

MICROSAR Diagnostic Event Manager
(Dem)

Technical Reference

Version 4.3.0

Authors Thomas Dedler, Alexander Ditte, Matthias Heil

Status Released

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

2 / 175

Document Information

History

Author Date Version Remarks

A. Ditte 2012-05-04 1.0.0 > Initial Version

A. Ditte 2012-10-09 1.0.1 > Add chapter 6.2.4.18 and 6.6.1.2.11

> Add GetEventEnableCondition to chapter 6.6.1.1.2

M. Heil 2012-11-02 1.1.0 > Architecture Update

A. Ditte,
M. Heil

2013-02-15 1.2.0 > Introduced Measurement and Calibration (chapter 5)

> Extended chapters 3.3, 3.5, 3.15, 4.3 and 4.3.1

> Added User Controlled WarningIndicatorRequest
(chapter 3.16.1)

> Added chapters 6.2.4.22, 6.2.4.23, 6.6.1.1.9

M. Heil 2013-04-05 1.3.0 > Support for feature ‘DTC suppression’

> Added chapter 3.9, APIs 6.2.4.24, 6.2.4.25

> Reworked table layout in chapters 4.3, 5.2

> Reworked Measurement and Calibration (chapter 5)

> Added measurable items (chapter 5.1)

M. Heil 2013-06-17 1.4.0 > Added combined events

> Reworked suppression

T. Dedler 2013-07-22 1.4.1 > critical section description extended

T. Dedler,
M. Heil

2013-09-04 2.0.0 > Service ID definition changed

> Post-Build Loadable

A. Ditte 2013-11-05 2.1.0 > Added OBD DTC and Root cause EventId to chapter
3.10.2

> Added limitation for internal data elements in chapter
8.3

A. Ditte,
M. Heil

2014-01-14 3.0.0 > Added J1939 (chapters 3.19, 6.2.7)

> Adapted DCM interfaces (chapter 6.2.6) according
AUTOSAR 4.1.2

> Added chapter 4.3.1

> Fixed ESCAN00071673: NVM configuration is not
described

> Fixed ESCAN00071511: Missing hint for supported
feature 'individual post-build loadable'

> Fixed ESCAN00073677: Incorrect figure for DEM
initialization states

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

3 / 175

M. Heil 2014-03-27 3.1.0 > Describe deviation in handling operation cycles before
module initialization.

> Add dependency to configuration to Dcm APIs.

> Added warning about time-based de-bouncing and
maximum fault detection counter in current cycle

M. Heil 2014-05-08 3.2.0 > Added Event Availability (chapters 3.9.1, 6.2.4.26)

> Added freeze frame pre-storage (chapters 3.11, 6.2.4.4,
6.2.4.5)

> Corrected description of Event and DTC suppression
(chapters 3.9, 6.2.4.4, 6.2.4.5)

> Introduced chapter 3.3.3.4

> Clarified usage of DTC groups (chapter 8.3)

M. Heil
A. Ditte

2014-10-14 4.0.0 > Moved Initialization Pointer (see Dem_PreInit(),
Dem_Init())

> Added API Dem_RequestNvSynchronization()

> Added de-bounce values in NVRAM and API
Dem_NvM_InitDebounceData()

> Added additional aging variant (chapter 3.5), added
Figure 3-3

> Added missing configuration variants (chapter 2,
ESCAN00076237)

> Added description for NVRAM write frequency (chapter
3.13.2, ESCAN00078587)

> Added description for NVRAM recovery (chapter 3.13.3,
ESCAN00078582)

> Added support of J1939 nodes

M. Heil 2015-02-27 4.1.0 > Added APIs, chapters 6.2.4.3, 6.2.4.20

> Support EnableCondition notification, 3.15.4

> Added explanation of Dem task mapping, chapter 4.9

> Added not of reduced queue depth for some events,
chapter 3.3.3.2

> Updated critical sections, chapter 4.4

M. Heil 2015-04-20 4.1.1 > Added deviation regarding notification signatures
(chapters 6.5.1, 8.1)

> Reworked chapter 3.1 according ESCAN00082555

M. Heil 2015-06-17 4.2.0 > Extended data callback support (chapters 3.10.3,
6.5.1.6)

> Described FDC statistics for DTCs using internal de-
bouncing (chapter 3.10.2)

> Described aging target 0 (chapter 3.5.1)

> Described effect of asynchronous behavior of $85
(chapter 3.7)

> Described different aging behavior (chapter 3.5.5)

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

4 / 175

M. Heil 2015-09-14 4.3.0 > More information about NVRam setup (chapter 4.5 ff)

> Changes due to new option to persist event availability
(chapters 3.9.1, 6.2.4.26, 6.2.4.11)

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

5 / 175

Reference Documents

No. Source Title Version

[1] AUTOSAR AUTOSAR_SWS_DiagnosticEventManager.pdf V4.2.0,
V5.1.0

[2] AUTOSAR AUTOSAR_SWS_DevelopmentErrorTracer.pdf V3.2.0

[3] AUTOSAR AUTOSAR_SWS_DiagnosticCommunicationManager.pdf V4.2.0

[4] AUTOSAR AUTOSAR_SWS_NVRAMManager.pdf V3.2.0

[5] AUTOSAR AUTOSAR_SWS_StandardTypes.pdf V1.3.0

[6] AUTOSAR AUTOSAR_TR_BSWModuleList.pdf V1.6.0

[7] ISO 14229-1 Road vehicles – Unified diagnostic services (UDS)
– Part 1: Specification and requirements

-

[8] Vector TechnicalReference_PostBuildLoadable.pdf See delivery

[9] Vector TechnicalReference_IdentityManager.pdf See delivery

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

6 / 175

Contents

1 Component History .. 16

2 Introduction... 17

2.1 How to Read this Document .. 17

2.1.1 API Definitions ... 17

2.1.2 Configuration References .. 18

2.2 Architecture Overview .. 18

3 Functional Description ... 20

3.1 Features .. 20

3.2 Initialization .. 22

3.2.1 Initialization States ... 23

3.3 Diagnostic Event Processing ... 24

3.3.1 Event De-bouncing .. 24

3.3.1.1 Counter Based Algorithm ... 24

3.3.1.2 Time Based Algorithm .. 25

3.3.1.3 Monitor internal de-bouncing .. 26

3.3.2 Event Reporting ... 27

3.3.3 Event Status .. 27

3.3.3.1 Synchronous Status Bit Transitions 28

3.3.3.2 Asynchronous Status Bit Transitions 29

3.3.3.3 Event Storage modifying Status Bits 29

3.3.3.4 Lightweight Multiple Trips
(FailureCycleCounterThreshold) 30

3.4 Event Displacement ... 30

3.5 Event Aging .. 31

3.5.1 Aging Target ‘0’ .. 32

3.5.2 Aging Counter Reallocation .. 32

3.5.3 Aging of Environmental Data .. 33

3.5.4 Aging of TestFailedSinceLastClear ... 33

3.5.5 Aging and Healing .. 33

3.6 Operation Cycles ... 34

3.6.1 Persistent Storage of Operation Cycle State 34

3.6.2 Automatic Operation Cycle Restart .. 34

3.7 Enable Conditions and Control DTC Setting .. 35

3.7.1 Effects on de-bouncing and FDC ... 36

3.8 Storage Conditions .. 36

3.9 DTC Suppression ... 37

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

7 / 175

3.9.1 Event Availability .. 37

3.9.2 Suppress Event / Suppress DTC.. 38

3.10 Environmental Data ... 38

3.10.1 Storage Trigger .. 39

3.10.1.1 Storage Trigger ‘FDC Threshold’ 40

3.10.2 Internal Data Elements ... 40

3.10.3 External Data Elements ... 41

3.10.3.1 Nv-Ram storage ... 41

3.11 Freeze Frame Pre-Storage .. 42

3.12 Combined Events... 42

3.12.1 Configuration.. 43

3.12.2 Event Reporting ... 43

3.12.3 DTC Status .. 43

3.12.4 Environmental Data Update ... 44

3.12.5 Aging ... 44

3.12.6 Clear DTC .. 44

3.13 Non-Volatile Data Management ... 44

3.13.1 NvM Interaction .. 45

3.13.2 NVRAM Write Frequency ... 45

3.13.3 Data Recovery ... 45

3.14 Diagnostic Interfaces ... 46

3.15 Notifications ... 46

3.15.1 Event Status Changed ... 47

3.15.2 DTC Status Changed ... 47

3.15.3 Event Data Changed .. 47

3.15.4 Monitor Re-Initialization .. 48

3.16 Indicators ... 48

3.16.1 User Controlled WarningIndicatorRequest 48

3.17 Interface to the Runtime Environment .. 49

3.18 Error Handling .. 49

3.18.1 Development Error Reporting ... 49

3.18.1.1 Parameter Checking .. 53

3.18.1.2 Defensive Behavior .. 53

3.18.2 Production Code Error Reporting ... 53

3.19 J1939 ... 53

3.19.1 J1939 Freeze Frame and J1939 Expanded Freeze Frame 54

3.19.2 Indicators ... 54

3.19.3 Clear DTC .. 55

3.20 Clear DTC APIs ... 55

4 Integration ... 57

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

8 / 175

4.1 Scope of Delivery ... 57

4.1.1 Static Files ... 57

4.1.2 Dynamic Files .. 57

4.2 Include Structure .. 59

4.3 Compiler Abstraction and Memory Mapping ... 60

4.3.1 Copy Routines ... 61

4.4 Critical Sections ... 61

4.4.1 Exclusive Area 0 .. 61

4.4.2 Exclusive Area 1 .. 63

4.4.3 Exclusive Area 2 .. 64

4.5 NVM Integration ... 64

4.5.1 NVRAM Demand ... 65

4.5.2 NVRAM Initialization .. 66

4.5.2.1 Controlled Re-initialization ... 66

4.5.2.2 Common Errors ... 66

4.5.3 Expected NVM Behavior .. 67

4.5.4 Flash Lifetime Considerations .. 68

4.6 Rte Integration ... 69

4.6.1 Runnable Entities ... 69

4.6.2 Application Port Interface ... 69

4.6.3 DcmIf ... 70

4.7 Post-Run requirements .. 70

4.8 Run-Time limitation .. 71

4.9 Split main function .. 71

5 Measurement and Calibration .. 72

5.1 Measurable Data.. 72

5.1.1 Dem_Cfg_StatusData .. 72

5.1.2 Dem_Cfg_EventDebounceValue .. 72

5.1.3 Dem_Cfg_EventMaxDebounceValues ... 73

5.1.4 Dem_PrimaryEntry_<Number> .. 73

5.2 Post-Build Support ... 73

5.2.1 Initialization .. 73

5.2.2 Post-Build Loadable ... 75

5.2.3 Post-Build Selectable ... 75

6 API Description ... 76

6.1 Type Definitions ... 76

6.2 Services provided by Dem ... 77

6.2.1 Dem_GetVersionInfo() ... 77

6.2.2 Dem_MainFunction() .. 78

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

9 / 175

6.2.3 Interface EcuM ... 79

6.2.3.1 Dem_PreInit() .. 79

6.2.3.2 Dem_Init() .. 80

6.2.3.3 Dem_InitMemory() ... 80

6.2.3.4 Dem_Shutdown() ... 81

6.2.4 Interface SWC and CDD .. 82

6.2.4.1 Dem_SetEventStatus() .. 82

6.2.4.2 Dem_ResetEventStatus() .. 83

6.2.4.3 Dem_ResetEventDebounceStatus() 84

6.2.4.4 Dem_PrestoreFreezeFrame() .. 85

6.2.4.5 Dem_ClearPrestoredFreezeFrame() 86

6.2.4.6 Dem_SetOperationCycleState() 87

6.2.4.7 Dem_GetEventStatus() .. 88

6.2.4.8 Dem_GetEventFailed() .. 89

6.2.4.9 Dem_GetEventTested() ... 90

6.2.4.10 Dem_GetDTCOfEvent() ... 91

6.2.4.11 Dem_GetEventAvailable() .. 92

6.2.4.12 Dem_SetEnableCondition() ... 93

6.2.4.13 Dem_SetStorageCondition() .. 94

6.2.4.14 Dem_GetFaultDetectionCounter() 95

6.2.4.15 Dem_GetIndicatorStatus() ... 96

6.2.4.16 Dem_GetEventFreezeFrameData() 97

6.2.4.17 Dem_GetEventExtendedDataRecord() 98

6.2.4.18 Dem_GetEventEnableCondition() 99

6.2.4.19 Dem_GetEventMemoryOverflow() 100

6.2.4.20 Dem_GetNumberOfEventMemoryEntries() 101

6.2.4.21 Dem_PostRunRequested() .. 102

6.2.4.22 Dem_SetWIRStatus() .. 103

6.2.4.23 Dem_GetWIRStatus() .. 104

6.2.4.24 Dem_SetDTCSuppression() .. 105

6.2.4.25 Dem_SetEventSuppression() 106

6.2.4.26 Dem_SetEventAvailable() .. 107

6.2.4.27 Dem_ClearDTC() ... 108

6.2.4.28 Dem_RequestNvSynchronization() 110

6.2.5 Interface BSW ... 111

6.2.5.1 Dem_ReportErrorStatus() ... 111

6.2.6 Interface Dcm... 112

6.2.6.1 Dem_DcmSetDTCFilter() ... 112

6.2.6.2 Dem_DcmGetNumberOfFilteredDTC() 114

6.2.6.3 Dem_DcmGetNextFilteredDTC() 115

6.2.6.4 Dem_DcmGetNextFilteredDTCAndFDC() 116

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

10 / 175

6.2.6.5 Dem_DcmGetNextFilteredDTCAndSeverity() 117

6.2.6.6 Dem_DcmSetFreezeFrameRecordFilter() 118

6.2.6.7 Dem_DcmGetNextFilteredRecord() 119

6.2.6.8 Dem_DcmGetStatusOfDTC() 120

6.2.6.9 Dem_DcmGetDTCStatusAvailabilityMask() 121

6.2.6.10 Dem_DcmGetDTCByOccurrenceTime() 122

6.2.6.11 Dem_DcmGetTranslationType() 123

6.2.6.12 Dem_DcmGetSeverityOfDTC() 124

6.2.6.13 Dem_DcmGetFunctionalUnitOfDTC() 125

6.2.6.14 Dem_DcmDisableDTCRecordUpdate() 126

6.2.6.15 Dem_DcmEnableDTCRecordUpdate() 127

6.2.6.16 Dem_DcmGetFreezeFrameDataByDTC() 128

6.2.6.17 Dem_DcmGetSizeOfFreezeFrameByDTC()................. 130

6.2.6.18 Dem_DcmGetExtendedDataRecordByDTC()............... 131

6.2.6.19 Dem_DcmGetSizeOfExtendedDataRecordByDTC() 132

6.2.6.20 Dem_DcmClearDTC() .. 133

6.2.6.21 Dem_DcmDisableDTCSetting() 134

6.2.6.22 Dem_DcmEnableDTCSetting() 135

6.2.6.23 Dem_DcmCancelOperation() 136

6.2.7 Interface J1939Dcm ... 137

6.2.7.1 Dem_J1939DcmClearDTC() .. 137

6.2.7.2 Dem_J1939DcmFirstDTCwithLampStatus()................. 138

6.2.7.3 Dem_J1939DcmGetNextDTCwithLampStatus () 139

6.2.7.4 Dem_J1939DcmGetNextFilteredDTC() 140

6.2.7.5 Dem_J1939DcmGetNextFreezeFrame() 141

6.2.7.6 Dem_J1939DcmGetNextSPNInFreezeFrame() 142

6.2.7.7 Dem_J1939DcmGetNumberOfFilteredDTC () 143

6.2.7.8 Dem_J1939DcmSetDTCFilter() 144

6.2.7.9 Dem_J1939DcmSetFreezeFrameFilter() 145

6.3 Services used by Dem ... 146

6.3.1 EcuM_BswErrorHook() .. 146

6.4 Callback Functions ... 147

6.4.1 Dem_NvM_JobFinished() .. 148

6.4.2 Dem_NvM_InitAdminData() ... 149

6.4.3 Dem_NvM_InitStatusData() ... 150

6.4.4 Dem_NvM_InitDebounceData() ... 151

6.4.5 Dem_NvM_InitEventAvailableData() .. 152

6.5 Configurable Interfaces .. 153

6.5.1 Callouts .. 153

6.5.1.1 CBClrEvt_<EventName>() ... 153

6.5.1.2 CBDataEvt_<EventName>() .. 154

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

11 / 175

6.5.1.3 CBFaultDetectCtr_<EventName>() 155

6.5.1.4 CBInitEvt_<EventName>() ... 156

6.5.1.5 CBInitFct_<N>() ... 156

6.5.1.6 CBReadData_<SyncDataElement>() 157

6.5.1.7 CBStatusDTC_<N>() ... 158

6.5.1.8 CBStatusJ1939DTC_<N>() .. 159

6.5.1.9 CBStatusEvt_<EventName>_<N>() 159

6.5.1.10 GeneralCBDataEvt() .. 160

6.5.1.11 GeneralCBStatusEvt() ... 160

6.6 Service Ports ... 161

6.6.1 Client Server Interface ... 161

6.6.1.1 Provide Ports on Dem Side .. 161

6.6.1.1.1 DiagnosticMonitor 161

6.6.1.1.2 DiagnosticInfo and
GeneralDiagnosticInfo 161

6.6.1.1.3 OperationCycle .. 162

6.6.1.1.4 AgingCycle .. 162

6.6.1.1.5 ExternalAgingCycle 162

6.6.1.1.6 EnableCondition 162

6.6.1.1.7 StorageCondition 162

6.6.1.1.8 IndicatorStatus ... 163

6.6.1.1.9 EventStatus ... 163

6.6.1.1.10 EvMemOverflowIndication 163

6.6.1.1.11 DTCSuppression 163

6.6.1.1.12 EventSuppression 164

6.6.1.1.13 DemServices ... 164

6.6.1.1.14 DcmIf ... 164

6.6.1.1.15 CddIf .. 164

6.6.1.2 Require Ports on Dem Side ... 164

6.6.1.2.1 CBInitEvt_<EventName> 165

6.6.1.2.2 CBInitFct_<N> ... 165

6.6.1.2.3 CBStatusEvt_<EventName>_<N> 165

6.6.1.2.4 GeneralCBStatusEvt 165

6.6.1.2.5 CBStatusDTC_<N> 165

6.6.1.2.6 CBDataEvt_<EventName> 165

6.6.1.2.7 GeneralCBDataEvt 166

6.6.1.2.8 CBClrEvt_<EventName> 166

6.6.1.2.9 CBReadData_<SyncDataElement> 166

6.6.1.2.10 CBFaultDetectCtr_<EventName> 166

6.6.1.2.11 CBCtrlDtcSetting 166

6.7 Not Supported APIs ... 166

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

12 / 175

7 Configuration .. 168

7.1 Configuration Variants .. 168

7.2 Configurable Attributes ... 168

7.3 Configuration of Post-Build Loadable ... 168

7.3.1 Supported Variance .. 169

8 AUTOSAR Standard Compliance... 170

8.1 Deviations .. 170

8.2 Additions/ Extensions ... 170

8.3 Limitations.. 171

8.4 Not Supported Service Interfaces .. 172

9 Glossary and Abbreviations .. 173

9.1 Glossary .. 173

9.2 Abbreviations ... 173

10 Contact .. 175

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

13 / 175

Illustrations

Figure 2-1 AUTOSAR 4.1 Architecture Overview ... 18
Figure 2-2 Interfaces to adjacent modules of the Dem ... 19
Figure 3-1 Dem states ... 24
Figure 3-2 Effect of Precondition ‘Event Storage’ and Displacement on Status Bits ... 29
Figure 3-3 Behavior of the Aging Counter .. 32
Figure 3-4 Environmental Data Layout ... 39
Figure 3-5 User Controlled WarningIndicatorRequest .. 49
Figure 3-6 Concurrent Clear Requests .. 56
Figure 4-1 Include structure ... 59
Figure 4-2 NvM behavior ... 67

Tables

Table 1-1 Component history.. 16
Table 3-1 Supported AUTOSAR standard conform features 20
Table 3-2 Not supported AUTOSAR standard conform features 22
Table 3-3 Features provided beyond the AUTOSAR standard 22
Table 3-4 Configuration of status bit processing ... 30
Table 3-5 Aging algorithms ... 31
Table 3-6 Immediate aging ... 32
Table 3-7 DTC status combination ... 44
Table 3-8 NVRAM write frequency ... 45
Table 3-9 Service IDs ... 52
Table 3-10 Additional Service IDs ... 52
Table 3-11 Errors reported to Det ... 53
Table 3-12 Diagnostic messages where content is provided by Dem 54
Table 3-13 J1939 DTC Status to be cleared ... 55
Table 4-1 Static files ... 57
Table 4-2 Generated files ... 58
Table 4-3 Compiler abstraction and memory mapping, constant sections 60
Table 4-4 Compiler abstraction and memory mapping, variable sections 61
Table 4-5 Exclusive Area 0 ... 62
Table 4-6 Exclusive Area 1 ... 63
Table 4-7 Exclusive Area 2 ... 64
Table 4-8 NvRam blocks .. 65
Table 4-9 NvRam initialization .. 66
Table 4-10 Dem runnable entities ... 69
Table 5-1 Measurement item Dem_Cfg_StatusData ... 72
Table 5-2 Measurement item Dem_Cfg_EventDebounceValue 72
Table 5-3 Measurement item Dem_Cfg_EventMaxDebounceValues[] 73
Table 5-4 Measurement item Dem_PrimaryEntry_<Number>................................... 73
Table 5-5 Error Codes possible during Post-Build initialization failure 74
Table 6-1 Dem_GetVersionInfo() .. 77
Table 6-2 Dem_MainFunction() .. 78
Table 6-3 Dem_PreInit() ... 79
Table 6-4 Dem_Init() ... 80
Table 6-5 Dem_InitMemory() .. 80
Table 6-6 Dem_Shutdown() .. 81
Table 6-7 Dem_SetEventStatus() ... 82
Table 6-8 Dem_ResetEventStatus() ... 83
Table 6-9 Dem_ResetEventDebounceStatus() ... 84

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

14 / 175

Table 6-10 Dem_PrestoreFreezeFrame() ... 85
Table 6-11 Dem_ClearPrestoredFreezeFrame() .. 86
Table 6-12 Dem_SetOperationCycleState().. 87
Table 6-13 Dem_GetEventStatus() ... 88
Table 6-14 Dem_GetEventFailed() ... 89
Table 6-15 Dem_GetEventTested() .. 90
Table 6-16 Dem_GetDTCOfEvent() .. 91
Table 6-17 Dem_GetEventAvailable() .. 92
Table 6-18 Dem_SetEnableCondition() .. 93
Table 6-19 Dem_SetStorageCondition() ... 94
Table 6-20 Dem_GetFaultDetectionCounter() .. 95
Table 6-21 Dem_GetIndicatorStatus() .. 96
Table 6-22 Dem_GetEventFreezeFrameData() .. 97
Table 6-23 Dem_GetEventExtendedDataRecord() ... 98
Table 6-24 Dem_GetEventEnableCondition() ... 99
Table 6-25 Dem_GetEventMemoryOverflow() .. 100
Table 6-26 Dem_GetNumberOfEventMemoryEntries() ... 101
Table 6-27 Dem_PostRunRequested() ... 102
Table 6-28 Dem_SetWIRStatus () .. 103
Table 6-29 Dem_GetWIRStatus () .. 104
Table 6-30 Dem_SetDTCSuppression() ... 105
Table 6-31 Dem_SetEventSuppression() ... 106
Table 6-32 Dem_SetEventAvailable() ... 107
Table 6-33 Dem_ClearDTC() .. 109
Table 6-34 Dem_RequestNvSynchronization() ... 110
Table 6-35 Dem_ReportErrorStatus() .. 111
Table 6-36 Dem_DcmSetDTCFilter() .. 113
Table 6-37 Dem_DcmGetNumberOfFilteredDTC() ... 114
Table 6-38 Dem_DcmGetNextFilteredDTC() .. 115
Table 6-39 Dem_DcmGetNextFilteredDTCAndFDC() ... 116
Table 6-40 Dem_DcmGetNextFilteredDTCAndSeverity() ... 117
Table 6-41 Dem_DcmSetFreezeFrameRecordFilter() .. 118
Table 6-42 Dem_DcmGetNextFilteredRecord() .. 119
Table 6-43 Dem_DcmGetStatusOfDTC() ... 120
Table 6-44 Dem_DcmGetDTCStatusAvailabilityMask() .. 121
Table 6-45 Dem_DcmGetDTCByOccurrenceTime() ... 122
Table 6-46 Dem_DcmGetTranslationType() ... 123
Table 6-47 Dem_DcmGetSeverityOfDTC() ... 124
Table 6-48 Dem_DcmGetFunctionalUnitOfDTC() ... 125
Table 6-49 Dem_DcmDisableDTCRecordUpdate() .. 126
Table 6-50 Dem_DcmEnableDTCRecordUpdate() ... 127
Table 6-51 Dem_DcmGetFreezeFrameDataByDTC() .. 129
Table 6-52 Dem_DcmGetSizeOfFreezeFrameByDTC() ... 130
Table 6-53 Dem_DcmGetExtendedDataRecordByDTC() ... 131
Table 6-54 Dem_DcmGetSizeOfExtendedDataRecordByDTC() 132
Table 6-55 Dem_DcmClearDTC() .. 134
Table 6-56 Dem_DcmDisableDTCSetting() .. 134
Table 6-57 Dem_DcmEnableDTCSetting() ... 135
Table 6-58 Dem_DcmCancelOperation() .. 136
Table 6-59 Dem_J1939DcmClearDTC() ... 137
Table 6-60 Dem_J1939DcmFirstDTCwithLampStatus() ... 138
Table 6-61 Dem_J1939DcmGetNextDTCwithLampStatus () 139
Table 6-62 Dem_J1939DcmGetNextFilteredDTC() ... 140
Table 6-63 Dem_J1939DcmGetNextFreezeFrame() .. 141

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

15 / 175

Table 6-64 Dem_J1939DcmGetNextSPNInFreezeFrame() 142
Table 6-65 Dem_J1939DcmGetNumberOfFilteredDTC () ... 143
Table 6-66 Dem_J1939DcmSetDTCFilter() .. 144
Table 6-67 Dem_J1939DcmSetFreezeFrameFilter() .. 145
Table 6-68 Services used by the Dem .. 146
Table 6-69 EcuM_BswErrorHook() ... 146
Table 6-70 Dem_NvM_JobFinished() ... 148
Table 6-71 Dem_NvM_InitAdminData() .. 149
Table 6-72 Dem_NvM_InitStatusData() .. 150
Table 6-73 Dem_NvM_InitDebounceData() .. 151
Table 6-74 Dem_NvM_InitEventAvailableData() ... 152
Table 6-75 CBClrEvt_<EventName>() .. 153
Table 6-76 CBDataEvt_<EventName>() ... 154
Table 6-77 CBFaultDetectCtr_<EventName>() ... 155
Table 6-78 CBInitEvt_<EventName>() .. 156
Table 6-79 CBInitFct_<N>() .. 156
Table 6-80 CBReadData_<SyncDataElement>() .. 157
Table 6-81 CBStatusDTC_<N>() .. 158
Table 6-82 CBStatusJ1939DTC_<N>() .. 159
Table 6-83 CBStatusEvt_<EventName>_<N>() .. 159
Table 6-84 GeneralCBDataEvt() ... 160
Table 6-85 GeneralCBStatusEvt() .. 160
Table 6-86 DiagnosticMonitor ... 161
Table 6-87 DiagnosticInfo and GeneralDiagnosticInfo .. 162
Table 6-88 OperationCycle ... 162
Table 6-89 EnableCondition ... 162
Table 6-90 StorageCondition .. 163
Table 6-91 IndicatorStatus .. 163
Table 6-92 EventStatus .. 163
Table 6-93 EvMemOverflowIndication .. 163
Table 6-94 DTCSuppression .. 163
Table 6-95 EventSuppression .. 164
Table 6-96 DemServices .. 164
Table 6-97 CBInitEvt_<EventName> .. 165
Table 6-98 CBInitFct_<N> .. 165
Table 6-99 CBStatusEvt_<EventName>_<N> .. 165
Table 6-100 GeneralCBStatusEvt ... 165
Table 6-101 CBStatusDTC_<N> .. 165
Table 6-102 CBDataEvt_<EventName> ... 165
Table 6-103 GeneralCBDataEvt ... 166
Table 6-104 CBClrEvt_<EventName> .. 166
Table 6-105 CBReadData_<SyncDataElement> .. 166
Table 6-106 CBFaultDetectCtr_<EventName> ... 166
Table 6-107 CBCtrlDtcSetting .. 166
Table 6-108 Not Supported APIs .. 167
Table 8-1 Deviations ... 170
Table 8-2 Extensions .. 170
Table 8-3 Limitations .. 172
Table 8-4 Service Interfaces which are not supported .. 172
Table 9-1 Glossary ... 173
Table 9-2 Abbreviations .. 174

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

16 / 175

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

4.00.00 1st Release Version

4.03.00 Production Release

5.00.00 Post-Build support

6.00.00 J1939 support, API according ASR 4.1.2

7.00.00 Change of initialization to allow Postbuild-Selectable

8.00.00 Support API according ASR 4.2.1

9.00.00 Technical completion of WWH-OBD

Table 1-1 Component history

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

17 / 175

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module Diagnostic Event Manager “Dem” as specified in [1].

Supported AUTOSAR
Release*:

4

Supported Configuration
Variants:

pre-compile, post-build loadable, post-build selectable

Vendor ID: DEM_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: DEM_MODULE_ID 54 decimal

(according to ref. [6])

Version Information DEM_AR_RELEASE_MAJOR_VERSION

DEM_AR_RELEASE_MINOR_VERSION

DEM_AR_RELEASE_REVISION_VERSION

DEM_SW_MAJOR_VERSION

DEM_SW_MINOR_VERSION

DEM_SW_PATCH_VERSION

version literal,
decimal

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

The Dem is responsible for processing and storing diagnostic events (both externally
visible DTCs and internal events reported by other BSW modules) and associated
environmental data. In addition, the Dem provides the fault information data to the Dcm
and J1939Dcm (if applicable).

