MICROSAR DET

Technical Reference

Version 2.4.0

Authors Hartmut Horner
Version: 24.0
Status: Released

vector”

Technical Reference MICROSAR DET

1 Document Information

1.1 History

Author

Hartmut Horner
Hartmut Hérner
Hartmut Horner

Hartmut Horner

Hartmut Horner
Hartmut Horner

Hartmut Horner

Hartmut Horner

Hartmut Horner

Hartmut Horner

Table 1-1 History of the Document

©2015, Vector Informatik GmbH

’ Date

2007-11-29
2008-01-03
2008-04-14

2008-09-16

2010-01-13
2012-04-20

2013-04-09

2013-09-13

2014-12-10

2015-06-12

’ Version

1.0
1.1
1.2

1.3

2.0
2.1

2.2

2.3

2.3.1

240

Version: 2.4.0

based on template version 2.0

vector’

‘ Remarks

Initial version
Update to AUTOSAR 3

Naming changed to
AUTOSAR short name,
screen shots updated.
(ESCAN00025687)

Added DET extension
mechanism based on callout
(4.7,6.3.1).

Added chapter 5.3.
Update to AUTOSAR 4

Added usage hints related to
silent BSW concept in 5.4
(ESCANO00058419)

Added Configurator 5 and
service port interface
(ESCAN00066511)
Added DLT forwarding
support for Configurator 5
(ESCANO00068394,
ESCAN00069807)

Added description of
BCD-coded return value of
Det_GetVersionInfo()

(ESCANO00079310)
File name changed
(ESCAN00081049)
Added chapter 5.4.

2/30

Technical Reference MICROSAR DET vector'

1.2 Reference Documents

Index Document

[1] AUTOSAR_SWS_DET.pdf, Version 2.2.0
2] AUTOSAR_SWS_DET.pdf, Version 3.0.0

Table 1-2 Referenced documents

| Please note
H We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

©2015, Vector Informatik GmbH Version: 2.4.0 3/30

based on template version 2.0

Technical Reference MICROSAR DET vector'

Contents
1 Document Information ... 2
1.1 L 115 (o) YU 2
1.2 Reference DOCUMENESuuiiii i 3
2 Component HiStOry 7
3 INtrOdUCLION...... ... e 8
3.1 ArchiteCture OVEIVIEWoiiii i 8
4 Functional DescCription ... 10
4.1 FRAUIES ..o e 10
4.2 INIGANZALION ... e 10
4.3 S A S o 10
4.4 Main FUNCHIONS ... e e et e e eaaans 11
4.5 [o] ol o P=T o | 11 o PP 11
4.6 Debugging with the DET ... 11
4.6.1 Extended Debug Featurescooiiiiiiiiii e, 11
46.1.1 FItErS ..o, 11
4.6.1.2 (oo T |1 T P 12
46.1.3 Break handler ..., 13
4.7 Extension of the DET ... 15
5 INtegration ... e 16
5.1 SCOPE Of DEIIVEIY ...ttt sesennnsennnnnnnes 16
5.1.1 StAtiC FilES ... 16
51.2 Generated Filescciiiiiiii e 16
5.2 INCIUAE STTUCIUIE ...t et e et ens 16
5.3 Handling Of RECUISIONSuiiiiiiiiiii e 16
5.4 CritiCal SECHONS .. .ceveieiee et e 17
5.5 Usage Hints for Operation in Safety Related ECUS..............cccoviiiiiiiiinniinee 17
6 API DESCIIPtION e 18
6.1 Interfaces OVEIVIEWcooviiiiiie e 18
6.2 Services Provided by MICROSAR DETcuuuiiiiiiiiiiiiiiiiiiiiiiieiiiniiieeinnnennnnnenees 18
6.2.1 9= G 1311 SRR 18
6.2.2 Det_INItMEMIOIY.......uiiiiiiiiiiii e 19
6.2.3 Dt _Start........uueiiiiiiiiiiiiiiii e 19
6.2.4 Det REPOMEITOr. ... i e 20
6.2.5 Det_GetVersionInfo...........uueeiuiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeennnnnnee 21
6.3 Services used by MICROSAR DEToooiiiiiiiii et 22

