog box
(see “setuvelositydir” on page 80).

• source — Specifies directories for MULTI to search to find source files for
the debugged executable (see “source” on page 80).

• sourceroot — Clears, lists, creates, or replaces the source root, which is the
path MULTI prepends to each file's relative path (see “sourceroot” on page 81).

• syncolor — Sets syntax coloring options (see “syncolor” on page 82).

clearconfig

clearconfig

Clears your default configuration for MULTI. Note that this command affects the
entire development environment.

Corresponds to: Config → Clear User Default Configuration

configoptions

configoptions

GUI only

Opens the Options dialog box.

Corresponds to: Config → Options

75Green Hills Software

clearconfig

configure

configure config_option [= | :] value

configure config_option

configure ?

Changes the value of a MULTI configuration option. The configure ? command
displays a list of configurable options. You can separate config_option from
value with an equal sign (=), a colon (:), or a whitespace character (). If value
is a Boolean, you can omit it and MULTI will toggle the option's setting.

An example use of this command, which changes MULTI's tab size to 9, follows:

> configure tabsize=9

Note
Do not use this command while the Options window is open.

For more information, see “Using the configure Command” in Chapter 7,
“Configuring and Customizing MULTI” in the MULTI: Managing Projects and
Configuring the IDE book.

configurefile

configurefile file

Reads file, which must be a MULTI configuration file, and applies the options it
describes to the current session. MULTI configuration files can be created with the
saveconfigtofile command (see “saveconfigtofile” on page 79).

For more information about configuration files, see “Creating and Editing
Configuration Files” in Chapter 7, “Configuring and Customizing MULTI” in the
MULTI: Managing Projects and Configuring the IDE book.

MULTI: Debugging Command Reference76

Chapter 6. Configuration Command Reference

fileextensions

fileextensions option filename

GUI only

Performs operations that affect the file type and extension mappings used by the
file choosers throughout MULTI. Each operation is performed on a file specified
by filename. The behavior of this command depends on the value of option,
which must be one of the following:

• -load — Loads in extension mappings from the file named filename. The
extension mappings from that file replace all of the extension mappings
throughout MULTI.

• -save — Creates a file named filename that can be loaded to reconstruct
the extension mappings currently in use.

• -append — Inserts the extension mappings from the file named filename
into the existing mappings. Existing extensions that are not modified by
filename are preserved.

For more information, see “Configuring File Extensions” in Chapter 7, “Configuring
and Customizing MULTI” in the MULTI: Managing Projects and Configuring the
IDE book.

fontsize

fontsize -inc | -dec

Changes the size of the source code font, where -inc increments the size and -dec
decrements the size. For more information about configuring fonts, see Source
Code Font and GUI Font in “General Configuration Options” in Chapter 8,
“Configuration Options” in the MULTI: Managing Projects and Configuring the
IDE book.

77Green Hills Software

fileextensions

imagename

imagename [path_to_executable]

Specifies that an executable will be running from path_to_executable, rather
than from the source directory.

By default, MULTI assumes that the final executable resides in the source directory
where it gets built. If the executable will not be located in the source directory and/or
the executable name will change, you must use this command to let MULTI know
where the final executable will be running from. For example, some development
tools automatically move the final executable out of the source directory and into
another directory (sometimes renaming the executable in the process). The executable
image in the alternative directory must be identical to the executable that is built in
the source directory.

This command is only applicable if you are debugging an operating system such
as Linux, Solaris, or Windows and the debug information for your program resides
in a different location than that of the executable file.

loadconfigfromfile

loadconfigfromfile

GUI only

Opens a file chooser that allows you to select a MULTI configuration file to load
into MULTI.

Corresponds to: Config → Load Configuration

saveconfig

saveconfig

Saves the current configuration settings to the default configuration file. MULTI
reads this file upon startup to restore your configuration settings. See also
“saveconfigtofile” on page 79.

MULTI: Debugging Command Reference78

Chapter 6. Configuration Command Reference

For more information about configuration files, see “Creating and Editing
Configuration Files” in Chapter 7, “Configuring and Customizing MULTI” in the
MULTI: Managing Projects and Configuring the IDE book.

Corresponds to: Config → Save Configuration as User Default

saveconfigtofile

saveconfigtofile

GUI only

Saves the current configuration settings to a specified file.

This command is similar to the saveconfig command (see “saveconfig” on page 78),
except that it opens a file chooser dialog box that allows you to choose a file in
which to save the configuration. This can be useful when used with the command
configurefile (see “configurefile” on page 76).

For more information about configuration files, see “Creating and Editing
Configuration Files” in Chapter 7, “Configuring and Customizing MULTI” in the
MULTI: Managing Projects and Configuring the IDE book.

Corresponds to: Config → Save Configuration As

setintegritydir

setintegritydir

GUI only

Opens theDefault INTEGRITYDistribution dialog box in which you can provide
MULTI with the location of the installed INTEGRITY distribution. This information
is used to add INTEGRITY documentation to MULTI'sHelpmenu and to determine
the default INTEGRITY distribution (used by the Project Wizard). For more
information, see “Configuring MULTI for Use with INTEGRITY or u-velOSity”
in Chapter 2, “MULTI Tutorial” in the MULTI: Getting Started book.

Corresponds to: Config → Set INTEGRITY Distribution

79Green Hills Software

saveconfigtofile

setuvelositydir

setuvelositydir

GUI only

Opens the Default u-velOSity Distribution dialog box in which you can provide
MULTI with the location of the installed u-velOSity distribution. This information
is used to add u-velOSity documentation to MULTI's Help menu and to determine
the default u-velOSity distribution (used by the Project Wizard). For more
information, see “Configuring MULTI for Use with INTEGRITY or u-velOSity”
in Chapter 2, “MULTI Tutorial” in the MULTI: Getting Started book.

Corresponds to: Config → Set u-velOSity Distribution

source

source [num] [dir]...

source - [dir]...

Specifies directories for MULTI to search to find source files for the debugged
executable.

If, in the first format of the source command, num is specified, the directory
numbered num in the current source path is replaced by the new one given by dir.
If num is specified without a replacement directory, the specified entry is deleted
from the list. The directory list is zero-based. If num is not specified, the specified
directories are added to the list. If no arguments are specified, this command lists
the directories that will be searched.

The second format of the source command discards any previously specified
directories, replacing them with dir (if provided).

In either command format, you can specify multiple directories by separating them
with spaces. On Linux/Solaris, directory names may include a tilde (~) as an
abbreviation for the home directory.

MULTI: Debugging Command Reference80

Chapter 6. Configuration Command Reference

Note
If MULTI cannot find the debugging information files associated with
an executable, you must use the loadsym command (see “loadsym”
on page 21) to specify the location of the files.

Corresponds to: View → Source Path

sourceroot

sourceroot [clear | list | new_root | remap old_dir1 [,old_dir2]... new_dir1
[,new_dir2]...]

Clears, lists, creates, or replaces the source root, which is the path MULTI prepends
to each file's relative path, where:

• clear — Clears the current source root.
• list — Lists the current source root.
• new_root — Creates a new root that is prepended to the relative paths of files.
• remap old_dir1[,old_dir2]... new_dir1[,new_dir2]... —

Replaces the old_dir portion of the source root(s) with the corresponding
new_dir. Both old_dir and new_dir are case-sensitive.

Defining a new source root allows you to build an executable with source files from
one location and debug that same executable with those source files accessible in
a different location. For example, if you build a project using source files from
C:\checkout\src, MULTI locates the executable and its supporting files relative to
this location. Now suppose you want to debug on a computer where the source files
are accessible in X:\src. You can change the source root by specifying:

> sourceroot remap C:\checkout\src X:\src

You can specify multiple source locations. For example, if you build a project using
source files from /usr/local/proj1/src and /usr/local/shared/src, and you want to
debug on a computer where the source files are accessible in /machine2/src1 and
/machine2/srcshared, you can change both source roots with one command by
specifying:

> sourceroot remap /usr/local/proj1/src,/usr/local/shared/src \
/machine2/src1,/machine2/srcshared

81Green Hills Software

sourceroot

For more information, see the documentation about building and debugging on
different hosts in the MULTI: Building Applications book.

syncolor

syncolor [0 | 1] [a] [C] [k] [d] [n] [s] [c]

GUI only

Sets syntax coloring options.

• 0 (zero) — Turns off syntax coloring for all categories.
• 1 (one) — Turns on syntax coloring for all categories.
• a — Toggles syntax coloring for all categories.
• c (lowercase) — Toggles syntax coloring for character constants.
• C (uppercase) — Toggles syntax coloring for comments.
• d — Toggles syntax coloring for dead code.
• k — Toggles syntax coloring for language keywords.
• n — Toggles syntax coloring for numbers.
• s — Toggles syntax coloring for string constants.

For example, the command syncolor 0Ck turns off syntax coloring for all
categories, then toggles it on for comments and language keywords, while syncolor
1d turns on syntax coloring for all categories, then toggles it off for dead code.
Without any arguments, syncolor prints the present state of all the categories.

Button, Menu, and Mouse Commands

The following list provides a brief description of each button, menu, and mouse
command. For a command's arguments and for more information, see the page
referenced.

• -> — Opens the specified menu (see “->” on page 83).
• customizemenus — Opens the CustomizeMenus window, which allows you

to create new menus or edit existing menus for a number of MULTI tools (see
“customizemenus” on page 83).

MULTI: Debugging Command Reference82

Chapter 6. Configuration Command Reference

• customizetoolbar — Opens the Customize Toolbar window, which allows
you to rearrange the order of buttons on the Debugger toolbar, add pre-defined
and custom buttons, and delete buttons (see “customizetoolbar” on page 84).

• debugbutton, editbutton — Adds, deletes, or configures a button on the
Debugger's or Editor's toolbar (see “debugbutton, editbutton” on page 84).

• inspect — Opens a shortcut menu on the specified string (see “inspect”
on page 86).

• keybind — Binds a key to a command (see “keybind” on page 87).
• menu — Defines a menu item to attach to a menu bar, MULTI button, mouse

button, or keyboard key (see “menu” on page 87).
• mouse— Defines the function of the mouse buttons (see “mouse” on page 87).

->

-> menu_name

GUI only

Opens the menu menu_name. For example:

>-> FileMenu

opens the File menu.

This command can also be used to create submenus. For more information, see
“Configuring and Customizing Menus” in Chapter 7, “Configuring and Customizing
MULTI” in the MULTI: Managing Projects and Configuring the IDE book.

customizemenus

customizemenus

GUI only

Opens the Customize Menus window, which allows you to create new menus or
edit existing menus for a number of MULTI tools. For more information, see
“Configuring and Customizing Menus” in Chapter 7, “Configuring and Customizing
MULTI” in the MULTI: Managing Projects and Configuring the IDE book.

83Green Hills Software

->

Corresponds to: Config → Customize Menus

customizetoolbar

customizetoolbar

GUI only

Opens the Customize Toolbar window, which allows you to rearrange the order
of buttons on the Debugger toolbar, add pre-defined and custom buttons, and delete
buttons. For more information, see “Adding, Removing, and Rearranging Toolbar
Buttons” in Appendix A, “Debugger GUI Reference” in the MULTI: Debugging
book.

Corresponds to: Config → Customize Toolbar

debugbutton, editbutton

debugbutton [num] [name] [c=command] [i=iconname] [h=helpstring] [
t=tooltip]

editbutton [num | name] [c=command] [i=iconname] [h=helpstring] [t=tooltip
]

GUI only

Adds, deletes, or configures a button on the Debugger's (debugbutton) or Editor's
(editbutton) toolbar, where:

• num is the number that MULTI assigns to the button.
• name is the name of the button.
• command is the command executed when the button is pressed. You may use

semicolons to execute multiple commands. For example:

> debugbutton printxy c="print x;print y"

This command creates a button named printxy that, when clicked, prints out
the values of the variables x and y in the current context.

MULTI: Debugging Command Reference84

Chapter 6. Configuration Command Reference

• iconname is the name of the button's icon, which may be:
○ A built-in icon. To obtain the names of built-in icons and to see what the

icons look like, select Config → Options+Editor+Configure Editor
Buttons or, from the Debugger, selectConfig→Customize Toolbar+Add
Custom Button ().

○ The filename of an icon you have created yourself. If only a partial path
is given, it is assumed to be relative to the MULTI IDE installation
directory. For information about creating icons, see “Creating and Working
with Icons” in Chapter 7, “Configuring and Customizing MULTI” in the
MULTI: Managing Projects and Configuring the IDE book.

• helpstring is the text that appears in the status bar when the cursor moves
over the button.

• tooltip is the text that appears when the cursor hovers over the button. If
you do not specify a tooltip, the name of the button is used.

The arguments name, command, iconname, helpstring, and tooltip must be
entered as either single words or quoted strings of the form:

"This is a quoted string."
"These are quotes \" \" within a quoted string."

These commands have the following several special forms:

• debugbutton or editbutton— Lists defined Debugger or Editor buttons. The
debugbutton command does not list theCloseDebugger button or the separator
before it; these cannot be modified or deleted.

• debugbutton 0 or editbutton 0 — Deletes all Debugger or Editor buttons,
with the exception that the debugbutton 0 command does not delete the Close
Debugger button or the separator before it.

• debugbutton num or editbutton num — Deletes the Debugger or Editor
button numbered num. You can view button numbers by entering debugbutton
or editbutton in the command pane.

• debugbutton name [...] — If no optional arguments are specified, deletes the
button named name. If optional arguments are specified and if a button named
name exists, the button is replaced. Otherwise a new button named name is
added to the end of the Debugger toolbar. You can view button names by
entering debugbutton in the command pane.

85Green Hills Software

debugbutton, editbutton

• debugbutton num name [...] — Replaces the button numbered num with a
new button named name. You can view button numbers by entering
debugbutton in the command pane.

You cannot save debugbutton changes across MULTI sessions. As a result, this
command is generally only useful for the creation or modification of buttons executed
by scripts. For information about how to change the Debugger toolbar permanently,
see “Adding, Removing, and Rearranging Toolbar Buttons” in Appendix A,
“Debugger GUI Reference” in the MULTI: Debugging book.

To save editbutton changes across MULTI sessions, select Config → Save
Configuration as User Default.

Note
The debugbutton command does not affect customizations you make
through the Customize Toolbar window. For information about this
window, see “Adding, Removing, and Rearranging Toolbar Buttons” in
Appendix A, “Debugger GUI Reference” in the MULTI: Debugging
book.

inspect

inspect [string]

GUI only

Opens a shortcut menu on string, equivalent to the default behavior when you
right-click string.

This command is generally bound to a mouse click using the mouse command (see
“Customizing Mouse Behavior with the mouse Command” in Chapter 7,
“Configuring and Customizing MULTI” in the MULTI: Managing Projects and
Configuring the IDE book).

See also “browseref, xref” on page 269.

MULTI: Debugging Command Reference86

Chapter 6. Configuration Command Reference

keybind

keybind [location]

keybind key [|modifiers] [@location] [=command]

GUI only

Binds a key to a command. For a complete description of this command, see
“Customizing Keys with the keybind Command” in Chapter 7, “Configuring and
Customizing MULTI” in the MULTI: Managing Projects and Configuring the IDE
book.

menu

menu [name] [{ { label ['label'] cmd } }]

GUI only

Defines a menu item to attach to a menu bar, MULTI button, mouse button, or
keyboard key. For a complete description of this command, see “Configuring and
Customizing Menus” in Chapter 7, “Configuring and Customizing MULTI” in the
MULTI: Managing Projects and Configuring the IDE book.

The l M (lowercase L, uppercase M) command lists the menus defined with this
command (see “l” on page 102).

mouse

mouse [location]

mouse button_num *Clickclick_num [(AtOnce)] [|modifiers] @location =command

GUI only

Defines the function of the mouse buttons. For a complete description of this
command, see the “Customizing Mouse Behavior with the mouse Command” in
Chapter 7, “Configuring and Customizing MULTI” in the MULTI: Managing
Projects and Configuring the IDE book.

87Green Hills Software

keybind

Note
The command arguments should not be separated by spaces.

MULTI: Debugging Command Reference88

Chapter 6. Configuration Command Reference

Chapter 7

Debugger Note Command
Reference

Contents
Debugger Note Commands . 90

The commands in this chapter allow you to create, access, and delete Debugger
Notes. Debugger Notes allow you to associate notes with any line of source or
assembly code. For more information about Debugger Notes, see Chapter 10, “Using
Debugger Notes” in the MULTI: Debugging book.

Debugger Note Commands

The following list provides a brief description of each Debugger Note command.
For a command's arguments and for more information, see the page referenced.

• notedel — Deletes one or more Debugger Notes (see “notedel” on page 90).
• noteedit — Creates a new Debugger Note with the properties specified, or

modifies an existing Note (see “noteedit” on page 91).
• notelist — Lists all Debugger Notes that exist for the current executable (see

“notelist” on page 91).
• notestate— Loads Debugger Notes from the specified file, or saves the current

executable's list of Debugger Notes to the specified file (see “notestate”
on page 92).

• noteview— Navigates to the location of the specified Debugger Note or opens
a Note Browser displaying all Debugger Notes for the program being debugged
(see “noteview” on page 92).

notedel

notedel [@num | address_expression | -all]

Deletes a Debugger Note with the number specified by @num or at the location
specified by address_expression. (For information about using an
address_expression to specify a location, see “Using Address Expressions in
Debugger Commands” on page 5.) If -all is specified, this command deletes all
Debugger Notes. If no argument is specified, the Note at the current position is
deleted. If the last Note in a group is deleted, that group is also deleted.

MULTI: Debugging Command Reference90

Chapter 7. Debugger Note Command Reference

noteedit

noteedit [@num] [address_expression] [-name name] [-group group_name] [-text
text | -prepend text | -append text] [-noedit]

Creates a new Debugger Note with the properties specified, or modifies an existing
Note.

• @num — Specifies the number of the Debugger Note that will be modified.
• address_expression — Specifies the location of the Debugger Note that

will be modified. See “Using Address Expressions in Debugger Commands”
on page 5.

• -name name — Specifies the name of the Debugger Note.
• -group group_name — Specifies the group to which to the Debugger Note

belongs.
• -text text — Specifies the text contained in the Debugger Note.
• -prepend text — Prepends text to an existing Debugger Note.
• -append text — Appends text to an existing Debugger Note.
• -noedit — Suppresses the Edit Note dialog box.

If @num is specified, or @num is not specified and the location specified already
contains a Note, that Note will be edited. If name, group, or text is specified, it
will be changed in the Note.

notelist

notelist [-menu]

Lists all Debugger Notes that exist for the current executable. If no argument is
specified, the Notes are listed in the command pane.

If -menu is specified, a shortcut menu displays the names of the Notes, which you
can use to navigate to one of the Notes. The Notes are divided by group with the
group name dimmed at the beginning of each group. In addition, the four most
recently used Notes are displayed at the top of the menu.

91Green Hills Software

noteedit

notestate

notestate [-load filename | -save filename]

Loads Debugger Notes from the specified file, or saves the current executable's list
of Debugger Notes to the specified file.

If you load Notes from a file, they are merged into the executable's existing list of
Notes (if any). Notes that already exist at a specific location are not replaced by
Notes loaded from the file.

noteview

noteview [@num | -prev | -next | -error]

Navigates to the location of the specified Debugger Note or opens a Note Browser
displaying all Debugger Notes for the program being debugged, where the arguments
have the following effects:

• @num — Goes to the specified Note.
• -prev — Goes to the previous Note.
• -next — Goes to the next Note.
• -error — Displays the error string from the last time a Debugger Note state

was loaded.

If no argument is specified, the Note Browser window opens.

Corresponds to: View → Debugger Notes

MULTI: Debugging Command Reference92

Chapter 7. Debugger Note Command Reference

Chapter 8

Display and Print Command
Reference

Contents
Display and Print Commands . 94

The commands in this chapter allow you to print information to the command pane
and control certain aspects of the MULTI Debugger's display. For information about
the main Debugger window's display, see Chapter 2, “The Main Debugger Window”
in the MULTI: Debugging book.

Display and Print Commands

The following list provides a brief description of each display and print command.
For a command's arguments and for more information, see the page referenced.

• assem — Controls the display mode of the Debugger window's source pane
(see “assem” on page 96).

• cat — Prints the contents of the specified files to the command pane (see “cat”
on page 96).

• clear — Clears the command pane, target pane, I/O pane, serial terminal pane,
Python pane, or traffic pane of the Debugger (see “clear” on page 96).

• comeback — Restores the Debugger and debug-related windows after the
goaway command has hidden them (see “comeback” on page 97).

• components — Lists components and their aliases (see “components”
on page 97).

• dbprint — Prints the source currently being viewed in the Debugger (see
“dbprint” on page 98).

• debugpane — Changes the Debugger command pane to the specified pane
(see “debugpane” on page 98).

• dumpfile — Writes the contents of the Debugger's source pane or the file on
display in the Debugger to a text file (see “dumpfile” on page 99).

• E — Displays the source code corresponding to the stack frame you specify
(see “E” on page 99).

• echo — Prints the given text to the command pane, removing quotation marks
if there are any (see “echo” on page 100).

• eval — Evaluates the given expression (see “eval” on page 100).
• examine — Examines the given object (see “examine” on page 101).
• goaway — Hides the Debugger and debug-related windows (see “goaway”

on page 101).

MULTI: Debugging Command Reference94

Chapter 8. Display and Print Command Reference

• l — Lists various Debugger objects (see “l” on page 102).
• map— Lists the section address map for the current program, including section

starts, ends, and sizes (see “map” on page 103).
• mprintf — Prints to the command pane (see “mprintf” on page 103).
• mrulist — Allows you to display and modify the contents of the most recently

used lists (see “mrulist” on page 104).
• mute — Controls how much output from Debugger commands is displayed

(see “mute” on page 105).
• p, print — Displays the value of the given expression using the specified

format (see “p, print” on page 105).
• printline— Prints the specified number of source lines, starting at the specified

line number (see “printline” on page 106).
• printphys — Takes in a numerical address or an address expression and prints

the physical address mapped to that virtual address (see “printphys”
on page 106).

• printwindow — Prints a specified section of source code (see “printwindow”
on page 106).

• pwd — Prints MULTI's current working directory (see “pwd” on page 107).
• Q — Sets or toggles the Debugger's quiet mode (see “Q” on page 107).
• savedebugpane — Saves the contents of the specified Debugger pane to the

specified file (see “savedebugpane” on page 107).
• windowcopy— Copies the specified window's current selection to the clipboard

(see “windowcopy” on page 108).
• windowpaste, windowspaste — Pastes the current selection into the input

buffer of the specified window (see “windowpaste, windowspaste” on page 108).

95Green Hills Software

Display and Print Commands

assem

assem [on | off | tog | nosource]

GUI only

Controls the display mode of the Debugger window's source pane, where:

• on — Interlaces the appropriate disassembled instructions between lines of
source code. This option corresponds toView→DisplayMode→ Interlaced
Assembly and the button when selected.

• off — Shows source code only. This option corresponds to View → Display
Mode → Source Only and the button when not selected.

• tog — Toggles the display between source code only and interlaced source
code with disassembly. This is the default.

• nosource — Shows disassembly only. This option corresponds to View →
Display Mode → Assembly Only.

If this option is used and the current file contains no program code (such as a
header file), the source file is displayed, but if you navigate to another file that
contains program code, the Debugger displays disassembly only.

cat

cat filename [filename]...

Prints the contents of the specified files to the command pane. Multiple files will
be printed in the order specified, one after the other. If you specify a filename
containing a space, you must enclose filename in double quotation marks.

clear

clear [cmd | target | io | serial | python | traffic]

GUI only

Clears the command pane, target pane, I/O pane, serial terminal pane, Python pane,
or traffic pane of the Debugger. With no arguments, this command clears the pane

MULTI: Debugging Command Reference96

Chapter 8. Display and Print Command Reference

that is currently visible in the Debugger. With cmd, target, io, serial, python,
or traffic specified, this command clears the specified pane.

comeback

comeback

GUI only

Restores the Debugger and debug-related windows after the goaway command has
hidden them (see “goaway” on page 101).

The goaway and comeback commands are only useful when MULTI is being
externally controlled via a command script because there is no way to interactively
issue comeback after goaway has hidden the Debugger.

components

components [component_name]

Lists components and their aliases. When run without the component_name
argument, components lists the unique name of all components in the system along
with a short list of aliases (if any) for each component. When a specific component
name is specified, components lists that component's unique name along with all
of its aliases.

Unique names are of the form:

component.number

where number is unique for each component, and increases from 1. The unique
names of components may change between releases as new types of components
are added.

To create a new alias for a new component, use the new command (see “new”
on page 24).

To route commands to components, use the route command (see “route”
on page 181).

97Green Hills Software

comeback

dbprint

dbprint [w | f]

GUI only

Prints the source currently being viewed in the Debugger. If f is specified, the entire
source file will be printed. If w is specified, only the source lines that are currently
visible in the Debugger window will be printed. If you run this command without
arguments, it has the same effect as dbprint w.

The dbprint w command corresponds to File → Print Window.

The dbprint f command corresponds to File → Print.

debugpane

debugpane [cmd | target | io | serial | python | traffic | next | prev]

GUI only

Changes the Debugger command pane to the specified pane. There are six possible
panes: the command pane, the target pane, the I/O pane, the serial terminal pane,
the Python pane, and the traffic pane.

Specifying cmd, target, io, serial, python, or traffic will switch to that
pane. Specifying next or prev will switch to the next or previous pane (in the
order: command pane, target pane, I/O pane, serial terminal pane, Python pane,
traffic pane). With no arguments, debugpane will switch to the next pane. See also
“savedebugpane” on page 107.

In addition to this command, the Debugger also includes six tabs that allow you to
switch panes. See “The Cmd, Trg, I/O, Srl, Py, and Tfc Panes” in Chapter 2, “The
Main Debugger Window” in the MULTI: Debugging book.

MULTI: Debugging Command Reference98

Chapter 8. Display and Print Command Reference

dumpfile

dumpfile [filename]

GUI only

Writes the contents of the Debugger's source pane to a text file, or, if debug
information is available, writes the entire file. You can use this command to capture
your program's disassembly, as well as source interlaced with your program's
disassembly. The output is written to the specified file, creating the file if necessary.
If no file is specified, you are prompted to name one.

E

E [stack | +[num] | -[num]]

Displays the source code corresponding to the stack frame you specify. If there is
no source for the instructions near the program counter, the Debugger will display
the disassembly of your program at that location.

The E command can be used in the following forms:

• E — Displays the procedure at the top of the stack. This option corresponds
to e 0_ (see “e” on page 133), , and View → Navigation → Current PC.

• E stack— Displays the procedure at call stack frame number stack. Equivalent
to the e num_ command (see “e” on page 133).

• E+[num]— Displays the procedure num procedures above the currently visible
procedure on your process's call stack, where num defaults to 1 if not specified.
For example, E +1 displays one procedure above the current one on the stack.
This is different from E 1, which displays the procedure at stack frame number
one.

This option corresponds to and View → Navigation → UpStack.
• E -[num]— Displays the procedure num procedures below the currently visible

procedure on your process's call stack, where num defaults to 1 if not specified.
For example, E -1 displays one procedure below the current one on the stack.
This is different from E 1, which displays the procedure at stack frame number
one.

99Green Hills Software

dumpfile

This option corresponds to and View → Navigation → DownStack.

echo

echo text

Prints the given text to the command pane, removing quotation marks if there are
any. For example, both of the following give the same result:

> echo foo bar
foo bar
> echo "foo bar"
foo bar

This command differs from the print command, in that the Debugger does not
attempt to evaluate the given text as a programmatic expression (see “p, print”
on page 105).

eval

eval expr

Evaluates expr, which is an expression in the current source language. Note that
this command may read from and write to target memory. This command is similar
to the print command (see “p, print” on page 105), except that it does not echo the
results. This command should be used instead of the print command when
performing I/O accesses, since printing the result of expr may cause an extra read
of the I/O address.

For example:

> eval *(int *)0xffffa0c0 = 0x123

will write 0x123 to the address 0xffffa0c0. For information about accessing I/O
memory, see also the system variable _CACHE in “System Variables” in Chapter
14, “Using Expressions, Variables, and Procedure Calls” in the MULTI: Debugging
book.

MULTI: Debugging Command Reference100

Chapter 8. Display and Print Command Reference

examine

examine [/format] expr

examine address_expression

examine numberb

Examines the given object, possibly with the given formatting options. This
command has three forms:

• When the given argument is [/format] expr, examine is equivalent to print
/format expr, which evaluates the expression and prints the result with the
given formatting options (see “p, print” on page 105).

• When the given argument is address_expression, examine is equivalent
to e address_expression; p address_expression, which displays the given
location in the source pane and then prints the address in the command pane.
See “e” on page 133 and “p, print” on page 105.

• When the given argument is numberb, examine causes MULTI to display the
location where the breakpoint with the ID number is set in the Debugger source
pane.

goaway

goaway

GUI only

Hides the Debugger and debug-related windows such as the Data Explorer, the
Register View window, and the Memory View window. MULTI Editor windows
that were opened from the Debugger are also hidden. Use the comeback command
to restore these windows (see “comeback” on page 97).

The goaway and comeback commands are only useful when MULTI is being
externally controlled via a command script because there is no way to interactively
issue comeback after goaway has hidden the Debugger.

101Green Hills Software

examine

l

l [object] [string]

(This command is a lowercase L.)

Lists various Debugger objects. An optional string argument may be specified
for some types of objects, which restricts file lists to objects whose names contain
string and other lists to objects whose names start with string. Permitted values
for object are as follows:

• [no parameter] — Lists local variables and parameters of the current
procedure.

• @ — Lists the addresses of local variables. For this type of object, if string
is specified, it is interpreted as a procedure name, and variables local to that
procedure are listed. The procedure must be on the stack.

• b — Lists breakpoints. Identical to the B command (see “B” on page 40).
• d — Lists directories that will be searched for source files. Identical to the
source command (see “source” on page 80).

• D — Lists all dialog boxes.
• f — Lists source files (optional string parameter permitted).
• g — Lists global variables (optional string parameter permitted).
• i — Lists source files included by the currently displayed file.
• m — Lists procedures with their mangled names. Like l p, except that the

mangled names of C++ procedures are also listed.
• M — Lists menus defined with the menu command (see “Configuring and

Customizing Menus” in Chapter 7, “Configuring and Customizing MULTI”
in the MULTI: Managing Projects and Configuring the IDE book).

• p — Lists procedures and their addresses. If the optional string parameter
is given, only procedures in file string are displayed. An asterisk (*) indicates
that the procedure has no debugging information. This command takes
wildcards.

• P — Lists processes.
• r — Lists registers (optional string parameter permitted). See also “The

View Menu” in Appendix A, “Debugger GUI Reference” in the MULTI:
Debugging book and “regview” on page 174.

MULTI: Debugging Command Reference102

Chapter 8. Display and Print Command Reference

• R — Lists register synonyms.
• s — Lists system variables (optional string parameter permitted). System

variables that begin with an underscore (_) represent the internal state of the
Debugger and are excluded by default, but you can list them with l s _.

• S— Lists static variables. The optional string parameter may specify a prefix
to the variable name or a filename.

• t — Lists type definitions (optional string parameter permitted).
• T — Lists tasks.
• z — Lists signals.
• proc — Lists all locals and parameters of the procedure proc (which must be

on the stack). If proc is a C++ instance method, this argument lists the this
pointer as well. If proc starts with an @, the addresses of all locals, parameters,
and this are printed.

Corresponds to: View → List → Object

map

map [filename | -modules | -find address]

Lists the section address map for the current program, including section starts, ends,
and sizes.

• filename — Lists the section address map for the specified module only.
• -modules — Lists the names and locations of the currently loaded modules.
• -find address — Lists the module and section that contains the specified

memory address.

mprintf

mprintf (format_string, ...)

Prints to the command pane. This command takes the same syntax as the C library
printf() function, except that the %n conversion specifier is not supported.

103Green Hills Software

map

For example, given the following target code:

char * my_str = "hello world";
int my_int = 10;

And with the following command:

> mprintf("my_str=\"%s\" and (2*my_int+1)=%d", my_str, \
continued> 2*my_int+1);

The Debugger will display:

my_str="hello world" and (2*my_int+1)=21

mrulist

mrulist subcommand [args]

GUI only

Allows you to display and modify the contents of the most recently used (MRU)
lists. Two examples of MRU lists are the recent files list and the recent projects list.

