vactor’

MICROSAR Diagnostic Event Manager
(Dem)

Technical Reference

Version 4.3.0

Authors Thomas Dedler, Alexander Ditte, Matthias Heil

Status Released

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

Document Information

History

Author __|Date ___Version [Remarks

A. Ditte 2012-05-04 1.0.0 Initial Version
A. Ditte 2012-10-09 1.0.1 Add chapter 6.2.4.18 and 6.6.1.2.11
Add GetEventEnableCondition to chapter 6.6.1.1.2

M. Heil 2012-11-02 1.1.0 Architecture Update

A. Ditte, 2013-02-15 1.2.0
M. Heil

Introduced Measurement and Calibration (chapter 5)
Extended chapters 3.3, 3.5, 3.15, 4.3 and 4.3.1

Added User Controlled WarningIndicatorRequest
(chapter 3.16.1)

Added chapters 6.2.4.22, 6.2.4.23,6.6.1.1.9

Support for feature ‘DTC suppression’

Added chapter 3.9, APls 6.2.4.24, 6.2.4.25
Reworked table layout in chapters 4.3, 5.2
Reworked Measurement and Calibration (chapter 5)
Added measurable items (chapter 5.1)

vV V. V V V V V

\%

M. Heil 2013-04-05 1.3.0

M. Heil 2013-06-17 1.4.0 Added combined events

Reworked suppression

vV V V V V V V V

T. Dedler 2013-07-22 1.4.1

T. Dedler, 2013-09-04 2.0.0
M. Heil

critical section description extended

\%

Service ID definition changed
> Post-Build Loadable

A. Ditte 2013-11-05 2.1.0 > Added OBD DTC and Root cause Eventld to chapter
3.10.2

> Added limitation for internal data elements in chapter
8.3

A. Ditte, 2014-01-14 3.0.0 > Added J1939 (chapters 3.19, 6.2.7)

M. Heil > Adapted DCM interfaces (chapter 6.2.6) according
AUTOSAR 4.1.2
> Added chapter 4.3.1
> Fixed ESCANO00071673: NVM configuration is not
described
> Fixed ESCANO00071511: Missing hint for supported
feature 'individual post-build loadable'
> Fixed ESCANO00073677: Incorrect figure for DEM
initialization states
©2015, Vector Informatik GmbH Version: 4.3.0 27175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectort

M. Heil 2014-03-27 3.1.0 > Describe deviation in handling operation cycles before
module initialization.

> Add dependency to configuration to Dcm APlIs.

> Added warning about time-based de-bouncing and
maximum fault detection counter in current cycle

M. Heil 2014-05-08 3.2.0 > Added Event Availability (chapters 3.9.1, 6.2.4.26)

> Added freeze frame pre-storage (chapters 3.11, 6.2.4.4,
6.2.4.5)

> Corrected description of Event and DTC suppression
(chapters 3.9, 6.2.4.4, 6.2.4.5)

> Introduced chapter 3.3.3.4
> Clarified usage of DTC groups (chapter 8.3)

M. H‘eil 2014-10-14 4.0.0 > Moved Initialization Pointer (see Dem_Prelnit(),
A. Ditte Dem_lnit())

> Added APl Dem_RequestNvSynchronization()

> Added de-bounce values in NVRAM and API
Dem_NvM_InitDebounceData()

> Added additional aging variant (chapter 3.5), added
Figure 3-3

> Added missing configuration variants (chapter 2,
ESCANO00076237)

> Added description for NVRAM write frequency (chapter
3.13.2, ESCAN00078587)

> Added description for NVRAM recovery (chapter 3.13.3,
ESCANO00078582)

Added support of J1939 nodes

Added APls, chapters 6.2.4.3, 6.2.4.20
Support EnableCondition notification, 3.15.4
Added explanation of Dem task mapping, chapter 4.9

Added not of reduced queue depth for some events,
chapter 3.3.3.2

> Updated critical sections, chapter 4.4

M. Heil 2015-04-20 4.1.1 > Added deviation regarding notification signatures
(chapters 6.5.1, 8.1)

> Reworked chapter 3.1 according ESCAN00082555

M. Heil 2015-06-17 4.2.0 > Extended data callback support (chapters 3.10.3,
6.5.1.6)

> Described FDC statistics for DTCs using internal de-
bouncing (chapter 3.10.2)

> Described aging target 0 (chapter 3.5.1)

> Described effect of asynchronous behavior of $85
(chapter 3.7)

> Described different aging behavior (chapter 3.5.5)

\Y

M. Heil 2015-02-27 4.1.0

vV V. V V

©2015, Vector Informatik GmbH Version: 4.3.0 3/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

M. Heil 2015-09-14 4.3.0 > More information about NVRam setup (chapter 4.5 ff)

> Changes due to new option to persist event availability
(chapters 3.9.1, 6.2.4.26, 6.2.4.11)

©2015, Vector Informatik GmbH Version: 4.3.0 41175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

Reference Documents

No Souce _Tbe __ _ ______ ____ ____|Version

[1] AUTOSAR AUTOSAR_SWS_DiagnosticEventManager.pdf V4.2.0,
V5.1.0

[2] AUTOSAR AUTOSAR_SWS_ DevelopmentErrorTracer.pdf V3.2.0

[3] AUTOSAR AUTOSAR_SWS_DiagnosticCommunicationManager.pdf V4.2.0

[4] AUTOSAR AUTOSAR_SWS_NVRAMManager.pdf V3.2.0

[5] AUTOSAR AUTOSAR_SWS_StandardTypes.pdf V1.3.0

[6] AUTOSAR AUTOSAR_TR_BSWModuleList.pdf V1.6.0

[7] 1SO 14229-1 Road vehicles — Unified diagnostic services (UDS) -

— Part 1: Specification and requirements
[8] Vector TechnicalReference PostBuildLoadable.pdf See delivery
[9] Vector TechnicalReference_ldentityManager.pdf See delivery

| Caution

- We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

©2015, Vector Informatik GmbH Version: 4.3.0 5/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

Contents

1 Component HIStOrY ... e e 16
2 INtrodUCION..... .o e 17
21 How to Read this Document ... 17
211 API DefiNitioNS ..ccovvviiiiiiiiiiiiiii 17
21.2 Configuration Referencescccooeeviviiiiiiiiii e 18
2.2 ArchiteCture OVEIVIEWuuiii i e e a e 18
3 Functional Description ... 20
3.1 FRALUIES ... e 20
3.2 INIHTALIZATION e 22
3.2.1 Initialization Statesccovv i 23
3.3 Diagnostic Event ProCessing ... 24
3.3.1 Event De-bouncCing ... 24
3.3.1.1 Counter Based Algorithm ... 24
3.3.1.2 Time Based Algorithm ..o, 25
3.3.1.3 Monitor internal de-bouncing............ociiiiiiiiiiiiiiiiinn. 26
3.3.2 Event REPOMINGuuuiiiiiiiiiiiiiiiiiiiiii e 27
3.3.3 EVENt STAtUS ...eveeiiiiiiiii e 27
3.3.31 Synchronous Status Bit Transitions............cccccoeeeeevenenn. 28
3.3.3.2 Asynchronous Status Bit Transitions..............ccccccevvvennn. 29
3.3.3.3 Event Storage modifying Status Bits.................cceeeee. 29

3.3.34 Lightweight Multiple Trips
(FailureCycleCounterThreshold)cccccevvvvviiiiiiinneeennn. 30
3.4 Event Displacementiii i 30
3.5 EVENtAGING. ..o 31
3.5.1 AgINg Target ‘O ...ooovieiiiiie 32
3.5.2 Aging Counter Reallocation..............cccccvviviiiiiiiiiii 32
3.5.3 Aging of Environmental Data..............ccociiiiiiiiiii 33
3.54 Aging of TestFailedSinceLastClear............cccccoeeiiiiiiiiiiiiiiii e, 33
3.5.5 Aging and Healing...........ccoovviiiiiiiiiiiii 33
3.6 OPEration CYCIESueiiiiiiieiiiie e e e 34
3.6.1 Persistent Storage of Operation Cycle State............ccccoovevvviiviiinnnnnn. 34
3.6.2 Automatic Operation Cycle Restartcccccoiiiiiiiii 34
3.7 Enable Conditions and Control DTC Settingcuvviiieeiiiiiiiiiiiieeeeeii 35
3.7.1 Effects on de-bouncingand FDCcccccooi i, 36
3.8 Storage CoNAItIONScoiiiiiiiiiiii e 36
3.9 D WO TU] o] o]y == (o] o A 37

©2015, Vector Informatik GmbH Version: 4.3.0 6/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

3.9.1 Event Availabilityuueiiimiiiiiiii 37

3.9.2 Suppress Event/ Suppress DTC.........oviiiiiiiiiiiiccee e, 38

3.10 Environmental Datacooooiiiiiiiiiii e 38
3.10.1 1 (o] =T [T I T T [T PP 39
3.10.1.1 Storage Trigger ‘FDC Threshold'..............cccoooeiiiirininnnnnn. 40

3.10.2 Internal Data Elements. ..o 40

3.10.3 External Data EIementsuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiennnes 41
3.10.3.1 Nv-Ramstorage..........ccooooiiiiiiiiee 41

3.1 Freeze Frame Pre-Storage ... 42
X 1 O 1 41 o)1 g [=To [Y=Y o | 42
3.12.1 CoNfIGUIAtION. ... 43

3.12.2 EVent REPOMiNguuuuiiiiiiiiiiiiiiiiiiiiiiiii e 43

K Tt D20 B B B W O = | (0N 43

3.12.4 Environmental Data Updatecccoovviiiiiiiiiiiiii e 44

B Tt 25 T o [T N 44

K Tt D G R O 1Y 1 I N I 44

3.13 Non-Volatile Data Managementuuuuuuiiimiiiiiiiiiiiiiiiiieeeeeeees 44
3.13.1 NVM INteraction..........coooo oo 45

3.13.2 NVRAM Write FrEQUENCYuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiiieeieeiiinee 45

3.13.3 Data RECOVEIYuuiiiiiiiiiiiiiiiiiiiiiiiii e 45

3.14 DiagnostiC INtEIfACESuuuuuiiiiiiiiiiiiiiiii e ennnee 46
315 NOUFICAtIONS ... e e e 46
3.15.1 Event Status Changeduuuiiiiiiiiiiiiiiiiiiiiiieeeeees 47

3.15.2 DTC Status Changed..............uuuuuiuumiimiiiiiiiiiiiiiieiieeieeiennnneenneens 47

3.15.3 Event Data Changed...............uuuuiiieieeieieees 47

3.15.4 Monitor Re-Initialization................oiii i 48

K Tt L T [T [Tor=1 (o] =SSP 48
3.16.1 User Controlled WarningIndicatorRequestccccvvviiiiiiiininnnns 48

3.17 Interface to the Runtime Environment ... 49
3.18 ErrOr HanAINg.ueeeiiiiiiiiiiiiiiiii e 49
3.18.1 Development Error Reporting.........ooovvieeiiiiinieeeee e 49
3.18.1.1 Parameter Checkingcccceeiiiiiiiiiiiiieeeeee 53

3.18.1.2 Defensive Behavior...........ccccooeeiiiiiiiiiicc e, 53

3.18.2 Production Code Error Reportingccoooeuiiiriiiieiiiiiiiiiiieeee e 53

R e T I e X T O PRPRPR P 53
3.19.1 J1939 Freeze Frame and J1939 Expanded Freeze Frame 54

3.19.2 INAICALOrS ... 54

K T TR R O 1Y | o I N N 55

3.20 Clear DTC APIS ...uuiiiiiiiiiiiiiiiiitiii bbb sennnnes 55
4 INtegration e 57

©2015, Vector Informatik GmbH Version: 4.3.0

vactor’

71175

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

4.1 SCOPE OF DEIIVEIY ... e e e e eaaees 57
411 StAtIC FIleS e 57

41.2 DYNamiC FleSuuuiiiiiiiiiiiiiiii e 57

4.2 Include STrUCtUre.......coooii 59
4.3 Compiler Abstraction and Memory Mapping........cccooouuiiiiniieeeriieiiiicee e 60
4.3.1 COPY ROULINES ... 61

4.4 (@7 1 (Te= | IR ST=Tex (0] 1S N 61
4.4.1 EXCIUSIVE A€ 0 ...ccvenieeeie et 61

4.4.2 EXCIUSIVE A€ 1 ... e et 63

443 EXCIUSIVE AF€a 2 ... 64

4.5 NVM INtegration ... 64
451 NVRAM DEemMaNdooeiiiiiiiiiiii et e e 65

45.2 NVRAM INitialiZationueveuiiiiiiiiiiiiiiiiiiiiiiiie. 66

4521 Controlled Re-initializationccccoooeiviiiiiiiiiee 66

4522 (07T 4]0 0o I = 4 (o] = PP 66

4.5.3 Expected NVM Behaviorccooviiiiiiiiiiiii e 67

454 Flash Lifetime Considerationscccccieiiiiieiiiiciceee e, 68

4.6 Rte INtegrationcooueiii 69
4.6.1 Runnable EntitieS ..., 69

4.6.2 Application Port Interfaceoueiiiiiiiiiiic e 69

4.6.3 19 o7 1 0] | 70

4.7 POSt-RUN reqUIrEMENTSiiiiceeece e 70
4.8 Run-Time limitation ... 71
4.9 Split Main fUNCHON e e eaaens 71
5 Measurement and Calibration.....................cccooiiiiii s 72
5.1 Measurable Data.............oouiiiiiii e 72
5.1.1 Dem_Cfg_StatusData...........coueiiiiiiiiiie e 72

51.2 Dem_Cfg_EventDebounceValue..............ccccuvvemiiiiiiiiiiiiiiiiiiiiiiininnnns 72

51.3 Dem_Cfg_EventMaxDebounceValuesuuuveiimiiiiiiiiiiiiinnnnnns 73

51.4 Dem_PrimaryEntry <NUMDEr>uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaeens 73

5.2 Post-Build SUPPOIt ..o 73
5.2.1 INIGIAlIZAtIONcvvicee e 73

522 Post-Build Loadable.............ooouiiii e 75

523 Post-Build Selectable................uuuiiiiiiiiiiiiiiiiiiiieeees 75

6 API DESCHIPHIONouiiiiiiitiiiiii bbb enne 76
6.1 TyPe DEfINILIONS ..veeii e 76
6.2 Services provided by Demuuiiiiiiiiiie e 77
6.2.1 Dem_GetVersionINfo()oooi i 77

6.2.2 Dem_MainFunction()........ccoeeuviiiiiii e 78

©2015, Vector Informatik GmbH Version: 4.3.0

vector’

8/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.3 Interface ECUM 79
6.2.3.1 Dem_Prelnit() ..o, 79
6.2.3.2 DeM_INIt() e 80
6.2.3.3 Dem_InitMemory()ccovvveveiiiiee e, 80
6.2.3.4 Dem_Shutdown()........ccooviiiiiiiiii e, 81

6.2.4 Interface SWC and CDDoooviiiiiiiieeeeeeeecee e 82
6.2.4.1 Dem_SetEventStatus()coeeeeviieeiiiiiiieii e, 82
6.2.4.2 Dem_ResetEventStatus() ... 83
6.2.4.3 Dem_ResetEventDebounceStatus() ..., 84
6.2.4.4 Dem_PrestoreFreezeFrame().........cccccvvveeeiiiiiiiiiiininnnnnn. 85
6.2.4.5 Dem_ClearPrestoredFreezeFrame()............cccoeeeeeeeeen. 86
6.2.4.6 Dem_SetOperationCycleState()...........cccoeeeeeeeeeeeeeeee 87
6.24.7 Dem_GetEventStatus()......cccoeeeeviieiiiiiiiiiie e, 88
6.2.4.8 Dem_GetEventFailed() ... 89
6.2.4.9 Dem_GetEventTested()oveeeviieiiiiiiiiiiiie e, 90
6.2.4.10 Dem_GetDTCOfEvVENt()....cceeeeeeiiiiiiiiiiieiieeeeeeeee e, 91
6.2.4.11 Dem_GetEventAvailable().........ccccooeeiiiiii, 92
6.2.4.12 Dem_SetEnableCondition()ccvvveeiviiiiiiiiiiiiieen e, 93
6.2.4.13 Dem_SetStorageCondition().........ccoevveieiiiiiiiiiii, 94
6.2.4.14 Dem_GetFaultDetectionCounter()............coeevveeeeeeenennnn. 95
6.2.4.15 Dem_GetIndicatorStatus()ccccoeeeeeeeieiiii, 96
6.2.4.16 Dem_GetEventFreezeFrameData()coeeeeeeeeen. 97
6.2.4.17 Dem_GetEventExtendedDataRecord().............ccceeenn. 98
6.2.4.18 Dem_GetEventEnableCondition()............cccoeeeeeeeeeeennn. 99
6.2.4.19 Dem_GetEventMemoryOverflow()coeeeeeeeennn. 100
6.2.4.20 Dem_GetNumberOfEventMemoryEntries().................. 101
6.2.4.21 Dem_PostRunRequested()...........cccooeeeiiiiiiiiiiiinn, 102
6.2.4.22 Dem_SetWIRStatus()ccvvvvvrerieeeiiiiiiiiiieeee e 103
6.2.4.23 Dem_GetWIRStatus()........cvvmrreeeeeiiiiiiiiiieeeeee e 104
6.2.4.24 Dem_SetDTCSuppression()ccccceeeeeeeiieieiiieeeeeeeeee, 105
6.2.4.25 Dem_SetEventSuppression()........cccccceeeeeeiiiiiieieeeeeeen. 106
6.2.4.26 Dem_SetEventAvailable().......ccccccoiiiiiiiiiiiiiiiiiin 107
6.2.4.27 Dem_ClearDTC()...cceeruiiiriiiiiieeee et 108
6.2.4.28 Dem_RequestNvSynchronization().........ccccccccovviunnnnn. 110

6.2.5 INterface BSWo 111
6.2.5.1 Dem_ReportErrorStatus() ... 111

6.2.6 INterface DCM.........ouiiiieiiiee e 112
6.2.6.1 Dem_DcmSetDTCFIlter()eeeeieeeriiieiiciee e, 112
6.2.6.2 Dem_DcmGetNumberOfFilteredDTC()ooeeevvvvvvvnnnnnn. 114
6.2.6.3 Dem_DcmGetNextFilteredDTC()vvvvvveeeeeeiiiiiiinee. 115
6.2.6.4 Dem_DcmGetNextFilteredDTCANdFDC()..........covvee.... 116

©2015, Vector Informatik GmbH Version: 4.3.0 9/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

6.3

6.4

6.5

6.2.6.5 Dem_DcmGetNextFilteredDTCAndSeverity() 117
6.2.6.6 Dem_DcmSetFreezeFrameRecordFilter().................... 118
6.2.6.7 Dem_DcmGetNextFilteredRecord()coooveeeeeeeeennn. 119
6.2.6.8 Dem_DcmGetStatusOfDTC()......ccevvvvvvviiiiieeeeeeeeeiiin, 120
6.2.6.9 Dem_DcmGetDTCStatusAvailabilityMask() 121
6.2.6.10 Dem_DcmGetDTCByOccurrenceTime()cceeeennn. 122
6.2.6.11 Dem_DcmGetTranslationType().....cccceeveeerririiiiiiinnneennn. 123
6.2.6.12 Dem_DcmGetSeverityOfDTC()........ccoeveeeiiiiiieeeeeeee, 124
6.2.6.13 Dem_DcmGetFunctionalUnitOfDTC()cceeeeeeeennnn. 125
6.2.6.14 Dem_DcmDisableDTCRecordUpdate()............ccc........ 126
6.2.6.15 Dem_DcmEnableDTCRecordUpdate()cceeenn. 127
6.2.6.16 Dem_DcmGetFreezeFrameDataByDTC().................... 128
6.2.6.17 Dem_DcmGetSizeOfFreezeFrameByDTC()................. 130
6.2.6.18 Dem_DcmGetExtendedDataRecordByDTC()............... 131
6.2.6.19 Dem_DcmGetSizeOfExtendedDataRecordByDTC().... 132
6.2.6.20 Dem_DcmClearDTC()..uuueeeiieeeiiiiiiiiiii e, 133
6.2.6.21 Dem_DcmDisableDTCSetting()coovvveveeieieeeeee. 134
6.2.6.22 Dem_DcmEnableDTCSetting()......ccoeevvieeeriiiiiiiiinneeens, 135
6.2.6.23 Dem_DcmCancelOperation()..........ccoeeeeeeiieiiiieeeeeee, 136
6.2.7 Interface J1939DCMuuiiii i 137
6.2.7.1 Dem_J1939DcmClearDTC() ..ccoeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 137
6.2.7.2 Dem_J1939DcmPFirstDTCwithLampStatus()................. 138
6.2.7.3 Dem_J1939DcmGetNextDTCwithLampStatus () 139
6.2.7.4 Dem_J1939DcmGetNextFilteredDTC()........ccceeeeeeennnn. 140
6.2.7.5 Dem_J1939DcmGetNextFreezeFrame()...................... 141
6.2.7.6 Dem_J1939DcmGetNextSPNInFreezeFrame() 142
6.2.7.7 Dem_J1939DcmGetNumberOfFilteredDTC ().............. 143
6.2.7.8 Dem_J1939DcmSetDTCFilter()cccvvvvveeeeeeeiiiiieee 144
6.2.7.9 Dem_J1939DcmSetFreezeFrameFilter() 145
Services USEd DY D Muuiiiiiiiiiiiiiiiiiiiiiiiiii bbb 146
6.3.1 ECUM_BSWEITOrHOOK() +.vvveeeeeiiiiiiiiiieee e 146
Callback FUNCHONS........eiiiiiiiiiiie e 147
6.4.1 Dem_NvVM_JobFinished()ccoouiiiiiiiiieieiieeeeeeeeieee e 148
6.4.2 Dem_NvM_InitAdminData()couveeeieiiiiiiiieeeeeeieee 149
6.4.3 Dem_NvM_InitStatusData()eeevmmmmimmimiiiiiiiiiiiiiiiiiiiiiiiiiiiieens 150
6.4.4 Dem_NvM_InitDebounceData()uvvvemmmimiiiiiiiiiiiiiiiiiiiiiiiiinnns 151
6.4.5 Dem_NvM_InitEventAvailableData()ccccvveeiieeiiiniiiiiieeeen 152
Configurable Interfaces............oueeiiiii i 153
6.5.1 CallOULS ... 153
6.5.1.1 CBCIrEvt_<EventName>()........ccccceeeeeniiiiiiiiiiiiieeeeee 153
6.5.1.2 CBDataEvt_<EventName>()........ccccoeeviiiviiiiiiiiiienneeen, 154

©2015, Vector Informatik GmbH Version: 4.3.0

vactor’

10/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.5.1.3 CBFaultDetectCtr_<EventName>()........cccccccvvvvvvvvrnnnnn. 155
6.5.1.4 CBInitEvt_<EventName>()........cccccceeeeiiieriiiiiiiiiiieeeee, 156
6.5.1.5 CBINItFCt_<SN>()evviviiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeee 156
6.5.1.6 CBReadData_<SyncDataElement>()...........cccccccoo... 157
6.5.1.7 CBStatusDTC_<SN>() cevvvviiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeee 158
6.5.1.8 CBStatusJ1939DTC_<N>().evvvvvviiiiiiieeeieeeeeeeeeeeeeeeeeeee 159
6.5.1.9 CBStatusEvt_<EventName> <N>()...........cccccceeeeeeenn. 159
6.5.1.10 GeneralCBDataEVI() ..., 160
6.5.1.11 GeneralCBStatusEVL()coooeveeeiiii, 160
6.6 L= Vo= o T £ N 161
6.6.1 Client Server Interfaceccooiiiiiiiiiiiie e 161
6.6.1.1 Provide Ports on Dem Side.........ccoovvvviiiiiiiieiniciiin, 161
6.6.1.1.1 DiagnosticMonitor............cccceevvvviiineeeennnn, 161

6.6.1.1.2 Diagnosticlnfo and
GeneralDiagnosticInfoccccccvvvvviennnn. 161
6.6.1.1.3 OperationCyclecccccvvvvvviiiiiiiiiiiininnnn. 162
6.6.1.1.4 AgINgCycCle ..o, 162
6.6.1.1.5 ExternalAgingCycle.......ccccccccvvrrrrririrnnnnnn. 162
6.6.1.1.6 EnableConditionccccoeeiiiiiiiiiiiiinn. 162
6.6.1.1.7 StorageCondition..............ccecovrviiiiiennnnn.n. 162
6.6.1.1.8 IndicatorStatus............ccevvvvviiiiiiiii 163
6.6.1.1.9 EventStatuscccccvvvvvvvviiiiiiiiiiiiiii 163
6.6.1.1.10 EvMemOverflowlIndication 163
6.6.1.1.11 DTCSUPPresSioNcccceevveeeeriveeiiiiiiineeann 163
6.6.1.1.12 EventSuppression.............cccceevvvvvveeeneennn, 164
6.6.1.1.13 DemSEerviCesccccvviiiiieeiiiiiiiiieee e 164
6.6.1.1.14 Dcmif..ccoeviiiiiiiiiiiiiie 164
6.6.1.1.15 CddIf..ccoviiiiiiiiiiiiii 164
6.6.1.2 Require Ports on Dem Side ..., 164
6.6.1.2.1 CBInitEvt_<EventName>ccccccoee.. 165
6.6.1.2.2 CBInitFct_ <N> ... 165
6.6.1.2.3 CBStatusEvt_<EventName>_<N>........... 165
6.6.1.2.4 GeneralCBStatusEvt........ccccccevvvvvvvvnnnnnn. 165
6.6.1.25 CBStatusDTC_<N>......cccccvvvvvvriiiviirrnennnn. 165
6.6.1.2.6 CBDataEvt_<EventName> 165
6.6.1.2.7 GeneralCBDataEvtcccccccevvvvvvvirinnnn.. 166
6.6.1.2.8 CBCIrEvt_<EventName>cccccceee.. 166
6.6.1.2.9 CBReadData_<SyncDataElement> 166
6.6.1.2.10 CBFaultDetectCtr_<EventName> 166
6.6.1.2.11 CBCtrIiDtcSetting........ccoovvieevviiiiiiieeeee, 166
6.7 NOt SUPPOEA APIS ... 166

©2015, Vector Informatik GmbH Version: 4.3.0 117175

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

T CoNFIQUIAtIONoiiiiiii e
7.1 Configuration Variants.................uuueieiiiiiiiiii

7.2 Configurable AttrDULES............uiiiiiiii

7.3 Configuration of Post-Build Loadable...........cc..ccooviiiiiiiiii i
7.3.1 Supported VariancCe............ouuiiiiii i

8 AUTOSAR Standard ComplianCe................oouuiiiiiiiiiiiiiee e
8.1 [TV = o o 1O

8.2 AdditioNS/ EXIENSIONS.....ccuiiiiii e

8.3 LIMITatioNS. ...

8.4 Not Supported Service INterfacesccovvvviiiiiiiiii e

9 Glossary and Abbreviationscoooo i
9.1 GIOSSAIY ...eeiiiiiiiiii ettt

9.2 ADDIEVIatioNSi

10 Contact ...

©2015, Vector Informatik GmbH Version: 4.3.0

vactor’

12/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

lllustrations

Figure 2-1 AUTOSAR 4.1 Architecture OVEIVIEWccovviiiiiiiiiiiiiiiie 18
Figure 2-2 Interfaces to adjacent modules of the Dem.............coovviiiiiiii i, 19
Figure 3-1 DM StAtES ..o 24
Figure 3-2 Effect of Precondition ‘Event Storage’ and Displacement on Status Bits.... 29
Figure 3-3 Behavior of the AQINg COUNtErccooeeiiiiiice e 32
Figure 3-4 Environmental Data Layout...........cccooooiiiiiiiiii e, 39
Figure 3-5 User Controlled WarningIndicatorRequest...............cccoviiiiiiiiennn, 49
Figure 3-6 Concurrent Clear REQUESTSuuuiiiiiiiiiiiiiiiiiiiiiiieees 56
Figure 4-1 INClude SIrUCIUrE ... e 59
Figure 4-2 NVIM DERNAVION ... nnnnnne 67
Tables

Table 1-1 ComMPONENt NISTOMY.......uuiiiiiiiiiiiiiii e 16
Table 3-1 Supported AUTOSAR standard conform features.............ocooovvviiiiennnennn. 20
Table 3-2 Not supported AUTOSAR standard conform features..............cccccceee. 22
Table 3-3 Features provided beyond the AUTOSAR standard..............ccccevvvveennennn. 22
Table 3-4 Configuration of status bit processing ..o 30
Table 3-5 AQING algorithmS ... 31
Table 3-6 Immediate agingcoooiiiiiiiiiiii 32
Table 3-7 DTC status combinationcoiiiiiiiiii e 44
Table 3-8 NVRAM Write frEQUENCY ..o 45
Table 3-9 SEIVICE IDS ..ttt nnnnnnes 52
Table 3-10 Additional SErviCe IDS........oiiiiiiiieecee e 52
Table 3-11 Errors reported t0 Det.........uiiiiiii s 53
Table 3-12 Diagnostic messages where content is provided by Dem 54
Table 3-13 J1939 DTC Status tobe cleared............ccoeiiiiiiiiiiiiiii e, 55
Table 4-1 StAtIC fIlES ..o 57
Table 4-2 Generated fileSuuuuuiiiiiiiiii e 58
Table 4-3 Compiler abstraction and memory mapping, constant sections 60
Table 4-4 Compiler abstraction and memory mapping, variable sections 61
Table 4-5 EXCIUSIVE AFEa O ... et 62
Table 4-6 EXCIUSIVE AFCa T ...t 63
Table 4-7 o o [T Y= N = Y- T 64
Table 4-8 NVRAM DIOCKS ... e 65
Table 4-9 NVRam initialization ... 66
Table 4-10 Dem runnable entitieS........ccooviiiiiiii e 69
Table 5-1 Measurement item Dem_Cfg_StatusData................euevvviiiiiiiiiiiiiiiiiiiiiiinn. 72
Table 5-2 Measurement item Dem_Cfg_EventDebounceValuecccccvvvvennnnnnns 72
Table 5-3 Measurement item Dem_Cfg_EventMaxDebounceValues]]...................... 73
Table 5-4 Measurement item Dem_PrimaryEntry_<Number>..............cccccvvvviiiinnnnins 73
Table 5-5 Error Codes possible during Post-Build initialization failure....................... 74
Table 6-1 Dem_GetVersionINfo()oi i 77
Table 6-2 Dem_MainFUNCHON()uveeiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeiiiieeee e eeeeeeeeeeenne 78
Table 6-3 DM _Prelnit() ..o 79
Table 6-4 DM INIE() ettt 80
Table 6-5 =T o T T 141 L= a Lo o () 80
Table 6-6 Dem_ShutdOWN()......uueeiiiie e 81
Table 6-7 Dem_SetEventStatus()oocvvreiiiieieeeei e 82
Table 6-8 Dem_ResetEventStatus()uviveiiiiiiiii 83
Table 6-9 Dem_ResetEventDebounceStatus().........cccceeeeiiiiiiiiiiiiiiie e, 84

©2015, Vector Informatik GmbH Version: 4.3.0 13/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

Table 6-10
Table 6-11
Table 6-12
Table 6-13
Table 6-14
Table 6-15
Table 6-16
Table 6-17
Table 6-18
Table 6-19
Table 6-20
Table 6-21
Table 6-22
Table 6-23
Table 6-24
Table 6-25
Table 6-26
Table 6-27
Table 6-28
Table 6-29
Table 6-30
Table 6-31
Table 6-32
Table 6-33
Table 6-34
Table 6-35
Table 6-36
Table 6-37
Table 6-38
Table 6-39
Table 6-40
Table 6-41
Table 6-42
Table 6-43
Table 6-44
Table 6-45
Table 6-46
Table 6-47
Table 6-48
Table 6-49
Table 6-50
Table 6-51
Table 6-52
Table 6-53
Table 6-54
Table 6-55
Table 6-56
Table 6-57
Table 6-58
Table 6-59
Table 6-60
Table 6-61
Table 6-62
Table 6-63