2.1 How to Read this Document

Here are some basic hints on how to navigate this document.

2.1.1 API Definitions

The application API of the Dem is usually never called directly. The functions declarations
here are given for documentation purposes. Parts of the function signatures are not
exposed to the actual caller, and represent an implementation detail.

Nonetheless, this documentation refers to the Dem API directly when describing the
different features, as the actual name of the API called by the application is defined by the
application itself. Instead of a sentence referring to this fact the underlying Dem function
name is mentioned directly.

E.g. If the documentation mentions the API Dem_SetOperationCycleState, a client

module would call a service function resembling Rte_Call_<APPLDEFINED>-

_SetOperationCycleState.

An application is strongly advised to never call the Dem API directly, but to use the service
interface instead.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

18 / 175

2.1.2 Configuration References

When this text references a configuration parameter or container, the references are given
in the format of a navigation path:

> /ModuleDefinition/ContainerDefinition/Definition:
The absolute variant is used for references in a different module. These references
start with a slash and the module definition. E.g. /NvM/NvMBlockDescriptor

> ContainerDefinition/Definition:
The relative variant is used for references to parameters of the Dem itself. For brevity
the module definition has been omitted.

In both variants the last definition can be either of type container, parameter or reference.
This document does not duplicate the parameter descriptions again, so when in doubt
please refer to the module’s parameter definition file (bsmwd-file) for a definitive
declaration.

2.2 Architecture Overview

The following figure shows where the Dem is located in the AUTOSAR architecture.

Figure 2-1 AUTOSAR 4.1 Architecture Overview

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

19 / 175

The next figure shows the interfaces to adjacent modules of the Dem. These interfaces are
described in chapter 5.2.3.

Figure 2-2 Interfaces to adjacent modules of the Dem

Caution
Applications do not access the services of the BSW modules directly. They use
the service ports provided by the BSW modules via the RTE. The service ports
provided by the Dem are listed in chapter 6.6 and are defined in [1].

 class Architecture

EcuM

Nv M

Dlt

SchM

Det

BSW

Dcm

J1939Dcm

FiM

Rte

Dem

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

20 / 175

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
Dem.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

> Table 3-1 Supported AUTOSAR standard conform features

> Table 3-2 Not supported AUTOSAR standard conform features

For further information of not supported features see also chapter 7.3.1.

Vector Informatik provides further Dem functionality beyond the AUTOSAR standard. The
corresponding features are listed in the table

> Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

Post-Build Loadable

MICROSAR Identity Manager using Post-Build Selectable

Module individual post-build loadable update

OBD II / WWH-OBD functionalities and APIs, only if licensed accordingly.

All non-optional features described in [1], except features described below

Table 3-1 Supported AUTOSAR standard conform features

The following features specified in [1] are not supported:

Not Supported AUTOSAR Standard Conform Features

Configuration – for details please refer to the Module Parameter Description (BSWDM)

Configuration of configured snapshot records deviates from [1]

Configuration of automatic start of an operation cycle is only possible for one cycle

Service Needs are neither provided nor evaluated

Multiplicity of some elements is restricted in comparison to [1]

De-bouncing

Monitors / SWC cannot reset or query the current de-bouncing state.

> Dem_GetDebouncingOfEvent()

> Dem_ResetEventDebounceStatus()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

21 / 175

Not Supported AUTOSAR Standard Conform Features

OperationCycles

Aging Cycles

Aging cycles which are only used for aging and the corresponding API

Dem_SetAgingCycleState(). Use operation cycles instead.

Centralized Operation Cycles

APIs Dem_SetOperationCycleCntValue() and Dem_SetAgingCycleCounter() are not

available

API Dem_GetOperationCycleState() is not available

BSW errors always evaluate OperationCycles, even before full initialization.

DET reports for ‘started’ cycles during shutdown.

Volatile cycles are implicitly stopped during shutdown.

ClearDTC

Partial status clear when clear is prohibited is not supported.

Clearing of a DTC is either completely blocked, or the DTC is completely removed from memory.

Data collection / System integration

DemFreezeFrameCapture, DemExtendedDataCapture

Data collection in context of the calling diagnostic monitor is not supported. All external data is
collected on Dem Task level.

Sender/Receiver Ports, and related data conversion, are not supported.

Extended Data record collection triggers

Custom extended data records are triggered by TestFailed transitions only.

BSW integration

DLT

Diagnostic Log & Trace APIs Dem_DltGetMostRecentFreezeFrameRecordData() and

Dem_DltGetAllExtendedDataRecords() are not available

Debugging

No support for public access to internal variables is provided.

Dcm DTC change notification is called unconditionally. The relevant API is not available:
Dem_DcmControlDTCStatusChangedNotification()

API FiM_DemInit() is unsupported and never called by the Dem.

Multiple Configuration

DTC suppression by configuration (DemEventAvailability / DemEventSupressed) is not
supported

Miscellaneous

Mirror Memory

Mirror memory solutions are manufacturer specific and not supported.

Event Combination ‘Type 2’

The event related data is assigned to the sub-events, which will be merged to the combined
event. The data is not assigned to the combined event itself.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

22 / 175

Not Supported AUTOSAR Standard Conform Features

Indicator-Event- specific set and reset (healing) condition

Indicators are enabled together with the event confirmation, i.e. when Bit 3 is set.

Healing is always done based on the event status byte.

Table 3-2 Not supported AUTOSAR standard conform features

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

Interface Dem_InitMemory()

This function can be used to initialize static RAM variables in case the start-up code is not used

to initialize RAM. Refer to chapter 6.2.3.3.

Interface Dem_PostRunRequested()

Allows the application to test if the Dem can be shut down safely. For details refer to chapter
6.2.4.21.

Selective non-volatile mirror invalidation on configuration change

Allows the controlled reset of the Dem non-volatile data, without invalidating the whole non-
volatile data or manual initialization algorithms. For details refer to chapter 4.5.2.1

Extended set of internal data elements

In addition to the set defined in [1], the Dem provides additional internal data elements. Refer to
chapter 3.10.1 for the complete list.

Extended support for ClientServer Data callbacks, see chapter 3.10.3

Variants on status bit handling in case of memory overflow, see chapter 3.3.3.3

Option to prevent aging of event entries to remove stored environment data (e.g. snapshot
records)

Multiple variants for aging behavior regarding healing, see chapter 3.5.5

Option to distribute runtime of ClearDTC operation across multiple tasks

Configurable copy routine, see chapter 4.3.1

Request for NV data synchronization, see Dem_RequestNvSynchronization()

Table 3-3 Features provided beyond the AUTOSAR standard

3.2 Initialization

Initialization of the Dem module is a two-step process.

First, using the interface Dem_PreInit() the Dem is brought into a state of reduced

functionality. This shall be used during the startup phase to allow processing events

reported by BSW modules using Dem_ReportErrorStatus().

The pre-initialization phase already allows de-bouncing of status reports.

After the Dem has been pre-initialized and after the NVM has finished the restoration of
the NVRAM mirror data, the Dem will be brought to full function using the interface

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

23 / 175

Dem_Init(), also during the startup phase. Additionally, the interface Dem_Init() can

be used to reinitialize the Dem after Dem_Shutdown() was called.

Caution
This Dem implementation is not consistent with Autosar regarding the initialization API.
Both Dem_PreInit() and Dem_Init() take a configuration pointer. Please adapt your
initialization sequence accordingly.

Note
If a changed configuration set is flashed to an existing ECU, the NVRAM mirror
variables of the Dem must be re-initialized before Dem_Init() is called. There
are several ways how this can be implemented. Please also refer to chapter 4.5
regarding the correct setup.
 Using the NvM which can be configured to invalidate data on configuration

change.

 Using the Dem which supports a similar feature as the NvM using the

configuration option ‘DemCompiledConfigId’. In this case Dem_Init() will

take care of the re-initialization.

 Before calling Dem_Init() it is safe to call the initialization functions
configured for usage by the NvM. Additionally, all primary and secondary
data can to be cleared by overwriting each RAM variable

Dem_Cfg_[Primary|Secondary]Entry_<N> with the contents of

Dem_MemoryEntryInit.

3.2.1 Initialization States

After the (re)start of the ECU the Dem is in state “UNINITIALIZED”. In this state the Dem is

not operable until the interface Dem_PreInit() was called.

Dem_PreInit() will change the state to “PREINITIALIZED”. Within this state only BSW

errors can be reported via Dem_ReportErrorStatus(). EnableConditions are not

considered in this phase.

During initialization via Dem_Init() the Dem switches to state “INITIALIZED” and is fully

operable afterwards. In this phase EnableConditions are initialized to their configured
default state and can take effect.

Now the function Dem_MainFunction() can be called until Dem_Shutdown() will

finalize all pending operations in the Dem, deactivate the event processing except for
BSW events and change the state to “SHUTDOWN”. Figure 3-1 provides an overview of
the described behavior.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

24 / 175

Changes
Prior versions (Implementation version < 7.00.00) did consider the configured enable
conditions during the pre-initialization phase.

Figure 3-1 Dem states

3.3 Diagnostic Event Processing

A diagnostic event defines the result of a monitor which can be located in a SWC or a
BSW module. These monitors can report an event as a qualified test result by calling

Dem_ReportErrorStatus() or Dem_SetEventStatus() with “Failed” or “Passed” or

as a pre-qualified test result by using the event de-bouncing with “PreFailed” or
“PrePassed”.

In order to use pre-qualified test results the reported event must be configured with a de-
bounce algorithm. Otherwise (using monitor internal de-bouncing) pre-qualified results will
cause a DET report and are ignored.

3.3.1 Event De-bouncing

The Dem implements the mechanisms described below:

3.3.1.1 Counter Based Algorithm

A monitor must trigger the Dem actively, usually multiple times, before an event will be
qualified as passed or failed. Each separate trigger will add (or subtract) a configured step
size value to a counter value, and the event will be qualified as ‘failed’ or ‘passed’ once this
de-bounce counter reaches the respective configured threshold value.

 stm InitStates

UNINITIALIZED

notes

 Dem is not initialized

 APIs if called will throw a

DET

 Dem internal variables have

random value

PREINITIALIZED

notes

 Dem is pre-initialized

 most APIs if called will throw a DET error

 only calls to API Dem_ReportError() will

not cause a DET error

SHUTDOWN

notes

 Dem is stopped

 most APIs if called will throw a DET error

 only calls to API Dem_ReportError() will

not cause a DET error

INITIALIZED

notes

 Dem is initialized and full operational

 All APIs can be accessed without a DET

error

 Dem does access (and modify) the

NVRAM mirror

Initial

Final

Compiler

startup

code

Dem_InitMemory()

Dem_PreInit()

Dem_Shutdown()

Dem_MainFunction()

Dem_Init()

Dem_Init()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

25 / 175

The configurable thresholds support a range for the de-bounce counter of -32768 …
32767. For external reports its current value will be mapped linearly to the UDS fault
detection counter which supports a range of -128 … 127.

Caution
Threshold values of 0 to detect a qualified failed or qualified passed result are allowed
in some Autosar versions, but this implementation does not support such a setting.

If enabled, counter based de-bounced events can de-bounce across multiple power
cycles. Therefore the counter value is persisted into non-volatile memory during shutdown
of the ECU.

3.3.1.2 Time Based Algorithm

For events using time based de-bouncing, the application only needs to trigger the Dem
once in order to set a qualification direction. The event will be qualified after the configured
de-bounce time has elapsed. Multiple triggers for the same event and same qualification
direction have no effect.

Each event report results at most in reloading a software timer due to a direction change.
Once an event was reported, the timer is stopped by

> A “clear DTC” command

> The restart of the event’s associated “Operation cycle”

> Deactivation of (one of) the event’s associated enable condition.

> API Dem_ResetEventDebounceStatus().

Event de-bouncing via time based algorithm requires comparatively high CPU runtime
usage. To alleviate this, the Dem supports both a high resolution timer (a Dem main
function call equals a timer tick) and a low resolution timer (150ms equals a timer tick).
Events which have a de-bounce time greater than 5 seconds will use the low resolution
timer per default. Still, software timers are expensive and should be used sparingly.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

26 / 175

Changes
Since implementation version 8.00.00, events using time based debouncing are
processed on the Dem task function. This change affects monitors reporting a fully
qualified result instead of using a de-bounced report (e.g. DEM_EVENT_STATUS-
_FAILED instead of DEM_EVENT_STATUS_PREFAILED)

If your monitor reports fully qualified results, consider using monitor internal
debouncing instead of time-based debouncing to achieve synchronous behavior or the
Dem reporting functions.

Note
The timer ticks are processed on the Dem main task. If you report an event using time-
based de-bouncing before the Dem is initialized, the timer will only start running when
the system has reached the point where cyclic tasks are served.

3.3.1.3 Monitor internal de-bouncing

If the application implements the de-bouncing algorithm itself, a callback function can be
provided, which is used for reporting the current fault detection value to the diagnostics
layer.

These functions should not implement logic, since they are called in runtime extensive
context.

If monitor internal de-bouncing is configured for an event, its monitor cannot request de-

bouncing by the Dem (i.e. trigger operation SetEventStatus with monitor results

DEM_STATUS_PRE_FAILED or DEM_STATUS_PRE_PASSED). This would also result in
a DET report in case development error detection is enabled. The Dem module does not
have the necessary information to process these types of monitor results.

Workaround (before version 6.00.00)
If you do not want de-bouncing for an event at all, e.g. only report qualified passed and
failed results, you should consider using counter based de-bouncing for these events.
For efficiency reasons, only choose monitor internal de-bouncing if you need to provide
the callback function.

With version 6.00.00 the callback function for internal de-bouncing is optional.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

27 / 175

Note
In case environment data has to be stored due to reaching a de-bounce detection
counter value that is still less than qualified failed (< UDS FDC 127), monitor internal
de-bouncing cannot be used. Please also see chapter 3.10.1

3.3.2 Event Reporting

Monitors may report test results either by PortInterface or, in case of a complex device
driver or basic software module, by direct C API.

The different APIs are important because callback contexts (i.e. the origin of the function
call) for all configured notification callbacks must be known to the RTE generator. The
current Autosar design is implemented such that CDD and BSW do not declare formally
where calls to ReportErrorStatus take place. Instead, the Dem has to queue all reports
from ReportErrorStatus and perform the action on its task level.

Caution

In systems with an Rte, never call Dem_SetEventStatus() directly from your code.

Always use the Rte_Call_.mechanism. Alternatively configure the reported event as

EventKind ‘BSW’ and report its status using API Dem_ReportEventStatus().

One disadvantage of Dem_ReportEventStatus() is its missing return code. The caller

cannot tell if a test result has been discarded. Whenever possible, implement your
monitors as Software Components with access to Rte functionality.

Caution
Status reports do not maintain relative order. The Dem does not guarantee that multiple
event reports are processed in the same order that they had been reported in.

Ordering is preserved for the first result, but there is no guarantee that multiple reports
preserve the order of report for each and every single test result during a single task.
This is mainly due to the additional resources required for no apparent benefit.

The behavior is best described as example:

If two monitors 1 and 2 report failed results F1 and F2, their order is preserved.

If monitors toggle within a single Dem task cycle, their respective ordering is no
preserved.

Example: Reporting order F1, F2, P2, P1 would be processed as F1, P1, F2, P2 instead,
which still preserves the order of the initial test result.

Due to the different nature of these APIs, it is an error to call ‘the other’ API from the one
configured for an event. The Dem will post a DET notification in that case, provided
development error detection is enabled.

3.3.3 Event Status

Every event supports a status byte whereas each bit represents different status
information. For detailed information please refer to [7].

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

28 / 175

> Bit 0 – TestFailed
The bit indicates the qualified result of the most recent test.

> Bit 1 – TestFailedThisOperationCycle
The bit indicates if during the active operation cycle the event was qualified as failed.

> Bit 2 – PendingDTC
This bit indicates if during a past or current operation cycle the event has been
qualified as failed, and has not tested ‘passed’ for a whole cycle since the failed result
was reported.

> Bit 3 – ConfirmedDTC
The bit indicates that the event has been detected enough times that it was stored in
long term memory.

> Bit 4 – TestNotCompletedSinceLastClear
This bit indicates if the event has been qualified (passed or failed) since the fault
memory has been cleared.

> Bit 5 – TestFailedSinceLastClear
This bit indicates if the event has been qualified as failed since the fault memory has
been cleared.

> Bit 6 – TestNotCompletedThisOperationCycle
This bit indicates if the event has been qualified (passed or failed) during the active
operation cycle.

> Bit 7 – WarningIndicatorRequested
The bit indicates if a warning indicator for this event is active.

Due to consistency concerns in systems using preemptive tasks not all status transitions
on these bits can be performed independently from each other. Transitions that depend on
the state of the shared event memory can influence each other and are processed in a
serialized form on the Dem task function

Chapter 3.3.3.1 and 3.3.3.2 describe which status bit transitions are modified
synchronously (in context of the caller) and which status bits are modified asynchronously
(in context of the Dem).

3.3.3.1 Synchronous Status Bit Transitions

The status bits 0, 1, 4, and 6 are synchronously modified in the context of the caller of

Dem_SetEventStatus(). After this function has returned, the status bits will have an
updated state.

The setting of bit 5 can be influenced by configuration. If it is not set to setting ‘stored only’
(see chapter 3.3.3.3) this bit is also set synchronously.

Please note that status notification callbacks will be processed in the caller context as well.

Reports by Dem_ReportErrorStatus() are queued and do not modify the status byte

synchronously. Please also see chapter 3.3.2.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

29 / 175

Caution
Combined events and events using time-based de-bouncing are queued and do not
modify their event status synchronously.

3.3.3.2 Asynchronous Status Bit Transitions

During the call of Dem_MainFunction() Status bits 2, 3 and 7 will be updated. This is

done asynchronously to remove time consuming operations from the callers’ context, and
to provide an easy serialization without falling back to interrupt locks.

If bit 5 is set to ‘stored only’ processing it is set asynchronously as well.

Therefore, the call to Dem_SetEventStatus()only costs as little as possible in terms of

runtime and stack usage.

Pending reports by Dem_ReportErrorStatus() are processed on task level for all bits,

please also see chapter 3.3.2.

Events configured to age immediately on the first qualified passed result do not allow
queuing a qualified failed result until after the passed result was processed on the Dem

task. In this case, E_NOT_OK is returned from Dem_ReportErrorStatus()

3.3.3.3 Event Storage modifying Status Bits

Several UDS status bit transitions depend on successful event storage. The Dem offers
multiple interpretations of these transitions when taking event displacement into account.

For status bits 2 – PendingDTC, 3 – ConfirmedDTC and 7 – WarningIndicatorRequested
there are two alternatives ‘Stored Only’ and ‘All DTC’ – see Figure 3-2.

For status bit 5 – TestFailedSinceLastClear the alternatives ‘Stored Only’ and ‘All DTC’ are
supported as well, along with a third option to select different reset conditions for this bit.
Please also see chapter 3.5.4.

The usual bit transitions are not affected by this option. It only selects the behavior in case
of event memory overflow and displacement.

Figure 3-2 Effect of Precondition ‘Event Storage’ and Displacement on Status Bits

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

30 / 175

Due to Autosar standardized naming of configuration options, the settings for these bits
are named differently for each bit, please refer to Table 3-4 Configuration of status bit
processing for details.

Status Bit ‘Stored Only’ ‘All DTC’

Bit 2 – PendingDTC
(Vector Extension)

DemPendingDtcProcessing =
STORED_ONLY

DemPendingDtcProcessing =
ALL_DTC

Bit 3 – ConfirmedDTC DemResetConfirmedBitOn-
Overflow = TRUE

DemResetConfirmedBitOnOverflow =
FALSE

Bit 5 – FailedSinceLastClear DemStatusBitHandlingTest-
FailedSinceLastClear =
AGING_AND_DISPLACEMENT

DemStatusBitHandlingTestFailed-
SinceLastClear = NORMAL or AGING

Bit 7 – WarningIndicatorReq
(Vector Extension)

DemWarningIndicatorRequested-
Processing = STORED_ONLY

Note: WIR bit is not reset on
displacement due to additional
requirements

DemWarningIndicatorRequested-
Processing = ALL_DTC

Table 3-4 Configuration of status bit processing

3.3.3.4 Lightweight Multiple Trips (FailureCycleCounterThreshold)

Enabling the feature for multiple trips (see DemGeneral/DemMultipleTripSupport) will
enable the full-fledged support, but at the cost of a non-volatile trip counter per event. The
common requirement of up to 2 trips (DemEventFailureCycleCounterThreshold <= 1) can
work without this added cost.

In case you want to reduce Dem NV-RAM consumption, you can disable the full support
for multiple trips, and still have support for up to 2 trips for event confirmation.

Caution
Although the UDS status byte normally allows distinguishing the first from the second
trip, it is not sufficient information in all failure scenarios with ConfirmedDTC handled
‘STORED_ONLY’.
In case an event cannot enter the event memory (e.g. due to storage conditions or
overflow) at the time of the second trip, the Dem loses the information that the event
had already failed in the last operation cycle.
This means that failed event reports and re-occurrences of the DTC will not lead to
confirmation until the next operation cycle.

If this limitation is not acceptable for your ECU, you need to enable the full support for
multiple trips (DemMultipleTripSupport == true).

3.4 Event Displacement

In case all available memory slots are already used up by past events when a new event
needs to be entered, the Dem can displace a less important event. This is governed by the
following set of rules, in the order of mention:

> Dedicated Aging Counters are repurposed first

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

31 / 175

> Aged events are displaced before other events

> Lower prioritized events will be displaced by higher prioritized events. This step
depends on the configuration of event priorities and is omitted if each event has the
same priority.

> Passive events of equal priority (test failed bit is not set) can be displaced if no lower
prioritized event can be found. This step can be omitted by configuration.

> An active event of equal priority can be displaced if it has not been tested in the active
operation cycle. This step can be omitted by configuration.

If multiple events match, the oldest one is displaced. Age in this context is defined by the
point in time the event data was last updated.

If no event matches, an option exists to displace the oldest event whatever its state.

3.5 Event Aging

The process of aging resets status bit 3 – ConfirmedDTC when a sufficient amount of time
has elapsed so that the cause for the error entry is assumedly not relevant anymore. This
is often used as a trigger to also clear stored snapshot or extended data from the event
memory.

In addition to the aging process defined in [1] there are further options. The differences are
summarized in Table 3-5

In all cases the event ages only if it supports aging, and the aging process continues long
enough so the events aging counter reaches the defined threshold value.

 Aging start condition Aging continuation

Aging At Passed
(Autosar Default)

An event that is tested passed
immediately starts to age.

At the end of the events aging
cycle, if the event is not currently
active (tested failed).

Aging At Passed, Cont
Not Failed

An event that is tested passed
immediately starts to age.

At the end of the events aging
cycle, in case the event is tested in
its current operation cycle and is
currently not failed.

Cont End Of Cycle At the end of the events
operation cycle, in case the
event is tested and did not test
‘failed’ in that cycle.

At the end of the events aging
cycle, if the event is not currently
active (tested failed).

Cont Tested Passed,
Cont Tested Passed
Zero At Passed

At the end of the events
operation cycle, in case the
event is tested and did not test
‘failed’ in that cycle.

At the end of the events aging
cycle, if the event is tested and not
tested failed in its current operation
cycle. I.e. untested cycles are not
considered.

Table 3-5 Aging algorithms

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

32 / 175

Figure 3-3 Behavior of the Aging Counter

3.5.1 Aging Target ‘0’

Events aging ‘immediately’ are handled in a special way, depending on the configured
aging algorithm.

In general, they age immediately when the aging start condition is reached. For details
refer to Table 3-6 Immediate aging.

 Aging with target 0

Aging At Passed
(Autosar Default)

If the DTC is tested passed when an event reports a passed result.

Aging At Passed, Cont
Not Failed

At the end of the event’s operation cycle, if the DTC was not tested
failed this cycle.

Cont End Of Cycle At the end of the event’s operation cycle, if PendingDTC is reset.

Cont Tested Passed At the end of the event’s operation cycle, if PendingDTC is reset.

Cont Tested Passed
Zero At Passed

If the DTC is tested passed when an event reports a passed result,
and the DTC is not tested failed in that cycle.

Table 3-6 Immediate aging

3.5.2 Aging Counter Reallocation

To implement aging of events, an event requires an aging counter. This counter is
contained within the event memory entry along with stored additional data. If the confirmed
bit is set independently of event storage (see chapter 3.3.3.3) events do not necessarily
have the means to age, even if they meet the precondition (e.g. test completed and not
tested failed for one operation cycle).

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

33 / 175

In this case the Dem module tries to reallocate a free memory entry for the aging event.
This event entry is used solely for the purpose of aging the confirmed DTC bit.

Caution
In case ConfirmedDTC is set independently of event storage (Setting ‘ALL DTC’, see
chapter 3.3.3.3) DTCs do not necessarily age with the configured number of aging
cycles. This is not a bug, but a result of an insufficient amount of available aging
counters.

3.5.3 Aging of Environmental Data

Stored data can optionally be discarded or kept intake once a DTC has completed the
aging process and resets its ConfirmedDTC bit.

If the data is kept intact, it is reported to the Dcm in the same way it is reported for active
events.

Caution
This setting has a negative side effect on reallocating aging counters (see chapter
3.5.1), since the Dem prioritizes aged environmental data higher than the need for new
aging counters. There is no displacement of aged data due to a different, aging event.

Only a number of DTCs up to the available event memory entries can age, unless
events are cleared by other means, e.g. ClearDTC.

3.5.4 Aging of TestFailedSinceLastClear

The general status bit processing for bit 5 is described in chapter 3.3.3. There is however
an additional option to reset this bit when an event ages.

Currently the aging counter value required to reset Bit 5 is the same as for ConfirmedDTC,
so there is no way to age it at a later time.

Please refer to the configuration parameter DemGeneral/DemStatusBitHandlingTest-
FailedSinceLastClear for details.

3.5.5 Aging and Healing

Aging and healing normally happen in parallel. The Dem does not implement safe guards
to prevent aging before healing has occurred. This situation is rather unusual and would
indicate a mistake in the configuration, or how the cycles are reported to the Dem.

For some use-cases like OBD II, it is supported to only start with the aging process once a
configured indicator request has completed healing. In order to achieve consistent
behavior across all DTC, this can be activated also for events not supporting an indicator.

This aspect of the aging behavior can be selected using the configuration switch

DemGeneral/DemAgingAfterHealing.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

34 / 175

3.6 Operation Cycles

Each event is assigned to an operation cycle, e.g. ignition cycle. An operation cycle can be

started and stopped with the function Dem_SetOperationCycleState(). Reporting an

event to the Dem is possible only if its corresponding operation cycle is started – otherwise
the report will be discarded. In this regard the operation cycle acts as additional enable
condition which cannot be circumvented.

The operation cycle also is the basis for the status bits referring to ‘this operation cycle’ (Bit
1 and Bit 6), as well as the calculation of events that may or may not have occurred during
the whole cycle, e.g. to calculate the precondition for resetting Bit 2.

Since operation cycle restarts can cause a lot of notification function calls, the actual
processing is done asynchronously on the Dem_MainFunction(). As notification for the
finished processing, please use InitMonitorForX callbacks.

Caution
Due to the asynchronous processing, operation cycle changes will get lost if you shut
down the Dem module before a pending change is processed.

3.6.1 Persistent Storage of Operation Cycle State

The Dem provides the possibility to restore the state of operation cycles through power
down. This feature has its caveats though.

The persisted state of operation cycles is not known in pre-initialization state, since the
NvM which controls the non-volatile data relies on a pre-initialized Dem!

Until the Dem is completely initialized all operation cycles are inactive, independently of

their stored state. The persisted state only becomes active during Dem_Init(), but this

state modification is not counted as flank of the operation cycle state and will not modify
the DTC status bytes.

Caution
Even with persistent operation cycle storage enabled, during pre-initialization all cycles
are in state ‘stopped’ since their real state is not known until full initialization. This will
cause discarded BSW error reports due to unfulfilled preconditions!

3.6.2 Automatic Operation Cycle Restart

Operation cycles automatically count as enable condition for all related events, meaning
that if a cycle is not started, monitor reports are not accepted. During ECU startup, there is
no valid way to start an operation cycle by API.

If you select a cycle to be started automatically, it will be treated as ‘started’ during pre-
initialization, so event reports are possible.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

35 / 175

Additionally, all calculations resulting from an operation cycle restart are done in

Dem_Init() – But be aware that all notification functions are skipped, since the

initialization status of the RTE is not known at this point.

The DTC status calculation is performed in Dem_Init() ‘as if’ the cycle had started

before Dem_PreInit(). E.g. fault detection counters of related DTCs do not reset to

zero.

Caution
Since the cycle is already started automatically you may not start it again from your
application. This would be regarded as an additional, completed cycle and would cause
unwanted modifications of the event status, like premature aging of events.

Caution
Automatic restart of cycle skips all notifications – including event status change and
monitor initialization callbacks. If you use this feature, your monitors need to initialize
their starting state in an initialization routine and cannot rely on an init-monitor
notification callback alone.

3.7 Enable Conditions and Control DTC Setting

Up to 31 enable conditions can be assigned to an event. Only if all assigned enable

conditions are fulfilled the respective event reported via Dem_ReportErrorStatus() or

Dem_SetEventStatus() will lead to a change of the event status bits and a storage of

environmental data. Otherwise the event report will be discarded.

A diagnostic monitor using the RTE interfaces to report events can evaluate the return
value of the SetEventStatus operation. In case event reports are discarded, this operation
will always return E_NOT_OK. It is not possible to tell the exact reason for the discarded
report.

Enable condition states can be set via Dem_SetEnableCondition() respectively by

the corresponding port interface operation.

Changes
Since Implementation version 7.00.00, enable conditions do not take effect until after
full initialization (Dem_Init())

When an event’s enable conditions are not fulfilled, the Dem provides the option to reset or
to freeze an ongoing de-bouncing process. Using this feature defers enabling an enable
condition to the Dem main function, because it involves checking all events if they are
affected by the change.

As a side effect, it is possible to lose enable condition changes that toggle faster than the
cycle time of the Dem main function.