The argument subcommand is required and must be one of the following:

• listall — Lists the name of each existing MRU list.
• print listname — Lists the contents of the specified MRU list.
• insert listname slot entry — Inserts an entry into the specified MRU

list at the specified slot number. The entry will be placed in the specified slot,
and all previous entries at or below the slot will be shifted down by one. If the
slot number is greater than the number of entries, the entry will be added to
the end of the list. The slot numbers are zero based, and the maximum number
of entries is nine; therefore the useful range of slot numbers is 0 to 8.

• delete listname [slot] — Deletes an entry or all entries from the
specified MRU list. If a slot is specified, the entry at the slot is deleted. If no
slot is specified, all entries are deleted.

• change listname slot entry— Changes the entry in the specified MRU
list at the specified slot.

MULTI: Debugging Command Reference104

Chapter 8. Display and Print Command Reference

• update listname entry — Moves the specified entry to the first slot of
the MRU list if the entry already exists in the list, or inserts the entry at the top
of the list if the entry does not already exist in the list.

mute

mute state

Controls how much output from Debugger commands is displayed. The argument
state is required and must be one of the following:

• off — All output from Debugger commands is displayed. This is the default
setting.

• some — Only serious error messages are displayed. All other output is
suppressed.

• on — All output from Debugger commands is suppressed, including all error
messages.

p, print

p [/format] expr

print [/format] expr

Displays the value of the expression expr, using the format format, by evaluating
the expression exactly as the current language does. The expression expr can be
any expression in the current language. For a list of available formats, see
“Expression Formats” in Chapter 14, “Using Expressions, Variables, and Procedure
Calls” in the MULTI: Debugging book.

See also “echo” on page 100, “eval” on page 100, and “examine” on page 101.

Corresponds to: View → Print Expression

105Green Hills Software

mute

printline

printline [count [line]]

Prints count source lines, starting at the file-relative line number line. If count
is not specified, one line is printed. If line is not specified, the current line is the
starting point. The current line is updated to the last line printed after this command
is executed, which will change the source display in GUI mode.

In non-GUI mode, entering a line number prints out that line.

printphys

printphys [address | expression]

Takes in a numerical address or an address expression and prints the physical address
mapped to that virtual address. The following example output is from a Power
Architecture INTEGRITY target being debugged in freeze mode:

> printphys $pc
Virtual: 0x00010318 (main)
Physical: 0x00345318

Note
This command is not supported in run mode or if a TimeMachine-enabled
task is selected in the target list and the target processor does not support
data trace.

printwindow

printwindow [line [num]]

Prints a section of source code, num lines long, centered around the file-relative line
line. The default value for num is specified by the system variable _LINES, which
defaults to 22. The default for line is the current line. See “System Variables” in
Chapter 14, “Using Expressions, Variables, and Procedure Calls” in the MULTI:
Debugging book. The current line is indicated by a greater-than sign (>) between
the line numbers and the source code. The current viewing position is not affected
by this command. See also “printline” on page 106.

MULTI: Debugging Command Reference106

Chapter 8. Display and Print Command Reference

This command is typically used in non-GUI mode.

pwd

pwd

Prints MULTI's current working directory.

Q

Q [0 | 1 | b]

Sets or toggles the Debugger's quiet mode. The command Q 0 turns off quiet mode
(the default for quiet mode is off), the command Q 1 turns on quiet mode, and the
command Q alone toggles quiet mode. When the Debugger is in quiet mode, many
commands are less verbose. For example, when a breakpoint is being set or toggled
in quiet mode, the breakpoint will not be echoed to the command pane.

The command Q b is valid only in a breakpoint's command list. When the process
stops at a breakpoint that contains Q b in its command list, the Debugger will not
print a message about the breakpoint being hit (Stopped by breakpoint).

savedebugpane

savedebugpane [[cmd]|[target]|[io]|[serial]|[python]|[traffic]] ["filename"]

GUI only

Saves the contents of the specified Debugger pane to the file filename. If you do
not specify filename, a Save As dialog box prompting you to choose a file appears.
There are six possible panes: the command pane, the target pane, the I/O pane, the
serial terminal pane, the Python pane, and the traffic pane. If you do not specify a
pane, the contents of the currently visible pane are saved. See also “debugpane”
on page 98.

107Green Hills Software

pwd

windowcopy

windowcopy wid=num

GUI only

Copies the current selection in the window specified by the window identification
number, num, to the clipboard. For more information about window identification
numbers, see “Customizing Keys and Mouse Behavior” in Chapter 7, “Configuring
and Customizing MULTI” in the MULTI: Managing Projects and Configuring the
IDE book.

windowpaste, windowspaste

windowpaste wid=num

windowspaste wid=num

GUI only

Pastes the current selection into the input buffer of the window whose identification
number is num. This command is typically used as part of a mouse or keybind
command. For more information about the mouse and keybind commands and
window identification numbers, see “Customizing Keys and Mouse Behavior” in
Chapter 7, “Configuring and Customizing MULTI” in the MULTI: Managing
Projects and Configuring the IDE book.

The windowspaste command uses the selection, whereas the windowpaste
command uses the clipboard.

MULTI: Debugging Command Reference108

Chapter 8. Display and Print Command Reference

Chapter 9

Help and Information
Command Reference

Contents
Help and Information Commands . 110

The commands in this chapter allow you to access help information or information
about your MULTI installation.

Help and Information Commands

The following list provides a brief description of each help and information
command. For a command's arguments and for more information, see the page
referenced.

• about — Displays information about MULTI (see “about” on page 110).
• aboutlic — Displays information about the licenses in use by MULTI (see

“aboutlic” on page 111).
• bugreport — Launches the gbugrpt utility, which allows you to append

displayed information to a bug report form that you can fill out and email to
Green Hills Software's Technical Support (see “bugreport” on page 111).

• help— Displays or searches for documentation in the Help Viewer (see “help”
on page 111).

• info — Prints information about the state of MULTI (see “info” on page 111).
• usage — Prints the syntax for the specified Debugger command (see “usage”

on page 112).

about

about

Displays information about MULTI.

In GUI mode, this command opens a dialog box that contains information about
the current version of MULTI. In non-GUI mode, this command prints this
information to standard output.

Corresponds to: Help → About MULTI

MULTI: Debugging Command Reference110

Chapter 9. Help and Information Command Reference

aboutlic

aboutlic

GUI only

Displays information about the licenses in use by MULTI.

Corresponds to: Help → License Info

bugreport

bugreport

GUI only

Launches the gbugrpt utility, which displays information about your MULTI
installation and allows you to append it to a bug report form that you can fill out
and email to Green Hills Software's Technical Support.

help

help [keyword | command_name | configuration_option]

Opens the Help Viewer on documentation for command_name or
configuration_option or, if a keyword is specified, searches all manuals for
keyword. If no argument is specified, the MULTI: Debugging book opens in the
Help Viewer.

info

info

Prints the following information about the state of MULTI:

• Debugging status
• Current target connection
• On Linux/Solaris, core file status

111Green Hills Software

aboutlic

• Child program status
• Output recording status
• Command recording status
• Case sensitivity status

usage

usage command

Prints the syntax for the specified MULTI Debugger command.

The conventions for displaying the command syntax in the command pane are
similar to those used in this book (see “Conventions Used in the MULTI Document
Set” on page xviii), with the following exception: In the syntax returned by the usage
command command, words that appear in all capital letters are placeholders and
should be replaced in your actual command line with a value appropriate for your
context. (These placeholders appear in italics, rather than capital letters, in the print
and online documentation.) For example, FILENAME indicates that you should
substitute the name of the file to be used for the operation performed by the
command.

MULTI: Debugging Command Reference112

Chapter 9. Help and Information Command Reference

Chapter 10

MemoryCommandReference

Contents
General Memory Commands . 114

The commands in this chapter allow you to perform memory-related operations
such as filling, copying, or writing to a specified block of memory and performing
memory reads and tests. See also “Cache View Commands” on page 279.

General Memory Commands

The following list provides a brief description of each general memory command.
For a command's arguments and for more information, see the page referenced.
(Note that complete descriptions for some of these commands are located in other
chapters.)

• compare, compareb — Compares two blocks of memory (see “compare,
compareb” on page 115).

• copy, copyb — Copies one region of memory to another (see “copy, copyb”
on page 116).

• disassemble— Disassembles a specified region of memory (see “disassemble”
on page 117).

• fill, fillb — Fills a specified block of target memory (see “fill, fillb”
on page 118).

• find, findb— Searches for a block of memory (see “find, findb” on page 119).
• flash — Writes a file to flash memory on the target (see “flash” on page 120).
• memdump — Copies a section of memory on the target to a specified file on

the host (see “memdump” on page 122).
• memload — Loads the contents of a file on the host machine into a portion of

target memory (see “memload” on page 123).
• memread — Performs a sized memory read from the target and prints the

result (see “memread” on page 124).
• memtest— Configures and launches memory tests (see “memtest” on page 125).
• memview — Opens a Memory View window for displaying and modifying

memory contents (see “memview” on page 273 in Chapter 21, “View Command
Reference” on page 265).

• memwrite — Performs a sized memory write to the target (see “memwrite”
on page 128).

MULTI: Debugging Command Reference114

Chapter 10. Memory Command Reference

• verify — Verifies that the contents of memory match the contents of the
executable program file (see “verify” on page 129).

compare, compareb

compare -gui

compareb -gui

compare [operation] src1 src2 length [size]

compareb [operation] src1 src2 bytes [size]

The -gui argument to the compare or compareb command opens a window where
you can enter the parameters for comparing two blocks of memory.

The compare -gui command corresponds to Target → Memory Manipulation
→ Compare and to the Memory View menu selection Memory → Compare.

The second format of the compare and compareb commands compares the elements
of two regions of memory beginning at the addresses src1 and src2. The size of
the block of memory that is compared is determined by length for the compare
command and bytes for the compareb command.

Corresponding elements from the two locations are each compared in turn, using
the given operation, where each element is size bytes long. For the compare
operation, the total size in bytes of the blocks compared is (length x size), and
for the compareb operation it is bytes. The argument size may be either 1, 2, 4,
or 8 bytes. If size is not specified, the default is the size of an integer on the target
system.

The argument operation may be any of the following values:

• <= — The element in src1 is less than or equal to the element in src2.
• < — The element in src1 is less than the element in src2.
• >= — The element in src1 is greater than or equal to the element in src2.
• > — The element in src1 is greater than the element in src2.
• == — The element in src1 is equal to the element in src2.
• !=— The element in src1 is not equal to the element in src2.

115Green Hills Software

compare, compareb

If operation is not specified, equality (==) is used.

The compare and compareb commands will print each pair of corresponding
elements that have the relationship described by operation.

The following example compares two overlapping arrays of six 4-byte integers.
The first array starts at 0x10000, and the second at 0x10008. The compare
command displays only the pairs that satisfy operation.

> compare >= 0x10000 0x10008 6 4
0x10000, 0x10008 : 2091264888, 2086935416
0x10004, 0x1000c : 2089100152, 945815572
0x10008, 0x10010 : 2086935416, 1279398274
0x10014, 0x1001c : 1207968893, 1099038740

These commands require that MULTI be connected to a target and that the target
be in a state such that MULTI can access memory.

To interrupt these commands, press Esc.

copy, copyb

copy -gui

copyb -gui

copy src dest length [size] [direction]

copyb src dest bytes [size]

The -gui argument to the copy or copyb command opens a window where you
can enter the parameters for copying one region of memory to another.

The copy -gui command corresponds to Target → Memory Manipulation →
Copy and to the Memory View menu selection Memory → Copy.

The second format of the copy and copyb commands copies a block of memory
with elements of size size from src to dest. For the copy command, the block
consists of length elements of size size. Thus, the total size of memory copied
in bytes is (length x size). For the copyb command, the total size of the block
is bytes. The argument size may be either 1, 2, 4, or 8 bytes. If size is not

MULTI: Debugging Command Reference116

Chapter 10. Memory Command Reference

specified, it defaults to the size of an integer on the target system. For the copy
command, the direction of the copy may be specified by direction, and may be
either forw for forward copying [default], or backw for reverse copying.

Reverse copying is the same as forward copying, except that the elements at the
end of the block are written first, before the elements at the beginning of the block.
Reverse copying will have the same effect as forward copying, unless the src and
dest regions overlap.

These commands require that MULTI be connected to a target and that the target
be in a state such that MULTI can access memory.

To interrupt these commands, press Esc.

disassemble

disassemble [-quiet] addr_expr [size]

disassemble [-quiet] -section section

disassemble [-quiet] -recheck

Disassembles a specified region of memory and adds it to MULTI's cache. By
default, the disassembled instructions are displayed in the command pane. Available
options are:

• -quiet — Specifies that disassembled instructions should not be displayed
in the command pane.

• addr_expr [size] — Specifies the region of memory to disassemble,
beginning at addr_expr and ending size bytes later. However, if the last
instruction of the region continues past size bytes, the full instruction is
disassembled. addr_expr may be any expression that represents a memory
address. If size is not specified, MULTI disassembles the region of memory
starting at addr_expr and ending at the end of the containing function.

• -section section — Specifies the section of memory to disassemble.
• -recheck — Performs the last disassembly again.

117Green Hills Software

disassemble

fill, fillb

fill -gui

fillb -gui

fill dest length [value [size]]

fillb dest bytes [value [size]]

The -gui argument to the fill or fillb command opens a window where you can
enter the parameters for filling a specified block of memory.

The fill -gui command corresponds to Target → Memory Manipulation → Fill
and to the Memory View menu selection Memory → Fill.

The second format of the fill and fillb commands fills the target's memory with the
given value. For the fill command, the block starts at dest and extends for length
elements of size bytes. Thus, the total size of the block in bytes is (length x
size). For the fillb command, the block has a length in bytes of bytes. The block
will be filled with value, or zero if value is not specified. The argument size is
the number of bytes to place value in and may be either 1, 2, 4, or 8. If size is
not specified, the default is the size of an integer on the target system. If value is
too large to fit in the elements of the size given, the most significant bits of value
are truncated.

These commands require that MULTI be connected to a target and that the target
be in a state such that MULTI can access memory.

To interrupt these commands, press Esc.

MULTI: Debugging Command Reference118

Chapter 10. Memory Command Reference

find, findb

find -gui

findb -gui

find src length value [size [mask]]

findb src bytes value [size [mask]]

The -gui argument to the find or findb command opens a window where you can
enter the parameters for searching for a value in memory.

The find -gui command corresponds to Target → Memory Manipulation →
Find.

The findb -gui command corresponds to the Memory View menu selection
Memory → Find.

The second format of the find and findb commands searches memory starting at
src for an element that is size bytes long and has the given value. The argument
size may be 1, 2, 4, or 8 bytes and, if not specified, is the size of an integer on the
target system. For the find command, the search stops when length elements have
been checked. For the findb command, the search stops when bytes bytes have
been checked. If mask is specified, it is logically ANDedwith each memory location
value before being compared with value. Every match found is listed on a separate
line with the address of the match.

These commands require that MULTI be connected to a target and that the target
be in a state such that MULTI can access memory.

To interrupt these commands, press Esc.

119Green Hills Software

find, findb

flash

flash gui [program_name]

flash burn [-baseaddress=address] [-type= elf | raw | srec] [-offset=offset]
[-executable=filename] [-endian= big | little | auto] [-rambase=address]
[-script=filename] [-eraseonly= yes | no] [-unlock= yes | no] [-verify= yes | no]
[-memrequire=kilobytes]

The gui argument to the flash command opens a window where you can enter the
parameters for writing a file to flash memory on the target. The available option is:

• program_name — Opens this window on the program specified. If you do
not specify a program_name, this window opens on the program you are
debugging.

The flash gui command corresponds to Target → Flash.

See also “prepare_target” on page 228.

The burn argument to the flash command causes the MULTI Fast Flash
Programmer to write a file to flash memory on the target, where:

• -baseaddress=address — Specifies the base address of the flash memory
in the target memory map. address can be in decimal or hex format. This
defaults to the last value you specified for this executable. If no previous value
is available, 0 is used.

• -type=elf|raw|srec — Identifies the file format of the file to be written
to flash memory (that is, the file specified via the -executable argument).
Use elf if the file format is ELF. Use raw if the file is an unformatted memory
image. Use srec if the file is a collection of S-Records. This defaults to elf.

• -offset=offset — Specifies an offset for the write. If the file is a memory
image, the offset is the location relative to the base address where it will be
written. If the file is an ELF or S-Record format program, the offset is added
to the addresses of each section. This defaults to 0.

• -executable=filename — Specifies the path on the host of the file to be
written to flash memory. This defaults to the program you are currently
debugging.

MULTI: Debugging Command Reference120

Chapter 10. Memory Command Reference

• -endian=big|little|auto — Specifies the endianness of the target CPU.
This defaults to auto, which causes the MULTI Fast Flash Programmer to
read the setting from the debug adapter.

• -rambase=address — Sets the location in target RAM where the MULTI
Fast Flash Programmer will temporarily store agents and other data. This
defaults to the RAM base address defined in the executable's linker directives
file. If the RAM base address cannot be determined, the last value you specified
for this executable is used; otherwise, 0 is used.

• -script=filename — Specifies the path to a setup script that will be run
before the flash programming session. This defaults to the setup script path (if
any) provided in the target's connection settings.

• -eraseonly=yes|no — This disables the programming function of the
MULTI Fast Flash Programmer, which causes the sectors covered by the
input file to be left in the erased state. This defaults to no.

• -unlock=yes|no — Specifies whether locked sectors should be unlocked
before programming. This defaults to no. Reprogramming locked sectors may
change the boot sequence of the target board.

• -verify=yes|no — Enables or disables the verification stage of flash
programming. This defaults to yes.

• -memrequire=kilobytes — Specifies, in kilobytes, the amount of target
RAM to be used for target agents and other data. Generally, increasing this
value results in faster flash programming. This defaults to all available RAM
(up to 2 MB) as defined in the executable's linker directives file. If the amount
of available RAM cannot be determined, 128 KB is used.

This command requires that MULTI be connected to a target and that the target be
in a state such that MULTI can access memory.

For more information, see Chapter 22, “Programming Flash Memory” in theMULTI:
Debugging book.

121Green Hills Software

flash

memdump

memdump -gui

memdump [-append] [srec | raw] filename start length

memdump [-append] [srec | raw] filename section

The -gui argument to the memdump command opens a window where you can
enter the parameters for copying a block of memory on the target to a file on the
host.

Thememdump -gui command corresponds toTarget→MemoryManipulation
→ Memory Dump and to the Memory View menu selection Memory → Dump.

The second and third formats of thememdump command copy a section of memory
on the target to a file on the host, where:

• -append — Adds data to the end of the file rather than overwriting existing
data in the file.

• srec — Specifies Motorola S-Record format.
• raw — Specifies raw binary data.
• filename — Specifies the file that memory is copied to.
• start — Specifies the starting address in memory to dump.
• length — Specifies how many bytes of data to dump to the file, beginning at
start.

• section — Specifies the name of a section in memory to dump.

Both thememload andmemdump commands support three file formats: S-Record,
raw, and default. If you do not specify srec or raw, the default format is used. For
a detailed description of these formats, see “memload” on page 123.

This command requires that MULTI be connected to a target and that the target be
in a state such that MULTI can access memory.

To interrupt this command, press Esc.

MULTI: Debugging Command Reference122

Chapter 10. Memory Command Reference

memload

memload -gui

memload [srec | raw | legacy] [-w size] filename [start [length]]

The -gui argument to the memload command opens a window where you can
enter the parameters for loading the contents of a file on the host machine into a
portion of memory on the target.

The memload -gui command corresponds to Target → Memory Manipulation
→ Memory Load and to the Memory View menu selection Memory → Load.

The second format of the memload command loads the contents of a file on the
host machine into a portion of target memory, where:

• srec — Specifies Motorola S-Record format.
• raw — Specifies raw binary data.
• legacy — Specifies that MULTI should use the default format written by

MULTI 4 and earlier. This option is only available from the command line.
• filename — Specifies the file to load into memory.
• start — Specifies the starting address in memory to load.
• length — Specifies how many bytes of data to load into memory, beginning

at start. The length argument must be a multiple of size.
• size — Specifies the size (in bytes) of the individual memory writes. The

value must be 1, 2, or 4. The default, which depends on your target hardware
and debug server, is selected to optimize loading performance.

Both the memload and memdump (see “memdump” on page 122) commands
support three file formats: S-Record, raw, and default.

To use the S-Record format, specify the srec option. If the arguments start,
length, or size are specified, they are ignored. The file is read as a Motorola
S-Records file.

To use the raw format, specify the raw option. In this format, the file contains only
the binary data, with no formatting or header information. This format is appropriate
for transferring data to external tools that deal with binary data. The starting address
startmust be specified. This command loads the specified file, starting at the first

123Green Hills Software

memload

byte of the file, and continuing for length bytes. If length is not specified, this
command will load the entire content of the file.

To use the default format, do not specify the srec or raw option. This file format
is proprietary and non-portable. The address and size of the memory region is stored
at the beginning of the file in host byte order, using the host integer size. The actual
content of the memory region follows the address and size, and is handled as a
series of bytes. If start and length are omitted, the values specified when the
file was created are used.

If MULTI is always run on a single host, the default format is the easiest to use
when dumping memory to be read back into MULTI. Because the memdump
command records the address and size in the file (see “memdump” on page 122), it
is not necessary to specify either when using the memload command to load a file
into memory that was created with memdump.

To load default format files that were created by MULTI 4 or earlier, specify the
legacy option.

This command requires that MULTI be connected to a target and that the target be
in a state such that MULTI can access memory.

To interrupt this command, press Esc.

memread

memread size address

Performs a sized memory read from the target and prints the result. This command
is intended to be used to perform low-level reads from regions of memory or
memory-mapped I/O registers. This command does not make use of MULTI's
memory cache, and the read is performed immediately. See also the system variable
_CACHE in “System Variables” in Chapter 14, “Using Expressions, Variables, and
Procedure Calls” in the MULTI: Debugging book.

size may be 1, 2, or 4. Some targets, such as the Green Hills Probe and
INTEGRITY 10 or later, also support 8. The units are bytes. address must be
aligned correctly to the nearest size bytes.

MULTI: Debugging Command Reference124

Chapter 10. Memory Command Reference

memtest

memtest start_addr end_addr -size=size -test=test_choice [-pattern=value] [
-complement | -rotate | -random | -complement -rotate] [-maxtransitions]
[-resetpattern] [-repeat=number_of_tests | -continuous] [-maxerr=number_of_errors
| -writeonly] [-tgtagent] [-tgtagentstart | -tgtagentend | -tgtagentloc=expr]

Configures and launches memory tests, where:

• start_addr — Defines the lowest address to test. start_addr must be an
expression that evaluates to a 32-bit address.

• end_addr — Defines the highest address to test. end_addr must be an
expression that evaluates to a 32-bit address.

• size — Indicates the access size (in bytes) to use when performing the test.
Valid sizes are 1, 2, and 4.

• -test=test_choice — Defines the type of test to run. Acceptable values
for test_choice are:

○ a1 — Address walking one test (destructive)
○ a0 — Address walking zero test (destructive)
○ d1 — Data walking one test (destructive)
○ d0 — Data walking zero test (destructive)
○ p — Data pattern test (destructive)
○ r — Memory read test (nondestructive)
○ cr — CRC computation (nondestructive)
○ cc — CRC compare test (nondestructive)
○ fr — Find start/end ranges test (nondestructive)

More than one of the destructive memory test options (a1, a0, d1, d0, and p)
can be specified by using multiple -test=test_choice arguments. The
nondestructive tests (r, cr, cc, and fr) must be performed individually. For
descriptions of these tests, see “Types of Memory Tests” in Chapter 21, “Testing
Target Memory” in the MULTI: Debugging book.

• -pattern=value — Specifies the data value to use for address bus walking
and/or data pattern tests.

125Green Hills Software

memtest

• -complement — Causes the data pattern value for pattern tests to be
complemented between memory writes. (This option can be passed with the
-rotate option. If both -complement and -rotate are specified, the pattern
will be rotated every other write and complemented every write, resulting in a
write sequence similar to 0x01, 0xfe, 0x02, 0xfd, ...)

• -rotate — Causes the data pattern for pattern tests to be rotated between
writes. (This option can be passed with the -complement option as well,
causing the pattern value to be both complemented and rotated between
iterations. See the description for -complement above.)

• -random — Causes a pseudorandom sequence of values to be used for the
pattern test. (This option cannot be used with either the -complement or the
-rotate options.)

• -maxtransitions — Causes MULTI to use a sequence of addresses in the
data pattern or memory read tests that maximizes the address line transitions
between accesses. (The default behavior is to access memory sequentially from
low addresses to high addresses.)

• -resetpattern — Causes MULTI to use the same starting pattern value for
each test iteration rather than using a complemented, rotated, or subsequent
pseudorandom value.

• -repeat=number_of_tests — Specifies the number of times to repeat a
test or tests. (This option cannot be passed with the -continuous option, and
does not apply to the CRC compute or find start/end ranges tests.)

If a -repeat value is specified with multiple memory tests, all selected tests
are run during each iteration. For example, the options -test=a0 -test=p
-repeat=2 would set the test sequence as:

Address walking zero
Pattern
Address walking zero
Pattern

• -continuous — Specifies that the test(s) will run continuously. (This option
cannot be passed with the -repeat=number_of_tests option, and does not
apply to the CRC compute or find start/end ranges tests.)

• -maxerr=number_of_errors — Causes MULTI to abort the test(s) after
detecting the specified number of errors. This option cannot be used with the
-writeonly option.

MULTI: Debugging Command Reference126

Chapter 10. Memory Command Reference

• -writeonly — Causes MULTI to skip the reading phase of the address bus
walking, data bus walking, and data pattern tests. This option cannot be used
with the -maxerr=number_of_errors option.

• -tgtagent — Causes MULTI to download and use a target-resident agent to
perform the memory tests (rather than using the Debugger).

• -tgtagentstart — Specifies that the target agent be placed at the start of
the memory range to be tested. This option is only valid when used with the
-tgtagent option.

• -tgtagentend — Specifies that the target agent be placed at the end of the
memory range to be tested. This option is only valid when used with the
-tgtagent option.

• -tgtagentloc=expr— Specifies that the target agent be placed at the location
specified by the expression expr. This memory location should not overlap
the test range, and must be valid for the test to be performed successfully.

For further details about test types and options, see “Advanced Memory Testing:
Using the Perform Memory Test Window” in Chapter 21, “Testing Target Memory”
in the MULTI: Debugging book and “Types of Memory Tests” in Chapter 21,
“Testing Target Memory” in the MULTI: Debugging book.

Note
The memtest command syntax can be complex, because of the variety
of test types and options available. For this reason, we recommend that
you use theMemoryTestWizard or thePerformMemoryTestwindow
to configure and run memory tests. Even if you want to write scripts that
contain memory testing commands, you can still use the interactive
interfaces to determine the exact command syntax for the specific testing
options you want to use. To do this, use one of these GUIs to configure
the test you want to run, and then run the test. When the test completes,
theMemoryTest Resultswindow will display the exact command syntax
that corresponds to the testing options you specified. You can use the
command syntax given there from the Debugger command pane or in
scripts you write. For more information, see “Advanced Memory Testing:
Using the Perform Memory Test Window” in Chapter 21, “Testing Target
Memory” in the MULTI: Debugging book and “Viewing Memory Test
Results” in Chapter 21, “Testing Target Memory” in the MULTI:
Debugging book.

127Green Hills Software

memtest

memwrite

memwrite size address value

memwrite -str address "string"

Performs a sized memory write to the target. This command is intended to be used
to perform low-level writes to regions of memory or memory-mapped I/O registers.
This command does not make use of MULTI's memory cache, and the write is
performed immediately. This command has two possible formats.

In the first format, without -str specified, memwrite performs a sized memory
write, where:

• size — Specifies the access size in bytes and may be 1, 2, or 4. Some targets,
such as the Green Hills Probe and INTEGRITY 10 or later, also support 8.

• address— Specifies the memory address at which to begin writing. address
must be aligned correctly to the nearest size bytes.

• value — Specifies the value to be written. If value is too large to fit in size
bytes, it is truncated to fit.

In the second format, with -str specified, memwrite writes the specified string
to the target, including the terminating null character, where:

• address — Specifies the memory address at which to begin writing.
• “string” — Specifies a string constant to be written to the target. The

quotation marks are part of the syntax and must appear around string.

See also the system variable _CACHE in “System Variables” in Chapter 14, “Using
Expressions, Variables, and Procedure Calls” in the MULTI: Debugging book.

MULTI: Debugging Command Reference128

Chapter 10. Memory Command Reference

verify

verify [-quiet] [-sparse] -all | -recheck | -section section_name | address_expression
[num_addresses]

Verifies that the contents of memory match the contents of the executable program
file. If there are any coherency errors (that is, discrepancies), the associated lines
are highlighted in the source pane, and a list of differing addresses are printed to
the command pane (both the in-memory and the executable program file values are
shown). A progress bar displays the work done; Esc aborts processing.

Available options are:

• -quiet— Highlights lines associated with coherency errors but does not print
output to the command pane. Highlighting is done in the source pane.

• -sparse — Verifies only a few bytes at the beginning, middle, and end of the
indicated range. This allows you to run a quick coherency scan rather than a
complete test. This option has no meaning and is ignored if specified in
conjunction with -recheck.

• -all — Verifies all downloaded non-data sections that cannot be written to.
The .text section is an example of one such section. This may take a long
time.

Because certain sections of memory, such as .bss, .data, and .heap, may
be written to during program execution, you can expect them to differ from
the executable program file. When you specify this option, the verify command
does not check these sections. However, you can verify them manually by
specifying verify -section section_name.

• -recheck— Re-examines any addresses that were previously found to contain
coherency errors.

• -section section_name — Verifies the section section_name.
• address_expression [num_addresses]— Verifies the block of memory

starting at the address expression address_expression and continuing for
num_addresses, where num_addresses is the number of addresses to verify.
If you omit num_addresses, this command verifies until the end of the
function that encloses address_expression.

129Green Hills Software

verify

You can verify sections from any module loaded into target memory (including
shared objects such as libc.so). However, if multiple identically named sections
exist, verify -section section_name verifies only the first section_name
it finds. For example, if .text appears first in a shared object and then in an
executable program file, verify -section .text finds .text only in the shared
object. To more accurately specify sections, use the map command to determine
the starting address and size of the section you want to verify (see “map”
on page 103).

For more information about coherency errors, see “Detecting Coherency Errors”
in Chapter 21, “Testing Target Memory” in the MULTI: Debugging book.

See also “prepare_target” on page 228.

MULTI: Debugging Command Reference130

Chapter 10. Memory Command Reference

Chapter 11

Navigation Command
Reference

Contents
Navigation Commands . 132

The commands in this chapter allow you to navigate the code displayed in the
Debugger source pane. See also Chapter 16, “Search Command Reference”
on page 211.

Navigation Commands

The following list provides a brief description of each navigation command. For a
command's arguments and for more information, see the page referenced.

• + — Moves your current viewing position in the source pane the specified
number of lines toward the end of the file (see “+” on page 132).

• - — Moves your current viewing position in the source pane the specified
number of lines toward the beginning of the file (see “-” on page 133).

• e — Navigates around your program in the Debugger's source pane (see “e”
on page 133).

• indexnext — Changes the current viewing location to the next item in
Debugger's history list (see “indexnext” on page 134).

• indexprev — Changes the current viewing location to the previous item in the
Debugger's history list (see “indexprev” on page 135).

• number — Moves your current viewing position in the source pane to the
file-relative line number specified (see “number” on page 135).

• scrollcommand — Scrolls the given window by the specified amount and in
the specified direction (see “scrollcommand” on page 135).

• switch — Changes the selection in the target list (see “switch” on page 137).
• uptosource — Displays the first procedure on the stack that contains source

code (see “uptosource” on page 137).

+

+ [num]

GUI only

Moves your current viewing position in the source pane num lines toward the end
of the file. The default value for num is 1 line.

MULTI: Debugging Command Reference132

Chapter 11. Navigation Command Reference

-

- [num]

GUI only

Moves your current viewing position in the source pane num lines toward the
beginning of the file. The default value for num is 1 line.

e

e [address_expression]

Navigates around your program in the Debugger's source pane. You can also use
this command to open a Browse window. This is one of the most powerful and
commonly used navigation features of the MULTI Debugger.