©2015, Vector Informatik GmbH Version: 2.4.0 4/30

Technical Reference MICROSAR DET VeCtOf

6.3.1 Appl_DetEntryCallout..........ccooiieiiee e 22

6.4 (0= 11 o= Lol [q U1 o T3 o] o =T 22

6.5 Configurable INterfaces..............uuuuiiiiiiiiiii 23

6.6 1= Vo o Ty £ N 24
6.6.1 Client Server Interface ..., 24

6.6.1.1 Provide Ports on DET Sidecoooeevvviiiiiiiiiiiie e, 24

6.6.1.1.1 DETSEIVICE....cccevveieeiiceeeeee e, 24

T CoNFIQUIAtIONoiiiiiii e 25
7.1 Configuration With GENYuuuuiiiiiiiiiiiiiiiii e 25
711 System Configuration..........ccooooiioooiie 25

71.2 Component Configurationccoooeoeiie i 25

8 AUTOSAR Standard Compliance.................cooiiiiiiiiiiiiiiccc e 27
8.1 DVIAtIONS ... 27
8.1.1 Support of Service Port Interfaceccccoeeeiiiiiiiiiiii . 27

8.1.2 Support of AUTOSAR Debugging Concept (AUTOSAR 4)............... 27

8.1.3 Support of Configurable List of Error Hooks (AUTOSAR 4).............. 27

8.2 AditioNS/ EXIENSIONS.....vuiiiiiii e e e 27
8.2.1 Extended Debug Featureseuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie 27

8.2.2 DET Extension Mechanism ..., 27

8.3 [T T} =1 £ o T g 3SR 27

9 ADBDBIeVvIiatioNS...........oooii e 28
10 GlOSSANY ... 29
11 Contact ... 30

©2015, Vector Informatik GmbH Version: 2.4.0 5/30

Technical Reference MICROSAR DET VeCtOf

lllustrations

Figure 3-1 AUTOSAR architeCture...........ccooovviiiiii 8
Figure 3-2 Interfaces to adjacent modules of the DETcccooiiiiiiiiiiiiiii e, 9
Figure 7-1 Enabling the DET in the GENy system configurationcccccceeeee. 25
Figure 7-2 Component configuration of the DET ... 25
Tables

Table 1-1 History of the DOCUMENTuiiiiiiiiiiiiiie e 2
Table 1-2 Referenced doCUMENES.........cooeiiiiiii e 3
Table 2-1 Component HiStOrYccoiiiiiiie e 7
Table 4-1 Supported SWS featuresueiiiiiiiiice e 10
Table 4-2 Not supported AUTOSAR 3 and 4 SWS features..........ccooceveeiiiiiiiinnennnnnn. 10
Table 4-3 Not supported AUTOSAR 4 SWS featuresccccovvvvvieiiiieeeiiiiiiiieeee e, 10
Table 5-1 STALIC fIlES ..t 16
Table 5-2 Generated fileSuuuei i 16
Table 6-1 D 1= S 18
Table 6-2 Det INEMEMOIY ... e 19
Table 6-3 =T] =1 o S 19
Table 6-4 =T i =T oo 4 =y o] 20
Table 6-5 Det_ GetVersionInfo ... 21
Table 6-6 Services used by the DET ... 22
Table 6-7 Appl_DetEntryCalloutcooieiiiieeeee e 22
Table 6-8] Y=Y o T N 24
Table 7-1 DET configuration parametersuueuueeeeiiiiimeiiiiieeeieeeeeeneennnnnnnn. 26
Table 9-1 ADDIEVIAtIONS 28
Table 10-1 GIOSSANY ...ttt 29

©2015, Vector Informatik GmbH Version: 2.4.0 6/30

Technical Reference MICROSAR DET

2 Component History

Component New Features

Version

0.01.00 Creation

2.00.00 Update for AUTOSAR Release 2.0

3.00.00 Update for AUTOSAR Release 2.1

3.01.00 GetVersionInfo API added

3.02.00 Extended debug features added

4.00.00 Update for AUTOSAR Release 3
compiler abstraction and memmap added

4.01.00 DET entry callout

5.00.00 Update for AUTOSAR Release 4

6.00.00 Support of Configurator 5 (MSR3)

7.00.00 Support of Configurator 5 (MSR4)

8.00.00 DLT and service port interface

9.00.00 safeBSW

Table 2-1 Component History

©2015, Vector Informatik GmbH Version: 2.4.0

based on template version 2.0

vector”

7130

Technical Reference MICROSAR DET vector'

3 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module DET (Development Error Tracer) as specified in [1] and [2].

Supported AUTOSAR Release*: 3and 4
Supported Configuration Variants: pre-compile

Vendor ID: DET VENDOR ID 30
Module ID: DET_MODULE_ID 15

* For the precise AUTOSAR Release 3.x and 4.x please see the release specific documentation.

