Vector CAN Driver

Technical Reference

Renesas
RH850
RSCAN

Version 1.08.00

Authors Torsten Kercher
Status Released

vector’

Vector CAN Driver Technical Reference RH850 RSCAN

Document Information

History

vector’

Torsten Kercher | 2013-05-27 1.00.00

Torsten Kercher

Torsten Kercher

Torsten Kercher

Torsten Kercher

Torsten Kercher
Torsten Kercher

Torsten Kercher

Torsten Kercher

Torsten Kercher

2013-07-18

2013-08-26

2013-10-16

2014-04-04

2014-04-29
2014-05-15

2014-07-23

2014-11-24

2015-08-19

Table 1-1 History of the document

1.01.00

1.02.00

1.03.00

1.04.00

1.04.01
1.05.00

1.06.00

1.07.00

1.08.00

Initial release (support F1L with GreenHills compiler)

Support R1L derivatives
Correct description of nested interrupt behavior

Support HighEnd features
Support WindRiver Diab compiler

Support R1M derivatives

Update referenced version of the R1x manual
Support external wakeup functionality

Update chapters 5, 6, 7.2.2

Support extended CAN RAM check

Support RSCAN RAM test

Support D1L, D1M, P1M derivatives

Update referenced version of the F1L manual

Update description of nested interrupt behavior

Support IAR compiler
Support F1H derivatives
Update expected loop durations in chapter 5

Support Renesas compiler

Support C1H, C1M, E1L, E1M derivatives
Update chapters 5, 9.4, 10.3

Update ref. versions of the F1L and F1H manuals

Support configuration of the used ‘CAN Interface’
Support F1M derivatives

Update chapters 5, 6, 7.2.9, 9.4, 10.3

Update ref. versions of the P1x and R1x manuals

Support F1K derivatives

| Please note

: We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

©2015, Vector Informatik GmbH

Version: 1.08.00

2 /50

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

Contents
1 Introduction ... 5
2 Important REFErENCESccooiiii e 6
3 Usage of Controller FEaturesuuuiiiiiiiiiiiiiiiiiiiiiiiii e 7
3.1 [#hw_comObj] - Communication Objects..........cccoviiiiiiiiiiiiii e 7
3.2 ACCEPIANCE FiltErS.. .o 10
4 [#hw_sleep] - SleepMode and WakeUp...............oooiiiiiiiiiii e 1
4.1 [T o PP USPPRRRR 11
4.2 INtErNal WaKEUD ... e e s 11
4.3 T g F= TR = 1TV o P 11
5 [#hw_loop] - Hardware Loop ChecK.............ccccviii i, 13
6 [H#hw_busoff] - BUS Off ... 16
7 CAN DIIVEr FEAtUIESouiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e s neseseesssnssnnsnnnnnnne 17
71 [#hw_feature] - Feature List...........ouoiiiiiiiie e 17
7.2 Description of Hardware-related Features...........cccoooviiiviiiiiiiiii e, 19
7.2.1 [Hhw_status] - StatusS.......coii i 19
7.2.2 [#hw_stop] - STOP MOAE ... 19
7.2.3 [#hw_int] - Control of CAN Interrupts.........ooouviiiiiiice e 19
724 [#hw_cancel] - Cancel in Hardware...............cccocceeiiiiiiiiiiiice e, 20
7.2.5 RemMOte Framescoooiii e 20
7.2.6 CAN RAM CRECK ...vvvviviiiiiiiiiieisssssssssassnsnnnnnnn. 20
7.2.7 Extended CAN RAM ChecCK.......ccooiiiiieieiee e, 21
7.2.8 RSCAN ECC Configuration ..., 22
7.2.9 RSCAN RAM TSt ..., 23
8 [Hhw_assert] — ASSEIrtiONSuuuiuimiiiuiiiiiiiiiiiiiiiiieeeeeeeeeeaeeeeeeeaeneeeeesanesnnnnnnnnnnes 24
D AP 25
9.1 (0= 1 (=T [o] VPSP PP TP PP PPPPPPPPP 25
9.2 RSCAN ECC Configurationooiuiiiiiiiieeiiiiiiieee e 25
9.3 (Extended) CAN RAM ChECKcciiiiiiiiiiiiieei e 26
9.4 External CAN Interrupt Handlingccooooeiiiiiiiiiii e 31

©2015, Vector Informatik GmbH Version: 1.08.00 3/50

Vector CAN Driver Technical Reference RH850 RSCAN

10 Implementations Hints...............coooi e 35
10.1 IMPOrtaNt NOLES... ..o e e e e e 35
10.2 Interrupt Configuration..............oooo i 36
10.2.1 Configuration of Interrupt Vectors with IAR compiler...........ccccccovviiiiiiiiinnninnn, 37
10.3 External CAN Interrupt Handlingccoooooiiiiiiiiiiii e, 38
10.3.1 Hardware Access by Call-Back Functionscccco, 38
10.3.2 Interrupt Control by Applicationccooiiiiiiiiii e 38

11 Configuration................ 41
1.1 Configuration DY GENY.........uuuuiiiiiiiiiiiiiiiiiiiiiiiieii e 41
11.1.1 Platform Settings ... 41
11.1.2 Component SEttiNGS.......covviiiiiiiiiiiiiiiiiiie e 42
11.1.3 Channel-specific SEtiNgS......c.coovviiiiii i 43
11.2 Manual Configuration ... 48

12 Known Issues / Limitationscccooiiiiiiii 49

T 0o 31 - T 50

lllustrations

Figure 3-1 Hardware Object Layoutooiiiiiiiiiiiie e 7

Figure 11-1 GENYy Platform SettingS..........uuuuiuuiiiiiiiiiiiiiiiiiiieeees 41

Figure 11-2 GENy Component Settings............uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeees 42

Figure 11-3 GENy Channel Specific Settings...........uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeenens 43

Figure 11-4 GENYy Acceptance Filter Configuration................cccccuiiiiiiiiiiiiiiiiiiiiiiiiiinns 45

Figure 11-5 GENYy Acceptance Filter ASSignment ... 46

Figure 11-6 GENy Bustiming Configurationcccooiiiiiiiiiiiii e 47

Tables

Table 1-1 History of the dOCUMENT............uuiiiiiiiiiiiiiii e 2

Table 2-1 Supported Hardware OVEIVIEWuuuuuuuiurmiiiiiiiiiiiiniiinniiennennnennnnnnnnnnnnnes 6

Table 3-1 Hardware Object Layoutoooiiiiiiiiiiicce e 9

Table 7-1 CAN Driver FUNCHONAIILYuuuiiiiiiiiiiiiiiiiiiiiiiiieeees 18

Table 7-2 CAN SHALUS ... 19

Table 9-1 AP CAt@OIY ...ttt e e e e e e 25

Table 10-1 Interrupt Service ROULINEScoooviiiiiiiiii 36

Table 11-1 GENYy Platform SettingSuuuuiiiiiiiiiiiiiiiiiiiiiiiiiieeeees 41

Table 11-2 GENy Component Settings.........c.uuviiiiiiiiiiie e 42

Table 11-3 GENy Channel Specific Settings..........ooovviiiiiiiiiiici e, 44

Table 11-4 GENy Acceptance Filter Configuration..............cccoeviiiiiiii e, 45

Table 11-5 GENy Bustiming Configurationcccoiiiiiiiiiiee e 47

©2015, Vector Informatik GmbH Version: 1.08.00

vector’

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

1 Introduction

The concept of the CAN driver and the standardized interface between the CAN driver and
the application is described in the document TechnicalReference_CANDriver.pdf. The
CAN driver interface to the hardware is designed in a way that capabilities of the special
CAN chips can be utilized optimally. The interface to the application was made identical for
the different CAN chips, so that the "higher" layers such as network management,
transport protocols and especially the application would essentially be independent of the
particular CAN chip used.

This document describes the hardware dependent special features and implementation
specifics of the Renesas RSCAN on the RH850 platform.

©2015, Vector Informatik GmbH Version: 1.08.00 5/50

Vector CAN Driver Technical Reference RH850 RSCAN Vect()(E

2 Important References

The following table summarizes information about the CAN Driver. It gives you detailed
information about the versions, derivatives and compilers. As very important information
the documentations of the hardware manufacturers are listed. The CAN Driver is based
upon these documents in the given version.

Driv<-_;r Suppo_rted Sup_por_ted Hardware Manufacturer Documents Version
Version | Compilers Derivatives

3.15.xx, GreenHills, C1H RO1UHO0414EJ0041, RH850/C1x, Rev.0.41
RI 1.5 WindRiver Diab, C1M User’s Manual: Hardware Feb 2014
Renesas, D1L R01UH0451EJ0041, RH850/D1L/D1M Rev.0.41
IAR D1M Group, User’'s Manual: Hardware Jan 2014
E1L R01UH0468JJ0040, RH850/E1L, Rev.0.40
User’s Manual: Hardware Dec 2013

E1M R01UH0466JJ0040, RH850/E1M-S, Rev.0.40
User’'s Manual: Hardware Dec 2013

F1H ! R0O1UH0445EJ0011, RH850/F1H Group, Rev.0.11

User’s Manual: Hardware Apr 2014

F1K' RO1UH0562EJ0050, RH850/F1K Group Rev.0.50
User’s Manual: Hardware Mar 2015

F1L RO1UH0390EJO110, RH850/F1L Group, Rev.1.10

User’s Manual: Hardware Jun 2014

F1M RO1UH0518EJ0010, RH850/F1M Group, Rev.0.10
User’s Manual: Hardware Nov 2014

P1M R01UH0436EJ0060, RH850/P1x Group, Rev.0.60

User’s Manual: Hardware Jul 2014

R1L R0O1UH0411EJ0110, RH850/R1x Group, Rev.1.10
R1M User’s Manual: Hardware Aug 2014
R0O1US0058EJ0020, RH850 Family, Rev.0.20
User’s Manual: Software Feb 2013

Table 2-1 Supported Hardware Overview

Driver Version: This is the current version of the CAN Driver. Rl shows the version of the Reference
Implementation and therefore the functional scope of the CAN Driver.

Supported Compilers: List of compilers the CAN Driver is working with.

Supported Derivatives: List of derivatives the CAN Driver can be used on.

Hardware Manufacturer Documents: List of the documentation the CAN Driver is based on.
Version: Version of the documentation the CAN Driver is based on.

! Only the first RSCAN unit (RSCANO) is supported (physical channels CANO-CANS5).