©2015, Vector Informatik GmbH

Dem_PrestoreFreezeFrame()......ccccoveeeviiiiiiiiii e 85
Dem_ClearPrestoredFreezeFrame()uuveeeiimmiiiiiiiiiiiiiiiiiiiiiiniiennnnnns 86
Dem_SetOperationCycleState().........covvvveiiiiiiiiiieeeeeecie e, 87
Dem_GetEventStatus().......coovvvriiiiiie e 88
Dem_GetEventFailed()uueeeriieiiiiiiiiiiiiiiiiiiiieii e 89
Dem_GetEventTeSIEd() uurrrrrrrreriiiiiiiiiiiiiiiiiiiiiiiee e 90
Dem_GetDTCOEVENT().....ccoeeeeeiiie e 91
Dem_GetEventAvailable()ueiiiiieiiiecce e 92
Dem_SetEnableConditioN()uuerueeeriiiiiiiiiiiiiiiiiiiiiiiiieieeiieeieeeeeneenaes 93
Dem_SetStorageCondition().........ceeiieeriiiiiiiie e 94
Dem_GetFaultDetectionCounter()oouvviiiiiieeiiieiicee e, 95
Dem_GetINdicatorStatus()veureererreeieiiiiiiiiiiiiiiiiiiiiieieiieeeeeeeeneeeeeaes 96
Dem_GetEventFreezeFrameData()uvvvveeriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiennnns 97
Dem_GetEventExtendedDataRecord().......cccoevieeiiiiiiiiiiiiiiieeeceeee e, 98
Dem_GetEventEnableConditioN()............uveeereiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeens 99
Dem_GetEventMemoryOVerflow()uueeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiinnnns 100
Dem_GetNumberOfEventMemoryENntries()......ccooeeevvvveiiiiiiei e, 101
Dem_PostRunRequested().........cceeiiiieiiiiiiiiiien e 102
Dem_SetWIRSTALUS () +.vvvvrvrrrrrrrririiiiiiiiiiiiiiiiiieiiiriiiessieeeenensenneneneeennnennnnes 103
Dem_GetWIRSTAtUS ()...coiiieeiiieeiiiiiie et 104
Dem_SetDTCSUPPreSSION() ...cccvvrruiiiieeeeiiieeiiiiee e eee e 105
Dem_SetEventSuppresSion()e. o 106
Dem_SetEventAvailable()...........ueueuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiie e 107
Dem_ClearDTC()....cuuuiiiiii et e e e e aae s 109
Dem_RequestNvSynchronization().................eeveviiiiimiiiiiiiiiiiiiiiiiiiiiiiinnnn. 110
Dem_RepOrtErrorStatus()wueeeueeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeineeeeeeeeee 111
Dem_DCMSEIDTCRIREI() .. .uuueeereeeerirrreienieieneeneeneeennennnnnenneneneennnnnrennennnnnes 113
Dem_DcmGetNumberOfFilteredDTC() ..vvvvvvrrrrrrrreeerreiiriiniiiieiiiieeennnennnnens 114
Dem_DcmGetNextFilteredDTC()vvvrrrrrereiiriiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeiinnees 115
Dem_DcmGetNextFilteredDTCANAFDC() .. vvvvvvvvrreeeerniiieiiiiiieiiiieeninennnnnns 116
Dem_DcmGetNextFilteredDTCANASEVEritY()vvvvvrveerrvmreiiriiirneiiinnnnnnnns 117
Dem_DcmSetFreezeFrameRecordFilter()uuvvvvviiiiiiiiiiiiiiiiiiiiiinns 118
Dem_DcmGetNextFilteredRecord()vvvvrverrmrmiimimiiiiiiiiiiiiiiiiiiiiiiininnens 119
Dem_DcmGetStatuSOFDTC() .uvvvvrrrrrrrrrererernrrerrieneerenneeennneneneeeennnnnnnnnnnnne 120
Dem_DcmGetDTCStatusAvailabilityMask()eevveimimimmeeiiiiiiiiiininnnn. 121
Dem_DcmGetDTCBYOCcUrrenNCeTIME() ...vvvvvvrrrrrrurrrrreiiiriieiiniirineninnnnnnnns 122
Dem_DcmGetTranslationTYPe() «.vveeeeeeeeiieiiiiiiiieeee e 123
Dem_DcmGetSeverityOfDTC(). . uveveiieeiiiiiiiiiieeeeee e 124
Dem_DcmGetFunctionalUnitOfDTC()uvvvvvvviviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiineens 125
Dem_DcmDisableDTCRecordUpdate()vvvvvvvrmmmmmrimmiieiiiiiiiiiiiieinennns 126
Dem_DcmEnableDTCRecordUpdate()cuvveieeeeeiiiiiiiiiiiieeeeeeeii 127
Dem_DcmGetFreezeFrameDataByDTC()vvvvvvvvvvvrimiiiiiiiiiiiiiiiiiiiiiiiinnns 129
Dem_DcmGetSizeOfFreezeFrameByDTC()vvvvvvvvrviiriiiiiiiiiiiiiiiiiiininnnns 130
Dem_DcmGetExtendedDataRecordByDTC()ccoeevviiiiiiiiiiiiieeiiiiiiee 131
Dem_DcmGetSizeOfExtendedDataRecordByDTC()........cuvvvveeeeriiiinnnnnn. 132
Dem_DCMCIEAIDTC() +vvvvrrrrrrunrnrnrurnrnnnienerinsnsnnenenennnnnnnnnnnnnnenseennnennnennnnne 134
Dem_DcmDisableDTCSetting() ...« veeeeeeeriiiiiiiieeeeeeee e 134
Dem_DcmENableDTCSEtting() eeeeeeeeaiiiiiiiieieeeeeeiiiiiieeee e 135
Dem_DcmCancelOperation().........ccceveeeeiiieeiiiiiii e 136
Dem_J1939DcmCIearDTC()...ccuvrrruieiieeeeeeeeetee e 137
Dem_J1939DcmFirstDTCwithLampStatus()cooeeeviiiiiiiiiiiiiiiiiiie 138
Dem_J1939DcmGetNextDTCwithLampStatus ()covvveeiiieeeriieiiiinnnn. 139
Dem_J1939DcmGetNextFilteredDTC().....cvvvvvreiiiieeiieeeiiciie e, 140
Dem_J1939DcmGetNextFreezeFrame()ccevvveveiiiiiiiiiiiieeeeeiii 141

Version: 4.3.0

vactor’

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

Table 6-64
Table 6-65
Table 6-66
Table 6-67
Table 6-68
Table 6-69
Table 6-70
Table 6-71
Table 6-72
Table 6-73
Table 6-74
Table 6-75
Table 6-76
Table 6-77
Table 6-78
Table 6-79
Table 6-80
Table 6-81
Table 6-82
Table 6-83
Table 6-84
Table 6-85
Table 6-86
Table 6-87
Table 6-88
Table 6-89
Table 6-90
Table 6-91
Table 6-92
Table 6-93
Table 6-94
Table 6-95
Table 6-96
Table 6-97
Table 6-98
Table 6-99
Table 6-100
Table 6-101
Table 6-102
Table 6-103
Table 6-104
Table 6-105
Table 6-106
Table 6-107
Table 6-108
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 9-1
Table 9-2

©2015, Vector Informatik GmbH

Dem_J1939DcmGetNextSPNInFreezeFrame()cveeeiiieeiiiiiiiinnnnnn. 142
Dem_J1939DcmGetNumberOfFilteredDTC ()......vvvvvvvvrvimiiiiiiiiiiiiiiiiiiinnns 143
Dem_J1939DcmSetDTCFIEr() ..vvveeeie e, 144
Dem_J1939DcmSetFreezeFrameFilter()cccooveeeiiiiiiiiiiiiii, 145
Services used by the Demuuiiiiiiiiiiiiiii 146
ECUM_BSWETOIHOOK() ..+ttt 146
Dem_NvM_JobFinished()ciiiiiiiiiicce e 148
Dem_NvM_InitAdminData()cceeiiieeiiiiicee e 149
Dem_NvVM_InitStatusData()ueveeremmmmmmiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeiiee 150
Dem_NvM_InitDebounceData()...........ccevvveiiiiiiiiiiieeeeccee e, 151
Dem_NvM _InitEventAvailableData().........cccccoeeeviieeiiiiiiiiiie e, 152
CBCIrEVt_<EVENtNaME>().......uuuuuiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeneeeee 153
CBDataEvt_<EVentName>()...........uuuuuummmmiiiiiiiiiiiiiiiiiiiiiiniiiineiieieeneenennes 154
CBFaultDetectCtr_<EventName>()........ccccceeviieiiiiiiiiiiiiii e, 155
CBINtEVt_<EventName>()...........uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeees 156
(0721 a1 4 o1 R Vo T 156
CBReadData_<SyncDataElement>()........ccccooooiiiiiiiiiiiiceee e, 157
(0712157 = 1UUTS] B WO o TR 158
CBStatusJ1939DTC _<N>() .uvuuuuuuririrnniininneinnesnnnnnennnsnnnnnnnsnrrerrnnr... 159
CBStatusEvt_ <EventName> <N>()........ccccooiiiiiiiiiiiiiiiiii e, 159
GeneralCBDataEVE()......ccooiveiiiei e 160
GeneralCBSLatUSEVE()uuuuiiiiiiiiiiiiiiiiiiiii e 160
DiagnNOSHCMONITON ... eiiiiiiiiiiiiiiiee et eeeneeenee 161
Diagnosticinfo and GeneralDiagnosticInfoccccciiiiiiii i, 162
OPeratioNCYCIEuuuiiiiiiiiiiii e 162
ENableConditioncooiiiiiiiii 162
53 00] = o =T @7] o To 1170} o 163
IndicatorStatus..........ooovviiiiii 163
EVENtSIatUS ... 163
EvMemOVerflowINdiCationuuueuiuiiiiiiiiiiiiiiiiiiieiieieeeienieennennnenn. 163
DT CSUPPIESSION ...cceiiiiieii et e e et e e e e e e aaaaaaes 163
EVENTSUPPIESSION ..ot e e e 164
=T 0 ST Y o7 PR 164
CBInitEvt_ <EventName>ccccooo i 165
(07 =] 014 o R Vo 165
CBStatusEvt_<EventName> <N>.........cccccooiiiiiiiiiiiii e, 165
GeneralCBStatUSEVL..........uuuiiiiiiiiiiiiii e 165
(072151 ¢= 1N D O 165
CBDataEvt_<EventName>uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeaeee 165
GeneralCBDataEVL.........ccoiiece 166
CBCIrEVt_<EVENtNAME™uuuiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeneeeeenennnnnees 166
CBReadData_<SyncDataElement>.............ccccocuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiies 166
CBFaultDetectCtr_<EventName>............cccccuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieees 166
CBCHIDICSEHING ... 166
(N0 S TH o T (=0 1 Y £ 167
DVIAtIONS ... e 170
4 (=] 0 157 o] o U 170
LIimiItations ... e 172
Service Interfaces which are not supportedcccoooeeiiiiiiiee 172
L€ [011-7= Y 173
ADDIreVIatioNSo 174

Version: 4.3.0

vactor’

Technical Reference MICROSAR Diagnostic Event Manager (Dem) Vectorl':

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

4.00.00 1st Release Version

4.03.00 Production Release

5.00.00 Post-Build support

6.00.00 J1939 support, APl according ASR 4.1.2

7.00.00 Change of initialization to allow Postbuild-Selectable
8.00.00 Support API according ASR 4.2.1

9.00.00 Technical completion of WWH-OBD

Table 1-1 Component history

©2015, Vector Informatik GmbH Version: 4.3.0 16/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectC)rE

2 Introduction

This document describes the functionality, API and configuration of the AUTOSAR BSW
module Diagnostic Event Manager “Dem” as specified in [1].

Supported AUTOSAR 4
Release*:

Supported Configuration pre-compile, post-build loadable, post-build selectable
Variants:

Vendor ID: DEM_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: DEM_MODULE_ID 54 decimal
(according to ref. [6])
Version Information DEM_AR_RELEASE_MAJOR_VERSION version literal,

DEM_AR_RELEASE_MINOR_VERSION decimal
DEM_AR RELEASE REVISION_VERSION
DEM_SW_MAJOR_VERSION
DEM_SW_MINOR_VERSION
DEM_SW_PATCH_VERSION

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

The Dem is responsible for processing and storing diagnostic events (both externally
visible DTCs and internal events reported by other BSW modules) and associated
environmental data. In addition, the Dem provides the fault information data to the Dcm
and J1939Dcm (if applicable).

2.1 How to Read this Document
Here are some basic hints on how to navigate this document.

2.1.1 API Definitions

The application API of the Dem is usually never called directly. The functions declarations
here are given for documentation purposes. Parts of the function signatures are not
exposed to the actual caller, and represent an implementation detail.

Nonetheless, this documentation refers to the Dem API directly when describing the
different features, as the actual name of the API called by the application is defined by the
application itself. Instead of a sentence referring to this fact the underlying Dem function
name is mentioned directly.

E.g. If the documentation mentions the APl Dem SetOperationCycleState, a client
module would call a service function resembling Rte Call <APPLDEFINED>-
_SetOperationCycleState.

An application is strongly advised to never call the Dem API directly, but to use the service
interface instead.

©2015, Vector Informatik GmbH Version: 4.3.0 17 /175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

2.1.2 Configuration References

When this text references a configuration parameter or container, the references are given
in the format of a navigation path:

> /ModuleDefinition/ContainerDefinition/Definition:
The absolute variant is used for references in a different module. These references
start with a slash and the module definition. E.g. /NvM/NvMBlockDescriptor

> ContainerDefinition/Definition:
The relative variant is used for references to parameters of the Dem itself. For brevity
the module definition has been omitted.

In both variants the last definition can be either of type container, parameter or reference.
This document does not duplicate the parameter descriptions again, so when in doubt
please refer to the module’s parameter definition file (bsmwd-file) for a definitive
declaration.

2.2 Architecture Overview
The following figure shows where the Dem is located in the AUTOSAR architecture.

E2E Protection Fp

SCHM RTE
0s BSWM DCM EA coM IPDUM NM PDUR DIOHWAB" CAL (CPL)
COMM FEE SENT* CRC
CSM (CRY) FIM MEMIF E2E
2l LRSI i CAN LIN
ECUM 119307P LINXCP! FRXCP ETHXCP DNS
S 31939NM LINTP FRTP UDPNM EXI
s 11939RM LINNM FRARTP SOME/IP! HTTP
LD CANXCP LINSM FRNM sD e
HACH DBG CANTP LINIF FRSM DOIP TLS
DLT CANNM FRIF SOAD XML Security
RTM: CANSM TCPIP Driver
CANIF ETHSM
ETHIF
AVTP
SRP
XCP pTPS
EXT
ADCDRV DIODRV FLSDRV GPTDRY LINDRV PORTDRV SHEDRV! CANTRCY FRTRCV
CANDRV EEPDRV FLSTST ICUDRV MCUDRV PWMDRV SPIDRV DRVEXT? LINTRCY
CORTST ETHDRV FRDRV TICDRV! OCUDRV RAMTST WDGDRV ETHTRCV
Vector Standard Software 3rd Party Software * Available extensions for AUTOSAR

2 Includes EXTADC, EEPEXT, FLSEXT, and WDGEXT
3 Functionality represented in ETHTSYN and STBM

Figure 2-1 AUTOSAR 4.1 Architecture Overview

©2015, Vector Informatik GmbH Version: 4.3.0 18 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

vactor’

The next figure shows the interfaces to adjacent modules of the Dem. These interfaces are

described in chapter 5.2.3.

class Architecture /

Rte

-0

2]
Det @
Dcm E
O
2]

SchM

O
EcuM E _CO_
O

J1939Dcm E :

Dem

(@)

DIt

QO O

FiM

O 0O

Nv M

O

BSW

Figure 2-2 Interfaces to adjacent modules of the Dem

Caution
£ ! } Applications do not access the services of the BSW modules directly. They use
Y the service ports provided by the BSW modules via the RTE. The service ports

provided by the Dem are listed in chapter 6.6 and are defined in [1].

©2015, Vector Informatik GmbH

Version: 4.3.0

19/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
Dem.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

> Table 3-1 Supported AUTOSAR standard conform features
> Table 3-2 Not supported AUTOSAR standard conform features

For further information of not supported features see also chapter 7.3.1.

Vector Informatik provides further Dem functionality beyond the AUTOSAR standard. The
corresponding features are listed in the table

> Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

Post-Build Loadable

MICROSAR Identity Manager using Post-Build Selectable

Module individual post-build loadable update

OBD Il / WWH-OBD functionalities and APIs, only if licensed accordingly.
All non-optional features described in [1], except features described below

Table 3-1 Supported AUTOSAR standard conform features

The following features specified in [1] are not supported:

Not Supported AUTOSAR Standard Conform Features

Configuration — for details please refer to the Module Parameter Description (BSWDM)
Configuration of configured snapshot records deviates from [1]

Configuration of automatic start of an operation cycle is only possible for one cycle
Service Needs are neither provided nor evaluated

Multiplicity of some elements is restricted in comparison to [1]

De-bouncing

Monitors / SWC cannot reset or query the current de-bouncing state.

> Dem GetDebouncingOfEvent ()

> Dem ResetEventDebounceStatus()

©2015, Vector Informatik GmbH Version: 4.3.0 20/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectort

OperationCycles

Aging Cycles

Aging cycles which are only used for aging and the corresponding API
Dem SetAgingCycleState (). Use operation cycles instead.

Centralized Operation Cycles

APIs Dem SetOperationCycleCntValue () and Dem SetAgingCycleCounter () are not
available

APl Dem GetOperationCycleState () is notavailable

BSW errors always evaluate OperationCycles, even before full initialization.

DET reports for ‘started’ cycles during shutdown.

Volatile cycles are implicitly stopped during shutdown.

ClearDTC

Partial status clear when clear is prohibited is not supported.

Clearing of a DTC is either completely blocked, or the DTC is completely removed from memory.
Data collection / System integration

DemFreezeFrameCapture, DemExtendedDataCapture

Data collection in context of the calling diagnostic monitor is not supported. All external data is
collected on Dem Task level.

Sender/Receiver Ports, and related data conversion, are not supported.
Extended Data record collection triggers

Custom extended data records are triggered by TestFailed transitions only.
BSW integration

DLT

Diagnostic Log & Trace APIs Dem DltGetMostRecentFreezeFrameRecordData () and
Dem DltGetAllExtendedDataRecords () are not available

Debugging
No support for public access to internal variables is provided.

Dcm DTC change notification is called unconditionally. The relevant API is not available:
Dem DcmControlDTCStatusChangedNotification ()

APl FiM DemInit () is unsupported and never called by the Dem.

Multiple Configuration

DTC suppression by configuration (DemEventAvailability / DemEventSupressed) is not
supported

Miscellaneous

Mirror Memory
Mirror memory solutions are manufacturer specific and not supported.

Event Combination ‘Type 2’

The event related data is assigned to the sub-events, which will be merged to the combined
event. The data is not assigned to the combined event itself.

©2015, Vector Informatik GmbH Version: 4.3.0 217175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

Not Supported AUTOSAR Standard Conform Features

Indicator-Event- specific set and reset (healing) condition
Indicators are enabled together with the event confirmation, i.e. when Bit 3 is set.
Healing is always done based on the event status byte.

Table 3-2 Not supported AUTOSAR standard conform features

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

Interface Dem InitMemory ()

This function can be used to initialize static RAM variables in case the start-up code is not used
to initialize RAM. Refer to chapter 6.2.3.3.

Interface Dem PostRunRequested ()

Allows the application to test if the Dem can be shut down safely. For details refer to chapter
6.2.4.21.

Selective non-volatile mirror invalidation on configuration change

Allows the controlled reset of the Dem non-volatile data, without invalidating the whole non-
volatile data or manual initialization algorithms. For details refer to chapter 4.5.2.1

Extended set of internal data elements

In addition to the set defined in [1], the Dem provides additional internal data elements. Refer to
chapter 3.10.1 for the complete list.

Extended support for ClientServer Data callbacks, see chapter 3.10.3
Variants on status bit handling in case of memory overflow, see chapter 3.3.3.3

Option to prevent aging of event entries to remove stored environment data (e.g. snapshot
records)

Multiple variants for aging behavior regarding healing, see chapter 3.5.5
Option to distribute runtime of ClearDTC operation across multiple tasks
Configurable copy routine, see chapter 4.3.1

Request for NV data synchronization, see Dem_RequestNvSynchronization()

Table 3-3 Features provided beyond the AUTOSAR standard

3.2 Initialization
Initialization of the Dem module is a two-step process.

First, using the interface Dem PreInit () the Dem is brought into a state of reduced
functionality. This shall be used during the startup phase to allow processing events
reported by BSW modules using Dem ReportErrorStatus().

The pre-initialization phase already allows de-bouncing of status reports.

After the Dem has been pre-initialized and after the NVM has finished the restoration of
the NVRAM mirror data, the Dem will be brought to full function using the interface

©2015, Vector Informatik GmbH Version: 4.3.0 22/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

Dem Init (), also during the startup phase. Additionally, the interface Dem Init () can
be used to reinitialize the Dem after bem Shutdown () was called.

Q Caution

! This Dem implementation is not consistent with Autosar regarding the initialization API.
Both Dem_Prelnit() and Dem_Init() take a configuration pointer. Please adapt your
initialization sequence accordingly.

Note

If a changed configuration set is flashed to an existing ECU, the NVRAM mirror

variables of the Dem must be re-initialized before Dem_Init() is called. There

are several ways how this can be implemented. Please also refer to chapter 4.5

regarding the correct setup.

» Using the NvM which can be configured to invalidate data on configuration
change.

» Using the Dem which supports a similar feature as the NvM using the
configuration option ‘DemCompiledConfigld’. In this case Dem Init () will
take care of the re-initialization.

» Before calling Dem_Init() it is safe to call the initialization functions
configured for usage by the NvM. Additionally, all primary and secondary
data can to be cleared by overwriting each RAM variable
Dem Cfg [Primary|Secondary]Entry <N> with the contents of
Dem MemoryEntryInit.

3.2.1 Initialization States

After the (re)start of the ECU the Dem is in state “UNINITIALIZED”. In this state the Dem is
not operable until the interface Dem PreInit () was called.

Dem PreInit () will change the state to “PREINITIALIZED”. Within this state only BSW
errors can be reported via Dem ReportErrorStatus (). EnableConditions are not
considered in this phase.

During initialization via Dem Init () the Dem switches to state “INITIALIZED” and is fully
operable afterwards. In this phase EnableConditions are initialized to their configured
default state and can take effect.

Now the function Dem MainFunction () can be called until Dem Shutdown () will
finalize all pending operations in the Dem, deactivate the event processing except for
BSW events and change the state to “SHUTDOWN?”. Figure 3-1 provides an overview of
the described behavior.

©2015, Vector Informatik GmbH Version: 4.3.0 231175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectC)rE

- Changes
~ Prior versions (Implementation version < 7.00.00) did consider the configured enable
conditions during the pre-initialization phase.

stm InitStates
/ UNINITIALIZED \ / PREINITIALIZED \
Compller notes notes
_f:;:pﬁ . Dem is not initialized Dem_Prelnit() . Dem is pre-initialized
. 3 APIsif called will throw a 3 most APIsif called will throw a DET error
M DET . only callsto APl Dem_ReportError() will
Initial . Dem internal variables have not cause a DET error
random value
Dem_Init()
e SHUTDOWN N\ e INITIALIZED
notes Dem_Init() notes
. . Dem is stopped . Dem isinitialized and full operational
. most APIsif called will throw a DET error . All APIs can be accessed without a DET
Final only callsto API Dem_ReportError() will error
na not cause a DET error Dem_Shutdown(Dem does access (and modify) the
NVRAM mirror
1
Dem_MainFunction()

Figure 3-1 Dem states

3.3 Diagnostic Event Processing

A diagnostic event defines the result of a monitor which can be located in a SWC or a
BSW module. These monitors can report an event as a qualified test result by calling
Dem ReportErrorStatus () or Dem SetEventStatus () with “Failed” or “Passed” or
as a pre-qualified test result by using the event de-bouncing with “PreFailed” or
“‘PrePassed”.

In order to use pre-qualified test results the reported event must be configured with a de-
bounce algorithm. Otherwise (using monitor internal de-bouncing) pre-qualified results will
cause a DET report and are ignored.

3.3.1 Event De-bouncing
The Dem implements the mechanisms described below:

3.3.1.1 Counter Based Algorithm

A monitor must trigger the Dem actively, usually multiple times, before an event will be
qualified as passed or failed. Each separate trigger will add (or subtract) a configured step
size value to a counter value, and the event will be qualified as ‘failed’ or ‘passed’ once this
de-bounce counter reaches the respective configured threshold value.

©2015, Vector Informatik GmbH Version: 4.3.0 24 /175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

The configurable thresholds support a range for the de-bounce counter of -32768 ...
32767. For external reports its current value will be mapped linearly to the UDS fault
detection counter which supports a range of -128 ... 127.

| Caution
H Threshold values of 0 to detect a qualified failed or qualified passed result are allowed
in some Autosar versions, but this implementation does not support such a setting.

If enabled, counter based de-bounced events can de-bounce across multiple power
cycles. Therefore the counter value is persisted into non-volatile memory during shutdown
of the ECU.

3.3.1.2 Time Based Algorithm

For events using time based de-bouncing, the application only needs to trigger the Dem
once in order to set a qualification direction. The event will be qualified after the configured
de-bounce time has elapsed. Multiple triggers for the same event and same qualification
direction have no effect.

Each event report results at most in reloading a software timer due to a direction change.
Once an event was reported, the timer is stopped by

> A“clear DTC” command

> The restart of the event’s associated “Operation cycle”

> Deactivation of (one of) the event’s associated enable condition.
> APl Dem_ResetEventDebounceStatus().

Event de-bouncing via time based algorithm requires comparatively high CPU runtime
usage. To alleviate this, the Dem supports both a high resolution timer (a Dem main
function call equals a timer tick) and a low resolution timer (150ms equals a timer tick).
Events which have a de-bounce time greater than 5 seconds will use the low resolution
timer per default. Still, software timers are expensive and should be used sparingly.

©2015, Vector Informatik GmbH Version: 4.3.0 25/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectort

%)

3.3.1.3

Changes

Since implementation version 8.00.00, events using time based debouncing are
processed on the Dem task function. This change affects monitors reporting a fully
qualified result instead of using a de-bounced report (e.g. DEM_EVENT_STATUS-
_FAILED instead of DEM_EVENT_STATUS_PREFAILED)

If your monitor reports fully qualified results, consider using monitor internal
debouncing instead of time-based debouncing to achieve synchronous behavior or the
Dem reporting functions.

Note

The timer ticks are processed on the Dem main task. If you report an event using time-
based de-bouncing before the Dem is initialized, the timer will only start running when
the system has reached the point where cyclic tasks are served.

Monitor internal de-bouncing

If the application implements the de-bouncing algorithm itself, a callback function can be
provided, which is used for reporting the current fault detection value to the diagnostics

layer.

These functions should not implement logic, since they are called in runtime extensive

context.

If monitor internal de-bouncing is configured for an event, its monitor cannot request de-
bouncing by the Dem (i.e. trigger operation SetEventStatus with monitor results
DEM_STATUS_PRE_FAILED or DEM_STATUS_PRE_PASSED). This would also result in
a DET report in case development error detection is enabled. The Dem module does not
have the necessary information to process these types of monitor results.

]

F

Workaround (before version 6.00.00)

If you do not want de-bouncing for an event at all, e.g. only report qualified passed and
failed results, you should consider using counter based de-bouncing for these events.
For efficiency reasons, only choose monitor internal de-bouncing if you need to provide
the callback function.

With version 6.00.00 the callback function for internal de-bouncing is optional.

©2015, Vector Informatik GmbH Version: 4.3.0 26 /175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

Note

In case environment data has to be stored due to reaching a de-bounce detection
counter value that is still less than qualified failed (< UDS FDC 127), monitor internal
de-bouncing cannot be used. Please also see chapter 3.10.1

3.3.2 Event Reporting

Monitors may report test results either by Portinterface or, in case of a complex device
driver or basic software module, by direct C API.

The different APls are important because callback contexts (i.e. the origin of the function
call) for all configured notification callbacks must be known to the RTE generator. The
current Autosar design is implemented such that CDD and BSW do not declare formally
where calls to ReportErrorStatus take place. Instead, the Dem has to queue all reports
from ReportErrorStatus and perform the action on its task level.

Q‘ Caution

. In systems with an Rte, never call Dem SetEventStatus () directly from your code.
Always use the Rte_Call_.mechanism. Alternatively configure the reported event as
EventKind ‘BSW’ and report its status using APl Dem ReportEventStatus().

One disadvantage of Dem ReportEventStatus () is its missing return code. The caller
cannot tell if a test result has been discarded. Whenever possible, implement your
monitors as Software Components with access to Rte functionality.

Q Caution
! Status reports do not maintain relative order. The Dem does not guarantee that multiple
event reports are processed in the same order that they had been reported in.

Ordering is preserved for the first result, but there is no guarantee that multiple reports
preserve the order of report for each and every single test result during a single task.
This is mainly due to the additional resources required for no apparent benefit.

The behavior is best described as example:
If two monitors 1 and 2 report failed results F, and F,, their order is preserved.

If monitors toggle within a single Dem task cycle, their respective ordering is no
preserved.

Example: Reporting order F4, F»,, P,, P would be processed as F4, P4, F,, P, instead,
which still preserves the order of the initial test result.

Due to the different nature of these APls, it is an error to call ‘the other’ API from the one
configured for an event. The Dem will post a DET notification in that case, provided
development error detection is enabled.

3.3.3 Event Status

Every event supports a status byte whereas each bit represents different status
information. For detailed information please refer to [7].

©2015, Vector Informatik GmbH Version: 4.3.0 271175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectort

> Bit 0 — TestFailed
The bit indicates the qualified result of the most recent test.

> Bit 1 — TestFailedThisOperationCycle
The bit indicates if during the active operation cycle the event was qualified as failed.

> Bit 2 — PendingDTC
This bit indicates if during a past or current operation cycle the event has been
qualified as failed, and has not tested ‘passed’ for a whole cycle since the failed result
was reported.

> Bit 3 — ConfirmedDTC
The bit indicates that the event has been detected enough times that it was stored in
long term memory.

> Bit 4 — TestNotCompletedSincelLastClear
This bit indicates if the event has been qualified (passed or failed) since the fault
memory has been cleared.

> Bit 5 — TestFailedSinceLastClear
This bit indicates if the event has been qualified as failed since the fault memory has
been cleared.

> Bit 6 — TestNotCompletedThisOperationCycle
This bit indicates if the event has been qualified (passed or failed) during the active
operation cycle.

> Bit 7 — WarningIndicatorRequested
The bit indicates if a warning indicator for this event is active.

Due to consistency concerns in systems using preemptive tasks not all status transitions
on these bits can be performed independently from each other. Transitions that depend on
the state of the shared event memory can influence each other and are processed in a
serialized form on the Dem task function

Chapter 3.3.3.1 and 3.3.3.2 describe which status bit transitions are modified
synchronously (in context of the caller) and which status bits are modified asynchronously
(in context of the Dem).

3.3.3.1 Synchronous Status Bit Transitions

The status bits 0, 1, 4, and 6 are synchronously modified in the context of the caller of
Dem SetEventStatus (). After this function has returned, the status bits will have an
updated state.

The setting of bit 5 can be influenced by configuration. If it is not set to setting ‘stored only’
(see chapter 3.3.3.3) this bit is also set synchronously.

Please note that status notification callbacks will be processed in the caller context as well.
Reports by Dem ReportErrorStatus () are queued and do not modify the status byte
synchronously. Please also see chapter 3.3.2.

©2015, Vector Informatik GmbH Version: 4.3.0 281175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

' Caution
- Combined events and events using time-based de-bouncing are queued and do not
modify their event status synchronously.

3.3.3.2 Asynchronous Status Bit Transitions

During the call of Dem MainFunction () Status bits 2, 3 and 7 will be updated. This is
done asynchronously to remove time consuming operations from the callers’ context, and
to provide an easy serialization without falling back to interrupt locks.

If bit 5 is set to ‘stored only’ processing it is set asynchronously as well.

Therefore, the call to Dem SetEventStatus () only costs as little as possible in terms of
runtime and stack usage.

Pending reports by Dem ReportErrorStatus () are processed on task level for all bits,
please also see chapter 3.3.2.

Events configured to age immediately on the first qualified passed result do not allow
queuing a qualified failed result until after the passed result was processed on the Dem
task. In this case, E_NOT_OK is returned from Dem ReportErrorStatus ()

3.3.3.3 Event Storage modifying Status Bits

Several UDS status bit transitions depend on successful event storage. The Dem offers
multiple interpretations of these transitions when taking event displacement into account.

For status bits 2 — PendingDTC, 3 — ConfirmedDTC and 7 — WarningIndicatorRequested
there are two alternatives ‘Stored Only’ and ‘All DTC’ — see Figure 3-2.

For status bit 5 — TestFailedSinceLastClear the alternatives ‘Stored Only’ and ‘All DTC’ are
supported as well, along with a third option to select different reset conditions for this bit.
Please also see chapter 3.5.4.

The usual bit transitions are not affected by this option. It only selects the behavior in case
of event memory overflow and displacement.

) . 3 full: displace Mid full: displace Mid
High Prio Monitor] :

Mid Prio Monitor DI PRI

Low Prio Monitor

Status High Prio

Status Mid Prio

Status Low Prio

v
v

Stored Only ' Al DTC

Figure 3-2 Effect of Precondition ‘Event Storage’ and Displacement on Status Bits

©2015, Vector Informatik GmbH Version: 4.3.0 29/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectort

Due to Autosar standardized naming of configuration options, the settings for these bits
are named differently for each bit, please refer to Table 3-4 Configuration of status bit
processing for details.