If address_expression is specified, the e command changes your current viewing
location in the code to that address expression. See “Using Address Expressions in
Debugger Commands” on page 5. With no arguments, this command prints your
viewing location in the code. There are several forms of the e command.

• e — Shows current file, procedure, line number, and address. For example:
test.c:PrintLine#28: 0x411c

• e proc — Displays procedure proc. If a wildcard pattern such as
My*Functions is given, a Browse window opens to display all of the
procedures that match that pattern. If only one procedure matches the specified
pattern, that procedure will be displayed without a Browse window opening.

• e "file"#proc— Displays procedure proc in file file. If the procedure element
consists of a wildcard pattern (for example, "test.c"#My*Functions), a
Browse window opens to display all of the procedures that match that pattern
within the file file. If only one procedure matches the specified pattern, that
procedure will be displayed without a Browse window opening.

• e file — Displays the file file. If a wildcard pattern such as my*file.c is
given, a Browse window opens to display all of the files in the program that
match that pattern. If there is only one such match, that file will be displayed
without a Browse window opening.

133Green Hills Software

-

• e variable — Displays the source location where the variable variable is
defined. This is only valid for variables with unique names that have absolute
locations (i.e., global and file static variables).

• e num_ — Displays the procedure at call stack frame number num. The call
stack frame number must be followed by an underscore (_). Use the calls
command to view the entire call stack (see “calls” on page 68).

• e address_expression — Displays the procedure at the given address. See
“Using Address Expressions in Debugger Commands” on page 5.

• e +offset— Displays the source associated with the instructions that are offset
source lines after the currently viewed location.

• e -offset — Displays the source associated with the instructions that are offset
source lines before the currently viewed location.

• e numb — Displays the procedure containing breakpoint number num. For
example, e 1b displays the procedure containing breakpoint number one. You
can use the B command to view breakpoint numbers (see “B” on page 40).

Corresponds to: View → Navigation → Goto Location

indexnext

indexnext

GUI only

Changes the current viewing location to the next item in Debugger's history list.
See also “Using Navigation History Buttons” in Chapter 9, “Navigating Windows
and Viewing Information” in the MULTI: Debugging book.

Corresponds to:

MULTI: Debugging Command Reference134

Chapter 11. Navigation Command Reference

indexprev

indexprev

GUI only

Changes the current viewing location to the previous item in the Debugger's history
list. See also “Using Navigation History Buttons” in Chapter 9, “Navigating
Windows and Viewing Information” in the MULTI: Debugging book.

Corresponds to:

number

number

GUI only

Moves your current viewing position in the source pane to the file-relative line
number number. This command ignores the option Use procedure relative line
numbers (vs. file relative) (procRelativeLines).

scrollcommand

scrollcommand [+ | -] max[l | c] [wid=num]

scrollcommand [+ | -] page[l | c] [wid=num]

scrollcommand [+ | -] count [l | c] [wid=num]

GUI only

Scrolls the window indicated by the identification number num by the specified
amount and in the specified direction.

With Format 1, the window is scrolled completely to the beginning (-max) or the
end of its view (+max or max).

With Format 2, the window is scrolled to the previous page (-page) or the next
page (+page or page).

135Green Hills Software

indexprev

With Format 3, the window is scrolled by the count number of lines or characters,
where count may be positive or negative.

If count, max, or page is followed by the letter c, the scroll is horizontal and count
corresponds to the number of characters.

If count, max, or page is followed by the letter l (lowercase L), the scroll is vertical
and count corresponds to the number of lines. Vertical scrolling is the default, if
neither c nor l is specified.

The window identification number num is obtained by using the special sequence
%w with either the mouse command or the keybind command (see the keybind and
mouse commands in “Customizing Keys and Mouse Behavior” in Chapter 7,
“Configuring and Customizing MULTI” in the MULTI: Managing Projects and
Configuring the IDE book). If no window identification number is specified, the
source window is used.

For example, the following command scrolls the source pane one line towards the
end of the file:

> scrollcommand 1

The following scrolls the pane that is currently visible in the Debugger (for example,
the command pane) backwards by two lines:

> scrollcommand -2 wid=-2

The following scrolls the source pane three characters to the right:

> scrollcommand 3c

Both of the following commands scroll the source pane to the beginning of the
code:

> scrollcommand -max
> scrollcommand -maxl wid=-1

MULTI: Debugging Command Reference136

Chapter 11. Navigation Command Reference

switch

switch -direction up | -direction down | -direction up+ | -direction down+ | -selectall
| -component component_name | -item item_prefix

Changes the selection in the target list. The arguments for this command are:

• -direction up|down — Moves the selection up or down one entry.
• -direction up+|down+ — Extends the selection up or down one entry.
• -selectall — Selects all entries in the target list.
• -component component_name — Selects the entry in the target list that

matches the specified component, if possible. Some components may not be
supported. For information about listing components, see “components”
on page 97.

• -item item_prefix — Selects the first entry that matches the given prefix
string. Note that prefixes with spaces must be quoted.

uptosource

uptosource

Displays the first procedure on the stack that contains source code. This command
does not change the program counter or execute any program instructions on the
target.

Corresponds to: View → Navigation → UpStack To Source

137Green Hills Software

switch

Chapter 12

Profiling Command
Reference

Contents
Profiling Commands . 140

The commands in this chapter allow you to control MULTI's profiling capabilities,
enable the collection of profiling data, open the Profilewindow, and access profiling
information.

The button and menu choices listed alongside the following commands are displayed
in the Profile window.

For more information about profiling, see Chapter 17, “Collecting and Viewing
Profiling Data” in the MULTI: Debugging book.

For information about the protrans shell command, which is used to invoke the
protrans utility, see the documentation about the protrans utility in the MULTI:
Building Applications book.

Profiling Commands

The following list provides a brief description of each profiling command. For a
command's arguments and for more information, see the page referenced.

• profdump — Retrieves profiling data from the target (see “profdump”
on page 140).

• profile — Enables collection of profiling data and opens the Profile window
(see “profile” on page 141).

• profilemode — Controls MULTI's profiling capabilities (see “profilemode”
on page 141).

• profilereport — Displays, saves, or prints Profile window reports (see
“profilereport” on page 144).

profdump

profdump

Retrieves profiling data from the target. You can use this command in conjunction
with the profilemode clear command (see “profilemode” on page 141) to examine
profiling data gathered between two points of execution.

MULTI: Debugging Command Reference140

Chapter 12. Profiling Command Reference

The profdump command is not supported in all contexts. For more information
about using this command, see “Manually Dumping Profiling Data” in Chapter 17,
“Collecting and Viewing Profiling Data” in the MULTI: Debugging book.

Corresponds to: Profile window button

profile

profile

GUI only

Enables the collection of profiling data and opens the Profile window. For
information about the Profile window, see “The Profile Window” in Chapter 17,
“Collecting and Viewing Profiling Data” in the MULTI: Debugging book.

This command is not supported if you are profiling a trace-enabled target. See
“tracepro” on page 253 instead.

Corresponds to: View → Profile

profilemode

profilemode add | automatic | clear | close | count | coverage | import | long | manual
| percent | process | range start_addr end_addr | replace | short | start | stop | time
time_unit

Controls MULTI's profiling capabilities. Available arguments (along with
corresponding Profile window buttons and/or menu selections) follow. Note that
many of the arguments are context-sensitive. For information about the contexts in
which an argument is supported, see the referenced section.

• add (Config → New Data → Added to Old) — Adds new profiling data to
existing profiling data. For more information, see “Adding to or Overwriting
Existing Profiling Data” in Chapter 17, “Collecting and Viewing Profiling
Data” in the MULTI: Debugging book. See also the replace argument.

• automatic (Config→Data Processing→Automatic) — Processes profiling
data automatically when it is dumped. This is the default behavior unless you
are using INTEGRITY. See also the manual and process arguments.

141Green Hills Software

profile

• clear () — Deletes existing profiling data. You may be able to use the
profilemode clear command in conjunction with the profdump command
(see “profdump” on page 140) to examine profiling data gathered between two
points of execution.

• close (and File → Close) — Closes the Profile window, which halts the
collection of profiling data and clears existing profiling data.

• count () — Displays, to the left of each line in the Debugger, the total
number of times each line (or instruction) was executed, or displays the total
number of times each function was called. For more information, see “Viewing
Profiling Information in the Debugger” in Chapter 17, “Collecting and Viewing
Profiling Data” in the MULTI: Debugging book. See also the coverage and
percent arguments.

• coverage () — Highlights, in the Debugger, lines of dead code (lines that
were never executed). For more information, see “Viewing Profiling Information
in the Debugger” in Chapter 17, “Collecting and Viewing Profiling Data” in
the MULTI: Debugging book. See also the count and percent arguments.

• import — Loads a .pro file output by protrans. For more information, see
“Manually Processing Profiling Data” in Chapter 17, “Collecting and Viewing
Profiling Data” in the MULTI: Debugging book.

• long (Config → Function Names → Long) — Displays fully qualified
function names in Profile window reports. Fully qualified function names
include all C++ qualifiers, such as namespace and class names, function
arguments, and template information. This argument has no effect on the display
of C functions. See also the short argument.

• manual (Config → Data Processing → Manual) — Prevents profiling data
from being processed automatically when it is dumped. For more information,
see “Manually Processing Profiling Data” in Chapter 17, “Collecting and
Viewing Profiling Data” in the MULTI: Debugging book. See also the
automatic and process arguments.

• percent () — Displays, to the left of each line in the Debugger, the
percentage of time spent in each source line. If you are in assembly display
mode, the percentage represents the time spent on each instruction. For more
information, see “Viewing Profiling Information in the Debugger” in Chapter
17, “Collecting and Viewing Profiling Data” in the MULTI: Debugging book.
See also the count and coverage arguments.

MULTI: Debugging Command Reference142

Chapter 12. Profiling Command Reference

• process () — Processes profiling data. For more information, see “Manually
Processing Profiling Data” in Chapter 17, “Collecting and Viewing Profiling
Data” in the MULTI: Debugging book. See also the automatic and manual
arguments.

• range start_addr end_addr — Performs a range analysis on the range
beginning with start_addr and ending with end_addr and displays the
results in the command pane. For more information, see “Performing Range
Analyses” in Chapter 17, “Collecting and Viewing Profiling Data” in the
MULTI: Debugging book.

• replace (Config → New Data → Replaces Old) — Overwrites existing
profiling data with new profiling data. For more information, see “Adding to
or Overwriting Existing Profiling Data” in Chapter 17, “Collecting and Viewing
Profiling Data” in the MULTI: Debugging book. See also the add argument.

• short (Config → Function Names → Short) — Omits C++ qualifiers from
the function names displayed in Profile window reports. This is the default
behavior. This argument has no effect on the display of C functions. See also
the long argument.

• start () — Enables the collection of PC samples. This argument is only
supported if you are profiling a run-mode task or AddressSpace on an
INTEGRITY target or if you are profiling a stand-alone program. See also the
stop argument.

• stop () — Disables the collection of PC samples. This argument is only
supported if you are profiling a run-mode task or AddressSpace on an
INTEGRITY target or if you are profiling a stand-alone program. See also the
start argument.

• time time_unit (Config → Time Units → time_unit)— Displays all times
in the Profile window in the specified time_unit, where time_unit may
be seconds, milliseconds, instructions, or cycles. Not all units are
available with all targets.

For more information, see Chapter 17, “Collecting and Viewing Profiling Data” in
the MULTI: Debugging book.

143Green Hills Software

profilemode

profilereport

profilereport append [filename] | calls | coveragedetailed | coveragesummary |
graph | print | save [filename] | sourcelines | status

GUI only

Allows you to display, save or print Profile window reports. This command is only
supported if the Profile window is open. Available arguments are:

• append [filename] — Appends the text of the report currently displayed
in the Profile window to an existing on-disk report. If filename is specified,
the report is appended to that file.

• calls — Displays the standard calls report if available.
• coveragedetailed — Displays the block detailed report if available.
• coveragesummary — Displays the coverage report if available.
• graph — Displays the call graph report if available.
• print— Prints the text of the report currently displayed in the Profilewindow.
• save [filename] — Saves the text of the report currently displayed in the
Profile window. If filename is specified, the report is saved to that file. The
default file extension given to the saved text file is .rep.

• sourcelines — Displays the source report if available.
• status — Displays the status report.

For more information, see “Profiling Reports” in Chapter 17, “Collecting and
Viewing Profiling Data” in the MULTI: Debugging book.

MULTI: Debugging Command Reference144

Chapter 12. Profiling Command Reference

Chapter 13

Program Execution
Command Reference

Contents
General Program Execution Commands . 146
Continue Commands . 148
Halt Commands . 152
Run Commands . 153
Single-Stepping Commands . 158
Task Execution Commands . 165
Signal Commands . 166

The commands in this chapter allow you to control the execution of programs in
the Debugger.

General Program Execution Commands

The following list provides a brief description of each general program execution
command. For a command's arguments and for more information, see the page
referenced.

• g — Changes the program counter so that the specified address expression
becomes the next instruction to be executed (see “g” on page 146).

• getargs — Shows the current arguments that will be passed to your program
the next time it is run (see “getargs” on page 146).

• setargs— Sets program arguments for the next time the stand-alone application
is started from MULTI (see “setargs” on page 147).

g

g address_expression

Changes the program counter so that address_expression becomes the next
instruction to be executed. You cannot set the next execution point to an address
that is outside the current procedure.

getargs

getargs

Shows the current arguments that will be passed to your program the next time it
is run. Both getargs and setargs are only applicable to the debugging of programs
that take arguments in the traditional main(argc,argv) sense. The following
example shows the use of setargs, getargs, and r. (See also “setargs” on page 147
and “r” on page 154.)

MULTI: Debugging Command Reference146

Chapter 13. Program Execution Command Reference

> setargs abc def ghi
> getargs
abc def ghi
> r
running "a.out abc def ghi"

setargs

setargs [program_arguments]

Sets program arguments for the next time the stand-alone application is started from
MULTI. If no arguments are specified, no arguments will be passed to the program.

Arguments must be in a space-separated list and may contain <, >, or >> to redirect
standard input (stdin) and standard output (stdout). Text between quotation
marks, either single (' ') or double (" "), is treated as a single argument. The
quotation marks are removed and are not sent to the program. Arguments containing
the MULTI command syntax comment delimiter (//) must be enclosed in quotation
marks (for example, setargs -perform_url_operation
"http://www.example.com").

On Linux/Solaris, a tilde (~) expands the same way as the shell if you are running
csh. However, other shell processing, such as wildcard expansion and pipes, is not
performed.

This command is only applicable to the debugging of programs that take arguments
in the traditional main(argc,argv) sense.

See also “getargs” on page 146 and “r” on page 154.

Corresponds to: Debug → Set Program Arguments

147Green Hills Software

setargs

Continue Commands

The commands in this section allow you to continue a stopped process.

Some of the continue commands use the @continue_count argument to specify
how many breakpoints the Debugger will pass before stopping. For example, if
continue_count is 4, the Debugger will skip over the next three breakpoints and
stop the process at the fourth breakpoint, unless stopped earlier by the optional
address expression described below.

Note
Only breakpoints that stop program execution are counted. A conditional
breakpoint whose condition is false or a breakpoint whose commands
resume a process are not counted.

You can view the continue_count by using the CONTINUECOUNT system variable.
See “System Variables” in Chapter 14, “Using Expressions, Variables, and Procedure
Calls” in the MULTI: Debugging book.

Most of the continue commands also accept an optional address expression. If
specified, a temporary breakpoint is set at that location. The breakpoint is removed
as soon as it is reached and the process is stopped, even if fewer than
continue_count breakpoints were skipped. For more information about address
expressions, see “Using Address Expressions in Debugger Commands” on page 5.

Note
In MULTI 4.x, if you wanted to debug your program from its start address
(typically _start), you had to set a breakpoint at the start address and
continue to it, even after using the load command to load your program.
In MULTI 5.x and later, you can use load or prepare_target -load to
debug your program from its start address. If you have already executed
load or prepare_target -load, the continue commands will not hit a
breakpoint set at the program start address. See “load” on page 227 and
“prepare_target” on page 228.

The following list provides a brief description of each continue command. For a
command's arguments and for more information, see the page referenced.

• c — Continues a stopped process (see “c” on page 149).

MULTI: Debugging Command Reference148

Chapter 13. Program Execution Command Reference

• cb— Continues a stopped process and does not process any further commands
until your process has stopped again (see “cb” on page 150).

• cf — Continues a stopped process from the given address expression instead
of the current program counter (see “cf” on page 150).

• cfb — Continues a stopped process from the given address expression instead
of the current program counter, and does not process any further commands
until your process has stopped again (see “cfb” on page 151).

• runtohere— Runs to the current line or address (see “runtohere” on page 151).

c

c [@continue_count] [expr]

Continues a stopped process. Available options are:

• @continue_count — Specifies the continue count. For more information,
see “Debugger Command Conventions” on page 3.

• expr — Specifies an address expression where a temporary breakpoint is set.
If the temporary breakpoint is hit, the process stops even if fewer than
continue_count breakpoints were skipped.

On Linux/Solaris, if the process stops because of a signal, the c command continues
with or without the signal based on the current signal handling specified for that
signal by the zignal command (see “zignal” on page 166).

To interrupt this command, press Esc.

See also “cu, cU” on page 161.

Corresponds to:

Corresponds to: Debug → Go on Selected Items

149Green Hills Software

c

cb

cb [@continue_count] [expr]

Continues a stopped process and does not process any further commands until your
process has stopped again. Available options are:

• @continue_count — Specifies the continue count. For more information,
see “Debugger Command Conventions” on page 3.

• expr — Specifies an address expression where a temporary breakpoint is set.
If the temporary breakpoint is hit, the process stops even if fewer than
continue_count breakpoints were skipped.

The cb command behaves like the c command except that further commands are
blocked until the process has stopped. Signals for cb are handled as they are for c.
See “c” on page 149.

Some commands, such as data printing and viewing commands, only work correctly
when your process is stopped. When these commands appear in a script that controls
your process, it is important to ensure that your process has stopped before executing
these commands. Using the cb command makes sure your process stops running
before further script commands are executed. Your process will stop running once
it has done one of the following:

• Run to completion.
• Hit a breakpoint.
• Stopped with an exception, signal, segmentation violation, bus error, or similar

cause.

To interrupt this command, press Esc.

cf

cf address_expression

Continues a stopped process from the given address_expression instead of the
current program counter. This will have the effect of skipping some of your
program's code and is equivalent to issuing a g command followed by a c command
(see “g” on page 146 and “c” on page 149). The given address_expressionmust

MULTI: Debugging Command Reference150

Chapter 13. Program Execution Command Reference

describe a location within the currently executing procedure. See “Using Address
Expressions in Debugger Commands” on page 5.

The following example installs a breakpoint on line 12 of procedure foo. When
the process hits the breakpoint, it will continue from line 14 of procedure foo,
effectively skipping lines 12 and 13 of procedure foo.

> b foo#12 { cf foo#14; }

The following example installs a breakpoint at label bar of procedure foo. When
the process hits the breakpoint, it will continue from the exit point of the procedure,
effectively skipping the rest of the procedure and returning immediately.

> b foo##bar { cf ($retadr()) }

To interrupt this command, press Esc.

cfb

cfb address_expression

Continues a stopped process from the given address_expression instead of the
current program counter. This command behaves like the cf command, except that
no further commands will be processed until your process has stopped again (see
“cf” on page 150). For a discussion of command blocking, see “cb” on page 150.

To interrupt this command, press Esc.

runtohere

runtohere

Runs to the current line or address.

This command sets a temporary breakpoint on the current line or current address
and executes the c command (see “c” on page 149). Upon reaching the temporary
breakpoint, the process stops and the Debugger automatically clears the breakpoint.

151Green Hills Software

cfb

As an alternative to using this command, you can double-middle-click anywhere
on a line to make the process run to that line (assuming that you have not configured
a double-middle-click to perform a different function).

To interrupt this command, press Esc.

Halt Commands

The commands in this section allow you to halt the process being debugged.

The following list provides a brief description of each halt command. For a
command's arguments and for more information, see the page referenced.

• H — Prints the cause of a halt (see “H” on page 152).
• halt — Halts the current process (see “halt” on page 152).
• k — Kills the current process (see “k” on page 153).

H

H

Prints the cause of a halt.

halt

halt [{commands}]

Halts the current process. The process halts without sending an interrupt, allowing
you to cleanly continue the process later.

If Debugger commands are specified in commands (see “Using Command Lists in
Debugger Commands” on page 12), the specified commands will be executed when
the process halts.

Corresponds to:

Corresponds to: Debug → Halt on Selected Items

MULTI: Debugging Command Reference152

Chapter 13. Program Execution Command Reference

k

k [force]

Kills the current process. The process must be halted in order to be killed. Specifying
k force kills the process without asking for verification.

Corresponds to: Debug → Kill Selected Items

Run Commands

The commands in this section allow you to run the program being debugged.

The following list provides a brief description of each run command. For a
command's arguments and for more information, see the page referenced.

• bc — Runs a halted process backward (see “bc” on page 154).
• r — Runs a new target program and passes the specified arguments to the

program in a space-separated list (see “r” on page 154).
• R — Runs a new target process with no arguments (see “R” on page 155).
• rb, Rb — Runs or restarts the program (see “rb, Rb” on page 155).
• restart — Restarts program execution or resets aspects of program and

target (see “restart” on page 156).
• resume — Resumes program execution at the specified address expression,

after all other commands in the breakpoint command list have been issued (see
“resume” on page 156).

• rundir— Changes the directory or prints the current run directory (see “rundir”
on page 157).

• runtask — Starts a task running on a VxWorks target (see “runtask”
on page 157).

153Green Hills Software

k

bc

bc

TimeMachine command, GUI only

Runs a halted process backward. The process runs either until a breakpoint is hit
or the first traced instruction is reached.

Corresponds to:

r

r [arguments]

Runs a new target program and passes arguments to the program in a
space-separated list. (For example, the command r fly 3, runs the program with
the two arguments fly and 3.) If a process already exists, the Debugger kills it and
then prepares the target using the current prepare target settings (see “prepare_target”
on page 228).

Program arguments can only be passed to stand-alone applications that are started
from MULTI. If no arguments are specified, the ones from the previous run are
used. If no previous run exists, no arguments are used.

Arguments may contain <, >, or >> to redirect standard input (stdin) and standard
output (stdout). Text between quotation marks, either single (' ') or double ("
"), is treated as a single argument. The quotation marks are removed and are not
sent to the program. Arguments containing the MULTI command syntax comment
delimiter (//) must be enclosed in quotation marks (for example, r
-perform_url_operation "http://www.example.com").

On Linux/Solaris, a tilde (~) expands the same way as the shell if you are running
csh. However, other shell processing, such as wildcard expansion and pipes, is not
performed.

See also “setargs” on page 147, “restart” on page 156, and “R” on page 155.

MULTI: Debugging Command Reference154

Chapter 13. Program Execution Command Reference

R

R

Runs a new target process with no arguments. If the process already exists, it will
be killed and restarted.

See also “r” on page 154.

rb, Rb

rb [arguments]

Rb

Runs or restarts the program. These commands behave like the r and R commands
except that no further commands will be processed until the process terminates, hits
a breakpoint, or stops in any other way (see “r” on page 154 and “R” on page 155).
While the command line input is blocked, you can still perform all interactive
operations appropriate to a process, such as pressing the Halt button.

This command is useful for writing scripts that control execution of a process
running on the target, since you often want to perform the next command only after
the process stops.

The Rb command behaves like rb, except that it runs the program without
arguments.

To interrupt these commands, press Esc.

See also “cb” on page 150, “r” on page 154, and “R” on page 155.

155Green Hills Software

R

restart

restart

Restarts program execution or resets aspects of program and target, depending on
debugging context and specified arguments.

• During native and embedded debugging, this command is identical to the r
command with no arguments (see “r” on page 154).

• During debugging of Dynamic Download INTEGRITY applications, this
command attempts to (re)load the application. This command may not be
available for use with relocatable modules.

Corresponds to:

Corresponds to: Debug → Restart

resume

resume [address_expression]

(This command is only valid within a breakpoint command list. See “Using
Command Lists in Debugger Commands” on page 12.)

Resumes program execution at the specified address_expression, after all other
commands in the breakpoint command list have been issued. If no
address_expression is specified, the process will resume from the location of
the breakpoint. See “Using Address Expressions in Debugger Commands”
on page 5.

For example, to skip over line 5 in your program, you could use the following
command, which makes the process stop at line 5 and then resume execution at line
6:

> b 5 {resume 6}

resume will continue the process in the same manner that the breakpoint was
encountered. For example, if the Debugger was performing a c (continue) command
when the breakpoint was encountered, the c command will be resumed. If the

MULTI: Debugging Command Reference156

Chapter 13. Program Execution Command Reference

Debugger was performing an S (single-step) command and the step completed when
the breakpoint was encountered, the process stops.

rundir

rundir [dir | -clear]

Changes the directory or prints the current run directory, where:

• dir — Changes the directory in which the process runs to dir. The run
directory setting is saved between sessions.

For embedded processes that use host I/O, dir becomes the directory that
MULTI uses to perform host I/O operations. Processes that have already started
running when the rundir command is issued are not affected by the new host
I/O directory setting.

For information about the GUI equivalent of the rundir dir command, see the
description of the Start in field in “The Arguments Dialog Box” in Appendix
A, “Debugger GUI Reference” in the MULTI: Debugging book.

• -clear — Removes any saved run directory setting and changes the run
directory back to the default directory. The default directory is the current
working directory.

If you do not specify an argument, this command prints the current run directory.

runtask

runtask proc [args]

Starts a task running on a VxWorks target, where:

• proc is the name of any downloaded procedure.
• args is a list of space delimited arguments to pass to the procedure. Acceptable

values for args are:

○ Decimal and hexadecimal numeric constants.
○ Character constants.

157Green Hills Software

rundir

○ String constants enclosed in double quotation marks (" ").
○ Names of global variables (the & operand cannot be used here).
○ I/O redirection operators < and >.

During C++ debugging, proc may be the member function of a global object,
specified as object.function. If the requested function is ambiguous, MULTI
will open a dialog box showing all the options so you can choose the correct one.

Single-Stepping Commands

The commands in this section allow you to single-step through your program. The
commands differ in whether they allow you to step into or step over procedure calls
and whether they advance by a single machine instruction or a single high-level
source line or statement, as shown in the table below.

Steps over
procedure calls

Steps into
procedure calls

Sl

nl

slAdvances one high-level statement

Si

ni

siAdvances one machine instruction

S

n

sAdvances one machine instruction when in
either assembly-only mode or interlaced
assembly mode. Advances one high-level
statement in source-only mode.

The single-stepping commands listed in the above table accept the following optional
parameters:

• num — Specifies how many single-steps to perform. If no num is specified,
one step is performed. If a breakpoint is encountered before num steps have
taken place, the remainder of the steps are aborted.

• n | b — Specifies whether Debugger commands are blocked during the
single-step. If b (blocking) is specified, no Debugger commands will be
executed until the step finishes. If n is specified, subsequent Debugger
commands can execute before the step is finished. If neither n nor b is specified,
the step will be blocking or non-blocking according to the BlockStep

MULTI: Debugging Command Reference158

Chapter 13. Program Execution Command Reference

configuration option, which defaults to non-blocking, but can be changed from
the configuration GUI or via the configure BlockStep command. For more
information about the BlockStep configuration option, see “The More
Debugger Options Dialog” in Chapter 8, “Configuration Options” in theMULTI:
Managing Projects and Configuring the IDE book.

Tip
If you inadvertently step into a procedure (with an s, si, or sl command),
you can issue the cU command (see “cu, cU” on page 161), click the
button, or press F9 to return from the procedure.

The following list provides a brief description of each single-stepping command.
For a command's arguments and for more information, see the page referenced.

• bcU — Steps backward, up to the caller of the current function (see “bcU”
on page 160).

• bprev — Steps backward one statement, stepping over procedure calls (see
“bprev” on page 160).

• bs — Steps backward one statement (see “bs” on page 160).
• bsi — Steps backward one machine instruction (see “bsi” on page 161).
• cu, cU— Steps up to the caller of the current function or to the specified address

expression (see “cu, cU” on page 161).
• s — Single-steps one statement, stepping into any procedure calls (see “s”

on page 161).
• S, n — Single-steps one statement, stepping over procedure calls instead of

into procedures (see “S, n” on page 162).
• si — Single-steps one machine instruction, stepping into procedure calls (see

“si” on page 163).
• Si, ni — Single-steps one machine instruction, stepping over procedure calls

(see “Si, ni” on page 163).
• sl — Single-steps one high-level language statement, stepping into procedure

calls (see “sl” on page 163).
• Sl — Single-steps one high-level language statement, stepping over procedure

calls (see “Sl, nl” on page 164).

159Green Hills Software

Single-Stepping Commands

• stepinto — Sets a temporary breakpoint in the supplied function and steps
once (see “stepinto” on page 164).

bcU

bcU

TimeMachine command, GUI only

Steps backward, up to the caller of the current function.

Corresponds to:

bprev

bprev

TimeMachine command, GUI only

Steps backward one statement, stepping over procedure calls.

Corresponds to:

bs

bs

TimeMachine command, GUI only

Steps backward one statement. In assembly-only mode or interlaced assembly mode,
this command will step one machine instruction instead of one high-level statement.
To step backward one machine instruction unconditionally, use the bsi command
instead (see “bsi” on page 161).

Corresponds to:

MULTI: Debugging Command Reference160

Chapter 13. Program Execution Command Reference

bsi

bsi

TimeMachine command, GUI only

Steps backward one machine instruction. For source-level stepping, use the bs
command (see “bs” on page 160).

s

s [num] [n | b]

Single-steps one statement, stepping into any procedure calls. The options num, n,
and b behave as specified in “Single-Stepping Commands” on page 158.

In assembly-only mode or interlaced assembly mode, the s command steps one
machine instruction instead of one high-level statement. For information about these
modes, see “Source Pane Display Modes” in Chapter 2, “The Main Debugger
Window” in the MULTI: Debugging book.

To interrupt this command, press Esc.

Corresponds to: F11

Corresponds to:

Corresponds to: Debug → Step (into Functions) on Selected Items

cu, cU

cu [address_expression]

cU [address_expression]

With no argument, steps up to the caller of the current function. This is useful if
you have accidentally single-stepped into a procedure that you meant to step over,
or if you want execution to proceed to another place further up the call stack.

If address_expression is specified, steps up to the caller of the current function
or to the temporary breakpoint set at address_expression—whichever is reached

161Green Hills Software

bsi

first. For more information about address expressions, see “Using Address
Expressions in Debugger Commands” on page 5.

The cu command sets a permanent breakpoint at the return site of the currently
executing procedure. The cU command sets a temporary breakpoint at the return
site of the currently executing procedure. The cu and cU commands handle signals
like the c command. See “c” on page 149.

The cu and cU commands rely on the Debugger's ability to generate a partial stack
trace. They may not work correctly (for example, they may set a breakpoint at the
wrong address) if the stack trace obtained by the Debugger is incorrect. For
restrictions on tracing the call stack, see “Viewing Call Stacks” in Chapter 18,
“Using Other View Windows” in the MULTI: Debugging book.

For information about continuing a stopped process from an up-level breakpoint,
see “bu, bU” on page 44.

cU corresponds to:

cU corresponds to: Debug → Return on Selected Items

S, n

S [num] [n | b]

n [num] [n | b]

Single-steps one statement, stepping over procedure calls instead of into procedures.
The options num, n, and b behave as specified in “Single-Stepping Commands”
on page 158.

To interrupt these commands, press Esc.

Corresponds to: F10

Corresponds to:

Corresponds to: Debug → Next (over Functions) on Selected Items

MULTI: Debugging Command Reference162

Chapter 13. Program Execution Command Reference

si

si [num] [n | b]

Single-steps one machine instruction, stepping into procedure calls. The options
num, n, and b behave as specified in “Single-Stepping Commands” on page 158.

This command behaves like the s command (see “s” on page 161), except that the
si command causes the process to advance by one machine instruction instead of
one high-level source line. Furthermore, the stop position is displayed as a
disassembled instruction.