©2015, Vector Informatik GmbH Version: 1.08.00 6/50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN

3 Usage of Controller Features

3.1 [#hw_comObj] - Communication Objects

The generation tool supports a flexible allocation of message buffers:

[0] RX Buffer

[max 127] RX Buffer

[128] RX FIFO

[135] RX FIFO

[160] TX Buffer

[175] TX Buffer

[176] TX Buffer

[191] TX Buffer

[272] TX Buffer

[287] TX Buffer

Figure 3-1

Note

Rx FullCAN
nRXMBmax receive buffers
shared over all channels

Rx BasicCAN
8 receive FIFOs
shared over all channels

Tx Normal, LowLevel, FullCAN
16 transmit buffers
physical channel CANO

Tx Normal, LowLevel, FullCAN
16 transmit buffers
physical channel CAN1

Tx Normal, LowLevel, FUllCAN
16 transmit buffers
physical channel CAN7

Hardware Object Layout

vector’

Figure 3-1 depicts the maximum capacities of one RSCAN unit - the actual layout

depends on the used derivative. Refer to the hardware manual to get the number of
supported physical channels to determine which Tx buffers are available. The amount
of supported Rx buffers (hnRXMBmax) equals the number of supported physical
channels of the used RSCAN unit * 16.

©2015, Vector Informatik GmbH

Version: 1.08.00

7 /50

Vector CAN Driver Technical Reference RH850 RSCAN

Obj Hw object | Log object | No. of Comment
number type type objects

) Receive Receive
(NRXFC -1) buffer FullCAN
nRXFC .

Receive
- buffer Unused
127
128
- Receive Receive
(128 + FIFO buffer | BasicCAN
nRXBC -1)
128 + nRXBC .
: Receive Unused
135 FIFO buffer

©2015, Vector Informatik GmbH

0
nRXMBmax

= nRXFC

128

= nRXBC

Version: 1.08.00

These objects are used to receive
specific CAN messages. The user
defines statically (Generation Tool) that
a CAN message should be received in a
FullCAN message object. The
Generation Tool distributes the
messages to the FullCAN objects. Up to
nRxMBmax receive FullCAN objects can
be configured per channel, but the sum
over all receive FullCAN objects on all
channels must not exceed nRxMBmax.
The receive buffers for the FullCAN
objects of all channels (sorted
ascending by the physical channel
index) are allocated continuously
starting from index 0.

These objects are not used. It depends
on the configuration of receive FullCAN
objects and nRxMBmax how many
receive buffers are not used. These
objects will not be configured, so they
don’t consume shared hardware buffers.

All other CAN messages (Application,
Diagnostics, Network Management) are
received via the BasicCAN objects.
Each object consists of one receive
FIFO buffer with a configurable amount
of acceptance filters and an individually
configurable FIFO depth (number of
allocated shared buffers). In general
there is one BasicCAN object per
channel, but by using the Multiple
BasicCAN feature the amount of used
BasicCAN objects can be configured.
Up to 8 receive BasicCAN objects can
be configured per channel, but the sum
over all receive BasicCAN objects on all
channels must not exceed 8. The
receive FIFO buffers for the BasicCAN
objects of all channels (sorted
ascending by the physical channel
index) are allocated continuously
starting from index 128.

These objects are not used. It depends
on the configuration of receive
BasicCAN objects how many receive
FIFO buffers are not used. These
objects will not be configured, so they
don’t consume shared hardware buffers.

8 /50

based on template version 3.2

vector’

Vector CAN Driver Technical Reference RH850 RSCAN Vect()rE

Obj Hw object | Log object | No. of Comment
number type type objects

The usage of Transmit / Receive FIFO

136 Transmit/ buffers is not supported by this driver.
- Receive Unused 24 These objects are always unused and
159 FIFO buffer will not be configured, so they don’t

consume shared hardware buffers.

This object is used by CanTransmit ()
to send several messages on the logical
160 + (n*16) Transmit Transmit 1 channel that is mapped to physical
buffer Normal per channel channel n. If the transmit message
object is busy, the transmit request is
stored in a software queue.

This object is used by
CanMsgTransmit () to send its
messages on the logical channel that is

Oor1

161 + (n*16) Transmit Low Level per channel

buffer Transmit _ mapped to physical channel n if the Low
=nTXLL : . L
Level transmit functionality is used.
These objects are used by
CanTransmit () to send a certain
message on the logical channel that is
161 + (n*16) 0 mapped to physical channel n. The user
+nTXLL) defines statically (Generation Tool)
- Transmit Transmit 15 which CAN messages are located in
161 + (n*16) + buffer FullCAN such Tx FullCAN objects. The
nTXLL + per channel - Generation Tool distributes the
nTXFC(n) -1 _ messages to the objects. Up to 15
= nTXFC(n) transmit FullCAN objects can be
assigned per channel (up to 14 if the
Low Level transmit functionality is used).
161 + (n*16) + These objects are not used. It depends
nTXLL + 0 on the configuration of transmit objects
nTXFC(n) Transmit Unused - how many transmit buffer objects are
- buffer 15 not used. Additionally all transmit buffers
161 + (n*16) per channel | of not supported or unused physical
+14 channels n are unused.

Table 3-1 Hardware Object Layout

nRxMBmax Amount of RX buffers that is supported by the used derivative (see note above)

nRxFC Number of used Rx FullCAN objects over all channels
nRxBC Number of used Rx BasicCAN objects over all channels

n Index of the physical channel

nTXLL Number of Low Level transmit objects per channel (0 or 1)

nTXFC(n) Number of used Tx FullCAN objects on the channel that is mapped to the physical channel n

©2015, Vector Informatik GmbH Version: 1.08.00 9/50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

| Caution

- The number of available transmit buffer objects per physical channel is constant. The
receive buffers and FIFOs are shared over all channels and the availability per channel
is restricted as explained in table 3-1. Furthermore the internal buffers for all receive
objects are allocated out of a common buffer pool with size of (number of supported
physical channels of the used RSCAN unit * 64). This has to be considered when
configuring the number of the Rx FullCAN objects and the number and individual FIFO
depths of the Rx BasicCAN objects (refer to section 11.1.3 for further information and
details on how to configure the hardware objects).

3.2 Acceptance Filters

The hardware acceptance filters of the receive BasicCAN objects must allow reception of
all messages that are not received in FullCAN message objects and additionally all
messages that fit in a configured range (e.g. for Network Management, Transport
Protocol). The generation tool offers assistance for configuration. The number of used
filters is also configurable to allow efficient hardware filtering to minimize unnecessary
CPU load.

| Caution

- The hardware supports a pool of acceptance filters with size of (number of supported
physical channels of the used RSCAN unit * 64) that are used for Rx BasicCAN as well
as Rx FullCAN objects. This has to be considered when configuring the number of Rx
FullCAN objects and the number of filters per Rx BasicCAN object. See section 11.1.3
for further information and details on the configuration.

©2015, Vector Informatik GmbH Version: 1.08.00 10 /50

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

4 [#hw_sleep] - SleepMode and WakeUp

The driver supports sleep and wakeup functionality. With the function CanSleep () the
CAN controller enters sleep mode and leaves it with the function CanWakeUp () (internal
wakeup) or upon a falling edge respectively dominant level on the Rx pin (external
wakeup).

Specify the Sleep/Wakeup option in the generation tool in order to use the Sleep/Wakeup
functionality. If this option is not enabled, the service functions CanSleep () and
CanWakeUp () are empty and return kCanNotSupported.

4.1 Sleep

The function CanSleep () changes the channel from communication mode via reset
mode to stop mode. If the function is called during CAN communication, the reception or
transmission is terminated before it is completed (the same applies to a call of
CanResetBusSleep ()).

The return value kCanOk is always expected as these mode transitions do not depend on
external influences (e.g. the CAN bus level). However, if the function returns kCanFailed
(e.g. caused by a hardware loop cancellation, see chapter 5 for details) call CanSleep ()
again or re-initialize the channel.

4.2 Internal Wakeup

The function CanWakeUp () changes the channel from stop mode via reset mode to
communication mode.

The return value kCanOk is always expected as these mode transitions do not depend on
external influences (e.g. the CAN bus level). However, if the function returns kCanFailed
(e.g. caused by a hardware loop cancellation, see chapter 5 for details) call CanWakeup ()
again or re-initialize the channel.

4.3 External Wakeup

The external wakeup functionality is realized by external interrupts but fully handled by the
CAN driver in default configurations. The RSCAN itself does not provide any possibility of
detecting bus activity if it is in stop mode. Instead the port configuration of many RH850
derivatives allows combining the CANn Rx pin with an external interrupt INTPm to be able
to detect a CAN event even if the driver is in sleep mode. See the hardware
documentation of the actual derivative for details (Port x — Alternative Functions) and refer
to chapter 10 for implementation hints.

When the driver is in sleep mode and a CAN event is detected on the Rx pin a wakeup
interrupt is generated. It is also possible to detect this event by polling the interrupt request
flag without enabling the interrupt source. The ISR or the task function calls the application
function ApplcCanPreWakeUp () (if configured), changes the channel mode via reset
mode to communication mode and then calls ApplCanWakeUp ().

©2015, Vector Informatik GmbH Version: 1.08.00 11 /50

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

c Caution
! If the Sleep/Wakeup functionality is enabled via the configuration tool both the internal
and external wakeup are available by default and the CAN driver expects that the Rx
pin of each used CAN channel is linked with an external interrupt in context of the
RH850 port configuration as depicted in the corresponding hardware manual.
Additionally the driver expects that each external interrupt source is assigned to the
lowest possible interrupt channel if the sources are multiplexed (check the “INTC1
interrupt select register” if applicable).

If this configuration is not possible for the actual derivative (refer to the hardware
documentation) or any respective external interrupt cannot be used exclusively by the
driver (write accesses to the corresponding interrupt control register, e.g. if any external
MCU wakeup handling using this source is implemented), the external wakeup
functionality must not be used.

In this case the Sleep/Wakeup functionality has to be disabled via the generation tool
or the external wakeup handling has to be deactivated by adding following to the user
configuration file:

#define C ENABLE EXTERNAL WAKEUP SUPPRESSION

Then the driver does not access the external interrupt sources and only the internal
wakeup is possible (the driver does not wake up on bus activity).

C Caution
! The driver performs write accesses within the interrupt controller address space of the
MCU if the external wakeup functionality is used. If wakeup processing is configured to
interrupt the corresponding source is enabled at successful sleep transitions and
disabled during wakeup transitions. Additionally the corresponding interrupt request
flag is cleared right before the interrupt is enabled; hence a wakeup event can only be
detected after the sleep transition has been successfully completed. Refer to section
10.3 if an exclusive write access to the interrupt control registers is not possible. Please
note that the interrupt request flag also has to be cleared for polling configurations.

©2015, Vector Informatik GmbH Version: 1.08.00 12 /50

Vector CAN Driver Technical Reference RH850 RSCAN Vect()(E

5 [#hw_loop] - Hardware Loop Check

In context of the feature Hardware Loop Check (see TechnicalReference CANDriver,
chapter Hardware Loop Check) this CAN Driver provides the following timer identifications.