Bit 2 — PendingDTC DemPendingDtcProcessing = DemPendingDtcProcessing =

(Vector Extension) STORED_ONLY ALL_DTC

Bit 3 — ConfirmedDTC DemResetConfirmedBitOn- DemResetConfirmedBitOnOverflow =
Overflow = TRUE FALSE

Bit 5 — FailedSincelLastClear DemsStatusBitHandlingTest- DemStatusBitHandling TestFailed-
FailedSincelLastClear = SincelLastClear = NORMAL or AGING

AGING_AND_ DISPLACEMENT
Bit 7 — WarninglIndicatorReq DemWarninglndicatorRequested- DemWarningIndicatorRequested-
(Vector Extension) Processing = STORED_ONLY Processing = ALL_DTC

Note: WIR bit is not reset on
displacement due to additional
requirements

Table 3-4 Configuration of status bit processing

3.3.3.4 Lightweight Multiple Trips (FailureCycleCounterThreshold)

Enabling the feature for multiple trips (see DemGeneral/DemMultipleTripSupport) will
enable the full-fledged support, but at the cost of a non-volatile trip counter per event. The
common requirement of up to 2 trips (DemEventFailureCycleCounterThreshold <= 1) can
work without this added cost.

In case you want to reduce Dem NV-RAM consumption, you can disable the full support
for multiple trips, and still have support for up to 2 trips for event confirmation.

Q Caution

! Although the UDS status byte normally allows distinguishing the first from the second
trip, it is not sufficient information in all failure scenarios with ConfirmedDTC handled
‘STORED_ONLY".
In case an event cannot enter the event memory (e.g. due to storage conditions or
overflow) at the time of the second trip, the Dem loses the information that the event
had already failed in the last operation cycle.
This means that failed event reports and re-occurrences of the DTC will not lead to
confirmation until the next operation cycle.

If this limitation is not acceptable for your ECU, you need to enable the full support for
multiple trips (DemMultiple TripSupport == true).

3.4 Event Displacement

In case all available memory slots are already used up by past events when a new event
needs to be entered, the Dem can displace a less important event. This is governed by the
following set of rules, in the order of mention:

> Dedicated Aging Counters are repurposed first

©2015, Vector Informatik GmbH Version: 4.3.0 30/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ectorE

> Aged events are displaced before other events

> Lower prioritized events will be displaced by higher prioritized events. This step
depends on the configuration of event priorities and is omitted if each event has the
same priority.

> Passive events of equal priority (test failed bit is not set) can be displaced if no lower
prioritized event can be found. This step can be omitted by configuration.

> An active event of equal priority can be displaced if it has not been tested in the active
operation cycle. This step can be omitted by configuration.

If multiple events match, the oldest one is displaced. Age in this context is defined by the
point in time the event data was last updated.

If no event matches, an option exists to displace the oldest event whatever its state.

3.5 Event Aging

The process of aging resets status bit 3 — ConfirmedDTC when a sufficient amount of time
has elapsed so that the cause for the error entry is assumedly not relevant anymore. This
is often used as a trigger to also clear stored snapshot or extended data from the event
memory.

In addition to the aging process defined in [1] there are further options. The differences are
summarized in Table 3-5

In all cases the event ages only if it supports aging, and the aging process continues long
enough so the events aging counter reaches the defined threshold value.

Aging start condition Aging continuation

Aging At Passed An event that is tested passed At the end of the events aging
(Autosar Default) immediately starts to age. cycle, if the event is not currently
active (tested failed).

e AR e An event that is tested passed At the end of the events aging

Not Failed immediately starts to age. cycle, in case the event is tested in
its current operation cycle and is
currently not failed.

Cont End Of Cycle At the end of the events At the end of the events aging
operation cycle, in case the cycle, if the event is not currently
event is tested and did not test active (tested failed).

‘failed’ in that cycle.

Cont Tested Passed, At the end of the events At the end of the events aging
Cont Tested Passed operation cycle, in case the cycle, if the event is tested and not
Zero At Passed event is tested and did not test tested failed in its current operation
‘failed’ in that cycle. cycle. l.e. untested cycles are not
considered.
Table 3-5 Aging algorithms
©2015, Vector Informatik GmbH Version: 4.3.0 317175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ectorE

cycle, cycle, cycle, cycle, cycle, cycle, cycle,

vassed o Ll L QUL L
wied 1T]

testFailed

pendingDTC

confirmedDTC

testedTOC

At Passed- ; 1 : 2 : 3 ; 4 : 5 : n-2 : n-1 —

Atpassed, ... NURW..... 2. MENNENN FEWAEEN

Cont Not Failed ;

Cont End Of _ | i 02 n1_ [
Cycle | ! ! ! ! ! ‘ ! !

Cont Tested__ | | [0 n2 n1 [
Passed

Aging Counter: | NN DTC Status Bits:

Figure 3-3 Behavior of the Aging Counter

3.5.1 Aging Target ‘0’
Events aging ‘immediately’ are handled in a special way, depending on the configured
aging algorithm.

In general, they age immediately when the aging start condition is reached. For details
refer to Table 3-6 Immediate aging.

Aging with target 0

Aging At Passed If the DTC is tested passed when an event reports a passed result.
(Autosar Default)

el A RS Ee (At the end of the event's operation cycle, if the DTC was not tested
Not Failed failed this cycle.

Cont End Of Cycle At the end of the event’s operation cycle, if PendingDTC is reset.

Cont Tested Passed At the end of the event’s operation cycle, if PendingDTC is reset.

Cont Tested Passed If the DTC is tested passed when an event reports a passed result,
Zero At Passed and the DTC is not tested failed in that cycle.

Table 3-6 Immediate aging

3.5.2 Aging Counter Reallocation

To implement aging of events, an event requires an aging counter. This counter is
contained within the event memory entry along with stored additional data. If the confirmed
bit is set independently of event storage (see chapter 3.3.3.3) events do not necessarily
have the means to age, even if they meet the precondition (e.g. test completed and not
tested failed for one operation cycle).

©2015, Vector Informatik GmbH Version: 4.3.0 32/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

In this case the Dem module tries to reallocate a free memory entry for the aging event.
This event entry is used solely for the purpose of aging the confirmed DTC bit.

Q Caution

! In case ConfirmedDTC is set independently of event storage (Setting ‘ALL DTC’, see
chapter 3.3.3.3) DTCs do not necessarily age with the configured number of aging
cycles. This is not a bug, but a result of an insufficient amount of available aging
counters.

3.5.3 Aging of Environmental Data

Stored data can optionally be discarded or kept intake once a DTC has completed the
aging process and resets its ConfirmedDTC bit.

If the data is kept intact, it is reported to the Dcm in the same way it is reported for active
events.

' Caution

- This setting has a negative side effect on reallocating aging counters (see chapter
3.5.1), since the Dem prioritizes aged environmental data higher than the need for new
aging counters. There is no displacement of aged data due to a different, aging event.

Only a number of DTCs up to the available event memory entries can age, unless
events are cleared by other means, e.g. ClearDTC.

3.5.4 Aging of TestFailedSinceLastClear

The general status bit processing for bit 5 is described in chapter 3.3.3. There is however
an additional option to reset this bit when an event ages.

Currently the aging counter value required to reset Bit 5 is the same as for ConfirmedDTC,
so there is no way to age it at a later time.

Please refer to the configuration parameter DemGeneral/DemStatusBitHandlingTest-
FailedSinceLastClear for details.
3.5.5 Aging and Healing

Aging and healing normally happen in parallel. The Dem does not implement safe guards
to prevent aging before healing has occurred. This situation is rather unusual and would
indicate a mistake in the configuration, or how the cycles are reported to the Dem.

For some use-cases like OBD I, it is supported to only start with the aging process once a
configured indicator request has completed healing. In order to achieve consistent
behavior across all DTC, this can be activated also for events not supporting an indicator.

This aspect of the aging behavior can be selected using the configuration switch
DemGeneral /DemAgingAfterHealing.

©2015, Vector Informatik GmbH Version: 4.3.0 33/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

3.6 Operation Cycles

Each event is assigned to an operation cycle, e.g. ignition cycle. An operation cycle can be
started and stopped with the function Dem SetOperationCycleState (). Reporting an
event to the Dem is possible only if its corresponding operation cycle is started — otherwise
the report will be discarded. In this regard the operation cycle acts as additional enable
condition which cannot be circumvented.

The operation cycle also is the basis for the status bits referring to ‘this operation cycle’ (Bit
1 and Bit 6), as well as the calculation of events that may or may not have occurred during
the whole cycle, e.g. to calculate the precondition for resetting Bit 2.

Since operation cycle restarts can cause a lot of notification function calls, the actual
processing is done asynchronously on the Dem_MainFunction(). As notification for the
finished processing, please use InitMonitorForX callbacks.

' Caution
- Due to the asynchronous processing, operation cycle changes will get lost if you shut
down the Dem module before a pending change is processed.

3.6.1 Persistent Storage of Operation Cycle State

The Dem provides the possibility to restore the state of operation cycles through power
down. This feature has its caveats though.

The persisted state of operation cycles is not known in pre-initialization state, since the
NvM which controls the non-volatile data relies on a pre-initialized Dem!

Until the Dem is completely initialized all operation cycles are inactive, independently of
their stored state. The persisted state only becomes active during Dem Init (), but this
state modification is not counted as flank of the operation cycle state and will not modify
the DTC status bytes.

Q Caution

! Even with persistent operation cycle storage enabled, during pre-initialization all cycles
are in state ‘stopped’ since their real state is not known until full initialization. This will
cause discarded BSW error reports due to unfulfilled preconditions!

3.6.2 Automatic Operation Cycle Restart

Operation cycles automatically count as enable condition for all related events, meaning
that if a cycle is not started, monitor reports are not accepted. During ECU startup, there is
no valid way to start an operation cycle by API.

If you select a cycle to be started automatically, it will be treated as ‘started’ during pre-
initialization, so event reports are possible.

©2015, Vector Informatik GmbH Version: 4.3.0 341175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

Additionally, all calculations resulting from an operation cycle restart are done in
Dem Init () — But be aware that all notification functions are skipped, since the
initialization status of the RTE is not known at this point.

The DTC status calculation is performed in Dem Init () ‘as if' the cycle had started
before Dem PreInit (). E.g. fault detection counters of related DTCs do not reset to
zero.

' Caution

= Since the cycle is already started automatically you may not start it again from your
application. This would be regarded as an additional, completed cycle and would cause
unwanted modifications of the event status, like premature aging of events.

' Caution

. Automatic restart of cycle skips all notifications — including event status change and
monitor initialization callbacks. If you use this feature, your monitors need to initialize
their starting state in an initialization routine and cannot rely on an init-monitor
notification callback alone.

3.7 Enable Conditions and Control DTC Setting

Up to 31 enable conditions can be assigned to an event. Only if all assigned enable
conditions are fulfilled the respective event reported via Dem ReportErrorStatus () or
Dem SetEventStatus () will lead to a change of the event status bits and a storage of
environmental data. Otherwise the event report will be discarded.

A diagnostic monitor using the RTE interfaces to report events can evaluate the return
value of the SetEventStatus operation. In case event reports are discarded, this operation
will always return E_NOT_OK. It is not possible to tell the exact reason for the discarded
report.

Enable condition states can be set via Dem SetEnableCondition () respectively by
the corresponding port interface operation.

[y Changes
~all Since Implementation version 7.00.00, enable conditions do not take effect until after
full initialization (Dem_Init())

When an event’s enable conditions are not fulfilled, the Dem provides the option to reset or
to freeze an ongoing de-bouncing process. Using this feature defers enabling an enable
condition to the Dem main function, because it involves checking all events if they are
affected by the change.

As a side effect, it is possible to lose enable condition changes that toggle faster than the
cycle time of the Dem main function.

The same applies to ControlDTCSetting.

©2015, Vector Informatik GmbH Version: 4.3.0 35/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

Changes

Since implementation version 8.00.00, enabling enable conditions and
ControlDTCSetting are processed on the Dem main function. Activating an enable
condition will not have immediate effect. This change affects all configurations using
time-based de-bouncing, or the option to reset the de-bounce counters on enable
condition change.

(%)

Q Caution

! EnableDTCSettings is processed on the main function, but the API was not changed to
asynchronous by Autosar (RfC 69895). As a result, the Dcm will send the positive
response to service $85 before the DTCSettings have actually been enabled. This can
be observable as DTCs are not entered into the Dem until the Dem task function has
completed.

3.7.1 Effects on de-bouncing and FDC

While enable conditions are disabled, de-bouncing is usually stopped as well. The Dem
allows configuring whether events continue de-bouncing where they left off, or whether
they start from the beginning — or even continue de-bouncing.

The point in time of the reset, being either when the enable conditions are disabled or re-
enabled, is also subject to configuration.

In any case, it is not possible for events to qualify during the time enable conditions (or
ControlDTCSetting) are disabled.

3.8 Storage Conditions

Up to 32 storage conditions can be assigned to an event. If the assigned storage
conditions are not fulfilled, the respective event reported via Dem SetEventStatus ()
will change its status byte, but its environmental data and statistical data (e.g. most recent
failed event) is not stored or updated.

Also, status bits 2, 3, 5 and 7 will not transition while storage conditions are not fulfilled
(depending on configuration options, see chapter 3.3.3.3).

The storage condition state can be set via Dem SetStorageCondition().

©2015, Vector Informatik GmbH Version: 4.3.0 36/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

Note

Unfulfilled storage conditions prevent event storage, not postpone it. When storage is
re-enabled, in most configurations the blocked entries will require either a passed
—>failed transition or a transition of TestFailedThisOperationCycle in order to create a
memory entry.

3.9 DTC Suppression

AUTOSAR provides two mechanisms to disable, hide or otherwise prevent evaluation of
test reports. They differ in the impact of the suppression operation.

This implementation allows calling the event based suppression APl before full
initialization, and calls by BSW or CDD (i.e. it does not require Rte_Call). Please be
advised that this is an extension to [1].

- Note
Suppression / Availability states are not stored in non-volatile RAM — suppression must
be (re)activated in each power cycle.

3.9.1 Event Availability

The API Dem_SetEventAvailable() can disconnect the event reporting from event
processing. Use this mechanism in case the ECU has fault paths that are supported
conditionally, e.g. due to ECU variants.

Unavailable events do not track a status. They cannot confirm, cannot enter the event
memory, and attached DTCs are not reported to the outside world, i.e. through Dcm API.

Event reports and the request to suppress the same event do collide. In order to correctly
implement suppression, unused DTCs should be suppressed before the monitor in
question starts to report test results for it.

| Caution

- The FiM module prior to Autosar 4.2.1 is not able to work with unavailable events. It
can cause runtime errors and/or FID status miscalculations when the FiM module tries
to request the event status of an unavailable event, since that request will return an
unexpected error code.

DTCs and events already stored in the event memory cannot be made unavailable and the
corresponding API call will fail.

For combined events, the DTC will be hidden only after all events attached to the DTC
have been set to disabled.

©2015, Vector Informatik GmbH Version: 4.3.0 371175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectC)rE

Note

A default setting for event availability can be defined. In this case, the API
Dem_SetEventAvailable() may not be called before Dem initialization, as the active
configuration is not known

Also, the default setting cannot be used in conjunction with DemAvailabilityStorage

3.9.2 Suppress Event/ Suppress DTC
The suppression APIs only ‘hide’ DTCs to the outside world.

Event processing and storage are processed normally — this means suppressed DTCs can
use up memory slots, and enable indicators.

DTCs and events suppression states are tracked independently, as defined in [1]. This
means, you can only ‘unsuppress’ a DTC using the same API it was suppressed with.

For combined events, the DTC will be hidden only after all events attached to the DTC are
suppressed, or the DTC is suppressed directly using Dem_SetDTCSuppression().

Note

Different from the event based suppression, DTC suppression is not possible before
full initialization. Dem_Init() is the API that selects the active configuration, so the
mapping between Eventld and DTC is not known before then.

3.10 Environmental Data

The Dem supports storage of data with each DTC in form of snapshot records and
extended data records.

A Snapshot Record is DTC specific and consists of one or more DIDs (Data Identifiers)
which in turn consist of one more data elements. Snapshot Records are collected and
stored at a configurable point in time during event confirmation, and often multiple times.

An Extended Data Record is defined globally and consists of one or more data elements. It
is typically used for statistic values like the occurrence counter or aging counter that are
not frozen at storage time.

The content of data elements can be provided by the application or by the Dem itself.

For application defined data the Dem will request the data using callback functions every
time a new value needs to be stored, and supply the stored values to the reading module
(e.g. the Dcm). This type of data is comparable to snapshot records in that no current
value can be supplied to a reader.

To use internal data provided by the Dem, data elements must be mapped by configuration
to the requested statistical value. The Dem will then always supply the current value of the
respective statistic to reading modules.

Figure 3-4 provides an example of the described layout.

©2015, Vector Informatik GmbH Version: 4.3.0 38/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect(:)rE

Snapshot Record Layout

DID2 DID1

DID3

DY Data2 _J Datad | DID4I

Extended Data Record Layout

orc2 [| Ext10 IEEN I

Extl I Ext2 I Exta |

Figure 3-4 Environmental Data Layout

3.10.1 Storage Trigger

There are two algorithms how snapshot records are stored. One is the ‘calculated
snapshot number’ option, for which snapshots are currently stored with each transition of
the TestFailed bit of an event.

The ‘configured snapshot number’ option allows defining for each snapshot record in detail
when to store it, if its contents may be updated, and what its record number is going to be.

This second option also necessitates defining when to try and create an event memory
entry, for there are some interesting combinations:

A failing DTC will (ideally) create the following triggers, in order:
1. FDC threshold (< qualified failed) exceeded
2. FDC qualifies, Bit 0 is set
3. DTC Pending, Bit 2 is set
4. DTC Confirmed, Bit 3 is set
Although in reality these can easily all occur at the same time.

Snapshots are stored and updated with each trigger, so e.g. if the snapshot trigger is ‘test
failed’, each of these events will update a corresponding snapshot record — once an event
memory entry is created for the DTC.

The exact trigger that is used to create a memory entry is set with option
DemGeneral/DemEventStorageTrigger. This way you can realize ECUs that i.e. update
snapshot data with each Occurrence, but start only once the DTC reaches ConfirmedDTC.

©2015, Vector Informatik GmbH Version: 4.3.0 39/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectort

3.10.1.1 Storage Trigger ‘FDC Threshold’

If snapshot data has to be stored prior to event qualification, the event has to be set up to
use a Dem internal de-bouncing algorithm. Currently there is no API to notify the Dem that
a FDC threshold has been detected by a monitor internal de-bouncing algorithm.

Also, the actual threshold values need to be configured for the events as well.

| Caution

- If an event cannot be stored due to a full event memory, another attempt is made only
when the FDC threshold is crossed again. If the event’s FDC rests above the threshold
value, no attempt to store data is made, even if another event was cleared in the
meantime, e.g. by ClearDTC.

3.10.2 Internal Data Elements

The Dem provides access to the following values by means of an internal data element.
Internal data is usually not frozen in the primary memory, but rather the current value is
reported.

Aging counter

Available both in positive direction, counting up from 0 (event is not aging) up to the
configured threshold value; and in reverse counting down to 0.

Occurrence counter

Counts the number of passed-failed transitions since an event has been stored. This
counter is available in 8bit and 16bit variants.

Cycle counters

Different statistics concerning the number of operation cycles: The number of cycles
completed since the first or last failed result, and the number of cycles during which an
event has reported a failed result.

Overflow indication:

Indicates if the event’s memory destination has overflown.

Event priority:

Is set to the configured priority value of the event.

Significance:

Is set to the configured event significance value. Occurrence is 0, Fault is 1.

Root cause Eventld

The event id that caused the storage/update of the environmental data. Can be used in
context of the feature combined events to store the root cause event id.

©2015, Vector Informatik GmbH Version: 4.3.0 40/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectort

OBD DTC

The OBD DTC for the event id that caused the storage/update of the environmental data. If
no OBD DTC is configured the returned value will be O.

Fault Detection Counter statistics

The current fault detection counter can always map. For internally de-bounced events, the
maximum value per operation cycle, and the maximum value since last clear are available
as well.

| Caution

- For time-based events, the maximum FDC in a cycle (or since last clear) are updated
during the Dem task processing. This can result in a current FDC larger than the
displayed maximum FDC when the de-bouncing timer has just started.

This situation will correct itself after the timer has ticked once, but for low resolution
timing this can take up to the configured low resolution tick (which defaults to 150 ms).

3.10.3 External Data Elements

Data is collected through required port prototypes and needs to be mapped to the data
provider during Rte configuration. Please note that each data element has its own port
interface and port prototype. It is not supported to collect a variety of DIDs or data signals
through a shared callback function by AUTOSAR design.

As a vendor specific extension, the MICROSAR Dem module supports data callbacks that
also pass the Eventld to the application. This allows scenarios not possible with a standard
Dem:

» Application managed data storage: e.g. connecting the Dem to legacy applications that
already store (parts of) the environment data.

» Event specific data contents: e.g. storing root cause dependent data.
3.10.3.1 Nv-Ram storage
The usual AUTOSAR Dem will store all data collected from the application in NV-Ram.

For such data elements, data sampling is always processed on the Dem cyclic function.
Queries (e.g. through Dcm UDS diagnostic services) always return the frozen value.

As an extension to AUTOSAR, the Dem also allows to configure data elements to return
‘live’ data. This is useful especially to support statistics data that is not already covered by
the Dem internal data elements.

When data elements are configured not to be stored in NV-Ram, the data is requested
every time a query is processed. Their implementation should be reentrant and fast to
allow diagnostic responses to complete in time.

©2015, Vector Informatik GmbH Version: 4.3.0 41/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

Note
There is no way to tell the Dem that data is ‘not currently available’ in this case. The

Autosar standard requires to substitute a ‘OxFF’ pattern in case a data callback returns
‘NOT OK’

Optional data is not possible, especially since a single DID or extended record may
consist of up to 255 callbacks, and optional data right in the middle of a DID makes no
sense.

3.11 Freeze Frame Pre-Storage

The environmental data associated with a DTC is collected when the DTC storage is
processed on the Dem task function. The delay between the event report and the data
collection can be a problem if fast changing data needs to be captured. In other use-cases
the DTC is supposed to store a snapshot of the system state some time before the event
qualification finishes.

Using Dem_PrestoreFreezeFrame() a monitor can request immediate data capture. If
successful, this snapshot is used as the data source if the DTC is stored to the event
memory later on.

The Dem captures the following data, if relevant:
» A UDS snapshot record

» A OBD freeze frame

» J1939 freeze frame and expanded freeze frame

' Caution
- Extended data records are not captured.

The Dem can only pre-store a limited number of events (see configuration parameter
DemGeneral/DemMaxNumberPrestoredFF). Once the allotted space is exhausted
subsequent pre-storage requests will fail until one or more of them were freed. It is always
possible to refresh a pre-stored data set already allocated to an event.

Pre-Stored data is not preserved through Power-Cycles, and will be discarded
automatically once it is used or after a qualified test result has been processed for the
respective event. Also see Dem_ClearPrestoredFreezeFrame() for a way to explicitly
discard stale data.

3.12 Combined Events

It is possible to combine the results of multiple monitors to a single DTC. This feature is
referred to as ‘Combined Events’ in this document.

©2015, Vector Informatik GmbH Version: 4.3.0 42/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

Monitors report events as usual, events are de-bounced individually, and for each event
the Dem keeps track of its individual status byte. Only when a DTC status is required there
is a visible difference.

3.12.1 Configuration

Currently the configuration format allows too much freedom in configuration due to the
multiple combination types. For Type 1 combination the following restrictions apply:

» All events mapped to the same DTC must have identical environmental data
(extended records, number and content of snapshots etc.

» All events mapped to the same DTC must use the same cycles (operation, failing,
healing and aging cycles)

» All events mapped to the same DTC must use the same destination, significance,
priority, the same setting for ‘aging allowed’ and the same significance.

The behavior with mixed settings is undefined and not supported by this implementation.

3.12.2 Event Reporting

Monitor results that need to be combined are not processed directly, but deferred to task
level. Other than that the application APl is not changed.

c Caution

! Do not depend on status changes of either event status or DTC status to occur during
the call to SetEventStatus and ReportErrorStatus. If monitors are combined to a shared
DTC, the status will not change until the next task cycle.

3.12.3 DTC Status

If event combination is used, the DTC status does not correspond to the event status
directly. Instead, the DTC status is derived from the status of multiple events.

As defined by Autosar (see [1]) this combined status is calculated according to Table 3-7.
Basically the DTC status is a simple OR combination of all events, with the resulting status
byte modified by an additional combination term. This is done such that a failed result will
also reset the ‘test not completed’ bits even if not all contributing monitors have completed
their test cycle.

| Caution

. A direct effect of event combination is a possible toggle of Bit 4 and Bit 6 during a
single operation cycle. l.e. these bits can become set (test not completed > true) as
result of a completed test. This behavior is intended by Autosar and not an
implementation issue.

Applications need to take this into account when reacting on changes of ‘Test not
Completed This Operation Cycle / Since Last Clear’!

©2015, Vector Informatik GmbH Version: 4.3.0 43/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectC)rE

Bit 0 — TestFailed

Bit 1 — Test Failed This Operation Cycle

Bit 2 — PendingDTC

Bit 3 — ConfirmedDTC

Bit 4 — Test not Completed Since Last Clear

Bit 5 — Test Failed Since Last Clear

Bit 6 — Test not Completed This Operation Cycle
Bit 7 — Warning Indicator Requested

Table 3-7 DTC status combination

3.12.4 Environmental Data Update

Environment data and statistics are calculated based on the DTC status, not the event
status of contributing events.

Example: The occurrence counter, if configured, is not incremented with each failing
monitor. Instead, the occurrence counter is incremented each time Bit0 of the combined
DTC transitions 0 = 1.

A failed monitor result might therefore not result in an update of event data (nor an event
data changed notification). This behavior is intentional.

3.12.5 Aging

A combined DTC starts to age once the conditions discussed in chapter 3.5 are fulfilled for
each event, e.g. once all monitors have reported a ‘passed’ result.

3.12.6 Clear DTC

If a request to clear a combined DTC is received, all monitors that define a ‘clear DTC
allowed’ callback will be notified by the Dem and have a chance to prevent the clear
operation. If a single monitor disallows the clear operation, the DTC will be left in the event
memory.

| Caution
. If an application responds positively to a call to a ‘clear event allowed’ callback, the
D DTC is not necessarily cleared as a result!

Another monitor can be combined to the same DTC and disallow the clear operation.
Do not use a clear allowed callback as indication that a DTC was cleared, instead use
the InitMonitorForEvent notification!

3.13 Non-Volatile Data Management

The Dem uses the standard AUTOSAR data management facilities provided by the NvM
module.

©2015, Vector Informatik GmbH Version: 4.3.0 44 /175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

3.13.1 NvM Interaction

If immediate data writes are enabled, the NvM needs to support API configuration class 2.
Otherwise the APIs provided by configuration class 1 are sufficient for Dem operation.

If you do not use an AUTOSAR NvM module, you have to provide a compatible
replacement in order to use features related to non-volatile data management. The NVM
module needs to implement at least the functionality described in chapter 4.5 NVM
Integration.

3.13.2 NVRAM Write Frequency

The Dem is designed to trigger as less NVRAM writes as possible. Thereto only the data
which typically changes not very often is stored during ECU runtime. The following table
will give you an overview of the NVRAM write frequency.

NvRam Item

Write Frequency

Secondary Entry

® Debounce Data
Primary Entry

At shutdown - always

= Admin Data
m ¥ status Data

At shutdown - if content has changed
At clear DTC

Immediately - if immediate NVRAM storage is enabled T m

Table 3-8 = NVRAM write frequency

3.13.3 Data Recovery

As the Dem uses multiple NVRAM blocks to persist its data (refer to 4.5), it might happen
that correlating data becomes inconsistent due to a power loss or an NVRAM error. To
avoid restoring to an undefined state, during initialization some errors are detected and
corrected, as follows.

> Duplicate entries in a memory are resolved by removing the older entry.
> Stored-Only/Aging status bits are reset if the respective event is not stored, or aged.

> Depending on aging behavior the status bits TestFailed, PendingDTC,
TestFailedThisOperationCycle and WarninglndicatorRequested, are reset for currently
aging events.

> Reset status bit TestFailedThisOperationCycle if both TestFailedThisOperationCycle
and TestNotCompletedThisOperationCycle are set.

> Reset status bit TestNotCompletedSincelLastClear if both TestFailedSincleLastClear
and TestNotCompletedSincelLastClear are set.

! Only in case of option DemOperationCycleStatusStorage is enabled
2 Only applicable if an event confirms or ages. Please note, an event that toggles from TEST FAILED to
TEST PASSED will also cause NvRam modification.

©2015, Vector Informatik GmbH Version: 4.3.0 457175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectC)rE

> De-bounce counters are reset if they exceed the configured threshold, or the
TestFailed bit does not match a reached threshold (only relevant if de-bounce counters
are stored in NVRAM).

> Stored Events have their status bit corrected if:
> Events are stored when they reach an fault detection counter limit and if

> A consecutive failed cycle counter is supported, and has a value > 0, status bits
PendingDTC and TestFailedSincleLastClear are set. If that counter also exceeds
the failure cycle counter threshold, the ConfirmedDTC status bit is set.

> An occurrence counter is supported and has a value > 0, then status bit
TestFailedSincleLastClear is set.

> Events are stored with other triggers
> The status bit TestFailedSincleLastClear is set.

> |If a consecutive failed cycle counter is supported, and has a value > 0, the status bit
PendingDTC is set. If that counter also exceeds the failure cycle counter threshold,
the status bit ConfirmedDTC is set.

> If the event has a failure cycle counter threshold of 0, the status bit ConfirmedDTC
is set.

> If events are stored with trigger ConfirmedDTC, status bit ConfirmedDTC is set.

> |If a combined event is stored, but the Eventld in NVRAM is not the 'master' Eventld for
that combination group, the entry is discarded. This happens due to an integration
error, so also a DET error (inconsistent state) will be set.

> If the event has no warning indicator configured but the status bit
WarninglndicatorRequested is set, then the status bit WarningIndicatorRequested is
reset.

3.14 Diagnostic Interfaces

To provide the data maintained by the Dem to an external tester the Dem supports
interfaces to the Dcm which are described in chapter 6.2.6.

Please note, these API are intended for use by the Dcm module exclusively and may not
be safe to use otherwise. In case a replacement for the Dcm module has to be
implemented, we politely refer to the Autosar Dcm specification [3], and do not elaborate
on the details within the context of this document.

3.15 Notifications

The Dem supports several configurable global and specific event or DTC related
notification functions which will be described in the following. For details please refer to
chapter 6.5.1.

©2015, Vector Informatik GmbH Version: 4.3.0 46 /175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectort

Note
Status notifications are separated for asynchronous and synchronous changes (also
see chapter 3.3.3). A status report may therefore result in separate notifications.

' Caution
H Notifications are not necessarily ordered correctly. This means the event status
received from a notification function is not reliable.
Do not use event notification in safety relevant contexts (see AUTOSAR RfC
48668)
To work around the issue, you can prevent monitors and the Dem task from pre-

empting each other (not recommended) or ignore the received status values and use
GetEventStatus to read the current one.

3.15.1 Event Status Changed

These are notifications for an event status change independent of the DTC status
availability mask. With the given old and new status the receiver is able to identify what
has changed.

> General notification:
This callback function is called from Dem for each event on status change.

> Event specific notifications:
Each event may have one or more of these callback functions which are called only if
the respective event status has changed.

> FIM notification:
This callback function is called for each event on status change. Dependent on the
given state the FIM is able to derive the new fault inhibition state.

3.15.2 DTC Status Changed

These are notifications for a DTC status change. The DTC status availability mask is taken
into account, so status bits which are not supported will not cause a notification. It is also
possible that a changed event status does not change the resulting status of a combined
DTC.

> Event specific notifications:
Each event may have one or more of these callback functions which are called only if
the respective DTC status has changed.

> Dcm notification:
This is callback function is called for each DTC status change. Dependent on the given
state the Dcm is able to decide if a ROE message shall be sent.

3.15.3 Event Data Changed
These notifications will be called from Dem if the data related to an event has changed.

> General notification:
This is a single callback function which is called for each event on data change.

©2015, Vector Informatik GmbH Version: 4.3.0 471175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectC)rE

> Event specific notification:
Each event may have one callback function which is called on event data change.

3.15.4 Monitor Re-Initialization

These notifications are called from Dem, to signal to diagnostic monitors that a new test
result is now requested. This can happen due to clearing the fault memory, the start of a
new operation cycle, or the re-enabling of previously disabled DTC settings or enable
conditions

The set of notification calls is fully customizable in the configuration.

> Event specific notification:
Each event may have one callback function which is called for the reasons mentioned
above.

> Function specific notifications:
Each event may have one or more of this callback functions which is called for the
reasons mentioned above.
For combined events, this callback is notified for each event if they are re-enabled by
enable conditions.

3.16 Indicators

An event can be configured to have one or more indicators assigned. An indicator is
reported active if at least one assigned event requests it, and cleared when all events
assigned to it have revoked their warning indicator request (i.e. by healing or diagnostic
service ClearDtc).

The indicator status is set always with event confirmation (set condition of bit 3), and reset
after the configured number of operation cycles during which the event was tested, but not
tested failed.

An event’s warning indicator request status is reported in bit 7 of the UDS status byte.

3.16.1 User Controlled WarningindicatorRequest

Use cases that demand setting of the UDS Bit 7 (WarninglndicatorRequest) differently
from the normal indicator handling can be met using the operation SetWIRStatus (see
chapter 6.6.1.1.9).

Examples include resetting the WIR bit only with the next power cycle after the indicator
status has healed, or setting it with the first failed result instead of the ‘confirmedDTC'’ bit.