To interrupt this command, press Esc.

Si, ni

Si [num] [n | b]

ni [num] [n | b]

Single-steps one machine instruction, stepping over procedure calls. The options
num, n, and b behave as specified in “Single-Stepping Commands” on page 158.

These commands behave like the S and n commands (see “S, n” on page 162), except
that the Si and ni commands cause the process to advance by one machine instruction
instead of one high-level source line, and the stop position is displayed as a
disassembled instruction.

To interrupt these commands, press Esc.

sl

sl [num] [n | b]

(This command is a lowercase S and a lowercase L.)

Single-steps one high-level language statement (even if you are viewing your code
in interlaced assembly mode), stepping into procedure calls. The options num, n,
and b behave as specified in “Single-Stepping Commands” on page 158.

163Green Hills Software

si

To interrupt this command, press Esc.

Sl, nl

Sl [num] [n | b]

(This command is an uppercase S and a lowercase L.)

nl [num] [n | b]

(This command is a lowercase N and a lowercase L.)

Single-steps one high-level language statement (even if you are viewing your code
in interlaced assembly mode), stepping over procedure calls. The options num, n,
and b behave as specified in “Single-Stepping Commands” on page 158.

To interrupt these commands, press Esc.

stepinto

stepinto expr

Sets a temporary breakpoint in the supplied function and steps once. This command
is useful in situations where there are a number of functions on a single line but
you are interested in stepping into only one of them. The breakpoint used is a special
type of breakpoint that will only trigger one stack level below the current stack
level. This command performs the same action as the Step Into This Function
right-click menu option.

MULTI: Debugging Command Reference164

Chapter 13. Program Execution Command Reference

Task Execution Commands

The command in the following section allows you to control one or more run-mode
tasks.

taskaction

taskaction -r|-h|-s [-addressSpace address_space_name] [-taskname] task_name1
[,task_name2]... | [-taskid] task_id1 [,task_id2]...

Performs an operation on the run-mode task(s) specified by task name or task ID.
Possible operations are:

• -r — Resumes the task(s).
• -h — Halts the task(s).
• -s — Single-steps the task(s).

If neither -taskname nor -taskid is specified, MULTI assumes that numeric
entries are task IDs and that other entries are task names.

The -addressSpace option is used to specify an INTEGRITY AddressSpace in
which the specified task or tasks exist. Use this option if you want to refer to a task
by name, but more than one AddressSpace contains a task with that name. This
option is only meaningful if you are debugging an INTEGRITY process.

165Green Hills Software

Task Execution Commands

Signal Commands

The commands in this section are only applicable to Linux/Solaris targets.

The following list provides a brief description of each signal command. For a
command's arguments and for more information, see the page referenced.

• signal — Sends the given signal to the specified process or to the current
process (see “signal” on page 166).

• zignal — Sets up the signal handling table (see “zignal” on page 166).

signal

signal signal [pr=num]

Linux/Solaris targets only

Sends the signal signal to the process specified by slot number num, or to the
current process if num is not specified.

Note
Sending a fatal signal (for example, SIGKILL) to a stopped process may
have unpredictable results.

zignal

zignal signal [s] [i] [r] [b] [C] [Q]

Linux/Solaris targets only

Sets up the signal handling table. To list the current signal settings, use the l z
command (see “l” on page 102).

The optional flags are described below.

• s — Toggles stop. If stop is on, the process stops when the signal occurs.
• i — Toggles ignore. If ignore is on, the Debugger does not send the signal

to the process.

MULTI: Debugging Command Reference166

Chapter 13. Program Execution Command Reference

• r — Toggles report. If report is on, a message is displayed every time the
signal occurs.

• b — Toggles bell. If bell is on, a beep sounds every time the signal occurs.
• C — Clears the signal by setting all four of the above flags to false.
• Q — Does not print the new state of the signal.

For example, if the default state is do not stop, do not ignore, do not report, and no
bell, the command zignal 14 sr sets the alarm clock signal to stop, do not ignore,
report, and no bell. Running zignal 14 sr again toggles these flags back to the
previous state. Running zignal 14 Csb, in any signal state, will set the alarm
clock signal to stop, do not ignore, beep, and do not report.

Modifying the state of the “breakpoint” signal (usually SIGTRAP) is not supported.

167Green Hills Software

zignal

Chapter 14

Register Command
Reference

Contents
Register Commands . 170

The commands in this chapter allow you to modify register definitions while
debugging a program; open windows for viewing registers; and add, remove, load,
and save registers. For more information about working with registers, see Chapter
13, “Using the Register Explorer” in the MULTI: Debugging book.

Note
Any modifications to the register descriptions made from the command
line are active only until you reload the program or connect to a different
target. For persistent modifications, you must use rc files or customize
the default register description files. See “Customizing Registers in
Default .rc Files” in Chapter 13, “Using the Register Explorer” in the
MULTI: Debugging book.

Register Commands

The following list provides a brief description of each register command. For a
command's arguments and for more information, see the page referenced.

• regadd — Dynamically adds a memory-mapped register into the Debugger
context and opens a Register Setup dialog, which allows you to specify other
basic information for the register (see “regadd” on page 171).

• regappend — Loads the register description file specified by the given file,
and applies the modifications to the registers defined in the Debugger (see
“regappend” on page 171).

• regbasefile — Prints out the full path to the file that is used as the base for the
register descriptions of the active Debugger (see “regbasefile” on page 171).

• regload — Removes all of the registers that are currently defined in the
Debugger and creates a new set of registers from the register definition file
specified (see “regload” on page 172).

• regtab — Modifies the configuration of the specified tab on all open Register
View windows (see “regtab” on page 172).

• regunload — Removes all of the registers that are defined in the specified file
(see “regunload” on page 173).

• regvalload — Loads register values from the specified file (see “regvalload”
on page 174).

• regvalsave — Saves register values (see “regvalsave” on page 174).

MULTI: Debugging Command Reference170

Chapter 14. Register Command Reference

• regview — Opens a Register View window displaying all registers, or opens
aRegister Informationwindow displaying the specified register (see “regview”
on page 174).

regadd

regadd name address [size_in_bytes]

Dynamically adds a memory-mapped register into the Debugger context and opens
a Register Setup dialog, which allows you to specify other basic information for
the register. For more information, see “The Register Setup Dialog” in Chapter 13,
“Using the Register Explorer” in the MULTI: Debugging book.

regappend

regappend filename

Loads the register description file specified by filename, and applies the
modifications to the registers defined in the Debugger. If you do not provide an
absolute path to filename, MULTI searches the following directories in the order
listed:

1. The current working directory.
2. The registers directory located in your personal configuration directory.
3. The registers directory located in the site-wide configuration directory.
4. The registers directory located in the MULTI defaults directory.

By storing frequently used register additions and modifications in a file, you can
use regappend to quickly insert them into your Debugger.

regbasefile

regbasefile

Prints out the full path to the file that is used as the base for the register descriptions
of the active Debugger. This is the full path to the root GRD file—the file that was

171Green Hills Software

regadd

automatically loaded by MULTI or the file from the most recent regload command
(see “regload” on page 172).

regload

regload [filename]

GUI only

Removes all of the registers that are currently defined in the Debugger and creates
a new set of registers from the register definition file filename. If you do not
provide an absolute path to filename, MULTI performs an ordered search of the
directories listed in “regappend” on page 171. If no filename is specified, the default
register definition files are reloaded.

We recommend that you use the regappend command (see “regappend” on page 171)
unless the file you are loading contains one of the default register description files
via a %include directive, or describes all of the registers you want to use.

regtab

regtab [-norefresh] operation tab

GUI only

Modifies the configuration of the specified tab on all openRegister Viewwindows,
where:

• -norefresh — Specifies that open Register View windows will not be
updated to reflect the changes indicated by the regtab command. This option
is useful for avoiding screen flicker when issuing multiple consecutive regtab
commands in scripts or loops on the command line.

• operation — Specifies the configuration modification to be performed on
the tab specified by tab. One of the operations listed below must be specified.

○ -show group — Shows the group or register identified by the
dot-separated path group.

○ -hide group — Hides the group or register identified by the
dot-separated path group.

MULTI: Debugging Command Reference172

Chapter 14. Register Command Reference

○ -reroot group — Re-roots the tab at the group specified by the
dot-separated path group.

○ -unroot — Unroots the tab.
○ -insert — Adds a new tab named tab.
○ -remove — Deletes the specified tab.
○ -promote — Moves the tab one to the left in the tab ordering.
○ -demote — Moves the tab one to the right in the tab ordering.
○ -activate — Makes the specified tab the active tab.

The group argument required by some of the above options indicates the group
or register to use in the operation, and is a path that lists the name of the item
to be used, preceded by the names of all of its parent groups. For example, to
specify a register named f0 that is contained within a 64-bit subgroup of the
Floating Point Registers group, the dot-separated group path would
be:

Floating Point Registers.64-bit.f0

Quotation marks are not required around the group path even if the path contains
spaces.

• tab— Specifies the tab to be modified and must be the last argument for every
regtab command. The tab name must contain only alphanumeric characters
and underscores and does not require quotation marks.

This command only changes the appearance of open Register View windows. It
has no effect if no Register View windows are open in the current Debugger.

regunload

regunload filename

Removes all of the registers that are defined in the file filename, which has been
incrementally loaded using the regappend command (see “regappend” on page 171)
or the File → Load Register Definitions from File menu option in the Register
View window.

173Green Hills Software

regunload

regvalload

regvalload [filename]

Loads register values from filename. If no filename is specified, a file chooser
for register value files (.grv) is displayed so you can select a file containing register
values.

For information about the simple syntax of register value files, examine a saved
register file (see “regvalsave” on page 174).

regvalsave

regvalsave [-all|-tab|-selected] [-nomemmapped] [filename]

Saves register values, where:

• -all — Saves values for all registers in the Debugger. This is the default
behavior.

• -tab — Saves values for all registers visible in the current tab of the Register
View window. (See “The Register View Window” in Chapter 13, “Using the
Register Explorer” in the MULTI: Debugging book.)

• -selected — Saves values for all selected registers in the current tab of the
Register View window.

• -nomemmapped— Prevents memory-mapped registers from being saved. This
option qualifies the behavior of -all, -tab, and -selected.

• filename — Specifies the .grv file in which to save the register values. If no
filename is specified, a file chooser prompts you to select a .grv file.

regview

regview [register_name]

GUI only

Opens a Register View window displaying all of the registers, or opens a Register
Information window displaying the specified register. The leading $ in register

MULTI: Debugging Command Reference174

Chapter 14. Register Command Reference

name will be omitted. See “The Register View Window” in Chapter 13, “Using the
Register Explorer” in the MULTI: Debugging book.

Corresponds to:

Corresponds to: View → Registers

175Green Hills Software

regview

Chapter 15

Scripting Command
Reference

Contents
Command Manipulation and Macro Commands . 178
Conditional Program Execution Commands . 185
Dialog Commands . 189
External Tool Commands . 192
History Commands . 193
Hook Commands . 196
MULTI-Python Script Commands . 200
Object Structure Awareness (OSA) Commands . 202
Record and Playback Commands . 208

The commands in this chapter are particularly useful within scripts. See also Chapter
1, “Using MULTI Scripts” in the MULTI: Scripting book.

Command Manipulation and Macro Commands

The commands in this section manipulate other commands or deal with macros.

The following list provides a brief description of each command manipulation and
macro command. For a command's arguments and for more information, see the
page referenced.

• alias — Creates or lists aliases (see “alias” on page 179).
• cedit — Prints the output of the specified command to an Editor window (see

“cedit” on page 179).
• define — Creates a macro for later use in the Debugger (see “define”

on page 179).
• macrotrace — Prints the stack of all presently executing macro commands

(see “macrotrace” on page 181).
• return— Returns from the currently executing macro, evaluating the specified

expression and returning it as the macro value (see “return” on page 181).
• route— Routes the specified command to the specified component (see “route”

on page 181).
• sc — Performs syntax checking on either a single command or an entire script

file and all nested script files (see “sc” on page 182).
• shell — Invokes a shell to run the specified shell commands (see “shell”

on page 182).
• substitute — Executes the output of the specified command string as a

Debugger command (see “substitute” on page 183).
• unalias — Reverses a previous alias command (see “unalias” on page 184).

MULTI: Debugging Command Reference178

Chapter 15. Scripting Command Reference

alias

alias [string1 [string2]]

Creates or lists aliases.

• If no strings are specified as arguments, the alias command lists all aliases.
• If only one string argument is specified, the alias command lists the alias

(that is, the value that is substituted for the string by the alias), if any exists.
• If two strings are specified, the alias command translates string1, when

encountered as the first word in a command, into string2. Substitution is
only performed once, so references to other aliases are ignored. For example,
if you enter:

> alias sh showdef

you will be able to type sh instead of showdef to use the showdef command.

string1 must follow the rules of C/C++ identifiers. It may not be quoted, may not
contain spaces, and must begin with a letter or underscore.

See also “unalias” on page 184.

cedit

cedit command

GUI only

Executes the command specified as its argument and places the command output
in an Editor window. This is useful for examining the output of commands that
print large amounts of information.

define

define name([arguments]) { body }

Creates a macro for later use in the Debugger.

name is the name of the macro followed by a set of arguments to pass to the macro.

179Green Hills Software

alias

The body of the macro is a command list that can contain if statements and loops
(see “if” on page 187, “do” on page 186, “for” on page 187, and “while” on page 188).
Macros can also return a value by using the return command in the body (see
“return” on page 181). See also “Using Command Lists in Debugger Commands”
on page 12.

The macro's arguments can be accessed as local variables in the macro body. You
may also refer to your program's variables, or to special Debugger variables. See
“MULTI Special Variables and Operators” in Chapter 14, “Using Expressions,
Variables, and Procedure Calls” in the MULTI: Debugging book. When resolving
the value of a variable within the body of the macro, the Debugger searches the list
of macro arguments before searching any registers, special variables, or program
variables. As a result, if an argument in a macro has the same name as a register,
you cannot reference that register from within the macro.

Macro arguments may not be accessible inside the body of some commands, but
will instead be used literally. One method of avoiding this problem is to use the
substitute command (see “substitute” on page 183). For example:

> define fails(bar) { b bar }
> fails(main)
No match to bar*
> define works(bar) {substitute %EVAL{mprintf("b %s",bar)}}
> works("main")

main#1: 0xlocation count: 1

You can invoke a macro by issuing the command name([argument_values]).
The statements in the body of the macro will then be executed as described above.

For example, you can define a macro that returns the sum of its arguments like this:

> define sum(x, y) {return(x + y)}
> sum(3,6)
9

A trace of the macro call stack can be produced with the macrotrace command
(see “macrotrace” on page 181). If an error occurs inside of a macro, a trace of the
macro's invocation stack is printed and all pending macro executions are aborted.

For information about more extensive scripting functionality in MULTI, see Chapter
2, “Introduction to the MULTI-Python Integration” in the MULTI: Scripting book.

MULTI: Debugging Command Reference180

Chapter 15. Scripting Command Reference

macrotrace

macrotrace

Prints the stack of all presently executing macro commands. For example, with the
following macros:

> define mac1() {return mac2();}
> define mac2() {return mac3();}
> define mac3() {macrotrace; return 42;}

the following would be displayed if you enter mac1():

> mac1()
0 mac3()
1 mac2()
2 mac1()
42

See also “define” on page 179.

return

return [expr]

Returns from the currently executing macro, evaluating expr, if specified, and
returning it as the macro value.

This command is only valid in Debugger macros (see “define” on page 179). When
a macro is running and the return command is issued, the macro stops and exits.
If an expression expr is specified, it is evaluated and returned as the macro's value.

route

route destination_component command

Routes the specified command to the specified destination component. Note that
destination_component overrides the selection in the target list, causing
command to always execute on destination_component and never on the
currently selected target list entry.

181Green Hills Software

macrotrace

The component may be fully specified, or just the unique portion of the component
name may be used. For example, debugger.pid.543 and pid.543 are equivalent
as long as the latter is unique. If a match is not unique, a list of matching components
is printed out.

To list components and their aliases, use the components command (see
“components” on page 97).

To create a new alias for a new component, use the new command (see “new”
on page 24).

sc

sc ["command" | <filename]

Performs syntax checking on either a single command or an entire script file and
all nested script files. See “Syntax Checking” in Chapter 14, “Using Expressions,
Variables, and Procedure Calls” in the MULTI: Debugging book.

The filename will be searched for using the default search path. See “Default Search
Path for Files Specified in Commands” on page 14.

shell

shell [-wait | -w] [-noconsole] commands

Invokes a shell to run the specified shell commands, where:

• -wait|-w — Causes MULTI to wait for shell commands to finish before
continuing. This option is only applicable in GUI mode. In non-GUI mode,
MULTI always waits for shell commands to finish. You can abort the waiting
process by pressing Esc.

• -noconsole — Prevents MULTI from creating a new console window in
which to run the shell commands (but does not prevent commands from opening
their own GUIs, etc.). If you do not specify this option, you can see shell
command output and/or type input to the commands from the console window.
This option is only applicable on Windows.

MULTI: Debugging Command Reference182

Chapter 15. Scripting Command Reference

Before being passed to the shell, the command string following shell is processed
and all instances of the escape sequence %EVAL{multi_commands} are replaced
by the result of evaluating multi_commands. This is useful for constructing
dynamic arguments (that is, arguments that vary depending on your current
debugging context) to shell tools. For example, to run a tool on the current file,
construct a command of the form:

> shell toolname constant_args %EVAL{$_FILE}

Use the shellConfirm configuration option to govern behavior of the shell or
command window used by commands (see “Other Debugger Configuration Options”
in Chapter 8, “Configuration Options” in the MULTI: Managing Projects and
Configuring the IDE book).

substitute

substitute cmd_string

Executes the output of cmd_string as a Debugger command.

The cmd_string argument contains the template of the command to be executed.
Within cmd_string, you may use the escape sequence %EVAL{commands} to
evaluate expressions or Debugger commands within the command list commands
and to perform substitutions in cmd_string. The output that the Debugger would
print if commands were executed directly is instead captured and inserted as plain
text into cmd_string in place of the %EVAL sequence. The output of a %EVAL
sequence is substituted directly, and includes any newline characters or other output
formatting provided by the Debugger, except that if the output returned by %EVAL
for the evaluated expression or Debugger commands begins and ends with double
quotation marks ("), these quotation marks will be removed. You may need to use
the mprintf command to properly format complicated output (see “mprintf”
on page 103).

You can use more than one %EVAL sequence. After all sequences have been replaced
with the output of the respective expressions or commands, the Debugger executes
the resulting cmd_string.

183Green Hills Software

substitute

As an example use of this command, suppose you want to use a graphical file
chooser to specify the path to a file you are going to edit. You could enter:

> substitute edit "%EVAL{filedialog}"

In the above example, the Debugger command filedialog returns a chosen file path,
but it will not be quoted. In order to handle the case where the chosen file path
contains spaces, a pair of quotation marks is placed around the %EVAL sequence in
the example.

Note
The implicitEvalEcho configuration option may have an effect on the
expected output of this command. If this option is set to off, the values
of expressions are not echoed, preventing expressions contained in
commands from being evaluated or subsequently substituted in
cmd_string. In this case, be sure to use the mprintf command to force
the values of expressions specified in commands to echo. For example,
rather than using a command like the following:

> substitute memread 4 %EVAL{$addr}

you should use this command:

> substitute memread 4 %EVAL{mprintf("0x%x", $addr)}

For more information, see “mprintf” on page 103 and the
implicitEvalEcho option in “Other Debugger Configuration Options”
in Chapter 8, “Configuration Options” in the MULTI: Managing Projects
and Configuring the IDE book.

unalias

unalias string

Reverses a previous alias command (disassociates string from its substitution).
For example, if sh is aliased to showdef, the command:

> unalias sh

disassociates sh from the showdef command.

MULTI: Debugging Command Reference184

Chapter 15. Scripting Command Reference

See also “alias” on page 179.

Conditional Program Execution Commands

The commands in this section allow you to set conditions that must be met before
commands are executed.

Composite commands for conditional program execution follow the same syntax
rules as all MULTI Debugger commands. For information that may be helpful when
entering conditional program execution commands, see “Using Command Lists in
Debugger Commands” on page 12, “Continuing Commands onto Subsequent Lines”
on page 13, and “Terminating Commands” on page 14.

The following list provides a brief description of each conditional program execution
command. For a command's arguments and for more information, see the page
referenced.

• break — Breaks out of a loop created with the Debugger do, for, or while
command (see “break” on page 186).

• continue — Causes the current iteration of a loop created with the Debugger
do, for, or while command to terminate and the next iteration to begin (see
“continue” on page 186).

• do — Executes the specified command list at least once, and then for as long
as the specified expression evaluates to a non-zero value (see “do” on page 186).

• for — Executes init-expr once, then executes the specified command list
and the increment inc-expr for as long as the specified expression evaluates
to a non-zero value (see “for” on page 187).

• if — Specifies conditional command execution (see “if” on page 187).
• while — Executes the specified command list for as long as the specified

expression evaluates to a non-zero value (see “while” on page 188).

185Green Hills Software

Conditional Program Execution Commands

break

break [-fail | -succeed]

Breaks out of a loop created with the Debugger do, for, or while command, where:

• -fail — Causes break to be treated as a failure. This can be used to abort
downloading to a target from a setup script if the script detects a failure
condition.

• -succeed — [default] Causes break to be treated as a successful action.

This is similar to the break command in C.

See also “do” on page 186, “for” on page 187, and “while” on page 188.

continue

continue

Causes the current iteration of a loop created with the Debugger do, for, or while
command to terminate and the next iteration to begin. For the do and while
commands, this means the condition is tested; for the for command, the increment
is executed. This is similar to the continue command in C. See “do” on page 186,
“for” on page 187, and “while” on page 188.

do

do {commands} while (expr)

Executes the command list commands at least once, and then as long as expr (an
expression in the current language) evaluates to a non-zero value. For example:

> do {
continued> mprintf("%d\n", $i);
continued> $i++;
continued> } while ($i<20)

In this case, the value of ($i) will always be printed at least once, regardless of its
initial value. This is similar to the do command in C. See “Using Command Lists
in Debugger Commands” on page 12.

MULTI: Debugging Command Reference186

Chapter 15. Scripting Command Reference

To interrupt this command, press Esc.

for

for ([init-expr] ; [cond] ; [inc-expr]) {commands}

Executes init-expr once, then executes the command list commands and the
increment inc-expr as long as cond (an expression in the current language)
evaluates to a non-zero value.

For example:

> for ($i=0; $i<20; ++$i) {
continued> if($i%2==0) {
continued> print "even";
continued> } else {
continued> print "odd";
continued> }
continued> }

In this case, the variable ($i) is initialized to 0, and the body of the loop is then
executed twenty times. See “Using Command Lists in Debugger Commands”
on page 12.

Any of init-expr, cond, or inc-exprmay be empty. If init-expr or inc-expr
is empty, there will be, respectively, no initialization or increment executed. If cond
is empty, it is taken to be the value 1 and the loop will continue to execute until
halted. This is similar to the for command in C.

To interrupt this command, press Esc.

if

if (expr) {commands} [else if (expr) {commands}]... [else {commands}]

Specifies conditional command execution. If the first expression expr evaluates to
a non-zero value, the first group of specified commands (see “Using Command
Lists in Debugger Commands” on page 12) is executed. However, if the first
expression evaluates to zero and there are subsequent else if clauses, the
commands in the first else if clause with a non-zero expression are executed. If

187Green Hills Software

for

there is an else clause, and the if clause and any else if clauses resolve to zero,
the commands in the else clause are executed. This is similar to the if command
in C.

This command can be nested.

The following example sets a breakpoint that conditionally prints information:

> b main {
continued> if(argc==1) {
continued> print "one";
continued> } else if (argc==2) {
continued> print "two";
continued> } else {
continued> print "many";
continued> }
continued> }

while

while (expr) {commands}

Executes the command list commands as long as expr (an expression in the current
language) evaluates to a non-zero value. For example:

> while ($i<20) {
continued> $j+=$i;
continued> if ($j>50) {
continued> $j=50;
continued> break;
continued> };
continued> $i++;
continued> }

In this case, if ($j>50) is true, the loop will terminate regardless of the value of
($i). This is similar to the while command in C. See “Using Command Lists in
Debugger Commands” on page 12.

To interrupt this command, press Esc.

MULTI: Debugging Command Reference188

Chapter 15. Scripting Command Reference

Dialog Commands

The commands in this section allow you to open dialog boxes.

The following list provides a brief description of each dialog command. For a
command's arguments and for more information, see the page referenced.

• alertdialog — Displays a dialog box containing the specified string (see
“alertdialog” on page 189).

• dialog— Opens the predefined dialog box specified (see “dialog” on page 189).
• directorydialog — Opens a directory chooser and returns the name of the

directory that is selected from the chooser (see “directorydialog” on page 190).
• filedialog — Opens a file chooser and returns the name of the file that is

selected from the chooser (see “filedialog” on page 190).

alertdialog

alertdialog string

GUI only

Displays a dialog box containing string. The Debugger blocks further input until
you dismiss this dialog box. This command is useful inside a .rc script for displaying
a message. For information about displaying other dialog boxes, see “dialog”
on page 189.

dialog

dialog name [arguments]

GUI only

Opens the predefined dialog box named name and takes arguments arguments if
the dialog box permits them. To display a list of the currently defined dialog boxes,
use the l D (lowercase L, uppercase D) command (see “l” on page 102).

At present, the only supported dialog box is named textinput. The textinput
dialog box displays a prompt and a text field for the user to enter a string. Invoking

189Green Hills Software

Dialog Commands

this dialog box requires two arguments: the first is used as the prompt in the dialog
box and the second specifies the MULTI command that is run on the string entered
by the user.

The textinput dialog box is useful if you would like a custom menu item to run
a MULTI command that takes a user-specified argument. For example, suppose
that when a custom menu item is selected, you would like a dialog box to prompt
the user for the name of a procedure. Suppose further that the e command should
be run on the procedure, displaying the location in source where the procedure is
defined (see “e” on page 133). You might specify that the following command is
executed when the menu item is selected:

> dialog textinput "Go to the definition of procedure:" e

directorydialog

directorydialog [window_title]

GUI only

Opens a directory chooser and returns the name of the directory that is selected
from the chooser. By default, the title of the window is Choose Directory, but you
may change it with the window_title parameter. This command is useful for
interacting with a user while you are running scripts or evaluating macros. See also
“filedialog” on page 190.

filedialog

filedialog [button_label window_title [-defaultdir dir_name] [-preset preset_name]
[-filetypes file_type [file_type]...]]

GUI only

Opens a file chooser and returns the name of the file that is selected from the chooser.
This command is useful for interacting with a user while you are running scripts or
evaluating macros. See also “directorydialog” on page 190.

By default, the dialog box's button is labeled Select and the title of the window is
Choose File. You may change these with the button_label and window_title
parameters.

MULTI: Debugging Command Reference190

Chapter 15. Scripting Command Reference

The -defaultdir option specifies that the file chooser displays the dir_name
directory, where dir_name is the directory you specify. If you do not specify the
-defaultdir option, the file chooser displays the directory of the last file selected
from a Debugger file chooser.

The -preset option specifies that the file chooser displays all the file types
associated with preset_name in its file type drop-down list. Some common
preset_names and their corresponding file types are:

• Debugger — Lists All Files, Executable, and Shared Libraries in the file
type drop-down list.

• Editable — Lists C Source, C++ Source, Assembly Source, Link Map,
Green Hills Script, Configuration File, Java Source, and Text Files in the
file type drop-down list.

• Editor— ListsAll Files and all file types listed for Editable in the file type
drop-down list.

• Object — Lists All Files, Object Files, Shared Libraries, and Libraries in
the file type drop-down list.

The -filetypes option adds individual file types to the preset. If file_type
contains a space, enclose it in quotation marks. If you specify more than one
file_type, separate each with a space. Some common file_types and their
corresponding file types are:

• All Files — Lists All Files (*) in the file type drop-down list.
• Assembly Source — Lists Assembly Source (*.s, *.asm, *.si, *.86, *.arm,
*.thm, *.68, *.cf, *.mip, *.ppc, *.sh, *.800, *.850, *.830, *.810, *.bf) in the
file type drop-down list.

• C Source — Lists C Source (*.c, *.h) in the file type drop-down list.
• C++ Source — Lists C++ Source (*.cc, *.cxx, *.cpp, *.cp, *.c++, *.C, *.h,
*.hh, *.H, *.h++, *.hxx, *.hpp) in the file type drop-down list.

• Libraries— ListsArchive (*.a, *.lib, *.olb, *.a88) in the file type drop-down
list.

For more information about preset options and file types, refer to Part II,
“Configuring the MULTI IDE” in the MULTI: Managing Projects and Configuring
the IDE book.

191Green Hills Software

filedialog

External Tool Commands

The commands in this section deal with external components and sockets.

The following list provides a brief description of each external tool command. For
a command's arguments and for more information, see the page referenced.

• evaltosocket — Sends the output of the specified command(s) to any socket
connected to MULTI via the socket command (see “evaltosocket” on page 192).

• make — Executes the system command make to build a target (see “make”
on page 192).

• socket — Opens a socket connection using the specified port number (see
“socket” on page 192).

evaltosocket

evaltosocket commands

Sends the output of commands, which may consist of one or more commands, to
any socket connected to MULTI via the socket command (see “socket” on page 192).
The output is not sent to the command pane.

make

make [make_target]

Executes the system command make to build the target make_target. If you do
not specify a target, the name of the executable you are debugging is used. The
output of make appears in an Editor window.

socket

socket [-global] port_number

Opens a socket connection using the specified port number. The socket connection
allows an external process to send commands to the Debugger and receive output
from the Debugger. For example, if you started MULTI on a machine named myhost
and used the command socket 40000, you could run the command telnet

MULTI: Debugging Command Reference192

Chapter 15. Scripting Command Reference

myhost 40000 to connect a telnet window to the Debugger. From the telnet
window, you could enter commands that would be executed in the Debugger and
receive output from the Debugger. Instead of using telnet, you can run any program
that connects to myhost on port 40000 and interacts with the Debugger.

Normally, the socket connection will be associated only with the Debugger
component that created it. If you specify the -global option, output from all
Debugger components will be sent to the socket. By default, input from the socket
will be sent to the first Debugger component. To send commands to a different
Debugger component, see “route” on page 181 and “components” on page 97.

The command line option -socket creates a global socket when the Debugger
opens. For more information about this option, see Appendix C, “Command Line
Reference” in the MULTI: Debugging book.

History Commands

The commands in this section deal with commands kept in the Debugger history.

The Debugger maintains a history of the most recent commands entered in the
command pane. The number of commands remembered defaults to 256, but can be
set with the history configuration option (for more information, see “Other Debugger
Configuration Options” in Chapter 8, “Configuration Options” in the MULTI:
Managing Projects and Configuring the IDE book).

If you open multiple Debugger windows in a single Debugger session, each
Debugger window has its own command history, but when you close the Debugger
windows, MULTI saves only the history of the last window. When you launch the
Debugger, the history list from the previous session is loaded upon startup (i.e.,
your command history is maintained across debugging sessions). This behavior can
be turned off with the saveCommandHistory configuration option (for more
information, see “Session Configuration Options” in Chapter 8, “Configuration
Options” in the MULTI: Managing Projects and Configuring the IDE book).

Tip
For a description of keyboard shortcuts that allow you to auto-complete
commands based on your command history, display the last command
in your command history, etc., see also “Command Pane Shortcuts” in

193Green Hills Software

History Commands

Appendix B, “Keyboard Shortcut Reference” in the MULTI: Debugging
book.

The following list provides a brief description of each history command. For a
command's arguments and for more information, see the page referenced.

• ! — Re-executes a command (see “!” on page 194).
• !! — Re-executes the last command (see “!!” on page 195).
• backhistory — Gives the previous command in the command pane history

list (see “backhistory” on page 195).
• forwardhistory — Gives the next command in the command pane history list

(see “forwardhistory” on page 196).
• h — Lists or clears the command history (see “h” on page 196).

!

! [string] [args]

! [num] [args]

Re-executes the most recent command beginning with string, or re-executes the
command numbered num. Do not put a space between ! and string or between !
and num. If you include a space, the entire string after ! is treated as args. If
specified, args are appended as arguments to the command.