Refer to the hardware manual for a description of the RSCAN clock sources and additional
information on other hardware specifics like the mode transitions. Please note that the
expected loop durations vary between individual derivatives. The given values depict the
worst case and may be lower for the actually used derivative.

| Caution
H Always significantly increase the given durations for the loop callout implementation to
compensate additional software delays.

kCanLoopRamlInit

This loop may be called within the function CanInitPowerOn () and is processed until
the CAN RAM initialization after a MCU reset has finished. This is necessary as this
initialization has to be completed before the RSCAN can be configured. As this loop is
not called in channel context the channel parameter has to be ignored.

The maximum expected duration to wait for the CAN RAM initialization starts from the
time of the MCU reset and is device specific. Refer to the corresponding hardware
manual (e.g. section RSCAN Setting Procedure — Initial Settings) to get the number of
required cycles of the pclk. If this loop is canceled try to call CanInitPowerOn () again
or reset the MCU.

kCanLooplnit

This loop may be called within the function CanInitPowerOn (). As it is not called in
channel context the channel parameter has to be ignored. The loop may be called
multiple times within this function and the possible occurrences are as follows:

o To protect the transition via global reset mode to global stop mode.
e To protect the transition to global reset mode.

e To protect transitions and settings in context of the global test mode (only active if the
RSCAN RAM test is enabled)

¢ To protect the transition to channel reset mode for each active channel.
e To protect the transition to global operation mode.
The duration for each mode transition in this context is expected to be two CAN bit times

at highest (of the lowest communication speed of the channels in use). If any loop
occurrence is canceled try to call CanInitPowerOn () again or reset the MCU.

©2015, Vector Informatik GmbH Version: 1.08.00 13 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN VectorE

kCanLoopBusOffRecovery

This channel dependent loop may be called in CanInit () if the RSCAN is currently in
BusOff state and is processed until 11 consecutive recessive bits have been detected
128 times on the bus to ensure compliance to the BusOff recovery specification (see also
chapter 6).

The maximum expected duration is 1408 CAN bit times on a recessive bus, 128
message times including inter-frame space on a communicative bus or any time if
disturbances are present. There is no issue and nothing to do if the loop is canceled, but
the specified BusOff recovery time may not be met.

kCanLoopEnterResetMode

This channel dependent loop may be called multiple times in CanInit () and is
processed as long as the CAN cell does not enter channel reset mode, respectively
channel operation mode.

The maximum expected duration of each loop is three CAN bit times. If the loop is
canceled try to call CanInit () again. If the loop still doesn’t finish within the expected
time call CanInitPowerOn ().

kCanLoopEnterOperationMode

This channel dependent loop is called in CanStart () and is processed as long as the
CAN cell does not enter channel operation mode.

The maximum expected duration of the loop is three CAN bit times. If the loop is
canceled try to call CanStart () again or invoke CanInit (). If the loop still doesn’t
finish within the expected time call CanInitPowerOn ().

kCanLoopEnterSleepMode

This channel dependent loop may be called multiple times in CanSleep() and is
processed as long as the CAN cell does not enter channel reset mode, respectively
channel stop mode.

The maximum expected duration of the loop is two CAN bit times. If the loop is canceled
try to call CanSleep () again or invoke CanInit (). If the loop still doesn’t finish within
the expected time call CanInitPowerOn ().

kCanLoopEnterWakeupMode

This channel dependent loop may be called multiple times in CanWakeUp () and is
processed as long as the CAN cell does not enter channel reset mode, respectively
channel operation mode.

The maximum expected duration of the loop is three CAN bit times. If the loop is
canceled try to call CanWakeUp () again or invoke CanInit (). If the loop still doesn’t
finish within the expected time call CanInitPowerOn ().

©2015, Vector Informatik GmbH Version: 1.08.00 14 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN Vect()(E

kCanLoopRxFcProcess

This channel depended loop may be called in CanFullCanMsgReceived () and is
processed as long as new messages are received by the current receive buffer while
copying a previously received message to a temporary software buffer. This ensures that
always consistent and most recent data is indicated to the higher layers.

It is expected that the loop is called only one time. Please note that if the loop iterates at
all, previously received messages of the current receive buffer are discarded without
further notification as data consistency cannot be ensured. There is no issue and nothing
to do if the loop is canceled, but the latest message is also discarded and the function
CanFullCanMsgReceived () returns without indicating any message at all.

©2015, Vector Informatik GmbH Version: 1.08.00 15 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

6 [#hw_busoff] - Bus off

In case of a BusOff event the controller automatically changes to stop mode on the
respective channel. There is no automatic recovery as specified by 1ISO11898-1; the
application has to restart communication following the description in the Technical
Reference CAN driver, i.e. by calling CanResetBusOffStart/-End () which leads to a
call of canInit ().

C Caution

! Please note that if CanResetBusOffEnd () is called before 11 consecutive recessive
bits have been detected 128 times on the bus, the function CanInit () waits until this
condition is met. Reason is that the current recovery status is lost during re-
initialization. It may not be acceptable for the program to wait until the hardware has
recovered as this delay is implemented synchronously. In this case use the feature
“Hardware Loop Check” to control the behavior. See kCanLoopBusOffRecovery in
chapter 5 for details.

©2015, Vector Informatik GmbH Version: 1.08.00 16 /50

Vector CAN Driver Technical Reference RH850 RSCAN

7 CAN Driver Features

7.1 [#hw_feature] - Feature List

Initialization

Power-On Initialization
Re-Initialization

Transmission
Transmit Request
Transmit Request Queue
Internal data copy mechanism
Pretransmit functions
Common confirmation function
Confirmation flag
Confirmation function
Offline Mode
Partial Offline Mode
Passive-Mode
Tx Observe mode
Dynamic TxObjects

Full CAN Tx Objects

Cancellation in Hardware

Low Level Message Transmit
Reception

Receive function

Search algorithms

Range specific precopy functions
(min. 2, typ.4)

DLC check

Internal data copy mechanism
Generic precopy function
Precopy function

Indication flag

Indication function

Message not matched function

©2015, Vector Informatik GmbH

Version: 1.08.00

vector’

17 /50

Vector CAN Driver Technical Reference RH850 RSCAN

Overrun Notification
Full CAN overrun notification
Multiple Basic CAN

Rx Queue 2
Bus off
Notification function
Nested Recovery functions
Sleep Mode

Mode Change
Preparation
Notification function
Special Features
Status
Security Level
Assertions
Hardware loop check
Stop Mode

Support of OSEK operating
system

Polling Mode

Individual Polling *
Multi channel

Support extended ID addressing
mode

Support mixed ID addressing
mode

Support access to error counters
Copy functions

CAN RAM check °

Extended CAN RAM check °

Table 7-1 CAN Driver Functionality

vector’

% Consider that the Rx BasicCAN hardware FIFOs in combination with Rx BasicCAN polling might be a more

efficient alternative to the Rx Queue in many configurations.

® Due to hardware limitations (no interrupt request can be generated for receive buffers) Rx FullCAN polling

is mandatory if Rx FullCAN objects are configured.

* Due to hardware limitations (see note 3) all Rx FullCAN objects have to be polled.

® Due to hardware limitations (no write access to Rx objects) only supported for Tx objects.
® This feature is project specific and only available if explicitly ordered.

©2015, Vector Informatik GmbH

Version: 1.08.00

18 /50

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

7.2 Description of Hardware-related Features

7.2.1 [#hw_status] - Status
If a status is not supported, the related macro always returns false.

CanHwIsOk (state)
CanHwIsWarning (state)
CanHwIsPassive (state)
CanHwIsBusOff (state)
CanHwIsWakeup (state)
CanHwIsSleep (state)
CanHwIsStart (state)
CanHwIsStop (state)
CanIsOnline (state)

CanIsOffline(state)

Table 7-2 CAN Status

7.2.2 [#hw_stop] - Stop Mode

The service function CansStop () calls CanInit () and leaves the channel in reset mode,
where it is disconnected from the bus. If the function is called during CAN communication,
the reception or transmission is terminated before it is completed. This mode can be left by
calling canstart (). Both transitions do not depend on external influences (e.g. the CAN
bus level), so the return value kCanOk is always expected. However, if the functions return
kCanFailed (e.g. caused by a hardware loop cancellation, see chapter 5 for details) call
CanStop () respectively CanStart () again or re-initialize the channel.

7.2.3 [#hw_int] - Control of CAN Interrupts

CAN interrupt locking is performed by modifying the interrupt request mask bits (MK) in the
control registers of the appropriate sources directly within the interrupt controller address
space of the MCU. Therefore the driver needs exclusive write access to all CAN related El
level interrupt control registers (ICn). If the Sleep/Wakeup functionality is enabled this
includes the ICn of external interrupt sources (see chapter 4).

Since Rx FIFO interrupt and overrun (global error) cannot be enabled and disabled for
every object individually they are disabled globally when the interrupts of at least one
controller are disabled and enabled globally if the interrupts of no controller are disabled
anymore.

All CAN related ICn are initialized and then modified by the driver during runtime (interrupt
disable and restore). The priority level for the initialization can be selected via the
configuration tool (all CAN interrupts must have the same priority), see section 11.1.3.
Refer to chapter 10 for further information on CAN interrupts.

©2015, Vector Informatik GmbH Version: 1.08.00 19 /50

Vector CAN Driver Technical Reference RH850 RSCAN Vect()(E

Q Caution

! In standard configuration the driver needs exclusive write access to all CAN related El
level interrupt control registers. Refer to chapter 10 for further information and
especially section 10.3 if an exclusive write access is not possible.

7.2.4 [#hw_cancel] - Cancel in Hardware

S e T

Has the CanTxTask () to be called by the application to handle the canceled
transmit request in the hardware?

Cancelling transmission of messages via CanCancelTransmit () or
CanCancelMsgTransmit ():

T e T

ApplCanTxConfirmation () is only called for transmitted messages, successfully
canceled messages are not notified. That means the CAN driver is able to detect u
whether a message is transmitted even if the application has tried to cancel.

7.2.5 Remote Frames

Remote Frames will not have any influence on the communication because they are not
received due to hardware filtering.

7.2.6 CAN RAM Check

The CAN driver supports a check of the CAN mailboxes which is performed internally
every time the function CanInit () is called. The CAN driver verifies that no used
mailboxes are corrupt. A mailbox is considered corrupt if predefined patterns are written to
the appropriate mailbox registers and read operations do not return the expected patterns.
If a corrupt mailbox is found the function ApplCanCorruptMailbox () is optionally
called to inform the application which mailbox is affected.