This interface also allows controlling Bit7 of a BSW error. There is only a SWC API
available to control the WIR status bit of BSW errors, so a SWC module has to be used for
this task in all cases.

To calculate the visible status of Bit 7, the ‘normal’ monitor WIR request is logically OR’ed
to the user controlled state as depicted in Figure 3-5.

©2015, Vector Informatik GmbH Version: 4.3.0 48/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

= Note
T‘Ix UDS DTC status change notifications are called only if the combined (User
"V Controlled + Indicator) status changes. In case more detailed information is
needed a SWC can use the operation GetWIRStatus in combination with event
status notifications.

User Controlled WIR | |

set by Dem_SetWIRStatus()

Indicator Status | | |
(e.g. MIL) 1 1 :

WIR (Bit 7) | | |
reported to DCM and Application

Figure 3-5 User Controlled WarninglndicatorRequest

3.17 Interface to the Runtime Environment

The Dem interacts with the application through the Rte and defined port interfaces (see
chapter 6.6).

There are no statically defined callouts that need to be implemented by the application. All
notifications and callouts are set up during configuration.

This is why the Dem software component description file (Dem_swc.arxml) is generated
based on the configuration.

3.18 Error Handling

3.18.1 Development Error Reporting

By default, development errors are reported to the Det using the service
Det ReportError () as specified in [2], if development error reporting is enabled (i.e.
pre-compile parameter Dem DEV_ERROR _DETECT==STD_ON).

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature
as the service Det ReportError ().

The reported Dem ID is 54.

The reported service IDs identify the services which are described in 6.2. The following
table presents the service IDs and the related services:

0x00 Dem_GetVersionInfo()
0x01 Dem_Prelnit()
0x02 Dem_Init()
0x03 Dem_Shutdown()
©2015, Vector Informatik GmbH Version: 4.3.0 49/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

Service ID Service ‘

0x04 Dem_SetEventStatus()
0x05 Dem_ResetEventStatus()
0x06 Dem_PrestoreFreezeFrame()
0x07 Dem_ClearPrestoredFreezeFrame()
0x08 Dem_SetOperationCycleState()
0x09 Dem_SetOperationCycleCntValue
O0x0A Dem_GetEventStatus()
0x0B Dem_GetEventFailed()
0x0C Dem_GetEventTested()
0x0D Dem_GetDTCOfEvent()
O0x0E Dem_DcmGetSeverityOfDTC()
OxOF Dem_ReportErrorStatus()
0x11 Dem_SetAgingCycleState
0x12 Dem_SetAgingCycleCounterValue
0x13 Dem_DcmSetDTCFilter()
0x15 Dem_DcmGetStatusOfDTC()
0x16 Dem_DcmGetDTCStatusAvailabilityMask()
0x17 Dem_DcmGetNumberOfFilteredDTC()
0x18 Dem_DcmGetNextFilteredDTC()
0x19 Dem_DcmGetDTCByOccurrenceTime()
Ox1A Dem_DcmDisableDTCRecordUpdate()
0x1B Dem_DcmEnableDTCRecordUpdate()
0x1C Dem_DcmGetOBDFreezeFrameData
0x1D Dem_DcmGetFreezeFrameDataByDTC()
Ox1F Dem_DcmGetSizeOfFreezeFrameByDTC()
0x20 Dem_DcmGetExtendedDataRecordByDTC()
0x21 Dem_DcmGetSizeOfExtendedDataRecordByDTC()
0x22 Dem_DcmClearDTC()
0x23 Dem_ClearDTC()
0x24 Dem_DcmDisableDTCSetting()
0x25 Dem_DcmEnableDTCSetting()
0x29 Dem_GetIndicatorStatus()
0x2A Dem_DcmCancelOperation()
0x30 Dem_GetEventExtendedDataRecord()
0x31 Dem_GetEventFreezeFrameData()
0x32 Dem_GetEventMemoryOverflow()
0x33 Dem_SetDTCSuppression()
0x34 Dem_DcmGetFunctionalUnitOfDTCY()
©2015, Vector Informatik GmbH Version: 4.3.0 50/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

Service ID Service ‘

0x36 Dem_SetEventSuppression()

0x37 Dem_SetEventAvailable()

0x38 Dem_SetStorageCondition()

0x39 Dem_SetEnableCondition()

Ox3A Dem_DcmGetNextFilteredRecord()

0x3B Dem_DcmGetNextFilteredDTCAndFDC()

0x3C Dem_DcmGetTranslationType()

0x3D Dem_DcmGetNextFilteredDTCANndSeverity()

Ox3E Dem_GetFaultDetectionCounter()

0x3F Dem_DcmSetFreezeFrameRecordFilter()

0x40 Dem_DItGetAllExtendedDataRecords

0x41 Dem_DItGetMostRecentFreezeFrameRecordData

0x51 Dem_SetEventDisabled

0x52 Dem_DcmReadDataOfOBDFreezeFrame

0x53 Dem_DcmGetDTCOfOBDFreezeFrame

0x55 Dem_MainFunction()

0x61 Dem_DcmReadDataOfPIDO1

0x63 Dem_DcmReadDataOfPID1C

0x64 Dem_DcmReadDataOfPID21

0x65 Dem_DcmReadDataOfPID30

0x66 Dem_DcmReadDataOfPID31

0x67 Dem_DcmReadDataOfPID41

0x68 Dem_DcmReadDataOfPID4D

0x69 Dem_DcmReadDataOfPID4E

0x6B Dem_DcmGetinfoTypeValue08

0x6C Dem_DcmGetinfoTypeValueOB

0x71 Dem_ReplUMPRDenLock

0x72 Dem_ReplUMPRDenRelease

0x73 Dem_ReplUMPRFaultDetect

0x79 Dem_SetPtoStatus

Ox7A Dem_SetWIRStatus()

0x90 Dem_J1939DcmSetDTCFilter()

0x91 Dem_J1939DcmGetNumberOfFilteredDTC ()

0x92 Dem_J1939DcmGetNextFilteredDTC()

0x93 Dem_J1939DcmPFirstDTCwithLampStatus()

0x94 Dem_J1939DcmGetNextDTCwithLampStatus ()

0x95 Dem_J1939DcmClearDTC()

0x96 Dem_J1939DcmSetFreezeFrameFilter()
©2015, Vector Informatik GmbH Version: 4.3.0 517175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ectorE

Service ID Service

0x97 Dem_J1939DcmGetNextFreezeFrame()

0x98 Dem_J1939DcmGetNextSPNInFreezeFrame()
0x99 Dem_J1939DcmSetRatioFilter

0x9A Dem_J1939DcmGetNextFilteredRatio

0x9B Dem_J1939DcmReadDiagnosticReadiness1
0x9C Dem_J1939DcmReadDiagnosticReadiness2
0x9D Dem_J1939DcmReadDiagnosticReadiness3
OxAA Dem_SetPfcCycle

OxAB Dem_GetPfcCycle

OxAE Dem_SetlUMPRDenCondition

Table 3-9 Service IDs

Table 3-10 presents the service IDs of APIs not defined by AUTOSAR, the related services
and corresponding errors:

Service ID Service

0xDO Dem_InitMemory()

0xD1 Dem_PostRunRequested()

0xD2 Dem_GetEventEnableCondition()

0xD3 Dem_GetWIRStatus()

0xD4 Dem_EnablePermanentStorage

0xD5 Dem_GetlUMPRGeneralData

0xD6 Dem_GetNextlUMPRRatioData (APl was removed since version 8.00.00)
0xD7 Dem_GetNextlUMPRRatioDataAndDTC
0xD8 Dem_GetCurrentitUMPRRatioDataAndDTC
0xDB Dem_RequestNvSynchronization()

OxF1 Dem_NvM_InitAdminData()

Dem_NvM_InitStatusData()
Dem_NvM_InitDebounceData()

OxF2 Dem_NvM_JobFinished()
OxFF Internal function calls

Table 3-10 Additional Service IDs

The errors reported to Det are described in the following table:

Error Code Description

0x10 DEM E PARAM CONFIG Service was called with a parameter value which is
o B not allowed in this configuration
0x11 DEM_E_PARAM_POINTER Service was called with a NULL pointer argument
0x12 DEM_E_PARAM_DATA Service was called with an invalid parameter value
©2015, Vector Informatik GmbH Version: 4.3.0 52/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

ErorCode __|Descripton __

0x13 DEM_E_PARAM_LENGTH Service was called with an invalid length or size
parameter

0x20 DEM_E_UNINIT Service was called before the Dem module has been
initialized

0x30 DEM_E_NODATAAVAILABLE Data collection failed (application error)

0x40 DEM_E_WRONG_CONDITION Service was called with unsatisfied precondition
OxFO DEM_E_INCONSISTENT_STATE Dem is in an inconsistent internal state

Table 3-11 Errors reported to Det

3.18.1.1 Parameter Checking

AUTOSAR requires that API functions check the validity of their parameters. These checks
are for development error reporting and are en-/disabled together with development error
reporting.

| Caution

H If the Dem is used in as Pre-Compile variant, Dem_Prelnit() does not verify the
initialization pointer. This pointer is unused anyways, so we deviate from [1] in order to
be more in line with most other Autosar modules.

3.18.1.2 Defensive Behavior

If required, all assertion checks can be left active, only disabling the notification to the Det
module. This behavior can be controlled by configuration option DemGeneral/DemUse-
DefensiveBehavior.

3.18.2 Production Code Error Reporting
The Dem does not report any production code related errors.

Production code errors in general are errors which shall be saved through the Dem by
definition. Errors of Dem itself occurring during normal operation are not saved as DTC.

3.19 J1939

’?‘l Note

Dependent on the licensed components of your delivery the feature J1939 may not be
available in DEM.

In general the SAE J1939 communication protocol was developed for heavy-duty
environments but is also applicable for communication networks in light- and medium-duty
on-road and off-road vehicles.

J1939 does not describe how the fault memory shall behave but how to report the faults
and their related data.

©2015, Vector Informatik GmbH Version: 4.3.0 53/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectC)rE

With the interface described in chapter 6.2.7 the following diagnostic messages can be
supported:

DM1 — Active Diagnostic Trouble Codes

DM2 — Previously Active Diagnostic Trouble Codes

DM3 — Diagnostic Data Clear/Reset Of Previously Active DTCs
DM4 — Freeze Frame Parameters

DM11 — Diagnostic Data Clear/Reset of Active DTCs

DM25 — Expanded Freeze Frame

DM31 — DTC To Lamp Association

DM35 — Immediate Fault Status

Table 3-12 Diagnostic messages where content is provided by Dem

3.19.1 J1939 Freeze Frame and J1939 Expanded Freeze Frame

With J1939 enabled, the Dem supports two globally defined J1939 specific freezes in
addition to the environmental data described in chapter 3.10. Each DTC can be configured
individually to support freeze frame and/or expanded freeze frame, or none.

The J1939 (expanded) freeze frame data is stored when the DTC becomes active
(ConfirmedDTC =» 1) and is not updated if the DTC reoccurs.

These freeze frames are stored in addition to any configured ‘standard’ freeze frames but
they are not mapped into a UDS snapshot record.

3.19.2 Indicators

In addition to the ‘normal’ indicators (refer to 3.16) a J1939 related DTC may support up to
one of the J1939 specific indicators listed below.

> Red Stop Lamp (RSL)
> Amber Warning Lamp (AWL)
> Protect Lamp (PL)

These indicators use different behavior settings, as required for J1939. These settings are
valid for the indicators mentioned above:

> Continuous
> Fast Flash
> Slow Flash

Differently from the ‘normal’ AUTOSAR indicators, Dem_GetIndicatorStatus() returns a
prioritized result if multiple events request the same indicator with different behavior. E.g.
the PL is triggered at the same time as “Continuous” and “Fast Flash”, the behavior is
indicated as “Continuous”.

DTC and event suppression (refer to chapter 3.9.2) with DTC format set to J1939 the
configured indicator is not applied to the ECU indicator state. l.e. the API
Dem_GetIndicatorStatus() will return the same result whether DTCs are suppressed or

©2015, Vector Informatik GmbH Version: 4.3.0 54 /175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectC)rE

not. To match this behavior, the network management node ID related indicator status also
reports the indicator state of suppressed DTCs.

3.19.3 Clear DTC

In contrast to the clear process defined by UDS which provides the DTC itself or the group
of DTCs that shall be cleared, the J1939 Clear DTC command provides the DTC status
that must match the available J1939 DTCs to be cleared.

DTCs with the following DTC status can be cleared:

Active

Previously Active

Table 3-13 J1939 DTC Status to be cleared

' Caution
. Events without a DTC number cannot be cleared using the J1939 API as they do not
support the ConfirmedDTC status.

3.20 Clear DTC APIs
The clear DTC operations are implemented in full accordance with [1].

Please be aware that the <xxx>ClearDTC interfaces start an asynchronous clear process.
While one clear operation is in progress, other clear requests receive a
DEM_CLEAR _BUSY response (see chapters 6.2.4.27, 6.2.6.20 and 6.2.7.1 for details).

Caution
‘ ! ::L The Dem will reject new clear requests with DEM_CLEAR_BUSY until the final result of
an ongoing clear DTC has been retrieved (Figure 3-6).

©2015, Vector Informatik GmbH Version: 4.3.0 55/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

sd Clear DTC /

|
|
L

<xxx>ClearDT C()

Clear
:DEM_CLEAR_PENDING Operation

I
|
<xxx>ClearDTC() |
T Ll
|
I<_ ———— e __DEM CLEARBUSY _ __ _______]
|
! ! ! finish()
| | ¢
| | *
| | | |
! <xxx>ClearDTC() | >|<
|
I<_ o ___DEMCLEARBUSY ___________]
|
	<xxx>ClearDT C()
»	
. _ _ _DEM CLEAR OK _ _ _	
I I I	
Figure 3-6 Concurrent Clear Requests
©2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

vector”

56 /175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ectorE

4 Integration

This chapter gives necessary information for the integration of the MICROSAR Dem into
an application environment of an ECU.

4.1 Scope of Delivery

The delivery of the Dem contains the files which are described in the chapters 4.1.1 and
4.1.2:

411 Static Files

File Name Source Description
Code
Delivery |Delivery
Dem.c . This is the source file of the Dem. It contains the

main functionality of the Dem.

Dem.h This header file provides the Dem API functions for
BSW modules and the application. This file is
supposed to be included by client modules but not
by Dcm.

Dem_Dcm.h This header file provides the Dem API functions for
u u the Dcm. This file is supposed to be included by
Dcm.

Dem_J1939Dcm.h This header file provides the Dem API functions for
= = the J1939Dcm. This file is supposed to be included
by J1939Dcm.

This header file contains all Dem data types. Do not
include this file directly, but include Dem.h instead.

Dem_Types.h

Dem_Cbk.h This header file contains callback functions intended
for the NvM module. Include this in the NvM
configuration for the declarations of the initialization
and notification functions.

Dem_Validation.h This header file contains static configuration checks.
u u Inconsistent configuration settings will trigger #error
directives within this file.

Dem_Cdd_Types.h This header file contains all types that are supposed
to be generated by the Rte.

u u In case no Rte is used, this file is included instead of
Rte_Dem_Type.h. Otherwise, this file is not used at
all.

Table 4-1 Static files

4.1.2 Dynamic Files
The dynamic files are generated by the configuration tool Cfg5.

File Name Description

Dem_Cfg.h This header file contains the configuration switches of the Dem.

©2015, Vector Informatik GmbH Version: 4.3.0 571175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ectorE

Dem_Lcfg.c This source file contains configuration values and tables of the Dem.

Dem_Lcfg.h This header file provides access functions to the Dem for the configuration
values and tables.

Dem_PBcfg.c This source file contains post-buildable configuration values/tables of the
Dem.

For easier handling, this file is created in pre-compile configurations as well. If
your build environment produces error messages due to this file not defining
any symbols, feel free to exclude it from the build.

Dem_PBcfg.h This header file provides access functions to the Dem for the post-buildable
configuration values and tables.

Dem_swc.arxml This AUTOSAR xml file is used for the configuration of the Rte. It contains the
information to get prototypes of callback functions offered by other
components.

Table 4-2 Generated files

©2015, Vector Informatik GmbH Version: 4.3.0 58 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

vector’

4.2 Include Structure
class IncIudeStructure/
n Det.h FchMDem.] cuM_Error. MemMap.h
s
/
|
|
| N
|
|
| Dcm.h 1939Dcm.h Dit.h NvM.h J1939Nm.h _Appl.h
|
|
|
| N
7 . — N7
| | I include» | N\ «include»
| | | | N
| | «include» N ! |
| | | i |
N «include»
«include» ! i «include» ! N : |
| | vstdlib.h J1eHe Dem.c / N | |
| «include» / ~ | I
| | Vs «include» | |
| | N |
I I ' T N\ // N
| | «include» . ! N/ [
| | / «include» NG [
| /> «include» I
= & i
/s
[N\ L1
I Iy
I Iy
| Dem_Dcm.h Deim_J1939Dcip.h Dem_Cbkh [
I P
I P
| P
| | [RN
\ il ol [Il
: «include» «mcllude» «|ncllude» «include» : L :
| AN | \ly | [
I P
| N\ AN P
| «include» | : : |
: Dgm_Validatiofflr — — Dem.h = — —|—R#e_Dem_Typ¢.h Dem_Cdd_Typ sh: 11 :
| - «in «include» N
| 7 P
| 4 P
I 4 : P
)) N I
: “'”‘;“;‘de»/:’\ «inc|l|.lde» /:’\ «mclline» «include» : Il :
[| | \ P
I P
I AN ! P
| : : P
11
I————Dem_chg.h | em_PBcfg.lh | Dem_Cfg.h Std_Types. : 11 :
| | | Iy
| | P
| | P
| | | Iy
! N RN
<includes «include» phh
-\ AN | [
P
P
_____________________ a1y
em_PBcfg. Dem_Lcfg.c ——————————————————————IJI :
_______________________ -

Figure 4-1 Include structure

©2015, Vector Informatik GmbH

Version: 4.3.0

59/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

4.3 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions — the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following table contains the memory section names and the compiler abstraction
definitions of the Dem and illustrates their assignment among each other.

Compiler Abstraction

—
Definitions @
2 8
L (|7) n'| _|I E
e & 2 & 2
Memory Mapping S O © < g
Sections E E E E E
(@] o o o a
DEM_START_SEC_CODE .
DEM_STOP_SEC_CODE
DEM_START_SEC _CONST _<size> -
DEM_STOP_SEC_ CONST _<size>
DEM_START_SEC_CALIB_<size> .
DEM_STOP_SEC_CALIB_<size>
DEM_START_SEC PBCFG -
DEM_STOP_SEC PBCFG
DEM_START _SEC_PBCFG_ROOT .
DEM_STOP_SEC_PBCFG_ROOT
Table 4-3 Compiler abstraction and memory mapping, constant sections
Compiler Abstraction <
e [<
Definitions = < < < < gl
E & < < E £ o
Z 2 6 a4 £ 9 o
z =z | | a INE
| | s I —
Sz s |2 |3 |=]2
Memory Mapping §| <>E| q Z 05 < v
Sections = = =2 =2 =2 = =
(@) (@) (@) (@) @) (@) (@)
DEM_START_SEC_VAR_NO_INIT_<size> , .
DEM_STOP_SEC_VAR_NO_INIT_<size>
DEM_START_SEC VAR _INIT <size> - -
DEM_STOP_SEC VAR _INIT <size>
©2015, Vector Informatik GmbH Version: 4.3.0 60/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

DEM_START _SEC_VAR_SAVED_ZONEO_<size>
DEM_STOP_SEC_VAR_SAVED ZONEO_<size>

DCM diagnostic buffer (section depends on DCM - -
implementation)

Application or RTE buffer used in port communication - -
(section depends on configuration and port mapping)

Table 4-4 Compiler abstraction and memory mapping, variable sections

4.3.1 Copy Routines

By default, the Dem implementation uses the copy routines provided by the Vector
standard library (VStdLib). Its copy routines are aware of the Autosar Memory Mapping
feature, and will work independently from the chosen mapping.

If the Dem module is not integrated into a MICROSAR 4 environment, the VstdLib module
might not be available, or not be enabled to support Autosar Memory Mapping.

In this case, you can disable the use of VstdLib (Configuration option DemGeneral/
DemUseMemcopyMacros). The Dem provides a simple copy routine based on a for-loop,
which is used as default replacement for the VstdLib implementation.

If necessary, you can also replace this default implementation. To do so, simply provide a
specialized definition of the following macros, e.g. globally, or in a user-config file:

Dem MemCpy Macro (destination ptr, source ptr, length in byte)
Dem MemSet Macro (destination ptr, value byte, length in byte)

4.4 Critical Sections
The Dem uses the Critical Section implementation of the SchM.
4.4.1 Exclusive Area0

DiagMonitor

Purpose:
Ensures data consistency between the Diagnostic Monitors and the Dem task.
Interfaces:

> SchM Enter Dem DEM EXCLUSIVE AREA 0
> SchM Exit Dem DEM EXCLUSIVE AREA 0

Runtime:
Short runtime; The runtime will increase if J1939 nodes are used.

Dependency:

> Dem MainFunction()

Dem ReportErrorStatus()
Dem SetEventStatus()
Dem ResetEventStatus ()

vV V. V V

Dem_ResetEventDebounceStatus()

©2015, Vector Informatik GmbH Version: 4.3.0 61/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ectorE

DiagMonitor

Dem PrestoreFreezeFrame ()
Dem ClearPrestoredFreezeFrame ()
Dem GetIndicatorStatus()
Dem SetWIRStatus ()

Dem SetEventAvailable ()

Dem SetDTCSuppression|()
Dem SetEventSuppression ()
Dem RepTUMPRFaultDetect ()*
Dem_ RepIUMPRDenLock ()’

Dem RepIUMPRDenRelease ()’
Dem SetTUMPRDenCondition ()"

vV V. V V V VvV V V V V V

Recommendation:

This critical section is used from Dem_ReportErrorStatus() which has an unknown call context (it
may be called from any BSW and CDD, and even before the system is fully initialized).

Therefore this critical section cannot be mapped to OS resources.

Table 4-5 Exclusive Area 0

LAPI may not be part of the delivery as its availability depends on the DEM license.

©2015, Vector Informatik GmbH Version: 4.3.0 62 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ectorE

442 Exclusive Areal

StateManager

Purpose:

Ensures data consistency in case of preempted execution between application state managers
and Dem task.

Interfaces:
> SchM Enter Dem DEM EXCLUSIVE AREA 1
> SchM Exit Dem DEM EXCLUSIVE AREA 1

Runtime:
short runtime, sparse usage

Dependency:

Dem MainFunction()

Dem SetOperationCycleState ()
Dem_SetEnableCondition()
Dem_SetStorageCondition()
Dem_DcmDisableDTCSetting()
Dem_DcmEnableDTCSetting()

Dem SetPfcCycle () !

VvV V. V V V V V

Recommendation:
No recommendation.

Table 4-6 Exclusive Area 1

©2015, Vector Informatik GmbH Version: 4.3.0 63/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

443 Exclusive Area 2

Purpose:

Protects global state data and values used to track Dcm related tasks from concurrent
modification.

Interfaces:
> SchM Enter Dem DEM EXCLUSIVE AREA 2
> SchM Exit Dem DEM EXCLUSIVE AREA 2

Runtime:
short runtime, sparse usage

Dependency:

> Dem MainFunction ()

> Dem DcmClearDTC ()

Dem J1939DcmClearDTC ()
Dem DcmCancelOperation ()
Dem_DcmReadDataOfPIDOl()1

Dem_DcmReadDataOfPID21 ()’

VvV V V V V

Dem_EnablePermanentStorage(f
Recommendation:
No recommendation.

Table 4-7 Exclusive Area 2

4.5 NVM Integration

In general, the Dem module is designed to work with an Autosar NvM to provide non-
volatile data storage.

It is expected that all NV blocks used by the Dem are configured with the parameters
detailed in the following chapters:

> RAM buffer

> Initialization method: ROM element or initialization function
> Single block job end notification

> Enabled for both WriteAll and ReadAll

When using a non-Autosar NV manager, please also refer to the Autosar SWS of the NvM
module for more details on the expected behavior.

LAPI may not be part of the delivery as its availability depends on the DEM license.

©2015, Vector Informatik GmbH Version: 4.3.0 64 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

451 NVRAM Demand

All non-volatile data blocks used by the Dem must be configured to match the size of the
underlying type. Since the actual size depends on compiler settings and platform
properties, this size cannot be calculated by the configuration tool.

To find the correct data structure sizes, you can use temporary code to perform a ‘sizeof’
operation on the data types involved, or check your linker map file if it contains this kind of
data.

The MICROSAR NvM implementation supports a feature to verify the correct configuration
of block sizes. It is strongly recommended to enable this feature; it also provides a very
easy way to find out the correct block sizes.

Table 4-8 lists the types used by the different data elements.

NvRam_item | RAM buffer symbol

Admin Data Dem_Cfg_AdminData Dem_Cfg_AdminDataType -

Event Data Dem_Cfg_StatusData Dem_Cfg_StatusDataType -

Debounce Data Dem_Cfg_DebounceData Dem_Cfg_DebounceDataType Only if de-
bounce counter
storage is
enabled

Available Data Dem_Cfg_EventAvailableData Dem_Cfg_EventAvailableDataType Only if
DemAvailabilitySt
orage is enabled

Primary Dem_Cfg_PrimaryEntry 0 Dem_Cfg_PrimaryEntryType -
Memory
Dem_Cfg_PrimaryEntry_N
Secondary Dem_Cfg_SecondaryEntry 0 Dem_Cfg_PrimaryEntryType Only if secondary
Memory memory is
Dem_Cfg_SecondaryEntry N enabled
Table 4-8 NvRam blocks
©2015, Vector Informatik GmbH Version: 4.3.0 65/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

452 NVRAM Initialization

The NVM provides a means to initialize RAM buffers, if the backing storage cannot restore
a preserved copy — e.g. because none has ever been stored yet.

For this, the Dem provides initialization functions and default ROM data. The Init functions
are declared in Dem_Cbk.h, the ROM constants are declared in

NvRam Item Initialization

Admin Data Call Dem NvM InitAdminData ()

Event Data Call Dem NvM InitStatusData()

Debounce Data Call Dem NvM InitDebounceData ()

Available Data Call Dem NvM InitEventAvailableData ()
Primary Memory Copy initialization data from Dem MemoryEntryInit
Secondary Memory Copy initialization data from Dem MemoryEntryInit

Table 4-9 NvRam initialization

i 'l Note
) Dem_Cfg_PrimaryEntry 0... Dem_Cfg_PrimaryEntry N depend on the number of
primary entries stored in the ECU. (e.g. 0 ... 19 in case of 20 primary entries). The
same applies to the secondary memory.

45.2.1 Controlled Re-initialization

Some use-cases require the total reset of all stored data. A simple way for that is to
change the Dem configuration id (DemGeneral/DemCompiledConfigld) in the configuration
tool.

This is especially useful during development, when a different software configuration is
loaded while the NV contents still remain from an older software version. Please be aware
that changing the Dem configuration is likely to require resetting the NV data.

If a different configuration id is detected during Dem Init (), the Dem will completely
reinitialize all data. This can be helpful if you do not want to use the similar feature
provided by NvM.

In post-build configurations, the configuration Id will change automatically to ensure the NV
data is cleared if configuration changes invalidate the stored NV data.

f Caution
= Re-initialization is no replacement for ClearDtc. It will not respect any requirements
regarding the clear command.

45.2.2 Common Errors

Sadly the Dem software cannot cope with all possible inconsistent NV data. In some
situations the NV data must be managed in parts from outside the Dem to ensure data
consistency.

©2015, Vector Informatik GmbH Version: 4.3.0 66 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectort

» Initial initialization:
On the very first startup, the Dem will re-initialize the NV data. Unless this data is
actually persisted within the NV-Ram, the Dem will keep re-initializing all data on
startup.
You must allow the Dem to initialize its data, which requires at least one normal
shutdown.

Incomplete recovery:

After changing the Dem configuration, the contents currently stored in the NV memory
are internally inconsistent for the Dem module. This can happen when applying a new
Dem installation on an existing hardware, or when changing the Dem configuration
during development.

In most cases, the compiled config Id will suffice to re-initialize old content, but in some
cases the NvM will itself re-initialize some of the Dem blocks — but not all. In this case,
the compiled config Id does not work reliably.

45.3 Expected NVM Behavior

Startup Pre-Initialization Run State I Shutdown

[

M]
{f]
(" Dem Shutdown \ (NvM data retention °\
notes notes
Dem_Shutdowr)

DEM Pre-Initialization Operate

DEM
Initialization

NvM Initialization

[PPostRunRequested|=>{

Abort
Shutdown

loop all Bocks uspd by Dem Rt i R ARt AR EEEiS ST - loop all blocks jused by Dem
/' Immediate NvRam write £= ON | ! Immaqdiate NvRam write =t OFF s

Block
modified?

Block

lid? '
fnvall [data has changed] | ! [data has changed]

INVM_WriteBlock ' —INvM_SetRamBlockstatus ;

[Yes]

Write data to
NVRAM

Ram-Block status.
unmodified

[Invalid] ! DobResult ==

! NVM_REQ_OK]
Initialize Block

1 /wait NvM job notification

[JobResult 1=
NVM_REQ_OK] '
INVM_SetRamBlockStatus

Figure 4-2 NvM behavior

The key assumptions about NVM behavior are depicted in Figure 4-2.

» The NVM initialization will start after Dem PreInit () was called.

» Before Dem Init () is called, all blocks used by Dem are either restored from non-
volatile memory, or re-initialized by calling the respective initialization function or
copying the initialization ROM data.

» If a block has been re-initialized, the NVM will not need a separate call to
NvM_SetRamBlockStatus () to retain the changed data later on.

» After Dem Shutdown () is called, all blocks marked as modified by Dem or due to re-
initialization are retained in non-volatile memory.

©2015, Vector Informatik GmbH Version: 4.3.0 67 /175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectC)rE

» Before Dem Init () is called after a Dem Shutdown (), all data has either been
restored again, or is still valid.

» After the Dem has requested an immediate write block, the NvM is expected to notify
the result by means of callback Dem NvM JobFinished ().

' Caution
. The Dem cannot keep track of NV-Ram blocks that have not been retained in non-
volatile memory if the shutdown process is aborted.

After Dem Init () is called, the Dem assumes the NVM will not need a trigger to store
a block which has changed before Dem Shutdown () was called.

Due to this, the Dem will also not instruct the NVM to immediately write changed
environment data from before Dem Shutdown ().

| Caution
. The Dem tries to detect completely uninitialized NV-Ram data by means of a ‘magic
pattern’ in the AdminData block.

Still, the Dem is unable to detect only partially initialized data. So if your implementation
of the NVM module only initializes some of the Dem’s non-volatile data, the results are
undefined.

| Caution
. Even when some NV data is stored during runtime of the Dem module, it is not optional
to store the remaining data as well.

The shutdown phase must always be finished before powering down the ECU. It is not
sufficient to simply drop the power supply.

Caution

(! '}I: If the NV data storage during runtime was not successful the Dem marks the NVRAM
block as to be considered for shutdown NVRAM storage. Hence it is mandatory to
configure all Dem NVRAM blocks to be processed during NvM_WriteAll.

454 Flash Lifetime Considerations

If you need to safe on writes to the NVRAM, e.g. because your backing storage is
implemented as Flash EEPROM emulation, be aware of your options available to reduce
Dem data writes.

NV synchronization takes place at least at shutdown, but due to configuration or explicit
request the NV data can be synchronized during runtime as well. In that case, multiple

©2015, Vector Informatik GmbH Version: 4.3.0 68/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectC)rE

writes to the backing storage can happen during a single power cycle, increasing wear on
the backing storage. Please refer to Table 3-8 for details regarding the write frequency.

4.6 Rte Integration
46.1 Runnable Entities

The Dem has been implemented in a way that allows all API to safely preempt each other.
So, all runnables can be called from fully preemptive tasks.

Dem_MainFunction

Dem_SetEventStatus
Dem_ResetEventStatus
Dem_GetEventStatus
Dem_GetEventFailed
Dem_GetEventTested
Dem_GetDTCOfEvent
Dem_GetEventEnableCondition
Dem_GetEventFreezeFrameData
Dem_GetEventExtendedDataRecord
Dem_GetFaultDetectionCounter
Dem_SetEventSuppression
Dem_PrestoreFreezeFrame
Dem_ClearPrestoredFreezeFrame

Dem_SetOperationCycleState
Dem_SetEnableCondition
Dem_SetStorageCondition
Dem_GetIndicatorStatus
Dem_GetEventMemoryOverflow
Dem_PostRunRequest
Dem_SetEventSuppression
Dem_SetDTCSuppression

Table 4-10 Dem runnable entities

4.6.2 Application Port Interface

The Dem_MainFunction Runnable entity corresponds to
the Dem cyclic task function. As such, it has to be
mapped to a task.

Most notification and callout functions are called from this
Runnable

These runnables should not be mapped to a task for
efficiency reasons.

Please note that these API are implemented reentrant for
different Pports, so clients do not need to synchronize
these calls.