If neither a string nor a command number is specified, ! matches the previous
command. In any case, MULTI prints out what was substituted. For example:

> echo hello
hello
> !echo hello
"!echo" = "echo hello"
hello hello
> ! echo hello
"!" = "echo hello hello"
hello hello echo hello
> foo
Unknown name "foo" in expression.
> ! echo hello

MULTI: Debugging Command Reference194

Chapter 15. Scripting Command Reference

"!" = "foo"
Unknown name "foo" in expression.

!!

!! [args]

Re-executes the last command.

You can add additional arguments (args) to the end of the command. For example,
if the most recent command was

echo hi

and you type

> !! bye

then the command

echo hi bye

will be executed.

The space between !! and args is required. If you do not include a space, args
are ignored.

backhistory

backhistory

GUI only

Gives the previous command in the command pane history list. This command is
intended to be bound to a key (see “Customizing Keys with the keybind Command”
in Chapter 7, “Configuring and Customizing MULTI” in the MULTI: Managing
Projects and Configuring the IDE book). By default, the Debugger binds the
UpArrow key to this command.

195Green Hills Software

!!

forwardhistory

forwardhistory

GUI only

Gives the next command in the command pane history list. This command is intended
to be bound to a key (see “Customizing Keys with the keybind Command” in
Chapter 7, “Configuring and Customizing MULTI” in the MULTI: Managing
Projects and Configuring the IDE book). By default, the Debugger binds the
DownArrow key to this command.

h

h [clear | num]

This command has three forms:

• h — Lists the existing command history. This option corresponds to Config
→ State → Show Command History.

• h clear — Clears the command history.
• h num — Lists the most recent num entries in the command history.

Hook Commands

The commands in this section allow you to add hooks to Debugger actions, remove
hooks, and list hooks.

The following list provides a brief description of each hook command. For a
command's arguments and for more information, see the page referenced.

• addhook — Adds a hook to a Debugger action (see “addhook” on page 197).
• clearhooks — Removes hooks (see “clearhooks” on page 198).
• listhooks — Prints a list of current hooks to the Debugger's Cmd pane (see

“listhooks” on page 199).

MULTI: Debugging Command Reference196

Chapter 15. Scripting Command Reference

addhook

addhook [-order number] [-board | -core number] -before action {commands} |
-after action {commands}

Adds a hook to a Debugger action. You must be connected to a target before using
this command.

Available arguments are:

• -order number — Specifies the new hook's order in the sequence of hooks
that run for action. (When action occurs, the hooks for action run in order
from the hook with the smallest order number to the hook with the largest order
number.) The hook's order is indicated by number, which must be a positive
integer. You may use the same order numbers for different actions.

If you do not specify -order number, an order number is automatically
generated for the new hook. The automatically generated order number is larger
than the order number of any existing hook for the given action, allowing you
to add hooks without assigning order numbers. Hooks added in this fashion
are run in the order that you added them.

• -board — [default] Does not associate your new hook with a particular CPU.
For example, when you download a program to your target, -board hooks for
downloading run regardless of the CPU you download to.

• -core number— Associates your new hook with a particular CPU. The CPU
is indicated by number, which must be a non-negative integer. The number
you specify should be the same as the number your target connection uses to
identify the CPU. For example, if you are using the Green Hills Probe, you
should use the core ID number printed out by the tl command.

This option is useful for initializing registers in multi-core systems. When you
download a program to your target, hooks for cores other than the one to which
you are downloading are not run, but -board hooks are run.

If you do not specify -board or -core number, -board is passed by default.
• -before action {commands}— Runs the command list commands before
action happens to your target. Available actions are: reset and download.
If your target has an ordinary, non-“early” MULTI board setup script or a
legacy debug server setup script, -before download hooks run before the

197Green Hills Software

addhook

setup script. For information about early MULTI board setup scripts, see “Early
MULTI Board Setup Scripts with Debugger Hooks” in Chapter 6, “Configuring
Your Target Hardware” in the MULTI: Debugging book.

• -after action {commands} — Runs the command list commands after
action happens to your target. Available actions are: connect, download,
reset, and rominit.

Hooks specified with -after connect are only meaningful if you add them
from an early MULTI board setup script. For information about early MULTI
board setup scripts, see “Early MULTI Board Setup Scripts with Debugger
Hooks” in Chapter 6, “Configuring Your Target Hardware” in the MULTI:
Debugging book.

Hooks specified with -after download should leave the target in a halted
state rather than a running state. If you want to run the downloaded program
immediately after downloading it, use the r command (see “r” on page 154).

Hooks specified with -after rominit are only valid for programs that are
run out of ROM or copied from ROM to RAM. When running from ROM, the
rominit command is executed after the ROM is initialized, just before the
first user instruction of main(). When copying from ROM to RAM, the
rominit command is executed just before the first instruction after the
ROM-to-RAM copy.

clearhooks

clearhooks [-order number] [-board | -core number] [-before action | -after action
]

Removes hooks. If no arguments are specified, this command removes all Debugger
hooks from your target. You must be connected to a target before using this
command.

Available arguments are:

• -order number — Removes the hook with the order number specified.
• -board — Removes -board hooks.
• -core number — Removes hooks for the CPU indicated by number.

MULTI: Debugging Command Reference198

Chapter 15. Scripting Command Reference

• -before action — Removes hooks that run before action. Available
actions are: reset and download.

• -after action— Removes hooks that run after action. Available actions
are: connect, download, reset, and rominit.

For example, to remove all hooks that run after reset, you can issue the following
command:

> clearhooks -after reset

To remove only those hooks that are explicitly bound to run on core 2 after
download, you can enter the following command:

> clearhooks -core 2 -after download

If you are not sure what hooks have already been added, it is a good idea to run the
clearhooks or listhooks command before adding a new set of hooks. See “listhooks”
on page 199.

listhooks

listhooks [-order number] [-board | -core number] [-before action | -after action
]

Prints a list of current hooks to the Debugger's Cmd pane. The hooks are printed
in a manner suitable for passing them as arguments to the addhook command (see
“addhook” on page 197).

If no arguments are specified, this command prints all Debugger hooks on your
target. You must be connected to a target before using this command.

Available arguments are:

• -order number — Prints the hook with the order number specified.
• -board — Prints -board hooks.
• -core number — Prints hooks for the CPU indicated by number.
• -before action— Prints hooks that run before action. Available actions

are: reset and download.

199Green Hills Software

listhooks

• -after action — Prints hooks that run after action. Available actions
are: connect, download, reset, and rominit.

The following example uses the listhooks command for a Power Architecture target:

> clearhooks
> addhook -core 4 -after reset { target rw cpsr 0xd3 }
> addhook -core 4 -after reset { target rw control 0x1 }
> listhooks -after reset
-order 10 -after reset -core 4 { target rw cpsr 0xd3 }
-order 20 -after reset -core 4 { target rw control 0x1 }

If you are not sure what hooks have already been added, it is a good idea to run the
listhooks or clearhooks command before adding a new set of hooks. See
“clearhooks” on page 198.

MULTI-Python Script Commands

The commands in the following section are related to MULTI-Python scripting.
See also the MULTI: Scripting book.

The following list provides a brief description of each MULTI-Python script
command. For a command's arguments and for more information, see the page
referenced.

• python, py— Executes a Python statement or script (see “python, py”
on page 201).

• pywin — Opens or closes the Py Window (see “pywin” on page 202).

MULTI: Debugging Command Reference200

Chapter 15. Scripting Command Reference

python, py

python [-b | -nb] -s "Python_statements" | -f Python_script_name [args]

py [-b | -nb] -s "Python_statements" | -f Python_script_name [args]

GUI only

Executes a Python statement or script, where:

• -b — Indicates that the Python statement or script executes in blocking mode.
In this mode, no Debugger commands are executed until the statement or script
has completed.

• -nb — [default] Indicates that the Python statement or script executes in
non-blocking mode. In this mode, subsequent Debugger commands can execute
before the statement or script completes.

• -s "Python_statements" — Specifies one or more Python statements for
execution. Python statements must be enclosed in quotation marks.

• -f Python_script_name [args] — Specifies the Python script for
execution. If Python_script_name contains spaces, enclose it in quotation
marks. The args option specifies arguments to the Python script.

The -f Python_script_name argument does not require you to enter the
full Python script path. If you do not enter the full path, the filename is searched
for using the default search path (see “Default Search Path for Files Specified
in Commands” on page 14). The first command line argument, sys.argv[0],
in the executed Python script is the full path to the Python script file. Other
arguments (if any) are those you specified with args.

Note
The python and py commands function identically.

For information about using Python scripts to run MULTI, see Chapter 2,
“Introduction to the MULTI-Python Integration” in the MULTI: Scripting book.

201Green Hills Software

python, py

pywin

pywin [-close]

GUI only

Opens or closes the Py Window. For information about the Py Window, see
“MULTI-Python Interfaces” in Chapter 2, “Introduction to the MULTI-Python
Integration” in the MULTI: Scripting book.

If no option is specified, the Py Window appears. If -close is specified, the Py
Window closes.

Object Structure Awareness (OSA) Commands

The commands in this section are intended to be used with Object Structure
Awareness packages. For more information, see Chapter 26, “Freeze-Mode
Debugging and OS-Awareness” in the MULTI: Debugging book.

The following list provides a brief description of each OSA command. For a
command's arguments and for more information, see the page referenced.

• osacmd— Sends a quoted list of commands to the corresponding OSA package
(see “osacmd” on page 203).

• osaexplorer — Opens an OSA Explorer on the current process in a
freeze-mode debugging environment or on the current debug server in a
run-mode debugging environment (see “osaexplorer” on page 203).

• _osaFillGuiWithObj — Fills in a widget with OSA object attribute values
(see “_osaFillGuiWithObj” on page 205).

• osainject— Injects the specified message to the specified object (see “osainject”
on page 205).

• osasetup — Tells MULTI where to find a customized OSA package (see
“osasetup” on page 205).

• osatask — Opens the Debugger on the task specified (see “osatask”
on page 206).

• osaview — Opens the OSA Object Viewer (see “osaview” on page 207).

MULTI: Debugging Command Reference202

Chapter 15. Scripting Command Reference

• taskwindow— Opens the Task Manager in a run-mode debugging environment
or displays it in the foreground if it is already open (see “taskwindow”
on page 207).

osacmd

osacmd "OSA_package_commands"

GUI only

Sends the quoted list of commands to the corresponding OSA package. The
Debugger treats the command list as a string; in other words, the command list is
not parsed by the Debugger and is sent “as is” to the OSA package.

osaexplorer

osaexplorer [-refresh]

osaexplorer [-tabname object_name] [-tabidx tab_index] [-refname reference_name]
[-refidx reference_index] [-mslrow row_index]

GUI only

Opens an OSA Explorer on the current process in a freeze-mode debugging
environment or on the current debug server in a run-mode debugging environment.
TheOSAExplorer shows information for objects recognized by the OSA integration
module. Each attribute of an object is shown as a column in the OSA Explorer.
For more information about theOSAExplorer, see “The OSA Explorer” in Chapter
26, “Freeze-Mode Debugging and OS-Awareness” in theMULTI: Debugging book.

Optional arguments to this command are:

• -refresh — Refreshes the object list in the OSA Explorer. This option is
valid only in a breakpoint's command list in freeze-mode debugging. The
-refresh option is not valid if specified in conjunction with any other optional
argument.

• -tabname object_name — Displays the tab object_name as the current
tab in the OSA Explorer. Each tab is named for a particular kind of object.
Available OSA Explorer tabs appear in the GUI.

203Green Hills Software

osacmd

• -tabidx tab_index — Displays the tab specified by tab_index as the
current tab. Tab indexing starts from zero (0). The left-most tab in the OSA
Explorer window has a tab_index of 0, the next tab a tab_index of 1, and
so on.

• -refname reference_name— Displays the reference list reference_name
for the object selected in the master pane. The reference list is shown in the
reference pane. Available references appear in the drop-down list located above
the OSA Explorer reference pane.

• -refidx reference_index — Displays the reference list specified by
reference_index in the reference pane. Reference indexing starts from zero
(0). The first reference object located in the reference pane's drop-down list
has a reference_index of 0, the next reference object a reference_index
of 1, and so on. Any separator present in the drop-down list is included in index
numbering.

• -mslrow row_index— Selects the master pane row specified by row_index
and updates the reference pane to show the reference object list for the selected
row. Row indexing starts from zero (0). The first row located in the master
pane has a row_index of 0, the next row a row_index of 1, and so on.

You can specify tab, reference, and row arguments together if they make sense in
the correspondingOSAExplorer. For example, if you are using an OSAExplorer
with the INTEGRITY operating system, you can enter:

> osaexplorer -tabname Task -mslrow 2 -refname "Other Activities"

to open an OSA Explorer that displays the Task tab, selects the third row in the
master pane (indexing starts from 0), and shows the task's Other Activities in the
reference pane.

See also “taskwindow” on page 207.

Corresponds to: View → OSA Explorer

MULTI: Debugging Command Reference204

Chapter 15. Scripting Command Reference

_osaFillGuiWithObj

_osaFillGuiWithObj -Widget widget_name -ObjType object_type_name -ObjFld
fld1 [fld2]...

GUI only

Fills in a widget with OSA object attribute values. The widget must be a TextField,
PullDown, or MScrollList.

The command is applicable only in a MULTI dialog script.

osainject

osainject -ObjType object_type_name -ObjID object_id [message_string]

GUI only

Injects the message specified by message_string to the specified object (with a
certain type and ID). MULTI transfers the message injection request to the
corresponding OSA module, which then injects the message into the underlying
RTOS. The format of message_string is OSA module-dependent.

osasetup

osasetup osa_name [-cfg config_filename] [-lib module_name] [-log log_file]

GUI only

Tells MULTI where to find a customized OSA package, where:

• osa_name — Specifies the name of the OSA package.
• -cfg config_filename— Specifies the name of the package's configuration

file. If no configuration file is specified, MULTI uses osa_name.osa as the
configuration filename.

You may optionally include the full path to config_filename. If a full path
is not specified, MULTI searches for the configuration file in your personal
configuration directory first:

205Green Hills Software

_osaFillGuiWithObj

○ Windows 7/Vista — user_dir\AppData\Roaming\GHS
○ Windows XP — user_dir\Application Data\GHS
○ Linux/Solaris — user_dir/.ghs

and then looks for it in the MULTI IDE installation directory. For more
information, see “Freeze-Mode and OSA Configuration File” in Chapter 26,
“Freeze-Mode Debugging and OS-Awareness” in the MULTI: Debugging
book.

• -lib module_name — Specifies the package's shared library. If no library
is specified, MULTI uses osa_name.dll (Windows) or osa_name.so
(Linux/Solaris) as the library name.

You may optionally include the full path to module_name. If a full path is not
specified, MULTI searches for the shared library in the MULTI IDE installation
directory first, and if it does not find it, continues to search in a way defined
by the host machine.

• -log log_file — Specifies that the communication between MULTI and
the OSA package be logged to log_file.

osatask

osatask [task_ID]

GUI only

Opens the Debugger on the task specified by the task identification number task_ID.
When run without the task_ID argument, osatask opens the Debugger on the task
that is currently executing.

This command is only applicable when you are debugging an RTOS in freeze mode.
(See also Chapter 26, “Freeze-Mode Debugging and OS-Awareness” in theMULTI:
Debugging book).

MULTI: Debugging Command Reference206

Chapter 15. Scripting Command Reference

osaview

osaview [-context]

GUI only

Opens the OSA Object Viewer. If you specify the -context option, the OSA
Object Viewer opens on information for the INTEGRITY object (AddressSpace or
Task, for example) currently displayed in the Debugger window. If you do not
specify an option to this command, it displays information for the entire INTEGRITY
target.

Note
This command is only supported if you are debugging a run-mode
connection and using INTEGRITY version 10 or later.

For information about the OSA Object Viewer, see “The OSA Object Viewer” in
Chapter 25, “Run-Mode Debugging” in the MULTI: Debugging book.

taskwindow

taskwindow [-refresh]

GUI only

Opens the Task Manager in a run-mode debugging environment or displays it in
the foreground if it is already open. This command works with run-mode debug
connections such as those used with INTEGRITY and VxWorks.

The Task Manager displays the tasks that are running on the (embedded,
multitasking) target. It contains columns of information about each of the tasks.
For more specific information, see “The Task Manager” in Chapter 25, “Run-Mode
Debugging” in the MULTI: Debugging book.

To automatically attach to and begin a debugging session on a task, double-click
the task. This is equivalent to the command attach process_id (see “attach”
on page 18). For more information about task management in run-mode, see Chapter
25, “Run-Mode Debugging” in the MULTI: Debugging book.

Specify the -refresh option to refresh the existing Task Manager window.

207Green Hills Software

osaview

This command can be used in freeze mode to launch the OSA Explorer, but this
usage is deprecated. Instead, use the osaexplorer command for that purpose (see
“osaexplorer” on page 203). For more information about object-aware and task-aware
debugging in freeze mode, see Chapter 26, “Freeze-Mode Debugging and
OS-Awareness” in the MULTI: Debugging book.

Corresponds to: View → Task Manager

Record and Playback Commands

The commands in this section deal with recording and playing back Debugger
commands. The Debugger supports the recording and playing back of command
sequences to and from files. The files created are ASCII files and can be edited
later.

Only Debugger commands can be recorded. If a GUI action executes a Debugger
command, that command is recorded. GUI actions include button presses in the
Debugger window and mouse clicks in the source pane.

Make sure to follow these guidelines when using record and playback commands
and record files:

• If you use the > file or >> file command when a recording file is already set,
the old recording file will be closed and all subsequent commands will be
recorded to the new file. See “>” on page 209 and “>>” on page 210.

• Scripts may include other scripts, to a maximum script depth of 500.
• The playback file should not contain any lines that begin with > or <. (Add a

space at the beginning of a line, if necessary).
• Standard language-style comments are supported in command playback files,

as in all Debugger input (see “Including Comments in Debugger Commands”
on page 13).

• You cannot play back from a file that is open for recording, or record to a file
that you are playing back.

• Some commands can cause errors that may abort playback. You can use the
Continue running script files on error GUI option (or the
continuePlaybackFileOnError configuration option) to prevent these
commands from stopping a playback. For more information about this option,

MULTI: Debugging Command Reference208

Chapter 15. Scripting Command Reference

see “Debugger Configuration Options” in Chapter 8, “Configuration Options”
in the MULTI: Managing Projects and Configuring the IDE book.

You can use MULTI's -p, -r, -R, and -RO command line options to record
commands and/or output or to read from recorded files on startup. For a description
of these options, see Appendix C, “Command Line Reference” in the MULTI:
Debugging book.

The following list provides a brief description of each record and playback command.
For a command's arguments and for more information, see the page referenced.

• >— Controls or displays the status of command recording (see “>” on page 209).
• >> — Controls or displays the state of screen recording (recording commands

and their output) (see “>>” on page 210).
• < — Starts command playback from the specified file (see “<” on page 210).

>

> [file | t | f | c]

(This command is a right angle bracket.)

Controls or displays the status of command recording, where:

• file — Sets the command recording file to file and turns on command
recording. This option corresponds to:Config→ State→RecordCommands.

• t— Turns on command recording (to the most recently set command recording
file).

• f — Turns off command recording (but does not close or reset the command
recording file).

• c — Turns off command recording and closes the command recording file. (A
new recording file will need to be set before recording can be performed again.)
This option corresponds to Config → State → Stop Recording Commands.

If no argument is specified, the > command displays the current command recording
status.

209Green Hills Software

>

>>

>> [file | t | f | c]

(This command is two right angle brackets.)

Controls or displays the state of screen recording (recording commands and their
output), where:

• file — Sets the screen output recording file to file and turns on screen
output recording. This option corresponds to Config → State → Record
Commands + Output.

• t — Turns on screen output recording (to the most recently set screen output
recording file).

• f — Turns off screen output recording (but does not close or reset the screen
output recording file).

• c — Turns off screen output recording and closes the screen output recording
file. (A new recording file will need to be set before recording can be performed
again.) This option corresponds to Config → State → Stop Recording
Commands + Output.

If no argument is specified, the >> command displays the current screen output
recording status.

<

< file

(This command is a left angle bracket.)

Starts command playback from the specified file.

The specified file will be searched for using the default search path unless the full
path has been specified (see “Default Search Path for Files Specified in Commands”
on page 14).

Corresponds to: Config → State → Playback Commands

MULTI: Debugging Command Reference210

Chapter 15. Scripting Command Reference

Chapter 16

Search CommandReference

Contents
Search Commands . 212

The commands in this chapter allow you to search forward and backward in the
source pane or in a file, modify a search, or perform an incremental search.

Searches wrap around the beginning and end of files and obey the current case
sensitivity setting.

For information about navigating MULTI windows, see Chapter 11, “Navigation
Command Reference” on page 131.

Search Commands

The following list provides a brief description of each search command. For a
command's arguments and for more information, see the page referenced. (Note
that complete descriptions for some of these commands are located in other chapters.)

• / — Searches forward through the current file for the specified string (see “/”
on page 213).

• ? — Searches backward for the specified string (see “?” on page 213).
• bsearch — Searches backward in the source pane for the previous occurrence

of the specified string and highlights it (see “bsearch” on page 214).
• chgcase— Sets the case sensitivity of text searches (see “chgcase” on page 214).
• completeselection — Selects the smallest complete expression from the text

highlighted in the source pane (see “completeselection” on page 215).
• dialogsearch — Opens a search dialog box that allows you to search for text

or regular expressions in the Debugger's source pane (see “dialogsearch”
on page 215).

• fsearch — Searches forward in the source pane (after selected text) for the
next occurrence of the specified string, and highlights the string (see “fsearch”
on page 215).

• grep — Searches for the specified text in open files and, if debugging
information is available, in all of the files that make up a program (see “grep”
on page 216).

• isearch— Starts an incremental search in the window specified (see “isearch”
on page 217).

• isearchadd — Adds the specified text to the search string and continues an
incremental search in the specified window (see “isearchadd” on page 218).

MULTI: Debugging Command Reference212

Chapter 16. Search Command Reference

• isearchreturn— Causes the Debugger to return to the location that was viewed
prior to the last isearch command (see “isearchreturn” on page 218).

• printsearch— Prints the search string or indicates that there is no search string
(see “printsearch” on page 219).

• showdef — Searches for a C preprocessor definition for each specified name
(see “showdef” on page 273 in Chapter 21, “View Command Reference”
on page 265).

/

/ [string]

In GUI mode, works in the same way as the fsearch command (see “fsearch”
on page 215).

In non-GUI mode, searches forward through the current file, from the line after the
current line, for string. Do not put a space between / and string.

For example, the command

/extern

causes the cursor to jump forward to the string extern. You can then find more
occurrences of this word by repeatedly issuing /, and then pressing Enter.

?

? [string]

In GUI mode, works in the same way as the bsearch command (see “bsearch”
on page 214).

In non-GUI mode, searches backward, from the line before the current line, for
string. Do not put a space between ? and string.

For example, the command

?extern

213Green Hills Software

/

causes the cursor to jump backward to the string extern. You can then find more
occurrences of this string by repeatedly issuing ?, and then pressing Enter.

bsearch

bsearch string

GUI only

Searches backward in the source pane for the previous occurrence of string and
highlights it. If the search reaches the beginning of the file, MULTI beeps and then
resumes searching from the end.

If string is omitted, the string argument from the previous fsearch, bsearch,
or incremental search is used. See also “fsearch” on page 215 and “Incremental
Searching” in Chapter 9, “Navigating Windows and Viewing Information” in the
MULTI: Debugging book.

This command is only available in GUI mode. To search backward in non-GUI
mode, use the ? command (see “?” on page 213).

chgcase

chgcase [0 | 1]

Sets the case sensitivity of text searches, where:

• chgcase 0 makes all future text searches case-sensitive.
• chgcase 1 makes all future text searches case-insensitive.
• chgcase (without an argument) toggles the current case sensitivity setting.

Note
In case-insensitive mode, typing uppercase characters in a search string
temporarily changes the search mode to case-sensitive.

MULTI: Debugging Command Reference214

Chapter 16. Search Command Reference

completeselection

completeselection

GUI only

Selects the smallest complete expression from the text highlighted in the source
pane. If there is no text selected (highlighted) in the source pane, this command
does nothing.

If part of a variable name is selected, completeselection selects the entire name. It
also selects an entire expression in parentheses. For example, if the selection includes
an unmatched left parenthesis, the selection will extend to include the matching
right parenthesis if it is on the same line as the end of the selection.

dialogsearch

dialogsearch

GUI only

Opens a search dialog box that allows you to search for text or regular expressions
in the Debugger's source pane. This dialog contains options for searching forward
and backward and for ignoring case.

For more detailed information about the search dialog box, see “The Source Pane
Search Dialog Box” in Appendix A, “Debugger GUI Reference” in the MULTI:
Debugging book.

Corresponds to: Tools → Search

fsearch

fsearch string

GUI only

Searches forward in the source pane (after selected text) for the next occurrence of
string, and highlights it. If string is not found before the end of the file, the
Debugger beeps and then resumes searching from the beginning of the file.

215Green Hills Software

completeselection

If string is omitted, the string argument used in the previous fsearch, bsearch,
or incremental search is used. See also “bsearch” on page 214 and “Incremental
Searching” in Chapter 9, “Navigating Windows and Viewing Information” in the
MULTI: Debugging book.

grep

grep [[-i] [-w] [-F | -E] text]

GUI only

Searches for text in open files and, if debugging information is available, in all of
the files that make up a program.

If no options are specified, this command opens the Search in Files dialog (see
“Viewing Search in Files Results” in Chapter 4, “Editing Files with the MULTI
Editor” in the MULTI: Managing Projects and Configuring the IDE book).
Alternatively, you can specify a text argument and search options from the
command line to achieve most of the same functionality as the Search in Files
dialog, where:

• text — Specifies the string to search for. text is treated as a basic regular
expression unless the -F or -E option is used.

• -i— Causes the grep command to perform a case-insensitive search. (Without
this option, grep performs a case-sensitive search.)

• -w — Causes the grep command to perform a whole word search. This means
that the matching string must be preceded by a non-word character and followed
by a non-word character, where word characters are letters, digits, and the
underscore. For example, if you specify this option, a search for ice does not
match slice or ice__, but it does match ice-9. (Without this option, grep
finds any matching text.)

• -F — Causes text to be treated as a fixed string.
• -E — Causes text to be treated as an extended regular expression. Extended

regular expressions allow you to use the special regular expression syntax
characters |, +, and ?, which do not normally have any special meaning to the
grep command.

MULTI: Debugging Command Reference216

Chapter 16. Search Command Reference

Some search strings may be difficult to specify on the command line because the
Debugger may interpret escaped characters differently than expected (for example,
\"word, an escaped double quotation mark followed by the string word). If you
encounter such a problem, use the Search in Files dialog to specify your search
string and options.

The output from the grep command is displayed in the Search in Files Results
window (see “Viewing Search in Files Results” in Chapter 4, “Editing Files with
the MULTI Editor” in the MULTI: Managing Projects and Configuring the IDE
book).

This command works by running the BSD grep utility. A copy of BSD grep is
installed along with the MULTI IDE. However, BSD grep is not part of MULTI
and is not distributed under the same license as MULTI. For more information about
the license under which BSD grep is distributed, refer to the file bsdgrep.txt, which
is located in the copyright subdirectory of the IDE installation directory. For
information about the search expression format that BSD grep uses, refer to the
OpenBSD re_format(7) man page.

Corresponds to: Tools → Search in Files

isearch

isearch [+ | -] wid=num

GUI only

Starts an incremental search in the window specified by num, the window ID number.
If an incremental search is already active in that window, the current search string
is searched again. A plus sign (+) argument specifies a forward search, and a minus
sign (-) causes a backward search. If neither a plus or minus sign are specified, a
forward search is performed by default.

This command should not be used from the command window. Instead, use the
keybind or mouse command to bind this command to a key or mouse press. For
more information about the keybind andmouse commands and window ID numbers,
see “Customizing Keys and Mouse Behavior” in Chapter 7, “Configuring and
Customizing MULTI” in the MULTI: Managing Projects and Configuring the IDE
book.

217Green Hills Software

isearch

isearchadd

isearchadd wid=num text

GUI only

Adds text (no quotation marks) to the search string and continues an incremental
search in the window pointed to by num. The window must already be performing
an incremental search for this command to work.

This command should not be used from the command window. Instead, use the
keybind or mouse command to bind this command to a key or mouse press. For
more information about the keybind andmouse commands and window ID numbers,
see “Customizing Keys and Mouse Behavior” in Chapter 7, “Configuring and
Customizing MULTI” in the MULTI: Managing Projects and Configuring the IDE
book.

isearchreturn

isearchreturn wid=num

GUI only

Causes the Debugger to return to the location (in the window specified by the
window ID number num) that was being viewed prior to the last isearch command.

This command is only meaningful after an isearch command has been issued (that
is, it is only meaningful if the window with the identification number num is
performing an incremental search).

This command should not be used from the command window. Instead, use the
keybind or mouse command to bind this command to a key or mouse press. For
information about the keybind and mouse commands and window ID numbers,
see “Customizing Keys and Mouse Behavior” in Chapter 7, “Configuring and
Customizing MULTI” in the MULTI: Managing Projects and Configuring the IDE
book.

MULTI: Debugging Command Reference218

Chapter 16. Search Command Reference

printsearch

printsearch

Prints the search string or indicates that there is no search string.

If a search string exists, it is printed within square brackets, so the beginning and
ending whitespace can be seen. For example:

> printsearch

might print:

[foo]

meaning that the search string is the word foo preceded by one space and followed
by two spaces.

219Green Hills Software

printsearch

Chapter 17

Target ConnectionCommand
Reference

Contents
General Target Connection Commands . 222
Serial Connection Commands . 233

General Target Connection Commands

The commands in this section allow you to connect to and manipulate a debug target
platform.

The following list provides a brief description of each general target connection
command. For a command's arguments and for more information, see the page
referenced.

• change_binding — Associates the currently selected executable with a
compatible connection, or disassociates the currently selected executable from
a connection (see “change_binding” on page 223).

• connect— Connects to a target or modifies the logging of transactions between
MULTI and the target (see “connect” on page 223).

• connectionview — Opens the Connection Organizer window, which allows
you to create, edit, and manage Connection Methods (see “connectionview”
on page 226).

• disconnect — Closes an existing connection to a target (see “disconnect”
on page 226).

• iobuffer— Disables or enables buffering for the current connection's I/O panes
(see “iobuffer” on page 227).

• load — Downloads the current executable to the target's memory (see “load”
on page 227).

• prepare_target — Prepares the target or opens the Prepare Target dialog
box (see “prepare_target” on page 228).

• reset — Resets the target (see “reset” on page 230).
• set_runmode_partner — Sets or disables a run-mode partner for the current

freeze-mode connection or opens the Set Run-Mode Partner dialog box (see
“set_runmode_partner” on page 230).

• setup — Executes a target setup script (see “setup” on page 231).
• target, xmit — Transmits commands directly to the target debug server, and

supplies the debug server with the current task context (see “target, xmit”
on page 232).

• targetinput, xmitio — Feeds a string into target standard input (see
“targetinput, xmitio” on page 233).

MULTI: Debugging Command Reference222

Chapter 17. Target Connection Command Reference

• unload — Unloads programs from the target system's memory (see “unload”
on page 233).

change_binding

change_binding bind | unbind

Associates the currently selected executable with a compatible connection, or
disassociates the currently selected executable from a connection. If you pass the
bind option and the executable is only compatible with one connection, it is
automatically associated with that connection. If it is compatible with more than
one connection, the Use Which Connection? dialog box appears. If it is not
compatible with any currently available connection, the Connection Chooser
prompts you to connect to a target.

For more information, see “Associating Your Executable with a Connection” in
Chapter 7, “Preparing Your Target” in the MULTI: Debugging book.

change_binding unbind corresponds to: Debug → Use Connection → Stop
Using Current Connection

connect

connect connection_method_name

connect [setup=filename [setupargs=script_arguments]] [log[=filename]]
debug_server [dbserver_arguments]

connect -restart_runmode

connect log[=filename] | nolog

connect

The first three formats of this command connect or reconnect to a target (a simulator,
emulator, monitor, or OS, for example). You must connect to a target before you
can perform certain MULTI Debugger operations.