After the check of all mailboxes on the given channel the CAN driver calls the function
ApplCanMemCheckFailed () if at least one corrupt mailbox was found. The application
can control whether the CAN driver disables communication on the current channel or not
by means of the return value of the call-back function. If the application has decided to
disable the communication there is no possibility to enable the communication again until
the next call of CanInitPowerOn ().

Caution

(! }I: Due to hardware limitations (no write access for receive objects) the CAN RAM check
is only supported for transmit mailboxes. Consider the behavioural differences of CAN
RAM check when it is used in combination with the extended CAN RAM check feature.

©2015, Vector Informatik GmbH Version: 1.08.00 20 /30

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

The additional call-back function ApplCanCorruptMailbox () can only be activated via
the user configuration file - the settings are listed below. In case no user config file is used
(i.e. the mentioned switch is not defined) the feature is disabled.

C_ENABLE NOTIFY CORRUPT MAILBOX Activate call of ApplCanCorruptMailbox ()
in case the CAN RAM check fails for a certain
mailbox.

7.2.7 Extended CAN RAM Check

The extended RAM check provides an additional check of the CAN cell control registers
RAM with extended APl and modified standard CAN RAM check and driver behaviour.

The RSCAN control registers are differentiated between registers that have to be written in
global reset mode (afterwards referred to as “global registers”) or can also be written in
channel reset mode (afterwards referred to as “channel registers”). Since the transition to
global reset mode affects all channels, the global register RAM is checked only once within
CanInitPowerOn (). If the global register RAM is considered corrupt a call-back function
(see below) is issued to allow the application to control whether the driver initialization is
proceeded or not.

The channel register and mailbox RAM check is performed within the function
CanInit (). The registers RAM check disables the complete channel communication if at
least one of the checked registers is considered corrupt. The mailbox RAM check (only
available for Tx objects) disables corrupt mailboxes so that no transmission is possible on
them. In both cases the appropriate call-backs (see below) are called to inform the
application about the failures. Channels and mailboxes can be re-enabled by the
application using the extended API. If any of the control registers check or the mailbox
registers check fails the overall RAM check call-back ApplCanMemCheckFailed () is
invoked.

More detailed information is given below; section 9.3 describes the API functions:

e |If any of the global registers (e.g. global configuration registers, registers relating to the
configuration of receive objects and receive rules) are considered corrupt the function
ApplCanGlobalMemCheckFailed () is invoked within CanInitPowerOn (). If this
function returns kCanEnableCommunication the initialization is continued ignoring
the results of the check. If it returns kCanDisableCommunication the RSCAN is put
back into global stop mode and CanInitPowerOn () returns without initializing the
RSCAN. The check of the channel registers RAM is also not performed and
CanInitPowerOn () has to be called again to be able to use the CAN functionality in
this case (other CAN API functions must not be called until CanInitPowerOn () was
executed completely). The check is performed with every call of this function.

e If any of the channel control registers are considered corrupt the function
ApplCanCorruptRegisters () is called and the communication on the given
channel is disabled. The CAN cell stays in stop mode whatever the general call-back
function ApplCanMemCheckFailed () returns and the channel is disconnected from
the Tx port pin.

©2015, Vector Informatik GmbH Version: 1.08.00 21/30

Vector CAN Driver Technical Reference RH850 RSCAN Vect()(E

If a corrupt mailbox is found it is disabled by the driver and the call-back function
ApplCanCorruptMailbox () is invoked (if this is enabled by the definition of
C _ENABLE NOTIFY CORRUPT MAILBOX). In this case (but only if no corrupt CAN
control registers were found on the given channel) the application can decide whether
the communication on the channel should be disabled using the return value of the
function ApplCanMemCheckFailed (), but the mailbox stays disabled anyway.

If the communication on a channel was disabled previously it can be re-enabled using
the function CanEnableChannelCommunication ().

Mailboxes that were disabled by mailbox RAM check can be re-enabled by the function
CanEnableMailboxCommunication () (but only if the communication on the given
channel is enabled).

No mailbox or register RAM check is performed and no RAM check call-backs are
invoked if CanInit () is called by CanResetBusOffEnd (). However, all previously
disabled channels or mailboxes stay disabled.

Q Caution

! The only way to re-enable channel or mailbox communication is to use the functions
CanEnableChannelCommunication (), CanEnableMailboxCommunication ()
or CanInitPowerOn ().

The extended CAN RAM check feature needs the standard CAN RAM check functionality
to be activated. The following settings have to be done in the user configuration file. In
case no user config file is used (i.e. the mentioned switch is not defined) the feature is
disabled. Please note that this is a project specific feature that might not be available and
C_ENABLE CAN RAM CHECK_ EXTENDED has no effect in this case.

Swich Ve |Description

C_ENABLE CAN RAM CHECK EXTENDED Activate the extended CAN RAM check feature.

7.2.8 RSCAN ECC Configuration

In context of the RSCAN RAM error detection and correction (ECC) the driver provides the
additional call-back function ApplCanEccConfiguration() (see section 9.2) that is
invoked by CanInitPowerOn () after the CAN RAM initialization is complete and before
the RSCAN is configured while the cell is in global stop mode. This gives the application
the possibility to configure the ECC behavior for the RSCAN. The driver offers no further
support for this feature - any ECC configuration and handling has to be performed by the
application.

The following settings have to be done in the user configuration file. In case no user config
file is used (i.e. the mentioned switch is not defined) the feature is disabled.

Swich alue Descripton

C_ENABLE_ ECC_CALLOUT Activate call of ApplCanEccConfiguration ().

©2015, Vector Informatik GmbH Version: 1.08.00 22 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

7.29 RSCAN RAM Test

The RSCAN provides a global test mode that enables the driver to perform a check of the
internal RSCAN RAM that is not accessible during normal operation. This check is
performed once within CanInitPowerOn (). Similar to the (extended) CAN RAM check
the internal RAM is considered corrupt if predefined patterns are written to the appropriate
RAM addresses and read operations do not return the expected patterns. If any corrupt
bits are found the call-back function ApplCanGlobalMemCheckFailed () is invoked
(see section 9.3). If this function returns kCanEnableCommunication the initialization is
continued ignoring the results of the check. If it returns kCanDisableCommunication
the RSCAN is put back into global stop mode and CanInitPowerOn () returns without
initializing the RSCAN. CanInitPowerOn () has to be called again to be able to use the
CAN functionality in this case (other CAN API functions must not be called until
CanInitPowerOn () was executed completely). The RAM test is performed with every
call of this function.

If this test is used in combination with the (extended) CAN RAM check the coverage of the
latter one is reduced in order to save runtime.

e The receive rule registers are omitted by the global register check within the function
CanInitPowerOn () .

e The mailbox check is omitted if CanInit () is called out of CanInitPowerOn ().

The following settings have to be done in the user configuration file. In case no user config
file is used (i.e. the first switch is not defined) the feature is disabled. The second switch is
only evaluated if C ENABLE CAN HW RAM CHECK is defined.

C_ENABLE CAN HW RAM CHECK Activate the RSCAN RAM test feature.
C_ENABLE_CAN_HW_RAM CHECK_SIZE 32 ..65504 | The given number of bytes is checked by the
(bytes) RAM test (always starting from the beginning

of the CAN RAM). The value must be a
multiple of 32 bytes and has to be valid for the
used derivative (refer to the corresponding
hardware manual).

f Caution
! Depending on the size of RAM to be checked, used compiler options, clock settings
and others this check might take up to several milliseconds. Suggestion is to verify the
runtime of CanInitPowerOn () in the actual project if this feature is enabled.

©2015, Vector Informatik GmbH Version: 1.08.00 23 /50

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

8 [#hw_assert] — Assertions

The driver implements no specific assertions with additional error codes.

©2015, Vector Informatik GmbH Version: 1.08.00 24 /50

Vector CAN Driver Technical Reference RH850 RSCAN VectorE

9 API

9.1 Category

Single Receive Channels (SRC)

= A “Single Receive Channel” CAN Driver supports one CAN
channel.)

Multiple Receive Channel (MRC)

= A "Multiple Receive Channel" CAN Driver is typically
extended for multiple channels by adding an index to the
function parameter list (e.g. CanOnline () becomes
CanOnline (channel)) or by using the handle as a
channel indicator (e.g. CanTransmit (txHandle)).

Table 9-1 API Category

9.2 RSCAN ECC Configuration

In context of the RSCAN ECC feature the application has to provide following call-back
function (see section 7.2.8 further information).

ApplCanEccConfiguration
Prototype

Single Receive Channel void ApplCanEccConfiguration (void)

Multiple Receive Channel ' .34 applcanEccConfiguration (void)
Parameter

Return code

Functional Description
This function is called by CanInitPowerOn () to allow the configuration of the RSCAN ECC functionality.
Particularities and Limitations

Only required if C ENABLE ECC_CALLOUT is defined.

©2015, Vector Informatik GmbH Version: 1.08.00 25 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN VectorE

9.3 (Extended) CAN RAM Check

In context of the CAN RAM check feature the application has to provide following call-back
functions (see sections 7.2.6 and 7.2.7 for further information).

ApplCanMemCheckFailed

Prototype

Multiple Receive Channel vuint8 ApplCanMemCheckFailed (CanChannelHandle channel)

Parameter

This parameter specifies the CAN channel on which the memory check is

CanChannelHandle channel
performed.

Return code

kCanEnableCommunication - Allow communication (see note in
“Particularities and Limitations”).

kCanDisableCommunication - Disable communication, no reception and
no transmission is performed.

wuint8

Functional Description

This call-back function is invoked within CanInit () if the CAN driver has found at least one corrupt bit
within the CAN mailboxes RAM or (if extended CAN RAM check is enabled) at least one corrupt bit within
the channel control registers RAM. The application can decide whether the CAN driver allows further
communication by means of the return value.

Particularities and Limitations

Call context: If the feature Extended CAN RAM check is deactivated this function is called on task level or
within the BusOff interrupt; else only on task level.

Configuration: Required if the following setting is active:

C _ENABLE CAN RAM CHECK

Important note: If the optional feature “Extended CAN RAM check” is activated
(C_ENABLE CAN RAM CHECK_EXTENDED is defined) and the registers RAM check failed (call-back
function ApplCanCorruptRegisters () was called for the given channel), the communication on the
channel will be disabled, the CAN cell stays in stop mode and the return value of this function is ignored —
the communication will NOT be allowed even if the return value is kCanEnableCommunication.

©2015, Vector Informatik GmbH Version: 1.08.00 26 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorD

ApplCanCorruptMailbox

Prototype
Single Receive Channel void ApplCanCorruptMailbox (CanObjectHandle hwObjHandle)

Multiple Receive Channel void ApplCanCorruptMailbox (CanChannelHandle channel,
CanObjectHandle hwObjHandle)

Parameter

CanChannelHandle channel This parameter specifies the CAN channel on which the memory check is
performed.