Application software will communicate with the Dem through port interfaces only. The Dem
port interfaces all use port defines arguments to abstract from internal object handles.
Please refer to general Autosar documentation (not in scope of this document).

The Eventld is available through some notification port operations, though a typical
application is strongly advised not to rely on the handle of a Dem event for any reason.
Instead, use port mapping to use a specific event and let the Rte handle the details.

©2015, Vector Informatik GmbH

Version: 4.3.0 69/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectort

46.3 Dcmlf

The Dcm uses a dedicated port interface of type ‘Dcmlf’ to communicate to the Rte in
which contexts it calls Dem APIs. This is a necessary mechanism to identify e.g. OS tasks
on which Dem APIs are called.

The port prototype provided by Dem — simply called ‘Dcm’ — needs to be connected to the
equivalent port prototype required by Dcm. Please make sure to verify your configuration
accordingly. Failing to do so might result in missing serialization resulting in data
corruption.

Note
If the MICROSAR 4 Dem is used in a different environment than pure AUTOSAR4, it
might not be possible to use Rte port mapping for the Dcmif port interface.

E.g. AUTOSAR before release 4 did not allow connecting service interfaces with other
service interfaces.

In those cases it usually is sufficient to map the Dcm task functions to the same task as
the Dem task function (Dem MainFunction ()).

Other measures may be possible, but are subject to the specific conditions of the run-
time setup. Since the details also depend on the implementation of notification function
(functions called by Dem which are implemented in application code), an exhaustive
suggestion is not possible in the scope of this document.

4.7 Post-Run requirements

Before shutting down the Dem by calling Dem Shutdown () the runtime environment
needs to verify that the Dem is in a consistent state.

Normally, this can be achieved within Dem Shutdown (), but in some cases the Dem
needs to wait for an NVRAM write operation to complete before the cleanup operations
can be performed. This will only be possible if imnmediate writes are activated.

For this reason, the Dem must be queried via the APl Dem PostRunRequested() to
make sure there are no pending write operations that block the shutdown process.
Otherwise the Dem will notify this state to the Det (if Development Error Detection is
enabled) and some event related data will be lost. E.g. a cleared event could be present
again after the ECU restarts.

The runtime environment should make sure that monitors do not report test results to the
Dem after the result of Dem PostRunRequested () is evaluated, because this would
lengthen the time the Dem requires in PostRun.

©2015, Vector Informatik GmbH Version: 4.3.0 70/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

Note

If you want to test for the post run condition, the Dem will enter this state only if the
same data is modified again while the NVRAM write is pending. This second
invalidation of the data block can only be reported to NvM after the write completes.

4.8 Run-Time limitation

In order to reduce run time ‘spikes’, the Dem supports a simple limiter for clearing the fault
memory. In effect, the Dem can be instructed to only delete a limited number of DTCs
during a single task cycle. This will cause the operation to take much longer, but will
distribute the effort through multiple task cycles.

f Caution

- Combined DTCs must be cleared ‘en bloc’, so the Dem will clear combined events
even when it exceeds the allowed limit. Thus, the sum of the largest combined event
and the limiter value can be cleared during a single task cycle.

A suggestion for the ‘correct’ setting of the clear limit, or even if the feature should be used
in a given set-up cannot be given in the scope of this document. It remains in the
responsibility of the integrator to identify run-time constraints that require its use.

4.9 Split main function

The Dem currently only provides a single task function. In case the features ‘time based
debouncing’ and ‘OBD’ are not enabled, the Dem main function does not drive a timer. In
that case, the configured cycle time is irrelevant for the function of the Dem module.

This allows mapping the Dem task function on a lower priority task, or a background task.

Since the Dcm APls are also served from the Dem task function, this can affect the Dcm
response times. To prevent unwanted NRC 78 (response pending) responses from the
Dcm module, make sure the Dem main function is not stalled by your choice of task
mapping.

As soon as the Dem configuration requires timer handling (e.g. for time based de-
bouncing), the Dem main function must be called with the configured cycle time.

©2015, Vector Informatik GmbH Version: 4.3.0 711175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

5 Measurement and Calibration

Measurement and calibration is a powerful workflow during ECU development phase
which allows to monitor (e.g. via XCP) module internal variables and also to modify the
configuration so the behavior will be changed. These changes in the module configuration
can be done without the need to build new software which is flashed into the ECU.

51 Measurable Data

Measurable objects are not intended to be modified as they may have direct influence to
DEM state machines and therefore might result in an undefined behavior. So their current
value shall be read out only.

Please not that not all elements might be available — disabled features usually also disable
some of the RAM tables.

The following tables describe the measurable objects:
5.1.1 Dem_Cfg_StatusData

Dem_Cfg_StatusData

Measureable Item Base Type Description

FirstFailedEvent uint16 The event id which was first reported as failed (FDC 127).

FirstConfirmedEvent uint16 The event id which has confirmed first.

MostRecentFailedEvent uint8 The event id which was reported as failed (FDC 127)
most recently.

MostRecentConfmdEvent uint16 The event id which has confirmed most recently.

TripCount(] uint8 The number of trips for each event.

EventStatus]] uint8 The current UDS status for each event. Please note that

the actual DTC status may differ from the event status.

Table 5-1 Measurement item Dem_Cfg_StatusData

5.1.2 Dem_Cfg_EventDebounceValue

Dem_Cfg_EventDebounceValue[]

Measureable Item Base Type Description

Dem_Cfg_EventDebounceValuel] uint16 Current value of the de-bounce counter or
time, depending on selected algorithm.

Table 5-2 Measurement item Dem_Cfg_EventDebounceValue

©2015, Vector Informatik GmbH Version: 4.3.0 721175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

5.1.3 Dem_Cfg_EventMaxDebounceValues

Dem_Cfg_EventMaxDebounceValuesi]

Measureable Item Base Type Description

Dem_Cfg_EventMaxDebounceValues[] uint16 Maximum value of the de-bounce counter or
time in current operation cycle, depending on
the selected algorithm.

Table 5-3 Measurement item Dem_Cfg_EventMaxDebounceValues|[]

5.1.4 Dem_PrimaryEntry_<Number>

Dem_PrimaryEntry_<Number>

Measureable Item Base Type Description

Timestamp uint32 Entry/ update time of the primary entry slot. Used to provide
a chronology order between the primary entry slots.

AgingCounter uint16 The current aging count of the event (refer to 3.10.1).

Eventld uint16 The event id which is stored in this primary entry slot.

MaxDebounceValue uint16 The maximum de-bounce value of the respective event since
last fault memory clear.

OccurrenceCounter uint8 refer to 3.10.1

SnapshotDatal[][] uint8 refer to 3.9

ExtendedData[][] uint8 refer to 3.9

ExtendedHeader uint8 Bit coded information which extended data record is

currently stored.

SnapshotHeader uint8 If DEM is configured for calculated snapshots: bit coded
information which snapshot record is currently stored.

If DEM is configured for configured snapshots: counter which
indicates the current number of stored snapshot records.

Table 5-4 Measurement item Dem_PrimaryEntry_<Number>

5.2 Post-Build Support
Please also refer to chapter 7.3 for configuration aspects of the post-build features.

5.2.1 Initialization

During the startup of the ECU, the Dem expects to receive a pointer to preliminary
configuration data in Dem_Prelnit(). Typically the final ECU configuration is determined
after the NV subsystem is available, but the Dem still needs access to the de-bouncing
configuration of events reported prior to full initialization.

The final configuration data can optionally be passed to Dem_ Init().

Both pointers are passed by the MICROSAR EcuM based on the post-build configuration.
If no MICROSAR EcuM is used, the procedure of how to find the proper initialization
pointers is out of scope of this document.

©2015, Vector Informatik GmbH Version: 4.3.0 731175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

' Caution
H The final configuration may not introduce change to the de-bouncing configuration of
events reported prior to full initialization.

The new configuration data cannot be applied in retrospect, so the state of these
events could become inconsistent, e.g. FDC > 127, and TestFailed == 0.

The Dem module will verify the configuration data before accepting it to initialize the
module. If this verification fails, an EcuM error hook (see chapter 6.3.1) is called with an
error code according to Table 5-5.

ErorCode ___Resn

ECUM BSWERROR NULLPTR Initialization with a null pointer.

ECUM BSWERROR MAGICNUMBER Magic pattern check failed. This pattern is
appended at the end of the initialization root
structure. An error here is a strong indication of
random data, or a major incompatibility
between the code and the configuration data.

ECUM BSWERROR COMPATIBILITYVERSION The configuration data was created by an
incompatible generator. This is also tested by
verification of a ‘magic’ pattern, so initialization
with random data can also cause this error
code.

Table 5-5 Error Codes possible during Post-Build initialization failure

If no MICROSAR EcuM is used, this error hooks and the error code constants have to be
provided by the environment.

1. If the pointer equals NULL_PTR, initialization is rejected.
2. If the initialization structure does not end with the correct magic number it is rejected.

3. If the initialization structure was created by an incompatible generator version it is
rejected (starting magic number check)

' Caution

- The verification steps performed during initialization are neither intended nor sufficient
to detect corrupted configuration data. They are intended only to detect initialization
with a random pointer, and to reject data created by an incompatible generator version.

©2015, Vector Informatik GmbH Version: 4.3.0 741175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectC)rE

5.2.2 Post-Build Loadable

Vector also provides a tool based approach superior to calibration. While calibration only
modifies existing configuration tables, the Post-Build Loadable approach also allows to
validate the configuration change preventing misconfiguration, and to use compacted table
structures — with benefits to run-time and ROM usage.

Note

We do not support adding (or removing) of Events to /from an existing configuration
during Post-Build. If you have ‘inactive’ monitors that are enabled by calibration or
other means, statically set up the Event for this monitor and use the API
Dem_SetEventAvailable() to control event availability.

5.2.3 Post-Build Selectable

The MICROSAR Identity Manager (refer to [9]) is an implementation of the AUTOSAR 4
post-build selectable concept. It allows the ECU manufacturer to include several DEM
configurations within one ECU. With post-build selectable and the Identity Manager the
ECU variants are downloaded within the ECUs non-volatile memory (e.g. flash) at ECU
build time. Post-build selectable does not allow modification of DEM aspects after ECU
build time.

Note
Please refer to the basic software module description (bswmd) file accompanying your
delivery to find which parameters support post-build selectable.

This information is also displayed in the DaVinci Configurator 5 tool.

Note

We do not support adding (or removing) of Events to / from an existing configuration. If
you have monitors that are enabled only in some configurations, set up the Event for
this monitor and use the configuration parameter DemEventAvailableInVariant, or API
Dem_SetEventAvailable() to control event availability.

It is not supported to disable all events in all variants using parameter
DemEventAvailablelnVariant.

©2015, Vector Informatik GmbH Version: 4.3.0

751175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectort

6 API Description

For an interfaces overview please see Figure 2-2.

6.1 Type Definitions
The types defined by the Dem are described in [1].

©2015, Vector Informatik GmbH Version: 4.3.0 76 /175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2 Services provided by Dem

f -] Basic Knowledge
=== Call context means ‘who calls the API’. Typically these are rooted in an OS task
function or interrupt service routine and contain the call stack up to the API in question.

—D

Call contexts are important to analyze possible data corruption that can occur due to
simultaneous calls from different call contexts. This is not restricted to interruption due
to preemptive OS tasks — A call to an API function from within a notification or callback
function also is a different call context.

Typically not all possible call sequences can be implemented safe for data consistency
with reasonable effort, and valid call contexts might be restricted as a consequence.

6.2.1 Dem_GetVersionInfo()
Prototype

void Dem_GetVersionInfo (Std VersionInfoType* versioninfo)

Parameter

versioninfo Pointer to where to store the version information of this module.

Return code
void N/A

Functional Description

Returns the version information of this module.
The version information is decimal coded.

Particularities and Limitations

> This function is reentrant.
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-1 Dem_GetVersionlInfo()

©2015, Vector Informatik GmbH Version: 4.3.0 771175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.2 Dem_MainFunction()
Prototype

void Dem MainFunction (void)

Parameter
N/A N/A

Return code
void N/A

Functional Description

Processes all not event based Dem internal functions.

This function implements run-time heavy tasks. Make sure to allow it has a sufficient time slot for worst
case execution scenarios.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-2 Dem_MainFunction()

©2015, Vector Informatik GmbH Version: 4.3.0 781175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.3 Interface EcuM
6.2.3.1 Dem_Prelnit()
Prototype

void Dem PreInit (const Dem ConfigType* ConfigPtr)

Parameter

ConfigPtr Pointer to preliminary configuration data

Return code
void N/A

Functional Description

Initializes the internal states necessary to process events reported by BSW-modules.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> The ConfigPtr is used only in post-build variants.

> If ConfigPtr is not needed, it is not checked to be non-NULL

Expected Caller Context
> This function may not interrupt any other Dem function.

Table 6-3 Dem_Prelnit()

©2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

79/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.3.2 Dem_lInit()
Prototype

voidDem_Init (const Dem ConfigType* ConfigPtr)

Parameter

ConfigPtr Pointer to configuration data (Since version 7.00.00)

Return code
void N/A

Functional Description

Initializes or re-initializes the Dem.
If NULL is passed, the configuration passed to Dem_Prelnit() will be used instead.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> The ConfigPtr is used only in post-build variants.
> The pointer is not checked to be non-NULL

Expected Caller Context
> This function may not interrupt any other Dem function.

Table 6-4 Dem_lnit()

6.2.3.3 Dem_InitMemory()
Prototype

void Dem_InitMemory(void)
Parameter
N/A N/A

Return code
void N/A

Functional Description

- Extension to Autosar —
Use this function to initialize static RAM variables in case the start-up code is not used to initialize RAM.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.

Expected Caller Context
> This function may not interrupt any other Dem function.

Table 6-5 Dem_InitMemory()

©2015, Vector Informatik GmbH Version: 4.3.0 80/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.3.4 Dem_Shutdown()
Prototype

void Dem_Shutdown (void)
Parameter
N/A N/A

Return code
void N/A

Functional Description

Shutdown Dem functionality.

The function freezes the Dem data structures. As a result the Dem functionality is no longer available, but
the Dem non-volatile data can be stored in non-volatile memory.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.

> Most pending asynchronous tasks will get lost when this function is called. The only
exceptions are pending event status changes. These remain queued according to [1].

Expected Caller Context
> This function may not interrupt any other Dem function

Table 6-6 Dem_Shutdown()

©2015, Vector Informatik GmbH Version: 4.3.0 81/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2.4 Interface SWC and CDD
6.2.4.1 Dem_SetEventStatus()

Prototype

Std ReturnType Dem SetEventStatus (Dem EventIdType EventId, Dem EventStatusType
EventStatus)

EventId Identification of an event by assigned Eventld.

EventStatus Monitor test result
DEIVIIt_EVENT_STATUS_PASSED: monitor reports a qualified passed test
resu

DEM_EVENT_STATUS_FAILED: monitor reports a qualified failed test result
DEM_EVENT_STATUS PREPASSED: monitor reports a passed test result
DEM_EVENT_STATUS_PREFAILED: monitor reports a failed test result

Return code

Std ReturnType E_OK: set of event status was successful

E_NOT_OK: set of event status failed or could not be accepted (e.g.: the
operation cycle configured for this event has not been started, an according
enable condition has been disabled)

Functional Description

API for SWCs to report a monitor result to the Dem.

Particularities and Limitations

> This function is reentrant (for different Eventld).

> This function is not reentrant with the other operations defined in DiagnosticMonitor (for the
same Eventld) (see Table 6-86)

> This function is synchronous.
Expected Caller Context
> This function can be called from any context, with limitations.

Table 6-7 Dem_SetEventStatus()

©2015, Vector Informatik GmbH Version: 4.3.0 82/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.4.2 Dem_ResetEventStatus()

Prototype
Std ReturnType Dem_ResetEventStatus (Dem EventIdType EventId)

Parameter

EventId Identification of an event by assigned Eventld.

Return code

Std _ReturnType E_OK: reset of event status was successful

E_NOT_OK: reset of event status failed or is not allowed, because the event
is already tested in this operation cycle

Functional Description

Resets the event failed status of an event.

Particularities and Limitations

> This function is reentrant (for different Eventld).

> This function is not reentrant with the other operations defined in DiagnosticMonitor (for the
same Eventld) (see Table 6-86)

> This function is synchronous.
Expected Caller Context
> This function can be called from any context, with limitations.

Table 6-8 = Dem_ResetEventStatus()

©2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

83/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

6.2.4.3 Dem_ResetEventDebounceStatus()

Prototype

Std ReturnType Dem_ ResetEventDebounceStatus() (Dem EventIdType EventId,
Dem DebounceResetStatusType DebounceResetStatus)

Parameter
EventId Identification of an event by assigned Eventld.

DebounceResetStatus Select the action to take

Return code

Std ReturnType E_OK: The request was processed successfully
E_NOT_OK: The request was rejected

Functional Description

SWC API to control the Dem internal event de-bouncing.

Depending on DebounceResetStatus and the Eventld's configured debouncing algorithm, this API performs
the following:

> Time Based Debouncing

> DEM_DEBOUNCE_STATUS_FREEZE
If the de-bounce timer is active, it is paused without modifying its current value. Otherwise this has
no effect. The timer will continue if the monitor reports another PREFAILED or PREPASSED in the
same direction.

> DEM_DEBOUNCE_STATUS_RESET
The de-bounce timer is stopped and its value is set to 0.

> Counter Based Debouncing

> DEM_DEBOUNCE_STATUS FREEZE:
This has no effect.

> DEM_DEDOUNCE_STATUS_ RESET:
This will set the current value of the debounce counter back to 0.

> Monitor Internal Debouncing
> The APl returns E_NOT_OK in either case.

Particularities and Limitations

> This function is reentrant (for different Eventld).

> This function is not reentrant with the other operations defined in DiagnosticMonitor (for the
same Eventld) (see Table 6-86)

> This function is synchronous.
Expected Caller Context
> This function can be called from any context, with limitations.

Table 6-9 Dem_ResetEventDebounceStatus()

©2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

84 /175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.4.4 Dem_PrestoreFreezeFrame()

Prototype
Std _ReturnType Dem_ PrestoreFreezeFrame (Dem EventIdType EventId)

Parameter

EventId Identification of an event by assigned Eventld.

Return code

Std _ReturnType E_OK: Freeze frame pre-storage was successful
E_NOT_OK: Freeze frame pre-storage failed

Functional Description
Captures the freeze frame data for a specific event.

Particularities and Limitations

> This function is reentrant (for different Eventid).

> This function is not reentrant with the other operations defined in DiagnosticMonitor (for the
same Eventld) (see Table 6-86)

> This function is synchronous.
> The function can have significant run-time.

> |If the call to this function coincides with the event storage on the task function, the Dem might
capture a current data set instead of using the pre-stored data.

Expected Caller Context
> This function can be called from any context, with limitations.

Table 6-10 Dem_PrestoreFreezeFrame()

©2015, Vector Informatik GmbH Version: 4.3.0 85/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.45 Dem_ClearPrestoredFreezeFrame()

Prototype

Std ReturnType Dem_ClearPrestoredFreezeFrame (Dem EventIdType EventId)

Parameter

EventId Identification of an event by assigned Eventld.

Return code

Std _ReturnType E_OK: Clear pre-stored freeze frame was successful
E_NOT_OK: Clear pre-stored freeze frame failed

Functional Description

Clears a pre-stored freeze frame of a specific event.

Particularities and Limitations

> This function is reentrant (for different Eventid).

> This function is not reentrant with the other operations defined in DiagnosticMonitor (for the
same Eventld) (see Table 6-86)

> This function is synchronous.

> |If the call to this function coincides with the event storage on the task function, the Dem might
use the pre-stored data set instead of discarding it.

Expected Caller Context
> This function can be called from any context, with limitations.

Table 6-11 Dem_ClearPrestoredFreezeFrame()

©2015, Vector Informatik GmbH Version: 4.3.0 86 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

6.2.4.6 Dem_SetOperationCycleState()
Prototype

Std ReturnType Dem_SetOperationCycleState (uint8 OperationCycleld,
Dem OperationCycleStateType CycleState)

Parameter
OperationCycleId Identification of operation cycle, like power cycle or driving cycle.
CycleState New operation cycle state: (re-)start or end

DEM_CYCLE_STATE_START: start a stopped cycle or restart an active cycle
DEM_CYCLE_STATE_END: stop an active cycle

Return code

Std ReturnType E_OK: set of operation cycle was successful
E_NOT_OK: set of operation cycle failed

Functional Description

This function reports a started or stopped operation cycle to the Dem.

The state change will set TestNotCompletedThisOperationCycle bits for all events using OperationCycleld
as operation cycle. Also all passive events using OperationCycleld as aging or healing cycle will increase
their respective counter and can heal or age.

It is allowed to call this run in pre-initialized mode to start the operation cycle of BSW events before full
initialization.
Since all these operations are computationally intensive, this function will not immediately complete but

postpone the work to the Dem task. Events that use OperationCycleld as operation cycle still use the last
known state until then.

Particularities and Limitations

> This function is reentrant (for different OperationCycleld).
> This function is synchronous.

Expected Caller Context

> This function can be called from any context, with limitations.

Table 6-12 Dem_SetOperationCycleState()

©2015, Vector Informatik GmbH Version: 4.3.0 87 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.4.7 Dem_GetEventStatus()
Prototype

Std ReturnType Dem_GetEventStatus (Dem EventIdType EventId,
Dem EventStatusExtendedType* EventStatusExtended)

Parameter
EventId Identification of an event by assigned Eventld.

EventStatusExtended UDS DTC status byte of the requested event.

If the return value of the function call is E_NOT_OK, this parameter does not
contain valid data.

Return code

Std ReturnType E_OK: get of event status was successful
E_NOT_OK: get of event status failed

Functional Description

Gets the current extended event status of an event.

Particularities and Limitations

> This function is reentrant (for different Eventld).
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-13 Dem_GetEventStatus()

©2015, Vector Informatik GmbH Version: 4.3.0 88/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.4.8 Dem_GetEventFailed()
Prototype

Std ReturnType Dem_GetEventFailed (Dem EventIdType EventId, Boolean*
EventFailed)

EventId Identification of an event by assigned Eventld.
EventFailed TRUE - Last Failed

FALSE — not Last Failed

Return code

Std ReturnType E_OK: get of “EventFailed” was successful
E_NOT_OK: get of “EventFailed” was not successful

Functional Description

Gets the failed status of an event.

Particularities and Limitations

> This function is reentrant (for different Eventld).
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-14 Dem_GetEventFailed()

©2015, Vector Informatik GmbH Version: 4.3.0 89 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.4.9 Dem_GetEventTested()
Prototype

Std ReturnType Dem_GetEventTested (Dem EventIdType EventId, Boolean*
EventTested)

EventId Identification of an event by assigned Eventld.
EventTested TRUE - event tested this cycle

FALSE - event not tested this cycle

Return code

Std ReturnType E_OK: get of event state “tested” successful
E_NOT_OK: get of event state “tested” failed

Functional Description

Gets the tested status of an event.

Particularities and Limitations

> This function is reentrant (for different Eventld).
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-15 Dem_GetEventTested()

©2015, Vector Informatik GmbH Version: 4.3.0 90/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.4.10 Dem_GetDTCOfEvent()
Prototype

Std ReturnType Dem_GetDTCOfEvent (Dem EventIdType EventId, Dem DTCFormatType
DTCFormat, uint32* DTCOfEvent)

EventId Identification of an event by assigned Eventld.
DICFormat Defines the output-format of the requested DTC value.

DEM_DTC_FORMAT_UDS: output format shall be UDS
DEM_DTC_FORMAT_OBD: output format shall be OBD
DEM_DTC_FORMAT_J1939: output format shall be J1939

DTCOfEvent Receives the DTC value in respective format returned by this function. If the
return value of the function is other than E_OK this parameter does not
contain valid data.

Return code

Std ReturnType E_OK: get of DTC was successful
E_NOT_OK: the call was not successful
E_NO _DTC_AVAILABLE: there is no DTC

Functional Description

Provides the DTC number for the given Eventld.

Particularities and Limitations

> This function is reentrant (for different Eventld).
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-16 Dem_GetDTCOfEvent()

©2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

91/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.4.11 Dem_GetEventAvailable()
Prototype

Std ReturnType Dem_GetEventAvailable (Dem EventIdType EventId, Boolean
*AvailableStatus)

EventId Identification of an event by assigned Eventld.
AvailableStatus Receives the current availability status:

TRUE: Event is ‘available’
FALSE: Event is ‘not available’

Return code

Std ReturnType E_OK: Request processed successfully
E_NOT_OK: Invalid parameters passed to the function (only if Det is enabled).

Functional Description

This API returns the current availability state of an event (also see Dem_SetEventAvailable())
It is valid to call this API for events that have been set to unavailable.

Particularities and Limitations

> This function is reentrant.
> This function is synchronous.

> Conditional [DemAuvailabilityStorage == false]: This API may be called before full initialization
(after Dem_Prelnit).

Expected Caller Context
> This function can be called from any context, with limitations.

Table 6-17 Dem_GetEventAvailable()

©2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

92/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2.4.12 Dem_SetEnableCondition()
Prototype

Std ReturnType Dem_SetEnableCondition (uint8 EnableConditionID, Boolean
ConditionFulfilled)

Parameter
EnableConditionID This parameter identifies the enable condition.

ConditionFulfilled This parameter specifies whether the enable condition assigned to the
EnableConditionID is fulfilled (TRUE) or not fulfilled (FALSE).

Return code

Std ReturnType E_OK: the enable condition could be set successfully
E_NOT_OK: the setting of the enable condition failed

Functional Description

Sets an enable condition.

Each event may have assigned several enable conditions. Only if all enable conditions referenced by the
event are fulfilled the event will be processed in Dem_SetEventStatus(), Dem_ReportErrorStatus() and
during time based de-bouncing.

Depending on configuration, enabling an enable condition can be deferred to the Dem task. Enable
condition changes of the same enable condition can be lost if they change faster than the cycle time of the
Dem main function. See chapter 3.7 for further details.

Particularities and Limitations

> This function is reentrant (for different EnableConditionID).
> This function is synchronous.

Expected Caller Context
> This function can be called from any context, with limitations.

Table 6-18 Dem_SetEnableCondition()

©2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

93/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.4.13 Dem_SetStorageCondition()
Prototype

Std ReturnType Dem_SetStorageCondition (uint8 StorageConditionID, Boolean
ConditionFulfilled)

Parameter
StorageConditionID This parameter identifies the storage condition.

ConditionFulfilled This parameter specifies whether the storage condition assigned to the
StorageConditionID is fulfilled or not fulfilled.

TRUE: storage condition fulfilled
FALSE: storage condition not fulfilled

Return code

Std ReturnType E_OK: the storage condition could be set successfully
E_NOT_OK: the setting of the storage condition failed

Functional Description

Sets a storage condition.

Each event may have assigned several storage conditions. Only if all storage conditions referenced by the
event are fulfilled the event may be stored in memory.

Particularities and Limitations

> This function is reentrant (for different StorageConditionID).
> This function is synchronous.

Expected Caller Context
> This function can be called from any context, with limitations.

Table 6-19 Dem_SetStorageCondition()

©2015, Vector Informatik GmbH Version: 4.3.0 94 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.4.14 Dem_GetFaultDetectionCounter()
Prototype

Std ReturnType Dem_GetFaultDetectionCounter (Dem EventIdType EventId, sint8*
FaultDetectionCounter)

EventId Provide the Eventld value the fault detection counter is requested for. If the
return value of the function is other than OK this parameter does not contain
valid data.

FaultDetectionCounter This parameter receives the Fault Detection Counter information of the
requested Eventld. If the return value of the function call is other than E_OK
this parameter does not contain valid data.

-128dec...127decPASSED... FAILED according to ISO 14229-1

Return code

Std ReturnType E_OK: request was successful
E_NOT_OK: request failed
DEM_E_NO_FDC_AVAILABLE: if the event does not support de-bouncing

Functional Description

Gets the fault detection counter of an event.

Particularities and Limitations

> This function is reentrant (for different Eventld).
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-20 Dem_GetFaultDetectionCounter()

©2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

95/175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.4.15 Dem_GetIndicatorStatus()
Prototype

Std ReturnType Dem_GetIndicatorStatus (uint8 IndicatorId,
Dem IndicatorStatusType* IndicatorStatus)

IndicatorId The respective indicator which shall be checked for its status.
IndicatorStatus Status of the indicator, like off, on, or blinking.

DEM_INDICATOR_OFF: indicator off
DEM_INDICATOR_CONTINUOUS: continuous on
DEM_INDICATOR_BLINKING: blinking mode
DEM_INDICATOR_BLINK_CONT: continuous and blinking mode
DEM_INDICATOR_FAST_FLASH: fast flash mode
DEM_INDICATOR_SLOW_FLASH: slow flash mode

Return code

Std ReturnType E_OK: Operation was successful
E_NOT_OK: Operation failed or is not supported

Functional Description

Gets the indicator status derived from the event status and the configured indicator states.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-21 Dem_GetIndicatorStatus()

©2015, Vector Informatik GmbH Version: 4.3.0 96 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

6.2.4.16 Dem_GetEventFreezeFrameData()

Prototype

Std ReturnType Dem_GetEventFreezeFrameData (Dem EventIdType EventId, uint$8
RecordNumber, Boolean ReportTotalRecord, uintlé DatalId, uint8* DestBuffer)

EventId Identification of an event by assigned Eventld.
RecordNumber This parameter is a unique identifier for a freeze frame record as defined in

1ISO15031-5 and I1ISO14229-1.
OxFF means that the most recent freeze frame record shall be returned.

ReportTotalRecord TRUE: total freeze frame record (all PIDs/DIDs) data are requested
FALSE: a dedicated PID/DID is requested by the parameter Datald
DataId This parameter specifies the PID (1ISO15031-5) or DID (1ISO14229-1) that shall

be copied to the destination buffer.
If ReportTotalRecord is TRUE, the value of Datald is ignored.

DestBuffer The pointer to the buffer where the freeze frame data shall be written to.

Return code

Std ReturnType E_OK: Operation was successful
E_NOT_OK: Operation failed

DEM_E_NODATAAVAILABLE: The data is not currently stored for the
requested event.

DEM_E_WRONG_RECORDNUMBER: The requested data was not copied
due to an undefined RecordNumber for the given event.

DEM_E WRONG_DIDNUMBER: The requested data was not copied due to
an undefined data indentifier within the requested record (in case
ReportTotalRecord == FALSE)

Functional Description

Gets the data of a freeze frame/snapshot record for the given Eventld.

Particularities and Limitations

> This function is reentrant (for different Eventld).
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-22 Dem_GetEventFreezeFrameData()

©2015, Vector Informatik GmbH Version: 4.3.0 97 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.4.17 Dem_GetEventExtendedDataRecord()

Prototype

Std ReturnType Dem_GetEventExtendedDataRecord (Dem EventIdType EventId, uint8
RecordNumber, uint8* DestBuffer)

EventId Identification of an event by assigned Eventld.
RecordNumber Identification of requested Extended data record. The valid range is 0x01 ...

OxFF whereas OxFF means that all extended data records shall be returned.
DestBuffer The pointer to the buffer where the extended data shall be written to.

Return code

Std ReturnType E_OK: Operation was successful
E_NOT_OK: Operation failed

DEM_E_NODATAAVAILABLE: The data is not currently stored for the
requested event.

DEM_E WRONG_RECORDNUMBER: The requested data was not copied
due to an undefined RecordNumber for the given event.

Functional Description

Gets the data of an extended data record by the given Eventld.

Particularities and Limitations

> This function is reentrant (for different Eventld).
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-23 Dem_GetEventExtendedDataRecord()

©2015, Vector Informatik GmbH Version: 4.3.0

based on template version 5.0.0

98 /175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.4.18 Dem_GetEventEnableCondition()
Prototype

voidDem;GetEventEnableCondition(Dem EventIdType EventId, Boolean*
ConditionFulfilled)

Parameter
EventId This parameter identifies the enable condition.

ConditionFulfilled This parameter specifies whether the enable conditions assigned to the
Eventld is fulfilled (TRUE) or not fulfilled (FALSE).

Return code
void N/A

Functional Description

- Extension to AUTOSAR —
Returns the enable condition state for the given event.

Particularities and Limitations

> This function is reentrant.
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-24 Dem_GetEventEnableCondition()

©2015, Vector Informatik GmbH Version: 4.3.0 99 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2.4.19 Dem_GetEventMemoryOverflow()
Prototype

Std_ReturnType Dem_GetEventMemoryOverflow (Dem DTCOriginType DTCOrigin,
Boolean* OverflowIndication)

Parameter

DTCOrigin Selects the memory which shall be checked for overflow indication.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

OverflowIndication This parameter returns TRUE if the according event memory was overflowed,
otherwise it returns FALSE.

Return code

Std ReturnType E_OK: Operation was successful
E_NOT_OK: Operation failed or is not supported

Functional Description

Reports if a DTC was displaced or not stored in the given event memory because the event memory was
completely full at the time.

Particularities and Limitations

> This function is reentrant.
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-25 Dem_GetEventMemoryOverflow()

©2015, Vector Informatik GmbH Version: 4.3.0 100/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2.4.20 Dem_GetNumberOfEventMemoryEntries()
Prototype

Std ReturnType Dem_GetNumberOfEventMemoryEntries (Dem DTCOriginType DTCOrigin,
uint8* NumberOfEventMemoryEntries)

Parameter

DTCOrigin Identifier of the event memory concerned.
DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information
located in the primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information
located in the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information
located in the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located
in the mirror memory

NumberOfEventMemoryEntries Pointer to receive the event count.