The same applies to ControlDTCSetting.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

36 / 175

Changes
Since implementation version 8.00.00, enabling enable conditions and
ControlDTCSetting are processed on the Dem main function. Activating an enable
condition will not have immediate effect. This change affects all configurations using
time-based de-bouncing, or the option to reset the de-bounce counters on enable
condition change.

Caution
EnableDTCSettings is processed on the main function, but the API was not changed to
asynchronous by Autosar (RfC 69895). As a result, the Dcm will send the positive
response to service $85 before the DTCSettings have actually been enabled. This can
be observable as DTCs are not entered into the Dem until the Dem task function has
completed.

3.7.1 Effects on de-bouncing and FDC

While enable conditions are disabled, de-bouncing is usually stopped as well. The Dem
allows configuring whether events continue de-bouncing where they left off, or whether
they start from the beginning – or even continue de-bouncing.

The point in time of the reset, being either when the enable conditions are disabled or re-
enabled, is also subject to configuration.

In any case, it is not possible for events to qualify during the time enable conditions (or
ControlDTCSetting) are disabled.

3.8 Storage Conditions

Up to 32 storage conditions can be assigned to an event. If the assigned storage

conditions are not fulfilled, the respective event reported via Dem_SetEventStatus()

will change its status byte, but its environmental data and statistical data (e.g. most recent
failed event) is not stored or updated.

Also, status bits 2, 3, 5 and 7 will not transition while storage conditions are not fulfilled
(depending on configuration options, see chapter 3.3.3.3).

The storage condition state can be set via Dem_SetStorageCondition().

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

37 / 175

Note
Unfulfilled storage conditions prevent event storage, not postpone it. When storage is
re-enabled, in most configurations the blocked entries will require either a passed
failed transition or a transition of TestFailedThisOperationCycle in order to create a
memory entry.

3.9 DTC Suppression

AUTOSAR provides two mechanisms to disable, hide or otherwise prevent evaluation of
test reports. They differ in the impact of the suppression operation.

This implementation allows calling the event based suppression API before full
initialization, and calls by BSW or CDD (i.e. it does not require Rte_Call). Please be
advised that this is an extension to [1].

Note
Suppression / Availability states are not stored in non-volatile RAM – suppression must
be (re)activated in each power cycle.

3.9.1 Event Availability

The API Dem_SetEventAvailable() can disconnect the event reporting from event
processing. Use this mechanism in case the ECU has fault paths that are supported
conditionally, e.g. due to ECU variants.

Unavailable events do not track a status. They cannot confirm, cannot enter the event
memory, and attached DTCs are not reported to the outside world, i.e. through Dcm API.

Event reports and the request to suppress the same event do collide. In order to correctly
implement suppression, unused DTCs should be suppressed before the monitor in
question starts to report test results for it.

Caution
The FiM module prior to Autosar 4.2.1 is not able to work with unavailable events. It
can cause runtime errors and/or FID status miscalculations when the FiM module tries
to request the event status of an unavailable event, since that request will return an
unexpected error code.

DTCs and events already stored in the event memory cannot be made unavailable and the
corresponding API call will fail.

For combined events, the DTC will be hidden only after all events attached to the DTC
have been set to disabled.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

38 / 175

Note
A default setting for event availability can be defined. In this case, the API
Dem_SetEventAvailable() may not be called before Dem initialization, as the active
configuration is not known

Also, the default setting cannot be used in conjunction with DemAvailabilityStorage

3.9.2 Suppress Event / Suppress DTC

The suppression APIs only ‘hide’ DTCs to the outside world.

Event processing and storage are processed normally – this means suppressed DTCs can
use up memory slots, and enable indicators.

DTCs and events suppression states are tracked independently, as defined in [1]. This
means, you can only ‘unsuppress’ a DTC using the same API it was suppressed with.

For combined events, the DTC will be hidden only after all events attached to the DTC are
suppressed, or the DTC is suppressed directly using Dem_SetDTCSuppression().

Note
Different from the event based suppression, DTC suppression is not possible before
full initialization. Dem_Init() is the API that selects the active configuration, so the
mapping between EventId and DTC is not known before then.

3.10 Environmental Data

The Dem supports storage of data with each DTC in form of snapshot records and
extended data records.

A Snapshot Record is DTC specific and consists of one or more DIDs (Data Identifiers)
which in turn consist of one more data elements. Snapshot Records are collected and
stored at a configurable point in time during event confirmation, and often multiple times.

An Extended Data Record is defined globally and consists of one or more data elements. It
is typically used for statistic values like the occurrence counter or aging counter that are
not frozen at storage time.

The content of data elements can be provided by the application or by the Dem itself.

For application defined data the Dem will request the data using callback functions every
time a new value needs to be stored, and supply the stored values to the reading module
(e.g. the Dcm). This type of data is comparable to snapshot records in that no current
value can be supplied to a reader.

To use internal data provided by the Dem, data elements must be mapped by configuration
to the requested statistical value. The Dem will then always supply the current value of the
respective statistic to reading modules.

Figure 3-4 provides an example of the described layout.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

39 / 175

© 2009. Vector Informatik GmbH. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

Slide: 1

DTC1 DID2 Data1 Data2 DID1 Data3

DTC2 DID3 Data2 Data4

DTCn DID3 Data2 Data4 DID4 Data5 Data6 Data7

DTC1 Ext1 Aging Cnt

DTC2 Ext10 Data8 Data9

DTCn

Ext1 Aging Cnt

Ext1 Aging Cnt Ext2 Data10 Ext4 Data11

Snapshot Record Layout

Extended Data Record Layout

Figure 3-4 Environmental Data Layout

3.10.1 Storage Trigger

There are two algorithms how snapshot records are stored. One is the ‘calculated
snapshot number’ option, for which snapshots are currently stored with each transition of
the TestFailed bit of an event.

The ‘configured snapshot number’ option allows defining for each snapshot record in detail
when to store it, if its contents may be updated, and what its record number is going to be.

This second option also necessitates defining when to try and create an event memory
entry, for there are some interesting combinations:

A failing DTC will (ideally) create the following triggers, in order:

1. FDC threshold (< qualified failed) exceeded

2. FDC qualifies, Bit 0 is set

3. DTC Pending, Bit 2 is set

4. DTC Confirmed, Bit 3 is set

Although in reality these can easily all occur at the same time.

Snapshots are stored and updated with each trigger, so e.g. if the snapshot trigger is ‘test
failed’, each of these events will update a corresponding snapshot record – once an event
memory entry is created for the DTC.

The exact trigger that is used to create a memory entry is set with option
DemGeneral/DemEventStorageTrigger. This way you can realize ECUs that i.e. update
snapshot data with each Occurrence, but start only once the DTC reaches ConfirmedDTC.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

40 / 175

3.10.1.1 Storage Trigger ‘FDC Threshold’

If snapshot data has to be stored prior to event qualification, the event has to be set up to
use a Dem internal de-bouncing algorithm. Currently there is no API to notify the Dem that
a FDC threshold has been detected by a monitor internal de-bouncing algorithm.

Also, the actual threshold values need to be configured for the events as well.

Caution
If an event cannot be stored due to a full event memory, another attempt is made only
when the FDC threshold is crossed again. If the event’s FDC rests above the threshold
value, no attempt to store data is made, even if another event was cleared in the
meantime, e.g. by ClearDTC.

3.10.2 Internal Data Elements

The Dem provides access to the following values by means of an internal data element.
Internal data is usually not frozen in the primary memory, but rather the current value is
reported.

Aging counter

Available both in positive direction, counting up from 0 (event is not aging) up to the
configured threshold value; and in reverse counting down to 0.

Occurrence counter

Counts the number of passed-failed transitions since an event has been stored. This
counter is available in 8bit and 16bit variants.

Cycle counters

Different statistics concerning the number of operation cycles: The number of cycles
completed since the first or last failed result, and the number of cycles during which an
event has reported a failed result.

Overflow indication:

Indicates if the event’s memory destination has overflown.

Event priority:

Is set to the configured priority value of the event.

Significance:

Is set to the configured event significance value. Occurrence is 0, Fault is 1.

Root cause EventId

The event id that caused the storage/update of the environmental data. Can be used in
context of the feature combined events to store the root cause event id.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

41 / 175

OBD DTC

The OBD DTC for the event id that caused the storage/update of the environmental data. If
no OBD DTC is configured the returned value will be 0.

Fault Detection Counter statistics

The current fault detection counter can always map. For internally de-bounced events, the
maximum value per operation cycle, and the maximum value since last clear are available
as well.

Caution
For time-based events, the maximum FDC in a cycle (or since last clear) are updated
during the Dem task processing. This can result in a current FDC larger than the
displayed maximum FDC when the de-bouncing timer has just started.

This situation will correct itself after the timer has ticked once, but for low resolution
timing this can take up to the configured low resolution tick (which defaults to 150 ms).

3.10.3 External Data Elements

Data is collected through required port prototypes and needs to be mapped to the data
provider during Rte configuration. Please note that each data element has its own port
interface and port prototype. It is not supported to collect a variety of DIDs or data signals
through a shared callback function by AUTOSAR design.

As a vendor specific extension, the MICROSAR Dem module supports data callbacks that
also pass the EventId to the application. This allows scenarios not possible with a standard
Dem:

 Application managed data storage: e.g. connecting the Dem to legacy applications that
already store (parts of) the environment data.

 Event specific data contents: e.g. storing root cause dependent data.

3.10.3.1 Nv-Ram storage

The usual AUTOSAR Dem will store all data collected from the application in NV-Ram.

For such data elements, data sampling is always processed on the Dem cyclic function.
Queries (e.g. through Dcm UDS diagnostic services) always return the frozen value.

As an extension to AUTOSAR, the Dem also allows to configure data elements to return
‘live’ data. This is useful especially to support statistics data that is not already covered by
the Dem internal data elements.

When data elements are configured not to be stored in NV-Ram, the data is requested
every time a query is processed. Their implementation should be reentrant and fast to
allow diagnostic responses to complete in time.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

42 / 175

Note
There is no way to tell the Dem that data is ‘not currently available’ in this case. The
Autosar standard requires to substitute a ‘0xFF’ pattern in case a data callback returns
‘NOT OK’

Optional data is not possible, especially since a single DID or extended record may
consist of up to 255 callbacks, and optional data right in the middle of a DID makes no
sense.

3.11 Freeze Frame Pre-Storage

The environmental data associated with a DTC is collected when the DTC storage is
processed on the Dem task function. The delay between the event report and the data
collection can be a problem if fast changing data needs to be captured. In other use-cases
the DTC is supposed to store a snapshot of the system state some time before the event
qualification finishes.

Using Dem_PrestoreFreezeFrame() a monitor can request immediate data capture. If
successful, this snapshot is used as the data source if the DTC is stored to the event
memory later on.

The Dem captures the following data, if relevant:

 A UDS snapshot record

 A OBD freeze frame

 J1939 freeze frame and expanded freeze frame

Caution
Extended data records are not captured.

The Dem can only pre-store a limited number of events (see configuration parameter
DemGeneral/DemMaxNumberPrestoredFF). Once the allotted space is exhausted
subsequent pre-storage requests will fail until one or more of them were freed. It is always
possible to refresh a pre-stored data set already allocated to an event.

Pre-Stored data is not preserved through Power-Cycles, and will be discarded
automatically once it is used or after a qualified test result has been processed for the
respective event. Also see Dem_ClearPrestoredFreezeFrame() for a way to explicitly
discard stale data.

3.12 Combined Events

It is possible to combine the results of multiple monitors to a single DTC. This feature is
referred to as ‘Combined Events’ in this document.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

43 / 175

Monitors report events as usual, events are de-bounced individually, and for each event
the Dem keeps track of its individual status byte. Only when a DTC status is required there
is a visible difference.

3.12.1 Configuration

Currently the configuration format allows too much freedom in configuration due to the
multiple combination types. For Type 1 combination the following restrictions apply:

 All events mapped to the same DTC must have identical environmental data
(extended records, number and content of snapshots etc.

 All events mapped to the same DTC must use the same cycles (operation, failing,
healing and aging cycles)

 All events mapped to the same DTC must use the same destination, significance,
priority, the same setting for ‘aging allowed’ and the same significance.

The behavior with mixed settings is undefined and not supported by this implementation.

3.12.2 Event Reporting

Monitor results that need to be combined are not processed directly, but deferred to task
level. Other than that the application API is not changed.

Caution
Do not depend on status changes of either event status or DTC status to occur during
the call to SetEventStatus and ReportErrorStatus. If monitors are combined to a shared
DTC, the status will not change until the next task cycle.

3.12.3 DTC Status

If event combination is used, the DTC status does not correspond to the event status
directly. Instead, the DTC status is derived from the status of multiple events.

As defined by Autosar (see [1]) this combined status is calculated according to Table 3-7.
Basically the DTC status is a simple OR combination of all events, with the resulting status
byte modified by an additional combination term. This is done such that a failed result will
also reset the ‘test not completed’ bits even if not all contributing monitors have completed
their test cycle.

Caution
A direct effect of event combination is a possible toggle of Bit 4 and Bit 6 during a
single operation cycle. I.e. these bits can become set (test not completed  true) as
result of a completed test. This behavior is intended by Autosar and not an
implementation issue.

Applications need to take this into account when reacting on changes of ‘Test not
Completed This Operation Cycle / Since Last Clear’!

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

44 / 175

Combined DTC Status Bit

Bit 0 – TestFailed OR (Event[i].Bit0)

Bit 1 – Test Failed This Operation Cycle OR (Event[i].Bit1)

Bit 2 – PendingDTC OR (Event[i].Bit2)

Bit 3 – ConfirmedDTC OR (Event[i].Bit3)

Bit 4 – Test not Completed Since Last Clear OR (Event[i].Bit4) AND NOT Bit5

Bit 5 – Test Failed Since Last Clear OR (Event[i].Bit5)

Bit 6 – Test not Completed This Operation Cycle OR (Event[i].Bit6) AND NOT Bit0

Bit 7 – Warning Indicator Requested OR (Event[i].Bit7)

Table 3-7 DTC status combination

3.12.4 Environmental Data Update

Environment data and statistics are calculated based on the DTC status, not the event
status of contributing events.

Example: The occurrence counter, if configured, is not incremented with each failing
monitor. Instead, the occurrence counter is incremented each time Bit0 of the combined
DTC transitions 0  1.

A failed monitor result might therefore not result in an update of event data (nor an event
data changed notification). This behavior is intentional.

3.12.5 Aging

A combined DTC starts to age once the conditions discussed in chapter 3.5 are fulfilled for
each event, e.g. once all monitors have reported a ‘passed’ result.

3.12.6 Clear DTC

If a request to clear a combined DTC is received, all monitors that define a ‘clear DTC
allowed’ callback will be notified by the Dem and have a chance to prevent the clear
operation. If a single monitor disallows the clear operation, the DTC will be left in the event
memory.

Caution
If an application responds positively to a call to a ‘clear event allowed’ callback, the
DTC is not necessarily cleared as a result!

Another monitor can be combined to the same DTC and disallow the clear operation.
Do not use a clear allowed callback as indication that a DTC was cleared, instead use
the InitMonitorForEvent notification!

3.13 Non-Volatile Data Management

The Dem uses the standard AUTOSAR data management facilities provided by the NvM
module.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

45 / 175

3.13.1 NvM Interaction

If immediate data writes are enabled, the NvM needs to support API configuration class 2.
Otherwise the APIs provided by configuration class 1 are sufficient for Dem operation.

If you do not use an AUTOSAR NvM module, you have to provide a compatible
replacement in order to use features related to non-volatile data management. The NVM
module needs to implement at least the functionality described in chapter 4.5 NVM
Integration.

3.13.2 NVRAM Write Frequency

The Dem is designed to trigger as less NVRAM writes as possible. Thereto only the data
which typically changes not very often is stored during ECU runtime. The following table
will give you an overview of the NVRAM write frequency.

NvRam Item

Write Frequency

A
d
m

in
 D

a
ta

S
ta

tu
s
 D

a
ta

D
e
b
o

u
n
c
e
 D

a
ta

P
ri
m

a
ry

 E
n
tr

y

S
e
c
o
n

d
a
ry

 E
n
tr

y

At shutdown - always  
1
 

At shutdown - if content has changed 

At clear DTC     

Immediately - if immediate NVRAM storage is enabled 
2
 

2

Table 3-8 NVRAM write frequency

3.13.3 Data Recovery

As the Dem uses multiple NVRAM blocks to persist its data (refer to 4.5), it might happen
that correlating data becomes inconsistent due to a power loss or an NVRAM error. To
avoid restoring to an undefined state, during initialization some errors are detected and
corrected, as follows.

> Duplicate entries in a memory are resolved by removing the older entry.

> Stored-Only/Aging status bits are reset if the respective event is not stored, or aged.

> Depending on aging behavior the status bits TestFailed, PendingDTC,
TestFailedThisOperationCycle and WarningIndicatorRequested, are reset for currently
aging events.

> Reset status bit TestFailedThisOperationCycle if both TestFailedThisOperationCycle
and TestNotCompletedThisOperationCycle are set.

> Reset status bit TestNotCompletedSinceLastClear if both TestFailedSincleLastClear
and TestNotCompletedSinceLastClear are set.

1
 Only in case of option DemOperationCycleStatusStorage is enabled

2
 Only applicable if an event confirms or ages. Please note, an event that toggles from TEST FAILED to

TEST PASSED will also cause NvRam modification.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

46 / 175

> De-bounce counters are reset if they exceed the configured threshold, or the
TestFailed bit does not match a reached threshold (only relevant if de-bounce counters
are stored in NVRAM).

> Stored Events have their status bit corrected if:

> Events are stored when they reach an fault detection counter limit and if

> A consecutive failed cycle counter is supported, and has a value > 0, status bits
PendingDTC and TestFailedSincleLastClear are set. If that counter also exceeds
the failure cycle counter threshold, the ConfirmedDTC status bit is set.

> An occurrence counter is supported and has a value > 0, then status bit
TestFailedSincleLastClear is set.

> Events are stored with other triggers

> The status bit TestFailedSincleLastClear is set.

> If a consecutive failed cycle counter is supported, and has a value > 0, the status bit
PendingDTC is set. If that counter also exceeds the failure cycle counter threshold,
the status bit ConfirmedDTC is set.

> If the event has a failure cycle counter threshold of 0, the status bit ConfirmedDTC
is set.

> If events are stored with trigger ConfirmedDTC, status bit ConfirmedDTC is set.

> If a combined event is stored, but the EventId in NVRAM is not the 'master' EventId for
that combination group, the entry is discarded. This happens due to an integration
error, so also a DET error (inconsistent state) will be set.

> If the event has no warning indicator configured but the status bit
WarningIndicatorRequested is set, then the status bit WarningIndicatorRequested is
reset.

3.14 Diagnostic Interfaces

To provide the data maintained by the Dem to an external tester the Dem supports
interfaces to the Dcm which are described in chapter 6.2.6.

Please note, these API are intended for use by the Dcm module exclusively and may not
be safe to use otherwise. In case a replacement for the Dcm module has to be
implemented, we politely refer to the Autosar Dcm specification [3], and do not elaborate
on the details within the context of this document.

3.15 Notifications

The Dem supports several configurable global and specific event or DTC related
notification functions which will be described in the following. For details please refer to
chapter 6.5.1.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

47 / 175

Note
Status notifications are separated for asynchronous and synchronous changes (also
see chapter 3.3.3). A status report may therefore result in separate notifications.

Caution
Notifications are not necessarily ordered correctly. This means the event status
received from a notification function is not reliable.

Do not use event notification in safety relevant contexts (see AUTOSAR RfC
48668)

To work around the issue, you can prevent monitors and the Dem task from pre-
empting each other (not recommended) or ignore the received status values and use
GetEventStatus to read the current one.

3.15.1 Event Status Changed

These are notifications for an event status change independent of the DTC status
availability mask. With the given old and new status the receiver is able to identify what
has changed.

> General notification:
This callback function is called from Dem for each event on status change.

> Event specific notifications:
Each event may have one or more of these callback functions which are called only if
the respective event status has changed.

> FIM notification:
This callback function is called for each event on status change. Dependent on the
given state the FIM is able to derive the new fault inhibition state.

3.15.2 DTC Status Changed

These are notifications for a DTC status change. The DTC status availability mask is taken
into account, so status bits which are not supported will not cause a notification. It is also
possible that a changed event status does not change the resulting status of a combined
DTC.

> Event specific notifications:
Each event may have one or more of these callback functions which are called only if
the respective DTC status has changed.

> Dcm notification:
This is callback function is called for each DTC status change. Dependent on the given
state the Dcm is able to decide if a ROE message shall be sent.

3.15.3 Event Data Changed

These notifications will be called from Dem if the data related to an event has changed.

> General notification:
This is a single callback function which is called for each event on data change.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

48 / 175

> Event specific notification:
Each event may have one callback function which is called on event data change.

3.15.4 Monitor Re-Initialization

These notifications are called from Dem, to signal to diagnostic monitors that a new test
result is now requested. This can happen due to clearing the fault memory, the start of a
new operation cycle, or the re-enabling of previously disabled DTC settings or enable
conditions

The set of notification calls is fully customizable in the configuration.

> Event specific notification:
Each event may have one callback function which is called for the reasons mentioned
above.

> Function specific notifications:
Each event may have one or more of this callback functions which is called for the
reasons mentioned above.
For combined events, this callback is notified for each event if they are re-enabled by
enable conditions.

3.16 Indicators

An event can be configured to have one or more indicators assigned. An indicator is
reported active if at least one assigned event requests it, and cleared when all events
assigned to it have revoked their warning indicator request (i.e. by healing or diagnostic
service ClearDtc).

The indicator status is set always with event confirmation (set condition of bit 3), and reset
after the configured number of operation cycles during which the event was tested, but not
tested failed.

An event’s warning indicator request status is reported in bit 7 of the UDS status byte.

3.16.1 User Controlled WarningIndicatorRequest

Use cases that demand setting of the UDS Bit 7 (WarningIndicatorRequest) differently
from the normal indicator handling can be met using the operation SetWIRStatus (see
chapter 6.6.1.1.9).

Examples include resetting the WIR bit only with the next power cycle after the indicator
status has healed, or setting it with the first failed result instead of the ‘confirmedDTC’ bit.

This interface also allows controlling Bit7 of a BSW error. There is only a SWC API
available to control the WIR status bit of BSW errors, so a SWC module has to be used for
this task in all cases.

To calculate the visible status of Bit 7, the ‘normal’ monitor WIR request is logically OR’ed
to the user controlled state as depicted in Figure 3-5.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

49 / 175

Note
UDS DTC status change notifications are called only if the combined (User
Controlled + Indicator) status changes. In case more detailed information is
needed a SWC can use the operation GetWIRStatus in combination with event
status notifications.

Figure 3-5 User Controlled WarningIndicatorRequest

3.17 Interface to the Runtime Environment

The Dem interacts with the application through the Rte and defined port interfaces (see
chapter 6.6).

There are no statically defined callouts that need to be implemented by the application. All
notifications and callouts are set up during configuration.

This is why the Dem software component description file (Dem_swc.arxml) is generated
based on the configuration.

3.18 Error Handling

3.18.1 Development Error Reporting

By default, development errors are reported to the Det using the service

Det_ReportError() as specified in [2], if development error reporting is enabled (i.e.

pre-compile parameter Dem_DEV_ERROR_DETECT==STD_ON).

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature

as the service Det_ReportError().

The reported Dem ID is 54.

The reported service IDs identify the services which are described in 6.2. The following
table presents the service IDs and the related services:

Service ID Service

0x00 Dem_GetVersionInfo()

0x01 Dem_PreInit()

0x02 Dem_Init()

0x03 Dem_Shutdown()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

50 / 175

Service ID Service

0x04 Dem_SetEventStatus()

0x05 Dem_ResetEventStatus()

0x06 Dem_PrestoreFreezeFrame()

0x07 Dem_ClearPrestoredFreezeFrame()

0x08 Dem_SetOperationCycleState()

0x09 Dem_SetOperationCycleCntValue

0x0A Dem_GetEventStatus()

0x0B Dem_GetEventFailed()

0x0C Dem_GetEventTested()

0x0D Dem_GetDTCOfEvent()

0x0E Dem_DcmGetSeverityOfDTC()

0x0F Dem_ReportErrorStatus()

0x11 Dem_SetAgingCycleState

0x12 Dem_SetAgingCycleCounterValue

0x13 Dem_DcmSetDTCFilter()

0x15 Dem_DcmGetStatusOfDTC()

0x16 Dem_DcmGetDTCStatusAvailabilityMask()

0x17 Dem_DcmGetNumberOfFilteredDTC()

0x18 Dem_DcmGetNextFilteredDTC()

0x19 Dem_DcmGetDTCByOccurrenceTime()

0x1A Dem_DcmDisableDTCRecordUpdate()

0x1B Dem_DcmEnableDTCRecordUpdate()

0x1C Dem_DcmGetOBDFreezeFrameData

0x1D Dem_DcmGetFreezeFrameDataByDTC()

0x1F Dem_DcmGetSizeOfFreezeFrameByDTC()

0x20 Dem_DcmGetExtendedDataRecordByDTC()

0x21 Dem_DcmGetSizeOfExtendedDataRecordByDTC()

0x22 Dem_DcmClearDTC()

0x23 Dem_ClearDTC()

0x24 Dem_DcmDisableDTCSetting()

0x25 Dem_DcmEnableDTCSetting()

0x29 Dem_GetIndicatorStatus()

0x2A Dem_DcmCancelOperation()

0x30 Dem_GetEventExtendedDataRecord()

0x31 Dem_GetEventFreezeFrameData()

0x32 Dem_GetEventMemoryOverflow()

0x33 Dem_SetDTCSuppression()

0x34 Dem_DcmGetFunctionalUnitOfDTC()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

51 / 175

Service ID Service

0x36 Dem_SetEventSuppression()

0x37 Dem_SetEventAvailable()

0x38 Dem_SetStorageCondition()

0x39 Dem_SetEnableCondition()

0x3A Dem_DcmGetNextFilteredRecord()

0x3B Dem_DcmGetNextFilteredDTCAndFDC()

0x3C Dem_DcmGetTranslationType()

0x3D Dem_DcmGetNextFilteredDTCAndSeverity()

0x3E Dem_GetFaultDetectionCounter()

0x3F Dem_DcmSetFreezeFrameRecordFilter()

0x40 Dem_DltGetAllExtendedDataRecords

0x41 Dem_DltGetMostRecentFreezeFrameRecordData

0x51 Dem_SetEventDisabled

0x52 Dem_DcmReadDataOfOBDFreezeFrame

0x53 Dem_DcmGetDTCOfOBDFreezeFrame

0x55 Dem_MainFunction()

0x61 Dem_DcmReadDataOfPID01

0x63 Dem_DcmReadDataOfPID1C

0x64 Dem_DcmReadDataOfPID21

0x65 Dem_DcmReadDataOfPID30

0x66 Dem_DcmReadDataOfPID31

0x67 Dem_DcmReadDataOfPID41

0x68 Dem_DcmReadDataOfPID4D

0x69 Dem_DcmReadDataOfPID4E

0x6B Dem_DcmGetInfoTypeValue08

0x6C Dem_DcmGetInfoTypeValue0B

0x71 Dem_RepIUMPRDenLock

0x72 Dem_RepIUMPRDenRelease

0x73 Dem_RepIUMPRFaultDetect

0x79 Dem_SetPtoStatus

0x7A Dem_SetWIRStatus()

0x90 Dem_J1939DcmSetDTCFilter()

0x91 Dem_J1939DcmGetNumberOfFilteredDTC ()

0x92 Dem_J1939DcmGetNextFilteredDTC()

0x93 Dem_J1939DcmFirstDTCwithLampStatus()

0x94 Dem_J1939DcmGetNextDTCwithLampStatus ()

0x95 Dem_J1939DcmClearDTC()

0x96 Dem_J1939DcmSetFreezeFrameFilter()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

52 / 175

Service ID Service

0x97 Dem_J1939DcmGetNextFreezeFrame()

0x98 Dem_J1939DcmGetNextSPNInFreezeFrame()

0x99 Dem_J1939DcmSetRatioFilter

0x9A Dem_J1939DcmGetNextFilteredRatio

0x9B Dem_J1939DcmReadDiagnosticReadiness1

0x9C Dem_J1939DcmReadDiagnosticReadiness2

0x9D Dem_J1939DcmReadDiagnosticReadiness3

0xAA Dem_SetPfcCycle

0xAB Dem_GetPfcCycle

0xAE Dem_SetIUMPRDenCondition

Table 3-9 Service IDs

Table 3-10 presents the service IDs of APIs not defined by AUTOSAR, the related services
and corresponding errors:

Service ID Service

0xD0 Dem_InitMemory()

0xD1 Dem_PostRunRequested()

0xD2 Dem_GetEventEnableCondition()

0xD3 Dem_GetWIRStatus()

0xD4 Dem_EnablePermanentStorage

0xD5 Dem_GetIUMPRGeneralData

0xD6 Dem_GetNextIUMPRRatioData (API was removed since version 8.00.00)

0xD7 Dem_GetNextIUMPRRatioDataAndDTC

0xD8 Dem_GetCurrentIUMPRRatioDataAndDTC

0xDB Dem_RequestNvSynchronization()

0xF1 Dem_NvM_InitAdminData()

Dem_NvM_InitStatusData()
Dem_NvM_InitDebounceData()

0xF2 Dem_NvM_JobFinished()

0xFF Internal function calls

Table 3-10 Additional Service IDs

The errors reported to Det are described in the following table:

Error Code Description

0x10 DEM_E_PARAM_CONFIG Service was called with a parameter value which is
not allowed in this configuration

0x11 DEM_E_PARAM_POINTER Service was called with a NULL pointer argument

0x12 DEM_E_PARAM_DATA Service was called with an invalid parameter value

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

53 / 175

Error Code Description

0x13 DEM_E_PARAM_LENGTH Service was called with an invalid length or size
parameter

0x20 DEM_E_UNINIT Service was called before the Dem module has been
initialized

0x30 DEM_E_NODATAAVAILABLE Data collection failed (application error)

0x40 DEM_E_WRONG_CONDITION Service was called with unsatisfied precondition

0xF0 DEM_E_INCONSISTENT_STATE Dem is in an inconsistent internal state

Table 3-11 Errors reported to Det

3.18.1.1 Parameter Checking

AUTOSAR requires that API functions check the validity of their parameters. These checks
are for development error reporting and are en-/disabled together with development error
reporting.