CanObjectHandle This parameter specifies the index of the corrupt mailbox.
hwObjHandle

Return code

Functional Description
This function is called within CanInit () if the CAN driver has found a corrupt mailbox.

Particularities and Limitations

Call context: If the feature “Extended CAN RAM check” is deactivated this function is called on task level or
within the BusOff interrupt; else only on task level.

Configuration: Required if the following settings are active:
C_ENABLE CAN RAM CHECK
C_ENABLE NOTIFY CORRUPT MAILBOX

In case the feature extended CAN RAM check is enabled the following additional call-back
functions have to be provided by the application.

ApplCanCorruptRegisters

Prototype
Single Receive Channel void ApplCanCorruptRegisters (void)
Multiple Receive Channel void ApplCanCorruptRegisters (CanChannelHandle channel)

Parameter

CanChannelHandle channel This parameter specifies the CAN channel on which the memory check is
performed.

Return code

Functional Description
This function is called if the CAN driver has found corrupt channel control registers.
Particularities and Limitations

Call context: This function is called out of task level within CanInit () on the given channel if the RAM
check is not suppressed. The RAM check is suppressed if CanInit () is called in scope of the functions
CanResetBusOffEnd () or (dependent on parameter) CanEnableChannelCommunication ().
Configuration: Required if the following settings are active:

C_ENABLE CAN RAM CHECK

C_ENABLE CAN RAM CHECK_ EXTENDED

©2015, Vector Informatik GmbH Version: 1.08.00 27 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

ApplCanGlobalMemCheckFailed

Prototype

Parameter

Return code

kCanEnableCommunication - Continue initialization of the RSCAN.
kCanDisableCommunication - Stop initialization of the RSCAN.

wuint8

Functional Description

This call-back function is invoked if the CAN driver has found at least one corrupt bit within the global control
registers RAM in context of the extended CAN RAM check or if any corrupt bit was found in context of the
RSCAN RAM test (see section 7.2.9). The application can decide whether the CAN driver proceeds with the
RSCAN initialization by means of the return value.

Particularities and Limitations

Call context: This function is called out of task level within CanInitPowerOn ().
Configuration: Required if the following settings are active:
C_ENABLE CAN RAM CHECK

C_ENABLE CAN RAM CHECK EXTENDED

or

C_ENABLE CAN HW RAM CHECK

Important note: Be aware of undefined runtime behavior if kCanEnableCommunication is returned as
the driver tries to initialize and communicate despite corrupt RAM was found. The application has to verify
the system in this case.

©2015, Vector Informatik GmbH Version: 1.08.00 28 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN VectorE

The following service functions are provided by the driver in context of the extended CAN
RAM check feature.

CanEnableChannelCommunication

Prototype
Single Receive Channel void CanEnableChannelCommunication (vuint8 suppressRamCheck)

void CanEnableChannelCommunication (CanChannelHandle channel,

Multiple Receive Channel vuint8 suppressRamCheck)

Parameter

CanChannelHandle channel This parameter specifies the CAN channel that shall be re-enabled.

kCanTrue - RAM check will be suppressed while re-enabling the
communication on the channel.
kCanFalse - RAM check will be performed while re-enabling the
communication on the channel

wuint8 suppressRamCheck

Return code

Functional Description

The function re-enables the channel communication if it was disabled previously. It calls CanInit ()
internally but all eventually disabled mailboxes stay disabled. If the RAM check is not suppressed it can fail
again and the appropriate call-back function is invoked in this case.

Particularities and Limitations

Restriction: Same restrictions as for a call of CanInit () apply.
Call context: This function is called by the application.
Configuration: Available if the following settings are active:
C_ENABLE CAN RAM CHECK

C _ENABLE CAN RAM CHECK EXTENDED

©2015, Vector Informatik GmbH Version: 1.08.00 29 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN VectorE

CanEnableMailboxCommunication

Prototype

vuint8 CanEnableMailboxCommunication (CanObjectHandle

Single Receive Channel ,
hwObjHandle)

vuint8 CanEnableMailboxCommunication (CanChannelHandle channel,

Multiple Receive Channel X X
CanObjectHandle hwObjHandle)

Parameter
This parameter specifies the CAN channel for which the mailbox shall be

CanChannelHandle channel

re-enabled.
CanObjectHandle The index of the mailbox to be re-enabled.
hwObjHandle

Return code

vuints kCanOk - Mailbox communication was re-enabled.

kCanFailed - Enabling of mailbox communication failed: hwObjHandle is
not a valid Tx mailbox, the mailbox was not disabled previously or the
communication on the channel is still disabled.

Functional Description

The function re-enables the mailbox communication that was disabled previously by the extended CAN
RAM check. Note that the mailbox RAM check is not performed in scope of this function call - the
application must guarantee that the mailbox is not corrupt.

Particularities and Limitations

Call context: This function is called by the application.
Configuration: Available if the following settings are active:
C _ENABLE CAN RAM CHECK
C_ENABLE CAN RAM CHECK EXTENDED

©2015, Vector Informatik GmbH Version: 1.08.00 30 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN VectorE

9.4 External CAN Interrupt Handling

These call-back functions are invoked if the driver does not perform the CAN interrupt
handling. See section 10.3 for details.

ApplCanWritelcr8
Prototype

Single Receive Channel void ApplCanWriteIcr8 (vuint32 address, vuint8 value)

Multiple Receive Channel | ;4 ApplCanWriteIcr8 (vuint32 address, vuint8 value)

Parameter

This parameter specifies the memory address the function has to write to.

wint32 address It is always part of the interrupt controller address space.

wuint8 value This parameter specifies the value the function has to write.

Return code

Functional Description

This call-back is invoked by several driver functions and has to write one byte with the given value to the
given address.

Particularities and Limitations

Only required if C ENABLE INTC ACCESS BY APPL is defined.
Always perform a byte access. The function has to be synchronous.

ApplCanReadlcr8

Prototype
Single Receive Channel vuint8 ApplCanReadIcr8 (vuint32 address)

Multiple Receive Channel y,intg applcanReadIcr8 (vuint32 address)
Parameter

This parameter specifies the memory address the function has to read

wuint32 address from. It is always part of the interrupt controller address space.

Return code

wuint8 The value that was read from the given address.

Functional Description

This call-back is invoked by several driver functions and has to read and return one byte from the given
address.

Particularities and Limitations

Only required if C ENABLE INTC_ACCESS_BY APPL is defined.
Always perform a byte access. The function has to be synchronous.

©2015, Vector Informatik GmbH Version: 1.08.00 31/50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN VectorE

OsCanCanlnterruptDisable
Prototype

Single Receive Channel void OsCanCanInterruptDisable (void)

Multiple Receive Channel ;4 osCanCanInterruptDisable (CanChannelHandle channel)
Parameter

This parameter specifies the logical CAN channel for which the interrupts
CanChannelHandle channel shall be disabled.

Return code

Functional Description

This function is called by CanCanInterruptDisable () and has to disable the CAN interrupts on the
given channel.

Particularities and Limitations

‘ Only required if C ENABLE OSEK_CAN_ INTCTRL is defined.

OsCanCanlinterruptRestore
Prototype

Single Receive Channel void OsCanCanInterruptRestore (void)

Multiple Receive Channel ;4 oscanCanInterruptRestore (CanChannelHandle channel)
Parameter

This parameter specifies the logical CAN channel for which the interrupts

CanChannelHandle channel shall be restored.

Return code

Functional Description

This function is called by CanCanInterruptRestore () and has to restore the CAN interrupts on the
given channel.

Particularities and Limitations

‘ Only required if C_ ENABLE OSEK CAN INTCTRL is defined.

©2015, Vector Informatik GmbH Version: 1.08.00 32 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN VectorE

ApplCanWakeuplinterruptDisable
Prototype

Single Receive Channel void ApplCanWakeupInterruptDisable (vuint8 channel)

Multiple Receive Channel i3 applcanWakeupInterruptDisable (vuint8 channel)
Parameter

This parameter specifies the logical CAN channel for which the wakeup

wuintg channel interrupt shall be disabled.

Return code

Functional Description

This function is called by CanwWakeup () and CanInit () and has to disable the wakeup interrupt on
the given channel.

Particularities and Limitations

Only required if C ENABLE OSEK_CAN_ INTCTRL and C_ENABLE SLEEP WAKEUP are defined and the
external wakeup is used.

ApplCanWakeuplinterruptEnable

Prototype

Single Receive Channel void ApplCanWakeupInterruptEnable (vuint8 channel)

Multiple Receive Channel ;4 applcanWakeupInterruptEnable (vuint8 channel)
Parameter

This parameter specifies the logical CAN channel for which the wakeup

wuintg channel interrupt shall be enabled.

Return code

Functional Description

‘ This function is called by canSleep () and has to enable the wakeup interrupt on the given channel.

Particularities and Limitations

Only required if C_ ENABLE OSEK _CAN INTCTRL and C_ENABLE SLEEP WAKEUP are defined and the
external wakeup is used.

©2015, Vector Informatik GmbH Version: 1.08.00 33 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN VectorE

ApplCanWakeupOccurred

Prototype
Single Receive Channel vuint8 ApplCanWakeupOccurred (vuint8 channel)

Multiple Receive Channel ,intg applcanWakeupOccurred (vuint8 channel)
Parameter

This parameter specifies the logical CAN channel to check for a wakeup

wuint8 channel occurrence.

Return code

CAN_NOT_OK: If no wakeup occurred on this channel

wuintg CAN_OK: If a wakeup occurred on this channel

Functional Description

This function is called by canwakeupTask () and has to check for a wakeup event on the given
channel.

Particularities and Limitations

Only required if C_ ENABLE OSEK CAN INTCTRL, C ENABLE SLEEP WAKEUP and
C_ENABLE WAKEUP_ POLLING are defined and the external wakeup is used.

©2015, Vector Informatik GmbH Version: 1.08.00 34 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

10 Implementations Hints

10.1 Important Notes

1. The following condition will lead to an endless recursion in the CAN Driver:
Recursive call of 'CanTransmit' within a confirmation routine, if the CAN Driver has
been set into the passive state by CansetPassive. Recommendations are:

> NO CALL OF canTransmit WITHIN CONFIRMATION-ROUTINES
> PLEASE USE canSetPassive ONLY ACCORDING TO THE DESCRIPTION

2. Only the transmit line of the CAN Driver is blocked by the functions CanOffline ().
However, messages in the transmit buffer of the CAN-Chip, are still sent. For a reliable
prevention of this fact, call function CanInit () after calling CanOffline (). The
order of the two function calls is urgently required, due to the fact, that CanInit () is
only allowed in offline mode.