The DET is the central error handler in the AUTOSAR architecture during the development
phase. All other basic software modules can report development errors to the DET.

3.1 Architecture Overview
The following figure shows where the DET is located in the AUTOSAR architecture.

Application

RTE

T0HW
CANTP FRTP Complex
CANTRCY - Drivers
FRTRCV
EEPDRV EXT

Vector MICROSAR Product Service by Vector
Figure 3-1 AUTOSAR architecture

©2015, Vector Informatik GmbH Version: 2.4.0 8/30

based on template version 2.0

Technical Reference MICROSAR DET vector'

The following figure shows the interfaces to modules adjacent to DET. These interfaces
are described in chapter 6.

-~ A

Report Init / Callout Forward
error Start error

DET

Figure 3-2 Interfaces to adjacent modules of the DET

©2015, Vector Informatik GmbH Version: 2.4.0 9/30

based on template version 2.0

Technical Reference MICROSAR DET vector'

4 Functional Description

4.1 Features
The features listed in this chapter cover the complete functionality specified in [1] and [2].

The "supported" and "not supported” features are presented in the following two tables.
For further information of not supported features also see to chapter 8.

The following features described in [1] are supported:

Initialization and start services
Error reporting service

Table 4-1 Supported SWS features

The following features described in [1] and [2] are not supported in GENy:

Service port interface is only supported in Configurator 5
Forwarding of DET errors to the DLT module is only supported in Configurator 5

Table 4-2 Not supported AUTOSAR 3 and 4 SWS features

The following features described in [2] are not supported:

Configurable list of error hooks (use the DET entry callout instead)
Debugging support (AUTOSAR debugging concept)

Table 4-3 Not supported AUTOSAR 4 SWS features

4.2 Initialization

The DET is initialized and operational after the APl Det Init has been called. In [1] and
[2] an additional Det Start service is specified to handle cases where it is necessary to
split the initialization in two phases. Since this is not applicable the bet Start function is
empty.

In the AUTOSAR 4 variant the API Det InitMemory may have to be used in addition,
please refer to the API description 6.2.2 for details.

4.3 States
The DET has no internal state machine, it is operational after initialization.

In the AUTOSAR 4 variant the module uses its initialization state to perform a check if the
module has been initialized.

©2015, Vector Informatik GmbH Version: 2.4.0 10/30

based on template version 2.0

Technical Reference MICROSAR DET VeCtOf

4.4 Main Functions
The DET has no main function since it does not perform cyclic tasks.

4.5 Error Handling

Since the DET is the centralized error handler it does not use error handling services of
other BSW modules.

4.6 Debugging with the DET

The DET is called for each development error which is reported by other BSW modules.
Since it is potentially not safe to continue the program when such an error occurs, the
default implementation of the DET is an endless loop.

A breakpoint should always be set in this loop. When the breakpoint is hit, the parameters
of the function Det ReportError 6.2.4 can be inspected in the debugger. By means of
these parameters it is possible to find out which error occurred; it is however sometimes
more convenient to use a stack trace if the debugger provides this.

I"L' A breakpoint should always be set in the endless loop

I_J—]#Else /% DET DEBUG EMNAELED */
#if ! defined{ C_COMP_ANSI_CANOCE |
/% Endless loop for breakpoint in case of development error %/
while 1)
i
;ST HEHHH typical place for a breakpoint if extended debugging support is disabled®)
=+ i

- #endif /% C_COMP_ANSI_CANOE w/
$endif /% DET DEEUG_EMAELED =/

If a simulated target based on the CANoe emulation environment is used the endless loop
is replaced by an error message in the CANoe write window.

4.6.1 Extended Debug Features

Sometimes the provision of the endless loop is not sufficient for debugging, therefore
some extended debug features are provided. These features are thought as a debugging
aid, thus they are accessible via the debugger and do not have special APIs.

To use these features the attribute “Enable Extended Debug Support” must be enabled (s.
7.1.2).

46.1.1 Filters

Sometimes it happens that a BSW module reports DET errors which are known to be
uncritical. Such errors can be ignored by discarding the related «calls to
Det Reportkrror.

To implement this functionality the DET provides a set of filters where the errors to be
discarded can be configured. It is possible to use the patterns Oxff or Oxffff as wild cards
(don’t care patterns).