Caution
If the Dem is used in as Pre-Compile variant, Dem_PreInit() does not verify the
initialization pointer. This pointer is unused anyways, so we deviate from [1] in order to
be more in line with most other Autosar modules.

3.18.1.2 Defensive Behavior

If required, all assertion checks can be left active, only disabling the notification to the Det
module. This behavior can be controlled by configuration option DemGeneral/DemUse-
DefensiveBehavior.

3.18.2 Production Code Error Reporting

The Dem does not report any production code related errors.

Production code errors in general are errors which shall be saved through the Dem by
definition. Errors of Dem itself occurring during normal operation are not saved as DTC.

3.19 J1939

Note
Dependent on the licensed components of your delivery the feature J1939 may not be
available in DEM.

In general the SAE J1939 communication protocol was developed for heavy-duty
environments but is also applicable for communication networks in light- and medium-duty
on-road and off-road vehicles.

J1939 does not describe how the fault memory shall behave but how to report the faults
and their related data.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

54 / 175

With the interface described in chapter 6.2.7 the following diagnostic messages can be
supported:

Diagnostic Message

DM1 – Active Diagnostic Trouble Codes

DM2 – Previously Active Diagnostic Trouble Codes

DM3 – Diagnostic Data Clear/Reset Of Previously Active DTCs

DM4 – Freeze Frame Parameters

DM11 – Diagnostic Data Clear/Reset of Active DTCs

DM25 – Expanded Freeze Frame

DM31 – DTC To Lamp Association

DM35 – Immediate Fault Status

Table 3-12 Diagnostic messages where content is provided by Dem

3.19.1 J1939 Freeze Frame and J1939 Expanded Freeze Frame

With J1939 enabled, the Dem supports two globally defined J1939 specific freezes in
addition to the environmental data described in chapter 3.10. Each DTC can be configured
individually to support freeze frame and/or expanded freeze frame, or none.

The J1939 (expanded) freeze frame data is stored when the DTC becomes active
(ConfirmedDTC  1) and is not updated if the DTC reoccurs.

These freeze frames are stored in addition to any configured ‘standard’ freeze frames but
they are not mapped into a UDS snapshot record.

3.19.2 Indicators

In addition to the ‘normal’ indicators (refer to 3.16) a J1939 related DTC may support up to
one of the J1939 specific indicators listed below.

> Red Stop Lamp (RSL)

> Amber Warning Lamp (AWL)

> Protect Lamp (PL)

These indicators use different behavior settings, as required for J1939. These settings are
valid for the indicators mentioned above:

> Continuous

> Fast Flash

> Slow Flash

Differently from the ‘normal’ AUTOSAR indicators, Dem_GetIndicatorStatus() returns a
prioritized result if multiple events request the same indicator with different behavior. E.g.
the PL is triggered at the same time as “Continuous” and “Fast Flash”, the behavior is
indicated as “Continuous”.

DTC and event suppression (refer to chapter 3.9.2) with DTC format set to J1939 the
configured indicator is not applied to the ECU indicator state. I.e. the API
Dem_GetIndicatorStatus() will return the same result whether DTCs are suppressed or

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

55 / 175

not. To match this behavior, the network management node ID related indicator status also
reports the indicator state of suppressed DTCs.

3.19.3 Clear DTC

In contrast to the clear process defined by UDS which provides the DTC itself or the group
of DTCs that shall be cleared, the J1939 Clear DTC command provides the DTC status
that must match the available J1939 DTCs to be cleared.

DTCs with the following DTC status can be cleared:

DTC Status

Active

TestFailed (Bit0) == 1
AND

ConfirmedDTC (Bit3) == 1

Previously Active

TestFailed (Bit0) == 0
AND

ConfirmedDTC (Bit3) == 1

Table 3-13 J1939 DTC Status to be cleared

Caution
Events without a DTC number cannot be cleared using the J1939 API as they do not
support the ConfirmedDTC status.

3.20 Clear DTC APIs

The clear DTC operations are implemented in full accordance with [1].

Please be aware that the <xxx>ClearDTC interfaces start an asynchronous clear process.
While one clear operation is in progress, other clear requests receive a
DEM_CLEAR_BUSY response (see chapters 6.2.4.27, 6.2.6.20 and 6.2.7.1 for details).

Caution
The Dem will reject new clear requests with DEM_CLEAR_BUSY until the final result of
an ongoing clear DTC has been retrieved (Figure 3-6).

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

56 / 175

Figure 3-6 Concurrent Clear Requests

 sd Clear DTC

Client 1 Client 2 Dem

Clear

Operation

<xxx>ClearDTC()

start()
:DEM_CLEAR_PENDING

*<xxx>ClearDTC()

:DEM_CLEAR_PENDING

<xxx>ClearDTC()

:DEM_CLEAR_BUSY

finish()

<xxx>ClearDTC()

:DEM_CLEAR_BUSY

<xxx>ClearDTC()

:DEM_CLEAR_OK

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

57 / 175

4 Integration

This chapter gives necessary information for the integration of the MICROSAR Dem into
an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the Dem contains the files which are described in the chapters 4.1.1 and
4.1.2:

4.1.1 Static Files

File Name Source
Code
Delivery

Object
Code
Delivery

Description

Dem.c


This is the source file of the Dem. It contains the
main functionality of the Dem.

Dem.h

 

This header file provides the Dem API functions for
BSW modules and the application. This file is
supposed to be included by client modules but not
by Dcm.

Dem_Dcm.h
 

This header file provides the Dem API functions for
the Dcm. This file is supposed to be included by
Dcm.

Dem_J1939Dcm.h
 

This header file provides the Dem API functions for
the J1939Dcm. This file is supposed to be included
by J1939Dcm.

Dem_Types.h
 

This header file contains all Dem data types. Do not
include this file directly, but include Dem.h instead.

Dem_Cbk.h

 

This header file contains callback functions intended
for the NvM module. Include this in the NvM
configuration for the declarations of the initialization
and notification functions.

Dem_Validation.h
 

This header file contains static configuration checks.
Inconsistent configuration settings will trigger #error
directives within this file.

Dem_Cdd_Types.h

 

This header file contains all types that are supposed
to be generated by the Rte.

In case no Rte is used, this file is included instead of
Rte_Dem_Type.h. Otherwise, this file is not used at
all.

Table 4-1 Static files

4.1.2 Dynamic Files

The dynamic files are generated by the configuration tool Cfg5.

File Name Description

Dem_Cfg.h This header file contains the configuration switches of the Dem.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

58 / 175

File Name Description

Dem_Lcfg.c This source file contains configuration values and tables of the Dem.

Dem_Lcfg.h This header file provides access functions to the Dem for the configuration
values and tables.

Dem_PBcfg.c This source file contains post-buildable configuration values/tables of the
Dem.

For easier handling, this file is created in pre-compile configurations as well. If
your build environment produces error messages due to this file not defining
any symbols, feel free to exclude it from the build.

Dem_PBcfg.h This header file provides access functions to the Dem for the post-buildable
configuration values and tables.

Dem_swc.arxml This AUTOSAR xml file is used for the configuration of the Rte. It contains the
information to get prototypes of callback functions offered by other
components.

Table 4-2 Generated files

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

59 / 175

4.2 Include Structure

Figure 4-1 Include structure

 class IncludeStructure

Dem.c

Dem.h

Dem_Cfg.h

Dem_Lcfg.c

Dem_Cbk.h

Dem_Types.h

SchM_Dem.h

Dem_Lcfg.h

FiM.h

Dcm.h NvM.h

Std_Types.h

MemMap.h

Rte_Dem.h

Rte_Dem_Type.h

Det.h

_Appl.h

Dem_Cdd_Types.h

Dem_PBcfg.c

Dem_PBcfg.h

Dem_Dcm.h Dem_J1939Dcm.h

vstdlib.h

EcuM_Error.h

Dem_Validation.h

Dlt.hJ1939Dcm.h J1939Nm.h

«include»
«include»

«include»

«include»
«include»

«include»

«include»
«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»
«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

60 / 175

4.3 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions – the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following table contains the memory section names and the compiler abstraction
definitions of the Dem and illustrates their assignment among each other.

Compiler Abstraction

Definitions

Memory Mapping

Sections

D
E

M
_
C

O
D

E

 D
E

M
_
C

O
N

S
T

 D
E

M
_
C

A
L
_

P
R

M

 D
E

M
_
A

P
P

L
_
C

O
N

S
T

 D
E

M
_
P

B
C

F
G

DEM_START_SEC_CODE

DEM_STOP_SEC_CODE


DEM_START_SEC_CONST_<size>

DEM_STOP_SEC_CONST_<size>
 

DEM_START_SEC_CALIB_<size>

DEM_STOP_SEC_CALIB_<size>
 

DEM_START_SEC_PBCFG

DEM_STOP_SEC_PBCFG
 

DEM_START_SEC_PBCFG_ROOT

DEM_STOP_SEC_PBCFG_ROOT
 

Table 4-3 Compiler abstraction and memory mapping, constant sections

Compiler Abstraction

Definitions

Memory Mapping

Sections

D
E

M
_
V

A
R

_
IN

IT

 D
E

M
_
V

A
R

_
N

O
IN

IT

 D
E

M
_
D

C
M

_
D

A
T
A

 D
E

M
_
N

V
M

_
D

A
T
A

 D
E

M
_
D

L
T

_
D

A
T
A

 D
E

M
_
A

P
P

L
_
D

A
T
A

 D
E

M
_
S

H
A

R
E

D
_
D

A
T
A

DEM_START_SEC_VAR_NO_INIT_<size>

DEM_STOP_SEC_VAR_NO_INIT_<size>
  

DEM_START_SEC_VAR_INIT_<size>

DEM_STOP_SEC_VAR_INIT_<size>
 

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

61 / 175

DEM_START_SEC_VAR_SAVED_ZONE0_<size>

DEM_STOP_SEC_VAR_SAVED_ZONE0_<size>
  

DCM diagnostic buffer (section depends on DCM
implementation)

  

Application or RTE buffer used in port communication
(section depends on configuration and port mapping)

  

Table 4-4 Compiler abstraction and memory mapping, variable sections

4.3.1 Copy Routines

By default, the Dem implementation uses the copy routines provided by the Vector
standard library (VStdLib). Its copy routines are aware of the Autosar Memory Mapping
feature, and will work independently from the chosen mapping.

If the Dem module is not integrated into a MICROSAR 4 environment, the VstdLib module
might not be available, or not be enabled to support Autosar Memory Mapping.

In this case, you can disable the use of VstdLib (Configuration option DemGeneral/
DemUseMemcopyMacros). The Dem provides a simple copy routine based on a for-loop,
which is used as default replacement for the VstdLib implementation.

If necessary, you can also replace this default implementation. To do so, simply provide a
specialized definition of the following macros, e.g. globally, or in a user-config file:

Dem_MemCpy_Macro(destination_ptr, source_ptr, length_in_byte)

Dem_MemSet_Macro(destination_ptr, value_byte, length_in_byte)

4.4 Critical Sections

The Dem uses the Critical Section implementation of the SchM.

4.4.1 Exclusive Area 0

DiagMonitor

Purpose:

Ensures data consistency between the Diagnostic Monitors and the Dem task.

Interfaces:

> SchM_Enter_Dem_DEM_EXCLUSIVE_AREA_0

> SchM_Exit_Dem_DEM_EXCLUSIVE_AREA_0

Runtime:

Short runtime; The runtime will increase if J1939 nodes are used.

Dependency:

> Dem_MainFunction()

> Dem_ReportErrorStatus()

> Dem_SetEventStatus()

> Dem_ResetEventStatus()

> Dem_ResetEventDebounceStatus()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

62 / 175

DiagMonitor

> Dem_PrestoreFreezeFrame()

> Dem_ClearPrestoredFreezeFrame()

> Dem_GetIndicatorStatus()

> Dem_SetWIRStatus()

> Dem_SetEventAvailable()

> Dem_SetDTCSuppression()

> Dem_SetEventSuppression()

> Dem_RepIUMPRFaultDetect()1

> Dem_RepIUMPRDenLock()1

> Dem_RepIUMPRDenRelease()1

> Dem_SetIUMPRDenCondition()1

Recommendation:

This critical section is used from Dem_ReportErrorStatus() which has an unknown call context (it
may be called from any BSW and CDD, and even before the system is fully initialized).

Therefore this critical section cannot be mapped to OS resources.

Table 4-5 Exclusive Area 0

1
 API may not be part of the delivery as its availability depends on the DEM license.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

63 / 175

4.4.2 Exclusive Area 1

StateManager

Purpose:

Ensures data consistency in case of preempted execution between application state managers
and Dem task.

Interfaces:

> SchM_Enter_Dem_DEM_EXCLUSIVE_AREA_1

> SchM_Exit_Dem_DEM_EXCLUSIVE_AREA_1

Runtime:

short runtime, sparse usage

Dependency:

> Dem_MainFunction()

> Dem_SetOperationCycleState()

> Dem_SetEnableCondition()

> Dem_SetStorageCondition()

> Dem_DcmDisableDTCSetting()

> Dem_DcmEnableDTCSetting()

> Dem_SetPfcCycle()1

Recommendation:

No recommendation.

Table 4-6 Exclusive Area 1

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

64 / 175

4.4.3 Exclusive Area 2

DcmApi

Purpose:

Protects global state data and values used to track Dcm related tasks from concurrent
modification.

Interfaces:

> SchM_Enter_Dem_DEM_EXCLUSIVE_AREA_2

> SchM_Exit_Dem_DEM_EXCLUSIVE_AREA_2

Runtime:

short runtime, sparse usage

Dependency:

> Dem_MainFunction()

> Dem_DcmClearDTC()

> Dem_J1939DcmClearDTC()

> Dem_DcmCancelOperation()

> Dem_DcmReadDataOfPID01()1

> Dem_DcmReadDataOfPID21()1

> Dem_EnablePermanentStorage()1

Recommendation:

No recommendation.

Table 4-7 Exclusive Area 2

4.5 NVM Integration

In general, the Dem module is designed to work with an Autosar NvM to provide non-
volatile data storage.

It is expected that all NV blocks used by the Dem are configured with the parameters
detailed in the following chapters:

> RAM buffer

> Initialization method: ROM element or initialization function

> Single block job end notification

> Enabled for both WriteAll and ReadAll

When using a non-Autosar NV manager, please also refer to the Autosar SWS of the NvM
module for more details on the expected behavior.

1
 API may not be part of the delivery as its availability depends on the DEM license.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

65 / 175

4.5.1 NVRAM Demand

All non-volatile data blocks used by the Dem must be configured to match the size of the
underlying type. Since the actual size depends on compiler settings and platform
properties, this size cannot be calculated by the configuration tool.

To find the correct data structure sizes, you can use temporary code to perform a ‘sizeof’
operation on the data types involved, or check your linker map file if it contains this kind of
data.

The MICROSAR NvM implementation supports a feature to verify the correct configuration
of block sizes. It is strongly recommended to enable this feature; it also provides a very
easy way to find out the correct block sizes.

Table 4-8 lists the types used by the different data elements.

NvRam Item RAM buffer symbol Type Comment

Admin Data Dem_Cfg_AdminData Dem_Cfg_AdminDataType -

Event Data Dem_Cfg_StatusData Dem_Cfg_StatusDataType -

Debounce Data Dem_Cfg_DebounceData Dem_Cfg_DebounceDataType Only if de-
bounce counter
storage is
enabled

Available Data Dem_Cfg_EventAvailableData Dem_Cfg_EventAvailableDataType Only if
DemAvailabilitySt
orage is enabled

Primary
Memory

Dem_Cfg_PrimaryEntry_0

…

Dem_Cfg_PrimaryEntry_N

Dem_Cfg_PrimaryEntryType -

Secondary
Memory

Dem_Cfg_SecondaryEntry_0

…

Dem_Cfg_SecondaryEntry_N

Dem_Cfg_PrimaryEntryType Only if secondary
memory is
enabled

Table 4-8 NvRam blocks

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

66 / 175

4.5.2 NVRAM Initialization

The NVM provides a means to initialize RAM buffers, if the backing storage cannot restore
a preserved copy – e.g. because none has ever been stored yet.

For this, the Dem provides initialization functions and default ROM data. The Init functions
are declared in Dem_Cbk.h, the ROM constants are declared in

NvRam Item Initialization

Admin Data Call Dem_NvM_InitAdminData()

Event Data Call Dem_NvM_InitStatusData()

Debounce Data Call Dem_NvM_InitDebounceData()

Available Data Call Dem_NvM_InitEventAvailableData()

Primary Memory Copy initialization data from Dem_MemoryEntryInit

Secondary Memory Copy initialization data from Dem_MemoryEntryInit

Table 4-9 NvRam initialization

Note
Dem_Cfg_PrimaryEntry_0… Dem_Cfg_PrimaryEntry_N depend on the number of
primary entries stored in the ECU. (e.g. 0 … 19 in case of 20 primary entries). The
same applies to the secondary memory.

4.5.2.1 Controlled Re-initialization

Some use-cases require the total reset of all stored data. A simple way for that is to
change the Dem configuration id (DemGeneral/DemCompiledConfigId) in the configuration
tool.

This is especially useful during development, when a different software configuration is
loaded while the NV contents still remain from an older software version. Please be aware
that changing the Dem configuration is likely to require resetting the NV data.

If a different configuration id is detected during Dem_Init(), the Dem will completely

reinitialize all data. This can be helpful if you do not want to use the similar feature
provided by NvM.

In post-build configurations, the configuration Id will change automatically to ensure the NV
data is cleared if configuration changes invalidate the stored NV data.

Caution
Re-initialization is no replacement for ClearDtc. It will not respect any requirements
regarding the clear command.

4.5.2.2 Common Errors

Sadly the Dem software cannot cope with all possible inconsistent NV data. In some
situations the NV data must be managed in parts from outside the Dem to ensure data
consistency.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

67 / 175

 Initial initialization:
On the very first startup, the Dem will re-initialize the NV data. Unless this data is
actually persisted within the NV-Ram, the Dem will keep re-initializing all data on
startup.
You must allow the Dem to initialize its data, which requires at least one normal
shutdown.

Incomplete recovery:
After changing the Dem configuration, the contents currently stored in the NV memory
are internally inconsistent for the Dem module. This can happen when applying a new
Dem installation on an existing hardware, or when changing the Dem configuration
during development.
In most cases, the compiled config Id will suffice to re-initialize old content, but in some
cases the NvM will itself re-initialize some of the Dem blocks – but not all. In this case,
the compiled config Id does not work reliably.

4.5.3 Expected NVM Behavior

Figure 4-2 NvM behavior

The key assumptions about NVM behavior are depicted in Figure 4-2.

 The NVM initialization will start after Dem_PreInit() was called.

 Before Dem_Init() is called, all blocks used by Dem are either restored from non-

volatile memory, or re-initialized by calling the respective initialization function or
copying the initialization ROM data.

 If a block has been re-initialized, the NVM will not need a separate call to

NvM_SetRamBlockStatus() to retain the changed data later on.

 After Dem_Shutdown() is called, all blocks marked as modified by Dem or due to re-

initialization are retained in non-volatile memory.

 stm NVRAM Handling

Startup Pre-Initialization Run State Shutdown

Immediate NvRam write == ON Immediate NvRam write == OFF

Startup

DEM Pre-Initialization

notes

-> Dem_PreInit()

Nv M Initialization

notes

-> NvM_ReadAll()

Block

invalid?

Initialize Block

notes

Either option:

 call initialization function

 copy ROM data

DEM

Initialization

notes

-> Dem_Init()

Ram-Block status:

modified

notes

NvM_SetRamBlockStatus

loop all Bocks used by Dem

Operate
Dem Shutdown

notes

-> Dem_Shutdown()

Nv M data retention

notes

-> NvM_WriteAll()

Block

modified?

Write data to

NVRAM

Ram-Block status:

unmodified

loop all blocks used by Dem

Abort

Shutdown

wait Nv M job notification

notes

-> Dem_NvM_JobFinished

[Yes]

[!PostRunRequested]

[data has changed]

/NvM_SetRamBlockStatus

[JobResult ==

NVM_REQ_OK]

[data has changed]

/NvM_WriteBlock

[RAM intact]

[valid]

[Invalid]

[RAM destroyed]

[JobResult !=

NVM_REQ_OK]

/NvM_SetRamBlockStatus

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

68 / 175

 Before Dem_Init() is called after a Dem_Shutdown(), all data has either been

restored again, or is still valid.

 After the Dem has requested an immediate write block, the NvM is expected to notify

the result by means of callback Dem_NvM_JobFinished().

Caution
The Dem cannot keep track of NV-Ram blocks that have not been retained in non-
volatile memory if the shutdown process is aborted.

After Dem_Init() is called, the Dem assumes the NVM will not need a trigger to store

a block which has changed before Dem_Shutdown() was called.

Due to this, the Dem will also not instruct the NVM to immediately write changed

environment data from before Dem_Shutdown().

Caution
The Dem tries to detect completely uninitialized NV-Ram data by means of a ‘magic
pattern’ in the AdminData block.

Still, the Dem is unable to detect only partially initialized data. So if your implementation
of the NVM module only initializes some of the Dem’s non-volatile data, the results are
undefined.

Caution
Even when some NV data is stored during runtime of the Dem module, it is not optional
to store the remaining data as well.

The shutdown phase must always be finished before powering down the ECU. It is not
sufficient to simply drop the power supply.

Caution
If the NV data storage during runtime was not successful the Dem marks the NVRAM
block as to be considered for shutdown NVRAM storage. Hence it is mandatory to
configure all Dem NVRAM blocks to be processed during NvM_WriteAll.

4.5.4 Flash Lifetime Considerations

If you need to safe on writes to the NVRAM, e.g. because your backing storage is
implemented as Flash EEPROM emulation, be aware of your options available to reduce
Dem data writes.

NV synchronization takes place at least at shutdown, but due to configuration or explicit
request the NV data can be synchronized during runtime as well. In that case, multiple

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

69 / 175

writes to the backing storage can happen during a single power cycle, increasing wear on
the backing storage. Please refer to Table 3-8 for details regarding the write frequency.

4.6 Rte Integration

4.6.1 Runnable Entities

The Dem has been implemented in a way that allows all API to safely preempt each other.
So, all runnables can be called from fully preemptive tasks.

Runnable entity Remarks

Dem_MainFunction The Dem_MainFunction Runnable entity corresponds to
the Dem cyclic task function. As such, it has to be
mapped to a task.

Most notification and callout functions are called from this
Runnable

Dem_SetEventStatus
Dem_ResetEventStatus
Dem_GetEventStatus
Dem_GetEventFailed
Dem_GetEventTested
Dem_GetDTCOfEvent
Dem_GetEventEnableCondition
Dem_GetEventFreezeFrameData
Dem_GetEventExtendedDataRecord
Dem_GetFaultDetectionCounter
Dem_SetEventSuppression
Dem_PrestoreFreezeFrame
Dem_ClearPrestoredFreezeFrame

These runnables should not be mapped to a task for
efficiency reasons.

Please note that these API are implemented reentrant for
different Pports, so clients do not need to synchronize
these calls.

Dem_SetOperationCycleState

Dem_SetEnableCondition

Dem_SetStorageCondition

Dem_GetIndicatorStatus

Dem_GetEventMemoryOverflow

Dem_PostRunRequest

Dem_SetEventSuppression

Dem_SetDTCSuppression

Table 4-10 Dem runnable entities

4.6.2 Application Port Interface

Application software will communicate with the Dem through port interfaces only. The Dem
port interfaces all use port defines arguments to abstract from internal object handles.
Please refer to general Autosar documentation (not in scope of this document).

The EventId is available through some notification port operations, though a typical
application is strongly advised not to rely on the handle of a Dem event for any reason.
Instead, use port mapping to use a specific event and let the Rte handle the details.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

70 / 175

4.6.3 DcmIf

The Dcm uses a dedicated port interface of type ‘DcmIf’ to communicate to the Rte in
which contexts it calls Dem APIs. This is a necessary mechanism to identify e.g. OS tasks
on which Dem APIs are called.

The port prototype provided by Dem – simply called ‘Dcm’ – needs to be connected to the
equivalent port prototype required by Dcm. Please make sure to verify your configuration
accordingly. Failing to do so might result in missing serialization resulting in data
corruption.

Note
If the MICROSAR 4 Dem is used in a different environment than pure AUTOSAR4, it
might not be possible to use Rte port mapping for the DcmIf port interface.

E.g. AUTOSAR before release 4 did not allow connecting service interfaces with other
service interfaces.

In those cases it usually is sufficient to map the Dcm task functions to the same task as

the Dem task function (Dem_MainFunction()).

Other measures may be possible, but are subject to the specific conditions of the run-
time setup. Since the details also depend on the implementation of notification function
(functions called by Dem which are implemented in application code), an exhaustive
suggestion is not possible in the scope of this document.

4.7 Post-Run requirements

Before shutting down the Dem by calling Dem_Shutdown() the runtime environment

needs to verify that the Dem is in a consistent state.

Normally, this can be achieved within Dem_Shutdown(), but in some cases the Dem

needs to wait for an NVRAM write operation to complete before the cleanup operations
can be performed. This will only be possible if immediate writes are activated.

For this reason, the Dem must be queried via the API Dem_PostRunRequested() to

make sure there are no pending write operations that block the shutdown process.
Otherwise the Dem will notify this state to the Det (if Development Error Detection is
enabled) and some event related data will be lost. E.g. a cleared event could be present
again after the ECU restarts.

The runtime environment should make sure that monitors do not report test results to the

Dem after the result of Dem_PostRunRequested() is evaluated, because this would

lengthen the time the Dem requires in PostRun.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

71 / 175

Note
If you want to test for the post run condition, the Dem will enter this state only if the
same data is modified again while the NVRAM write is pending. This second
invalidation of the data block can only be reported to NvM after the write completes.

4.8 Run-Time limitation

In order to reduce run time ‘spikes’, the Dem supports a simple limiter for clearing the fault
memory. In effect, the Dem can be instructed to only delete a limited number of DTCs
during a single task cycle. This will cause the operation to take much longer, but will
distribute the effort through multiple task cycles.

Caution
Combined DTCs must be cleared ‘en bloc’, so the Dem will clear combined events
even when it exceeds the allowed limit. Thus, the sum of the largest combined event
and the limiter value can be cleared during a single task cycle.

A suggestion for the ‘correct’ setting of the clear limit, or even if the feature should be used
in a given set-up cannot be given in the scope of this document. It remains in the
responsibility of the integrator to identify run-time constraints that require its use.

4.9 Split main function

The Dem currently only provides a single task function. In case the features ‘time based
debouncing’ and ‘OBD’ are not enabled, the Dem main function does not drive a timer. In
that case, the configured cycle time is irrelevant for the function of the Dem module.

This allows mapping the Dem task function on a lower priority task, or a background task.

Since the Dcm APIs are also served from the Dem task function, this can affect the Dcm
response times. To prevent unwanted NRC 78 (response pending) responses from the
Dcm module, make sure the Dem main function is not stalled by your choice of task
mapping.

As soon as the Dem configuration requires timer handling (e.g. for time based de-
bouncing), the Dem main function must be called with the configured cycle time.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

72 / 175

5 Measurement and Calibration

Measurement and calibration is a powerful workflow during ECU development phase
which allows to monitor (e.g. via XCP) module internal variables and also to modify the
configuration so the behavior will be changed. These changes in the module configuration
can be done without the need to build new software which is flashed into the ECU.

5.1 Measurable Data

Measurable objects are not intended to be modified as they may have direct influence to
DEM state machines and therefore might result in an undefined behavior. So their current
value shall be read out only.

Please not that not all elements might be available – disabled features usually also disable
some of the RAM tables.

The following tables describe the measurable objects:

5.1.1 Dem_Cfg_StatusData

Dem_Cfg_StatusData

Measureable Item Base Type Description

FirstFailedEvent uint16 The event id which was first reported as failed (FDC 127).

FirstConfirmedEvent uint16 The event id which has confirmed first.

MostRecentFailedEvent uint8 The event id which was reported as failed (FDC 127)
most recently.

MostRecentConfmdEvent uint16 The event id which has confirmed most recently.

TripCount[] uint8 The number of trips for each event.

EventStatus[] uint8 The current UDS status for each event. Please note that
the actual DTC status may differ from the event status.

Table 5-1 Measurement item Dem_Cfg_StatusData

5.1.2 Dem_Cfg_EventDebounceValue

Dem_Cfg_EventDebounceValue[]

Measureable Item Base Type Description

Dem_Cfg_EventDebounceValue[] uint16 Current value of the de-bounce counter or
time, depending on selected algorithm.

Table 5-2 Measurement item Dem_Cfg_EventDebounceValue

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

73 / 175

5.1.3 Dem_Cfg_EventMaxDebounceValues

Dem_Cfg_EventMaxDebounceValues[]

Measureable Item Base Type Description

Dem_Cfg_EventMaxDebounceValues[] uint16 Maximum value of the de-bounce counter or
time in current operation cycle, depending on
the selected algorithm.

Table 5-3 Measurement item Dem_Cfg_EventMaxDebounceValues[]

5.1.4 Dem_PrimaryEntry_<Number>

Dem_PrimaryEntry_<Number>

Measureable Item Base Type Description

Timestamp uint32 Entry/ update time of the primary entry slot. Used to provide
a chronology order between the primary entry slots.

AgingCounter uint16 The current aging count of the event (refer to 3.10.1).

EventId uint16 The event id which is stored in this primary entry slot.

MaxDebounceValue uint16 The maximum de-bounce value of the respective event since
last fault memory clear.

OccurrenceCounter uint8 refer to 3.10.1

SnapshotData[][] uint8 refer to 3.9

ExtendedData[][] uint8 refer to 3.9

ExtendedHeader uint8 Bit coded information which extended data record is
currently stored.