3. If the VStdLib interrupt-lock-level is used, the chosen priority level must be higher than
the highest level of any functionality of the CAN Driver (signal access, etc). Keep in
mind that smaller values represent higher priorities.

4. Resetting indication flags and confirmation flags is done by Read-Modify-Write. The
application is responsible for consistency. CanGlobalInterruptDisable () and
CanGlobalInterruptRestore () must be called to avoid interruption by the CAN.
Otherwise confirmations or indications can be lost.

5. Port and general clock settings are not handled by the driver. This has to be performed
by the upper layers before the call of CanInitPowerOn (). Please check the
appropriate hardware manual of the used derivative for details regarding the hardware
specific configuration aspects. The CAN clock (fcan) for baudrate generation can be
selected via the configuration tool; refer to section 11.1.2.

6. If external wakeup support is used the port configuration (performed by the upper
layers) has to be extended. Besides setting the correct port functions for CAN it has to
be ensured that this function is combined with the respective external interrupt.
Additionally the edge/level detection has to be configured correctly to generate interrupt
requests upon detection of CAN events (e.g. on low level or falling edges) on the
corresponding pins (see the hardware manual for details; refer to the filter control
register for instance). If the external wakeup is used the control registers of the external
interrupts are also fully handled by the CAN driver in default configuration.

7. When using GreenHills, IAR or Renesas compiler the ID bit of the PSW is cleared by
software when any category 1 interrupt service routine of the CAN driver is entered to
allow nesting of interrupts. For other compilers the default platform behavior is not
modified (the ID bit stays set) and the acknowledgement of further interrupt requests is
blocked when any driver ISR is processed. This default driver behavior for category 1
interrupts can be changed by definition of C DISABLE NESTED INTERRUPTS
respectively C ENABLE NESTED INTERRUPTS via the user configuration file. Keep in
mind that enabling the feature is redundant if the compiler inserts code to allow nesting
of interrupts in general and always verify that the compiler generates correct code if the
feature is enabled.

©2015, Vector Informatik GmbH Version: 1.08.00 35 /50

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

10.2 Interrupt Configuration

With exception of the CAN related El level interrupt control registers (ICn, see section
7.2.3) all further interrupt configuration within the interrupt controller address space of the
MCU has to be performed by the application before the call of CanInitPoweron ().

The default implementation configures table reference as the way to determine the
interrupt vector (TB bit in ICn registers is set). The application has to take care about
referencing the CAN interrupt service routines in the interrupt vector table - the prototypes
are exported in the driver header file. Please check the appropriate hardware manual of
the used derivative for details regarding the hardware specific configuration aspects. Table
10-1 shows the provided ISRs and the accordant interrupt sources (n is the index of the
physical channel). Please note that it is configuration dependent whether a particular
interrupt service routine is available (see remarks in table).

Used for BasicCAN reception if ‘Rx

INTRCANGRECC | CAN RXFIFO CanlsrRxFifo BasicCan Polling’ is not enabled or
interrupt 0o i L2 .
Individual Polling’ is configured.
INTRCANGERR _CAN global error CanlsrGlobalStatus Use_d f(?r Rx BasicCAN overrun if ‘Error
interrupt Polling’ is not enabled.

Used for transmission on physical
INTRCANNTRX CANnN TX interrupt CanlsrTx_n channel n if “Tx Polling’ is not enabled
or ‘Individual Polling’ is configured.

INTRCANNREC CANn TX/RX. FIFO - This interrupt is not used.
RX complete interrupt

Used for BusOff detection on physical

INTRCANNERR CANnR error interrupt | CanlsrStatus_n channel n if ‘Error Polling’ is not

enabled.

Used for wakeup detection on physical

channel n if the Sleep/Wakeup
CanlsrWakeup_n functionality is enabled, the external

wakeup is used and ‘Wakeup Polling’ is

not enabled.

External interrupt

INTPm (see chapter 4)

Table 10-1 Interrupt Service Routines

If the INTC shall implement direct jumps to an address determined by the interrupt priority
level (instead of table reference) the switch C_ENABLE DIRECT INTERRUPT BRANCH
has to be defined via the user configuration file. (This setting affects the TB bit in the ICn
registers.) In this case the application has to implement a common service routine for all
CAN interrupts and jump to it from the corresponding address (refer to hardware manual
for configuration aspects).

See below an implementation example for GreenHills compiler and a full interrupt system
with disabled Sleep/Wakeup functionality that uses physical channels 1 and 4; also refer to
the information in table 10-1 about the presence of the individual CAN interrupt functions.
Each driver routine must not be called if the CAN interrupts for the corresponding channel
(respectively any CAN channel for the global handlers) are currently disabled. This is
especially relevant if more than one channel is used or other interrupt sources also call the
common service routine. In general it is recommended to check the status of the MK bit in

©2015, Vector Informatik GmbH Version: 1.08.00 36 /50

Vector CAN Driver Technical Reference RH850 RSCAN VeCtOfE

the ICn register of each CAN interrupt source before invoking the corresponding driver
routine as these bits directly indicate the status of the CAN interrupt lock mechanism. Any
driver routine may only be called if the corresponding interrupt source is enabled (MK bit
== 0). These actions may differ if the application handles the CAN interrupt disable/restore
mechanism (see section 10.3 below), but the requirements above must always be met. If
the feature “Multiple Configurations” is used only functions corresponding to channels that
are used in the active identity should be called.

#pragma ghs interrupt
void CommonIsr Prio x (void)
{
/* handling for other interrupts that are assigned to
this priority and not handled by table reference */

/* CAN interrupts */

if (MK bit of INTRCANGRECC == 0) CanIsrRxFifo();

if (MK bit of INTRCANGERR == (0) CanIsrGlobalStatus():;
if (MK bit of INTRCANIERR == 0) CanIsrStatus 1();

if (MK bit of INTRCANITRX == 0) CanIsrTX_l();

if (MK bit of INTRCAN4ERR == 0) CanIsrStatus 4();

if (MK bit of INTRCAN4TRX == 0) CanIsrTx 4();

/* handling for other interrupts that are assigned to
this priority and not handled by table reference */
}

Since the common service routine is already qualified as an ISR to the compiler, the
individual CAN interrupt routines have to be configured as void-void functions if this variant
is used. Therefore the switch C_ENABLE ISRVOID additionally has to be defined via the
user configuration file (if category 1 CAN interrupts are used).

c Caution
! The driver performs no measures to ensure the correct functionality of the CAN
interrupt disable/restore mechanism if it is bypassed by the common interrupt handler
when C_ENABLE DIRECT INTERRUPT BRANCH is defined. Therefore the usage of
this switch in not recommended in general and should only be defined if table reference
is not possible at all.

10.2.1 Configuration of Interrupt Vectors with IAR compiler

Instead of a manual initialization of the interrupt vector table it is possible to let the IAR
compiler set up the table by using the #pragma vector=xx directive (only for category 1
interrupts). This feature can be enabled via the user configuration file by defining the El
level interrupt number for each used CAN interrupt. The names of these defines are
derived from the corresponding ISR names.

See below an example for a full interrupt system with external wakeup support that uses
physical channels 2 and 5. Refer to the information in table 10-1 about the presence of the
individual CAN interrupt functions.

©2015, Vector Informatik GmbH Version: 1.08.00 37150

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

#define C_CANISRRXFIFO VECTOR 15
#define C_CANISRGLOBALSTATUS VECTOR 14
#define C_CANISRTX VECTOR 2 211
#define C_CANISRSTATUS VECTOR 2 209
#define C_CANISRWAKEUP VECTOR 2 31
#define C_CANISRTX VECTOR_5 281
#define C_CANISRSTATUS VECTOR 5 279
#define C_CANISRWAKEUP VECTOR 5 36

f Caution
! This is an example and the necessary defines depend on the actual configuration. The
interrupt numbers depend on the selected derivative; refer to the hardware manual to
get the respective values.

10.3 External CAN Interrupt Handling

There are several solutions if accesses to the El level interrupt control registers (ICn) are
not possible or allowed for the driver (reasons may be restricted operating modes, memory
protection, bus guard functionalities or similar).

10.3.1 Hardware Access by Call-Back Functions

If the switch C_ ENABLE INTC ACCESS BY APPL is defined via the user configuration file
the driver implementation is still used to initialize and modify all ICn as described in the
previous sections, but all actual read and write accesses to the interrupt control registers
have to be performed by call-back functions.

The functions ApplCanWriteIcr8 () and ApplCanReadIcr8 () (see section 9.4 for the
API definitions) are always invoked when accessing registers of the interrupt controller
(other peripherals are not accessed by the driver). These functions have to be
implemented by the application and perform the hardware access including any unlocking
mechanisms, checks for the given addresses or similar. It is expected by the driver that
every access is synchronous and always successfully performed.

c Caution
! An exclusive write access to the ICn as stated in the previous sections still has to be
guaranteed. If any access is not successfully performed when these functions are
called, the driver has to be re-initialized by calling CanInitPowerOn () as correct
behavior cannot be ensured.

10.3.2 Interrupt Control by Application

If an exclusive write access to the CAN related ICn is not possible or the internal driver
mechanisms that are described above are not applicable, the switch
C_ENABLE OSEK CAN INTCTRL can be defined via the user configuration file. In this
case the application has to ensure proper initialization, disabling and restoring of the CAN
interrupt sources as the driver provides no support for these tasks at all. The registers of
the interrupt controller are never accessed by the driver.

©2015, Vector Informatik GmbH Version: 1.08.00 38 /50

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

If this switch is defined the application additionally has to perform the initialization of all
necessary ICn before the call of CanInitPowerOn (). All used sources (see remarks in
table 10-1) have to be enabled after initialization whereas unused sources have to be
disabled.

In context of the CAN interrupt disable/restore mechanism the driver implements
application call-back functions that are used whenever CanCanInterruptDisable ()
or CanCanInterruptRestore () are invoked by the program (see section 9.4 for the
API definitions). Suggestion is that the function 0OsCanCanInterruptDisable () saves
the value of the MK bit of the ICn of all used CAN interrupt sources that are linked to the
given logical channel and then sets these MK bits to 1 in order to disable the sources.
OsCanCanInterruptRestore () should restore the value of the previously saved MK
bits for the given logical channel. Keep in mind that the right physical channel has to be
chosen based on the given logical channel (to get the right ICn) and that the receive FIFO
and global status interrupt are used by all channels, hence they should be disabled as long
as any channel’s interrupts are disabled.

If the Sleep/Wakeup functionality is enabled and the external wakeup is used please note
that the external wakeup interrupts always have to be disabled after initialization as these
sources are only enabled on demand. Also additional application call-back functions (see
section 9.4 for the API definitions) are invoked by the driver. This is relevant for interrupt
and polling systems as the external interrupt request flag has to be cleared independently
of the interrupt configuration.