©2015, Vector Informatik GmbH Version: 2.4.0 11/30

Technical Reference MICROSAR DET vector'

’ Configuration of filters
ee m configure the required number of filters in configuration tool with the attribute
“‘Number of Global Filters” (s. 7.1.2)

m enable filtering globally in the debugger by setting
detStatus.globalFilterActive to 1

4 detSkaktus {olobalFilkeractive="0" logActive=0x00 logIndex=0x=00 ...+
dlobalFilker fctive 0x01'0°
o0
loglndesx 0x00 "
J breakOnLogOwerrun | 0x00
breakFilterActive 000
unlockBreak 0x00

m configure the required filters in the debugger by setting detGlobalFilter

elements
=l @ detElobalFilker 0x0040bz275 detalobalFilker {moduleld=0x0020 instanceld=0x00 api
= & [0:0] {moduleld=0x0020 instanceld=0x00 apild="0O0" ...} ||
4 mioduleld Q0020
4 instanceld Q00
4 apild 007 '0°
4 errorld 0x03'0°
2 [0x1] {moduleld=0x0000 instanceld=0x00 apild=0x00 ...+
2 [0x2] {moduleld=0x0000 instanceld=0x00 apild=0x00 ...}

Ij:' Filter examples
= a) ignore error 3 of API7 of module 20 in instance 0

moduleId=20
instanceId=0
apiId=7
errorId=3

b) ignore all errors of module 20 in instance 0

moduleId=20
instanceId=0
apiIld=0xff
errorId=0xff

4.6.1.2 Logging

The DET provides a log buffer for incoming error messages. Error messages which have
been filtered are not logged.

The contents of the log buffer can be viewed with the debugger.

s Configuration of logging
ee m configure the required size of the log buffer in the configuration tool with the
attribute “Size of Log Buffer” (s. 7.1.2)

©2015, Vector Informatik GmbH Version: 2.4.0 12/30

Technical Reference MICROSAR DET vector'

m enable logging globally in the debugger by setting detStatus.logActive to 1

F @ detStatus {globalFilter Ackive=0x00 logaAckive="0" logIndex=0x00 ...}
— i@ globalFilkerActive 00

— i@ logActive ox01'0°

logIndex

— @ breakOnLogOwerrun Ox00

— i breakFikernctive Q00

— i unlockBreak. 000

A Logging example

12
The variable detStatus.logindex shows the index in the log buffer with the last logged

development error. Use the elements of detLogBuffer to view the logged errors.

[El @ detlLogBuffer Dx0040b23c detlogBuffer {moduleId=0:0000 instanceld=0:x00 apilc
[0x0] {moduleld=0:0000 instanceld=0x00 apild=0:=00 ...+
2 [0x1] {moduleld=0x0001 instanceld='00" apild="00" ...}

2 [0xZ] {moduleld=0x0001 instanceld='00" apild="00" ...}
{rmoduleld=0:x0001 instanceld="0" apild="0O"...}

2 moduleld Q0001

J instanceld 00z '0'

2 apild 003 '00°

J errorld 04 '00°
J [0x4] {rmoduleld=0:0000 instanceld=0x00 apild=0x=00 ...+
2 [0x5] {moduleld=0x0000 instanceld=0x00 apild=0x00 ...}
2 [0x5] {moduleld=0x0000 instanceld=0x00 apild=0x00 ...}
2 [0x7] {moduleld=0x0000 instanceld=0x00 apild=0x00 ...}
2 [0x3] {moduleld=0x0000 instanceld=0x00 apild=0x00 ...}
2 [0x9] {moduleld=0x0000 instanceld=0x00 apild=0x00 ...}

[El @ detskatus JalobalFilker Active=0x00 loghckive="00" logIndex="00" ...}
— i globalFilkerfckive Q00
— i@ loghckive Ox01'00°
— i@ loglndex 003 '0°
— i breakOnLogOwerrun Q00
— i breakFilkerictive Ox01'00°
— i unlockBreak, 00

By default all elements of the variable (s. above) detLogBuffer are initialized with zero.

By setting detStatus.breakOnLogOverrun in the debugger it is possible to enter the
endless loop if the log buffer is full.

4.6.1.3 Break handler

For some errors it is possible to continue operation. Therefore it is possible to unlock the
endless loop with the debugger to continue the program. Since the same error could occur
multiple times and to avoid ending up in the endless loop again it is possible to configure a
special filter set for the break handler. Such errors are logged (if logging is active) but do
not lead to a break.