The fourth format of the command starts or stops the logging of transactions between
MULTI and the debug server.

223Green Hills Software

change_binding

The fifth format of the command opens the Connection Chooser.

The argument for the first format of this command is:

• connection_method_name— Specifies the Connection Method that is used
to connect to your target. Passing this argument is equivalent to selecting a
Connection Method from the Connection Chooser's drop-down list.

Arguments for the second format of this command, which is equivalent to creating
a Custom Connection Method in the Connection Chooser, are:

• setup=filename — Specifies the target setup script. The commands in the
specified file will be run before downloading is performed. This argument is
optional because not all targets require setup scripts.

The setup= option can be used to specify .mbs, .py, and .gpy setup scripts.
For more information about setup scripts, see Chapter 6, “Configuring Your
Target Hardware” in the MULTI: Debugging book.

• setupargs=script_arguments — Specifies one or more script arguments
to the target setup script filename (above). If script_arguments contains
spaces, enclose the argument string in double quotation marks ("string with
spaces").

At present, only .py and .gpy Python setup scripts can accept arguments.
• log[=filename] — Specifies that transactions between MULTI and the

debug server should be logged and sent to standard error or, if specified, to the
file filename.

• debug_server — Specifies the debug server to use to connect to the target.
A debug server is a program that controls the target device and must be designed
for the hardware debugging interface you are using (if any) and the target CPU
for which you are compiling your program.

• dbserver_arguments— Specify debug-server-specific options. For supported
options for:

○ INTEGRITY run-mode target connections, see Chapter 4, “INDRT2
(rtserv2) Connections” in the MULTI: Debugging book or Chapter 5,
“INDRT (rtserv) Connections” in the MULTI: Debugging book.

○ Green Hills Probe or SuperTrace Probe target connections, see the Green
Hills Debug Probes User's Guide.

MULTI: Debugging Command Reference224

Chapter 17. Target Connection Command Reference

○ Other target connections, see the MULTI: Configuring Connections book
for your processor family.

If specified, the setup, setupargs, and log options must appear before
debug_server.

Note
If the string of arguments to the connect command follows the first or
second format of this command, MULTI first attempts to exactly match
the string to the name of a Connection Method. If MULTI does not find
an exact match, it interprets the string as the name of a target debug server
and as setup and debug server options (if specified).

Note
The Debugger ignores the deprecated mode argument in connections that
specify it. Even for connections that do not explicitly include this
argument, the Debugger may print a message stating that the mode
argument is deprecated. This occurs if the mode argument has been
associated with a MULTI 4 Connection Method whose name matches
the arguments of the connect command you entered. To remove the mode
argument from the Connection Method, edit and save the Connection
Method in MULTI 6. For more information, see “Updating MULTI 4
Target Connections” in Chapter 7, “Preparing Your Target” in theMULTI:
Debugging book.

Arguments for the third and fourth formats of this command are:

• -restart_runmode — Attempts to reconnect to your last run-mode partner
connection, which can be useful for reestablishing lost run-mode partner
connections. This option is only meaningful if you have established a run-mode
partner during the current debugging session, and you are eligible to connect
to it (that is, you are using a freeze-mode connection, your program is running
on the target, and the target supports a run-mode partner). For information
about run-mode partners, see “Automatically Establishing Run-Mode
Connections” in Chapter 4, “INDRT2 (rtserv2) Connections” in the MULTI:
Debugging book.

See also “set_runmode_partner” on page 230.

225Green Hills Software

connect

• log[=filename]— Starts transaction logging between MULTI and the debug
server, and sends the log to standard error or, if specified, to the file filename.

• nolog — Stops transaction logging and closes the log file. This command is
only meaningful if you have previously started transaction logging. See the
preceding description of log=filename.

Corresponds to:

Corresponds to: Target → Connect

connectionview

connectionview [connection_file]

GUI only

Opens the Connection Organizer window, which allows you to create, edit, and
manage Connection Methods. If no filename is specified, the window opens with
the [User Methods] connection file displayed. Otherwise, the window opens with
the specified file displayed. If the specified file does not exist, it is created.

For more information about theConnectionOrganizer, see “Using the Connection
Organizer” in Chapter 3, “Connecting to Your Target” in the MULTI: Debugging
book.

Corresponds to: Target → Show Connection Organizer

disconnect

disconnect

Closes an existing connection to a target.

Corresponds to:

Corresponds to: Target → Disconnect from Target

MULTI: Debugging Command Reference226

Chapter 17. Target Connection Command Reference

iobuffer

iobuffer { on | off }

GUI only

Disables or enables buffering for the current connection's I/O pane. Buffering is
enabled by default. If buffering is enabled (on), input to the I/O pane is not sent to
the target until a newline character is encountered in the input stream. If buffering
is disabled (off), every character is sent to the target as soon as it is typed. Disabling
the buffering in MULTI may cause problems on some targets if they expect input
to be buffered.

Corresponds to: Target → IO Buffering

load

load [-setup | -nosetup] [filename]

Downloads the current executable to the target's memory. This may take a long
time, depending on the size of the program. After being loaded, the program is not
started automatically. Whether the .bss section is cleared depends on the debug
server.

If -nosetup is specified, the Debugger loads the program without running the
setup script. The -setup option is the default and causes the Debugger to run the
setup script specified in the connect command before loading the program (see
“connect” on page 223). The setup command allows you to execute the setup script
without loading a program (see “setup” on page 231).

If you specify filename when connected to a hardware target, the named file will
be downloaded to the target's memory without changing the image that is currently
open in the Debugger. Use this option with extreme caution. MULTI will assume
that the named file contains an adequate subset of the image that is open in the
Debugger, and will attempt to execute and debug it as such, without attempting to
download the current image as well. Ordinarily, if you want to change which
executable you are debugging, you should issue a debug command to change the
image that is open in the Debugger (see “debug” on page 20), then click the Prepare
Target button () to download it.

227Green Hills Software

iobuffer

The filename you specify will be searched for using the default search path. See
“Default Search Path for Files Specified in Commands” on page 14.

This command behaves specially on a run-mode connection to an INTEGRITY
target. You should specify the filename of an INTEGRITY application. The setup
script will not be executed, and you should not pass the -setup or -nosetup
options. Loading applications on INTEGRITY is only supported if the target supports
and was configured with a dynamic loader (for example, the LoaderTask). Whether
the program is started automatically depends on the StartIt settings in the Integrate
configuration file for the application.

Some targets support interruptible downloads. To interrupt a download in progress,
press Esc.

See also “prepare_target” on page 228.

prepare_target

prepare_target [-ask | -flash | -load | -verify=sparse | -verify=complete |
-verify=none] [-allcores | -onecore] [-save | -nosave]

Prepares the target by downloading, flashing, or verifying one or more executables,
or opens the Prepare Target dialog box so that you can specify a download, flash,
or verify operation. Available options are:

• -ask — Opens the Prepare Target dialog box.
• -flash — Programs the currently selected executable to flash ROM as with

the flash gui command (see “flash” on page 120).
• -load — Downloads the currently selected executable to RAM as with the
load command (see “load” on page 227).

• -verify=sparse — Checks to ensure that the contents of target memory
match the file contents of the currently selected executable. As with the verify
-sparse -all command (see “verify” on page 129), MULTI verifies a few bytes
at the beginning, middle, and end of all downloaded non-data sections that
cannot be written to.

• -verify=complete — Checks to ensure that the contents of target memory
match the file contents of the currently selected executable. As with the verify

MULTI: Debugging Command Reference228

Chapter 17. Target Connection Command Reference

-all command (see “verify” on page 129), MULTI verifies in entirety all
downloaded non-data sections that cannot be written to.

• -verify=none — Specifies that the currently selected executable is already
present in your target's memory and that MULTI should assume, but not verify
that the contents of target memory match the contents of the executable program
file.

• -allcores— Specifies that when you download, flash, or verify the currently
selected executable on the core it is associated with, each remaining core of
your multi-core target is automatically prepared as if you had run
prepare_target -verify=none on the executable associated with it. This
option has the same effect as setting the prepareAllCores configuration option
to on. See the prepareAllCores option in “Other Debugger Configuration
Options” in Chapter 8, “Configuration Options” in the MULTI: Managing
Projects and Configuring the IDE book.

• -onecore — Specifies that when you download, flash, or verify the currently
selected executable on the core it is associated with, executables associated
with the remaining cores of your multi-core target are ignored. This option has
the same effect as setting the prepareAllCores configuration option to off.

• -save — Automatically uses these settings the next time you:

○ Pass this command without options or
○ Click the Prepare Target button ()

for the currently selected executable.
• -nosave — Does not automatically use these settings (see -save above).

Instead, MULTI opens the Prepare Target dialog box.

If you do not specify any options, MULTI either performs the operation(s) last
executed when the executable was selected, performs a default operation (based on
the type of program you are debugging), or opens the Prepare Target dialog box
to receive input.

Regardless of the option you specify, MULTI opens the Prepare Target dialog
box if input is required.

This command may not be available for use with relocatable modules.

229Green Hills Software

prepare_target

For more information, see “Preparing Your Target” in Chapter 7, “Preparing Your
Target” in the MULTI: Debugging book.

Corresponds to:

Corresponds to: Debug → Prepare Target

reset

reset [halt | run | hold]

Resets the target, where:

• halt— Causes the Debugger to wait for the target to halt and leaves the target
in the halted state after reset. This is the default behavior if you do not specify
any option to the reset command. To stop waiting and to abort the command,
press Esc.

• run — Runs the target after performing the reset. This option also disables all
hardware breakpoints.

• hold — Causes the target to keep asserting the reset signal.

This command is only available for hardware targets, and not every target supports
all types of reset. Some targets may need to emulate the halt or run behaviors (for
example, by performing the reset and then performing either the halt or run action
immediately thereafter).

Corresponds to:

set_runmode_partner

set_runmode_partner [-none | -auto | -reset | Connection_Method_name]

Sets or disables a run-mode partner for the current freeze-mode connection or opens
the Set Run-Mode Partner dialog box so you can change the setting via the GUI.
For information about run-mode partners, see “Automatically Establishing Run-Mode
Connections” in Chapter 4, “INDRT2 (rtserv2) Connections” in the MULTI:
Debugging book.

MULTI: Debugging Command Reference230

Chapter 17. Target Connection Command Reference

Available options are:

• -none — Disables the run-mode partner functionality for the current
freeze-mode connection.

• -auto — Specifies that the operating system should attempt to tell the
Debugger what address and method to use to establish a run-mode connection
to the target. This option is only supported with certain operating systems (such
as INTEGRITY version 10 and later).

• -reset — Resets the run-mode partner setting to the default, unset state.
• Connection_Method_name — Sets Connection_Method_name as the

run-mode partner. If Connection_Method_name does not exist when the
Debugger tries to initialize the run-mode partner, an error is printed.

If you do not specify any options, the Set Run-Mode Partner dialog box is
displayed. See “The Set Run-Mode Partner Dialog Box” in Chapter 4, “INDRT2
(rtserv2) Connections” in the MULTI: Debugging book.

See also the -restart_runmode option in “connect” on page 223.

setup

setup [-first] [-args script_arguments] [script_filename]

Executes a target setup script, where:

• -first — Treats the setup script as if it has never been executed on the target.
This option clears the _ALREADY_SETUP_ONCE system variable. Whether or
not this affects the execution of your setup script depends on the setup script
itself.

• -args script_arguments — Specifies script arguments to the target setup
script. At present, only Python setup scripts can accept arguments.

• script_filename — Specifies the target setup script to be executed. If you
do not specify script_filename, the target setup script associated with the
debug connection is executed.

To interrupt this command, press Esc.

231Green Hills Software

setup

Note
The setup command is not supported with legacy (.dbs) scripts. Use the
command target script script_filename instead (see “target, xmit”
on page 232).

See also “connect” on page 223 and “load” on page 227.

target, xmit

target [/NoRmtMsg] string

xmit [/NoRmtMsg] string

Transmits commands directly to the target debug server, and supplies the debug
server with the current task context. You can change the current task context with
the route command (see “route” on page 181).

Using the target or xmit command is equivalent to entering string in the Debugger
target pane, where string is one or more supported debug server commands.

In GUI mode, the first message from the target (while it executes the string
commands) will be printed in the current Debugger window's command pane by
default. The /NoRmtMsg option directs MULTI to print the message in the target
pane instead.

For a list of commands that can be passed to your debug server (if any), see the
MULTI: Configuring Connections book for your target processor family.

Note
The Debugger cannot predict the effect of a target or xmit command. If
the command changes the state of the target, you may have to take
corrective action to cause the new state of the target to be reflected in the
Debugger. For example, you may need to issue the halt or update
command after the target or xmit command completes. See “halt”
on page 152 and “update” on page 275.

MULTI: Debugging Command Reference232

Chapter 17. Target Connection Command Reference

targetinput, xmitio

targetinput [input_string_to_target]

xmitio [input_string_to_target]

Feeds a string into the target standard input. The input string can be a plain string
or be enclosed in double quotation marks. Special characters can be sent in an escape
sequence that begins with a backslash (\), as in C. For example, a new line can be
sent with the sequence: \n.

The targetinput and xmitio commands are subject to the same limitations as the
Debugger's I/O pane. For more information, see “The I/O Pane” in Chapter 2, “The
Main Debugger Window” in the MULTI: Debugging book.

unload

unload [-filedialog | filename]

Unloads programs from the target system's memory. If filename is specified (for
example, unload a.out) and it matches a program on the target, the given file is
unloaded. If filename is not specified, a dialog box appears with a list of programs
that can be unloaded from the target.

If -filedialog is specified, a file chooser appears. The chosen file is unloaded
from the target if it is already loaded.

This command is only supported on INTEGRITY and VxWorks run-mode
connections.

Serial Connection Commands

The commands in this section allow you to control MULTI's serial terminal emulator
(MTerminal). For more information, see Chapter 27, “Establishing Serial
Connections” in the MULTI: Debugging book.

The following list provides a brief description of each serial connection command.
For a command's arguments and for more information, see the page referenced.

233Green Hills Software

targetinput, xmitio

• serialconnect — Establishes a connection to a serial port (see “serialconnect”
on page 234).

• serialdisconnect— Terminates a previously established serial connection (see
“serialdisconnect” on page 234).

serialconnect

serialconnect port_name [-baud baudrate] [-databitsDB] [-parity P] [-stopbits SB]
[-flowcontrol FC]

Establishes a connection to a serial port, where:

• port_name — Specifies which serial port is being used (for instance, ttya,
ttyS0, or COM1).

• -baud baudrate — Specifies the baud rate, where baudrate can be any
one of the following: 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800,
2400, 4800, 9600, 19200, 38400, 57600, 115200, or 230400. The default
is 9600.

• -databits DB — Specifies the data bits, where DB can be 5, 6, 7, or 8. The
default is 8.

• -parity P — Specifies parity, where P can be none, even, or odd. The
default is none.

• -stopbits SB — Specifies stop bits, where SB can be either 1 or 2. The
default is 1.

• -flowcontrol FC — Specifies flow control, where FC can be none or
xonxoff. The default is none.

Corresponds to: Tools → Serial Terminal → Make Serial Connection

serialdisconnect

serialdisconnect

Terminates a previously established serial connection.

Corresponds to: Tools → Serial Terminal → Disconnect from Serial

MULTI: Debugging Command Reference234

Chapter 17. Target Connection Command Reference

Chapter 18

Task Group Command
Reference

Contents
Task Group Commands . 236

The commands in this chapter allow you to operate on task groups. Task groups
allow you to organize tasks, making it easier to work with multiple tasks
simultaneously. For information about task groups, see “Working with Task Groups
in the Task Manager” in Chapter 25, “Run-Mode Debugging” in the MULTI:
Debugging book.

Note
For these commands to work properly, the Task Manager must be open.
For information about opening the Task Manager, see “The Task
Manager” in Chapter 25, “Run-Mode Debugging” in the MULTI:
Debugging book.

Task Group Commands

The following list provides a brief description of each task group command. For a
command's arguments and for more information, see the page referenced.

• changegroup— Adds tasks to a task group or removes tasks from a task group
(see “changegroup” on page 237).

• creategroup — Creates a task group (see “creategroup” on page 238).
• destroygroup — Destroys the specified task groups (see “destroygroup”

on page 239).
• groupaction— Runs, halts, or single-steps all tasks that belong to the specified

task groups (see “groupaction” on page 239).
• listgroup — Lists task groups (see “listgroup” on page 240).
• setsync — Sets task groups to which the same run, halt, or step operation will

be synchronously applied when you run, halt, or step the current task (see
“setsync” on page 240).

• showsync — Shows the task groups for a synchronous operation performed
on a task in the current Debugger window, or shows the task group setting for
all supported synchronous operations (see “showsync” on page 241).

MULTI: Debugging Command Reference236

Chapter 18. Task Group Command Reference

changegroup

changegroup -add | -del @task_group [-addressSpace AddressSpace_name]
[-taskname] task_name[, task_name]... | [-taskid] task_id[, task_id]...

GUI only

Adds tasks to a task group or removes tasks from a task group, where:

• -add — Adds the specified tasks into the specified task group.
• -del — Deletes the specified tasks from the specified task group.
• @task_group — Specifies the task group that tasks should be added to or

deleted from. If task_group contains spaces, enclose it in quotation marks.
• -addressSpace AddressSpace_name — Specifies the INTEGRITY

AddressSpace where the tasks are located. You only need to give the
AddressSpace if you specify task names that are not unique. On INTEGRITY,
every task ID is unique.

• [-taskname] task_name[, task_name]... — Specifies the tasks to
operate on by task name.

• [-taskid] task_id[, task_id]... — Specifies the tasks to operate on
by task ID.

If you do not specify -taskname or -taskid, MULTI treats numeric values as
task IDs and other values as task names.

You can add/delete multiple tasks from the same AddressSpace or add/delete tasks
from multiple AddressSpaces. If you want to operate on tasks from multiple
AddressSpaces and the tasks share the same name, format the command as shown
below:

> changegroup -add @"My Group" -addressSpace AddressSpace1 \
Initial -addressSpace AddressSpace2 Initial

For information about task groups, see “Working with Task Groups in the Task
Manager” in Chapter 25, “Run-Mode Debugging” in the MULTI: Debugging book.

Note
The Task Manager must be open when you execute this command.

237Green Hills Software

changegroup

creategroup

creategroup @task_group [-addressSpace AddressSpace_name] [-taskname]
task_name[, task_name]... | [-taskid] task_id[, task_id]...

GUI only

Creates a task group, where:

• @task_group — Specifies the task group name. If task_group contains
spaces, enclose it in quotation marks.

• -addressSpace AddressSpace_name — Specifies the INTEGRITY
AddressSpace where the tasks are located. You only need to give the
AddressSpace if you specify task names that are not unique. On INTEGRITY,
every task ID is unique.

• [-taskname] task_name[, task_name]... — Specifies the names of
tasks you want to add to the task group.

• [-taskid] task_id[, task_id]... — Specifies the IDs of tasks you
want to add to the task group.

If you do not specify -taskname or -taskid, MULTI treats numeric values as
task IDs and other values as task names.

You can add multiple tasks from the same AddressSpace or add tasks from multiple
AddressSpaces. If you want to add tasks from multiple AddressSpaces and the tasks
share the same name, format the command as shown below:

> creategroup @"My Group" -addressSpace AddressSpace1 Initial \
-addressSpace AddressSpace2 Initial

For information about task groups, see “Working with Task Groups in the Task
Manager” in Chapter 25, “Run-Mode Debugging” in the MULTI: Debugging book.

Note
The Task Manager must be open when you execute this command.

MULTI: Debugging Command Reference238

Chapter 18. Task Group Command Reference

destroygroup

destroygroup @task_group1 [, @task_group2]...

GUI only

Destroys the specified task groups. If there are spaces in a task group name, enclose
it in quotation marks.

For information about task groups, see “Working with Task Groups in the Task
Manager” in Chapter 25, “Run-Mode Debugging” in the MULTI: Debugging book.

Note
The Task Manager must be open when you execute this command.

groupaction

groupaction -r|-h|-s @task_group [, @task_group]...

GUI only

Runs (-r), halts (-h), or single-steps (-s) all tasks that belong to the specified task
groups. If task_group contains spaces, enclose it in quotation marks.

As long as the target operating system supports task groups, these actions will be
performed on the individual tasks synchronously. If an operating system does not
support task groups, MULTI will send out separate commands to each task in the
task group. In this case, the latency time for the operations on different tasks will
be unpredictable, depending on various factors such as network traffic, the RTOS
debug agent's status, and the target's speed. For more information, see “Synchronous
Operations” in Chapter 25, “Run-Mode Debugging” in the MULTI: Debugging
book.

For information about task groups, see “Working with Task Groups in the Task
Manager” in Chapter 25, “Run-Mode Debugging” in the MULTI: Debugging book.
For information about using this command in a freeze-mode environment, see
“Synchronous Run Control” in Chapter 26, “Freeze-Mode Debugging and
OS-Awareness” in the MULTI: Debugging book.

239Green Hills Software

destroygroup

Note
The Task Manager must be open when you execute this command.

listgroup

listgroup [-d] [@task_group1 [, @task_group2]...]

GUI only

Lists task groups. If you do not specify any arguments, all existing task groups are
listed. If you specify -d, MULTI lists detailed information about the task groups.
Specify one or more task groups to see information only about those task groups.
If there are spaces in a task group name, enclose it in quotation marks.

For information about task groups, see “Working with Task Groups in the Task
Manager” in Chapter 25, “Run-Mode Debugging” in the MULTI: Debugging book.

Note
The Task Manager must be open when you execute this command.

setsync

setsync -r|-h|-s [@task_group [, @task_group]...]

GUI only

Sets task groups to which the same run (-r), halt (-h), or step (-s) operation is
synchronously applied when you run, halt, or step the current task. If task_group
contains spaces, enclose it in quotation marks. If no task group is specified, MULTI
clears the setting for the corresponding operation.

Synchronous execution information is persistent within and across debugging
sessions while you are performing run-mode debugging. Whenever you attach to
a task, the corresponding setting is automatically restored.

To avoid complexity and prevent recursion, MULTI does not nest synchronous
trigger operations. For example, suppose task T1 and task T2 are specified to
synchronously run task group G1 and G2, respectively. Further suppose that task

MULTI: Debugging Command Reference240

Chapter 18. Task Group Command Reference

group G1 contains task T2, and task group G2 contains task T1. If task T1 is run,
MULTI synchronously runs the tasks in task group G1, thereby causing task T2
(which is included in G1) to run. When task T2 is run, however, MULTI does not
run (synchronously or otherwise) task group G2.

For information about task groups, see “Working with Task Groups in the Task
Manager” in Chapter 25, “Run-Mode Debugging” in the MULTI: Debugging book.

Note
The Task Manager must be open when you execute this command.

See also “showsync” on page 241.

showsync

showsync [-r|-h|-s]

GUI only

If an operation is specified, the command shows the task groups for the synchronous
operation for the task currently selected in the target list. If no argument is specified,
it shows the task group settings for all supported synchronous operations.

For information about task groups, see “Working with Task Groups in the Task
Manager” in Chapter 25, “Run-Mode Debugging” in the MULTI: Debugging book.

Note
The Task Manager must be open when you execute this command.

See also “setsync” on page 240.

241Green Hills Software

showsync

Chapter 19

Trace Command Reference

Contents
Trace Commands . 244

The commands in this chapter allow you to collect, analyze, and save trace data.
For information about trace, see Part IV, “TimeMachine Debugging” in the MULTI:
Debugging book.

Trace Commands

The following list provides a brief description of each trace command. For a
command's arguments and for more information, see the page referenced.

• timemachine — Enables or disables TimeMachine, or launches Separate
Session TimeMachine (see “timemachine” on page 245).

• trace — Starts a new trace session or modifies an existing trace session (see
“trace” on page 246).

• tracebrowse — Launches a trace browser for the specified address expression
(see “tracebrowse” on page 250).

• tracedata— Configures trace so that the trace trigger occurs when the specified
data address is read from or written to (see “tracedata” on page 250).

• tracefunction— Configures trace so that trace data is only collected when the
process is executing the specified function (see “tracefunction” on page 251).

• traceline— Configures trace so that the trace trigger occurs when the specified
address is executed (see “traceline” on page 251).

• traceload — Loads the previously saved trace session file you specify (see
“traceload” on page 251).

• tracemevsys — Generates an EventAnalyzer log from the current trace data
and opens the EventAnalyzer on the information (see “tracemevsys”
on page 252).

• tracepath — Generates path analysis information from the current trace data
and opens a PathAnalyzer window on the information (see “tracepath”
on page 252).

• tracepro — Generates profiling information from the current trace data and
opens a Profile window on the information (see “tracepro” on page 253).

• tracesave — Saves the trace session to the specified file (see “tracesave”
on page 253).

MULTI: Debugging Command Reference244

Chapter 19. Trace Command Reference

• tracesavetext — Saves the currently retrieved trace data to the specified text
file (see “tracesavetext” on page 254).

• tracesubfunction— Configures trace so that trace data is only collected when
the process is executing an address within the specified function or when the
process is executing a callee of the specified function (see “tracesubfunction”
on page 254).

timemachine

timemachine [-newsession | -ns] [-tid task_ID | -as_name AddressSpace]

GUI only

Enables or disables TimeMachine for the specified item, or launches Separate
Session TimeMachine on the specified item. Available arguments are:

• -newsession and -ns— Launch Separate Session TimeMachine on the item
currently selected in the target list or the item specified by -tid or -as_name.
The -newsession and -ns options function identically. For information about
Separate Session TimeMachine, see “Using Separate Session TimeMachine”
in Chapter 19, “Analyzing Trace Data with the TimeMachine Tool Suite” in
the MULTI: Debugging book.

• -tid — Enables/disables TimeMachine for the task with the specified
task_ID.

• -as_name— Enables/disables TimeMachine for the specified AddressSpace.

If no arguments are given, TimeMachine is enabled/disabled for the item currently
selected in the target list.

For this command to be valid, you must be connected to a target that supports trace
and you must have collected trace data. If trace data has been collected but not
retrieved, it is automatically retrieved before TimeMachine is enabled.

For more information about TimeMachine, see “The TimeMachine Debugger” in
Chapter 19, “Analyzing Trace Data with the TimeMachine Tool Suite” in the
MULTI: Debugging book.

Corresponds to:

245Green Hills Software

timemachine

Corresponds to: TimeMachine → TimeMachine Debugger

trace

trace [abort] [bookmarks] [clear] [close] [config=filename] [disable | enable] [
history - | history +] [list] [options] [path] [pro | profiler] [reg | register] [retrieve
[-all]] [set [option [value]]] [stats] [sync[on | off]] [toggle] [triggers] [updateosa]
[api application_name [application_arguments...]]

Starts a new trace session or modifies an existing trace session.

The available arguments are:

• abort — Aborts the retrieval of trace data. This option corresponds to
TimeMachine → Abort Trace Retrieval.

• bookmarks — Opens the Trace Bookmarks window. For more information,
see “Bookmarking Trace Data” in Chapter 19, “Analyzing Trace Data with the
TimeMachine Tool Suite” in the MULTI: Debugging book.

• clear — Clears all current trace data on the host, trace probe, and target. This
option corresponds to TimeMachine → Clear Data.

• close — Clears trace data and closes all windows associated with trace. This
argument overrides other specified options.

• config=filename — Specifies the name of a saved trace configuration file
to load.

• disable — Stops trace collection and retrieves trace data. This option
corresponds to TimeMachine → Disable Trace.

• enable — Starts trace collection and clears any previously collected data on
the target. Data that has already been retrieved is not cleared, but if trace
retrieval is currently in progress, it is aborted. This option corresponds to
TimeMachine → Enable Trace.

• history - — Returns to the previous location in the trace navigation history.
This can be useful if you want to undo an action (such as running backwards
in the TimeMachine Debugger) that brought you to an unexpected location in
your source code.

The trace history - command corresponds to (see “Pre-Defined Buttons”
in Appendix A, “Debugger GUI Reference” in the MULTI: Debugging book).

MULTI: Debugging Command Reference246

Chapter 19. Trace Command Reference

• history + — Returns to the next location in the trace navigation history.
This option is only meaningful if you have previously issued the trace history
- command (described above).

The trace history + command corresponds to (see “Pre-Defined Buttons”
in Appendix A, “Debugger GUI Reference” in the MULTI: Debugging book).

• list— Opens the Trace List. For more information, see “Viewing Trace Data
in the Trace List” in Chapter 19, “Analyzing Trace Data with the TimeMachine
Tool Suite” in the MULTI: Debugging book. This option corresponds to
TimeMachine → Trace List.

• options— Opens theTrace Options dialog box, which allows you to modify
options related to trace data collection and display. For more information, see
“The Trace Options Window” in Chapter 20, “Advanced Trace Configuration”
in the MULTI: Debugging book. This option corresponds to TimeMachine →
Trace Options.

• path — Opens the PathAnalyzer. For more information, see “The
PathAnalyzer” in Chapter 19, “Analyzing Trace Data with the TimeMachine
Tool Suite” in the MULTI: Debugging book. This option corresponds to
TimeMachine → PathAnalyzer.

• pro or profiler — Generates profiling data from the current trace data and
opens a Profile window on the information. The trace pro[filer] command
functions identically to the tracepro command (see “tracepro” on page 253).
For more information, see “Using Trace Data to Profile Your Target” in Chapter
19, “Analyzing Trace Data with the TimeMachine Tool Suite” in the MULTI:
Debugging book. This option corresponds to TimeMachine → Profile.

• reg or register — Opens the Reconstructed Registers window. The reg
and register options function identically. For more information, see “Viewing
Reconstructed Register Values” in Chapter 19, “Analyzing Trace Data with
the TimeMachine Tool Suite” in the MULTI: Debugging book.

• retrieve — Retrieves trace data from the trace probe or target.

With SuperTrace Probe v3 targets, this either retrieves the amount of data set
by the Target buffer size option, or it retrieves twice as much data as has
already been retrieved. In the latter case, all previously retrieved trace data is
cleared from the tools and then retrieved again from the probe. For more
information, see “Retrieving Trace Data from a SuperTrace Probe v3” in

247Green Hills Software

trace

Chapter 19, “Analyzing Trace Data with the TimeMachine Tool Suite” in the
MULTI: Debugging book.

With all other targets, all trace data is always retrieved.

This option corresponds to TimeMachine → Retrieve Trace.
• retrieve -all — Retrieves all collected data from the SuperTrace Probe

v3. Prior to retrieving the data, all trace data in the tools is cleared. For more
information, see “Retrieving Trace Data from a SuperTrace Probe v3” in
Chapter 19, “Analyzing Trace Data with the TimeMachine Tool Suite” in the
MULTI: Debugging book.

• set [option] — Lists all available target-specific trace options and their
current values, or lists only the target-specific option option and its current
value. For information about options, see the documentation about
target-specific trace options in the Green Hills Debug Probes User's Guide or,
if you are using a V850 target, the documentation about V850 trace options in
the MULTI: Configuring Connections book.

• set option value — Sets the target-specific trace option option to value.
For information about options, see the documentation about target-specific
trace options in the Green Hills Debug Probes User's Guide or, if you are using
a V850 target, the documentation about V850 trace options in the MULTI:
Configuring Connections book. You can also set target-specific trace options
in the Trace Options window. For information about this window, see “The
Trace Options Window” in Chapter 20, “Advanced Trace Configuration” in
the MULTI: Debugging book.

• stats — Opens the Trace Statistics window. For more information, see
“Viewing Trace Statistics” in Chapter 19, “Analyzing Trace Data with the
TimeMachine Tool Suite” in the MULTI: Debugging book. This option
corresponds to TimeMachine → Trace Statistics.

• sync— Prints the status of packet selection synchronization. See the description
of sync on.

• sync on — Enables cross-core synchronization of trace packets based on
time. This option is only supported on targets that support multi-core trace. If
you attempt to enable trace synchronization on a target that does not support
it, the message Unable to set synchronizer state is printed. For more
information, see “Using Trace Tools on a Multi-Core Target” in Chapter 26,

MULTI: Debugging Command Reference248

Chapter 19. Trace Command Reference

“Freeze-Mode Debugging and OS-Awareness” in the MULTI: Debugging
book.

• sync off — Disables cross-core synchronization of trace packets. This is the
default.