ApplCanWakeupInterruptEnable () is always invoked in context of CanSleep ().
This function first has to clear the external interrupt request flag in the corresponding ICn
and then — only if wakeup detection is performed by interrupts — enable the external
interrupt. Keep in mind that depending on the current status of the CAN interrupt
disable/restore mechanism this has to be performed either by clearing the corresponding
mask bit in the respective hardware register or in the mask status that was saved by the
function OsCanCanInterruptDisable (). ApplCanWakeupInterruptDisable () is
only invoked if wakeup detection is performed by interrupts in context of CanWakeup (),
respectively the external wakeup handling, and in CanInit (). This function has to
disable the interrupt, depending on the current status of the CAN interrupt disable/restore
mechanism either by setting the corresponding mask bit in the hardware register or in the
saved mask status. ApplCanWakeupOccurred () is called in context of the function
CanWakeupTask () to check for the occurrence of a wakeup event (i.e. the presence of
the interrupt request flag) if the detection is performed by polling.

The implementation may differ but all CAN interrupts for the corresponding channel have
to be disabled after the first call (keep in mind that nested calls can occur) of
OsCanCanInterruptDisable () and stay disabled until the last nested call of
OsCanCanInterruptRestore () that has to restore the previous interrupt state.
ApplCanWakeupInterruptEnable () and ApplCanInterruptDisable () have to
enable and disable the wakeup interrupt for one channel but must not violate the general
CAN interrupt disable/restore mechanism. It is also important to clear the wakeup interrupt
request flag within ApplCanWakeupInterruptEnable (). The application additionally
has to handle possible concurrent accesses to the ICn and ensure that those accesses do
not violate the conditions above.

©2015, Vector Informatik GmbH Version: 1.08.00 39 /50

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

c Caution

! The definition of C_ENABLE INTC ACCESS BY APPL is recommended if interrupt
control registers cannot be accessed by the driver. If C ENABLE OSEK CAN INTCTRL
is defined the driver performs no measures to ensure consistency of the interrupt lock
mechanism. Additionally the application has to ensure correct concurrent accesses to
the ICn and has to handle nested calls of OsCanCanInterruptDisable () and
OsCanCanInterruptRestore (). Therefore the usage of this switch is not
recommended in general and should only be defined if the internal driver mechanisms
or the definition of C ENABLE INTC ACCESS BY APPL are not possible at all.

©2015, Vector Informatik GmbH Version: 1.08.00 40 /50

Vector CAN Driver Technical Reference RH850 RSCAN

11 Configuration

11.1 Configuration by GENy

The driver is configured with the help of the configuration tool GENy. This section
describes the configuration of the driver specific aspects. The configuration options
common to all CAN drivers are described in TechnicalReference_CANDriver.pdf.

’?] Note

—D

To get further information please refer to the online help of the generation tool.

11.1.1 Platform Settings

Setup Dialog

21

v| EIKI

= Cancel |

Preconfiguration | _l
Micto [Hw_Rhas0Cou =
Derivative | FiL LI
Compiler | GreenHills =

Figure 11-1 GENy Platform Settings

Supported Description
Values

Preconfiguration

Micro Hw_Rh850Cpu

Derivative See Table 2-1

Compiler See Table 2-1
Table 11-1 GENy Platform Settings

©2015, Vector Informatik GmbH

Select the pre-configuration file to use.
Select the target platform.

Select the specific derivative group.
Select the used compiler.

Version: 1.08.00 41 /50

based on template version 3.2

vector’

Vector CAN Driver Technical Reference RH850 RSCAN VectorE

11.1.2 Component Settings

{3 ECU: CH1_Model Canfiqurable Options DrvCan_ShZRscanHll
E‘ |: Hwy_ShZRzcanCpucan
PR e CAN irtert RSCAN
H-f=] Individual Paling IMErIane j
F-7= Channels Mzximum number of CAN channels E
@ T Messages CAN external clock source -
: BB Rx Messages |+ Common Driver Parameters
L P RanT sl RavaPhiainCambian

Figure 11-2 GENy Component Settings

Supported Description
Values

CAN Interface RSCAN, Select the CAN interface that is incorporated by the used
RSCAN_FD derivative - see the HW manual for information. This selection
is independent of the actual CAN-FD usage as the driver has

to handle general hardware differences for both variants.

Maximum number of | 1-8 Enter the maximum number of physical CAN channels that

CAN channels are supported by the used RSCAN unit of the actual
derivative. This value is independent from the number of
channels in the configuration but used to determine the
available hardware resources. Only if this value is correct the
tool can ensure valid configurations for the actual derivative.
Depending on the selected derivative not all values may be

available.
CAN external clock true, Enable this attribute to use the external clock input
source false (clk_xincan) as CAN clock (fcan)- If the attribute is disabled

clkc is used - this is the default selection. (This setting directly
affects the DCS bit in the global configuration register.)

Table 11-2 GENy Component Settings

©2015, Vector Informatik GmbH Version: 1.08.00 42 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN

11.1.3 Channel-specific Settings

{.} ECU: CH1_Nodel Configurable Options DUT_CHO
- lfle Components |+ General Seftings
=1 &> DrvCan_Sh2RscanHll "~ Inialization
£ Individual Polling =
g% Channels |— Init Structures Add
R DT _CHO |- Init Structure Delete
2 DUT_CH1 BCFG 0140031

e TxMessages
£ RxMessages
22 GenTool_GenyPluginConfigD

Hw_Rh850Cpu [+ Init Structure Delete
BB NameDecorator . |+ Init Structure Delete
& ﬁ Tx Mz :SrzgzibeddedﬂunTlmeSys |- Hw_Sh2RscanCpuCan
-6 FxMessages Physical controller CAN1 |
[+-muy, Tx Signals CAN interrupt priority 3 -
[#]-ulg R Signals Rx FullCan object allocation 24 =
Fitters per BasicCan i
Rx Fifo process count g"
|: Rx Fifo Acld
Rx Fifo depth Delete |4 >

Acceptance Fitter Configuration

Bustiming Configuration

!d._Common Driver Parameters

Figure 11-3 GENy Channel Specific Settings

A

Caution

The sum of the shared buffers used to allocate the receive objects over all channels
must not exceed (“Maximum number of CAN channels” * 64)". This includes the Rx
FullCAN objects (1 buffer per actually assigned object; not the value of “Rx FullCAN
object allocation) and the depth of all Rx BasicCAN objects (individually configurable
amount of buffers, selected by the attribute “Rx Fifo depth”) on all channels.

The sum of used acceptance filters over all channels must not exceed (“Maximum
number of CAN channels” * 64)". Each actually assigned Rx FullCAN object uses one
filter and each Rx BasicCAN object uses the number of filters that is selected by the
attribute “Filters per BasicCAN” on the corresponding channel.

The generation tool checks these and other restrictions (e.g. allowed selection for the
attribute “Physical controller”) to ensure valid configurations. Therefore it is mandatory
to enter a valid value for the attribute “Maximum number of CAN channels”’. Refer to
chapter 3 for additional information.

" Refer to section 11.1.2 for the description of the attribute “Maximum number of CAN channels®.

©2015, Vector Informatik GmbH Version: 1.08.00 43 /50

vector’

Vector CAN Driver Technical Reference RH850 RSCAN Vect()(E

Supported Description
Values

BCFG register value The value for the Channel Configuration Register.

Acceptance Filter - Opens the acceptance filter dialog, see section 11.1.3.1. If

Configuration several init structures are created this is only possible for the
first structure.

Bustiming - Opens the bustiming dialog to determine the value for BCFG,

Configuration see section 11.1.3.2.

Physical controller CAN 0 - CAN 7 | Select the physical channel you want to assign to this logical

channel. The value is enumerated the same way as referenced
in the hardware manual. Depending on the selected derivative
and configuration of the attribute “Maximum number of CAN
channels” (see section 11.1.2) not all values may be available.

CAN interrupt priority | 0-—15 Select the interrupt priority level of this CAN channel’s interrupts
that are configured if the driver has interrupt control. Depending
on the selected derivative not all levels may be available. See
section 7.2.3 and chapter 10 for further information.

Rx FullCAN object 0 —nRXMBmax | You can configure as many receive FUllCAN messages on this

allocation channel as specified here. This value is used to limit the
selection for manual or automatic configuration - only the
actually arranged FullCAN objects will be configured in
hardware. The value of NRXMBmax equals “Maximum number
of CAN channels” * 16.

Filters per BasicCAN |1 —-128 Select how many acceptance filters will be assigned to each Rx
BasicCAN object on this channel; see section 11.1.3.1 for
details. Depending on the selected derivative not all values may
be available.

Rx Fifo process count ' 2 — 255 Select the maximum number of pending receive messages that
are processed for each Rx BasicCAN object within one polling
cycle respectively one interrupt occurrence. By adjusting this
value it can be ensured that high FIFO loads will be evenly
processed by the driver. Remaining messages are processed
within the next polling cycle respectively the interrupt of the next
received message on this channel. Select greater values if
overruns occur.

Rx Fifo depth 4,8, 16, 32, Individually configure the depth (amount of assigned shared
48, 64, 128 buffers) of every Rx FIFO, that is used as Rx BasicCAN object
on this channel.

Table 11-3 GENy Channel Specific Settings

p Note
T] As the RSCAN has restrictions regarding the receive buffers (e.g. no interrupt
processing, no overrun detection) also consider configurations without Rx FullCAN
objects. The large FIFO sizes and amount of filters that are possible for the BasicCAN
objects give similar advantages as the usage of FullCAN objects. For many
configurations this can be an alternative that above all is more effective regarding
runtime and memory usage.