©2015, Vector Informatik GmbH Version: 2.4.0 13/30

Technical Reference MICROSAR DET vector'

; Configuration of break handler filters

m configure the required number of break handler filters in configuration tool
with the attribute “Number of Break Handler Filters” (s. 7.1.2)

m enable break handler filtering globally in the debugger by setting
detStatus.breakFilterActive to 1

detStatus {globalFilterActive=0x00 logActive=0:x00 logIndex=0x00 ...}
2 dlobalFilkergctive 00
J looackive Q00
loglndex 000
breakOonLogCwerrun Ox00
breakFilteractive 0x01'0°

m configure the required break handler filters in the debugger by setting
detBreakFilter elements

=] @ detBreakFilter Q:x0040bz220 detBreakFiter {moduleld=0:x0020 instanceld=0x00 apil
2 [0x0] {moduleld=0x0020 instanceld=0x00 apild="¢" ...}
2 moduleld Q0020
J instanceld 00
J errorld DacfF 4
2 [0x1] {moduleld=0:0000 instanceld=0x00 apild=0x=00 ...+
2 [0x2] {moduleld=0:0000 instanceld=0x00 apild=0x=00 ...+

For some filter examples please refer to 4.6.1.1.

In the following example it is described how the endless loop can be unlocked in the
debugger.

How to unlock the endless loop

F
[]
1 Set detStatus.unlockBreak to 1 to leave endless loop:

©2015, Vector Informatik GmbH Version: 2.4.0 14 /30

Technical Reference MICROSAR DET vector'

#Hendif

while (det3tatus.unlockBreak==0] /% set this wvariahle to 0 to un
1

;AT HEHEY typical place for a breakpoint if extended debuggi
) }

- det3tatus.unlockBreak=0; /* PRQAL 3 3zZ01 */
O #else /* DET DEBUG ENAELED */

| Mame | Yalue |
@ detlLogBuffer 0x0040b23c detlogBuffer {moduleld=0x0000 instanceld=0x00 apilc
=l @ detSkatus {alobalFilkerackive=0:00 logactive=0x00 logIndex=0x00 ...}
@ globalFilkerackive 00

@ logackive 00
@ loolndex 00
@ breakionLogOwerrun | D00
¢ breakFiterdctive JO00 |
W

unlockBreak, 0x01'0°

4.7 Extension of the DET

Sometimes the built-in debug features of the DET may not be sufficient or some special
handling of errors is required. Examples for such use cases include:

m Logging of DET errors via debug interface
m Transmission of DET errors on a serial bus system

m Error handling which requires direct access to the hardware (e.g. disabling of
specific interrupts)

m Complex application specific error handling

To support such extensions the DET provides a DET entry callout
(Appl DetEntryCallout) which is called first when the DET is entered. The callout has
to be provided by the application. It receives all parameters of the DET’s error reporting
function. Depending on the return code the DET continues or abandons error handling. For
details please refer to API description in chapter 6.3.1. This feature is enabled by a
configuration parameter as described in chapter 7.1.2.

©2015, Vector Informatik GmbH Version: 2.4.0 15/30

Technical Reference MICROSAR DET vector'

5 Integration

This chapter gives necessary information for the integration of the MICROSAR DET into
an application environment of an ECU.

5.1 Scope of Delivery
In the delivery of the MICROSAR DET the files listed in 5.1.1 and 5.1.2 are contained.
5.1.1 Static Files

File Name | Description

Det.c This is the source file of the DET
Det.h This is the header file of the DET

Table 5-1 Static files

5.1.2 Generated Files
The dynamic files are generated by the configuration tool.

File Name Description

Det_cfg.h This is configuration header file containing pre-compile parameters.

Table 5-2 Generated files

5.2 Include Structure

The DET includes the headers mentioned in the previous chapters 5.1.1 and 5.1.2.

In addition the file Std_Types.h is included.

To support the AUTOSAR memory mapping concept the header MemMap.h is included.

5.3 Handling of Recursions

If DET errors occur within the call context of the DET recursions could be caused. This can
happen in the following cases:

m A DET error occurs in one of the interrupt enabling or disabling functions which
are used by the DET on its own to protect critical sections of the DET.

M Inan Appl DetEntryCallout ora subroutine of Appl DetEntryCallout if
BSW API functions are used there.

These cases are handled by an internal locking mechanism in the DET so the application
needs not to take care of them. It should however be noted that in case of a recursion the
DET might skip a callout or its internal error logging.

If forwarding of errors to the DLT module is used (Configurator 5 only) the DLT module is
responsible for preventing potential recursions which could occur if a DET error is reported
by the DLT module. The MICROSAR implementation of the DLT module considers this
requirement.