Return code

Std ReturnType E_OK: Operation was successful
E_NOT_OK: Operation failed or is not supported

Functional Description

This function reports the number of event entries occupied by events. This does not necessarily correspond
to the DTC count read by Dcm due to event combination and other effects like post-building the OBD
relevance of a DTC stored in OBD permanent memory.

Particularities and Limitations

> This function is reentrant.
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-26 Dem_GetNumberOfEventMemoryEntries()

©2015, Vector Informatik GmbH Version: 4.3.0 101 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2.4.21 Dem_PostRunRequested()
Prototype

Std ReturnType Dem_ PostRunRequested (Boolean IsRequested)

Parameter

IsRequested Set to TRUE: In case the Dem needs more time to finish NvVRAM related
tasks. Shutdown is not possible without data loss.

Set to FALSE: Shutdown is possible. This value is only valid if all monitors are
disabled.

Return code

Std ReturnType E_OK: is always returned with disabled Det
E_NOT_OK: is returned with enabled Det when an error is detected

Functional Description

- Extension to Autosar —
Test if the Dem can be shut down safely (without possible data loss).

This function must be polled after leaving RUN mode (all application monitors have been stopped). Due to
pending NVM activity, data loss is possible if Dem_Shutdown is called while this function still returns TRUE.
As soon as the NVM finishes writing the current Dem data block, this function will return FALSE. The time
window for unsafe shutdown only depends on the write time of a data block (up to several seconds in
unfortunate circumstances!)

Particularities and Limitations

> This function is reentrant.
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-27 Dem_PostRunRequested()

©2015, Vector Informatik GmbH Version: 4.3.0 102 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2.4.22 Dem_SetWIRStatus()
Prototype

Std _ReturnType Dem_SetWIRStatus (Dem EventIdType EventId, Boolean WIRStatus)

WIRStatus Set to TRUE: The WarninglndicatorRequest Bit of the DTC status for the
specified Event will be reported as “1”, independent to the current event
status.

Set to FALSE: The behavior of the WarningIndicatorRequest Bit in the DTC
status byte only depends on the event status.

Return code

Std ReturnType E_OK: is returned if the new WIR status have been applied successfully

E_NOT_OK: is returned if the new WIR status have not been applied (e.g.
because of disabled ControlDTCSetting). The application should repeat the
request

Functional Description

This API can be used to override the status of the WarningIndicatorRequest Bit in the DTC status to “1”.

Note that overriding the WIR status does neither affect the internal event status nor any indicators related
to the event. Only the DTC status reported by APIs like Dem_GetStatusOfDTC (et al.) or the DT Status
Changed callbacks are affected.

Particularities and Limitations

> This function is reentrant (for different Eventld).
> This function is synchronous.

Expected Caller Context
> This function can be called from any context, with limitations.

Table 6-28 Dem_SetWIRStatus ()

©2015, Vector Informatik GmbH Version: 4.3.0 103 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.4.23 Dem_GetWIRStatus()
Prototype

Std ReturnType Dem_GetWIRStatus (Dem EventIdType EventId, Boolean* WIRStatus)

Parameter

WIRStatus Set to TRUE: The WarninglndicatorRequest Bit is currently user-controlled
and have been set by the APl Dem_SetWIRStatus.

Set to FALSE: The WarningIndicatorRequest Bit is currently not user-
controlled. The WIR-Bit in the DTC status byte only depends on the event
status.

Return code

Std ReturnType E_OK: is always returned with disabled Det
E_NOT_OK: is returned with enabled Det when an error is detected

Functional Description

- Extension to Autosar —

This API can be used get the current override the status of the WarningIndicatorRequest Bit in the DTC
status.

Particularities and Limitations

> This function is reentrant.
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-29 Dem_GetWIRStatus ()

©2015, Vector Informatik GmbH Version: 4.3.0 104 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

6.2.4.24 Dem_SetDTCSuppression()
Prototype

Std ReturnType Dem_SetDTCSuppression (uint32 DTC, Dem DTCFormatType DTCFormat,
Boolean SuppressionStatus)

DTC The DTC Number to be suppressed.
DTCFormat Defines the format of the given DTC to be suppressed

DEM_DTC_FORMAT_UDS: handle DTC in UDS format
DEM_DTC_FORMAT_J1939: handle DTC in J1939 format.

SuppressionStatus TRUE: Suppress the DTC
FALSE: Report the DTC

Return code

Std ReturnType E_OK: Request processed successfully

E_NOT_OK: DTC not supported, DTC is already active (i.e. stored in event
memory), or invalid parameters passed to the function (only if Det is enabled).

Functional Description

This API suppresses the Event reporting the given DTCs such, that Dcm will not report the DTC. DTC
notification functions (e.g. to Dcm) are not called as well, preventing RoE responses.

Event reporting and notification (e.g. to FiM) are not affected and work as usual.

Particularities and Limitations

> This function is reentrant for different DTCs.
> This function is synchronous.

> When the call to this function interrupts the entry process, this function can suppress an event
that is in the process of being entered into the event memory. In that case the function returns
E_OK but the DTC is still reported to the Dcm.
In order to make sure the suppression works correctly, either

> clear DTCs after changing suppression
> change suppression of DTCs before the monitors start reporting
> prevent interruption of the Dem task by this function
> DEM_DTC_FORMAT_OBD is not supported for this function.
Expected Caller Context
> This function can be called from SWC modules, with limitations.

Table 6-30 Dem_SetDTCSuppression()

©2015, Vector Informatik GmbH Version: 4.3.0 105/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

6.2.4.25 Dem_SetEventSuppression()

Prototype

Std ReturnType Dem_SetEventSuppression (Dem EventIdType EventId, Boolean
SuppressionStatus)

EventId Identification of an event by assigned Eventld.
SuppressionStatus TRUE: Suppress the DTC attached to this event

FALSE: Report the DTC attached to this event

Return code

Std ReturnType E_OK: Request processed successfully

E_NOT_OK: Event is already active (i.e. stored in event memory), or invalid
parameters passed to the function (only if Det is enabled).

Functional Description

This API suppresses Events such, that Dcm will not report the DTC mapped to the event. DTC related
notification functions (e.g. to Dcm) are not called as well, preventing RoE responses.

Event reporting and notification (e.g. to FiM) are not affected and work as usual.

Particularities and Limitations

> This function is reentrant for different Eventld.
> This function is synchronous.

> When the call to this function interrupts the entry process, this function can suppress an event
that is in the process of being entered into the event memory. In that case the function returns
E_OK but the DTC is still reported to the Dcm.
In order to make sure the suppression works correctly, either

> clear DTCs after changing suppression
> change suppression of DTCs before the monitors start reporting
> prevent interruption of the Dem task by this function

Expected Caller Context

> This function can be called from any context, with limitations.

> Although this function is mapped to a port interface, it is safe to use from BSW or CDD
context, as long as Exclusive Area 0 (see chapter 4.4.1) can be used.

Table 6-31 Dem_SetEventSuppression()

©2015, Vector Informatik GmbH Version: 4.3.0 106/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

6.2.4.26 Dem_SetEventAvailable()
Prototype

Std ReturnType Dem_SetEventAvailable (Dem EventIdType EventId, Boolean
AvailableStatus)

EventId Identification of an event by assigned Eventld.
AvailableStatus TRUE: Set the Event to ‘available’

FALSE: Set the Event to ‘not available’

Return code

Std ReturnType E_OK: Request processed successfully

E_NOT_OK: Event is already active (i.e. stored in event memory), or invalid
parameters passed to the function (only if Det is enabled).

Functional Description

Setting an event to unavailable prevents all APIs from using this Eventid.
Event reporting and notification are not possible and the event will not be stored to the event memory.

Events having bit 0 (TestFailed) or bit 3 (ConfirmedDTC) set, stored events and events requesting an
indicator cannot be set unavailable.

Normally, the availability setting is volatile, and this APl must be called in each power cycle of the ECU. In
case the option DemAuvailabilityStorage is active, the last state is persisted in NVRAM. Since NVRAM is
restored between Prelnit and Init, this API cannot be called before full initialization when using this option.

Particularities and Limitations

> This function is reentrant for different Eventld.
> This function is synchronous.

> Conditional [DemAuvailabilityStorage == false]: This APl may be called before full initialization
(after Dem_Prelnit).

Expected Caller Context
> This function can be called from any context, with limitations.

Table 6-32 Dem_SetEventAvailable()

©2015, Vector Informatik GmbH Version: 4.3.0 107 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

6.2.4.27 Dem_ClearDTC()

Prototype

Dem ReturnClearDTCType Dem ClearDTC (uint32 DTC, Dem DTCFormatType DTCFormat,
Dem DTCOriginType DTCOrigin)

Parameter
DTC

DTCFormat

DTCOrigin

Return code

Defines the DTC in respective format that shall be cleared from the event
memory. If the DTC fits to a DTC group number, all DTCs of the group shall be
cleared.

Defines the input format of the provided DTC value.
DEM_DTC_FORMAT_UDS: clear UDS DTCs

DEM_DTC_FORMAT_OBD: clear OBD DTCs
DEM_DTC_FORMAT_J1939: clear J1939 DTCs

If the Dem supports more than one event memory, this parameter is used to
select the memory which shall be cleared.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

Dem ReturnClearDTCTy DEM_CLEAR_OK: clearing is completed, the requested DTC(s) are reset

pe

DEM_CLEAR_WRONG_DTC: the requested DTC is not valid in the context of
DTCFormat and DTCOrigin

DEM_CLEAR_WRONG_DTCORIGIN: the requested DTC origin is not
available in the context of DTCFormat

DEM_CLEAR_FAILED: the clear operation could not be started

DEM_CLEAR_PENDING: the clear operation was started and is currently
processed to completion

DEM_CLEAR_BUSY: the clear operation is occupied from a different client

DEM_CLEAR_MEMORY_ERROR: (Since AR4.2.1) The clear operation has
completed in RAM, but synchronization to Nv-Ram has failed

Functional Description

Clears the stored event data from the event memory, resets the event status byte and de-bounce state.
There is a variety of configuration settings that further control the behavior of this function:

> see DemClearDTCBehavior to control what part of non-volatile write back must have completed before
this function returns DEM_CLEAR_OK

> Init monitor functions are called when an event is cleared, after clearing the event but before returning

OK to the tester

> If an event does not allow clearing (see CBCIrEvt_<EventName>()), Init monitor callbacks are called

nonetheless.

©2015, Vector Informatik GmbH

Version: 4.3.0 108 /175

based on template version 5.0.0

vector”

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

Particularities and Limitations

> This function is reentrant.
> This function is asynchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-33 Dem_ClearDTC()

©2015, Vector Informatik GmbH Version: 4.3.0 109/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2.4.28 Dem_RequestNvSynchronization()

Prototype

Std_ReturnType Dem_ RequestNvSynchronization (void)
Parameter

N/A N/A

Return code

Std ReturnType E_OK: Request processed successfully
E_NOT_OK: Request not processed due to errors, e.g. not initialized

Functional Description

This function can be used to request synchronization with the NV memory.
Following the call to this API, the Dem module will write back all modified NV blocks to the backing storage.

Particularities and Limitations

> The write process will take a long time (depending on the ECU load, NV subsystem and
configuration size, it can take multiple seconds)

> Only modifications up to the call to this API are taken into account.

> There is no indication when everything was written. The Dem still requires a proper shutdown
procedure even when this APl is used.

> If the Dem shuts down while synchronizing the NV content, pending changes are still written
during NvM_WriteAll so no data is lost.

Expected Caller Context

> This function can be called from any context

> Although this function is mapped to a port interface, it is safe for use from BSW or CDD
context.

Table 6-34 Dem_RequestNvSynchronization()

©2015, Vector Informatik GmbH Version: 4.3.0 110/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.5 Interface BSW
6.2.5.1 Dem_ReportErrorStatus()

Prototype

void Dem ReportErrorStatus (Dem EventIdType EventId, Dem EventStatusType
EventStatus)

EventId Identification of an event by assigned Eventld.
EventStatus Monitor test result

Return code
void N/A

Functional Description

BSW API to report a monitor result.

Particularities and Limitations

> This function is reentrant (for different Eventlid).
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-35 Dem_ReportErrorStatus()

©2015, Vector Informatik GmbH Version: 4.3.0 111/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

6.2.6 Interface Dcm
6.2.6.1 Dem_DcmSetDTCFilter()

Prototype

Dem ReturnSetFilterType Dem DcmSetDTCFilter (uint8 DTCStatusMask,

Dem DTCKindType DTCKind, Dem DTCFormatType DTCFormat, Dem DTCOriginType
DTCOrigin, Dem FilterWithSeverityType FilterWithSeverity, Dem DTCSeverityType
DTCSeverityMask, Dem FilterForFDCType FilterForFaultDetectionCounter)

Parameter

DTCStatusMask Status byte mask for DTC status byte filtering
0x00: deactivate the status-byte filtering to report all supported DTCs

0x01... OxFF: status byte mask according to ISO14229-1 to filter for DTCs
with at least one status bit set matching this status byte mask

DTCKind Defines the functional group of DTCs to be reported.
DEM_DTC_KIND_ALL_DTCS: report all kind of DTCs
DEM_DTC_KIND_EMISSION_REL_DTCS: report OBD relevant DTCs

DICFormat Defines the output-format of the requested DTC values for the sub-sequent
API calls.

DEM_DTC_FORMAT_OBD: report DTC in OBD format
DEM_DTC_FORMAT_UDS: report DTC in UDS format
DEM_DTC_FORMAT_J1939: not allowed

DTCOrigin If the Dem supports more than one event memory this parameter is used to
select the source memory the DTCs shall be read from.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

FilterWithSeverity This flag defines whether severity information (ref. to parameter below) shall
be used for filtering. This is to allow for coexistence of DTCs with and without
severity information.

DICSeverityMask This parameter contains the DTCSeverityMask according to 1SO14229-1.
DEM_FILTER_WITH_SEVERITY_YES: severity information shall be used
DEM_FILTER _WITH_SEVERITY_NO : severity information shall not be used

FilterForFaultDetect This flag defines whether the fault detection counter information shall be used

ionCounter for filtering or not. If fault detection counter information is filter criteria, only
those DTCs with a fault detection counter value between 1 and 0x7E will be
reported.

DEM_FILTER_FOR_FDC_YES: fault detection counter shall be used
DEM_FILTER_FOR_FDC_NO: fault detection counter shall not be used

Note: If the event does not use Dem internal de-bouncing, the Dem will
request this information via GetFaultDetectionCounter.

©2015, Vector Informatik GmbH Version: 4.3.0 112/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

Dem ReturnSetFilterT Status of the operation to (re-)set a DTC filter.
ype DEM_FILTER_ACCEPTED: filter was accepted
DEM_WRONG_FILTER: filter was not accepted

Functional Description

Initialize the DTC filter with the given criteria.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-36 Dem_DcmSetDTCFilter()

©2015, Vector Informatik GmbH Version: 4.3.0 113/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.6.2 Dem_DcmGetNumberOfFilteredDTC()
Prototype

Dem ReturnGetNumberOfFilteredDTCType Dem DcmGetNumberOfFilteredDTC (uintl6*
NumberOfFilteredDTC)

Parameter

NumberOfFilteredDTC The number of DTCs matching the defined filter criteria.

Return code

Dem_ReturnGetNumberO DEM_NUMBER_OK: a valid number of DTC was calculated

frilteredDTCType DEM_NUMBER_FAILED: no valid number can be calculated
DEM_NUMBER_PENDING: not used

Functional Description

Returns the number of DTCs matching the filter criteria.

Particularities and Limitations

> This function is not reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.
Expected Caller Context

> This function can be called from any context.

Table 6-37 Dem_DcmGetNumberOfFilteredDTC()

©2015, Vector Informatik GmbH Version: 4.3.0 114 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2.6.3 Dem_DcmGetNextFilteredDTC()

Prototype

Dem ReturnGetNextFilteredElementType Dem DcmGetNextFilteredDTC (uint32* DTC,
uint8* DTCStatus)

Parameter

DTC Receives the DTC value in respective format of the filter returned by this
function. If the return value of the function is other than DEM_FILTERED_OK
this parameter does not contain valid data.

DTCStatus This parameter receives the status information of the filtered DTC.

It follows the format as defined in 1ISO14229-1.

If the return value of the function call is other than DEM_FILTERED_OK this
parameter does not contain valid data.

Return code

Dem ReturnGetNextFil DEM_NUMBER_OK: DTC number and status are valid

teredElementType DEM_FILTERED NO_MATCHING_ELEMENT: no DTC can be identified
(iteration end)

DEM_NUMBER_PENDING: not used
DEM_FILTERED_BUFFER_TOO_SMALL: not used

Functional Description
Gets the next filtered DTC and its status.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-38 Dem_DcmGetNextFilteredDTC()

©2015, Vector Informatik GmbH Version: 4.3.0 115/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2.6.4 Dem_DcmGetNextFilteredDTCAndFDC()
Prototype

Dem ReturnGetNextFilteredElementType Dem DcmGetNextFilteredDTCAndFDC (uint32*
DTC, sint8* DTCFaultDetectionCounter)

Parameter

DTC Receives the DTC value in respective format of the filter returned by this
function. If the return value of the function is other than DEM_FILTERED_OK
this parameter does not contain valid data.

DTCFaultDetectionCou This parameter receives the Fault Detection Counter information of the
nter requested DTC. If the return value of the function call is other than
DEM_FILTERED_OK this parameter does not contain valid data.

-128dec...127dec/PASSED...FAILED according to 1ISO 14229-1
Return code

Dem_ReturnGetNextFil DEM_NUMBER_OK: DTC number and FDC are valid

teredElementType DEM_FILTERED_NO_MATCHING_ELEMENT: no DTC can be identified
(iteration end)

DEM_NUMBER_PENDING: not used
DEM_FILTERED_BUFFER_TOO_SMALL: not used

Functional Description

Gets the current DTC and its associated Fault Detection Counter (FDC) from the Dem.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-39 Dem_DcmGetNextFilteredDTCAndFDC()

©2015, Vector Informatik GmbH Version: 4.3.0 116 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

6.2.6.5 Dem_DcmGetNextFilteredDTCAndSeverity()
Prototype

Dem ReturnGetNextFilteredElementType Dem GDcmetNextFilteredDTCAndSeverity (
uint32* DTC, uint8* DTCStatus, Dem DTCSeverityType* DTCSeverity, uint8*
DTCFunctionalUnit)

Parameter

DTC Receives the DTC value in respective format of the filter returned by this
function. If the return value of the function is other than DEM_FILTERED_OK
this parameter does not contain valid data.

DTCStatus Receives the status value returned by the function. If the return value of the
function is other than DEM_FILTERED_OK this parameter does not contain
valid data.

DTCSeverity Receives the severity value returned by the function. If the return value of the
function is other than DEM_FILTERED _OK this parameter does not contain
valid data.

DICFunctionalUnit Receives the functional unit value returned by the function. If the return value
of the function is other than DEM_FILTERED_OK this parameter does not
contain valid data.

Return code

Dem ReturnGetNextFil DEM_FILTERED_OK: DTC number and all other out parameter are valid

teredDTCType DEM_FILTERED_NO_MATCHING_ELEMENT: no DTC can be identified
(iteration end)

DEM_NUMBER_PENDING: not used
DEM_FILTERED_BUFFER_TOO_SMALL: not used

Functional Description

Gets the current DTC and its Severity from the Dem.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-40 Dem_DcmGetNextFilteredDTCAndSeverity()

©2015, Vector Informatik GmbH Version: 4.3.0 117 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) Vect()rE

6.2.6.6 Dem_DcmSetFreezeFrameRecordFilter()

Prototype

Dem ReturnSetFilterType Dem DcmSetFreezeFrameRecordFilter (Dem DTCFormatType
DTCFormat, uintl6* NumberOfFilteredRecords)

DICFormat Defines the output-format of the requested DTC values for the sub-sequent
API calls.

DEM_DTC_FORMAT_OBD: report DTC in OBD format
DEM_DTC_FORMAT_UDS: report DTC in UDS format
DEM_DTC_FORMAT_J1939: not allowed

NumberOfFilteredReco Number of freeze frame records currently stored in the event memory.
rds

Return code

Dem ReturnSetFilterT Status of the operation to (re-)set a freeze frame record filter.

ype DEM_FILTER_ACCEPTED: filter was accepted
DEM_WRONG_ FILTER: filter was not accepted

Functional Description

Initialize the DTC record filter with the given criteria.

Using this function all currently stored snapshot records are counted and the internal state machine is
initialized to read a copy of their data (see Dem_DcmGetNextFilteredRecord). The number of snapshot
records is not fixed. It can change after this function has returned, so Dem_DcmGetNextFilteredRecord can
actually return fewer records.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-41 Dem_DcmSetFreezeFrameRecordFilter()

©2015, Vector Informatik GmbH Version: 4.3.0 118/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2.6.7 Dem_DcmGetNextFilteredRecord()

Prototype

Dem ReturnGetNextFilteredElementType Dem DcmGetNextFilteredRecord (uint32* DTC,
uint8* RecordNumber)

Parameter

DTC Receives the DTC value in respective format of the filter returned by this
function. If the return value of the function is other than DEM_FILTERED_OK
this parameter does not contain valid data.

RecordNumber Freeze frame record number of the reported DTC. If the return value of the
function is other than DEM_FILTERED_OK this parameter does not contain
valid data.

Return code

Dem ReturnGetNextFil DEM_FILTERED_OK: returned DTC number and RecordNumber are valid

teredElementType DEM_FILTERED NO_MATCHING_ELEMENT: no further matching records
are available

DEM_FILTERED_PENDING: not used
DEM_FILTERED_BUFFER_TOO_SMALL: not used

Functional Description

Gets the next freeze frame/ snapshot record number and its associated DTC stored in the event memory.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-42 Dem_DcmGetNextFilteredRecord()

©2015, Vector Informatik GmbH Version: 4.3.0 119/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

6.2.6.8 Dem_DcmGetStatusOfDTC()
Prototype

Dem ReturnGetStatusOfDTCType Dem DcmGetStatusOfDTC (uint32 DTC,
Dem DTCOriginType DTCOrigin, uint8* DTCStatus)

DTC Diagnostic Trouble Code in UDS format.
DTCOrigin If the Dem supports more than one event memory this parameter is used to

select the source memory the DTCs shall be read from.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

DTCStatus This parameter receives the status information of the requested DTC. If the
return value of the function call is other than DEM_STATUS_OK this
parameter does not contain valid data.

Return code

Dem ReturnGetStatusO DEM_STATUS_OK: the requested status information was stored in
fDTCType DTCStatus

DEM_STATUS_WRONG_DTC: DTC does not exist in DTCOrigin
DEM_STATUS WRONG_DTCORIGIN: DTC origin does not exist
DEM_STATUS_FAILED: a generic error occurred

DEM_STATUS PENDING: not used

Functional Description
Gets the current UDS status of a DTC.

Particularities and Limitations

> This function is reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-43 Dem_DcmGetStatusOfDTC()

©2015, Vector Informatik GmbH Version: 4.3.0 120/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.6.9 Dem_DcmGetDTCStatusAvailabilityMask()

Prototype
Std ReturnType Dem_DcmGetDTCStatusAvailabilityMask (uint8* DTCStatusMask)

Parameter

DTCStatusMask The value DTCStatusMask indicates the supported DTC status bits from the
Dem. All supported information is indicated by setting the corresponding
status bit to 1.

Return code

Std ReturnType E_OK: get of DTC status mask was successful
E_NOT_OK: get of DTC status mask failed

Functional Description

Gets the DTC status availability mask.

Particularities and Limitations

> This function is reentrant.

> This function is synchronous.

> Only available if ‘DemSupportDcm’ is set to enabled.
Expected Caller Context

> This function can be called from any context.

Table 6-44 Dem_DcmGetDTCStatusAvailabilityMask()

©2015, Vector Informatik GmbH Version: 4.3.0 121 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2.6.10 Dem_DcmGetDTCByOccurrenceTime()
Prototype

Dem ReturnGetDTCByOccurrenceTimeType Dem DcmGetDTCByOccurrenceTime (
DTCRequestType DTCRequest, uint32* DTC)

DTCRequest This parameter defines the request type of the DTC.
DEM_FIRST_DET_CONFIRMED_DTC: first detected confirmed DTC
requested

DEM_MOST_RECENT_FAILED DTC: most recent failed DTC requested

DEM_MOST_REC_DET_CONFIRMED_DTC: most recently detected
confirmed DTC requested

DEM_FIRST_FAILED_DTC: first failed DTC requested
DTC Receives the DTC value in UDS format returned by the function. If the return

value of the function is other than DEM_OCCURR _OK this parameter does
not contain valid data.

Return code

Dem ReturnGetDTCByOc DEM_OCCURR_NOT_AVAILABLE: no DTC is available for the given
currenceTimeType DTCRequest

DEM_OCCURR_OK: the function returns a valid DTC

Functional Description

Gets the DTC by occurrence time.

Particularities and Limitations

> This function is reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-45 Dem_DcmGetDTCByOccurrenceTime()

©2015, Vector Informatik GmbH Version: 4.3.0 122 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.6.11 Dem_DcmGetTranslationType()

Prototype

Dem DTCTranslationFormatType Dem DcmGetTranslationType (void)
Parameter

N/A N/A

Return code

Dem DTCTranslationFo Returns the configured DTC translation format. A combination of different DTC
rmatType formats is not possible.

DEM_DTC_TRANSLATION_ISO15031_6: DTC is formatted according
ISO15031-6

DEM_DTC_TRANSLATION_ISO14229_1: DTC is formatted according
1ISO14229-1

DEM_DTC_TRANSLATION_SAEJ1939 73: DTC is formatted according
SAE1939-73

DEM_DTC_TRANSLATION_ISO11992_4: DTC is formatted according
1ISO11992-4

Functional Description

Gets the supported DTC formats of the ECU.
The supported formats are configured via DemTypeOfDTCSupported.

Particularities and Limitations

> This function is reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-46 Dem_DcmGetTranslationType()

©2015, Vector Informatik GmbH Version: 4.3.0 123 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.6.12 Dem_DcmGetSeverityOfDTC()
Prototype

Dem ReturnGetSeverityOfDTCType Dem DcmGetSeverityOfDTC (uint32 DTC,
Dem DTCSeverityType* DTCSeverity)

DTC Diagnostic Trouble Code in UDS format.
DTCSeverity This parameter contains the DTCSeverityMask according to ISO14229-1.

Return code
Dem ReturnGetSeverit DEM_GET_SEVERITYOFDTC_OK: the requested severity information was
yOfDTCType stored in DTCSeverity

DEM_GET_SEVERITYOFDTC_WRONG_DTC: DTC does not exist in origin
primary memory

DEM_GET_SEVERITYOFDTC_NOSEVERITY: severities do not exist
DEM_GET_SEVERITYOFDTC_PENDING: not used

Functional Description

Gets the severity of the requested DTC.

Particularities and Limitations

> This function is reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-47 Dem_DcmGetSeverityOfDTC()

©2015, Vector Informatik GmbH Version: 4.3.0 124 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.6.13 Dem_DcmGetFunctionalUnitOfDTC()
Prototype

Dem ReturnGetFunctionalUnitOfDTCType Dem DcmGetFunctionalUnitOfDTC (uint32 DTC,
uint8* DTCFunctionalUnit)

DTC Diagnostic Trouble Code in UDS format.
DTCFunctionalUnit Functional unit value of this DTC

Return code

Dem ReturnGetFunctio DEM_GET_FUNCTIONALUNITOFDTC_OK: the requested functional unit

nalUnitOfDTCType information was stored in DTCFunctionalUnit
DEM_GET_FUNCTIONALUNITOFDTC_WRONG_DTC: DTC does not exist
in origin primary memory

Functional Description

Gets the functional unit of the requested DTC.

Particularities and Limitations

> This function is reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-48 Dem_DcmGetFunctionalUnitOfDTC()

©2015, Vector Informatik GmbH Version: 4.3.0 125/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

6.2.6.14 Dem_DcmDisableDTCRecordUpdate()
Prototype

Dem ReturnDisableDTCRecordUpdateType Dem DcmDisableDTCRecordUpdate (uint32 DTC,
Dem DTCOriginType DTCOrigin)

DTC Selects the DTC in UDS format, for which DTC record update shall be
disabled.
DTCOrigin If the Dem supports more than one event memory, this parameter is used to

select the source memory for which DTC record update shall be disabled.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

Return code

Dem ReturnDisableDTC DEM_DISABLE_DTCRECUP_OK: entry is locked, read APls may be called
RecordUpdateType now

DEM_DISABLE_DTCRECUP_WRONG_DTC: the given DTC number is not
valid in the requested origin

DEM_DISABLE_DTCRECUP_WRONG_DTCORIGIN: the given origin is not
supported

DEM_DISABLE_DTCRECUP_PENDING: the request processing is pending,
call again

Functional Description

Disables the event memory update of a specific DTC (only one at a time) so it can be read out by the Dcm.

Particularities and Limitations

> This function is not reentrant.
> This function is asynchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-49 Dem_DcmDisableDTCRecordUpdate()

©2015, Vector Informatik GmbH Version: 4.3.0 126 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.6.15 Dem_DcmEnableDTCRecordUpdate()
Prototype

Std _ReturnType Dem DcmEnableDTCRecordUpdate (void)

Parameter
N/A N/A

Return code

Std ReturnType E_OK: Operation was successful
E_NOT_OK: Operation failed

Functional Description

Enables the event memory update of the DTC disabled by Dem_DcmDisableDTCRecordUpdate() before.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-50 Dem_DcmEnableDTCRecordUpdate()

©2015, Vector Informatik GmbH Version: 4.3.0 127 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

6.2.6.16 Dem_DcmGetFreezeFrameDataByDTC()

Prototype

Dem ReturnGetFreezeFrameDataByDTCType Dem DcmGetFreezeFrameDataByDTC (uint32
DTC, Dem DTCOriginType DTCOrigin, uint8 RecordNumber, uint8* DestBuffer,

uintl6* BufSize)

Parameter
DTC

DTCOrigin

RecordNumber

DestBuffer

BufSize

Diagnostic Trouble Code in UDS format.

This parameter is used to select the source memory the DTCs shall be read
from.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

This parameter is a unique identifier for a freeze frame record as defined in
ISO15031-5 and 1SO14229-1.

The value OxFF is not allowed.
The value 0x00 indicates the OBD freeze frame.

This parameter contains a byte pointer that points to the buffer, to which the
freeze frame data record shall be written to.

The format is: {RecordNumber, NumOfDIDs, DID[1], data[1], ..., DID[N],
data[N]}

When the function is called this parameter contains the maximum number of
data bytes that can be written to the buffer.

The function returns the actual number of written data bytes in this parameter.

Return code

Dem ReturnGetFreezeF DEM_GET_FFDATABYDTC_OK: data was found and returned

rameDataByDTCType

DEM_GET_FFDATABYDTC_WRONG_DTC: the requested DTC is not
available for the requested Origin

DEM_GET_FFDATABYDTC_WRONG_DTCORIGIN: the requested Origin is
not available

DEM_GET_FFDATABYDTC_ WRONG_RECORDNUMBER: the requested
record is not available

DEM_GET_FFDATABYDTC _WRONG_BUFFERSIZE: the destination buffer is
too small

DEM_GET_FFDATABYDTC_PENDING: not used

Functional Description

Gets freeze frame/ snapshot record data by DTC. The function stores the data in the provided DestBuffer.

©2015, Vector Informatik GmbH

Version: 4.3.0 128 /175

based on template version 5.0.0

vector”

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-51 Dem_DcmGetFreezeFrameDataByDTC()

©2015, Vector Informatik GmbH Version: 4.3.0 129 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

6.2.6.17 Dem_DcmGetSizeOfFreezeFrameByDTC()

Prototype

Dem ReturnGetSizeOfDataByDTCType Dem DcmGetSizeOfFreezeFrameByDTC (uint32 DTC,
Dem DTCOriginType DTCOrigin, uint8 RecordNumber, uintl6* SizeOfFreezeFrame)

DTC Diagnostic Trouble Code in UDS format.
DTCOrigin If the Dem supports more than one event memory, this parameter is used to

select the source memory the DTCs shall be read from.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

RecordNumber This parameter is a unique identifier for a freeze frame record as defined in
ISO 15031-5 and ISO 14229-1.

The value OxFF requests the overall size.

SizeOfFreezeFrame Number of bytes in the requested freeze frame record.