©2015, Vector Informatik GmbH Version: 1.08.00 44 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

11.1.3.1 Acceptance Filter Configuration

x
— &cceptance Filter Registers
MNr. | Acceptance Filter] Type] Mask I Code |
m 1K OO0 HOOO X000 00)OO X0 0100 extended 0xCO000D00F 0x80000004
w2 31 XOXK X80 standard 0xC0000141 0x00000100
@ 3 XK K1 KKKO standard 0xC0000041 0x00000040
@ 4 K XK1 XK00 standard 0xC0000013 0x00000010
— Algorithm options Messages
Use FullCAN v Quick: l D | Name | Filter I:J
Minimum irelevant messages % A 0x4BA RxMSGO00004BA_D TullCAN
3 : 2 A 0x500 RxMSGO0000500_0 2
losed filt 9 Int : =
Maximum closed filters ntensive: & 06546 RXMSGO0000546_0 3
— Statistics A 0x58C RxMSGO000058C_0D 7
Count Rate [1/5] A 0x5D2 Rx¥MSG000005D2_0 3
’ A 03618 R¥MSGO0000618_0 4
Messages to receive: 47 470.0 A OxB5E RxMSGOO00D0BSE 0 3
Passngmessages: 3 3300 A 0xBA4 RXMSGOOD00GAL_D fuUIlCAN
Irelevant passing messages: 0 0.0 A D¥GEA RxMSGOOD00GEA O 3
FUll CAN messages: 8 80.0 A 0x730 RxMSG00000730_0 2
Known messages: 15 1150.0 A 0x00000064 RxMSGS0000064_0 1
Max. search depth: 19 A DxD1AAMAFS RxMSGE1AAMAFS_ D 1
A 0x03555584 RxMSGE3555584_0 1 j
0K Cancel I Open filters |

Figure 11-4 GENy Acceptance Filter Configuration

Supported Description
Values

Acceptance Filter

Type

Mask / Code

Open filters
Optimize

representation of
type, mask and
code

standard,
extended

register values

Table 11-4 GENy Acceptance Filter Configuration

©2015, Vector Informatik GmbH

The configured BasicCAN filters are shown. Each ID-bit is
represented by “0/1/X”, meaning must match “0”, “1” or don’t
care “X”. The number of filters can be adjusted by the attribute
“Filters per BasicCAN” on the channel view.

Select if the filter shall apply to standard or extended ID types.
(Based on the database and configuration only one type may
be available.)

The register values for this filter that will be configured in
hardware.

Open the filters completely to receive all messages.

Configure the filters automatically to just receive IDs in the
database if possible. A large number of filters allow better
optimizations, but don’t configure more filters than the
optimization algorithm uses for message distribution.

“Use FullCAN” tries to put as many messages as possible in
FullCAN objects. Select the maximum number of available
objects by adjusting the attribute “Rx FullCAN object
allocation” on the channel view. This is useful when only a few
number of BasicCAN filters are configured for example.

Version: 1.08.00 45 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

11.1.3.1.1 Additional information if the feature “Multiple BasicCAN objects” is used

The dialog shows all BasicCAN acceptance filters for the respective channel. The amount
of filters equals the product of configured BasicCAN objects and the number of filters per
BasicCAN. An example configuration with 3 BasicCAN objects and 2 filters per object
results in 6 filters as shown in figure 11-5. The first 2 filters (in accordance with the attribute
“Filters per BasicCAN”) are assigned to the first BasicCAN object, the next 2 to the second
BasicCAN object and so on.

~ Acceptance Filter Registers
Nr. | Acceptance Filter | Type | Mask | Code
@ 1 000 Q0OO1 QOO0 standard O0xEQDOO7FF 0x00000010 BasicCAN 0
@ 2 0 0000 0000 0000 QOO0 0010 00XX XK1 extended OxFFFFFFC1 0x80000201
@ 3 0 0000 0000 0011 0000 0K X0 X000 extended OxFFFFF800 0x80030000 BasicCAN 1
m 4 K10 0 X0 standard 0xEQD00310 0x00000200
m 5 XK1 0001 0X01 standard O0xEQQOO1FB 0x00000111 5
@ B 3004 0001 0011 standard OxEOOODOFF 0x00000013 | D2sicCAN 2

Figure 11-5 GENy Acceptance Filter Assignment

Please note that a received message is stored in the first mailbox with a matching filter.
After an identifier was compared against the FullCAN filters, it is compared against the
BasicCAN filters in the order that is depicted in the dialog. This has to be considered when
the feature “Multiple BasicCAN objects” is used. If filter number 1 in the example from
figure 11-5 was open (all bits “don’t care”), all non FullCAN standard identifiers would be
received by BasicCANO and BasicCAN2 would never receive any message.

Note

In some “Multiple BasicCAN” configurations it may be useful to assign certain
BasicCAN messages to specific hardware objects as the FIFO depths or “Individual
Polling” settings can be adapted to the actual communication aspects for example. As
the optimization algorithms don’t consider this use case the filters have to be edited
manually in this case.

Alternatively it is possible to configure and lock only several significant filters and then
use the optimization functionality. But after doing so always check the result because
manually configured filters may not always receive the pre-assigned identifiers as the
message could match an automatically assigned filter that is compared first. Focus on
filters with smaller numbers or add some “dummy filters” for earlier objects to achieve
better results.

©2015, Vector Informatik GmbH Version: 1.08.00 46 /50

Vector CAN Driver Technical Reference RH850 RSCAN VectorE

11.1.3.2 Bustiming Configuration

r— Bit timing

Clock (kHz) [a0000 (‘ﬂeg "‘;’932

nominal bit timing (bus)

Baudrate (kBaud) |1 00.0

CAN BTR register (hex) IUD1 40031

TSeql [time quanta) 5
TSeg?2 [time quanta) |2—

Calculate baudrate Time quantum [ns] 1250
Bit time (us) 10
Calculate bustiming register
Samples I 1 - I Prescaler |50
CAN_BTR | sample | BTL cycles | s [«]
0:00140031 75% 8 1 =
0x00160027 80% 10 1
0x001C0018 a87% 16 1
0x00230031 B2% 8 1
0x00250027 70% 10 1
0x00280018 81z 16 1
0x002F0013 85% 20 1
000340027 B0% 10 1 L‘

oK I Cancel

Figure 11-6 GENy Bustiming Configuration

Supported Description
Values

Clock CAN clock Set the clock frequency that is provided to the CAN cell for
baudrate generation (fcan). Consider the setting of the
attribute “CAN external clock source” (see section 11.1.2).

Baudrate baudrate Set the baudrate to be used for this channel.

CAN BTR register register value Enter the value for the Channel Configuration Register (see
attribute BCFG in section 11.1.3).

Calculate - Calculate possible Channel Configuration Register settings
out of the entered baudrate or vice versa.

CAN_BTR, Sample, - Select specific channel configuration register values to adapt

BTL cycles, SIW the sample point and sync phase to comply with your bus
physics.

Table 11-5 GENy Bustiming Configuration

©2015, Vector Informatik GmbH Version: 1.08.00 47 /50

based on template version 3.2

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

11.2 Manual Configuration

This section describes additional configuration options for special features that can only be
configured via the user configuration file.

e Define C DISABLE NESTED INTERRUPTS or C_ENABLE NESTED INTERRUPTS to
control the nesting of the CAN interrupts. See section 10.1 for further information.

e Define C ENABLE DIRECT INTERRUPT BRANCH (and if needed additionally
C _ENABLE ISRVOID) to deactivate table reference as the method to handle CAN
interrupts. See section 10.2 for further information.

e Define C ENABLE INTC ACCESS BY APPL Or C_ENABLE OSEK CAN INTCTRL to
prohibit read and write accesses within the interrupt controller address space. See
section 10.3 for further information.

e Define C_ENABLE EXTERNAL WAKEUP SUPPRESSION to disable the external wakeup
functionality. See chapter 4 for further information.

e See sections 7.2.6 to 7.2.9 for options that control different RAM test features.

e See section 10.2.1 for information on how to set up the interrupt vector table when
using IAR compiler.

©2015, Vector Informatik GmbH Version: 1.08.00 48 /50

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

12 Known Issues / Limitations

1. Due to hardware limitations the feature CAN RAM check is not supported for receive
mailboxes (no write access is possible for these objects).

2. Due to hardware limitations receive FUllCANs cannot be processed in interrupt context
and no overruns can be detected for these objects.

3. With default configuration the driver needs exclusive write access to all El level
interrupt control registers (ICn) that are related to a CAN interrupt source (see section
7.2.3 and chapter 10 for further information.).

4. Refer to chapter 4 for restrictions when using the Sleep/Wakeup functionality.
Additionally the global stop mode of the RSCAN is not supported.

5. When using multiple initialization structures no multiple acceptance filter configurations
are supported by the driver. The filter settings are always derived from the first
structure. Use several structures only to arrange multiple baudrate configurations.

6. When using the feature Multiple ECU Configurations it is not supported to use a logical
channel in more than one identity. The only exception is the first logical channel which
can be present in any identity if it is also mapped to the physical channel CANO. This
limitation does not apply to the usage of physical channels: Every available physical
channel can be used in any identity and the same physical channel can be used in as
many identities as needed (if it is referenced by different logical channels).

7. For derivatives that incorporate multiple RSCAN units only the first one (RSCANO) is
supported by the driver.

For latest information about issues or limitations of the actually used derivative please
contact the hardware manufacturer.

©2015, Vector Informatik GmbH Version: 1.08.00 49 /50

Vector CAN Driver Technical Reference RH850 RSCAN \/ectorE

13 Contact

Visit our website for more information on

> News

\

Products

\Y

Demo software

\%

Support

\%

Training data

\

Addresses

www.vector.com

©2015, Vector Informatik GmbH Version: 1.08.00 50 /50

http://www.vector.com/

	1 Introduction
	2 Important References
	3 Usage of Controller Features
	3.1 [#hw_comObj] - Communication Objects
	3.2 Acceptance Filters

	4 [#hw_sleep] - SleepMode and WakeUp
	4.1 Sleep
	4.2 Internal Wakeup
	4.3 External Wakeup

	5 [#hw_loop] - Hardware Loop Check
	6 [#hw_busoff] - Bus off
	7 CAN Driver Features
	7.1 [#hw_feature] - Feature List
	7.2 Description of Hardware-related Features
	7.2.1 [#hw_status] - Status
	7.2.2 [#hw_stop] - Stop Mode
	7.2.3 [#hw_int] - Control of CAN Interrupts
	7.2.4 [#hw_cancel] - Cancel in Hardware
	7.2.5 Remote Frames
	7.2.6 CAN RAM Check
	7.2.7 Extended CAN RAM Check
	7.2.8 RSCAN ECC Configuration
	7.2.9 RSCAN RAM Test

	8 [#hw_assert] – Assertions
	9 API
	9.1 Category
	9.2 RSCAN ECC Configuration
	9.3 (Extended) CAN RAM Check
	9.4 External CAN Interrupt Handling

	10 Implementations Hints
	10.1 Important Notes
	10.2 Interrupt Configuration
	10.2.1 Configuration of Interrupt Vectors with IAR compiler

	10.3 External CAN Interrupt Handling
	10.3.1 Hardware Access by Call-Back Functions
	10.3.2 Interrupt Control by Application

	11 Configuration
	11.1 Configuration by GENy
	11.1.1 Platform Settings
	11.1.2 Component Settings
	11.1.3 Channel-specific Settings
	11.1.3.1 Acceptance Filter Configuration
	11.1.3.1.1 Additional information if the feature “Multiple BasicCAN objects” is used

	11.1.3.2 Bustiming Configuration

	11.2 Manual Configuration

	12 Known Issues / Limitations
	13 Contact