©2015, Vector Informatik GmbH Version: 2.4.0 16 /30

based on template version 2.0

Technical Reference MICROSAR DET VeCtOf

54 Critical Sections

The DET has code sections which need protection against preemption. Therefore the DET
uses one exclusive area which typically requires an interrupt lock up to the highest
interrupt level where DET error reports can be produced:

DET_EXCLUSIVE_AREA 0
This exclusive area is short and only relevant if the logging feature is activated.

5.5 Usage Hints for Operation in Safety Related ECUs

The silent BSW concept assures that a BSW module does not corrupt memory of the
application and other BSW modules. In this context the following aspects have to be
considered for the DET:

m In the callout function Appl DetEntryCallout the DET passes four
parameters to the application which could be used as indices by the application.
Please note, that the DET does not perform plausibility checks of the value
ranges of those parameters because the errors reported to the DET are not
known by the DET in advance. The producer and consumer (could both be
application code) has to perform plausibility checks of the index parameters if
necessary.

m If the extended debug feature “logging” is used depending on the scheduling
concept of the ECU DET errors could be logged from different contexts and it has
therefore to be secured that the critical section DET_EXCLUSIVE_AREA 0
reaches up the highest processing level of the application which can produce
DET errors.

m The application has to pass a valid pointer to the APl Det GetVersionInfo. A
NULL pointer check of the passed pointer parameter is only available in the
AUTOSAR 4 variant of the DET.

m The DET is intended for the development phase of an ECU. If it is used in
production code the extended debug features should be switched off because
they are only relevant if a debugger is attached.

©2015, Vector Informatik GmbH Version: 2.4.0 17 /30

Technical Reference MICROSAR DET VQCEO('

6 API Description

6.1 Interfaces Overview
The DET provides the four services
W Det Init for initialization,
W Det InitMemory for initialization (AUTOSAR 4 only),
W Det Start for additional initialization purposes,
B Det ReportError for reporting of development errors and
MW Det GetVersionInfo for version information.

They are described in detail in the following sections.

6.2 Services Provided by MICROSAR DET
The MICROSAR DET API consists of services, which are realized by function calls.

6.2.1 Det_Init
Det_Init

Prototype
void Det_Init (void)

Parameter

Return code

Functional Description
Initializes the DET.

Particularities and Limitations

> Should only be called once by the EcuM when the system is started
Expected Caller Context
> Should be called from a safe context on task level

Table 6-1 Det_Init

©2015, Vector Informatik GmbH Version: 2.4.0 18/30

based on template version 2.0

Technical Reference MICROSAR DET VQCEO('

6.2.2 Det_InitMemory
Det_InitMemory

Prototype
void Det_InitMemory (void)

Parameter

Return code

Functional Description

Initializes the state variable for the un-init check of the DET. If this function is used it must be called before
Det_lInit.

Particularities and Limitations

> Should only be called once by the EcuM when the system is started
> Only needed if the startup code does not support initialized RAM

> Only applicable for the AUTOSAR 4 variant

Expected Caller Context

> Should be called from a safe context on task level

Table 6-2 Det_InitMemory

6.2.3 Det_Start
Det_Start

Prototype
void Det_Start (void)

Parameter

Return code

Functional Description

Starts the DET. This service currently has no functionality, i.e. the API function is empty.

Particularities and Limitations

> Call could be omitted
Expected Caller Context

> No restriction

Table 6-3 Det_Start

©2015, Vector Informatik GmbH Version: 2.4.0 19/30

based on template version 2.0

Technical Reference MICROSAR DET VQCEO('

6.2.4 Det_ReportError
Det_ReportError

AUTOSAR 3:
void Det ReportError (uintl6 ModuleId, uint8 Instanceld,
- uint8 Apild, uint8 ErrorId)
AUTOSAR 4:
Std _ReturnType Det ReportError (uintl6 ModuleId, uint8 Instanceld,

uint8 Apild, uint8 ErrorId)

Moduleld Module ID of calling module
Instanceld The identifier of the index based instance of a module, starting from 0, If the

module is a single instance module it shall pass 0 as the Instanceld.

Apild ID of API service in which error is detected
(defined in SWS of calling module)

Errorld ID of detected development error
(defined in SWS of calling module)

Return code
AUTOSAR 3:

AUTOSAR 4:
Std ReturnType Always E_OK

Functional Description

Used to report errors from other BSW modules to the DET. If extended debug features are disabled the
DET enters an endless loop in case of an embedded target or issues an error message in the CANoe write
window in case of a simulated target.

For details please refer to chapter 4.