SnapshotHeader uint8 If DEM is configured for calculated snapshots: bit coded
information which snapshot record is currently stored.

If DEM is configured for configured snapshots: counter which
indicates the current number of stored snapshot records.

Table 5-4 Measurement item Dem_PrimaryEntry_<Number>

5.2 Post-Build Support

Please also refer to chapter 7.3 for configuration aspects of the post-build features.

5.2.1 Initialization

During the startup of the ECU, the Dem expects to receive a pointer to preliminary
configuration data in Dem_PreInit(). Typically the final ECU configuration is determined
after the NV subsystem is available, but the Dem still needs access to the de-bouncing
configuration of events reported prior to full initialization.

The final configuration data can optionally be passed to Dem_Init().

Both pointers are passed by the MICROSAR EcuM based on the post-build configuration.
If no MICROSAR EcuM is used, the procedure of how to find the proper initialization
pointers is out of scope of this document.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

74 / 175

Caution
The final configuration may not introduce change to the de-bouncing configuration of
events reported prior to full initialization.

The new configuration data cannot be applied in retrospect, so the state of these
events could become inconsistent, e.g. FDC > 127, and TestFailed == 0.

The Dem module will verify the configuration data before accepting it to initialize the
module. If this verification fails, an EcuM error hook (see chapter 6.3.1) is called with an
error code according to Table 5-5.

Error Code Reason

ECUM_BSWERROR_NULLPTR Initialization with a null pointer.

ECUM_BSWERROR_MAGICNUMBER Magic pattern check failed. This pattern is
appended at the end of the initialization root
structure. An error here is a strong indication of
random data, or a major incompatibility
between the code and the configuration data.

ECUM_BSWERROR_COMPATIBILITYVERSION The configuration data was created by an
incompatible generator. This is also tested by
verification of a ‘magic’ pattern, so initialization
with random data can also cause this error
code.

Table 5-5 Error Codes possible during Post-Build initialization failure

If no MICROSAR EcuM is used, this error hooks and the error code constants have to be
provided by the environment.

1. If the pointer equals NULL_PTR, initialization is rejected.

2. If the initialization structure does not end with the correct magic number it is rejected.

3. If the initialization structure was created by an incompatible generator version it is
rejected (starting magic number check)

Caution
The verification steps performed during initialization are neither intended nor sufficient
to detect corrupted configuration data. They are intended only to detect initialization
with a random pointer, and to reject data created by an incompatible generator version.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

75 / 175

5.2.2 Post-Build Loadable

Vector also provides a tool based approach superior to calibration. While calibration only
modifies existing configuration tables, the Post-Build Loadable approach also allows to
validate the configuration change preventing misconfiguration, and to use compacted table
structures – with benefits to run-time and ROM usage.

Note
We do not support adding (or removing) of Events to /from an existing configuration
during Post-Build. If you have ‘inactive’ monitors that are enabled by calibration or
other means, statically set up the Event for this monitor and use the API
Dem_SetEventAvailable() to control event availability.

5.2.3 Post-Build Selectable

The MICROSAR Identity Manager (refer to [9]) is an implementation of the AUTOSAR 4
post-build selectable concept. It allows the ECU manufacturer to include several DEM
configurations within one ECU. With post-build selectable and the Identity Manager the
ECU variants are downloaded within the ECUs non-volatile memory (e.g. flash) at ECU
build time. Post-build selectable does not allow modification of DEM aspects after ECU
build time.

Note
Please refer to the basic software module description (bswmd) file accompanying your
delivery to find which parameters support post-build selectable.

This information is also displayed in the DaVinci Configurator 5 tool.

Note
We do not support adding (or removing) of Events to / from an existing configuration. If
you have monitors that are enabled only in some configurations, set up the Event for
this monitor and use the configuration parameter DemEventAvailableInVariant, or API
Dem_SetEventAvailable() to control event availability.

It is not supported to disable all events in all variants using parameter
DemEventAvailableInVariant.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

76 / 175

6 API Description

For an interfaces overview please see Figure 2-2.

6.1 Type Definitions

The types defined by the Dem are described in [1].

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

77 / 175

6.2 Services provided by Dem

Basic Knowledge
Call context means ‘who calls the API’. Typically these are rooted in an OS task
function or interrupt service routine and contain the call stack up to the API in question.

Call contexts are important to analyze possible data corruption that can occur due to
simultaneous calls from different call contexts. This is not restricted to interruption due
to preemptive OS tasks – A call to an API function from within a notification or callback
function also is a different call context.

Typically not all possible call sequences can be implemented safe for data consistency
with reasonable effort, and valid call contexts might be restricted as a consequence.

6.2.1 Dem_GetVersionInfo()

Prototype

void Dem_GetVersionInfo (Std_VersionInfoType* versioninfo)

Parameter

versioninfo Pointer to where to store the version information of this module.

Return code

void N/A

Functional Description

Returns the version information of this module.

The version information is decimal coded.

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-1 Dem_GetVersionInfo()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

78 / 175

6.2.2 Dem_MainFunction()

Prototype

void Dem_MainFunction (void)

Parameter

N/A N/A

Return code

void N/A

Functional Description

Processes all not event based Dem internal functions.

This function implements run-time heavy tasks. Make sure to allow it has a sufficient time slot for worst
case execution scenarios.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-2 Dem_MainFunction()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

79 / 175

6.2.3 Interface EcuM

6.2.3.1 Dem_PreInit()

Prototype

void Dem_PreInit (const Dem_ConfigType* ConfigPtr)

Parameter

ConfigPtr Pointer to preliminary configuration data

Return code

void N/A

Functional Description

Initializes the internal states necessary to process events reported by BSW-modules.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> The ConfigPtr is used only in post-build variants.

> If ConfigPtr is not needed, it is not checked to be non-NULL

Expected Caller Context

> This function may not interrupt any other Dem function.

Table 6-3 Dem_PreInit()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

80 / 175

6.2.3.2 Dem_Init()

Prototype

void Dem_Init (const Dem_ConfigType* ConfigPtr)

Parameter

ConfigPtr Pointer to configuration data (Since version 7.00.00)

Return code

void N/A

Functional Description

Initializes or re-initializes the Dem.

If NULL is passed, the configuration passed to Dem_PreInit() will be used instead.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> The ConfigPtr is used only in post-build variants.

> The pointer is not checked to be non-NULL

Expected Caller Context

> This function may not interrupt any other Dem function.

Table 6-4 Dem_Init()

6.2.3.3 Dem_InitMemory()

Prototype

void Dem_InitMemory (void)

Parameter

N/A N/A

Return code

void N/A

Functional Description

- Extension to Autosar –

Use this function to initialize static RAM variables in case the start-up code is not used to initialize RAM.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

Expected Caller Context

> This function may not interrupt any other Dem function.

Table 6-5 Dem_InitMemory()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

81 / 175

6.2.3.4 Dem_Shutdown()

Prototype

void Dem_Shutdown (void)

Parameter

N/A N/A

Return code

void N/A

Functional Description

Shutdown Dem functionality.

The function freezes the Dem data structures. As a result the Dem functionality is no longer available, but
the Dem non-volatile data can be stored in non-volatile memory.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Most pending asynchronous tasks will get lost when this function is called. The only
exceptions are pending event status changes. These remain queued according to [1].

Expected Caller Context

> This function may not interrupt any other Dem function

Table 6-6 Dem_Shutdown()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

82 / 175

6.2.4 Interface SWC and CDD

6.2.4.1 Dem_SetEventStatus()

Prototype

Std_ReturnType Dem_SetEventStatus (Dem_EventIdType EventId, Dem_EventStatusType
EventStatus)

Parameter

EventId Identification of an event by assigned EventId.

EventStatus Monitor test result

DEM_EVENT_STATUS_PASSED: monitor reports a qualified passed test
result

DEM_EVENT_STATUS_FAILED: monitor reports a qualified failed test result

DEM_EVENT_STATUS_PREPASSED: monitor reports a passed test result

DEM_EVENT_STATUS_PREFAILED: monitor reports a failed test result

Return code

Std_ReturnType E_OK: set of event status was successful

E_NOT_OK: set of event status failed or could not be accepted (e.g.: the
operation cycle configured for this event has not been started, an according
enable condition has been disabled)

Functional Description

API for SWCs to report a monitor result to the Dem.

Particularities and Limitations

> This function is reentrant (for different EventId).

> This function is not reentrant with the other operations defined in DiagnosticMonitor (for the
same EventId) (see Table 6-86)

> This function is synchronous.

Expected Caller Context

> This function can be called from any context, with limitations.

Table 6-7 Dem_SetEventStatus()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

83 / 175

6.2.4.2 Dem_ResetEventStatus()

Prototype

Std_ReturnType Dem_ResetEventStatus (Dem_EventIdType EventId)

Parameter

EventId Identification of an event by assigned EventId.

Return code

Std_ReturnType E_OK: reset of event status was successful

E_NOT_OK: reset of event status failed or is not allowed, because the event
is already tested in this operation cycle

Functional Description

Resets the event failed status of an event.

Particularities and Limitations

> This function is reentrant (for different EventId).

> This function is not reentrant with the other operations defined in DiagnosticMonitor (for the
same EventId) (see Table 6-86)

> This function is synchronous.

Expected Caller Context

> This function can be called from any context, with limitations.

Table 6-8 Dem_ResetEventStatus()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

84 / 175

6.2.4.3 Dem_ResetEventDebounceStatus()

Prototype

Std_ReturnType Dem_ResetEventDebounceStatus() (Dem_EventIdType EventId,
Dem_DebounceResetStatusType DebounceResetStatus)

Parameter

EventId Identification of an event by assigned EventId.

DebounceResetStatus Select the action to take

Return code

Std_ReturnType E_OK: The request was processed successfully

E_NOT_OK: The request was rejected

Functional Description

SWC API to control the Dem internal event de-bouncing.

Depending on DebounceResetStatus and the EventId's configured debouncing algorithm, this API performs
the following:

> Time Based Debouncing

> DEM_DEBOUNCE_STATUS_FREEZE
If the de-bounce timer is active, it is paused without modifying its current value. Otherwise this has
no effect. The timer will continue if the monitor reports another PREFAILED or PREPASSED in the
same direction.

> DEM_DEBOUNCE_STATUS_RESET
The de-bounce timer is stopped and its value is set to 0.

> Counter Based Debouncing

> DEM_DEBOUNCE_STATUS_FREEZE:
This has no effect.

> DEM_DEDOUNCE_STATUS_RESET:
This will set the current value of the debounce counter back to 0.

> Monitor Internal Debouncing

> The API returns E_NOT_OK in either case.

Particularities and Limitations

> This function is reentrant (for different EventId).

> This function is not reentrant with the other operations defined in DiagnosticMonitor (for the
same EventId) (see Table 6-86)

> This function is synchronous.

Expected Caller Context

> This function can be called from any context, with limitations.

Table 6-9 Dem_ResetEventDebounceStatus()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

85 / 175

6.2.4.4 Dem_PrestoreFreezeFrame()

Prototype

Std_ReturnType Dem_PrestoreFreezeFrame (Dem_EventIdType EventId)

Parameter

EventId Identification of an event by assigned EventId.

Return code

Std_ReturnType E_OK: Freeze frame pre-storage was successful

E_NOT_OK: Freeze frame pre-storage failed

Functional Description

Captures the freeze frame data for a specific event.

Particularities and Limitations

> This function is reentrant (for different EventId).

> This function is not reentrant with the other operations defined in DiagnosticMonitor (for the
same EventId) (see Table 6-86)

> This function is synchronous.

> The function can have significant run-time.

> If the call to this function coincides with the event storage on the task function, the Dem might
capture a current data set instead of using the pre-stored data.

Expected Caller Context

> This function can be called from any context, with limitations.

Table 6-10 Dem_PrestoreFreezeFrame()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

86 / 175

6.2.4.5 Dem_ClearPrestoredFreezeFrame()

Prototype

Std_ReturnType Dem_ClearPrestoredFreezeFrame (Dem_EventIdType EventId)

Parameter

EventId Identification of an event by assigned EventId.

Return code

Std_ReturnType E_OK: Clear pre-stored freeze frame was successful

E_NOT_OK: Clear pre-stored freeze frame failed

Functional Description

Clears a pre-stored freeze frame of a specific event.

Particularities and Limitations

> This function is reentrant (for different EventId).

> This function is not reentrant with the other operations defined in DiagnosticMonitor (for the
same EventId) (see Table 6-86)

> This function is synchronous.

> If the call to this function coincides with the event storage on the task function, the Dem might
use the pre-stored data set instead of discarding it.

Expected Caller Context

> This function can be called from any context, with limitations.

Table 6-11 Dem_ClearPrestoredFreezeFrame()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

87 / 175

6.2.4.6 Dem_SetOperationCycleState()

Prototype

Std_ReturnType Dem_SetOperationCycleState (uint8 OperationCycleId,
Dem_OperationCycleStateType CycleState)

Parameter

OperationCycleId Identification of operation cycle, like power cycle or driving cycle.

CycleState New operation cycle state: (re-)start or end

DEM_CYCLE_STATE_START: start a stopped cycle or restart an active cycle

DEM_CYCLE_STATE_END: stop an active cycle

Return code

Std_ReturnType E_OK: set of operation cycle was successful

E_NOT_OK: set of operation cycle failed

Functional Description

This function reports a started or stopped operation cycle to the Dem.

The state change will set TestNotCompletedThisOperationCycle bits for all events using OperationCycleId
as operation cycle. Also all passive events using OperationCycleId as aging or healing cycle will increase
their respective counter and can heal or age.

It is allowed to call this run in pre-initialized mode to start the operation cycle of BSW events before full
initialization.

Since all these operations are computationally intensive, this function will not immediately complete but
postpone the work to the Dem task. Events that use OperationCycleId as operation cycle still use the last
known state until then.

Particularities and Limitations

> This function is reentrant (for different OperationCycleId).

> This function is synchronous.

Expected Caller Context

> This function can be called from any context, with limitations.

Table 6-12 Dem_SetOperationCycleState()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

88 / 175

6.2.4.7 Dem_GetEventStatus()

Prototype

Std_ReturnType Dem_GetEventStatus (Dem_EventIdType EventId,
Dem_EventStatusExtendedType* EventStatusExtended)

Parameter

EventId Identification of an event by assigned EventId.

EventStatusExtended UDS DTC status byte of the requested event.

If the return value of the function call is E_NOT_OK, this parameter does not
contain valid data.

Return code

Std_ReturnType E_OK: get of event status was successful

E_NOT_OK: get of event status failed

Functional Description

Gets the current extended event status of an event.

Particularities and Limitations

> This function is reentrant (for different EventId).

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-13 Dem_GetEventStatus()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

89 / 175

6.2.4.8 Dem_GetEventFailed()

Prototype

Std_ReturnType Dem_GetEventFailed (Dem_EventIdType EventId, Boolean*
EventFailed)

Parameter

EventId Identification of an event by assigned EventId.

EventFailed TRUE – Last Failed

FALSE – not Last Failed

Return code

Std_ReturnType E_OK: get of “EventFailed” was successful

E_NOT_OK: get of “EventFailed” was not successful

Functional Description

Gets the failed status of an event.

Particularities and Limitations

> This function is reentrant (for different EventId).

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-14 Dem_GetEventFailed()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

90 / 175

6.2.4.9 Dem_GetEventTested()

Prototype

Std_ReturnType Dem_GetEventTested (Dem_EventIdType EventId, Boolean*
EventTested)

Parameter

EventId Identification of an event by assigned EventId.

EventTested TRUE – event tested this cycle

FALSE – event not tested this cycle

Return code

Std_ReturnType E_OK: get of event state “tested” successful

E_NOT_OK: get of event state “tested” failed

Functional Description

Gets the tested status of an event.

Particularities and Limitations

> This function is reentrant (for different EventId).

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-15 Dem_GetEventTested()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

91 / 175

6.2.4.10 Dem_GetDTCOfEvent()

Prototype

Std_ReturnType Dem_GetDTCOfEvent (Dem_EventIdType EventId, Dem_DTCFormatType
DTCFormat, uint32* DTCOfEvent)

Parameter

EventId Identification of an event by assigned EventId.

DTCFormat Defines the output-format of the requested DTC value.

DEM_DTC_FORMAT_UDS: output format shall be UDS

DEM_DTC_FORMAT_OBD: output format shall be OBD

DEM_DTC_FORMAT_J1939: output format shall be J1939

DTCOfEvent Receives the DTC value in respective format returned by this function. If the
return value of the function is other than E_OK this parameter does not
contain valid data.

Return code

Std_ReturnType E_OK: get of DTC was successful

E_NOT_OK: the call was not successful

E_NO_DTC_AVAILABLE: there is no DTC

Functional Description

Provides the DTC number for the given EventId.

Particularities and Limitations

> This function is reentrant (for different EventId).

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-16 Dem_GetDTCOfEvent()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

92 / 175

6.2.4.11 Dem_GetEventAvailable()

Prototype

Std_ReturnType Dem_GetEventAvailable (Dem_EventIdType EventId, Boolean
*AvailableStatus)

Parameter

EventId Identification of an event by assigned EventId.

AvailableStatus Receives the current availability status:

TRUE: Event is ‘available’
FALSE: Event is ‘not available’

Return code

Std_ReturnType E_OK: Request processed successfully

E_NOT_OK: Invalid parameters passed to the function (only if Det is enabled).

Functional Description

This API returns the current availability state of an event (also see Dem_SetEventAvailable())

It is valid to call this API for events that have been set to unavailable.

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

> Conditional [DemAvailabilityStorage == false]: This API may be called before full initialization
(after Dem_PreInit).

Expected Caller Context

> This function can be called from any context, with limitations.

Table 6-17 Dem_GetEventAvailable()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

93 / 175

6.2.4.12 Dem_SetEnableCondition()

Prototype

Std_ReturnType Dem_SetEnableCondition (uint8 EnableConditionID, Boolean
ConditionFulfilled)

Parameter

EnableConditionID This parameter identifies the enable condition.

ConditionFulfilled This parameter specifies whether the enable condition assigned to the
EnableConditionID is fulfilled (TRUE) or not fulfilled (FALSE).

Return code

Std_ReturnType E_OK: the enable condition could be set successfully

E_NOT_OK: the setting of the enable condition failed

Functional Description

Sets an enable condition.

Each event may have assigned several enable conditions. Only if all enable conditions referenced by the
event are fulfilled the event will be processed in Dem_SetEventStatus(), Dem_ReportErrorStatus() and
during time based de-bouncing.

Depending on configuration, enabling an enable condition can be deferred to the Dem task. Enable
condition changes of the same enable condition can be lost if they change faster than the cycle time of the
Dem main function. See chapter 3.7 for further details.

Particularities and Limitations

> This function is reentrant (for different EnableConditionID).

> This function is synchronous.

Expected Caller Context

> This function can be called from any context, with limitations.

Table 6-18 Dem_SetEnableCondition()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

94 / 175

6.2.4.13 Dem_SetStorageCondition()

Prototype

Std_ReturnType Dem_SetStorageCondition (uint8 StorageConditionID, Boolean
ConditionFulfilled)

Parameter

StorageConditionID This parameter identifies the storage condition.

ConditionFulfilled This parameter specifies whether the storage condition assigned to the
StorageConditionID is fulfilled or not fulfilled.

TRUE: storage condition fulfilled

FALSE: storage condition not fulfilled

Return code

Std_ReturnType E_OK: the storage condition could be set successfully

E_NOT_OK: the setting of the storage condition failed

Functional Description

Sets a storage condition.

Each event may have assigned several storage conditions. Only if all storage conditions referenced by the
event are fulfilled the event may be stored in memory.

Particularities and Limitations

> This function is reentrant (for different StorageConditionID).

> This function is synchronous.

Expected Caller Context

> This function can be called from any context, with limitations.

Table 6-19 Dem_SetStorageCondition()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

95 / 175

6.2.4.14 Dem_GetFaultDetectionCounter()

Prototype

Std_ReturnType Dem_GetFaultDetectionCounter (Dem_EventIdType EventId, sint8*
FaultDetectionCounter)

Parameter

EventId Provide the EventId value the fault detection counter is requested for. If the
return value of the function is other than OK this parameter does not contain
valid data.

FaultDetectionCounter This parameter receives the Fault Detection Counter information of the
requested EventId. If the return value of the function call is other than E_OK
this parameter does not contain valid data.

-128dec…127dec PASSED… FAILED according to ISO 14229-1

Return code

Std_ReturnType E_OK: request was successful

E_NOT_OK: request failed

DEM_E_NO_FDC_AVAILABLE: if the event does not support de-bouncing

Functional Description

Gets the fault detection counter of an event.

Particularities and Limitations

> This function is reentrant (for different EventId).

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-20 Dem_GetFaultDetectionCounter()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

96 / 175

6.2.4.15 Dem_GetIndicatorStatus()

Prototype

Std_ReturnType Dem_GetIndicatorStatus (uint8 IndicatorId,
Dem_IndicatorStatusType* IndicatorStatus)

Parameter

IndicatorId The respective indicator which shall be checked for its status.

IndicatorStatus Status of the indicator, like off, on, or blinking.

DEM_INDICATOR_OFF: indicator off

DEM_INDICATOR_CONTINUOUS: continuous on

DEM_INDICATOR_BLINKING: blinking mode

DEM_INDICATOR_BLINK_CONT: continuous and blinking mode

DEM_INDICATOR_FAST_FLASH: fast flash mode

DEM_INDICATOR_SLOW_FLASH: slow flash mode

Return code

Std_ReturnType E_OK: Operation was successful

E_NOT_OK: Operation failed or is not supported

Functional Description

Gets the indicator status derived from the event status and the configured indicator states.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-21 Dem_GetIndicatorStatus()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

97 / 175

6.2.4.16 Dem_GetEventFreezeFrameData()

Prototype

Std_ReturnType Dem_GetEventFreezeFrameData (Dem_EventIdType EventId, uint8
RecordNumber, Boolean ReportTotalRecord, uint16 DataId, uint8* DestBuffer)

Parameter

EventId Identification of an event by assigned EventId.

RecordNumber This parameter is a unique identifier for a freeze frame record as defined in
ISO15031-5 and ISO14229-1.

0xFF means that the most recent freeze frame record shall be returned.

ReportTotalRecord TRUE: total freeze frame record (all PIDs/DIDs) data are requested

FALSE: a dedicated PID/DID is requested by the parameter DataId

DataId This parameter specifies the PID (ISO15031-5) or DID (ISO14229-1) that shall
be copied to the destination buffer.

If ReportTotalRecord is TRUE, the value of DataId is ignored.

DestBuffer The pointer to the buffer where the freeze frame data shall be written to.

Return code

Std_ReturnType E_OK: Operation was successful

E_NOT_OK: Operation failed

DEM_E_NODATAAVAILABLE: The data is not currently stored for the
requested event.

DEM_E_WRONG_RECORDNUMBER: The requested data was not copied
due to an undefined RecordNumber for the given event.

DEM_E_WRONG_DIDNUMBER: The requested data was not copied due to
an undefined data indentifier within the requested record (in case
ReportTotalRecord == FALSE)

Functional Description

Gets the data of a freeze frame/snapshot record for the given EventId.

Particularities and Limitations

> This function is reentrant (for different EventId).

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-22 Dem_GetEventFreezeFrameData()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

98 / 175

6.2.4.17 Dem_GetEventExtendedDataRecord()

Prototype

Std_ReturnType Dem_GetEventExtendedDataRecord (Dem_EventIdType EventId, uint8
RecordNumber, uint8* DestBuffer)

Parameter

EventId Identification of an event by assigned EventId.

RecordNumber Identification of requested Extended data record. The valid range is 0x01 …
0xFF whereas 0xFF means that all extended data records shall be returned.

DestBuffer The pointer to the buffer where the extended data shall be written to.

Return code

Std_ReturnType E_OK: Operation was successful

E_NOT_OK: Operation failed

DEM_E_NODATAAVAILABLE: The data is not currently stored for the
requested event.

DEM_E_WRONG_RECORDNUMBER: The requested data was not copied
due to an undefined RecordNumber for the given event.

Functional Description

Gets the data of an extended data record by the given EventId.

Particularities and Limitations

> This function is reentrant (for different EventId).

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-23 Dem_GetEventExtendedDataRecord()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

99 / 175

6.2.4.18 Dem_GetEventEnableCondition()

Prototype

void Dem_GetEventEnableCondition (Dem_EventIdType EventId, Boolean*
ConditionFulfilled)

Parameter

EventId This parameter identifies the enable condition.

ConditionFulfilled This parameter specifies whether the enable conditions assigned to the
EventId is fulfilled (TRUE) or not fulfilled (FALSE).

Return code

void N/A

Functional Description

- Extension to AUTOSAR –

Returns the enable condition state for the given event.

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-24 Dem_GetEventEnableCondition()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

100 / 175

6.2.4.19 Dem_GetEventMemoryOverflow()

Prototype

Std_ReturnType Dem_GetEventMemoryOverflow (Dem_DTCOriginType DTCOrigin,
Boolean* OverflowIndication)

Parameter

DTCOrigin Selects the memory which shall be checked for overflow indication.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

OverflowIndication This parameter returns TRUE if the according event memory was overflowed,
otherwise it returns FALSE.

Return code

Std_ReturnType E_OK: Operation was successful

E_NOT_OK: Operation failed or is not supported

Functional Description

Reports if a DTC was displaced or not stored in the given event memory because the event memory was
completely full at the time.

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-25 Dem_GetEventMemoryOverflow()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

101 / 175

6.2.4.20 Dem_GetNumberOfEventMemoryEntries()

Prototype

Std_ReturnType Dem_GetNumberOfEventMemoryEntries (Dem_DTCOriginType DTCOrigin,
uint8* NumberOfEventMemoryEntries)

Parameter

DTCOrigin Identifier of the event memory concerned.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information
located in the primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information
located in the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information
located in the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located
in the mirror memory

NumberOfEventMemoryEntries Pointer to receive the event count.

Return code

Std_ReturnType E_OK: Operation was successful

E_NOT_OK: Operation failed or is not supported

Functional Description

This function reports the number of event entries occupied by events. This does not necessarily correspond
to the DTC count read by Dcm due to event combination and other effects like post-building the OBD
relevance of a DTC stored in OBD permanent memory.

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-26 Dem_GetNumberOfEventMemoryEntries()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

102 / 175

6.2.4.21 Dem_PostRunRequested()

Prototype

Std_ReturnType Dem_PostRunRequested (Boolean IsRequested)

Parameter

IsRequested Set to TRUE: In case the Dem needs more time to finish NvRAM related
tasks. Shutdown is not possible without data loss.

Set to FALSE: Shutdown is possible. This value is only valid if all monitors are
disabled.

Return code

Std_ReturnType E_OK: is always returned with disabled Det

E_NOT_OK: is returned with enabled Det when an error is detected

Functional Description

- Extension to Autosar –

Test if the Dem can be shut down safely (without possible data loss).

This function must be polled after leaving RUN mode (all application monitors have been stopped). Due to
pending NVM activity, data loss is possible if Dem_Shutdown is called while this function still returns TRUE.
As soon as the NVM finishes writing the current Dem data block, this function will return FALSE. The time
window for unsafe shutdown only depends on the write time of a data block (up to several seconds in
unfortunate circumstances!)

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-27 Dem_PostRunRequested()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

103 / 175

6.2.4.22 Dem_SetWIRStatus()

Prototype

Std_ReturnType Dem_SetWIRStatus (Dem_EventIdType EventId, Boolean WIRStatus)

Parameter

WIRStatus Set to TRUE: The WarningIndicatorRequest Bit of the DTC status for the
specified Event will be reported as “1”, independent to the current event
status.

Set to FALSE: The behavior of the WarningIndicatorRequest Bit in the DTC
status byte only depends on the event status.

Return code

Std_ReturnType E_OK: is returned if the new WIR status have been applied successfully

E_NOT_OK: is returned if the new WIR status have not been applied (e.g.
because of disabled ControlDTCSetting). The application should repeat the
request

Functional Description

This API can be used to override the status of the WarningIndicatorRequest Bit in the DTC status to “1”.

Note that overriding the WIR status does neither affect the internal event status nor any indicators related
to the event. Only the DTC status reported by APIs like Dem_GetStatusOfDTC (et al.) or the DT Status
Changed callbacks are affected.

Particularities and Limitations

> This function is reentrant (for different EventId).

> This function is synchronous.

Expected Caller Context

> This function can be called from any context, with limitations.

Table 6-28 Dem_SetWIRStatus ()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

104 / 175

6.2.4.23 Dem_GetWIRStatus()

Prototype

Std_ReturnType Dem_GetWIRStatus (Dem_EventIdType EventId, Boolean* WIRStatus)

Parameter

WIRStatus Set to TRUE: The WarningIndicatorRequest Bit is currently user-controlled
and have been set by the API Dem_SetWIRStatus.

Set to FALSE: The WarningIndicatorRequest Bit is currently not user-
controlled. The WIR-Bit in the DTC status byte only depends on the event
status.

Return code

Std_ReturnType E_OK: is always returned with disabled Det

E_NOT_OK: is returned with enabled Det when an error is detected

Functional Description

- Extension to Autosar –

This API can be used get the current override the status of the WarningIndicatorRequest Bit in the DTC
status.

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-29 Dem_GetWIRStatus ()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

105 / 175

6.2.4.24 Dem_SetDTCSuppression()

Prototype

Std_ReturnType Dem_SetDTCSuppression (uint32 DTC, Dem_DTCFormatType DTCFormat,
Boolean SuppressionStatus)

Parameter

DTC The DTC Number to be suppressed.

DTCFormat Defines the format of the given DTC to be suppressed

DEM_DTC_FORMAT_UDS: handle DTC in UDS format

DEM_DTC_FORMAT_J1939: handle DTC in J1939 format.

SuppressionStatus TRUE: Suppress the DTC

FALSE: Report the DTC

Return code

Std_ReturnType E_OK: Request processed successfully

E_NOT_OK: DTC not supported, DTC is already active (i.e. stored in event
memory), or invalid parameters passed to the function (only if Det is enabled).

Functional Description

This API suppresses the Event reporting the given DTCs such, that Dcm will not report the DTC. DTC
notification functions (e.g. to Dcm) are not called as well, preventing RoE responses.