Return code

Dem_ReturnGetSizeOfD DEM_GETSIZEBYDTC_OK: data was found and returned

ataByDTCType DEM_GETSIZEBYDTC_WRONG_DTC: the requested DTC is not available
for the requested Origin
DEM_GETSIZEBYDTC_WRONG_DTCORIGIN: the requested Origin is not
available
DEM_GETSIZEBYDTC_WRONG_RECNUM: the requested record is not
available
DEM_GETSIZEBYDTC_PENDING: not used

Functional Description

Get the size of a formatted snapshot record stored for a DTC.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-52 Dem_DcmGetSizeOfFreezeFrameByDTC()

©2015, Vector Informatik GmbH Version: 4.3.0 130/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2.6.18 Dem_DcmGetExtendedDataRecordByDTC()
Prototype

Dem ReturnGetExtendedDataRecordByDTCType Dem DcmGetExtendedDataRecordByDTC (
uint32 DTC, Dem DTCOriginType DTCOrigin, uint8 ExtendedDataNumber, uint8*
DestBuffer, uintlo6e* BufSize)

DTC Diagnostic Trouble Code in UDS format
DTCOrigin This parameter is used to select the source memory the DTCs shall be read
from.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

ExtendedDataNumber Identification of requested extended data record. The valid range is 0x01 ...
OxEF. The values OxFE and OxFF are not allowed.

DestBuffer This parameter contains a byte pointer that points to the buffer to which the
Extended Data shall be written.

BufSize When the function is called this parameter contains the maximum number of
data bytes that can be written to the buffer.
The function returns the actual number of written data bytes in this parameter.

Return code

Dem ReturnGetExtende DEM_RECORD_OK: data was found and returned

dbataRecordByDTCType pEpm RECORD WRONG_DTC: the requested DTC is not available for the
requested Origin

DEM_RECORD_WRONG_DTCORIGIN: the requested Origin is not available
DEM_RECORD_WRONG_NUMBER: the requested record is not available
DEM_RECORD_WRONG_BUFFERSIZE: the destination buffer is too small
DEM_RECORD_PENDING: not used by this implementation

Functional Description

Gets extended data by the given extended record number and DTC number. The function stores the data in
the provided DestBuffer.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-53 Dem_DcmGetExtendedDataRecordByDTC()

©2015, Vector Informatik GmbH Version: 4.3.0 131/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

6.2.6.19 Dem_DcmGetSizeOfExtendedDataRecordByDTC()
Prototype

Dem ReturnGetSizeOfDataByDTCType Dem DcmGetSizeOfExtendedDataRecordByDTC (
uint32 DTC, Dem DTCOriginType DTCOrigin, uint8 ExtendedDataNumber, uintlé6*
SizeOfExtendedDataRecord)

DTC Diagnostic Trouble Code in UDS format.
DTCOrigin If the Dem supports more than one event memory, this parameter is used to

select the source memory the DTCs shall be read from.
DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory

DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory

DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

DEM_DTC_ORIGIN_MIRROR_MEMORY: event information located in the
mirror memory

ExtendedDataNumber Number of requested extended data record. The valid range is 0x01 ... OxEF.

For OBD the values OxFE and OxFF are allowed to request the overall size of
all OBD records.

SizeOfExtendedDataRe Receives the size of the requested data record
cord

Return code

Dem_ReturnGetSizeOfD DEM_GETSIZEBYDTC_OK: data was found and returned

ataByDTCType DEM_GETSIZEBYDTC_WRONG_DTC: the requested DTC is not available
for the requested Origin

DEM_GETSIZEBYDTC_WRONG_DTCORIGIN: the requested Origin is not
available

DEM_GETSIZEBYDTC_WRONG_RECNUM: the requested record is not
available

DEM_GETSIZEBYDTC_PENDING: not used

Functional Description

Get the size of a formatted extended data record stored for a DTC.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-54 Dem_DcmGetSizeOfExtendedDataRecordByDTC()

©2015, Vector Informatik GmbH Version: 4.3.0 132/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2.6.20 Dem_DcmClearDTC()
Prototype

Dem ReturnClearDTCType Dem DcmClearDTC (uint32 DTC, Dem DTCFormatType
DTCFormat, Dem DTCOriginType DTCOrigin)

DTC Defines the DTC in respective format that shall be cleared from the event
memory. If the DTC fits to a DTC group number, all DTCs of the group shall be
cleared.

DICFormat Defines the input format of the provided DTC value.

DEM_DTC_FORMAT_UDS: clear UDS DTCs
DEM_DTC_FORMAT_OBD: clear OBD DTCs
DEM_DTC_FORMAT_J1939: not allowed

DICOrigin If the Dem supports more than one event memory, this parameter is used to
select the memory which shall be cleared.

DEM_DTC_ORIGIN_PRIMARY_MEMORY: event information located in the
primary memory
DEM_DTC_ORIGIN_SECONDARY_MEMORY: event information located in
the secondary memory
DEM_DTC_ORIGIN_PERMANENT_MEMORY: event information located in
the permanent memory

Return code

Dem ReturnClearDTCTy DEM_CLEAR_OK: clearing is completed, the requested DTC(s) are reset

pe DEM_CLEAR_WRONG_DTC: the requested DTC is not valid in the context of
DTCFormat and DTCOrigin

DEM_CLEAR_WRONG_DTCORIGIN: the requested DTC origin is not
available in the context of DTCFormat

DEM_CLEAR_FAILED: the clear operation could not be started

DEM_CLEAR_PENDING: the clear operation was started and is currently
processed to completion

DEM_CLEAR_BUSY: the clear operation is occupied from a different client

DEM_CLEAR_MEMORY_ERROR: (Since AR4.2.1) The clear operation has
completed in RAM, but synchronization to Nv-Ram has failed

Functional Description

Clears the stored event data from the event memory, resets the event status byte and de-bounce state.
There is a variety of configuration settings that further control the behavior of this function:

> see DemClearDTCBehavior to control what part of non-volatile write back must have completed before
this function returns DEM_CLEAR_OK

> Init monitor functions are called when an event is cleared, after clearing the event but before returning
OK to the tester

> If an event does not allow clearing (see CBCIrEvt_<EventName>()), Init monitor callbacks are called
nonetheless.

Particularities and Limitations

> This function is reentrant.
> This function is asynchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

©2015, Vector Informatik GmbH Version: 4.3.0 133/175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

Expected Caller Context
> This function can be called from any context.

Table 6-55 Dem_DcmClearDTC()

6.2.6.21 Dem_DcmDisableDTCSetting()

Prototype

Dem ReturnControlDTCSettingType Dem DcmDisableDTCSetting (Dem DTCGroupType
DTCGroup, Dem DTCKindType DTCKind)

Parameter

DICGroup Defines the group of DTC that shall be disabled to store in event memory.
DEM_DTC_GROUP_ALL_DTCS: select all DTCs
DEM_DTC_GROUP_BODY_DTCS: not supported
DEM_DTC_GROUP_EMISSION_REL_DTCS: not supported
DEM_DTC_GROUP_CHASSIS_DTCS: select group of chassis DTCs

DEM_DTC_GROUP_NETWORK_COM_DTCS: select group of network
communication DTCs,

DEM_DTC_GROUP_POWERTRAIN_DTCS: select group of powertrain DTCs

DTCKind This parameter defines the requested DTC kind, either only OBD-relevant
DTCs or all DTCs

DEM_DTC_KIND_ALL_DTCS: select all DTCs
DEM_DTC_KIND_EMISSION_REL_DTCS: not supported

Return code

Dem ReturnControlDTC DEM_CONTROL_DTC_SETTING_N_OK: the input parameters are not valid
SettingType DEM_CONTROL_DTC_SETTING_OK: the DTCs setting is switched off

Functional Description

Disables the setting (including update) of the status bits of a DTC group.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-56 Dem_DcmDisableDTCSetting()

©2015, Vector Informatik GmbH Version: 4.3.0 134 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

6.2.6.22 Dem_DcmEnableDTCSetting()
Prototype

Dem ReturnControlDTCSettingType Dem DcmEnableDTCSetting (Dem DTCGroupType
DTCGroup, Dem DTCKindType DTCKind)

Parameter

DICGroup Defines the group of DTC that shall be enabled to store in event memory.
DEM_DTC_GROUP_BODY_DTCS: select group of body DTCs

DEM_DTC_GROUP_EMISSION_REL_DTCS: select group of OBD relevant
DTCs

DEM_DTC_GROUP_ALL_DTCS: select all DTCs

DICKind This parameter defines the requested DTC kind, either only OBD-relevant
DTCs or all DTCs

DEM_DTC_KIND_ALL_DTCS: select all DTCs
DEM_DTC_KIND_EMISSION_REL_DTCS: select OBD relevant DTCs

Return code

Dem ReturnControlDTC DEM_CONTROL_DTC_SETTING_N_OK: the input parameters are not valid
SettingType DEM_CONTROL_DTC_SETTING_OK: the DTCs setting is switched on

Functional Description

Enables the DTC setting for a DTC group. Currently only group ALL_DTCS is supported.

Depending on configuration, enabling ControlDTCSetting can be deferred to the Dem task. As a result,
changes to control DTC setting can be lost if they toggle change faster than the cycle time of the Dem main
function. See chapter 3.7 for further details.

c Caution
! This APl is defined as synchronous, so the Dcm will send a positive response before the DTC
setting is in fact re-enabled. An API change is discussed in Autosar to alleviate this problem.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-57 Dem_DcmEnableDTCSetting()

©2015, Vector Informatik GmbH Version: 4.3.0 135/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.6.23 Dem_DcmCancelOperation()

Prototype

void Dem_DcmCancelOperation (void)
Parameter

N/A N/A

Return code
void N/A

Functional Description

Cancel pending operation started from Dcm.
Supported for:
> Dem_DcmClearDTC()

Particularities and Limitations

> This function is reentrant.
> This function is synchronous.
> Only available if ‘DemSupportDcm’ is set to enabled.

Expected Caller Context
> This function can be called from any context.

Table 6-58 Dem_DcmCancelOperation()

©2015, Vector Informatik GmbH Version: 4.3.0 136/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.7 Interface J1939Dcm

'_]. Note
) N Dependent on the Iicenged cqmponents of your delivery the interfaces listed in this
chapter may not be available in DEM.

6.2.7.1 Dem_J1939DcmClearDTC()
Prototype

Dem ReturnClearDTCType Dem_ J1939DcmClearDTC (Dem J1939DcmSetClearFilterType
DTCTypeFilter, uint8 NodeAddress)

DICTypeFilter DEM_J1939DTC_CLEAR_ALL: Clears all Active DTCs
DEM_J1939DTC_CLEAR_PREVIOUSLY_ACTIVE: Clears all previously
active DTCs

NodeAddress The network management node ID to be cleared.

Return code

Dem ReturnClearDTCTy DEM_CLEAR_OK: DTC successfully cleared

pe DEM_CLEAR_WRONG_DTC: DTC value not existing (in this format)
DEM_CLEAR_WRONG_DTCORIGIN: Wrong DTC origin
DEM_CLEAR_FAILED: DTC clearing failed

DEM_CLEAR_PENDING: The DTC clearing is performed asynchronously and
is still pending. The caller can retry later

DEM_CLEAR_BUSY: DTC not cleared, as another clearing process is in
progress. The caller can retry later.

Functional Description
Clears the J1939 DTCs only

Particularities and Limitations

> This function is not reentrant.
> This function is asynchronous.
> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-59 Dem_J1939DcmClearDTC()

©2015, Vector Informatik GmbH Version: 4.3.0 137 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ectorE

6.2.7.2 Dem_J1939DcmFirstDTCwithLampStatus()
Prototype

void Dem_J1939DcmFirstDTCwithLampStatus (uint8 NodeAddress)

Parameter

NodeAddress The network management node ID to be filtered.

Return code
void N/A

Functional Description

Initializes the filter mechanism to the first event in the primary memory

Particularities and Limitations

> This function is reentrant.
> This function is synchronous.
> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-60 Dem_J1939DcmFirstDTCwithLampStatus()

©2015, Vector Informatik GmbH Version: 4.3.0 138/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.7.3 Dem_J1939DcmGetNextDTCwithLampStatus ()
Prototype

Dem ReturnGetNextFilteredElementType Dem_ J1939DcmGetNextDTCwithLampStatus (
J1939DcmLampStatusType LampStatus, uint32 J1939DTC, uint8 OccurrenceCounter)

LampStatus DTC specific lamp status
J1939DTC J1939 DTC number
OccurrenceCounter The DTC specific occurrence counter

Return code

Dem ReturnGetNext- DEM_FILTERED_OK: Returned next filtered element

FilteredElementType pepm FILTERED _NO_MATCHING_ELEMENT: No further element (matching
the filter criteria) found

DEM_FILTERED_BUFFER_TOO_SMALL: not used

Functional Description
Gets the next filtered J1939 DTC for DM31 including current LampStatus

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-61 Dem_J1939DcmGetNextDTCwithLampStatus ()

©2015, Vector Informatik GmbH Version: 4.3.0 139 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.7.4 Dem_J1939DcmGetNextFilteredDTC()
Prototype

Dem ReturnGetNextFilteredElementType Dem J1939DcmGetNextFilteredDTC (uint32
J1939DTC, uint8 OccurenceCounter)

J1939DTC the J1939 DTC number
OccurenceCounter the occurrence counter of the DTC

Return code

Dem ReturnGetNext- DEM_FILTERED_OK: Returned next filtered element
FilterediElementType pEM FILTERED _NO_MATCHING_ELEMENT: No further element (matching
the filter criteria) found
DEM_FILTERED_PENDING: The requested value is calculated
asynchronously and currently not available. The caller can retry later.

DEM_FILTERED_BUFFER_TOO_SMALL: not used

Functional Description

Provides the next DTC that matches the filter criteria.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-62 Dem_J1939DcmGetNextFilteredDTC()

©2015, Vector Informatik GmbH Version: 4.3.0 140/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.7.5 Dem_J1939DcmGetNextFreezeFrame()
Prototype

Dem ReturnGetNextFilteredElementType Dem_ J1939DcmGetNextFreezeFrame (uint32
J1939DTC, uint8 OccurrenceCounter , uint8 DestBuffer, uint8 BufSize)

J1939DTC J1939 DTC number

OccurrenceCounter DTC specific occurrence counter

DestBuffer Pointer to the buffer where the Freeze Frame data shall be copied to.
BufSize in: size of the available buffer

out: number of bytes copied into the buffer

Return code

Dem ReturnGetNext- DEM_FILTERED_OK: Returned next filtered element

FilteredElementType pEM FILTERED NO_MATCHING ELEMENT: No further element (matching
the filter criteria) found
DEM_FILTERED_PENDING: The requested value is calculated
asynchronously and currently not available. The caller can retry later.

DEM_FILTERED_BUFFER_TOO_SMALL: Buffer in the BufSize parameter is
not huge enough

Functional Description

Returns the next J1939DTC and Freeze Frame matching the filter criteria

Particularities and Limitations

> This function is not reentrant.
> This function is asynchronous.
> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-63 Dem_J1939DcmGetNextFreezeFrame()

©2015, Vector Informatik GmbH Version: 4.3.0 141 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.7.6 Dem_J1939DcmGetNextSPNInFreezeFrame()

Prototype

Dem ReturnGetNextFilteredElementType Dem_ J1939DcmGetNextSPNInFreezeFrame (
uint32 SPNSupported, uint8 SPNDatalength)

SPNSupported This parameter contains the next SPN in the ExpandedFreezeFrame
SPNDataLength This parameter contains the corresponding data length of the SPN

Return code

Dem ReturnGetNext- DEM_FILTERED_OK: Returned next filtered element

FilteredElementType pepm FILTERED _NO_MATCHING_ELEMENT: No further element (matching
the filter criteria) found

DEM_FILTERED_PENDING: The requested value is calculated
asynchronously and currently not available. The caller can retry later.

DEM_FILTERED_BUFFER_TOO_SMALL: Buffer in the BufSize parameter is
not huge enough

Functional Description

Retruns the SPNs that are stored in the J1939 FreezeFrame(s)

This interface returns always DEM_FILTERED_NO_MATCHING_ELEMENT as the data is directly provided
from J1939DCM

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-64 Dem_J1939DcmGetNextSPNInFreezeFrame()

©2015, Vector Informatik GmbH Version: 4.3.0 142 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.7.7 Dem_J1939DcmGetNumberOfFilteredDTC ()

Prototype

Dem ReturnGetNumberOfFilteredDTCType Dem_ J1939DcmGetNumberOfFilteredDTC (
uintl6 NumberOfFilteredDTC)

Parameter

NumberOfFilteredDTC number of DTCs matching the filter criteria

Return code

Dem_ReturnGetNumber- DEM_NUMBER_OK: A valid number was calculated

OffFilteredDTCType DEM_NUMBER_FAILED: No valid number can be calculated
DEM_NUMBER _PENDING: not used

Functional Description

Gets the number of currently filtered DTCs set by the function Dem_J1939DcmSetDTCFilter().

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-65 Dem_J1939DcmGetNumberOfFilteredDTC ()

©2015, Vector Informatik GmbH Version: 4.3.0 143 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.2.7.8 Dem_J1939DcmSetDTCFilter()
Prototype

Dem ReturnSetFilterType Dem J1939DcmSetDTCFilter (
Dem J1939DcmDTCStatusFilterType DTCStatusFilter, Dem DTCKindType DTCKind, uint8
NodeAddress, Dem J1939DcmLampStatusType LampStatus)

DTCStatusFilter DEM_J1939DTC_ACTIVE: Confirmed == 1 and TestFailed ==
DEM_J1939DTC_PREVIOUSLY_ACTIVE: Confirmed == 1 and
TestFailed ==

DEM_J1939DTC_PENDING: Pending ==
DEM_J1939DTC_PERMANENT: not supported

DTCKind DEM_DTC_KIND_ALL_DTCS: All DTCs
DEM_DTC_KIND_EMISSION_REL_DTCS: not supported
NodeAddress The network management node ID to be filtered.
LampStatus The ECU Lamp Status
HighByte

bits 7,6: Malfunction Indicator Lamp Status
bits 5,4: Red Stop Lamp Status

bits 3,2: Amber Warning Lamp Status

bits 1,0: Protect Lamp Status

LowByte

bits 7,6: Flash Malfunction Indicator Lamp
bits 5,4: Flash Red Stop Lamp

bits 3,2: Flash Amber Warning Lamp

bits 1,0: Flash Protect Lamp

Return code

Dem ReturnSetFilterType DEM_FILTER _ACCEPTED: Filter was accepted
DEM_WRONG_FILTER: Wrong filter selected

Functional Description

Sets the filter criteria for the J1939 DTC filter mechanism and returns the ECU lamp status.

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-66 Dem_J1939DcmSetDTCFilter()

©2015, Vector Informatik GmbH Version: 4.3.0 144 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.2.7.9 Dem_J1939DcmSetFreezeFramekFilter()
Prototype

Dem ReturnSetFilterType Dem J1939DcmSetFreezeFrameFilter (
Dem J1939DcmSetFreezeFrameFilterType FreezeFrameKind, uint8 NodeAddress)

FreezeFrameKind DEM_J1939DCM_FREEZEFRAME: Set the filter for J1939 Freeze Frame
data

DEM_J1939DCM_EXPANDED_ FREEZEFRAME: Set the filter for J1939
Expanded Freeze Frame data

DEM_J1939DCM_SPNS_IN_EXPANDED_FREEZEFRAME: Not supported,
DM24 message is handled by J1939Dcm

NodeAddress The network management node ID to be filtered.

Return code

Dem ReturnSetFilterType DEM_FILTER_ACCEPTED: Filter was accepted
DEM_WRONG_FILTER: Wrong filter selected

Functional Description

Sets the filter criteria for the consecutive calls of functions
> - Dem_J1939DcmGetNextFreezeFrame()

> - Dem_J1939DcmGetNextSPNInFreezeFrame()

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.
> Only available if ‘DemSupportJ1939Dcm’ is set to enabled.

Table 6-67 Dem_J1939DcmSetFreezeFrameFilter()

©2015, Vector Informatik GmbH Version: 4.3.0 145/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.3 Services used by Dem

In the following table services provided by other components, which are used by the Dem
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Component API

Det optional Dem_ReportErrorStatus

FiM optional FiM_DemTriggerOnEventStatus
Dlt optional DIt_DemTriggerOnEventStatus
EcuM optional EcuM_BswErrorHook

NvM optional NvM_GetErrorStatus

optional NvM_SetRamBlockStatus
optional NvM_ WriteBlock

Dcm optional Dcm_DemTriggerOnDTCStatus
J1939Dcm optional J1939Dcm_DemTriggerOnDTCStatus
SchM optional SchM_Enter_Dem_<ExclusiveArea>

optional SchM_Exit_Dem_<ExclusiveArea>

Table 6-68 Services used by the Dem

6.3.1 EcuM_BswErrorHook()
Prototype

void EcuM_BswErrorHook (uintl6 BswModuleId, uint8 ErrorId)

Parameter
BswModuleId Autosar Moduleld. The Dem will pass DEM_MODULE_ID.
ErrorId Error code detailing the error cause, see Table 5-5

Return code

Functional Description

This function is called to report defunct configuration data passed to Dem_Prelnit.

The Dem will leave Dem_Prelnit after a call to this function, without initializing. Further calls to the Dem
module are not safe.

Particularities and Limitations

> This function is called in error cases, when initializing only a Post-Build configurations
> Itis not safe if this function returns to the caller, especially if development error detection is disabled by
configuration.

Call context
> This function is called from Dem_Prelnit()

Table 6-69 EcuM_BswErrorHook()

©2015, Vector Informatik GmbH Version: 4.3.0 146 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.4 Callback Functions

This chapter describes the callback functions that are implemented by the Dem and can
be invoked by other modules. The prototypes of the callback functions are provided in the
header file Dem Cbk.h by the Dem.

©2015, Vector Informatik GmbH Version: 4.3.0 147 /175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.4.1 Dem_NvM_JobFinished()
Prototype

Std ReturnType Dem NvM JobFinished (uint8 ServicelId, NvM RequestResultType
JobResult)

ServiceId The Serviceld indicates which one of the asynchronous services triggered via
the operations of Interface NVM Service (Read/Write) the notification belongs
to.

The value is currently not used by the Dem.

JobResult Provides the result of the asynchronous job.
NVM_REQ_OK: last asynchronous request has been finished successfully

NVM_REQ_NOT_OK: last asynchronous request has been finished
unsuccessfully

NVM_REQ_PENDING: not used in this context
NVM_REQ_INTEGRITY_FAILED: not used in this context
NVM_REQ_BLOCK_SKIPPED: not used in this context
NVM_REQ_NV_INVALIDATED: not used in this context

Return code

Std ReturnType E_OK: is always returned

Functional Description

Is triggered from NVM to notify that the requested job which is processed asynchronous has been finished.

Particularities and Limitations

> This function is reentrant.
> This function is asynchronous.
> Must be configured for every Dem related NVRAM block

Expected Caller Context
> This function can be called from any context.

Table 6-70 Dem_NvM_JobFinished()

©2015, Vector Informatik GmbH Version: 4.3.0 148 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.4.2 Dem_NvM_InitAdminData()
Prototype

Std ReturnType Dem NvM InitAdminData (void)

Parameter
N/A N/A

Return code

Std _ReturnType E_OK: is always returned

Functional Description

Initialize NvBlock for administrative data.

This function is supposed to be called by the NVM in order to (re)initialize the data in case the non-volatile
memory has never been stored, or was corrupted (see NvMBlockDescriptor/NvMInitBlockCallback). It can
also be used to force a reinitialization of the Dem data triggered by the application (e.g. after a new
software version has been flashed to the ECU). In the latter case, make sure the function is not called in a
context with active Dem!

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-71 Dem_NvM_InitAdminData()

©2015, Vector Informatik GmbH Version: 4.3.0 149 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.4.3 Dem_NvM_InitStatusData()
Prototype

Std ReturnType Dem NvM InitStatusData (void)

Parameter
N/A N/A

Return code

Std _ReturnType E_OK: is always returned

Functional Description

Initialize NvBlock for event status data.

This function is supposed to be called by the NVM in order to (re)initialize the data in case the non-volatile
memory has never been stored, or was corrupted (see NvMBlockDescriptor/NvMInitBlockCallback).

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-72 Dem_NvM_InitStatusData()

©2015, Vector Informatik GmbH Version: 4.3.0 150/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.4.4 Dem_NvM_InitDebounceData()
Prototype

Std ReturnType Dem NvM InitDebounceData (void)

Parameter
N/A N/A

Return code

Std _ReturnType E_OK: is always returned

Functional Description

Initialize NvBlock for event de-bounce data.

This function is supposed to be called by the NVM in order to (re)initialize the data in case the non-volatile
memory has never been stored, or was corrupted (see NvMBIlockDescriptor/NvMInitBlockCallback).

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-73 Dem_NvM_InitDebounceData()

©2015, Vector Informatik GmbH Version: 4.3.0 151 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.4.5 Dem_NvM_InitEventAvailableData()
Prototype

Std ReturnType Dem NvM InitEventAvailableData (void)

Parameter
N/A N/A

Return code

Std _ReturnType E_OK: is always returned

Functional Description

Initialize NvBlock for event availability data.

This function is supposed to be called by the NVM in order to (re)initialize the data in case the non-volatile
memory has never been stored, or was corrupted (see NvMBIlockDescriptor/NvMInitBlockCallback).

Particularities and Limitations

> This function is not reentrant.
> This function is synchronous.

Expected Caller Context
> This function can be called from any context.

Table 6-74 Dem_NvM_InitEventAvailableData()

©2015, Vector Informatik GmbH Version: 4.3.0 152 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

6.5 Configurable Interfaces

6.5.1 Callouts

At its configurable interfaces the Dem defines callouts that can be mapped to callback
functions provided by other modules. The mapping is not statically defined by the Dem but
can be performed at configuration time. The function prototypes that can be used for the
configuration have to match the appropriate function prototype signatures, which are
described in the following sub-chapters.

6.5.1.1 CBCIrEvt_<EventName>()
Prototype

Std ReturnType CBClrEvt_<EventName>(Boolean* Allowed)

Parameter

Allowed True — clearance of event is allowed
False — clearance of event is not allowed

Return code

Std ReturnType E_OK: Operation was successful
E_NOT_OK: Operation failed

Functional Description

Is triggered on DTC deletion to request the permission if the event may be cleared or not.

If the return value of the function call is other than E_OK the Dem clears the event for security reasons
without checking the Allowed value.

Particularities and Limitations

> This function shall be reentrant.
> This function shall be synchronous.

Call Context
> This function is called from task context.

Table 6-75 CBCIrEvt_<EventName>()

©2015, Vector Informatik GmbH Version: 4.3.0 153 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.5.1.2 CBDataEvt_<EventName>()

Prototype

Std ReturnType CBDataEvt <EventName> (void)
Parameter

N/A N/A

Return code

Std _ReturnType Return value unused

Functional Description

Is triggered on changes of the event related data in the event memory.

Particularities and Limitations

> This function shall be reentrant.

> This function shall be synchronous.

> This function signature deviates from [1] to match the Rte_Call signature.
Call Context

> This function is called from task context.

Table 6-76 CBDataEvt_<EventName>()

©2015, Vector Informatik GmbH Version: 4.3.0 154 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.5.1.3 CBFaultDetectCtr_<EventName>()
Prototype

Std ReturnType CBFaultDetectCtr_ <EventName> (sint8* FaultDetectionCounter)

Parameter

FaultDetectionCounter This parameter receives the fault detection counter information (according
ISO 14229-1) of the requested Eventld. If the return value of the function call
is other than E_OK this parameter does not contain valid data.

-128dec...127dec PASSED...FAILED according to [7]

Return code

Std ReturnType E_OK: request was successful
E_NOT_OK: request failed

Functional Description

Gets the current fault detection counter value for the requested monitor-internal de-bouncing event.

Particularities and Limitations

> This function shall be reentrant.
> This function shall be synchronous.

Call Context
> This function is called from APIs with unrestricted call context.

Table 6-77 CBFaultDetectCtr_<EventName>()

©2015, Vector Informatik GmbH Version: 4.3.0 155/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.5.1.4 CBInitEvt_<EventName>()
Prototype

Std ReturnType CBInitEvt <EventName> (Dem InitMonitorReasonType
InitMonitorReason)

Parameter
InitMonitorReason Specific (re-)initialization reason evaluated from the monitor to identify the
initialization kind to be performed.

DEM_INIT_MONITOR_CLEAR: Monitor of the Eventld is cleared and all
internal values and states are reset

DEM_INIT_MONITOR_RESTART: Monitor of the Eventld is requested to
restart

Return code

Std ReturnType Return value is unused.

Functional Description

(Re-)initializes the diagnostic monitor of a specific event.

Particularities and Limitations

> This function shall be reentrant.
> This function shall be synchronous.

Call Context
> This function is called from task context.

Table 6-78 CBInitEvt_<EventName>()

6.5.1.5 CBInitFct_<N>()

Prototype

Std ReturnType CBInitht_<N> (void)
Parameter

N/A N/A

Return code

Std ReturnType Return value unused

Functional Description

Resets the diagnostic monitor of a specific function.

Particularities and Limitations

> This function shall be reentrant.
> This function shall be synchronous.

Call Context
> This function is called from task context.

Table 6-79 CBInitFct_<N>()

©2015, Vector Informatik GmbH Version: 4.3.0 156 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.5.1.6 CBReadData <SyncDataElement>()

Prototype

Standard API Std ReturnType CBReadData_<SyncDataElement> (uint8*
Buffer)

API| with Event Id Std ReturnType CBReadData_<SyncDataElement> (

Dem EventIdType EventId, uint8* Buffer)

Buffer Buffer containing the value of the data element.
EventId The Eventld which has caused the trigger.

Return code

Std ReturnType E_OK: Operation was successful
E_NOT_OK: Operation failed

Functional Description

Requests the current value of the data element for freeze frame or extended data storage.
If the callback returns E_NOT_OK, the data is substituted by a pattern of OxFF

Particularities and Limitations

> This function shall be reentrant.
> This function shall be synchronous.

Call Context
> This function is called from task context.

Table 6-80 CBReadData_<SyncDataElement>()

©2015, Vector Informatik GmbH Version: 4.3.0 157 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.5.1.7 CBStatusDTC_<N>()
Prototype

Std ReturnType CBStatusDTC_<N> (uint32 DTC, uint8 DTCStatusOld, uint8
DTCStatusNew)

DTC Diagnostic Trouble Code in UDS format.
DTCStatus0ld DTC status ANDed with DTCStatusAvailabilityMask before change.
DTCStatusNew DTC status ANDed with DTCStatusAvailabilityMask after change

Return code

Std ReturnType Return value unused

Functional Description

Is triggered on changes of the UDS DTC status byte. The trigger will not occur for changed status bits
which are disabled by the DTCStatusAvailabilityMask.

Particularities and Limitations

> This function shall be reentrant.
> This function shall be synchronous.

Call Context
> This function is called from APIs with unrestricted call context.

Table 6-81 CBStatusDTC_<N>()

©2015, Vector Informatik GmbH Version: 4.3.0 158 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.5.1.8 CBStatusJ1939DTC_<N>()
Prototype

Std ReturnType CBStatusJ1939DTC_<N> (uint32 DTC, uint8 DTCStatusOld, uint8
DTCStatusNew)

DTC Diagnostic Trouble Code in J1939 format.
DTCStatus0ld DTC status ANDed with DTCStatusAvailabilityMask before change.
DTCStatusNew DTC status ANDed with DTCStatusAvailabilityMask after change

Return code

Std ReturnType Return value unused

Functional Description

Is triggered on changes of the J1939 DTC status byte. The trigger will not occur for changed status bits
which are disabled by the DTCStatusAvailabilityMask.

Particularities and Limitations

> This function shall be reentrant.
> This function shall be synchronous.

Call Context
> This function is called from APIs with unrestricted call context.

Table 6-82 CBStatusJ1939DTC_<N>()

6.5.1.9 CBStatusEvt_<EventName>_<N>()
Prototype

Std ReturnType CBStatusEvt <EventName> <N> (Dem EventStatusExtendedType
EventStatusOld, Dem EventStatusExtendedType EventStatusNew)

EventStatus0ld UDS status byte of event before change.
EventStatusNew UDS status byte of event after change.

Return code

Std ReturnType Return value unused

Functional Description

Triggers on changes of the status byte for the related Eventld.

Particularities and Limitations

> This function shall be reentrant.

> This function shall be synchronous.

> This function signature deviates from [1] to match the Rte_Call signature.
Call Context

> This function is called from APIs with unrestricted call context.

Table 6-83 CBStatusEvt_<EventName>_<N>()

©2015, Vector Informatik GmbH Version: 4.3.0 159 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.5.1.10 GeneralCBDataEvt()
Prototype

Std ReturnType GeneralCBDataEvt (Dem EventIdType EventId)

Parameter

EventId The Eventld which has caused the trigger

Return code

Std _ReturnType Return value unused

Functional Description

Is triggered on changes of the event related data in the event memory.

Particularities and Limitations

> This function shall be reentrant.
> This function shall be synchronous.
> This function signature deviates from [1] to match the Rte_Call signature.

Call Context
> This function is called from task context.

Table 6-84 GeneralCBDataEvt()

6.5.1.11 GeneralCBStatusEvt()
Prototype

Std ReturnType GeneralCBStatusEvt (Dem EventIdType EventId,
Dem EventStatusExtendedType EventStatusOld, Dem EventStatusExtendedType
EventStatusNew)

EventId The Eventld which has caused the trigger.
EventStatus0ld UDS status byte of event before change.
EventStatusNew UDS status byte of event after change.

Return code

Std ReturnType Return value unused

Functional Description

Triggers on changes of the status byte for the related Eventld.

Particularities and Limitations

> This function shall be reentrant.
> This function shall be synchronous.
> This function signature deviates from [1] to match the Rte_Call signature.