Particularities and Limitations

> |f this function is called the DET may enter an endless loop, therefore it is strongly
recommended to put a breakpoint in the DET.

Expected Caller Context
> No restriction

Table 6-4 Det_ReportError

©2015, Vector Informatik GmbH Version: 2.4.0 20/30

based on template version 2.0

Technical Reference MICROSAR DET VQCEO('

6.2.5 Det_GetVersioninfo
Det_GetVersioninfo

Prototype
void Det_GetVersionInfo (Std VersionInfoType *versioninfo)

Parameter

versioninfo Version information of the DET

Return code

Functional Description

This API returns version information, vendor ID and AUTOSAR module ID of the component.
The versions are BCD-coded.

Particularities and Limitations

> This APl is only available if enabled in configuration (s. 7.1.2).

> As an alternative the #defines described in [1] chapter 10.2 could be used to read this
information.

Expected Caller Context

> No restriction

Table 6-5 Det_GetVersionInfo

©2015, Vector Informatik GmbH Version: 2.4.0 21/30

based on template version 2.0

Technical Reference MICROSAR DET VQCEO('

6.3 Services used by MICROSAR DET

In the following table services provided by other components, which are used by the DET
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Component API

DLT DIt _DetForwardErrorTrace
Only if configured in Configurator 5.
Table 6-6 Services used by the DET

To allow for extensions of the DET a callout to the application is used.
6.3.1 Appl_DetEntryCallout
Appl_DetEntryCallout

Prototype

uint8 Appl DetEntryCallout (uintl6 ModuleId, uint8 Instanceld,
uint8 Apild, uint8 ErrorId)

Moduleld Module ID of calling module

Instanceld The identifier of the index based instance of a module, starting from 0, If the
module is a single instance module it shall pass 0 as the Instanceld.

Apild ID of API service in which error is detected
(defined in SWS of calling module)

Errorld ID of detected development error

(defined in SWS of calling module)

Return code

uint8 0 continue DET processing
1 abandon DET processing

Functional Description

This function is used to extend the DET. The parameters can be used for application specific error
handling. By means of the return code the application can control further processing of the DET.

For details please refer to chapter 4.7.

Particularities and Limitations

> This APl is only available if enabled in configuration (s. 7.1.2).
> This function has to be provided by the application.
Expected Caller Context

> No restriction

Table 6-7 Appl_DetEntryCallout

6.4 Callback Functions
The DET does not provide callback functions.

©2015, Vector Informatik GmbH Version: 2.4.0 22/30

based on template version 2.0

Technical Reference MICROSAR DET VeCtOf

6.5 Configurable Interfaces
The DET does not provide configurable interfaces.

©2015, Vector Informatik GmbH Version: 2.4.0 23 /30

Technical Reference MICROSAR DET vector'

6.6 Service Ports
Service ports are only supported in conjunction with the Configurator 5.

6.6.1 Client Server Interface

A client server interface is related to a Provide Port at the server side and a Require Port
at client side.

6.6.1.1 Provide Ports on DET Side

At the Provide Ports of the DET the API function described in 6.2.4 is available as
Runnable Entity. Runnable Entities are invoked via Operations. The mapping from a SWC
client call to an Operation is performed by the RTE. In this mapping the RTE adds Port
Defined Argument Values to the client call of the SWC, if configured.

The following sub-chapter presents the Provide Port defined for the DET and the
Operation defined for the Provide Port, the API function related to the Operation and the
Port Defined Argument Values to be added by the RTE.

6.6.1.1.1 DETService

ReportError Det_ReportError uint16 Moduleld

(' IN uint8 Instanceld,
IN uint8 Apild,
IN uint8 Errorld)

Table 6-8 DETService

A separate DETService Port is needed for each AUTOSAR SW-C which wants to report
errors to the DET module which corresponds to the service port of the SW-C. Each
DETService Port needs a Moduleld as port defined argument value. This value is set
automatically and symbolic name value defines for the Modulelds are generated. The
required service ports and their Modulelds are configured in Configurator 5.