Event reporting and notification (e.g. to FiM) are not affected and work as usual.

Particularities and Limitations

> This function is reentrant for different DTCs.

> This function is synchronous.

> When the call to this function interrupts the entry process, this function can suppress an event
that is in the process of being entered into the event memory. In that case the function returns
E_OK but the DTC is still reported to the Dcm.
In order to make sure the suppression works correctly, either

> clear DTCs after changing suppression

> change suppression of DTCs before the monitors start reporting

> prevent interruption of the Dem task by this function

> DEM_DTC_FORMAT_OBD is not supported for this function.

Expected Caller Context

> This function can be called from SWC modules, with limitations.

Table 6-30 Dem_SetDTCSuppression()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

106 / 175

6.2.4.25 Dem_SetEventSuppression()

Prototype

Std_ReturnType Dem_SetEventSuppression (Dem_EventIdType EventId, Boolean
SuppressionStatus)

Parameter

EventId Identification of an event by assigned EventId.

SuppressionStatus TRUE: Suppress the DTC attached to this event

FALSE: Report the DTC attached to this event

Return code

Std_ReturnType E_OK: Request processed successfully

E_NOT_OK: Event is already active (i.e. stored in event memory), or invalid
parameters passed to the function (only if Det is enabled).

Functional Description

This API suppresses Events such, that Dcm will not report the DTC mapped to the event. DTC related
notification functions (e.g. to Dcm) are not called as well, preventing RoE responses.

Event reporting and notification (e.g. to FiM) are not affected and work as usual.

Particularities and Limitations

> This function is reentrant for different EventId.

> This function is synchronous.

> When the call to this function interrupts the entry process, this function can suppress an event
that is in the process of being entered into the event memory. In that case the function returns
E_OK but the DTC is still reported to the Dcm.
In order to make sure the suppression works correctly, either

> clear DTCs after changing suppression

> change suppression of DTCs before the monitors start reporting

> prevent interruption of the Dem task by this function

Expected Caller Context

> This function can be called from any context, with limitations.

> Although this function is mapped to a port interface, it is safe to use from BSW or CDD
context, as long as Exclusive Area 0 (see chapter 4.4.1) can be used.

Table 6-31 Dem_SetEventSuppression()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

107 / 175

6.2.4.26 Dem_SetEventAvailable()

Prototype

Std_ReturnType Dem_SetEventAvailable (Dem_EventIdType EventId, Boolean
AvailableStatus)

Parameter

EventId Identification of an event by assigned EventId.

AvailableStatus TRUE: Set the Event to ‘available’

FALSE: Set the Event to ‘not available’

Return code

Std_ReturnType E_OK: Request processed successfully

E_NOT_OK: Event is already active (i.e. stored in event memory), or invalid
parameters passed to the function (only if Det is enabled).

Functional Description

Setting an event to unavailable prevents all APIs from using this EventId.

Event reporting and notification are not possible and the event will not be stored to the event memory.

Events having bit 0 (TestFailed) or bit 3 (ConfirmedDTC) set, stored events and events requesting an
indicator cannot be set unavailable.

Normally, the availability setting is volatile, and this API must be called in each power cycle of the ECU. In
case the option DemAvailabilityStorage is active, the last state is persisted in NVRAM. Since NVRAM is
restored between PreInit and Init, this API cannot be called before full initialization when using this option.

Particularities and Limitations

> This function is reentrant for different EventId.

> This function is synchronous.

> Conditional [DemAvailabilityStorage == false]: This API may be called before full initialization
(after Dem_PreInit).

Expected Caller Context

> This function can be called from any context, with limitations.

Table 6-32 Dem_SetEventAvailable()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

108 / 175

6.2.4.27 Dem_ClearDTC()

Prototype

Dem_ReturnClearDTCType Dem_ClearDTC (uint32 DTC, Dem_DTCFormatType DTCFormat,
Dem_DTCOriginType DTCOrigin)

Parameter

DTC Defines the DTC in respective format that shall be cleared from the event
memory. If the DTC fits to a DTC group number, all DTCs of the group shall be
cleared.

DTCFormat Defines the input format of the provided DTC value.

DEM_DTC_FORMAT_UDS: clear UDS DTCs

DEM_DTC_FORMAT_OBD: clear OBD DTCs

DEM_DTC_FORMAT_J1939: clear J1939 DTCs

DTCOrigin If the Dem supports more than one event memory, this parameter is used to
select the memory which shall be cleared.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

Return code

Dem_ReturnClearDTCTy

pe

DEM_CLEAR_OK: clearing is completed, the requested DTC(s) are reset

DEM_CLEAR_WRONG_DTC: the requested DTC is not valid in the context of
DTCFormat and DTCOrigin

DEM_CLEAR_WRONG_DTCORIGIN: the requested DTC origin is not
available in the context of DTCFormat

DEM_CLEAR_FAILED: the clear operation could not be started

DEM_CLEAR_PENDING: the clear operation was started and is currently
processed to completion

DEM_CLEAR_BUSY: the clear operation is occupied from a different client

DEM_CLEAR_MEMORY_ERROR: (Since AR4.2.1) The clear operation has
completed in RAM, but synchronization to Nv-Ram has failed

Functional Description

Clears the stored event data from the event memory, resets the event status byte and de-bounce state.

There is a variety of configuration settings that further control the behavior of this function:

> see DemClearDTCBehavior to control what part of non-volatile write back must have completed before
this function returns DEM_CLEAR_OK

> Init monitor functions are called when an event is cleared, after clearing the event but before returning
OK to the tester

> If an event does not allow clearing (see CBClrEvt_<EventName>()), Init monitor callbacks are called
nonetheless.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

109 / 175

Particularities and Limitations

> This function is reentrant.

> This function is asynchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-33 Dem_ClearDTC()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

110 / 175

6.2.4.28 Dem_RequestNvSynchronization()

Prototype

Std_ReturnType Dem_RequestNvSynchronization (void)

Parameter

N/A N/A

Return code

Std_ReturnType E_OK: Request processed successfully

E_NOT_OK: Request not processed due to errors, e.g. not initialized

Functional Description

This function can be used to request synchronization with the NV memory.

Following the call to this API, the Dem module will write back all modified NV blocks to the backing storage.

Particularities and Limitations

> The write process will take a long time (depending on the ECU load, NV subsystem and
configuration size, it can take multiple seconds)

> Only modifications up to the call to this API are taken into account.

> There is no indication when everything was written. The Dem still requires a proper shutdown
procedure even when this API is used.

> If the Dem shuts down while synchronizing the NV content, pending changes are still written
during NvM_WriteAll so no data is lost.

Expected Caller Context

> This function can be called from any context

> Although this function is mapped to a port interface, it is safe for use from BSW or CDD
context.

Table 6-34 Dem_RequestNvSynchronization()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

111 / 175

6.2.5 Interface BSW

6.2.5.1 Dem_ReportErrorStatus()

Prototype

void Dem_ReportErrorStatus (Dem_EventIdType EventId, Dem_EventStatusType
EventStatus)

Parameter

EventId Identification of an event by assigned EventId.

EventStatus Monitor test result

Return code

void N/A

Functional Description

BSW API to report a monitor result.

Particularities and Limitations

> This function is reentrant (for different EventId).

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-35 Dem_ReportErrorStatus()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

112 / 175

6.2.6 Interface Dcm

6.2.6.1 Dem_DcmSetDTCFilter()

Prototype

Dem_ReturnSetFilterType Dem_DcmSetDTCFilter (uint8 DTCStatusMask,
Dem_DTCKindType DTCKind, Dem_DTCFormatType DTCFormat, Dem_DTCOriginType

DTCOrigin, Dem_FilterWithSeverityType FilterWithSeverity, Dem_DTCSeverityType

DTCSeverityMask, Dem_FilterForFDCType FilterForFaultDetectionCounter)

Parameter

DTCStatusMask Status byte mask for DTC status byte filtering

0x00: deactivate the status-byte filtering to report all supported DTCs

0x01… 0xFF: status byte mask according to ISO14229-1 to filter for DTCs
with at least one status bit set matching this status byte mask

DTCKind Defines the functional group of DTCs to be reported.

DEM_DTC_KIND_ALL_DTCS: report all kind of DTCs

DEM_DTC_KIND_EMISSION_REL_DTCS: report OBD relevant DTCs

DTCFormat Defines the output-format of the requested DTC values for the sub-sequent
API calls.

DEM_DTC_FORMAT_OBD: report DTC in OBD format

DEM_DTC_FORMAT_UDS: report DTC in UDS format

DEM_DTC_FORMAT_J1939: not allowed

DTCOrigin If the Dem supports more than one event memory this parameter is used to
select the source memory the DTCs shall be read from.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

FilterWithSeverity This flag defines whether severity information (ref. to parameter below) shall
be used for filtering. This is to allow for coexistence of DTCs with and without
severity information.

DTCSeverityMask This parameter contains the DTCSeverityMask according to ISO14229-1.

DEM_FILTER_WITH_SEVERITY_YES: severity information shall be used

DEM_FILTER_WITH_SEVERITY_NO : severity information shall not be used

FilterForFaultDetect

ionCounter

This flag defines whether the fault detection counter information shall be used
for filtering or not. If fault detection counter information is filter criteria, only
those DTCs with a fault detection counter value between 1 and 0x7E will be
reported.

DEM_FILTER_FOR_FDC_YES: fault detection counter shall be used

DEM_FILTER_FOR_FDC_NO: fault detection counter shall not be used

Note: If the event does not use Dem internal de-bouncing, the Dem will
request this information via GetFaultDetectionCounter.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

113 / 175

Return code

Dem_ReturnSetFilterT

ype

Status of the operation to (re-)set a DTC filter.

DEM_FILTER_ACCEPTED: filter was accepted

DEM_WRONG_FILTER: filter was not accepted

Functional Description

Initialize the DTC filter with the given criteria.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-36 Dem_DcmSetDTCFilter()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

114 / 175

6.2.6.2 Dem_DcmGetNumberOfFilteredDTC()

Prototype

Dem_ReturnGetNumberOfFilteredDTCType Dem_DcmGetNumberOfFilteredDTC (uint16*
NumberOfFilteredDTC)

Parameter

NumberOfFilteredDTC The number of DTCs matching the defined filter criteria.

Return code

Dem_ReturnGetNumberO

fFilteredDTCType

DEM_NUMBER_OK: a valid number of DTC was calculated

DEM_NUMBER_FAILED: no valid number can be calculated

DEM_NUMBER_PENDING: not used

Functional Description

Returns the number of DTCs matching the filter criteria.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-37 Dem_DcmGetNumberOfFilteredDTC()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

115 / 175

6.2.6.3 Dem_DcmGetNextFilteredDTC()

Prototype

Dem_ReturnGetNextFilteredElementType Dem_DcmGetNextFilteredDTC (uint32* DTC,
uint8* DTCStatus)

Parameter

DTC Receives the DTC value in respective format of the filter returned by this
function. If the return value of the function is other than DEM_FILTERED_OK
this parameter does not contain valid data.

DTCStatus This parameter receives the status information of the filtered DTC.

It follows the format as defined in ISO14229-1.

If the return value of the function call is other than DEM_FILTERED_OK this
parameter does not contain valid data.

Return code

Dem_ReturnGetNextFil

teredElementType

DEM_NUMBER_OK: DTC number and status are valid

DEM_FILTERED_NO_MATCHING_ELEMENT: no DTC can be identified
(iteration end)

DEM_NUMBER_PENDING: not used

DEM_FILTERED_BUFFER_TOO_SMALL: not used

Functional Description

Gets the next filtered DTC and its status.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-38 Dem_DcmGetNextFilteredDTC()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

116 / 175

6.2.6.4 Dem_DcmGetNextFilteredDTCAndFDC()

Prototype

Dem_ReturnGetNextFilteredElementType Dem_DcmGetNextFilteredDTCAndFDC (uint32*
DTC, sint8* DTCFaultDetectionCounter)

Parameter

DTC Receives the DTC value in respective format of the filter returned by this
function. If the return value of the function is other than DEM_FILTERED_OK
this parameter does not contain valid data.

DTCFaultDetectionCou

nter

This parameter receives the Fault Detection Counter information of the
requested DTC. If the return value of the function call is other than
DEM_FILTERED_OK this parameter does not contain valid data.

-128dec…127dec /PASSED…FAILED according to ISO 14229-1

Return code

Dem_ReturnGetNextFil

teredElementType

DEM_NUMBER_OK: DTC number and FDC are valid

DEM_FILTERED_NO_MATCHING_ELEMENT: no DTC can be identified
(iteration end)

DEM_NUMBER_PENDING: not used

DEM_FILTERED_BUFFER_TOO_SMALL: not used

Functional Description

Gets the current DTC and its associated Fault Detection Counter (FDC) from the Dem.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-39 Dem_DcmGetNextFilteredDTCAndFDC()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

117 / 175

6.2.6.5 Dem_DcmGetNextFilteredDTCAndSeverity()

Prototype

Dem_ReturnGetNextFilteredElementType Dem_GDcmetNextFilteredDTCAndSeverity (
uint32* DTC, uint8* DTCStatus, Dem_DTCSeverityType* DTCSeverity, uint8*

DTCFunctionalUnit)

Parameter

DTC Receives the DTC value in respective format of the filter returned by this
function. If the return value of the function is other than DEM_FILTERED_OK
this parameter does not contain valid data.

DTCStatus Receives the status value returned by the function. If the return value of the
function is other than DEM_FILTERED_OK this parameter does not contain
valid data.

DTCSeverity Receives the severity value returned by the function. If the return value of the
function is other than DEM_FILTERED_OK this parameter does not contain
valid data.

DTCFunctionalUnit Receives the functional unit value returned by the function. If the return value
of the function is other than DEM_FILTERED_OK this parameter does not
contain valid data.

Return code

Dem_ReturnGetNextFil

teredDTCType

DEM_FILTERED_OK: DTC number and all other out parameter are valid

DEM_FILTERED_NO_MATCHING_ELEMENT: no DTC can be identified
(iteration end)

DEM_NUMBER_PENDING: not used

DEM_FILTERED_BUFFER_TOO_SMALL: not used

Functional Description

Gets the current DTC and its Severity from the Dem.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-40 Dem_DcmGetNextFilteredDTCAndSeverity()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

118 / 175

6.2.6.6 Dem_DcmSetFreezeFrameRecordFilter()

Prototype

Dem_ReturnSetFilterType Dem_DcmSetFreezeFrameRecordFilter (Dem_DTCFormatType
DTCFormat, uint16* NumberOfFilteredRecords)

Parameter

DTCFormat Defines the output-format of the requested DTC values for the sub-sequent
API calls.

DEM_DTC_FORMAT_OBD: report DTC in OBD format

DEM_DTC_FORMAT_UDS: report DTC in UDS format

DEM_DTC_FORMAT_J1939: not allowed

NumberOfFilteredReco

rds

Number of freeze frame records currently stored in the event memory.

Return code

Dem_ReturnSetFilterT

ype

Status of the operation to (re-)set a freeze frame record filter.

DEM_FILTER_ACCEPTED: filter was accepted

DEM_WRONG_FILTER: filter was not accepted

Functional Description

Initialize the DTC record filter with the given criteria.

Using this function all currently stored snapshot records are counted and the internal state machine is
initialized to read a copy of their data (see Dem_DcmGetNextFilteredRecord). The number of snapshot
records is not fixed. It can change after this function has returned, so Dem_DcmGetNextFilteredRecord can
actually return fewer records.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-41 Dem_DcmSetFreezeFrameRecordFilter()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

119 / 175

6.2.6.7 Dem_DcmGetNextFilteredRecord()

Prototype

Dem_ReturnGetNextFilteredElementType Dem_DcmGetNextFilteredRecord (uint32* DTC,
uint8* RecordNumber)

Parameter

DTC Receives the DTC value in respective format of the filter returned by this
function. If the return value of the function is other than DEM_FILTERED_OK
this parameter does not contain valid data.

RecordNumber Freeze frame record number of the reported DTC. If the return value of the
function is other than DEM_FILTERED_OK this parameter does not contain
valid data.

Return code

Dem_ReturnGetNextFil

teredElementType

DEM_FILTERED_OK: returned DTC number and RecordNumber are valid

DEM_FILTERED_NO_MATCHING_ELEMENT: no further matching records
are available

DEM_FILTERED_PENDING: not used

DEM_FILTERED_BUFFER_TOO_SMALL: not used

Functional Description

Gets the next freeze frame/ snapshot record number and its associated DTC stored in the event memory.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-42 Dem_DcmGetNextFilteredRecord()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

120 / 175

6.2.6.8 Dem_DcmGetStatusOfDTC()

Prototype

Dem_ReturnGetStatusOfDTCType Dem_DcmGetStatusOfDTC (uint32 DTC,
Dem_DTCOriginType DTCOrigin, uint8* DTCStatus)

Parameter

DTC Diagnostic Trouble Code in UDS format.

DTCOrigin If the Dem supports more than one event memory this parameter is used to
select the source memory the DTCs shall be read from.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

DTCStatus This parameter receives the status information of the requested DTC. If the
return value of the function call is other than DEM_STATUS_OK this
parameter does not contain valid data.

Return code

Dem_ReturnGetStatusO

fDTCType

DEM_STATUS_OK: the requested status information was stored in
DTCStatus

DEM_STATUS_WRONG_DTC: DTC does not exist in DTCOrigin

DEM_STATUS_WRONG_DTCORIGIN: DTC origin does not exist

DEM_STATUS_FAILED: a generic error occurred

DEM_STATUS_PENDING: not used

Functional Description

Gets the current UDS status of a DTC.

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-43 Dem_DcmGetStatusOfDTC()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

121 / 175

6.2.6.9 Dem_DcmGetDTCStatusAvailabilityMask()

Prototype

Std_ReturnType Dem_DcmGetDTCStatusAvailabilityMask (uint8* DTCStatusMask)

Parameter

DTCStatusMask The value DTCStatusMask indicates the supported DTC status bits from the
Dem. All supported information is indicated by setting the corresponding
status bit to 1.

Return code

Std_ReturnType E_OK: get of DTC status mask was successful

E_NOT_OK: get of DTC status mask failed

Functional Description

Gets the DTC status availability mask.

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-44 Dem_DcmGetDTCStatusAvailabilityMask()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

122 / 175

6.2.6.10 Dem_DcmGetDTCByOccurrenceTime()

Prototype

Dem_ReturnGetDTCByOccurrenceTimeType Dem_DcmGetDTCByOccurrenceTime (
DTCRequestType DTCRequest, uint32* DTC)

Parameter

DTCRequest This parameter defines the request type of the DTC.

DEM_FIRST_DET_CONFIRMED_DTC: first detected confirmed DTC
requested

DEM_MOST_RECENT_FAILED_DTC: most recent failed DTC requested

DEM_MOST_REC_DET_CONFIRMED_DTC: most recently detected
confirmed DTC requested

DEM_FIRST_FAILED_DTC: first failed DTC requested

DTC Receives the DTC value in UDS format returned by the function. If the return
value of the function is other than DEM_OCCURR_OK this parameter does
not contain valid data.

Return code

Dem_ReturnGetDTCByOc

currenceTimeType

DEM_OCCURR_NOT_AVAILABLE: no DTC is available for the given
DTCRequest

DEM_OCCURR_OK: the function returns a valid DTC

Functional Description

Gets the DTC by occurrence time.

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-45 Dem_DcmGetDTCByOccurrenceTime()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

123 / 175

6.2.6.11 Dem_DcmGetTranslationType()

Prototype

Dem_DTCTranslationFormatType Dem_DcmGetTranslationType (void)

Parameter

N/A N/A

Return code

Dem_DTCTranslationFo

rmatType

Returns the configured DTC translation format. A combination of different DTC
formats is not possible.

DEM_DTC_TRANSLATION_ISO15031_6: DTC is formatted according
ISO15031-6

DEM_DTC_TRANSLATION_ISO14229_1: DTC is formatted according
ISO14229-1

DEM_DTC_TRANSLATION_SAEJ1939_73: DTC is formatted according
SAE1939-73

DEM_DTC_TRANSLATION_ISO11992_4: DTC is formatted according
ISO11992-4

Functional Description

Gets the supported DTC formats of the ECU.

The supported formats are configured via DemTypeOfDTCSupported.

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-46 Dem_DcmGetTranslationType()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

124 / 175

6.2.6.12 Dem_DcmGetSeverityOfDTC()

Prototype

Dem_ReturnGetSeverityOfDTCType Dem_DcmGetSeverityOfDTC (uint32 DTC,
Dem_DTCSeverityType* DTCSeverity)

Parameter

DTC Diagnostic Trouble Code in UDS format.

DTCSeverity This parameter contains the DTCSeverityMask according to ISO14229-1.

Return code

Dem_ReturnGetSeverit

yOfDTCType

DEM_GET_SEVERITYOFDTC_OK: the requested severity information was
stored in DTCSeverity

DEM_GET_SEVERITYOFDTC_WRONG_DTC: DTC does not exist in origin
primary memory

DEM_GET_SEVERITYOFDTC_NOSEVERITY: severities do not exist

DEM_GET_SEVERITYOFDTC_PENDING: not used

Functional Description

Gets the severity of the requested DTC.

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-47 Dem_DcmGetSeverityOfDTC()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

125 / 175

6.2.6.13 Dem_DcmGetFunctionalUnitOfDTC()

Prototype

Dem_ReturnGetFunctionalUnitOfDTCType Dem_DcmGetFunctionalUnitOfDTC (uint32 DTC,
uint8* DTCFunctionalUnit)

Parameter

DTC Diagnostic Trouble Code in UDS format.

DTCFunctionalUnit Functional unit value of this DTC

Return code

Dem_ReturnGetFunctio

nalUnitOfDTCType

DEM_GET_FUNCTIONALUNITOFDTC_OK: the requested functional unit
information was stored in DTCFunctionalUnit

DEM_GET_FUNCTIONALUNITOFDTC_WRONG_DTC: DTC does not exist
in origin primary memory

Functional Description

Gets the functional unit of the requested DTC.

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-48 Dem_DcmGetFunctionalUnitOfDTC()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

126 / 175

6.2.6.14 Dem_DcmDisableDTCRecordUpdate()

Prototype

Dem_ReturnDisableDTCRecordUpdateType Dem_DcmDisableDTCRecordUpdate (uint32 DTC,
Dem_DTCOriginType DTCOrigin)

Parameter

DTC Selects the DTC in UDS format, for which DTC record update shall be
disabled.

DTCOrigin If the Dem supports more than one event memory, this parameter is used to
select the source memory for which DTC record update shall be disabled.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

Return code

Dem_ReturnDisableDTC

RecordUpdateType

DEM_DISABLE_DTCRECUP_OK: entry is locked, read APIs may be called
now

DEM_DISABLE_DTCRECUP_WRONG_DTC: the given DTC number is not
valid in the requested origin

DEM_DISABLE_DTCRECUP_WRONG_DTCORIGIN: the given origin is not
supported

DEM_DISABLE_DTCRECUP_PENDING: the request processing is pending,
call again

Functional Description

Disables the event memory update of a specific DTC (only one at a time) so it can be read out by the Dcm.

Particularities and Limitations

> This function is not reentrant.

> This function is asynchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-49 Dem_DcmDisableDTCRecordUpdate()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

127 / 175

6.2.6.15 Dem_DcmEnableDTCRecordUpdate()

Prototype

Std_ReturnType Dem_DcmEnableDTCRecordUpdate (void)

Parameter

N/A N/A

Return code

Std_ReturnType E_OK: Operation was successful

E_NOT_OK: Operation failed

Functional Description

Enables the event memory update of the DTC disabled by Dem_DcmDisableDTCRecordUpdate() before.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-50 Dem_DcmEnableDTCRecordUpdate()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

128 / 175

6.2.6.16 Dem_DcmGetFreezeFrameDataByDTC()

Prototype

Dem_ReturnGetFreezeFrameDataByDTCType Dem_DcmGetFreezeFrameDataByDTC (uint32
DTC, Dem_DTCOriginType DTCOrigin, uint8 RecordNumber, uint8* DestBuffer,

uint16* BufSize)

Parameter

DTC Diagnostic Trouble Code in UDS format.

DTCOrigin This parameter is used to select the source memory the DTCs shall be read
from.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

RecordNumber This parameter is a unique identifier for a freeze frame record as defined in
ISO15031-5 and ISO14229-1.

The value 0xFF is not allowed.

The value 0x00 indicates the OBD freeze frame.

DestBuffer This parameter contains a byte pointer that points to the buffer, to which the
freeze frame data record shall be written to.

The format is: {RecordNumber, NumOfDIDs, DID[1], data[1], …, DID[N],
data[N]}

BufSize When the function is called this parameter contains the maximum number of
data bytes that can be written to the buffer.

The function returns the actual number of written data bytes in this parameter.

Return code

Dem_ReturnGetFreezeF

rameDataByDTCType

DEM_GET_FFDATABYDTC_OK: data was found and returned

DEM_GET_FFDATABYDTC_WRONG_DTC: the requested DTC is not
available for the requested Origin

DEM_GET_FFDATABYDTC_WRONG_DTCORIGIN: the requested Origin is
not available

DEM_GET_FFDATABYDTC_WRONG_RECORDNUMBER: the requested
record is not available

DEM_GET_FFDATABYDTC_WRONG_BUFFERSIZE: the destination buffer is
too small

DEM_GET_FFDATABYDTC_PENDING: not used

Functional Description

Gets freeze frame/ snapshot record data by DTC. The function stores the data in the provided DestBuffer.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

129 / 175

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-51 Dem_DcmGetFreezeFrameDataByDTC()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

130 / 175

6.2.6.17 Dem_DcmGetSizeOfFreezeFrameByDTC()

Prototype

Dem_ReturnGetSizeOfDataByDTCType Dem_DcmGetSizeOfFreezeFrameByDTC (uint32 DTC,
Dem_DTCOriginType DTCOrigin, uint8 RecordNumber, uint16* SizeOfFreezeFrame)

Parameter

DTC Diagnostic Trouble Code in UDS format.

DTCOrigin If the Dem supports more than one event memory, this parameter is used to
select the source memory the DTCs shall be read from.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

RecordNumber This parameter is a unique identifier for a freeze frame record as defined in
ISO 15031-5 and ISO 14229-1.

The value 0xFF requests the overall size.

SizeOfFreezeFrame Number of bytes in the requested freeze frame record.

Return code

Dem_ReturnGetSizeOfD

ataByDTCType

DEM_GETSIZEBYDTC_OK: data was found and returned

DEM_GETSIZEBYDTC_WRONG_DTC: the requested DTC is not available
for the requested Origin

DEM_GETSIZEBYDTC_WRONG_DTCORIGIN: the requested Origin is not
available

DEM_GETSIZEBYDTC_WRONG_RECNUM: the requested record is not
available

DEM_GETSIZEBYDTC_PENDING: not used

Functional Description

Get the size of a formatted snapshot record stored for a DTC.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-52 Dem_DcmGetSizeOfFreezeFrameByDTC()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

131 / 175

6.2.6.18 Dem_DcmGetExtendedDataRecordByDTC()

Prototype

Dem_ReturnGetExtendedDataRecordByDTCType Dem_DcmGetExtendedDataRecordByDTC (
uint32 DTC, Dem_DTCOriginType DTCOrigin, uint8 ExtendedDataNumber, uint8*

DestBuffer, uint16* BufSize)

Parameter

DTC Diagnostic Trouble Code in UDS format

DTCOrigin This parameter is used to select the source memory the DTCs shall be read
from.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

ExtendedDataNumber Identification of requested extended data record. The valid range is 0x01 …
0xEF. The values 0xFE and 0xFF are not allowed.

DestBuffer This parameter contains a byte pointer that points to the buffer to which the
Extended Data shall be written.

BufSize When the function is called this parameter contains the maximum number of
data bytes that can be written to the buffer.
The function returns the actual number of written data bytes in this parameter.

Return code

Dem_ReturnGetExtende

dDataRecordByDTCType

DEM_RECORD_OK: data was found and returned

DEM_RECORD_WRONG_DTC: the requested DTC is not available for the
requested Origin

DEM_RECORD_WRONG_DTCORIGIN: the requested Origin is not available

DEM_RECORD_WRONG_NUMBER: the requested record is not available

DEM_RECORD_WRONG_BUFFERSIZE: the destination buffer is too small

DEM_RECORD_PENDING: not used by this implementation

Functional Description

Gets extended data by the given extended record number and DTC number. The function stores the data in
the provided DestBuffer.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-53 Dem_DcmGetExtendedDataRecordByDTC()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

132 / 175

6.2.6.19 Dem_DcmGetSizeOfExtendedDataRecordByDTC()

Prototype

Dem_ReturnGetSizeOfDataByDTCType Dem_DcmGetSizeOfExtendedDataRecordByDTC (
uint32 DTC, Dem_DTCOriginType DTCOrigin, uint8 ExtendedDataNumber, uint16*

SizeOfExtendedDataRecord)

Parameter

DTC Diagnostic Trouble Code in UDS format.

DTCOrigin If the Dem supports more than one event memory, this parameter is used to
select the source memory the DTCs shall be read from.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

ExtendedDataNumber Number of requested extended data record. The valid range is 0x01 … 0xEF.

For OBD the values 0xFE and 0xFF are allowed to request the overall size of
all OBD records.

SizeOfExtendedDataRe

cord

Receives the size of the requested data record

Return code

Dem_ReturnGetSizeOfD

ataByDTCType

DEM_GETSIZEBYDTC_OK: data was found and returned

DEM_GETSIZEBYDTC_WRONG_DTC: the requested DTC is not available
for the requested Origin

DEM_GETSIZEBYDTC_WRONG_DTCORIGIN: the requested Origin is not
available

DEM_GETSIZEBYDTC_WRONG_RECNUM: the requested record is not
available

DEM_GETSIZEBYDTC_PENDING: not used

Functional Description

Get the size of a formatted extended data record stored for a DTC.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-54 Dem_DcmGetSizeOfExtendedDataRecordByDTC()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

133 / 175

6.2.6.20 Dem_DcmClearDTC()

Prototype

Dem_ReturnClearDTCType Dem_DcmClearDTC (uint32 DTC, Dem_DTCFormatType
DTCFormat, Dem_DTCOriginType DTCOrigin)

Parameter

DTC Defines the DTC in respective format that shall be cleared from the event
memory. If the DTC fits to a DTC group number, all DTCs of the group shall be
cleared.