Call Context
> This function is called from APIs with unrestricted call context.

Table 6-85 GeneralCBStatusEvt()

©2015, Vector Informatik GmbH Version: 4.3.0 160/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

6.6 Service Ports

6.6.1 Client Server Interface

A client server interface is related to a Provide Port at the server side and a Require Port
at client side.

6.6.1.1 Provide Ports on Dem Side

At the Provide Ports of the Dem the API functions described in 6.2 are available as
Runnable Entities. The Runnable Entities are invoked via Operations. The mapping from a
SWC client call to an Operation is performed by the RTE. In this mapping the RTE adds
Port Defined Argument Values to the client call of the SWC, if configured.

The following sub-chapters present the Provide Ports defined for the Dem and the
Operations defined for the Provide Ports, the API functions related to the Operations and
the Port Defined Argument Values to be added by the RTE.

6.6.1.1.1 DiagnosticMonitor
Port Defined Argument: Dem_EventldType Eventld

Operation API Function Arguments
SetEventStatus Dem_SetEventStatus IN Dem_EventStatusType
EventStatus,
ERR{E_NOT_OK}
ResetEventStatus Dem_ResetEventStatus ERR{E_NOT_OK}
PrestoreFreezeFrame Dem_PrestoreFreezeFrame ERR{E_NOT_OK}

ClearPrestoredFreezeFrame Dem_ClearPrestoredFreezeFrame ERR{E_NOT_OK}

Table 6-86 DiagnosticMonitor

6.6.1.1.2 Diagnosticinfo and GeneralDiagnosticinfo
Diagnosticlnfo has Port Defined Argument: Dem_EventldType Eventld

Operation API Function Arguments

GetEventStatus Dem_GetEventStatus OUT Dem_EventStatusExtendedType
EventStatusExtended,
ERR{E_NOT_OK}

GetEventFailed Dem_GetEventFailed OUT boolean EventFailed,
ERR{E_NOT_OK}

GetEventTested Dem_GetEventTested OUT boolean EventTested,
ERR{E_NOT_OK}

GetDTCOfEvent Dem_GetDTCOfEvent IN Dem_DTCFormatType DTCFormat,

OUT uint32 DTCOfEvent,
ERR{E_NOT_OK,
DEM_E_NO _DTC_AVAILABLE}

GetFaultDetectionCounter Dem_ OUT sint8 FaultDetectionCounter,
GetFaultDetectionCounter ERR{E_NOT_OK

DEM_E_NO_FDC_AVAILABLE}

©2015, Vector Informatik GmbH Version: 4.3.0 161 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vect()rE

Operation API Function Arguments

GetEventEnableCondition Dem_ OUT boolean ConditionFullfilled
GetEventEnableCondition ERR{E_NOT_OK}

GetEventFreezeFrameData Dem_ IN uint8 RecordNumber,

GetEventFreezeFrameData |\ poolean ReportTotalRecord,
IN uint16 Datald,

OUT Dem_MaxDataValueType
DestBuffer,

ERR{DEM_E_NODATAAVAILABLE,
DEM_E_WRONG_RECORDNUMBER}

GetEventExtendedDataRecord Dem_ IN uint8 RecordNumber,
GetEventExtendedDataRecor OUT Dem_MaxDataValueType
d DestBuffer,

ERR{DEM_E_NODATAAVAILABLE,
DEM_E_WRONG_RECORDNUMBER}

Table 6-87 Diagnosticlnfo and GeneralDiagnosticinfo

6.6.1.1.3 OperationCycle
Port Defined Argument: uint8 OperationCycleld

Operation API Function Arguments
SetOperationCycleState Dem_SetOperationCycleState IN Dem_OperationCycleStateType
CycleState,

ERR{E_NOT_OK}

Table 6-88 OperationCycle

6.6.1.1.4 AgingCycle

Not supported

6.6.1.1.5 ExternalAgingCycle

Not supported

6.6.1.1.6 EnableCondition

Port Defined Argument: uint8 EnableConditionid

Operation API Function Arguments

SetEnableCondition Dem_SetEnableCondition IN boolean ConditionFulfilled,
ERR{E_NOT_OK}

Table 6-89 EnableCondition

6.6.1.1.7 StorageCondition
Port Defined Argument: uint8 StorageConditionld

©2015, Vector Informatik GmbH Version: 4.3.0 162/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

Operation API Function Arguments

SetStorageCondition Dem_SetStorageCondition IN boolean ConditionFulfilled,
ERR{E_NOT_OK}

Table 6-90 StorageCondition

6.6.1.1.8 IndicatorStatus
Port Defined Argument: uint8 IndicatorStatus

Operation API Function Arguments

GetlndicatorStatus Dem_GetlndicatorStatus OUT Dem_IndicatorStatusType
IndicatorStatus,

ERR{E_NOT_OK}

Table 6-91 IndicatorStatus

6.6.1.1.9 EventStatus
Port Defined Argument: Dem_EventldType Eventld

Operation API Function Arguments

SetWIRStatus Dem_SetWIRStatus IN boolean WIRStatus,
ERR{E_NOT_OK}

GetWIRStatus Dem_GetWIRStatus OUT boolean WIRStatus,

ERR{E_NOT_OK}

Table 6-92 EventStatus

6.6.1.1.10 EvMemOverflowIndication
Port Defined Argument: Dem_DTCOriginType DTCOrigin

Operation API Function Arguments
GetEventMemoryOverflow Dem_ OUT boolean OverflowIndication,
GetEventMemoryOverrow ERR{E NOT OK}

Table 6-93 EvMemOverflowlndication

6.6.1.1.11 DTCSuppression

Operation API Function Arguments
SetDTCSuppression Dem_ IN uint32 DTC,
SetDTCSuppression IN Dem_DTCFormatType
DTCFormat,

IN boolean SuppressionStatus
ERR{E_NOT_OK}

Table 6-94 DTCSuppression

©2015, Vector Informatik GmbH Version: 4.3.0 163 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ectorE

6.6.1.1.12 EventSuppression

Operation API Function Arguments

SetEventSuppression Dem_ IN Dem_EventldType Eventld,

SetEventSuppression IN boolean SuppressionStatus
ERR{E_NOT_OK}

Table 6-95 EventSuppression

6.6.1.1.13 DemServices

Operation API Function Arguments
GetDtcStatusAvailabilityMask Dem_ OUT uint8 DTCStatusMask,
GetDtcStatusAvailabilityMask ERR{E_NOT_OK}
GetPostRunRequested Dem_ OUT boolean isRequested
GetPostRunRequested ERR{E NOT OK}
SynchronizeNvData Dem_ ERR{E_NOT_OK}

RequestNvSynchronization

Table 6-96 DemServices

6.6.1.1.14 Dcmlf
The Dcmlf Portinterface is a special case not intended to be used by application software.

Instead, this interface is a means to establish the call contexts for application notification
callbacks that are the result of function calls to the Dem by the Dcm. The interface
description is omitted intentionally for this reason.

6.6.1.1.15 CddIf

Operation API Function Arguments
ClearDTC Dem_ IN uint32 DTC,
ClearDTC IN Dem_DTCFormatType DTCFormat

IN Dem_DTCOriginType DTCOrigin
ERR{DEM_CLEAR_WRONG_DTC,
DEM_CLEAR_WRONG_DTCORIGIN,
DEM_CLEAR_FAILED,
DEM_CLEAR_PENDING,
DEM_CLEAR_BUSY}

6.6.1.2 Require Ports on Dem Side

At its Require Ports the Dem calls Operations. These Operations have to be provided by
the SWCs by means of Runnable Entities. These Runnable Entities implement the
callback functions expected by the Dem.

The following sub-chapters present the Require Ports defined for the Dem, the Operations
that are called from the Dem and the related Callouts, which are described in chapter 6.5.

©2015, Vector Informatik GmbH Version: 4.3.0 164 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

'T] Note

N If following interfaces are used as port interfaces without RTE, the function prefix
Rte_Call will be replaced by the prefix Appl_Dem.

6.6.1.2.1 CBInitEvt_<EventName>

Callout

InitMonitorForEvent Rte_Call_ CBInitEvt_<EventName>_InitMonitorForEvent

Table 6-97 CBInitEvt_<EventName>

6.6.1.2.2 CBInitFct_<N>

Callout

InitMonitorForFunction Rte_Call_ CBInitFct_<N> _InitMonitorForFunction

Table 6-98 CBInitFct_<N>

6.6.1.2.3 CBStatuskEvt_<EventName>_ <N>

Callout

EventStatusChanged Rte_ Call_ CBStatusEvt_<EventName>_<N> EventStatusChanged

Table 6-99 CBStatusEvt_<EventName>_<N>

6.6.1.2.4 GeneralCBStatusEvt

Callout

EventStatusChanged Rte_Call_ GeneralCBStatusEvt _EventStatusChanged

Table 6-100 GeneralCBStatusEvt

6.6.1.2.5 CBStatusDTC_<N>

Callout

DTCStatusChanged Rte Call_ CBStatusDTC_<N> DTCStatusChanged

Table 6-101 CBStatusDTC_<N>

6.6.1.2.6 CBDataEvt_<EventName>

Callout

EventDataChanged Rte Call_ CBDataEvt_<EventName>_ EventDataChanged

Table 6-102 CBDataEvt_<EventName>

©2015, Vector Informatik GmbH Version: 4.3.0 165/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

6.6.1.2.7 GeneralCBDataEvt

Callout

EventDataChanged Rte_Call_ GeneralCBDataEvt _EventDataChanged

Table 6-103 GeneralCBDataEvt

6.6.1.2.8 CBCIrEvt_<EventName>

Callout

ClearEventAllowed Rte_Call_ CBCIrEvt_<EventName>_ClearEventAllowed

Table 6-104 CBCIrEvt_<EventName>

6.6.1.2.9 CBReadData_<SyncDataElement>

Callout

ReadData Rte_Call_ CBReadData_<SyncDataElement> _ReadData

Table 6-105 CBReadData_<SyncDataElement>

6.6.1.2.10 CBFaultDetectCtr_<EventName>

Callout

GetFaultDetectionCounter Rte_Call_ CBFaultDetectCtr_<EventName>
_GetFaultDetectionCounter

Table 6-106 CBFaultDetectCtr_<EventName>

6.6.1.2.11 CBCitrIDtcSetting

Callout

ControlDTCSettingChanged Rte_Call_CBCControlIDTCSetting_ControlDTCSettingChanged

Table 6-107 CBCitrIDtcSetting

6.7 Not Supported APIs
Dem_DcmGetOBDFreezeFrameData()
Dem_SetOperationCycleCntValue()
Dem_SetAgingCycleState()
Dem_SetAgingCycleCounterValue()
Dem_DItGetMostRecentFreezeFrameRecordData()
Dem_DItGetAllExtendedDataRecords()
Dem_SetEventDisabled()

©2015, Vector Informatik GmbH Version: 4.3.0 166 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ect()rE

Dem_ReplUMPRFaultDetect()
Dem_ReplUMPRDenLock()
Dem_ReplUMPRDenRelease()
Dem_DcmGetinfoTypeValue08()
Dem_DcmGetInfoTypeValueOB()
Dem_DcmReadDataOfPID01()
Dem_DcmReadDataOfPID1C()
Dem_DcmReadDataOfPID21()
Dem_DcmReadDataOfPID30()
Dem_DcmReadDataOfPID31()
Dem_DcmReadDataOfPID41()
Dem_DcmReadDataOfPID4D()
Dem_DcmReadDataOfPID4E()
Dem_DcmReadDataOfOBDFreezeFrame()
Dem_DcmGetDTCOfOBDFreezeFrame()
Dem_SetPtoStatus()

Table 6-108 Not Supported APIs

©2015, Vector Informatik GmbH Version: 4.3.0 167 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

7 Configuration

In the Dem the attributes can be configured with the following tools:
> Configuration in GCE

> Configuration in DaVinci Configurator

The configuration of post-build is described in [8] and [9].

7.1 Configuration Variants
The Dem supports the configuration variants
> VARIANT-PRE-COMPILE

> VARIANT-POST-BUILD-LOADABLE
> VARIANT-POST-BUILD-SELECTABLE

The configuration classes of the Dem parameters depend on the supported configuration
variants. For their definitions please see the Dem_bswmd.arxml file.

7.2 Configurable Attributes

The description of each configurable option is described within the Dem_bswmd.arxml file.
You can use the online help of DaVinci Configurator 5 to access these parameter
descriptions comfortably.

7.3 Configuration of Post-Build Loadable

This component uses a static RAM management which differs from the concept described
in the mentioned post-build documentation.

Since all RAM buffers scale with the number of configured events, and the number of
events cannot be changed during post-build time, we see no need for dynamic RAM
management.

The NV-Ram required is however also not covered by dynamic RAM management. NvM
cannot change its memory allocation, so this is a restriction by necessity. In post-build
configurations, the Dem can reserve some NV memory for snapshot data storage using
parameter /DemGeneral/DemPostbuild/DemMaxSizeFreezeFrame.

It is mainly used to verify that configuration changes do not increase the required NV Ram
beyond the available amount. You can however increase its value if you need flexibility to
add DIDs to existing snapshot records.

| Caution
. The reserved NV Ram size cannot be reduced during post-build. Be aware of the
additional wear on the Flash memory if FEE is used to back the Dem NV data.

©2015, Vector Informatik GmbH Version: 4.3.0 168 /175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectC)rE

7.3.1 Supported Variance

Since much of the configuration of Dem can result in APl changes, some restrictions apply
regarding which features and configuration elements can be modified after linking.

E.g., there is no sensible way to introduce (and implement) additional application
callbacks. All code has to be already present in the ECU; service ports must be connected
via RTE. Also, it's not generally possible to add arbitrary data to the NV data structures,
whose block sizes are static as well.

Generally, Post-Build Loadable for the Dem module supports modifying an existing
configuration, but not changing it structurally. The exhaustive list of parameters that can be
modified using Post-Build Loadable is documented in the Dem parameter description file
(BSWMD file). This list is only intended as short outline.

> DTC numbers

> De-bouncing parameters
> Step sizes and thresholds
> Qualification time

> DTC operation cycle

> DID numbers

> DIDs contained in snapshots

> Restricted by the amount of reserved NV data

©2015, Vector Informatik GmbH Version: 4.3.0 169/ 175

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

vector”

8 AUTOSAR Standard Compliance

8.1 Deviations

DemGetNextFilteredDTCANndFDC ()

Dem EnableDTCSetting ()

Dem J1939DcmGetNextSPNIn
FreezeFrame ()

Operation cycle handling

TimeBased Debouncing

CBStatusEvt and
Notification signature

CBtDataEvt

Table 8-1 Deviations

8.2 Additions/ Extensions

If monitor internal de-bouncing is used the Dem
requests the application for the fault detection counter.
To implement the necessary call sequence definition,
the Dem provides this interface as part of PortInterface
Dcmf.

This API can cause init monitor notifications if it ends a
DTC disabled state. To implement the necessary call
sequence definition, the Dem provides this interface as
part of Portinterface Dcmilf.

Depending on the configuration, it requires a Dem task
for this API to take effect.

The interface is not supported and therefore will
always return.

DEM FILTERED NO MATCHING ELEMENT. The
intended functionality is implemented in the Vector
J1939Dcm.

Only the Operation Cycle using the ‘Autostart’ option is
considered active before initialization. This is different
from the Autosar standard, which defines to set all
cycles to active, and undo the effects for cycles not
started at initialization time.

Qualified reports are handled asynchronously, for all
event status bits.

The signature of these callbacks is expected to match
Rte_Call (see chapter 6.5.1 Callouts). Notifications
with return type ‘void’ are not possible.

Extension Comment

Dem InitMemory ()
Dem PostRunRequested()
Dem GetEventEnableCondition ()

Extension of
CBReadData_<SyncDataElement>()

Table 8-2 Extensions

©2015, Vector Informatik GmbH

see 6.2.3.3
see 6.2.4.21
see 6.2.4.18
see 6.5.1.6

Version: 4.3.0 170/ 175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectC)rE

8.3 Limitations

Enable Conditions Maximum number of Enable Conditions is limited to 31 for efficiency
reasons.

Storage Conditions Maximum number of Storage Conditions is limited to 32 for efficiency
reasons.

Operation Cycles Maximum number of Operation Cycles is limited to 16 for efficiency
reasons.

Aging Threshold Maximum possible aging cycles are limited to 255 (from 256) for
efficiency reasons.

ControlDTCSetting The service is limited to DTC Group

DEM_DTC_GROUP_ALL_DTCS and DTC Kind
DEM_DTC_KIND_ALL_DTCS.

Non-Volatile storage Configuration option DemStatusBitStorageTestFailed == false will
reset the Test Failed bit during initialization, but it will be stored in
NVRAM anyways.

DemGroupOfDTC Configuration of DTC groups is limited to 4. These are intended to be
used to support the Powertrain, Body, Chassis and Network
groupings defined by ISO 15031-6.

Different definitions may not work as intended.

Extended Data Record Interface Dem GetEventExtendedDataRecord () will return
E_NOT_OK if requested record number is equal to OXxFE or OxFF.

Snapshot Record/ Freeze Interface Dem GetEventFreezeFrameData () will return the most
Frame recent record only if the records are configured as “calculated”.

Interface Dem GetEventFreezeFrameData () will return
E_NOT_OK if the records are configured as “Configured” and the
requested record is OxFF.

Internal Data Elements The internal data elements which can be mapped into an extended
data or snapshot record will always have their current internal values
at the time the data is read out.

This will not apply to the following elements as they are static
configuration elements: Significance, Priority, OBD DTC, root cause

Event Id

J1939 DTC If the DTC class has configured a J1939 DTC then an UDS DTC
must be also available.

J1939NmNodes Maximum number of different nodes is limited to 255 (from 256) for

efficiency reasons.

J1939 Indicators An event is only allowed to support one J1939 related indicators
(RSL, AWL, PL). The MIL indicator is not supported.

J1939 Freeze Frame and Only one global defined J1939 Freeze Frame and one global J1939
Expanded Freeze Frame Expanded Freeze Frame is supported.

De-bounce counter This feature is limited to counter based de-bounced events only.

storage in NVRAM BSW events which are reported before initialization of DEM
(Dem_Init()) must not use this feature.

DTC suppression DEM_DTC_FORMAT_OBD is not supported for function

Dem_SetDTCSuppression()

©2015, Vector Informatik GmbH Version: 4.3.0 1717175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ectorE

Table 8-3 Limitations

8.4 Not Supported Service Interfaces
The following table contains service interfaces which are not supported from Dem.

Port Operation(s)
DiagnosticMonitor SetEventDisable

AgingCycle SetAgingCycleState
ExternalAgingCycle SetAgingCycleCounterValue
PowerTakeOff SetPtoStatus
DataServices<SyncDataElement> ReadData - Sender/Receiver

Table 8-4 Service Interfaces which are not supported

©2015, Vector Informatik GmbH Version: 4.3.0 172 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem) \/ectorE

9 Glossary and Abbreviations

9.1 Glossary

Term Description

Configurator 5 Configuration and code generation tool for MICROSAR components
Combined Event The combination of multiple events into a combined status.
Warning Indicator The warning indicator managed by the Dem only provides the information

that the related indicator (e.g. lamp in the dashboard) shall be requested,
the de-/activation must be handled by the application or a different ECU.

Each event that currently requests an indicator will have set the warning

indicator requested bit in the status byte.

Table 9-1 Glossary

9.2 Abbreviations

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

AWL Amber Warning Lamp

BSW Basic Software

Cfgbs Configurator 5

CPU Central Processing Unit

Dcm Diagnostic Communication Manager

DCY Driving Cycle

Dem Diagnostic Event Manager

Det Development Error Tracer

Dit Diagnostic Log and Trace

DTC Diagnostic Trouble Code

EAD Embedded Architecture Designer

ECU Electronic Control Unit

EcuM Ecu Manager

EEPROM Electrically Erasable Programmable Read-Only Memory
FDC Fault Detection Counter

FEE Flash EEPROM Emulation

GCE Generic Content Editor

HIS Hersteller Initiative Software

ID Identification

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR

solution)

©2015, Vector Informatik GmbH Version: 4.3.0 173 /175

based on template version 5.0.0

Technical Reference MICROSAR Diagnostic Event Manager (Dem)

MIL
NVRAM
OBD
OCC
PL
Pport
RAM
ROE
ROM
Rport
RSL
Rte
SAE
SchM
SRS
SWC
SWS
ubS
WUC

Table 9-2 Abbreviations

©2015, Vector Informatik GmbH

Malfunction Indicator Lamp
Non-volatile Random Access Memory
On Board Diagnostics

Occurrence Counter

Protect Lamp

Provide Port

Random Access Memory

Response On Event

Read-Only Memory

Require Port

Red Stop Lamp

Runtime Environment

Society of Automotive Engineers
Schedule Manager

Software Requirement Specification
Software Component

Software Specification

Unified Diagnostic Services
Warmup Cycle

Version: 4.3.0

vactor’

174 /175

Technical Reference MICROSAR Diagnostic Event Manager (Dem) vectorE

10 Contact

Visit our website for more information on

> News

> Products

> Demo software
> Support

> Training data

> Addresses

www.vector.com

©2015, Vector Informatik GmbH Version: 4.3.0 175/ 175

	1 Component History
	2 Introduction
	2.1 How to Read this Document
	2.1.1 API Definitions
	2.1.2 Configuration References

	2.2 Architecture Overview

	3 Functional Description
	3.1 Features
	3.2 Initialization
	3.2.1 Initialization States

	3.3 Diagnostic Event Processing
	3.3.1 Event De-bouncing
	3.3.1.1 Counter Based Algorithm
	3.3.1.2 Time Based Algorithm
	3.3.1.3 Monitor internal de-bouncing

	3.3.2 Event Reporting
	3.3.3 Event Status
	3.3.3.1 Synchronous Status Bit Transitions
	3.3.3.2 Asynchronous Status Bit Transitions
	3.3.3.3 Event Storage modifying Status Bits
	3.3.3.4 Lightweight Multiple Trips (FailureCycleCounterThreshold)

	3.4 Event Displacement
	3.5 Event Aging
	3.5.1 Aging Target ‘0’
	3.5.2 Aging Counter Reallocation
	3.5.3 Aging of Environmental Data
	3.5.4 Aging of TestFailedSinceLastClear
	3.5.5 Aging and Healing

	3.6 Operation Cycles
	3.6.1 Persistent Storage of Operation Cycle State
	3.6.2 Automatic Operation Cycle Restart

	3.7 Enable Conditions and Control DTC Setting
	3.7.1 Effects on de-bouncing and FDC

	3.8 Storage Conditions
	3.9 DTC Suppression
	3.9.1 Event Availability
	3.9.2 Suppress Event / Suppress DTC

	3.10 Environmental Data
	3.10.1 Storage Trigger
	3.10.1.1 Storage Trigger ‘FDC Threshold’

	3.10.2 Internal Data Elements
	3.10.3 External Data Elements
	3.10.3.1 Nv-Ram storage

	3.11 Freeze Frame Pre-Storage
	3.12 Combined Events
	3.12.1 Configuration
	3.12.2 Event Reporting
	3.12.3 DTC Status
	3.12.4 Environmental Data Update
	3.12.5 Aging
	3.12.6 Clear DTC

	3.13 Non-Volatile Data Management
	3.13.1 NvM Interaction
	3.13.2 NVRAM Write Frequency
	3.13.3 Data Recovery

	3.14 Diagnostic Interfaces
	3.15 Notifications
	3.15.1 Event Status Changed
	3.15.2 DTC Status Changed
	3.15.3 Event Data Changed
	3.15.4 Monitor Re-Initialization

	3.16 Indicators
	3.16.1 User Controlled WarningIndicatorRequest

	3.17 Interface to the Runtime Environment
	3.18 Error Handling
	3.18.1 Development Error Reporting
	3.18.1.1 Parameter Checking
	3.18.1.2 Defensive Behavior

	3.18.2 Production Code Error Reporting

	3.19 J1939
	3.19.1 J1939 Freeze Frame and J1939 Expanded Freeze Frame
	3.19.2 Indicators
	3.19.3 Clear DTC

	3.20 Clear DTC APIs

	4 Integration
	4.1 Scope of Delivery
	4.1.1 Static Files
	4.1.2 Dynamic Files

	4.2 Include Structure
	4.3 Compiler Abstraction and Memory Mapping
	4.3.1 Copy Routines

	4.4 Critical Sections
	4.4.1 Exclusive Area 0
	4.4.2 Exclusive Area 1
	4.4.3 Exclusive Area 2

	4.5 NVM Integration
	4.5.1 NVRAM Demand
	4.5.2 NVRAM Initialization
	4.5.2.1 Controlled Re-initialization
	4.5.2.2 Common Errors

	4.5.3 Expected NVM Behavior
	4.5.4 Flash Lifetime Considerations

	4.6 Rte Integration
	4.6.1 Runnable Entities
	4.6.2 Application Port Interface
	4.6.3 DcmIf

	4.7 Post-Run requirements
	4.8 Run-Time limitation
	4.9 Split main function

	5 Measurement and Calibration
	5.1 Measurable Data
	5.1.1 Dem_Cfg_StatusData
	5.1.2 Dem_Cfg_EventDebounceValue
	5.1.3 Dem_Cfg_EventMaxDebounceValues
	5.1.4 Dem_PrimaryEntry_<Number>

	5.2 Post-Build Support
	5.2.1 Initialization
	5.2.2 Post-Build Loadable
	5.2.3 Post-Build Selectable

	6 API Description
	6.1 Type Definitions
	6.2 Services provided by Dem
	6.2.1 Dem_GetVersionInfo()
	6.2.2 Dem_MainFunction()
	6.2.3 Interface EcuM
	6.2.3.1 Dem_PreInit()
	6.2.3.2 Dem_Init()
	6.2.3.3 Dem_InitMemory()
	6.2.3.4 Dem_Shutdown()

	6.2.4 Interface SWC and CDD
	6.2.4.1 Dem_SetEventStatus()
	6.2.4.2 Dem_ResetEventStatus()
	6.2.4.3 Dem_ResetEventDebounceStatus()
	6.2.4.4 Dem_PrestoreFreezeFrame()
	6.2.4.5 Dem_ClearPrestoredFreezeFrame()
	6.2.4.6 Dem_SetOperationCycleState()
	6.2.4.7 Dem_GetEventStatus()
	6.2.4.8 Dem_GetEventFailed()
	6.2.4.9 Dem_GetEventTested()
	6.2.4.10 Dem_GetDTCOfEvent()
	6.2.4.11 Dem_GetEventAvailable()
	6.2.4.12 Dem_SetEnableCondition()
	6.2.4.13 Dem_SetStorageCondition()
	6.2.4.14 Dem_GetFaultDetectionCounter()
	6.2.4.15 Dem_GetIndicatorStatus()
	6.2.4.16 Dem_GetEventFreezeFrameData()
	6.2.4.17 Dem_GetEventExtendedDataRecord()
	6.2.4.18 Dem_GetEventEnableCondition()
	6.2.4.19 Dem_GetEventMemoryOverflow()
	6.2.4.20 Dem_GetNumberOfEventMemoryEntries()
	6.2.4.21 Dem_PostRunRequested()
	6.2.4.22 Dem_SetWIRStatus()
	6.2.4.23 Dem_GetWIRStatus()
	6.2.4.24 Dem_SetDTCSuppression()
	6.2.4.25 Dem_SetEventSuppression()
	6.2.4.26 Dem_SetEventAvailable()
	6.2.4.27 Dem_ClearDTC()
	6.2.4.28 Dem_RequestNvSynchronization()

	6.2.5 Interface BSW
	6.2.5.1 Dem_ReportErrorStatus()

	6.2.6 Interface Dcm
	6.2.6.1 Dem_DcmSetDTCFilter()
	6.2.6.2 Dem_DcmGetNumberOfFilteredDTC()
	6.2.6.3 Dem_DcmGetNextFilteredDTC()
	6.2.6.4 Dem_DcmGetNextFilteredDTCAndFDC()
	6.2.6.5 Dem_DcmGetNextFilteredDTCAndSeverity()
	6.2.6.6 Dem_DcmSetFreezeFrameRecordFilter()
	6.2.6.7 Dem_DcmGetNextFilteredRecord()
	6.2.6.8 Dem_DcmGetStatusOfDTC()
	6.2.6.9 Dem_DcmGetDTCStatusAvailabilityMask()
	6.2.6.10 Dem_DcmGetDTCByOccurrenceTime()
	6.2.6.11 Dem_DcmGetTranslationType()
	6.2.6.12 Dem_DcmGetSeverityOfDTC()
	6.2.6.13 Dem_DcmGetFunctionalUnitOfDTC()
	6.2.6.14 Dem_DcmDisableDTCRecordUpdate()
	6.2.6.15 Dem_DcmEnableDTCRecordUpdate()
	6.2.6.16 Dem_DcmGetFreezeFrameDataByDTC()
	6.2.6.17 Dem_DcmGetSizeOfFreezeFrameByDTC()
	6.2.6.18 Dem_DcmGetExtendedDataRecordByDTC()
	6.2.6.19 Dem_DcmGetSizeOfExtendedDataRecordByDTC()
	6.2.6.20 Dem_DcmClearDTC()
	6.2.6.21 Dem_DcmDisableDTCSetting()
	6.2.6.22 Dem_DcmEnableDTCSetting()
	6.2.6.23 Dem_DcmCancelOperation()

	6.2.7 Interface J1939Dcm
	6.2.7.1 Dem_J1939DcmClearDTC()
	6.2.7.2 Dem_J1939DcmFirstDTCwithLampStatus()
	6.2.7.3 Dem_J1939DcmGetNextDTCwithLampStatus ()
	6.2.7.4 Dem_J1939DcmGetNextFilteredDTC()
	6.2.7.5 Dem_J1939DcmGetNextFreezeFrame()
	6.2.7.6 Dem_J1939DcmGetNextSPNInFreezeFrame()
	6.2.7.7 Dem_J1939DcmGetNumberOfFilteredDTC ()
	6.2.7.8 Dem_J1939DcmSetDTCFilter()
	6.2.7.9 Dem_J1939DcmSetFreezeFrameFilter()

	6.3 Services used by Dem
	6.3.1 EcuM_BswErrorHook()

	6.4 Callback Functions
	6.4.1 Dem_NvM_JobFinished()
	6.4.2 Dem_NvM_InitAdminData()
	6.4.3 Dem_NvM_InitStatusData()
	6.4.4 Dem_NvM_InitDebounceData()
	6.4.5 Dem_NvM_InitEventAvailableData()

	6.5 Configurable Interfaces
	6.5.1 Callouts
	6.5.1.1 CBClrEvt_<EventName>()
	6.5.1.2 CBDataEvt_<EventName>()
	6.5.1.3 CBFaultDetectCtr_<EventName>()
	6.5.1.4 CBInitEvt_<EventName>()
	6.5.1.5 CBInitFct_<N>()
	6.5.1.6 CBReadData_<SyncDataElement>()
	6.5.1.7 CBStatusDTC_<N>()
	6.5.1.8 CBStatusJ1939DTC_<N>()
	6.5.1.9 CBStatusEvt_<EventName>_<N>()
	6.5.1.10 GeneralCBDataEvt()
	6.5.1.11 GeneralCBStatusEvt()

	6.6 Service Ports
	6.6.1 Client Server Interface
	6.6.1.1 Provide Ports on Dem Side
	6.6.1.1.1 DiagnosticMonitor
	6.6.1.1.2 DiagnosticInfo and GeneralDiagnosticInfo
	6.6.1.1.3 OperationCycle
	6.6.1.1.4 AgingCycle
	6.6.1.1.5 ExternalAgingCycle
	6.6.1.1.6 EnableCondition
	6.6.1.1.7 StorageCondition
	6.6.1.1.8 IndicatorStatus
	6.6.1.1.9 EventStatus
	6.6.1.1.10 EvMemOverflowIndication
	6.6.1.1.11 DTCSuppression
	6.6.1.1.12 EventSuppression
	6.6.1.1.13 DemServices
	6.6.1.1.14 DcmIf
	6.6.1.1.15 CddIf

	6.6.1.2 Require Ports on Dem Side
	6.6.1.2.1 CBInitEvt_<EventName>
	6.6.1.2.2 CBInitFct_<N>
	6.6.1.2.3 CBStatusEvt_<EventName>_<N>
	6.6.1.2.4 GeneralCBStatusEvt
	6.6.1.2.5 CBStatusDTC_<N>
	6.6.1.2.6 CBDataEvt_<EventName>
	6.6.1.2.7 GeneralCBDataEvt
	6.6.1.2.8 CBClrEvt_<EventName>
	6.6.1.2.9 CBReadData_<SyncDataElement>
	6.6.1.2.10 CBFaultDetectCtr_<EventName>
	6.6.1.2.11 CBCtrlDtcSetting

	6.7 Not Supported APIs

	7 Configuration
	7.1 Configuration Variants
	7.2 Configurable Attributes
	7.3 Configuration of Post-Build Loadable
	7.3.1 Supported Variance

	8 AUTOSAR Standard Compliance
	8.1 Deviations
	8.2 Additions/ Extensions
	8.3 Limitations
	8.4 Not Supported Service Interfaces

	9 Glossary and Abbreviations
	9.1 Glossary
	9.2 Abbreviations

	10 Contact