©2015, Vector Informatik GmbH Version: 2.4.0 24 /30

based on template version 2.0

Technical Reference MICROSAR DET vector'

7 Configuration

In the MICROSAR DET the attributes can be configured with the following methods:
> Configuration in GENy, for a detailed description see 7.1

> Configuration in Configurator 5, for a detailed description refer to the online help

7.1 Configuration with GENy
The MICROSAR DET is configured with the help of the configuration tool GENYy.

7.1.1 System Configuration
To use the DET it must be enabled in the system configuration in GENy.

Det v

E_ k¥ Component Selen::tin:un] {6} Generated Filesl

Figure 7-1 Enabling the DET in the GENy system configuration

7.1.2 Component Configuration
In the following screenshot the component configuration of the DET is shown.

i:} ECU Configurable Options |Det

E‘* Companents |- SysService_MsrDet
g T-:u:uI_Gen_l,lF'Iugin.-f Enable Development Errar Tracer [~
B2 Hi_W85Cpu [bhcan) et Version Info ¥
Eritey Callowt ™l

|: Extended Debug support
Enable Extended Debuy Support
Murmber of Global Fiters

Murmbet of Break Handler Fiters:

ELAJMT'

Size of Log Butfer

Figure 7-2 Component configuration of the DET

©2015, Vector Informatik GmbH Version: 2.4.0

25/30

Technical Reference MICROSAR DET

vector’

Details about the configuration parameters are given in Table 7-1. The usage of these
parameters for the extended debug support is described in chapter 4.6.1.

Attribute Name
Variant

Configuration |Value

Values
The default value

Description

Global settings

Enable Development Pre-compile
Error Tracer

Get Version Info Pre-compile

Entry Callout Pre-compile

Extended Debug support

Enable Extended Pre-compile
Debug Support

Number of Global Pre-compile
Filters

Number of Break Pre-compile
Handler Filters

Size of Log Buffer Pre-compile

Table 7-1 DET configuration parameters

©2015, Vector Informatik GmbH

boolean

boolean

boolean

boolean

integer

integer

integer

is written in bold

On/off

On/off

On/off

On/off

0..255

0..255

0..255

Version: 2.4.0

based on template version 2.0

Enable reporting of development
errors.

Enable the function
Det_GetVersionInfo() to get the
major, minor and patch version
information.

Enable the function
Appl_DetEntryCallout to support
user specific extensions.

Enable extended debug support
features including filtering, logging
and flexible break handling.

Number of global filters which can
be used to discard irrelevant
errors.

Number of break handler filters
which can be used to exit the DET
without entering the endless loop.

Size of the log buffer which can be
used to log errors reported to the
DET.

26 /30

Technical Reference MICROSAR DET V@CtOf

8 AUTOSAR Standard Compliance

8.1 Deviations

8.1.1 Support of Service Port Interface

The current version supports the AUTOSAR service port interface only for the Configurator
5. If the DET should be used to log application errors and the tool GENy is used the SWCs
should call the DET directly.

8.1.2 Support of AUTOSAR Debugging Concept (AUTOSAR 4)
Forwarding of DET errors to the DLT module is only supported for the Configurator 5.

The AUTOSAR debugging concept is not supported.

8.1.3 Support of Configurable List of Error Hooks (AUTOSAR 4)

This feature is not supported; the extension mechanism (DET entry callout) can be used
instead.

8.2 Additions/ Extensions

8.2.1 Extended Debug Features

Since AUTOSAR specifies only the interface and not the functionality of the DET all
provided debugging features are AUTOSAR extensions.

8.2.2 DET Extension Mechanism

Since AUTOSAR does not specify a mechanism how the DET can be extended by
application code a callout was added.

8.3 Limitations
None

©2015, Vector Informatik GmbH Version: 2.4.0 27 /30

Technical Reference MICROSAR DET vector'

9 Abbreviations

API Application Programming Interface
BSW Basis SoftWare

DEM Diagnostic Event Manager

DET Development Error Tracer

DLT Diagnostic Log and Trace

pPort Provide Port

rPort Require Port

RTE RunTime Environment

SWC SoftWare Component

Table 9-1 Abbreviations

©2015, Vector Informatik GmbH Version: 2.4.0 28/30

based on template version 2.0

Technical Reference MICROSAR DET vector'

10 Glossary
Term Description
Stack trace A stack trace (also called stack backtrace or stack traceback) is a report

of the active stack frames instantiated by the execution of a program.

Although stack traces may be generated anywhere within a program, they
are mostly used to aid debugging by showing where exactly an error
occurs. The last few stack frames often indicate the origin of the bug.

Table 10-1 Glossary

©2015, Vector Informatik GmbH Version: 2.4.0 29/30

based on template version 2.0

Technical Reference MICROSAR DET

11 Contact

Visit our website for more information on

News

Products
Demo software
Support
Training data
Addresses

VVVYVVYV

www.vector-informatik.com

©2015, Vector Informatik GmbH

Version: 2.4.0

vector’

30/30

http://www.vector-informatik.com/