DTCFormat Defines the input format of the provided DTC value.

DEM_DTC_FORMAT_UDS: clear UDS DTCs

DEM_DTC_FORMAT_OBD: clear OBD DTCs

DEM_DTC_FORMAT_J1939: not allowed

DTCOrigin If the Dem supports more than one event memory, this parameter is used to
select the memory which shall be cleared.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

Return code

Dem_ReturnClearDTCTy

pe

DEM_CLEAR_OK: clearing is completed, the requested DTC(s) are reset

DEM_CLEAR_WRONG_DTC: the requested DTC is not valid in the context of
DTCFormat and DTCOrigin

DEM_CLEAR_WRONG_DTCORIGIN: the requested DTC origin is not
available in the context of DTCFormat

DEM_CLEAR_FAILED: the clear operation could not be started

DEM_CLEAR_PENDING: the clear operation was started and is currently
processed to completion

DEM_CLEAR_BUSY: the clear operation is occupied from a different client

DEM_CLEAR_MEMORY_ERROR: (Since AR4.2.1) The clear operation has
completed in RAM, but synchronization to Nv-Ram has failed

Functional Description

Clears the stored event data from the event memory, resets the event status byte and de-bounce state.

There is a variety of configuration settings that further control the behavior of this function:

> see DemClearDTCBehavior to control what part of non-volatile write back must have completed before
this function returns DEM_CLEAR_OK

> Init monitor functions are called when an event is cleared, after clearing the event but before returning
OK to the tester

> If an event does not allow clearing (see CBClrEvt_<EventName>()), Init monitor callbacks are called
nonetheless.

Particularities and Limitations

> This function is reentrant.

> This function is asynchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

134 / 175

Expected Caller Context

> This function can be called from any context.

Table 6-55 Dem_DcmClearDTC()

6.2.6.21 Dem_DcmDisableDTCSetting()

Prototype

Dem_ReturnControlDTCSettingType Dem_DcmDisableDTCSetting (Dem_DTCGroupType
DTCGroup, Dem_DTCKindType DTCKind)

Parameter

DTCGroup Defines the group of DTC that shall be disabled to store in event memory.

DEM_DTC_GROUP_ALL_DTCS: select all DTCs

DEM_DTC_GROUP_BODY_DTCS: not supported

DEM_DTC_GROUP_EMISSION_REL_DTCS: not supported

DEM_DTC_GROUP_CHASSIS_DTCS: select group of chassis DTCs

DEM_DTC_GROUP_NETWORK_COM_DTCS: select group of network
communication DTCs,

DEM_DTC_GROUP_POWERTRAIN_DTCS: select group of powertrain DTCs

DTCKind This parameter defines the requested DTC kind, either only OBD-relevant
DTCs or all DTCs

DEM_DTC_KIND_ALL_DTCS: select all DTCs

DEM_DTC_KIND_EMISSION_REL_DTCS: not supported

Return code

Dem_ReturnControlDTC

SettingType

DEM_CONTROL_DTC_SETTING_N_OK: the input parameters are not valid

DEM_CONTROL_DTC_SETTING_OK: the DTCs setting is switched off

Functional Description

Disables the setting (including update) of the status bits of a DTC group.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-56 Dem_DcmDisableDTCSetting()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

135 / 175

6.2.6.22 Dem_DcmEnableDTCSetting()

Prototype

Dem_ReturnControlDTCSettingType Dem_DcmEnableDTCSetting (Dem_DTCGroupType
DTCGroup, Dem_DTCKindType DTCKind)

Parameter

DTCGroup Defines the group of DTC that shall be enabled to store in event memory.

DEM_DTC_GROUP_BODY_DTCS: select group of body DTCs

DEM_DTC_GROUP_EMISSION_REL_DTCS: select group of OBD relevant
DTCs

DEM_DTC_GROUP_ALL_DTCS: select all DTCs

DTCKind This parameter defines the requested DTC kind, either only OBD-relevant
DTCs or all DTCs

DEM_DTC_KIND_ALL_DTCS: select all DTCs

DEM_DTC_KIND_EMISSION_REL_DTCS: select OBD relevant DTCs

Return code

Dem_ReturnControlDTC

SettingType

DEM_CONTROL_DTC_SETTING_N_OK: the input parameters are not valid

DEM_CONTROL_DTC_SETTING_OK: the DTCs setting is switched on

Functional Description

Enables the DTC setting for a DTC group. Currently only group ALL_DTCS is supported.

Depending on configuration, enabling ControlDTCSetting can be deferred to the Dem task. As a result,
changes to control DTC setting can be lost if they toggle change faster than the cycle time of the Dem main
function. See chapter 3.7 for further details.

Caution
This API is defined as synchronous, so the Dcm will send a positive response before the DTC
setting is in fact re-enabled. An API change is discussed in Autosar to alleviate this problem.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-57 Dem_DcmEnableDTCSetting()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

136 / 175

6.2.6.23 Dem_DcmCancelOperation()

Prototype

void Dem_DcmCancelOperation (void)

Parameter

N/A N/A

Return code

void N/A

Functional Description

Cancel pending operation started from Dcm.

Supported for:

> Dem_DcmClearDTC()

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context

> This function can be called from any context.

Table 6-58 Dem_DcmCancelOperation()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

137 / 175

6.2.7 Interface J1939Dcm

Note
Dependent on the licensed components of your delivery the interfaces listed in this
chapter may not be available in DEM.

6.2.7.1 Dem_J1939DcmClearDTC()

Prototype

Dem_ReturnClearDTCType Dem_J1939DcmClearDTC (Dem_J1939DcmSetClearFilterType
DTCTypeFilter, uint8 NodeAddress)

Parameter

DTCTypeFilter DEM_J1939DTC_CLEAR_ALL: Clears all Active DTCs

DEM_J1939DTC_CLEAR_PREVIOUSLY_ACTIVE: Clears all previously
active DTCs

NodeAddress The network management node ID to be cleared.

Return code

Dem_ReturnClearDTCTy

pe

DEM_CLEAR_OK: DTC successfully cleared

DEM_CLEAR_WRONG_DTC: DTC value not existing (in this format)

DEM_CLEAR_WRONG_DTCORIGIN: Wrong DTC origin

DEM_CLEAR_FAILED: DTC clearing failed

DEM_CLEAR_PENDING: The DTC clearing is performed asynchronously and
is still pending. The caller can retry later

DEM_CLEAR_BUSY: DTC not cleared, as another clearing process is in
progress. The caller can retry later.

Functional Description

Clears the J1939 DTCs only

Particularities and Limitations

> This function is not reentrant.

> This function is asynchronous.

> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-59 Dem_J1939DcmClearDTC()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

138 / 175

6.2.7.2 Dem_J1939DcmFirstDTCwithLampStatus()

Prototype

void Dem_J1939DcmFirstDTCwithLampStatus (uint8 NodeAddress)

Parameter

NodeAddress The network management node ID to be filtered.

Return code

void N/A

Functional Description

Initializes the filter mechanism to the first event in the primary memory

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-60 Dem_J1939DcmFirstDTCwithLampStatus()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

139 / 175

6.2.7.3 Dem_J1939DcmGetNextDTCwithLampStatus ()

Prototype

Dem_ReturnGetNextFilteredElementType Dem_J1939DcmGetNextDTCwithLampStatus (
J1939DcmLampStatusType LampStatus, uint32 J1939DTC, uint8 OccurrenceCounter)

Parameter

LampStatus DTC specific lamp status

J1939DTC J1939 DTC number

OccurrenceCounter The DTC specific occurrence counter

Return code

Dem_ReturnGetNext-

FilteredElementType

DEM_FILTERED_OK: Returned next filtered element

DEM_FILTERED_NO_MATCHING_ELEMENT: No further element (matching
the filter criteria) found

DEM_FILTERED_BUFFER_TOO_SMALL: not used

Functional Description

Gets the next filtered J1939 DTC for DM31 including current LampStatus

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-61 Dem_J1939DcmGetNextDTCwithLampStatus ()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

140 / 175

6.2.7.4 Dem_J1939DcmGetNextFilteredDTC()

Prototype

Dem_ReturnGetNextFilteredElementType Dem_J1939DcmGetNextFilteredDTC (uint32
J1939DTC, uint8 OccurenceCounter)

Parameter

J1939DTC the J1939 DTC number

OccurenceCounter the occurrence counter of the DTC

Return code

Dem_ReturnGetNext-

FilteredElementType

DEM_FILTERED_OK: Returned next filtered element

DEM_FILTERED_NO_MATCHING_ELEMENT: No further element (matching
the filter criteria) found

DEM_FILTERED_PENDING: The requested value is calculated
asynchronously and currently not available. The caller can retry later.

DEM_FILTERED_BUFFER_TOO_SMALL: not used

Functional Description

Provides the next DTC that matches the filter criteria.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-62 Dem_J1939DcmGetNextFilteredDTC()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

141 / 175

6.2.7.5 Dem_J1939DcmGetNextFreezeFrame()

Prototype

Dem_ReturnGetNextFilteredElementType Dem_J1939DcmGetNextFreezeFrame (uint32
J1939DTC, uint8 OccurrenceCounter , uint8 DestBuffer, uint8 BufSize)

Parameter

J1939DTC J1939 DTC number

OccurrenceCounter DTC specific occurrence counter

DestBuffer Pointer to the buffer where the Freeze Frame data shall be copied to.

BufSize in: size of the available buffer

out: number of bytes copied into the buffer

Return code

Dem_ReturnGetNext-

FilteredElementType

DEM_FILTERED_OK: Returned next filtered element

DEM_FILTERED_NO_MATCHING_ELEMENT: No further element (matching
the filter criteria) found

DEM_FILTERED_PENDING: The requested value is calculated
asynchronously and currently not available. The caller can retry later.

DEM_FILTERED_BUFFER_TOO_SMALL: Buffer in the BufSize parameter is
not huge enough

Functional Description

Returns the next J1939DTC and Freeze Frame matching the filter criteria

Particularities and Limitations

> This function is not reentrant.

> This function is asynchronous.

> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-63 Dem_J1939DcmGetNextFreezeFrame()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

142 / 175

6.2.7.6 Dem_J1939DcmGetNextSPNInFreezeFrame()

Prototype

Dem_ReturnGetNextFilteredElementType Dem_J1939DcmGetNextSPNInFreezeFrame (
uint32 SPNSupported, uint8 SPNDataLength)

Parameter

SPNSupported This parameter contains the next SPN in the ExpandedFreezeFrame

SPNDataLength This parameter contains the corresponding data length of the SPN

Return code

Dem_ReturnGetNext-

FilteredElementType

DEM_FILTERED_OK: Returned next filtered element

DEM_FILTERED_NO_MATCHING_ELEMENT: No further element (matching
the filter criteria) found

DEM_FILTERED_PENDING: The requested value is calculated
asynchronously and currently not available. The caller can retry later.

DEM_FILTERED_BUFFER_TOO_SMALL: Buffer in the BufSize parameter is
not huge enough

Functional Description

Retruns the SPNs that are stored in the J1939 FreezeFrame(s)

This interface returns always DEM_FILTERED_NO_MATCHING_ELEMENT as the data is directly provided
from J1939DCM

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-64 Dem_J1939DcmGetNextSPNInFreezeFrame()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

143 / 175

6.2.7.7 Dem_J1939DcmGetNumberOfFilteredDTC ()

Prototype

Dem_ReturnGetNumberOfFilteredDTCType Dem_J1939DcmGetNumberOfFilteredDTC (
uint16 NumberOfFilteredDTC)

Parameter

NumberOfFilteredDTC number of DTCs matching the filter criteria

Return code

Dem_ReturnGetNumber-

OfFilteredDTCType

DEM_NUMBER_OK: A valid number was calculated

DEM_NUMBER_FAILED: No valid number can be calculated

DEM_NUMBER_PENDING: not used

Functional Description

Gets the number of currently filtered DTCs set by the function Dem_J1939DcmSetDTCFilter().

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-65 Dem_J1939DcmGetNumberOfFilteredDTC ()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

144 / 175

6.2.7.8 Dem_J1939DcmSetDTCFilter()

Prototype

Dem_ReturnSetFilterType Dem_J1939DcmSetDTCFilter (
Dem_J1939DcmDTCStatusFilterType DTCStatusFilter, Dem_DTCKindType DTCKind, uint8

NodeAddress, Dem_J1939DcmLampStatusType LampStatus)

Parameter

DTCStatusFilter DEM_J1939DTC_ACTIVE: Confirmed == 1 and TestFailed == 1

DEM_J1939DTC_PREVIOUSLY_ACTIVE: Confirmed == 1 and
TestFailed == 0

DEM_J1939DTC_PENDING: Pending == 1

DEM_J1939DTC_PERMANENT: not supported

DTCKind DEM_DTC_KIND_ALL_DTCS: All DTCs

DEM_DTC_KIND_EMISSION_REL_DTCS: not supported

NodeAddress The network management node ID to be filtered.

LampStatus The ECU Lamp Status

HighByte

 bits 7,6: Malfunction Indicator Lamp Status

 bits 5,4: Red Stop Lamp Status

 bits 3,2: Amber Warning Lamp Status

 bits 1,0: Protect Lamp Status

LowByte

 bits 7,6: Flash Malfunction Indicator Lamp

 bits 5,4: Flash Red Stop Lamp

 bits 3,2: Flash Amber Warning Lamp

 bits 1,0: Flash Protect Lamp

Return code

Dem_ReturnSetFilterType DEM_FILTER_ACCEPTED: Filter was accepted

DEM_WRONG_FILTER: Wrong filter selected

Functional Description

Sets the filter criteria for the J1939 DTC filter mechanism and returns the ECU lamp status.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-66 Dem_J1939DcmSetDTCFilter()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

145 / 175

6.2.7.9 Dem_J1939DcmSetFreezeFrameFilter()

Prototype

Dem_ReturnSetFilterType Dem_J1939DcmSetFreezeFrameFilter (
Dem_J1939DcmSetFreezeFrameFilterType FreezeFrameKind, uint8 NodeAddress)

Parameter

FreezeFrameKind DEM_J1939DCM_FREEZEFRAME: Set the filter for J1939 Freeze Frame
data

DEM_J1939DCM_EXPANDED_FREEZEFRAME: Set the filter for J1939
Expanded Freeze Frame data

DEM_J1939DCM_SPNS_IN_EXPANDED_FREEZEFRAME: Not supported,
DM24 message is handled by J1939Dcm

NodeAddress The network management node ID to be filtered.

Return code

Dem_ReturnSetFilterType DEM_FILTER_ACCEPTED: Filter was accepted

DEM_WRONG_FILTER: Wrong filter selected

Functional Description

Sets the filter criteria for the consecutive calls of functions

> - Dem_J1939DcmGetNextFreezeFrame()

> - Dem_J1939DcmGetNextSPNInFreezeFrame()

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-67 Dem_J1939DcmSetFreezeFrameFilter()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

146 / 175

6.3 Services used by Dem

In the following table services provided by other components, which are used by the Dem
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Component API

Det optional Dem_ReportErrorStatus

FiM optional FiM_DemTriggerOnEventStatus

Dlt optional Dlt_DemTriggerOnEventStatus

EcuM optional EcuM_BswErrorHook

NvM optional NvM_GetErrorStatus

optional NvM_SetRamBlockStatus

optional NvM_WriteBlock

Dcm optional Dcm_DemTriggerOnDTCStatus

J1939Dcm optional J1939Dcm_DemTriggerOnDTCStatus

SchM optional SchM_Enter_Dem_<ExclusiveArea>

optional SchM_Exit_Dem_<ExclusiveArea>

Table 6-68 Services used by the Dem

6.3.1 EcuM_BswErrorHook()

Prototype

void EcuM_BswErrorHook (uint16 BswModuleId, uint8 ErrorId)

Parameter

BswModuleId Autosar ModuleId. The Dem will pass DEM_MODULE_ID.

ErrorId Error code detailing the error cause, see Table 5-5

Return code

- -

Functional Description

This function is called to report defunct configuration data passed to Dem_PreInit.

The Dem will leave Dem_PreInit after a call to this function, without initializing. Further calls to the Dem
module are not safe.

Particularities and Limitations

> This function is called in error cases, when initializing only a Post-Build configurations
> It is not safe if this function returns to the caller, especially if development error detection is disabled by

configuration.

Call context

> This function is called from Dem_PreInit()

Table 6-69 EcuM_BswErrorHook()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

147 / 175

6.4 Callback Functions

This chapter describes the callback functions that are implemented by the Dem and can
be invoked by other modules. The prototypes of the callback functions are provided in the

header file Dem_Cbk.h by the Dem.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

148 / 175

6.4.1 Dem_NvM_JobFinished()

Prototype

Std_ReturnType Dem_NvM_JobFinished (uint8 ServiceId, NvM_RequestResultType
JobResult)

Parameter

ServiceId The ServiceId indicates which one of the asynchronous services triggered via
the operations of Interface NVM Service (Read/Write) the notification belongs
to.

The value is currently not used by the Dem.

JobResult Provides the result of the asynchronous job.

NVM_REQ_OK: last asynchronous request has been finished successfully

NVM_REQ_NOT_OK: last asynchronous request has been finished
unsuccessfully

NVM_REQ_PENDING: not used in this context

NVM_REQ_INTEGRITY_FAILED: not used in this context

NVM_REQ_BLOCK_SKIPPED: not used in this context

NVM_REQ_NV_INVALIDATED: not used in this context

Return code

Std_ReturnType E_OK: is always returned

Functional Description

Is triggered from NVM to notify that the requested job which is processed asynchronous has been finished.

Particularities and Limitations

> This function is reentrant.

> This function is asynchronous.

> Must be configured for every Dem related NVRAM block

Expected Caller Context

> This function can be called from any context.

Table 6-70 Dem_NvM_JobFinished()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

149 / 175

6.4.2 Dem_NvM_InitAdminData()

Prototype

Std_ReturnType Dem_NvM_InitAdminData (void)

Parameter

N/A N/A

Return code

Std_ReturnType E_OK: is always returned

Functional Description

Initialize NvBlock for administrative data.

This function is supposed to be called by the NVM in order to (re)initialize the data in case the non-volatile
memory has never been stored, or was corrupted (see NvMBlockDescriptor/NvMInitBlockCallback). It can
also be used to force a reinitialization of the Dem data triggered by the application (e.g. after a new
software version has been flashed to the ECU). In the latter case, make sure the function is not called in a
context with active Dem!

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-71 Dem_NvM_InitAdminData()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

150 / 175

6.4.3 Dem_NvM_InitStatusData()

Prototype

Std_ReturnType Dem_NvM_InitStatusData (void)

Parameter

N/A N/A

Return code

Std_ReturnType E_OK: is always returned

Functional Description

Initialize NvBlock for event status data.

This function is supposed to be called by the NVM in order to (re)initialize the data in case the non-volatile
memory has never been stored, or was corrupted (see NvMBlockDescriptor/NvMInitBlockCallback).

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-72 Dem_NvM_InitStatusData()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

151 / 175

6.4.4 Dem_NvM_InitDebounceData()

Prototype

Std_ReturnType Dem_NvM_InitDebounceData (void)

Parameter

N/A N/A

Return code

Std_ReturnType E_OK: is always returned

Functional Description

Initialize NvBlock for event de-bounce data.

This function is supposed to be called by the NVM in order to (re)initialize the data in case the non-volatile
memory has never been stored, or was corrupted (see NvMBlockDescriptor/NvMInitBlockCallback).

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-73 Dem_NvM_InitDebounceData()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

152 / 175

6.4.5 Dem_NvM_InitEventAvailableData()

Prototype

Std_ReturnType Dem_NvM_InitEventAvailableData (void)

Parameter

N/A N/A

Return code

Std_ReturnType E_OK: is always returned

Functional Description

Initialize NvBlock for event availability data.

This function is supposed to be called by the NVM in order to (re)initialize the data in case the non-volatile
memory has never been stored, or was corrupted (see NvMBlockDescriptor/NvMInitBlockCallback).

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

Expected Caller Context

> This function can be called from any context.

Table 6-74 Dem_NvM_InitEventAvailableData()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

153 / 175

6.5 Configurable Interfaces

6.5.1 Callouts

At its configurable interfaces the Dem defines callouts that can be mapped to callback
functions provided by other modules. The mapping is not statically defined by the Dem but
can be performed at configuration time. The function prototypes that can be used for the
configuration have to match the appropriate function prototype signatures, which are
described in the following sub-chapters.

6.5.1.1 CBClrEvt_<EventName>()

Prototype

Std_ReturnType CBClrEvt_<EventName> (Boolean* Allowed)

Parameter

Allowed True – clearance of event is allowed

False – clearance of event is not allowed

Return code

Std_ReturnType E_OK: Operation was successful

E_NOT_OK: Operation failed

Functional Description

Is triggered on DTC deletion to request the permission if the event may be cleared or not.

If the return value of the function call is other than E_OK the Dem clears the event for security reasons
without checking the Allowed value.

Particularities and Limitations

> This function shall be reentrant.

> This function shall be synchronous.

Call Context

> This function is called from task context.

Table 6-75 CBClrEvt_<EventName>()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

154 / 175

6.5.1.2 CBDataEvt_<EventName>()

Prototype

Std_ReturnType CBDataEvt_<EventName> (void)

Parameter

N/A N/A

Return code

Std_ReturnType Return value unused

Functional Description

Is triggered on changes of the event related data in the event memory.

Particularities and Limitations

> This function shall be reentrant.

> This function shall be synchronous.

> This function signature deviates from [1] to match the Rte_Call signature.

Call Context

> This function is called from task context.

Table 6-76 CBDataEvt_<EventName>()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

155 / 175

6.5.1.3 CBFaultDetectCtr_<EventName>()

Prototype

Std_ReturnType CBFaultDetectCtr_<EventName> (sint8* FaultDetectionCounter)

Parameter

FaultDetectionCounter This parameter receives the fault detection counter information (according
ISO 14229-1) of the requested EventId. If the return value of the function call
is other than E_OK this parameter does not contain valid data.

-128dec…127dec PASSED…FAILED according to [7]

Return code

Std_ReturnType E_OK: request was successful

E_NOT_OK: request failed

Functional Description

Gets the current fault detection counter value for the requested monitor-internal de-bouncing event.

Particularities and Limitations

> This function shall be reentrant.

> This function shall be synchronous.

Call Context

> This function is called from APIs with unrestricted call context.

Table 6-77 CBFaultDetectCtr_<EventName>()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

156 / 175

6.5.1.4 CBInitEvt_<EventName>()

Prototype

Std_ReturnType CBInitEvt_<EventName> (Dem_InitMonitorReasonType
InitMonitorReason)

Parameter

InitMonitorReason Specific (re-)initialization reason evaluated from the monitor to identify the
initialization kind to be performed.

DEM_INIT_MONITOR_CLEAR: Monitor of the EventId is cleared and all
internal values and states are reset

DEM_INIT_MONITOR_RESTART: Monitor of the EventId is requested to
restart

Return code

Std_ReturnType Return value is unused.

Functional Description

(Re-)initializes the diagnostic monitor of a specific event.

Particularities and Limitations

> This function shall be reentrant.

> This function shall be synchronous.

Call Context

> This function is called from task context.

Table 6-78 CBInitEvt_<EventName>()

6.5.1.5 CBInitFct_<N>()

Prototype

Std_ReturnType CBInitFct_<N> (void)

Parameter

N/A N/A

Return code

Std_ReturnType Return value unused

Functional Description

Resets the diagnostic monitor of a specific function.

Particularities and Limitations

> This function shall be reentrant.

> This function shall be synchronous.

Call Context

> This function is called from task context.

Table 6-79 CBInitFct_<N>()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

157 / 175

6.5.1.6 CBReadData_<SyncDataElement>()

Prototype

Standard API Std_ReturnType CBReadData_<SyncDataElement> (uint8*
Buffer)

API with Event Id Std_ReturnType CBReadData_<SyncDataElement> (
Dem_EventIdType EventId, uint8* Buffer)

Parameter

Buffer Buffer containing the value of the data element.

EventId The EventId which has caused the trigger.

Return code

Std_ReturnType E_OK: Operation was successful

E_NOT_OK: Operation failed

Functional Description

Requests the current value of the data element for freeze frame or extended data storage.

If the callback returns E_NOT_OK, the data is substituted by a pattern of 0xFF

Particularities and Limitations

> This function shall be reentrant.

> This function shall be synchronous.

Call Context

> This function is called from task context.

Table 6-80 CBReadData_<SyncDataElement>()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

158 / 175

6.5.1.7 CBStatusDTC_<N>()

Prototype

Std_ReturnType CBStatusDTC_<N> (uint32 DTC, uint8 DTCStatusOld, uint8
DTCStatusNew)

Parameter

DTC Diagnostic Trouble Code in UDS format.

DTCStatusOld DTC status ANDed with DTCStatusAvailabilityMask before change.

DTCStatusNew DTC status ANDed with DTCStatusAvailabilityMask after change

Return code

Std_ReturnType Return value unused

Functional Description

Is triggered on changes of the UDS DTC status byte. The trigger will not occur for changed status bits
which are disabled by the DTCStatusAvailabilityMask.

Particularities and Limitations

> This function shall be reentrant.

> This function shall be synchronous.

Call Context

> This function is called from APIs with unrestricted call context.

Table 6-81 CBStatusDTC_<N>()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

159 / 175

6.5.1.8 CBStatusJ1939DTC_<N>()

Prototype

Std_ReturnType CBStatusJ1939DTC_<N> (uint32 DTC, uint8 DTCStatusOld, uint8
DTCStatusNew)

Parameter

DTC Diagnostic Trouble Code in J1939 format.

DTCStatusOld DTC status ANDed with DTCStatusAvailabilityMask before change.

DTCStatusNew DTC status ANDed with DTCStatusAvailabilityMask after change

Return code

Std_ReturnType Return value unused

Functional Description

Is triggered on changes of the J1939 DTC status byte. The trigger will not occur for changed status bits
which are disabled by the DTCStatusAvailabilityMask.

Particularities and Limitations

> This function shall be reentrant.

> This function shall be synchronous.

Call Context

> This function is called from APIs with unrestricted call context.

Table 6-82 CBStatusJ1939DTC_<N>()

6.5.1.9 CBStatusEvt_<EventName>_<N>()

Prototype

Std_ReturnType CBStatusEvt_<EventName>_<N> (Dem_EventStatusExtendedType
EventStatusOld, Dem_EventStatusExtendedType EventStatusNew)

Parameter

EventStatusOld UDS status byte of event before change.

EventStatusNew UDS status byte of event after change.

Return code

Std_ReturnType Return value unused

Functional Description

Triggers on changes of the status byte for the related EventId.

Particularities and Limitations

> This function shall be reentrant.

> This function shall be synchronous.

> This function signature deviates from [1] to match the Rte_Call signature.

Call Context

> This function is called from APIs with unrestricted call context.

Table 6-83 CBStatusEvt_<EventName>_<N>()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

160 / 175

6.5.1.10 GeneralCBDataEvt()

Prototype

Std_ReturnType GeneralCBDataEvt (Dem_EventIdType EventId)

Parameter

EventId The EventId which has caused the trigger

Return code

Std_ReturnType Return value unused

Functional Description

Is triggered on changes of the event related data in the event memory.

Particularities and Limitations

> This function shall be reentrant.

> This function shall be synchronous.

> This function signature deviates from [1] to match the Rte_Call signature.

Call Context

> This function is called from task context.

Table 6-84 GeneralCBDataEvt()

6.5.1.11 GeneralCBStatusEvt()

Prototype

Std_ReturnType GeneralCBStatusEvt (Dem_EventIdType EventId,
Dem_EventStatusExtendedType EventStatusOld, Dem_EventStatusExtendedType

EventStatusNew)

Parameter

EventId The EventId which has caused the trigger.

EventStatusOld UDS status byte of event before change.

EventStatusNew UDS status byte of event after change.

Return code

Std_ReturnType Return value unused

Functional Description

Triggers on changes of the status byte for the related EventId.

Particularities and Limitations

> This function shall be reentrant.

> This function shall be synchronous.

> This function signature deviates from [1] to match the Rte_Call signature.

Call Context

> This function is called from APIs with unrestricted call context.

Table 6-85 GeneralCBStatusEvt()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

161 / 175

6.6 Service Ports

6.6.1 Client Server Interface

A client server interface is related to a Provide Port at the server side and a Require Port
at client side.

6.6.1.1 Provide Ports on Dem Side

At the Provide Ports of the Dem the API functions described in 6.2 are available as
Runnable Entities. The Runnable Entities are invoked via Operations. The mapping from a
SWC client call to an Operation is performed by the RTE. In this mapping the RTE adds
Port Defined Argument Values to the client call of the SWC, if configured.

The following sub-chapters present the Provide Ports defined for the Dem and the
Operations defined for the Provide Ports, the API functions related to the Operations and
the Port Defined Argument Values to be added by the RTE.