• toggle — Toggles collection of trace data. This argument overrides other
specified options.

• triggers — Opens the Set Triggers window, which allows you to specify
triggers and other trace events. For more information, see “The Set Triggers
Window” in Chapter 20, “Advanced Trace Configuration” in the MULTI:
Debugging book. This option corresponds to TimeMachine → Set Triggers.

• updateosa — Refreshes the OSA data used for task-aware trace of an
operating system. This argument is intended to be used when theAssume static
OSA trace option is enabled. It is useful for forcing an update of OSA data
when the set of tasks in the system has reached a static state. It can also be
useful for refreshing data after the state of the system has been changed, for
example, by downloading an application using a run-mode debug server such
as rtserv or rtserv2. For more information, see theAssume static OSA option
in “The Trace Options Window” in Chapter 20, “Advanced Trace
Configuration” in the MULTI: Debugging book.

• api application_name [application_arguments...] — Launches
a C/C++ application or a Python script that uses the live TimeMachine interface.
You may optionally supply one or more application_arguments. All
arguments passed after application_name are treated as application
arguments, not as arguments to the trace command. For more information, see
“The TimeMachine API” in Chapter 19, “Analyzing Trace Data with the
TimeMachine Tool Suite” in the MULTI: Debugging book.

Note
The toggle and close arguments override other specified options.

249Green Hills Software

trace

tracebrowse

tracebrowse [-line] [address_expression]

GUI only

Launches a trace browser for the specified address expression. If the address
expression refers to a data address, a Trace Memory Browser will be launched to
display reads and writes to the address. If the address expression refers to a function,
a Trace Call Browser will be launched to display the call sites of the function. If
-line is specified, address_expression refers to a line number in the current
procedure. In this case, a Trace Instruction Browser will be launched to display
the executions of that particular line. If no address is specified, the current function
is displayed in the Trace Call Browser.

For more information about the trace browsers, see “Browsing Trace Data” in
Chapter 19, “Analyzing Trace Data with the TimeMachine Tool Suite” in the
MULTI: Debugging book.

Trace data must be collected before this command can be used.

tracedata

tracedata [address_expression]

Configures trace so that the trace trigger occurs when the data address specified by
address_expression is read from or written to. Using this command overwrites
any triggers or trace events that were previously set.

On INTEGRITY, you can only use this command to set the trigger in the kernel
AddressSpace.

For information about triggers, see “Configuring Trace Collection” in Chapter 20,
“Advanced Trace Configuration” in the MULTI: Debugging book.

MULTI: Debugging Command Reference250

Chapter 19. Trace Command Reference

tracefunction

tracefunction [address_expression]

Configures trace so that trace data is only collected when the process is executing
the function specified by address_expression. To collect trace data for both
the specified function and its callees, use the tracesubfunction command (see
“tracesubfunction” on page 254).

Using this command overwrites any triggers or trace events that were previously
set.

On INTEGRITY, you can only use this command to configure trace collection in
the kernel AddressSpace.

For more information, see “Configuring Trace Collection” in Chapter 20, “Advanced
Trace Configuration” in the MULTI: Debugging book.

traceline

traceline [address_expression]

Configures trace so that the trace trigger occurs when the address specified by
address_expression is executed. If no address is specified, the currently selected
line is used. Using this command overwrites any triggers or trace events that were
previously set.

On INTEGRITY, you can only use this command to set the trigger in the kernel
AddressSpace.

For information about triggers, see “Configuring Trace Collection” in Chapter 20,
“Advanced Trace Configuration” in the MULTI: Debugging book.

traceload

traceload [filename]

Loads the previously saved trace session file filename. If you do not specify
filename, you are prompted to make a selection in the file chooser that appears.

251Green Hills Software

tracefunction

If the file was saved without an ELF file and you are using INTEGRITY, you must
load the file from the kernel executable. If the file was saved without an ELF file
and you are not using INTEGRITY, you can only load the file while debugging the
same program you used to gather the trace data. If you have rebuilt the program
since you collected the trace data, loading the saved trace data may produce
unexpected behavior. See “Saving and Loading a Trace Session” in Chapter 19,
“Analyzing Trace Data with the TimeMachine Tool Suite” in theMULTI: Debugging
book.

tracemevsys

tracemevsys [-file description_file] [-no_task_name]

GUI only

Generates an EventAnalyzer log from the current trace data and opens the
EventAnalyzer on the information. The description_file argument must
specify a trace system call description file, which is specific to the operating system
for which the EventAnalyzer log is being generated.

If the -no_task_name option is specified, task names are not read from the target.
By default, reading task names is enabled, which halts the target momentarily if the
target is not already halted. If this option is specified, the task ID is used as the task
name when the EventAnalyzer is displayed.

See “Viewing Trace Events in the EventAnalyzer” in Chapter 19, “Analyzing Trace
Data with the TimeMachine Tool Suite” in the MULTI: Debugging book.

Corresponds to: TimeMachine → EventAnalyzer

tracepath

tracepath

GUI only

Generates path analysis information from the current trace data and opens a
PathAnalyzer window on the information.

MULTI: Debugging Command Reference252

Chapter 19. Trace Command Reference

See also “The PathAnalyzer” in Chapter 19, “Analyzing Trace Data with the
TimeMachine Tool Suite” in the MULTI: Debugging book.

Corresponds to: TimeMachine → PathAnalyzer

tracepro

tracepro

GUI only

Generates profiling data from the current trace data and opens a Profile window
on the information. See “Using Trace Data to Profile Your Target” in Chapter 19,
“Analyzing Trace Data with the TimeMachine Tool Suite” in theMULTI: Debugging
book.

Corresponds to: TimeMachine → Profile

tracesave

tracesave [--data | -d | --data_elf | -de | --data_elf_debug | -ded | --win | -w] [
--scratch_dir=path | -s=path] [filename]

Saves a trace session, where:

• --data | -d — Saves trace data only (not the ELF file or debug information).
• --data_elf | -de — Saves the trace data and ELF file only (not the debug

information).
• --data_elf_debug | -ded — [default] Saves the trace data, ELF file, and

debug information.
• --win | -w — Opens a dialog box allowing you to choose what type of

information is saved.
• --scratch_dir=path | -s=path— Specifies the path to the directory where

temporary files created during the process of saving the trace session are stored.
By default, they are stored in the directory where the trace session file is created.
If there is not enough space on that file system for both the temporary files and
the trace session file, use this option to specify an alternative location for the
temporary files.

253Green Hills Software

tracepro

• filename — Specifies the file that the trace session is saved to. If you do not
specify filename, you are prompted to make a selection in the file chooser
that appears.

You can load filenamewith the traceload command (see “traceload” on page 251).

For more information, see “Saving and Loading a Trace Session” in Chapter 19,
“Analyzing Trace Data with the TimeMachine Tool Suite” in theMULTI: Debugging
book.

tracesavetext

tracesavetext filename

Saves the currently retrieved trace data to the text file filename. The data is saved
in a Comma Separated Value format suitable for analysis by custom scripts.

Tip
The recommended interface for custom trace analysis scripts is the
TimeMachine API. It is much more powerful and flexible and enables
higher performance custom analysis.

Corresponds to: File → Export As CSV in the Trace List

tracesubfunction

tracesubfunction [address_expression]

Configures trace so that trace data is only collected when the process is executing
an address within the function specified by address_expression or when the
process is executing a callee of the function. To collect trace data for the specified
function but not for callees, use the tracefunction command (see “tracefunction”
on page 251).

Using this command overwrites any triggers or trace events that were previously
set.

On INTEGRITY, you can only use this command to configure trace collection in
the kernel AddressSpace.

MULTI: Debugging Command Reference254

Chapter 19. Trace Command Reference

For more information, see “Configuring Trace Collection” in Chapter 20, “Advanced
Trace Configuration” in the MULTI: Debugging book.

255Green Hills Software

tracesubfunction

Chapter 20

Tracepoint Command
Reference

Contents
Tracepoint Commands . 258

The commands in this chapter allow you to manipulate tracepoints. These commands
are only available if tracepoints are supported on the currently connected target.
For more information about tracepoints, see Chapter 24, “Non-Intrusive Debugging
with Tracepoints” in the MULTI: Debugging book.

Tracepoint Commands

The following list provides a brief description of each tracepoint command. For a
command's arguments and for more information, see the page referenced.

• edittp — Opens the Tracepoint Editor dialog box, which allows you to edit
the tracepoint at the current source line (see “edittp” on page 258).

• passive — Toggles passive mode on or off or changes the passive mode
password (see “passive” on page 259).

• tpdel — Deletes a tracepoint (see “tpdel” on page 259).
• tpenable — Enables or disables a tracepoint (see “tpenable” on page 260).
• tplist — Lists the current tracepoints (see “tplist” on page 260).
• tpprint— Collects the current data buffer from the target and displays the data

in the command pane as ASCII text (see “tpprint” on page 261).
• tppurge — Clears the tracepoint buffer on the target (see “tppurge”

on page 261).
• tpreset — Resets the hit count for a tracepoint (see “tpreset” on page 262).
• tpset — Sets a tracepoint (see “tpset” on page 262).

edittp

edittp

GUI only

Opens the Tracepoint Editor dialog box, which allows you to edit the tracepoint
at the current source line. If no tracepoint is set on the current line (as indicated by
the blue context arrow), you can use the this dialog to create a new tracepoint. For
more information, see “Tracepoint Editor Dialog” in Chapter 24, “Non-Intrusive
Debugging with Tracepoints” in the MULTI: Debugging book.

MULTI: Debugging Command Reference258

Chapter 20. Tracepoint Command Reference

passive

passive [on | off]

passive [on | off] password

passive password old_pw new_pw

passive toggles passive mode on or off. In passive mode, the Debugger rejects
invasive debugging that significantly impacts program functionality. Passive mode
is not available with all targets.

• password — Enter the passive mode password for operating system
integrations that require a password.

passive password changes the passive mode password. This use of the passive
command only has meaning for operating system integrations that support passive
mode passwords. The following must be specified immediately after the passive
password command.

• old_pw — Enter the old passive mode password.
• new_pw — Enter the new passive mode password.

For more information about passive mode and the passive command, see “Debugging
in Passive Mode” in Chapter 24, “Non-Intrusive Debugging with Tracepoints” in
the MULTI: Debugging book.

tpdel

tpdel [address_expression | %id]

Deletes the tracepoint at the specified address_expression or with the specified
tracepoint identification number id. If no argument is given, the tracepoint at the
current line is removed. See also “Deleting a Tracepoint” in Chapter 24,
“Non-Intrusive Debugging with Tracepoints” in the MULTI: Debugging book.

259Green Hills Software

passive

tpenable

tpenable { true | false } [address_expression | %id]

Enables or disables the tracepoint at the specified address_expression or with
the specified tracepoint identification number id.

If false is specified, the tracepoint will not collect data until the tracepoint is
re-enabled. Depending on the target operating system, each time a tracepoint is
encountered, even if it is disabled, there may be a small processing overhead. If
true is specified, the tracepoint will actively collect data.

See also “Enabling or Disabling a Tracepoint” in Chapter 24, “Non-Intrusive
Debugging with Tracepoints” in the MULTI: Debugging book.

tplist

tplist [verbose | quiet] [refresh]

Lists the current tracepoints (whether enabled or disabled). The information listed
includes the tracepoint identification number, the location and address, the “hit
count / timeout” threshold, and if available, the number of times the tracepoint has
been reached.

If quiet (the default) is specified, this command displays the tracepoints in a
one-per-line format. If verbose is specified, this command displays the data
gathering command in addition to the location and type information.

Normally, this command displays the information as of the last time the Debugger
contacted the target; however, if refresh is specified, the Debugger will contact
the target for current information. Note that refreshing the list requires transmitting
information from the target and may impact the target's execution. By default, this
command does not perform a refresh.

A sample output of the tplist command might be:

> tplist
0 main#2: 0x101f4 200/400 (argc,argv)

MULTI: Debugging Command Reference260

Chapter 20. Tracepoint Command Reference

This output indicates that a tracepoint with identification number 0 is set at the
address 0x101f4 to collect the values of variables argc and argv. The tracepoint
will be disabled by the target if it is hit more than 200 times per 400 time units.

Using the verbose option provides additional information about the exact actions
the tracepoint will perform. For example:

> tplist verbose
0 main#2: 0x101f4 200/400
(argc) : READ_MEM RELATIVE 0001 0000000c 00 04 00000001
(argv) : READ_MEM RELATIVE 0001 00000008 00 04 00000001

See also “Listing Tracepoints” in Chapter 24, “Non-Intrusive Debugging with
Tracepoints” in the MULTI: Debugging book.

tpprint

tpprint [filename]

Collects the current data buffer from the target and displays the data in the command
pane as ASCII text. If filename is specified, the data will be written to that file
instead of being displayed in the command pane. See also “Viewing the Tracepoint
Buffer” in Chapter 24, “Non-Intrusive Debugging with Tracepoints” in theMULTI:
Debugging book.

tppurge

tppurge [all | size]

Clears the tracepoint buffer on the target. Normally, the argument all should be
specified to clear the entire contents of the buffer. To clear a portion of the buffer,
specify a size in bytes.

The argument sizemust fall on a boundary between entries in the tracepoint buffer.
Only sizes displayed by the tpprint command should be used (see “tpprint”
on page 261).

See also “Purging the Tracepoint Buffer” in Chapter 24, “Non-Intrusive Debugging
with Tracepoints” in the MULTI: Debugging book.

261Green Hills Software

tpprint

tpreset

tpreset [address_expression | %id]

Resets the hit count for the tracepoint at the specified address_expression or
with the specified tracepoint identification number id. If no argument is given, the
tracepoint at the current line is reset. See also “Resetting a Tracepoint” in Chapter
24, “Non-Intrusive Debugging with Tracepoints” in the MULTI: Debugging book.

tpset

tpset count / timeout (variable_list) [address_expression] [[condition]]

Sets a tracepoint, where:

• count — Specifies a hit count.
• timeout — Specifies the timeout threshold. The units of the timeout period

are determined by the target's implementation of tracepoints.
• (variable_list) — Specifies a comma-separated list of variables whose

values are collected by the tracepoint. You must enclose the variable list in
parentheses.

• address_expression — Specifies the location.
• [condition] — Specifies a condition, whose interpretation is based on the

target's implementation of tracepoints. You must enclose the condition in square
brackets.

To reduce performance impact, the target automatically disables tracepoints that
are hit more than count times per timeout time units. If you do not want
tracepoints to be automatically disabled, specify 0 for both count and timeout.

The following example sets a tracepoint that collects the values of argc and argv
at the second source line of main(). If the tracepoint is hit more than 200 times
per 400 time units, it will be automatically disabled. (The exact length and definition
of the time units used by tracepoints is implementation-specific. For more
information, consult the documentation for your operating system integration.)

> tpset 200/400 (argc,argv) main#2
0 main#2: 0x101f4 200/400

MULTI: Debugging Command Reference262

Chapter 20. Tracepoint Command Reference

(argc) : READ_MEM RELATIVE 0001 0000000c 00 04 00000001
(argv) : READ_MEM RELATIVE 0001 00000008 00 04 00000001

The output from the tpset command describes the actual operations that take place
when the tracepoint is triggered. In the above example, the target will read register
0001 and add an offset of 0000000c when gathering data for the variable argc.
The target will then read 00000001 blocks of 04 bytes and store that value into the
tracepoint buffer.

See also “Setting a Tracepoint” in Chapter 24, “Non-Intrusive Debugging with
Tracepoints” in the MULTI: Debugging book.

263Green Hills Software

tpset

Chapter 21

View Command Reference

Contents
General View Commands . 266
Cache View Commands . 279
Data Visualization Commands . 280

General View Commands

The following list provides a brief description of each general view command. For
a command's arguments and for more information, see the page referenced. (Note
that complete descriptions for some of these commands are located in other chapters.)

• bpview, breakpoints — Opens the Breakpoints window (see “bpview,
breakpoints” on page 43 in Chapter 3, “Breakpoint Command Reference”
on page 35).

• browse — Opens a browser for the specified object type (see “browse”
on page 267).

• browseref, xref— Displays the specified object's cross references in a Browse
window or MULTI's command pane (see “browseref, xref” on page 269).

• callsview — Opens the Call Stack window, which lists all functions on the
call stack (see “callsview” on page 69 in Chapter 5, “Call Stack Command
Reference” on page 67).

• connectionview — Opens the Connection Organizer window, which allows
you to create, edit, and manage Connection Methods (see “connectionview”
on page 226 in Chapter 17, “Target Connection Command Reference”
on page 221).

• diff — Opens the Diff Viewer on the file currently displayed in the source
pane (see “diff” on page 270).

• edit — Opens an Editor on the file and line specified (see “edit” on page 270).
• editview — Opens a MULTI Editor for the object specified (see “editview”

on page 271).
• heapview — Opens the Memory Allocations window (see “heapview”

on page 271).
• localsview — Opens a Data Explorer displaying all local variables for the

current procedure (see “localsview” on page 272).
• memview — Opens a Memory View window for displaying and modifying

memory contents (see “memview” on page 273).
• noteview— Navigates to the location of the specified Debugger Note or opens

a Note Browser displaying all Debugger Notes for the program being debugged
(see “noteview” on page 92 in Chapter 7, “Debugger Note Command
Reference” on page 89).

MULTI: Debugging Command Reference266

Chapter 21. View Command Reference

• osaview — Opens the OSA Object Viewer (see “osaview” on page 207 in
Chapter 15, “Scripting Command Reference” on page 177).

• regview — Opens a Register View window displaying all registers, or opens
aRegister Informationwindow displaying the specified register (see “regview”
on page 174 in Chapter 6, “Configuration Command Reference” on page 73).

• showdef — Searches for a C preprocessor definition for each specified name
(see “showdef” on page 273).

• showhistory — Displays the specified source file's revision history in the
History Browser (see “showhistory” on page 274).

• taskwindow— Opens the Task Manager in a run-mode debugging environment
or displays it in the foreground if it is already open (see “taskwindow”
on page 207 in Chapter 15, “Scripting Command Reference” on page 177).

• top — Opens a Process Viewer window, which displays a snapshot of the
processes on your native target (see “top” on page 274).

• update— Re-evaluates all currently open Data Explorer and monitor windows,
halting the process if necessary to get the updated information (see “update”
on page 275).

• view — Opens a Data Explorer, a Browse window, or an OSA Object Viewer
displaying the specified items (see “view” on page 275).

• viewdel — Closes all Data Explorer, Browse, Register View, Memory View,
Call Stack, and Breakpoints windows (see “viewdel” on page 277).

• viewlist — Displays a list of structures in the Data Explorer (see “viewlist”
on page 277).

• window— Creates, deletes, lists, or changes the contents of a monitor window
(see “window” on page 278).

browse

browse [object_type]

GUI only

Opens a browser for object_type. The following list describes available
object_types, of which you may specify only one. If no argument is given, procs

267Green Hills Software

browse

is assumed. Passing an unknown object causes a Data Explorer to be opened on the
object.

• files | filelist — Opens a Browse window listing all files in the program.
See “Browsing Source Files” in Chapter 12, “Browsing Program Elements”
in the MULTI: Debugging book.

• procs | procedures — Opens a Browse window listing all procedures in the
program. See “Browsing Procedures” in Chapter 12, “Browsing Program
Elements” in the MULTI: Debugging book.

• global | globals — Opens a Browse window listing all the global variables
in the program. See “Browsing Global Variables” in Chapter 12, “Browsing
Program Elements” in the MULTI: Debugging book.

• types — Opens a Browse window displaying all structs, classes, and unions
used in the program. See “Browsing Data Types” in Chapter 12, “Browsing
Program Elements” in the MULTI: Debugging book.

• file — Opens a Browse window listing all the procedures in the file file.
• includes [file | all] — Opens a Graph View window that displays an

include file dependency graph. If you specify file, the graph is centered on
the given file. If you specify all, the entire program's include file dependency
graph is shown (note that this may be very large for many programs). If you
do not specify either of these options, the graph is centered on the current file
being viewed in the source pane. See “Browsing Includes” in Chapter 12,
“Browsing Program Elements” in the MULTI: Debugging book.

• classes — Opens a Tree Browser for classes. See “Browsing Classes” in
Chapter 12, “Browsing Program Elements” in the MULTI: Debugging book.

• class — Opens a Data Explorer listing data members and functions of the
class class.

• caller [procedure] — Opens a Browse window displaying the callers of
the procedure procedure, if specified. Otherwise, it displays the callers of
the current procedure being viewed in the source pane.

• callee [procedure] — Opens a Browse window displaying the callees of
the procedure procedure, if specified. Otherwise, it displays the callees of
the current procedure being viewed in the source pane.

• scalls | calls [procedure] — Opens a Tree Browser for static calls,
rooted on the procedure procedure, if specified. Otherwise it is rooted on the
current procedure being viewed in the source pane. See “Browsing Static Calls

MULTI: Debugging Command Reference268

Chapter 21. View Command Reference

By Function” in Chapter 12, “Browsing Program Elements” in the MULTI:
Debugging book.

• dcalls [procedure] — Opens a Tree Browser for dynamic calls, rooted
on the procedure procedure, if specified. Otherwise, it is rooted on the current
procedure being viewed in the source pane. For more information, see
“Browsing Dynamic Calls by Function” in Chapter 12, “Browsing Program
Elements” in the MULTI: Debugging book.

• fcalls [file]— Opens a Tree Browser for static calls between files, rooted
on the file file, if specified. Otherwise, it is rooted on the current file being
viewed in the source pane. See “Browsing Static Calls By File” in Chapter 12,
“Browsing Program Elements” in the MULTI: Debugging book.

browseref, xref

browseref [-all | -write | -read | -addr | -nowindow] object_name

xref [-all | -write | -read | -addr | -nowindow] object_name

GUI only

Displays the specified object's cross references in a Browse window or, if
-nowindow is specified, in MULTI's command pane. -all, which is the default
setting, displays all cross references; -write displays all writes; -read displays
all reads; and -addr displays all address references. See also Chapter 12, “Browsing
Program Elements” in the MULTI: Debugging book.

The browseref and xref commands attempt to resolve object_name to a symbol
in your program as if object_name were used in an expression, searching for it
based on the position of the current line pointer and using the scope rules of the
language in use. For more information, see “Expression Scope” in Chapter 14,
“Using Expressions, Variables, and Procedure Calls” in the MULTI: Debugging
book.

Note
For performance reasons, these commands only partially implement
compatible type checking when searching for references in compile units
other than the one where the search started. This means that two very
similar structures in two different compile units can be incorrectly

269Green Hills Software

browseref, xref

matched as identical. In C++, MULTI can match the wrong structure if
two similar nested structures exist. Nameless types exacerbate this
problem, so ensuring that all types are named reduces the chance that
this will happen.

diff

diff

GUI only

Opens the Diff Viewer on the file currently displayed in the source pane. This
command is equivalent to running the Diff Viewer from the command line with the
currently displayed source file as its argument. For arguments to this command,
see “Starting the Diff Viewer from the Command Line” in Chapter 6, “Using
MULTI's Version Control Tools and Capabilities” in theMULTI:Managing Projects
and Configuring the IDE book.

edit

edit [address_expression]

GUI only

Opens an Editor on the file and line given by address_expression. If no
address_expression is given, this command opens an Editor on the currently
displayed location.

For example: edit bar opens the Editor on the file containing the function bar,
with the cursor positioned at the beginning of the function bar. See also “Using
Address Expressions in Debugger Commands” on page 5.

Corresponds to:

MULTI: Debugging Command Reference270

Chapter 21. View Command Reference

editview

editview [expr | proc | file]

GUI only

Opens a MULTI Editor for the object specified by expr, proc, or file, where:

• expr — Is an expression.
• proc — Is a procedure name.
• file — Is a filename.

For procedures and files, the editview command opens a MULTI Editor window
that contains the specified source code. For expressions and variables, this command
opens a Data Explorer that contains the given expression. You can then use the Data
Explorer to edit it. You can bind this command to a mouse button to create a “smart”
mouse click that views or edits anything you click. For more information, see
“Customizing Keys and Mouse Behavior” in Chapter 7, “Configuring and
Customizing MULTI” in the MULTI: Managing Projects and Configuring the IDE
book.

heapview

heapview [showleaks [-new] | showallocations [-new] | setmark | showstats |
showvisual]

GUI only

Opens the Memory Allocations window. This window's operations are only
available for processes that are halted and runnable. For more information, see
“Using the Memory Allocations Window” in Chapter 16, “Viewing Memory
Allocation Information” in the MULTI: Debugging book.

The available arguments are:

• showleaks — Causes the window to open with the Leaks tab displayed. If
-new is specified with showleaks, only leaks created since the last mark
command are shown.

271Green Hills Software

editview

• showallocations — Causes the window to open with the Allocations tab
displayed. If -new is specified with showallocations, only allocations
created since the last mark command are shown.

• setmark — Marks all objects in the heap.
• showstats — Causes the window to open with the Visualization tab

displayed, and causes the tab to show heap statistics.
• showvisual — Causes the window to open with the Visualization tab

displayed.

If no show* option is specified, the window opens with the Visualization tab
displayed by default.

Corresponds to: View → Memory Allocations

localsview

localsview

GUI only

Displays the current procedure's local variables in a Data Explorer. If the current
procedure is a C++ instance method, the Data Explorer displays the this pointer
as well. If the program counter (PC) moves to a new procedure or if you move up
or down the call stack (for example, by clicking or or by clicking a procedure
in the Call Stack window), the content of the Data Explorer is updated to display
information for that procedure. This is equivalent to the view $locals$ command
(see “view” on page 275).

Corresponds to:

Corresponds to: View → Local Variables

MULTI: Debugging Command Reference272

Chapter 21. View Command Reference

memview

memview [[@count] address_expression]

GUI only

Opens a Memory View window for displaying and modifying memory contents,
where:

• @count — Forces the Memory View window to display at most count bytes.
The minimum value that can be specified is 4.

This argument is useful if you do not want to manually size the window, but
you do want to restrict the amount of data displayed to a small, exact number
of bytes. It is less useful for showing a large set of data. If you set count to a
higher number of bytes than the Memory View window can display, only the
number of bytes that fit in the window are shown.

• address_expression — Specifies that the contents of the Memory View
window begin with the memory address address_expression. If no address
expression is specified, an empty Memory View window opens.

As an example use of this command, suppose you want to open a Memory View
window sized to show 128 bytes, beginning with the address argv[0]. You would
enter:

> memview @128 argv[0]

For more information, see Chapter 15, “Using the Memory View Window” in the
MULTI: Debugging book.

Corresponds to:

Corresponds to: View → Memory

showdef

showdef [name]...

Searches for a C preprocessor definition for each specified name. Each definition
found is printed. If no arguments are specified, this command prints all the

273Green Hills Software

memview

preprocessor definitions in the current program. In both cases, the local definitions
list is searched first, then the global definitions list is searched. Every name that
has a C preprocessor definition anywhere in the current program has an entry in the
global definitions list. Any name that has more than one C preprocessor definition
in the program has an overriding definition in the local definitions list for any files
that use the non-global definition. This command is only enabled for programs built
with MULTI debugging information.

showhistory

showhistory [address_expression]

GUI only

Displays the revision history in the History Browser for the source file specified
by address_expression. If no address expression is specified, this command
displays the revision history for the file corresponding to the currently displayed
location.

For more information about address expressions, see “Using Address Expressions
in Debugger Commands” on page 5.

top

top

GUI only

Opens a Process Viewer window, which displays a snapshot of the processes on
your native target, much like the Linux/Solaris top or ps utilities.

See “Viewing Native Processes” in Chapter 18, “Using Other View Windows” in
the MULTI: Debugging book.

Corresponds to: View → Task Manager

MULTI: Debugging Command Reference274

Chapter 21. View Command Reference

update

update [[-m] interval]

GUI only

Forces all currently open Data Explorer and monitor windows (including Register
View, Memory View, Call Stack, and OSA Object Viewer windows) to be
re-evaluated, halting the process if necessary to get the updated information. If this
command must perform a halt, the process resumes after the windows are refreshed.
This command provides you with a way to update your Data Explorer to the current
values without requiring you to manually halt and resume the process.

If you specify an interval, MULTI automatically updates the windows while the
process is running. The update occurs approximately every interval seconds or,
if you pass -m, approximately every interval milliseconds. This is a useful way
to monitor the value of a variable continuously while the process is running. To
deactivate the automatic update, specify 0 for the interval.

Corresponds to: View → Refresh Views

view

view [/n | /m] [/data] expr [, expr]... | type | *address | filename | $locals$ |
number:$locals$

GUI only

Opens a Data Explorer, a Browse window, or an OSA Object Viewer displaying
the given items.

If specified, the following options must appear before any other options on the
command line.

• /n — Forces the specified items to open in a new Data Explorer.
• /m — Forces the specified items to open in the primary Data Explorer.
• /data — Forces the specified variable to open in a Data Explorer rather than

in an OSA Object Viewer. This is only relevant for INTEGRITY objects.

275Green Hills Software

update

The /n and /m options are mutually exclusive. The /data option may be specified
in conjunction with the /n option or the /m option.

The remaining options are:

• expr [, expr]... — Displays the specified expression(s) expr in a Data
Explorer. If the expression is for an INTEGRITY object, the expression appears
in an OSA Object Viewer instead.

• type — Displays the type type in the Data Explorer.
• *address — Displays the contents of the given memory location in the Data

Explorer. You must precede the address with an asterisk (*).
• filename — Displays filename's procedures in the Browse window.
• $locals$ — Displays the current procedure's local variables in the Data

Explorer. If the current procedure is a C++ instance method, the this pointer
is displayed as well. If the program counter (PC) moves to a new procedure or
if you move up or down the call stack (for example, by clicking or or
by clicking a procedure in the Call Stack window), the content of the Data
Explorer is updated to display information for the new procedure. This option
corresponds to the button, View → Local Variables, and the localsview
command (see “localsview” on page 272).

• number:$locals$ — Displays local variables for the procedure located
number levels up the stack. If the procedure is a C++ instance method, the
this pointer is displayed as well. The information is displayed in the Data
Explorer. The stack frame does not change when the program counter (PC)
moves to a new procedure. For a fixed view of the current stack frame, enter:

> view 0:$locals$

For more information about the window in which a given item may be displayed,
see one of the following:

• “The Data Explorer Window” in Chapter 11, “Viewing and Modifying Variables
with the Data Explorer” in the MULTI: Debugging book

• “The Browse Window” in Chapter 12, “Browsing Program Elements” in the
MULTI: Debugging book

• “The OSA Object Viewer” in Chapter 25, “Run-Mode Debugging” in the
MULTI: Debugging book

MULTI: Debugging Command Reference276

Chapter 21. View Command Reference

Corresponds to: View → View Expression

viewdel

viewdel

GUI only

Closes all of the current Data Explorer, Browse, Register View, Memory View,
Call Stack, and Breakpoints windows.

Corresponds to: View → Close All Views

viewlist

viewlist structptr nextptr [links]

GUI only

Displays a list of structures in the Data Explorer, where structptr is the pointer
to the structure, nextptr is the name of the pointer to the next element of the
structure, and links is the number of items in the list to be displayed (default value
is 25).

For example, given the following C code:

struct S {int a; struct S *next; };struct S *ptr;

The command viewlist ptr next 3 would display the first three items in this
list. In this case, the viewlist command is equivalent to entering:

view ptr; view ptr->next; view ptr->next->next;

277Green Hills Software

viewdel

window

window [num] [{commands}]

GUI only

Creates, deletes, lists, or changes the contents of a monitor window. A monitor
window captures the output of a command or command list (see “Using Command
Lists in Debugger Commands” on page 12.) Each time the process stops, the
commands are executed, and the output of these commands is printed in the monitor
window. There is a limit of 100 defined monitor windows per program. The
command list may contain multiple commands separated by a semicolon (;), and
multiple commands must be surrounded by curly braces (for example, window
{calls; B}).

This command has several forms.

• window — Lists all existing monitor windows and their assigned commands.
• window num— Deletes monitor window number num. The number is displayed

on the monitor window border. For example, entering window 2 removes the
monitor window named MONITOR 2.

• window {commands} — Creates a monitor window displaying the results of
the given command list.

• window num {commands} — Replaces the command list for monitor window
num with commands. To change the command list, left-click the command's
name in the upper-left corner of the monitor window.