6.6.1.1.1 DiagnosticMonitor

Port Defined Argument: Dem_EventIdType EventId

Operation API Function Arguments

SetEventStatus Dem_SetEventStatus IN Dem_EventStatusType
EventStatus,

ERR{E_NOT_OK}

ResetEventStatus Dem_ResetEventStatus ERR{E_NOT_OK}

PrestoreFreezeFrame Dem_PrestoreFreezeFrame ERR{E_NOT_OK}

ClearPrestoredFreezeFrame Dem_ClearPrestoredFreezeFrame ERR{E_NOT_OK}

Table 6-86 DiagnosticMonitor

6.6.1.1.2 DiagnosticInfo and GeneralDiagnosticInfo

DiagnosticInfo has Port Defined Argument: Dem_EventIdType EventId

Operation API Function Arguments

GetEventStatus Dem_GetEventStatus OUT Dem_EventStatusExtendedType
EventStatusExtended,

ERR{E_NOT_OK}

GetEventFailed Dem_GetEventFailed OUT boolean EventFailed,

ERR{E_NOT_OK}

GetEventTested Dem_GetEventTested OUT boolean EventTested,

ERR{E_NOT_OK}

GetDTCOfEvent Dem_GetDTCOfEvent IN Dem_DTCFormatType DTCFormat,

OUT uint32 DTCOfEvent,

ERR{E_NOT_OK,
DEM_E_NO_DTC_AVAILABLE}

GetFaultDetectionCounter Dem_
GetFaultDetectionCounter

OUT sint8 FaultDetectionCounter,

ERR{E_NOT_OK,
DEM_E_NO_FDC_AVAILABLE}

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

162 / 175

Operation API Function Arguments

GetEventEnableCondition Dem_
GetEventEnableCondition

OUT boolean ConditionFullfilled

ERR{E_NOT_OK}

GetEventFreezeFrameData Dem_
GetEventFreezeFrameData

IN uint8 RecordNumber,

IN boolean ReportTotalRecord,

IN uint16 DataId,

OUT Dem_MaxDataValueType
DestBuffer,

ERR{DEM_E_NODATAAVAILABLE,
DEM_E_WRONG_RECORDNUMBER}

GetEventExtendedDataRecord Dem_
GetEventExtendedDataRecor
d

IN uint8 RecordNumber,

OUT Dem_MaxDataValueType
DestBuffer,

ERR{DEM_E_NODATAAVAILABLE,
DEM_E_WRONG_RECORDNUMBER}

Table 6-87 DiagnosticInfo and GeneralDiagnosticInfo

6.6.1.1.3 OperationCycle

Port Defined Argument: uint8 OperationCycleId

Operation API Function Arguments

SetOperationCycleState Dem_SetOperationCycleState IN Dem_OperationCycleStateType
CycleState,

ERR{E_NOT_OK}

Table 6-88 OperationCycle

6.6.1.1.4 AgingCycle

Not supported

6.6.1.1.5 ExternalAgingCycle

Not supported

6.6.1.1.6 EnableCondition

Port Defined Argument: uint8 EnableConditionId

Operation API Function Arguments

SetEnableCondition Dem_SetEnableCondition IN boolean ConditionFulfilled,

ERR{E_NOT_OK}

Table 6-89 EnableCondition

6.6.1.1.7 StorageCondition

Port Defined Argument: uint8 StorageConditionId

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

163 / 175

Operation API Function Arguments

SetStorageCondition Dem_SetStorageCondition IN boolean ConditionFulfilled,

ERR{E_NOT_OK}

Table 6-90 StorageCondition

6.6.1.1.8 IndicatorStatus

Port Defined Argument: uint8 IndicatorStatus

Operation API Function Arguments

GetIndicatorStatus Dem_GetIndicatorStatus OUT Dem_IndicatorStatusType
IndicatorStatus,

ERR{E_NOT_OK}

Table 6-91 IndicatorStatus

6.6.1.1.9 EventStatus

Port Defined Argument: Dem_EventIdType EventId

Operation API Function Arguments

SetWIRStatus Dem_SetWIRStatus IN boolean WIRStatus,

ERR{E_NOT_OK}

GetWIRStatus Dem_GetWIRStatus OUT boolean WIRStatus,
ERR{E_NOT_OK}

Table 6-92 EventStatus

6.6.1.1.10 EvMemOverflowIndication

Port Defined Argument: Dem_DTCOriginType DTCOrigin

Operation API Function Arguments

GetEventMemoryOverflow Dem_
GetEventMemoryOverflow

OUT boolean OverflowIndication,

ERR{E_NOT_OK}

Table 6-93 EvMemOverflowIndication

6.6.1.1.11 DTCSuppression

Operation API Function Arguments

SetDTCSuppression Dem_
SetDTCSuppression

IN uint32 DTC,

IN Dem_DTCFormatType
DTCFormat,

IN boolean SuppressionStatus

ERR{E_NOT_OK}

Table 6-94 DTCSuppression

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

164 / 175

6.6.1.1.12 EventSuppression

Operation API Function Arguments

SetEventSuppression Dem_
SetEventSuppression

IN Dem_EventIdType EventId,

IN boolean SuppressionStatus

ERR{E_NOT_OK}

Table 6-95 EventSuppression

6.6.1.1.13 DemServices

Operation API Function Arguments

GetDtcStatusAvailabilityMask Dem_
GetDtcStatusAvailabilityMask

OUT uint8 DTCStatusMask,

ERR{E_NOT_OK}

GetPostRunRequested Dem_
GetPostRunRequested

OUT boolean isRequested

ERR{E_NOT_OK}

SynchronizeNvData Dem_
RequestNvSynchronization

ERR{E_NOT_OK}

Table 6-96 DemServices

6.6.1.1.14 DcmIf

The DcmIf PortInterface is a special case not intended to be used by application software.

Instead, this interface is a means to establish the call contexts for application notification
callbacks that are the result of function calls to the Dem by the Dcm. The interface
description is omitted intentionally for this reason.

6.6.1.1.15 CddIf

Operation API Function Arguments

ClearDTC Dem_
ClearDTC

IN uint32 DTC,
IN Dem_DTCFormatType DTCFormat

IN Dem_DTCOriginType DTCOrigin
ERR{DEM_CLEAR_WRONG_DTC,
DEM_CLEAR_WRONG_DTCORIGIN,
DEM_CLEAR_FAILED,
DEM_CLEAR_PENDING,
DEM_CLEAR_BUSY }

6.6.1.2 Require Ports on Dem Side

At its Require Ports the Dem calls Operations. These Operations have to be provided by
the SWCs by means of Runnable Entities. These Runnable Entities implement the
callback functions expected by the Dem.

The following sub-chapters present the Require Ports defined for the Dem, the Operations
that are called from the Dem and the related Callouts, which are described in chapter 6.5.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

165 / 175

Note

If following interfaces are used as port interfaces without RTE, the function prefix

Rte_Call will be replaced by the prefix Appl_Dem.

6.6.1.2.1 CBInitEvt_<EventName>

Operation Callout

InitMonitorForEvent Rte_Call_ CBInitEvt_<EventName>_InitMonitorForEvent

Table 6-97 CBInitEvt_<EventName>

6.6.1.2.2 CBInitFct_<N>

Operation Callout

InitMonitorForFunction Rte_Call_ CBInitFct_<N> _InitMonitorForFunction

Table 6-98 CBInitFct_<N>

6.6.1.2.3 CBStatusEvt_<EventName>_<N>

Operation Callout

EventStatusChanged Rte_Call_ CBStatusEvt_<EventName>_<N> _EventStatusChanged

Table 6-99 CBStatusEvt_<EventName>_<N>

6.6.1.2.4 GeneralCBStatusEvt

Operation Callout

EventStatusChanged Rte_Call_ GeneralCBStatusEvt _EventStatusChanged

Table 6-100 GeneralCBStatusEvt

6.6.1.2.5 CBStatusDTC_<N>

Operation Callout

DTCStatusChanged Rte_Call_ CBStatusDTC_<N>_DTCStatusChanged

Table 6-101 CBStatusDTC_<N>

6.6.1.2.6 CBDataEvt_<EventName>

Operation Callout

EventDataChanged Rte_Call_ CBDataEvt_<EventName>_EventDataChanged

Table 6-102 CBDataEvt_<EventName>

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

166 / 175

6.6.1.2.7 GeneralCBDataEvt

Operation Callout

EventDataChanged Rte_Call_ GeneralCBDataEvt _EventDataChanged

Table 6-103 GeneralCBDataEvt

6.6.1.2.8 CBClrEvt_<EventName>

Operation Callout

ClearEventAllowed Rte_Call_ CBClrEvt_<EventName>_ClearEventAllowed

Table 6-104 CBClrEvt_<EventName>

6.6.1.2.9 CBReadData_<SyncDataElement>

Operation Callout

ReadData Rte_Call_ CBReadData_<SyncDataElement> _ReadData

Table 6-105 CBReadData_<SyncDataElement>

6.6.1.2.10 CBFaultDetectCtr_<EventName>

Operation Callout

GetFaultDetectionCounter Rte_Call_ CBFaultDetectCtr_<EventName>
_GetFaultDetectionCounter

Table 6-106 CBFaultDetectCtr_<EventName>

6.6.1.2.11 CBCtrlDtcSetting

Operation Callout

ControlDTCSettingChanged Rte_Call_CBCControlDTCSetting_ControlDTCSettingChanged

Table 6-107 CBCtrlDtcSetting

6.7 Not Supported APIs

Operation

Dem_DcmGetOBDFreezeFrameData()

Dem_SetOperationCycleCntValue()

Dem_SetAgingCycleState()

Dem_SetAgingCycleCounterValue()

Dem_DltGetMostRecentFreezeFrameRecordData()

Dem_DltGetAllExtendedDataRecords()

Dem_SetEventDisabled()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

167 / 175

Operation

Dem_RepIUMPRFaultDetect()

Dem_RepIUMPRDenLock()

Dem_RepIUMPRDenRelease()

Dem_DcmGetInfoTypeValue08()

Dem_DcmGetInfoTypeValue0B()

Dem_DcmReadDataOfPID01()

Dem_DcmReadDataOfPID1C()

Dem_DcmReadDataOfPID21()

Dem_DcmReadDataOfPID30()

Dem_DcmReadDataOfPID31()

Dem_DcmReadDataOfPID41()

Dem_DcmReadDataOfPID4D()

Dem_DcmReadDataOfPID4E()

Dem_DcmReadDataOfOBDFreezeFrame()

Dem_DcmGetDTCOfOBDFreezeFrame()

Dem_SetPtoStatus()

Table 6-108 Not Supported APIs

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

168 / 175

7 Configuration

In the Dem the attributes can be configured with the following tools:

> Configuration in GCE

> Configuration in DaVinci Configurator

The configuration of post-build is described in [8] and [9].

7.1 Configuration Variants

The Dem supports the configuration variants

> VARIANT-PRE-COMPILE

> VARIANT-POST-BUILD-LOADABLE

> VARIANT-POST-BUILD-SELECTABLE

The configuration classes of the Dem parameters depend on the supported configuration
variants. For their definitions please see the Dem_bswmd.arxml file.

7.2 Configurable Attributes

The description of each configurable option is described within the Dem_bswmd.arxml file.
You can use the online help of DaVinci Configurator 5 to access these parameter
descriptions comfortably.

7.3 Configuration of Post-Build Loadable

This component uses a static RAM management which differs from the concept described
in the mentioned post-build documentation.

Since all RAM buffers scale with the number of configured events, and the number of
events cannot be changed during post-build time, we see no need for dynamic RAM
management.

The NV-Ram required is however also not covered by dynamic RAM management. NvM
cannot change its memory allocation, so this is a restriction by necessity. In post-build
configurations, the Dem can reserve some NV memory for snapshot data storage using
parameter /DemGeneral/DemPostbuild/DemMaxSizeFreezeFrame.

It is mainly used to verify that configuration changes do not increase the required NV Ram
beyond the available amount. You can however increase its value if you need flexibility to
add DIDs to existing snapshot records.

Caution
The reserved NV Ram size cannot be reduced during post-build. Be aware of the
additional wear on the Flash memory if FEE is used to back the Dem NV data.

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

169 / 175

7.3.1 Supported Variance

Since much of the configuration of Dem can result in API changes, some restrictions apply
regarding which features and configuration elements can be modified after linking.

E.g., there is no sensible way to introduce (and implement) additional application
callbacks. All code has to be already present in the ECU; service ports must be connected
via RTE. Also, it’s not generally possible to add arbitrary data to the NV data structures,
whose block sizes are static as well.

Generally, Post-Build Loadable for the Dem module supports modifying an existing
configuration, but not changing it structurally. The exhaustive list of parameters that can be
modified using Post-Build Loadable is documented in the Dem parameter description file
(BSWMD file). This list is only intended as short outline.

> DTC numbers

> De-bouncing parameters

> Step sizes and thresholds

> Qualification time

> DTC operation cycle

> DID numbers

> DIDs contained in snapshots

> Restricted by the amount of reserved NV data

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

170 / 175

8 AUTOSAR Standard Compliance

8.1 Deviations

Deviation Comment

DemGetNextFilteredDTCAndFDC() If monitor internal de-bouncing is used the Dem
requests the application for the fault detection counter.
To implement the necessary call sequence definition,
the Dem provides this interface as part of PortInterface
DcmIf.

Dem_EnableDTCSetting() This API can cause init monitor notifications if it ends a
DTC disabled state. To implement the necessary call
sequence definition, the Dem provides this interface as
part of PortInterface DcmIf.

Depending on the configuration, it requires a Dem task
for this API to take effect.

Dem_J1939DcmGetNextSPNIn

FreezeFrame()
The interface is not supported and therefore will
always return.

DEM_FILTERED_NO_MATCHING_ELEMENT. The

intended functionality is implemented in the Vector
J1939Dcm.

Operation cycle handling Only the Operation Cycle using the ‘Autostart’ option is
considered active before initialization. This is different
from the Autosar standard, which defines to set all
cycles to active, and undo the effects for cycles not
started at initialization time.

TimeBased Debouncing Qualified reports are handled asynchronously, for all
event status bits.

CBStatusEvt and CBtDataEvt
Notification signature

The signature of these callbacks is expected to match
Rte_Call (see chapter 6.5.1 Callouts). Notifications
with return type ‘void’ are not possible.

Table 8-1 Deviations

8.2 Additions/ Extensions

Extension Comment

Dem_InitMemory() see 6.2.3.3

Dem_PostRunRequested() see 6.2.4.21

Dem_GetEventEnableCondition() see 6.2.4.18

Extension of
CBReadData_<SyncDataElement>()

see 6.5.1.6

Table 8-2 Extensions

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

171 / 175

8.3 Limitations

Limitation Comment

Enable Conditions Maximum number of Enable Conditions is limited to 31 for efficiency
reasons.

Storage Conditions Maximum number of Storage Conditions is limited to 32 for efficiency
reasons.

Operation Cycles Maximum number of Operation Cycles is limited to 16 for efficiency
reasons.

Aging Threshold Maximum possible aging cycles are limited to 255 (from 256) for
efficiency reasons.

ControlDTCSetting The service is limited to DTC Group
DEM_DTC_GROUP_ALL_DTCS and DTC Kind
DEM_DTC_KIND_ALL_DTCS.

Non-Volatile storage Configuration option DemStatusBitStorageTestFailed == false will
reset the Test Failed bit during initialization, but it will be stored in
NVRAM anyways.

DemGroupOfDTC Configuration of DTC groups is limited to 4. These are intended to be
used to support the Powertrain, Body, Chassis and Network
groupings defined by ISO 15031-6.

Different definitions may not work as intended.

Extended Data Record Interface Dem_GetEventExtendedDataRecord() will return

E_NOT_OK if requested record number is equal to 0xFE or 0xFF.

Snapshot Record/ Freeze
Frame

Interface Dem_GetEventFreezeFrameData() will return the most

recent record only if the records are configured as “calculated”.

Interface Dem_GetEventFreezeFrameData() will return

E_NOT_OK if the records are configured as “Configured” and the
requested record is 0xFF.

Internal Data Elements The internal data elements which can be mapped into an extended
data or snapshot record will always have their current internal values
at the time the data is read out.
This will not apply to the following elements as they are static
configuration elements: Significance, Priority, OBD DTC, root cause
Event Id

J1939 DTC If the DTC class has configured a J1939 DTC then an UDS DTC
must be also available.

J1939NmNodes Maximum number of different nodes is limited to 255 (from 256) for
efficiency reasons.

J1939 Indicators An event is only allowed to support one J1939 related indicators
(RSL, AWL, PL). The MIL indicator is not supported.

J1939 Freeze Frame and
Expanded Freeze Frame

Only one global defined J1939 Freeze Frame and one global J1939
Expanded Freeze Frame is supported.

De-bounce counter
storage in NVRAM

This feature is limited to counter based de-bounced events only.
BSW events which are reported before initialization of DEM
(Dem_Init()) must not use this feature.

DTC suppression DEM_DTC_FORMAT_OBD is not supported for function
Dem_SetDTCSuppression()

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

172 / 175

Table 8-3 Limitations

8.4 Not Supported Service Interfaces

The following table contains service interfaces which are not supported from Dem.

Port Operation(s)

DiagnosticMonitor SetEventDisable

AgingCycle SetAgingCycleState

ExternalAgingCycle SetAgingCycleCounterValue

PowerTakeOff SetPtoStatus

DataServices<SyncDataElement> ReadData  Sender/Receiver

Table 8-4 Service Interfaces which are not supported

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

173 / 175

9 Glossary and Abbreviations

9.1 Glossary

Term Description

Configurator 5 Configuration and code generation tool for MICROSAR components

Combined Event The combination of multiple events into a combined status.

Warning Indicator The warning indicator managed by the Dem only provides the information
that the related indicator (e.g. lamp in the dashboard) shall be requested,
the de-/activation must be handled by the application or a different ECU.
Each event that currently requests an indicator will have set the warning
indicator requested bit in the status byte.

Table 9-1 Glossary

9.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

AWL Amber Warning Lamp

BSW Basic Software

Cfg5 Configurator 5

CPU Central Processing Unit

Dcm Diagnostic Communication Manager

DCY Driving Cycle

Dem Diagnostic Event Manager

Det Development Error Tracer

Dlt Diagnostic Log and Trace

DTC Diagnostic Trouble Code

EAD Embedded Architecture Designer

ECU Electronic Control Unit

EcuM Ecu Manager

EEPROM Electrically Erasable Programmable Read-Only Memory

FDC Fault Detection Counter

FEE Flash EEPROM Emulation

GCE Generic Content Editor

HIS Hersteller Initiative Software

ID Identification

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

174 / 175

MIL Malfunction Indicator Lamp

NVRAM Non-volatile Random Access Memory

OBD On Board Diagnostics

OCC Occurrence Counter

PL Protect Lamp

Pport Provide Port

RAM Random Access Memory

ROE Response On Event

ROM Read-Only Memory

Rport Require Port

RSL Red Stop Lamp

Rte Runtime Environment

SAE Society of Automotive Engineers

SchM Schedule Manager

SRS Software Requirement Specification

SWC Software Component

SWS Software Specification

UDS Unified Diagnostic Services

WUC Warmup Cycle

Table 9-2 Abbreviations

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

175 / 175

10 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

	1 Component History
	2 Introduction
	2.1 How to Read this Document
	2.1.1 API Definitions
	2.1.2 Configuration References

	2.2 Architecture Overview

	3 Functional Description
	3.1 Features
	3.2 Initialization
	3.2.1 Initialization States

	3.3 Diagnostic Event Processing
	3.3.1 Event De-bouncing
	3.3.1.1 Counter Based Algorithm
	3.3.1.2 Time Based Algorithm
	3.3.1.3 Monitor internal de-bouncing

	3.3.2 Event Reporting
	3.3.3 Event Status
	3.3.3.1 Synchronous Status Bit Transitions
	3.3.3.2 Asynchronous Status Bit Transitions
	3.3.3.3 Event Storage modifying Status Bits
	3.3.3.4 Lightweight Multiple Trips (FailureCycleCounterThreshold)

	3.4 Event Displacement
	3.5 Event Aging
	3.5.1 Aging Target ‘0’
	3.5.2 Aging Counter Reallocation
	3.5.3 Aging of Environmental Data
	3.5.4 Aging of TestFailedSinceLastClear
	3.5.5 Aging and Healing

	3.6 Operation Cycles
	3.6.1 Persistent Storage of Operation Cycle State
	3.6.2 Automatic Operation Cycle Restart

	3.7 Enable Conditions and Control DTC Setting
	3.7.1 Effects on de-bouncing and FDC

	3.8 Storage Conditions
	3.9 DTC Suppression
	3.9.1 Event Availability
	3.9.2 Suppress Event / Suppress DTC

	3.10 Environmental Data
	3.10.1 Storage Trigger
	3.10.1.1 Storage Trigger ‘FDC Threshold’

	3.10.2 Internal Data Elements
	3.10.3 External Data Elements
	3.10.3.1 Nv-Ram storage

	3.11 Freeze Frame Pre-Storage
	3.12 Combined Events
	3.12.1 Configuration
	3.12.2 Event Reporting
	3.12.3 DTC Status
	3.12.4 Environmental Data Update
	3.12.5 Aging
	3.12.6 Clear DTC

	3.13 Non-Volatile Data Management
	3.13.1 NvM Interaction
	3.13.2 NVRAM Write Frequency
	3.13.3 Data Recovery

	3.14 Diagnostic Interfaces
	3.15 Notifications
	3.15.1 Event Status Changed
	3.15.2 DTC Status Changed
	3.15.3 Event Data Changed
	3.15.4 Monitor Re-Initialization

	3.16 Indicators
	3.16.1 User Controlled WarningIndicatorRequest

	3.17 Interface to the Runtime Environment
	3.18 Error Handling
	3.18.1 Development Error Reporting
	3.18.1.1 Parameter Checking
	3.18.1.2 Defensive Behavior

	3.18.2 Production Code Error Reporting

	3.19 J1939
	3.19.1 J1939 Freeze Frame and J1939 Expanded Freeze Frame
	3.19.2 Indicators
	3.19.3 Clear DTC

	3.20 Clear DTC APIs

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Include Structure
	4.3 Compiler Abstraction and Memory Mapping
	4.3.1 Copy Routines

	4.4 Critical Sections
	4.4.1 Exclusive Area 0
	4.4.2 Exclusive Area 1
	4.4.3 Exclusive Area 2

	4.5 NVM Integration
	4.5.1 NVRAM Demand
	4.5.2 NVRAM Initialization
	4.5.2.1 Controlled Re-initialization
	4.5.2.2 Common Errors

	4.5.3 Expected NVM Behavior
	4.5.4 Flash Lifetime Considerations

	4.6 Rte Integration
	4.6.1 Runnable Entities
	4.6.2 Application Port Interface
	4.6.3 DcmIf

	4.7 Post-Run requirements
	4.8 Run-Time limitation
	4.9 Split main function

	5 Measurement and Calibration
	5.1 Measurable Data
	5.1.1 Dem_Cfg_StatusData
	5.1.2 Dem_Cfg_EventDebounceValue
	5.1.3 Dem_Cfg_EventMaxDebounceValues
	5.1.4 Dem_PrimaryEntry_<Number>

	5.2 Post-Build Support
	5.2.1 Initialization
	5.2.2 Post-Build Loadable
	5.2.3 Post-Build Selectable

	6 API Description
	6.1 Type Definitions
	6.2 Services provided by Dem
	6.2.1 Dem_GetVersionInfo()
	6.2.2 Dem_MainFunction()
	6.2.3 Interface EcuM
	6.2.3.1 Dem_PreInit()
	6.2.3.2 Dem_Init()
	6.2.3.3 Dem_InitMemory()
	6.2.3.4 Dem_Shutdown()

	6.2.4 Interface SWC and CDD
	6.2.4.1 Dem_SetEventStatus()
	6.2.4.2 Dem_ResetEventStatus()
	6.2.4.3 Dem_ResetEventDebounceStatus()
	6.2.4.4 Dem_PrestoreFreezeFrame()
	6.2.4.5 Dem_ClearPrestoredFreezeFrame()
	6.2.4.6 Dem_SetOperationCycleState()
	6.2.4.7 Dem_GetEventStatus()
	6.2.4.8 Dem_GetEventFailed()
	6.2.4.9 Dem_GetEventTested()
	6.2.4.10 Dem_GetDTCOfEvent()
	6.2.4.11 Dem_GetEventAvailable()
	6.2.4.12 Dem_SetEnableCondition()
	6.2.4.13 Dem_SetStorageCondition()
	6.2.4.14 Dem_GetFaultDetectionCounter()
	6.2.4.15 Dem_GetIndicatorStatus()
	6.2.4.16 Dem_GetEventFreezeFrameData()
	6.2.4.17 Dem_GetEventExtendedDataRecord()
	6.2.4.18 Dem_GetEventEnableCondition()
	6.2.4.19 Dem_GetEventMemoryOverflow()
	6.2.4.20 Dem_GetNumberOfEventMemoryEntries()
	6.2.4.21 Dem_PostRunRequested()
	6.2.4.22 Dem_SetWIRStatus()
	6.2.4.23 Dem_GetWIRStatus()
	6.2.4.24 Dem_SetDTCSuppression()
	6.2.4.25 Dem_SetEventSuppression()
	6.2.4.26 Dem_SetEventAvailable()
	6.2.4.27 Dem_ClearDTC()
	6.2.4.28 Dem_RequestNvSynchronization()

	6.2.5 Interface BSW
	6.2.5.1 Dem_ReportErrorStatus()

	6.2.6 Interface Dcm
	6.2.6.1 Dem_DcmSetDTCFilter()
	6.2.6.2 Dem_DcmGetNumberOfFilteredDTC()
	6.2.6.3 Dem_DcmGetNextFilteredDTC()
	6.2.6.4 Dem_DcmGetNextFilteredDTCAndFDC()
	6.2.6.5 Dem_DcmGetNextFilteredDTCAndSeverity()
	6.2.6.6 Dem_DcmSetFreezeFrameRecordFilter()
	6.2.6.7 Dem_DcmGetNextFilteredRecord()
	6.2.6.8 Dem_DcmGetStatusOfDTC()
	6.2.6.9 Dem_DcmGetDTCStatusAvailabilityMask()
	6.2.6.10 Dem_DcmGetDTCByOccurrenceTime()
	6.2.6.11 Dem_DcmGetTranslationType()
	6.2.6.12 Dem_DcmGetSeverityOfDTC()
	6.2.6.13 Dem_DcmGetFunctionalUnitOfDTC()
	6.2.6.14 Dem_DcmDisableDTCRecordUpdate()
	6.2.6.15 Dem_DcmEnableDTCRecordUpdate()
	6.2.6.16 Dem_DcmGetFreezeFrameDataByDTC()
	6.2.6.17 Dem_DcmGetSizeOfFreezeFrameByDTC()
	6.2.6.18 Dem_DcmGetExtendedDataRecordByDTC()
	6.2.6.19 Dem_DcmGetSizeOfExtendedDataRecordByDTC()
	6.2.6.20 Dem_DcmClearDTC()
	6.2.6.21 Dem_DcmDisableDTCSetting()
	6.2.6.22 Dem_DcmEnableDTCSetting()
	6.2.6.23 Dem_DcmCancelOperation()

	6.2.7 Interface J1939Dcm
	6.2.7.1 Dem_J1939DcmClearDTC()
	6.2.7.2 Dem_J1939DcmFirstDTCwithLampStatus()
	6.2.7.3 Dem_J1939DcmGetNextDTCwithLampStatus ()
	6.2.7.4 Dem_J1939DcmGetNextFilteredDTC()
	6.2.7.5 Dem_J1939DcmGetNextFreezeFrame()
	6.2.7.6 Dem_J1939DcmGetNextSPNInFreezeFrame()
	6.2.7.7 Dem_J1939DcmGetNumberOfFilteredDTC ()
	6.2.7.8 Dem_J1939DcmSetDTCFilter()
	6.2.7.9 Dem_J1939DcmSetFreezeFrameFilter()

	6.3 Services used by Dem
	6.3.1 EcuM_BswErrorHook()

	6.4 Callback Functions
	6.4.1 Dem_NvM_JobFinished()
	6.4.2 Dem_NvM_InitAdminData()
	6.4.3 Dem_NvM_InitStatusData()
	6.4.4 Dem_NvM_InitDebounceData()
	6.4.5 Dem_NvM_InitEventAvailableData()

	6.5 Configurable Interfaces
	6.5.1 Callouts
	6.5.1.1 CBClrEvt_<EventName>()
	6.5.1.2 CBDataEvt_<EventName>()
	6.5.1.3 CBFaultDetectCtr_<EventName>()
	6.5.1.4 CBInitEvt_<EventName>()
	6.5.1.5 CBInitFct_<N>()
	6.5.1.6 CBReadData_<SyncDataElement>()
	6.5.1.7 CBStatusDTC_<N>()
	6.5.1.8 CBStatusJ1939DTC_<N>()
	6.5.1.9 CBStatusEvt_<EventName>_<N>()
	6.5.1.10 GeneralCBDataEvt()
	6.5.1.11 GeneralCBStatusEvt()

	6.6 Service Ports
	6.6.1 Client Server Interface
	6.6.1.1 Provide Ports on Dem Side
	6.6.1.1.1 DiagnosticMonitor
	6.6.1.1.2 DiagnosticInfo and GeneralDiagnosticInfo
	6.6.1.1.3 OperationCycle
	6.6.1.1.4 AgingCycle
	6.6.1.1.5 ExternalAgingCycle
	6.6.1.1.6 EnableCondition
	6.6.1.1.7 StorageCondition
	6.6.1.1.8 IndicatorStatus
	6.6.1.1.9 EventStatus
	6.6.1.1.10 EvMemOverflowIndication
	6.6.1.1.11 DTCSuppression
	6.6.1.1.12 EventSuppression
	6.6.1.1.13 DemServices
	6.6.1.1.14 DcmIf
	6.6.1.1.15 CddIf

	6.6.1.2 Require Ports on Dem Side
	6.6.1.2.1 CBInitEvt_<EventName>
	6.6.1.2.2 CBInitFct_<N>
	6.6.1.2.3 CBStatusEvt_<EventName>_<N>
	6.6.1.2.4 GeneralCBStatusEvt
	6.6.1.2.5 CBStatusDTC_<N>
	6.6.1.2.6 CBDataEvt_<EventName>
	6.6.1.2.7 GeneralCBDataEvt
	6.6.1.2.8 CBClrEvt_<EventName>
	6.6.1.2.9 CBReadData_<SyncDataElement>
	6.6.1.2.10 CBFaultDetectCtr_<EventName>
	6.6.1.2.11 CBCtrlDtcSetting

	6.7 Not Supported APIs

	7 Configuration
	7.1 Configuration Variants
	7.2 Configurable Attributes
	7.3 Configuration of Post-Build Loadable
	7.3.1 Supported Variance

	8 AUTOSAR Standard Compliance
	8.1 Deviations
	8.2 Additions/ Extensions
	8.3 Limitations
	8.4 Not Supported Service Interfaces

	9 Glossary and Abbreviations
	9.1 Glossary
	9.2 Abbreviations

	10 Contact