• window 0 — (The number zero.) Deletes all existing monitor windows.

For example, the command window calls displays a stack trace in monitor window
MONITOR 1. To change the window to display the breakpoints, use the command
window 1 B. See also “monitor” on page 23.

MULTI: Debugging Command Reference278

Chapter 21. View Command Reference

Cache View Commands

The commands in this section allow you to view the contents of the caches on your
processor. These commands are only available on some processors. For more
information about viewing caches, see “Viewing Caches” in Chapter 18, “Using
Other View Windows” in the MULTI: Debugging book.

The following list provides a brief description of each cache view command. For
a command's arguments and for more information, see the page referenced.

• cachefind — Opens the Cache Find window (see “cachefind” on page 279).
• cacheview— Opens theCache Viewwindow (see “cacheview” on page 279).

cachefind

cachefind [address_expression]

GUI only

Opens the Cache Find window. If you specify an address expression, the Cache
Find window displays cache information for the corresponding address. For more
information, see “The Cache Find Window” in Chapter 18, “Using Other View
Windows” in the MULTI: Debugging book.

Corresponds to: View → Find Address in Cache

cacheview

cacheview

GUI only

Opens the Cache View window. For more information, see “The Cache View
Window” in Chapter 18, “Using Other View Windows” in the MULTI: Debugging
book.

Corresponds to: View → Caches

279Green Hills Software

Cache View Commands

Data Visualization Commands

The commands in this section allow you to control custom data visualizations. For
more information, see Appendix E, “Creating Custom Data Visualizations” in the
MULTI: Debugging book.

The following list provides a brief description of each data visualization command.
For a command's arguments and for more information, see the page referenced.

• dataview — Opens a Graph View window displaying the specified profile or
view (see “dataview” on page 280).

• dvclear — Clears all loaded data descriptions (see “dvclear” on page 280).
• dvload — Loads the specified .mdv file, which is a custom data visualization

describing the data definitions, profiles, and views to be used for your MULTI
session (see “dvload” on page 281).

• dvprofile — Makes the specified profile the active profile (see “dvprofile”
on page 281).

dataview

dataview [profname | view_name]

GUI only

Opens aGraph Viewwindow displaying the specified profile (profname) or view
(view_name). The graph will use the default root (defroot) specified in the profile
or view definition.

If no argument is specified, all views will be displayed.

dvclear

dvclear

GUI only

Clears all loaded data descriptions.

MULTI: Debugging Command Reference280

Chapter 21. View Command Reference

dvload

dvload filename

GUI only

Loads the specified file of data descriptions, where filename is the name of a
custom data visualization (.mdv) describing the data definitions, profiles, and views
to be used for your MULTI session.

dvprofile

dvprofile profname

GUI only

Makes the profile with the profile name profname the active profile. (See “Profile
Descriptions” in Appendix E, “Creating Custom Data Visualizations” in theMULTI:
Debugging book.)

281Green Hills Software

dvload

Appendix A

Deprecated Command
Reference

Contents
Deprecated Commands . 284

The commands in this appendix have been deprecated in MULTI and will be
removed from a future release.

Deprecated Commands

The following list identifies deprecated commands.

• ba (See “b” on page 38 instead.)
• br (See “b” on page 38 instead.)
• bR (See “bA” on page 41 instead.)
• findleaks (See “heapview” on page 271 instead.)
• infiniteview (See “memview” on page 273 instead.)
• refresh (See “load” on page 227 instead.)
• remote (See “connect” on page 223 instead.)
• romverify (See “verify” on page 129 instead.)
• tlist (To open the Task Manager in a run-mode debugging environment, see

“taskwindow” on page 207 instead. To open an OSA Explorer on the current
process in a freeze-mode debugging environment or on the current debug server
in a run-mode debugging environment, see “osaexplorer” on page 203.)

MULTI: Debugging Command Reference284

Appendix A. Deprecated Command Reference

Index

Symbols
! (exclamation point) command, 194
!! (exclamation point-double) command, 195
%w (percent w) key sequence, 136
+ (plus sign) command, 132
- (minus sign) command, 133
-> (minus sign, right angle bracket) command, 83
/ (slash) command, 213
< (left angle bracket) command, 210
> (right angle bracket) command, 209
>> (right angle bracket-double) command, 210
? (question mark)

command, 213
@bp_count argument, 4, 36
@continue_count argument, 4, 148
{} (curly braces)

indicating command lists with, 5, 12

A
about command, 110
About dialog box, 110
aboutlic command, 111
addhook command, 197
address expressions, 5

toggling status of, 59
addresses

halting process on write to with watchpoint, 61
alertdialog command, 189
alias command, 179
asm command, 17
_ASMCACHE system variable

toggling with caches, 19
assem command, 96
assembling

instructions with asm, 17
attach command, 18
attaching to a process, 18

B
b command, 38
B command, 40
ba command (deprecated), 284
bA command, 41
backhistory command, 195
bc command, 154
bcU command, 160
bi command, 41
bI command, 41
bif command, 42
blocking

commands, 150, 158
%bp_ID argument, 3
%bp_label argument, 4
bpload command, 42
bprev command, 160
bpsave command, 43
bpview command, 43
br command (deprecated), 284
bR command (deprecated), 284
braces, curly ({})

indicating command lists with, 5, 12
break command, 186
breakpoints

commands for, 36
conditional, setting with bif, 42
continue count, specifying with @continue_count, 4, 148
count, specifying with @bp_count, 4, 36
deleting, 46, 47
exit point, setting, 45
IDs, 3, 10, 11
information about, 40, 48
on instructions, setting, 41
labels, 4, 10, 11
lists, 11
loading with bpload, 42
ranges, 11
restoring deleted, 48
saving, 43
setting basic, 38
temporary, setting with bA, 41
toggling status of, 59, 60
up-level, setting, 44

breakpoints command, 43
Breakpoints window

opening, 43
browse command, 267
Browse window

commands for, 267, 269

browseref command, 269
bs command, 160
bsearch command, 214
bsi command, 161
bt command, 44
bu command, 44
bU command, 44
bugreport command, 111
build command, 64
Builder

opening, 64
builder command, 64
building

commands, 64
buttons

commands for, 82, 84
configuring, 82, 84

bx command, 45
bX command, 45

C
c command, 149
Cache Find window, 279
_CACHE system variable

toggling with caches, 19
Cache View window, 279
cachefind command, 279
caches

commands for viewing, 279
toggling _CACHE and _ASMCACHE, 19

caches command, 19
cacheview command, 279
call command, 19
call stack (see Call Stack window)
Call Stack window

commands, 68, 69, 70
configuring with cvconfig, 70
functions, listing, 69

calls command, 68
callsview command, 69
case sensitivity of searches

changing, 214
cat command, 96
cb command, 150
cedit command, 179
cf command, 150
cfb command, 151
change_binding command, 223
changegroup command, 237
chgcase command, 214

clear command, 96
clearconfig command, 75
clearhooks command, 198
closing multiple windows, 277
colors

for syntax, configuring, 82
comeback command, 97
command conventions, 3
command groups

breakpoint commands, 36
building commands, 64
button, menu, mouse commands, 82
cache view commands, 279
call stack commands, 68
command manipulation and macro commands, 178
conditional program execution commands, 185
configuration commands, 74
continue commands, 148
data visualization commands, 280
Debugger Note commands, 90
deprecated commands, 284
dialog commands, 189
display and print commands, 94
external tool commands, 192
general Debugger commands, 16
general program execution commands, 146
general view commands, 266
halt commands, 152
help and information commands, 110
history commands, 193
information and help commands, 110
macro and command manipulation commands, 178
memory commands, 114
menu. mouse, button commands, 82
mouse, menu, button commands, 82
navigation commands, 132
Object Structure Awareness (OSA) commands, 202
playback and record commands, 208
print and display commands, 94
profiling commands, 140
program execution commands, 146, 154, 155, 157, 158,

161, 163
record and playback commands, 208
register commands, 170
run commands, 153
scripting commands, 178
search commands, 212
serial connection commands, 233
signal commands, 166
single-stepping commands, 158
target connection commands, 222

MULTI: Debugging Command Reference286

browseref command

task execution commands, 165
task group commands, 236
trace commands, 244
tracepoint commands, 258
view commands, 266

command line options
-I, 14

command lists, 5, 12
command manipulation

commands for, 178
commands

! (exclamation point), 194
!! (exclamation point-double), 195
+ (plus sign), 132
- (minus sign), 133
-> (minus sign, right angle bracket), 83
/ (slash), 213
< (left angle bracket), 210
> (right angle bracket), 209
>> (right angle bracket-double), 210
? (question mark), 213
about, 110
aboutlic, 111
addhook, 197
alertdialog, 189
alias, 179
asm, 17
assem, 96
attach, 18
b, 38
B, 40
ba (deprecated), 284
bA, 41
backhistory, 195
bc, 154
bcU, 160
bi, 41
bI, 41
bif, 42
bpload, 42
bprev, 160
bpsave, 43
bpview, 43
br (deprecated), 284
bR (deprecated), 284
break, 186
breakpoints, 43
browse, 267
browseref, 269
bs, 160
bsearch, 214

bsi, 161
bt, 44
bu, 44
bU, 44
bugreport, 111
build, 64
builder, 64
bx, 45
bX, 45
c, 149
cachefind, 279
caches, 19
cacheview, 279
call, 19
calls, 68
callsview, 69
cat, 96
cb, 150
cedit, 179
cf, 150
cfb, 151
change_binding, 223
changegroup, 237
chgcase, 214
clear, 96
clearconfig, 75
clearhooks, 198
comeback, 97
comments in, 13
compare, 115
compareb, 115
completeselection, 215
components, 97
configoptions, 75
configure, 76
configurefile, 76
connect, 223
connectionview, 226
continue, 186
copy, 116
copyb, 116
creategroup, 238
cu, 161
cU, 161
customizemenus, 83
customizetoolbar, 84
cvconfig, 70
d, 46
D, 47
dataview, 280
dbnew, 19

287Green Hills Software

command groups (continued)

dbprint, 98
debug, 20
debugbutton, 84
debugpane, 98
default search path of, 14
define, 179
deprecated, 284
destroygroup, 239
detach, 20
dialog, 189
dialogsearch, 215
diff, 270
directorydialog, 190
disassemble, 117
disconnect, 226
do, 186
dumpfile, 99
dvclear, 280
dvload, 281
dvprofile, 281
dz, 48
E, 99
e, 133
echo, 100
edit, 270
editbutton, 84
edithwbp, 49
editswbp, 50
edittp, 258
editview, 271
eval, 100
evaltosocket, 192
examine, 101
exclamation point (!), 194
exclamation point-double (!!), 195
filedialog, 190
fileextensions, 77
fill, 118
fillb, 118
find, 119
findb, 119
findleaks (deprecated), 284
flash, 120
fontsize, 77
for, 187
forwardhistory, 196
fsearch, 215
g, 146
getargs, 146
goaway, 101
grep, 216

groupaction, 239
H, 152
h, 196
halt, 152
hardbrk, 50
heapview, 271
help, 111
help regarding, 2
if, 187
imagename, 78
indexnext, 134
indexprev, 135
infiniteview (deprecated), 284
info, 111
inspect, 86
iobuffer, 227
isearch, 217
isearchadd, 218
isearchreturn, 218
k, 153
keybind, 87, 136
l, 102
left angle bracket (<), 210
Linux/Solaris only, 2, 5
listgroup, 240
listhooks, 199
load, 227
loadconfigfromfile, 78
loadsym, 21
localsview, 272
macrotrace, 181
make, 192
map, 103
memdump, 122
memload, 123
memread, 124
memtest, 125
memview, 273
memwrite, 128
menu, 87
mev, 22
minus sign (-), 133
minus sign, right angle bracket (->), 83
monitor, 23
mouse, 87, 136
mprintf, 103
mrulist, 104
mrv, 23
multibar, 24
mute, 105
n, 162

MULTI: Debugging Command Reference288

commands (continued)

new, 24
ni, 163
nl, 164
notedel, 90
noteedit, 91
notelist, 91
notestate, 92
noteview, 92
number, 135
osacmd, 203
osaexplorer, 203
osaFillGuiWithObj, 205
osainject, 205
osasetup, 205
osatask, 206
osaview, 207
output, 25
overview of, 2
P, 27
p, 105
passive, 259
plus sign (+), 132
prepare_target, 228
print, 105
printline, 106
printphys, 106
printsearch, 219
printwindow, 106
profdump, 140
profile, 141
profilemode, 141
profilereport, 144
pwd, 107
python, 201
pywin, 202
q, 28
Q, 107
question mark (?), 213
quit, 29
quitall, 30
r, 154
R, 155
rb, 155
Rb, 155
recording to playback files, 208
refresh (deprecated), 284
regadd, 171
regappend, 171
regbasefile, 171
regload, 172
regtab, 172

regunload, 173
regvalload, 174
regvalsave, 174
regview, 174
remote (deprecated), 284
repeating, 194, 195
reset, 230
restart, 156
restore, 30
resume, 156
return, 181
right angle bracket (>), 209
right angle bracket-double (>>), 210
rominithbp, 54
romverify (deprecated), 284
route, 181
rundir, 157
runtohere, 151
s, 161
S, 162
save, 31
saveconfig, 78
saveconfigtofile, 79
savedebugpane, 107
sb, 55
sc, 182
scrollcommand, 135
serialconnect, 234
serialdisconnect, 234
set_runmode_partner, 230
setargs, 147
setbrk, 57
sethbp, 57
setintegritydir, 79
setsync, 240
setup, 231
setuvelositydir, 80
shell, 182
showdef, 273
showhistory, 274
showsync, 241
si, 163
Si, 163
signal, 166
sl, 163
Sl, 164
slash (/), 213
socket, 192
Solaris/Linux only, 2, 5
source, 80
sourceroot, 81

289Green Hills Software

commands (continued)

stepinto, 164
stopif, 58
stopifi, 59
substitute, 183
switch, 137
syncolor, 82
target, 232
targetinput, 233
taskaction, 165
taskwindow, 207
timemachine, 245
tlist (deprecated), 284
tog, 59
Tog, 60
top, 274
tpdel, 259
tpenable, 260
tplist, 260
tpprint, 261
tppurge, 261
tpreset, 262
tpset, 262
trace, 246
tracebrowse, 250
tracedata, 250
tracefunction, 251
traceline, 251
traceload, 251
tracemevsys, 252
tracepath, 252
tracepro, 253
tracesave, 253
tracesavetext, 254
tracesubfunction, 254
unalias, 184
unload, 233
unloadsym, 31
update, 275
uptosource, 137
usage conventions, 3
usage, 112
verify, 129
view, 275
viewdel, 277
viewlist, 277
wait, 31
watchpoint, 61
wgutils, 65
while, 188
window, 278
windowcopy, 108

windowpaste, 108
windowspaste, 108
xmit, 232
xmitio, 233
xref, 269
zignal, 166

comments
in commands, 13

compare command, 115
compareb command, 115
completeselection command, 215
components command, 97
conditional breakpoints

setting with bif, 42
conditional program execution commands, 185
configoptions command, 75
configuration commands, 74
configuration options

continuePlaybackFileOnError, 208
procRelativeLines, 5, 7

configure command, 76
configurefile command, 76
configuring

buttons, 82, 84
menus, 82, 83
mouse buttons, 82
syntax colors, 82
toolbar, 84

connect command, 223
connections

target (see targets)
connectionview command, 226
context-sensitive help, 111
continue command, 186
continue commands, 148
CONTINUECOUNT system variable, 148
continuePlaybackFileOnError configuration option, 208
conventions

command, 3
typographical, xviii

copy command, 116
copyb command, 116
creategroup command, 238
cu command, 161
cU command, 161
curly braces ({})

indicating command lists with, 5, 12
customizemenus command, 83
customizetoolbar command, 84
customizing (see configuring)
cvconfig command, 70

MULTI: Debugging Command Reference290

commands (continued)

D
d command, 46
D command, 47
dataview command, 280
dbnew command, 19
dbprint command, 98
.dbs setup scripts, 224
debug command, 20
debugbutton command, 84
Debugger

command conventions, 3
GUI mode, 2, 5
non-GUI mode, 5
passive mode, 259

Debugger modes (see Debugger, GUI mode and non-GUI
mode)

Debugger Notes
commands for, 90

debugging
in passive mode, 259

debugpane command, 98
define command, 179
deprecated commands, 284
destroygroup command, 239
detach command, 20
dialog command, 189
dialog commands, 189
dialogsearch command, 215
diff command, 270
directorydialog command, 190
disassemble command, 117
disconnect command, 226
display commands, 94
do command, 186
document set, xvi, xvii
dumpfile command, 99
dvclear command, 280
dvload command, 281
dvprofile command, 281
dz command, 48

E
E command, 99
e command, 133
e frame_ command, 99
echo command, 100
edit command, 270
editbutton command, 84
edithwbp command, 49
editswbp command, 50

edittp command, 258
editview command, 271
epilogue code

setting breakpoints in, 45
eval command, 100
evaltosocket command, 192
examine command, 101
exceptions

toggling status of, 59
exclamation point (!) command, 194
exclamation point-double (!!) command, 195
execution (see programs)
exit breakpoints

setting, 45
expressions

placeholders for, 5
external tool commands, 192
e 0_, equivalent to E command, 99

F
file-relative line numbers

interpreting line numbers as, 7
File-Relative Mode, 5, 7
filedialog command, 190
fileextensions command, 77
fill command, 118
fillb command, 118
find command, 119
findb command, 119
findleaks command (deprecated), 284
flash command, 120
fontsize command, 77
for command, 187
forwardhistory command, 196
freeze-mode debugging

tasks, 203
fsearch command, 215

G
g command, 146
gbugrpt utility, 111
general program execution commands, 146
general view commands, 266
getargs command, 146
goaway command, 101
grep command, 216
groupaction command, 239
GUI mode, 2

commands, 5
starting Debugger in, 2

291Green Hills Software

d command

GUI only label, 5

H
H command, 152
h command, 196
halt command, 152
halt commands, 152
hardbrk command, 50
heapview command, 271
help and information commands, 110
help command, 111
history commands, 193

I
-I command line option, 14
IDs, breakpoint, 3, 10, 11
if command, 187
imagename command, 78
indexnext command, 134
indexprev command, 135
infiniteview command (deprecated), 284
info command, 111
information and help commands, 110
inspect command, 86
instructions

assembling, 17
setting breakpoints on, 41

iobuffer command, 227
isearch command, 217
isearchadd command, 218
isearchreturn command, 218

K
k command, 153
keybind command, 87
keys

configuring, 82

L
l command, 102
labels

breakpoint, 4, 10, 11
GUI only, 5
Linux/Solaris only, 5

left angle bracket (<) command, 210
licenses

viewing information about, 111
line numbers

interpreting as file- or procedure-relative, 7

Linux/Solaris
commands, 2, 5
non-GUI mode, 5

Linux/Solaris only labels, 5
listgroup command, 240
listhooks command, 199
listing

breakpoint information, 40, 48
lists

breakpoint, 11
load command, 227
loadconfigfromfile command, 78
loading breakpoints with bpload, 42
loadsym command, 21
localsview command, 272
loops

breaking out of with break, 186
do command, 186
for command, 187
while command, 188

M
macros

commands for, 178
macrotrace command, 181
make command, 192
manipulating commands, 178
map command, 103
.mbs setup scripts, 224
memdump command, 122
memload command, 123
memory

commands, 114
commands for viewing caches, 279
content, viewing, 276

memread command, 124
memtest command, 125
memview command, 273
memwrite command, 128
menu command, 87
menus

commands for configuring, 82, 83
mev command, 22
minus sign (-) command, 133
minus sign, right angle bracket (->) command, 83
monitor command, 23
mouse buttons

commands for configuring, 82
mouse command, 87, 136
mprintf command, 103

MULTI: Debugging Command Reference292

GUI only label

mrulist command, 104
mrv command, 23
MULTI data visualization

commands for, 280
MULTI Integrated Development Environment (IDE)

document set, xvii
exiting, 30
viewing information about, 110

multibar command, 24
mute command, 105

N
n command, 162
navigating

commands for, 132
new command, 24
ni command, 163
nl command, 164
non-GUI mode

commands, 5
non-intrusive debugging

with passive mode, 259
notedel command, 90
noteedit command, 91
notelist command, 91
notes (see Debugger Notes)
notestate command, 92
noteview command, 92
number command, 135
number_, 5

O
Object Structure Awareness (OSA)

commands, 202
one-shot (temporary) breakpoints

setting with bA, 41
online help

for commands, 2
options (see configuration options)
OSA Explorer

opening, 203
osacmd command, 203
osaexplorer command, 203
osaFillGuiWithObj command, 205
osainject command, 205
osasetup command, 205
osatask command, 206
osaview command, 207
output command, 25

P
P command, 27
p command, 105
passive command, 259
passive mode, 259
percent w (%w) key sequence, 136
playback and record commands, 208
plus sign (+) command, 132
prepare_target command, 228
print command, 105
print commands, 94
printing

commands for, 94
printline command, 106
printphys command, 106
printsearch command, 219
printwindow command, 106
procedure-relative line numbers

interpreting line numbers as, 7
Procedure-Relative Mode, 5, 7
Process Viewer

opening, 274
processes

attaching to, 18
continuing stopped, 150, 151
halting, 61, 152

procRelativeLines configuration option, 5, 7
profdump command, 140
profile command, 141
profilemode command, 141
profilereport command, 144
profiling

commands, 140
programs

execution of, 146
(see also processes)

pwd command, 107
python command, 201
pywin command, 202

Q
q command, 28
Q command, 107
question mark (?) command, 213
quit command, 29
quitall command, 30

R
r command, 154
R command, 155

293Green Hills Software

mrulist command

ranges
breakpoint, 11

rb command, 155
Rb command, 155
re-executing commands, 194, 195
record and playback commands, 208
refresh command (deprecated), 284
regadd command, 171
regappend command, 171
regbasefile command, 171
register commands, 170
regload command, 172
regtab command, 172
regunload command, 173
regvalload command, 174
regvalsave command, 174
regview command, 174
remote command (deprecated), 284
repeating commands, 194, 195
reset command, 230
restart command, 156
restore command, 30
resume command, 156
return command, 181
right angle bracket (>) command, 209
right angle bracket-double (>>) command, 210
rominithbp command, 54
romverify command (deprecated), 284
route command, 181
run commands, 153
run-mode debugging

tasks, 207
rundir command, 157
runtohere command, 151

S
s command, 161
S command, 162
S-Record format, 122, 123
save command, 31
saveconfig command, 78
saveconfigtofile command, 79
savedebugpane command, 107
sb command, 55
sc command, 182
scripts

commands for, 178
.dbs, 224
.mbs, 224

scrollcommand command, 135

searching
case sensitivity, changing, 214
commands for, 212
default path for, 14

serial connections
commands for, 233

serialconnect command, 234
serialdisconnect command, 234
set_runmode_partner command, 230
setargs command, 147
setbrk command, 57
sethbp command, 57
setintegritydir command, 79
setsync command, 240
setup command, 231
setuvelositydir command, 80
shell command, 182
showdef command, 273
showhistory command, 274
showsync command, 241
si command, 163
Si command, 163
signal command, 166
signals

commands relating to, 166
single-stepping

commands for, 158
sl command, 163
Sl command, 164
slash (/) command, 213
socket command, 192
Solaris/Linux

commands, 2, 5
non-GUI mode, 5

source command, 80
sourceroot command, 81
stack trace commands (see Call Stack window, commands)
stacklevel_, 5
starting

Debugger
in GUI mode, 2

stepinto command, 164
stopif command, 58
stopifi command, 59
stopped process, continuing, 150, 151
substitute command, 183
switch command, 137
syncolor command, 82
syntax coloring

configuring, 82

MULTI: Debugging Command Reference294

ranges

T
target command, 232
targetinput command, 233
targets

commands relating to, 222
task group commands, 236
Task Manager

opening, 207
taskaction command, 165
tasks

commands relating to, 165
taskwindow command, 207
temporary breakpoints

setting with bA, 41
timemachine command, 245
TimeMachine Debugger commands

bc, 154
bcU, 160
bprev, 160
bs, 160
bsi, 161

tlist command (deprecated), 284
tog command, 59
Tog command, 60
toggling

address expression status, 59
breakpoint status, 59, 60
exception status, 59

toolbar, Debugger
configuring, 84

top command, 274
tpdel command, 259
tpenable command, 260
tplist command, 260
tpprint command, 261
tppurge command, 261
tpreset command, 262
tpset command, 262
trace

commands for collecting and using, 244
trace command, 246
tracebrowse command, 250
tracedata command, 250
tracefunction command, 251
traceline command, 251
traceload command, 251
tracemevsys command, 252
tracepath command, 252
tracepoints

buffer

purging, 261
viewing, 261

commands, 258
timeout feature, 262

tracepro command, 253
tracesave command, 253
tracesavetext command, 254
tracesubfunction command, 254
tracing program execution, 44, 244

(see also TimeMachine Debugger)
(see also trace)

Tree Browser
command for, 267

typographical conventions, xviii

U
unalias command, 184
unload command, 233
unloadsym command, 31
up-level breakpoints

setting, 44
update command, 275
uptosource command, 137
usage command, 112
usage for commands, 2
Utility Program Launcher, 65

V
verify command, 129
view command, 275
view commands, 266
viewdel command, 277
viewing

information about licenses, 111
information about MULTI, 110

viewlist command, 277

W
wait command, 31
watchpoint command, 61
watchpoints

setting with watchpoint, 61
wgutils command, 65
while command, 188
window command, 278
windowcopy command, 108
windowpaste command, 108
windows

closing multiple, 277
identification numbers for, 136

295Green Hills Software

target command

windowspaste command, 108

X
xmit command, 232
xmitio command, 233
xref command, 269

Z
zignal command, 166

MULTI: Debugging Command Reference296

windowspaste command

	MULTI: Debugging Command Reference
	Contents
	Preface
	About This Book
	The MULTI 6 Document Set
	Conventions Used in the MULTI Document Set

	Chapter 1. Using Debugger Commands
	Availability of Debugger Commands
	Getting Help Information about Debugger Commands
	Finding Debugger Commands in This Book
	Debugger Command Conventions
	Using Address Expressions in Debugger Commands
	Specifying Line Numbers
	Name Resolution

	Identifying Breakpoints in Debugger Commands
	Breakpoint IDs and Labels
	Breakpoint Ranges and Lists

	Command Syntax
	Using Command Lists in Debugger Commands
	Continuing Commands onto Subsequent Lines
	Including Comments in Debugger Commands
	Terminating Commands

	Default Search Path for Files Specified in Commands

	Chapter 2. General Debugger Command Reference
	General Debugger Commands
	asm
	attach
	caches
	call
	dbnew
	debug
	detach
	loadsym
	mev
	monitor
	mrv
	multibar
	new
	output
	P
	q
	quit
	quitall
	restore
	save
	unloadsym
	wait

	Chapter 3. Breakpoint Command Reference
	Breakpoint Commands
	b
	B
	bA
	bi, bI
	bif
	bpload
	bpsave
	bpview, breakpoints
	bt
	bu, bU
	bx, bX
	d
	D
	dz
	edithwbp
	editswbp
	hardbrk
	rominithbp
	sb
	setbrk
	sethbp
	stopif
	stopifi
	tog
	Tog
	watchpoint

	Chapter 4. Building Command Reference
	Building Commands
	build
	builder
	wgutils

	Chapter 5. Call Stack Command Reference
	Call Stack Commands
	calls
	callsview
	cvconfig

	Chapter 6. Configuration Command Reference
	General Configuration Commands
	clearconfig
	configoptions
	configure
	configurefile
	fileextensions
	fontsize
	imagename
	loadconfigfromfile
	saveconfig
	saveconfigtofile
	setintegritydir
	setuvelositydir
	source
	sourceroot
	syncolor

	Button, Menu, and Mouse Commands
	->
	customizemenus
	customizetoolbar
	debugbutton, editbutton
	inspect
	keybind
	menu
	mouse

	Chapter 7. Debugger Note Command Reference
	Debugger Note Commands
	notedel
	noteedit
	notelist
	notestate
	noteview

	Chapter 8. Display and Print Command Reference
	Display and Print Commands
	assem
	cat
	clear
	comeback
	components
	dbprint
	debugpane
	dumpfile
	E
	echo
	eval
	examine
	goaway
	l
	map
	mprintf
	mrulist
	mute
	p, print
	printline
	printphys
	printwindow
	pwd
	Q
	savedebugpane
	windowcopy
	windowpaste, windowspaste

	Chapter 9. Help and Information Command Reference
	Help and Information Commands
	about
	aboutlic
	bugreport
	help
	info
	usage

	Chapter 10. Memory Command Reference
	General Memory Commands
	compare, compareb
	copy, copyb
	disassemble
	fill, fillb
	find, findb
	flash
	memdump
	memload
	memread
	memtest
	memwrite
	verify

	Chapter 11. Navigation Command Reference
	Navigation Commands
	+
	-
	e
	indexnext
	indexprev
	number
	scrollcommand
	switch
	uptosource

	Chapter 12. Profiling Command Reference
	Profiling Commands
	profdump
	profile
	profilemode
	profilereport

	Chapter 13. Program Execution Command Reference
	General Program Execution Commands
	g
	getargs
	setargs

	Continue Commands
	c
	cb
	cf
	cfb
	runtohere

	Halt Commands
	H
	halt
	k

	Run Commands
	bc
	r
	R
	rb, Rb
	restart
	resume
	rundir
	runtask

	Single-Stepping Commands
	bcU
	bprev
	bs
	bsi
	s
	cu, cU
	S, n
	si
	Si, ni
	sl
	Sl, nl
	stepinto

	Task Execution Commands
	taskaction

	Signal Commands
	signal
	zignal

	Chapter 14. Register Command Reference
	Register Commands
	regadd
	regappend
	regbasefile
	regload
	regtab
	regunload
	regvalload
	regvalsave
	regview

	Chapter 15. Scripting Command Reference
	Command Manipulation and Macro Commands
	alias
	cedit
	define
	macrotrace
	return
	route
	sc
	shell
	substitute
	unalias

	Conditional Program Execution Commands
	break
	continue
	do
	for
	if
	while

	Dialog Commands
	alertdialog
	dialog
	directorydialog
	filedialog

	External Tool Commands
	evaltosocket
	make
	socket

	History Commands
	!
	!!
	backhistory
	forwardhistory
	h

	Hook Commands
	addhook
	clearhooks
	listhooks

	MULTI-Python Script Commands
	python, py
	pywin

	Object Structure Awareness (OSA) Commands
	osacmd
	osaexplorer
	_osaFillGuiWithObj
	osainject
	osasetup
	osatask
	osaview
	taskwindow

	Record and Playback Commands
	>
	>>
	<

	Chapter 16. Search Command Reference
	Search Commands
	/
	?
	bsearch
	chgcase
	completeselection
	dialogsearch
	fsearch
	grep
	isearch
	isearchadd
	isearchreturn
	printsearch

	Chapter 17. Target Connection Command Reference
	General Target Connection Commands
	change_binding
	connect
	connectionview
	disconnect
	iobuffer
	load
	prepare_target
	reset
	set_runmode_partner
	setup
	target, xmit
	targetinput, xmitio
	unload

	Serial Connection Commands
	serialconnect
	serialdisconnect

	Chapter 18. Task Group Command Reference
	Task Group Commands
	changegroup
	creategroup
	destroygroup
	groupaction
	listgroup
	setsync
	showsync

	Chapter 19. Trace Command Reference
	Trace Commands
	timemachine
	trace
	tracebrowse
	tracedata
	tracefunction
	traceline
	traceload
	tracemevsys
	tracepath
	tracepro
	tracesave
	tracesavetext
	tracesubfunction

	Chapter 20. Tracepoint Command Reference
	Tracepoint Commands
	edittp
	passive
	tpdel
	tpenable
	tplist
	tpprint
	tppurge
	tpreset
	tpset

	Chapter 21. View Command Reference
	General View Commands
	browse
	browseref, xref
	diff
	edit
	editview
	heapview
	localsview
	memview
	showdef
	showhistory
	top
	update
	view
	viewdel
	viewlist
	window

	Cache View Commands
	cachefind
	cacheview

	Data Visualization Commands
	dataview
	dvclear
	dvload
	dvprofile

	Appendix A. Deprecated Command Reference
	Deprecated Commands

	Index

