RENESAS

-
o
o
ﬁ\.
7
=
O
=
=
QO

AUTOSAR MCAL R4.0.3
User’s Manual

FLS Driver Component Ver.1.0.5

Embedded User’'s Manual Target Device:
RH850/P1x

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.0.01 Apr 2015

http://www.renesas.com/
http://www.renesas.com/

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to
change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest
product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different
information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third

parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license,
express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and
information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third
parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the
technology described in this document for any purpose relating to military applications or use by the military, including but not limited
to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated

into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or
regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not

warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you
resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific".
The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You

must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any
Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics.
Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written

consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third
parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is

not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas
Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; auport and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti- crime
systems; safety equipment; and medical equipment not specifically designed for life support.

"Specific™: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems
for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g.

excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages
arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas

Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against

the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a

Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and

malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of
microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each

Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that
regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics
assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority- owned
subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Abbreviations and Acronyms

Abbreviation / Acronym Description
ANSI American National Standards Institute
API Application Programming Interface
AUTOSAR AUTomotive Open System ARchitecture
BSW Basic SoftWare
DEM Diagnostic Event Manager
DET/Det Development Error Tracer
ECU Electronic Control Unit
EEPROM Electrically Erasable Programmable Read Only Memory
FCL Code Flash Library
FDL Data Flash Library
FLS FLaSh Driver
GNU GNU’s Not Unix
HW HardWare
ID/Id Identifier
MCAL Microcontroller Abstraction Layer
NA Not Applicable
RAM Random Access Memory
ROM Read Only Memory
RTE Run Time Environment
SCHM/SchM Scheduler Manager
Sw SoftWare
Definitions
Term Represented by
SI. No. Serial Number

Table of Contents

Chapter 1 INtrodUCtiON........coiiiiice e e 11
1.1 DOCUMENT OVEIVIEW ...etiiiiiiiiiite ettt ettt ettt bttt s ket e e skt e e e s kb e e e e bbb e e e s nbne e e s annneeas 13
Chapter 2 Reference DOCUMENTSciviiiiiiiiiiiii e 15
Chapter 3 Integration and Build ProCessccccoeevviiiieviiiiieeiineeennn, 17
3.1. FLS Driver Component MaKe fil@c.uiiiiiiiiiieiiie e 17
3.1.1. FOIAEN STIUCTUIE ..ttt 17
Chapter 4 Forethoughts ... 19
4.1. LCT=T T - | RSP 19
4.2 PrECONAITIONS ..ottt e skt e e bbb et e s aabbe e e s nanneeas 21
4.3. D= U= B O o g E=T £ (= o oY 22
4.4. DEVIATION LIST .oeiiitiiiiiiiieie ettt a e s e s e s 23
4.5, User mode and SUPErVISOr MOGEuuuuuuuiureriieieieiuinieininrnrninrnrnrnrernrnrene—————————————. 23
Chapter 5 Architecture DetailS........cccoeviiiiiiiiiiii e 27
Chapter 6 Registers Details.........cooviiiiiiiiiiiie e 27
Chapter 7 Interaction Between The User And FLS Driver
(7o) 0] 0 ToT o 1=] o | PP 33
7.1. Services Provided By FLS Driver Component To The USer.........ccccceeeeviiiiiieieieee e, 33

Chapter 8 FLS Driver Component Header And Source File

31T o] 101 1 o] o S 35
Chapter 9 Generation ToOOl GUIAEccceviiiiiiieiii e 39
Chapter 10 Application Programming Interface.........c...ccooeeevneeennn.e. 41
10.1. [aT oo Y (=To B N o =1 T PP TP OOUPUPPPRPR 41

10.2.1. SEANAAIA TYPES .eeiiiiiiieiiiiiieie et e ettt e e e e et e e e e e e s s bbbb e e e e e e e e e anbbbbeeeaaaaaaanns 41

10.1.2. Other MOAUIE TY DS ittt ettt e et e e e e e e s abb b e eeaaeeeeanes 41
10.2. TYPE DEFINITIONS ...ttt e e e e e e et e e e e e e e e s enbbbeeeeaaeaeanns 41
10.3. Function DefinitionS ... 42
Chapter 11 Development And Production Errors........cccoceevvvvveeennee, 43
111 FLS Driver Component DevelopmeENt ErfOrS ... 43
11.2 FLS Driver Component Production ErTOrS. ... 44
Chapter 12 Memory OrganiZationccccooveuiieieiineeeiineeeein e e eeens 47
Chapter 13 P1M Specific Information..........cccooeveviiiiiiiiniiiiiiieceieeeees 51
13.1. Interaction between the User and FLS Driver COmMpPONeNt........ccccvvieveeeeesiiiinineeeeeeneenns 51

13.1.1. Translation header File ... 51

13.1.2. Services Provided By FLS Driver Component to the Usercc.cccceevnnneen. 51

13.1.3. Parameter Definition File ... 52

13.1.4. ISR Functions for FLS MOdUIE........coiiiiiiiiiiie e 52

13.2. SAMPIE APPIICATION ...eieiteei ettt e e 52
13.2.1 Sample APPliCAtioN STTUCTUIciiii i e e e 52

13.2.2 Building Sample APPlCatiONcciciiiiiiiiic e 55
13.2.2.1.Configuration EXampPle...........coccuiiiiiiiiiiiiiie e 55
13.2.2.2.Debugging the Sample Application...........cccccviiiiiiiiiien e 55

13.3. Memory and TRroUGRPULee e e e e e e e e e e e eaes 56
13.3.1 ROM/RAM USAQE .. uetteiiiiieee ittt ettt e ettt e e e e e s st e e e e e e e e s anbbbbeeeaaeaeanns 56

R T Y - o] G I 1T o 1 o 58

RS TS B I o o YU T] o oL 1] = 11 58
Chapter 14 Release DetailSccoviiiiiiiiiiiiic e 61

Figure 1-1
Figure 1-2
Figure 5-1
Figure 5-2
Figure 12-1
Figure 13-1

Table 4-1
Table 4-2
Table 4-3
Table 6-1
Table 8-1
Table 10-1
Table 10-2
Table 10-3
Table 11-1
Table 11-2
Table 13-1
Table 13-2
Table 13-3
Table 13-4
Table 13-5
Table 13-6

List Of Figures

System Overview of FLS Driver Component in AUTOSAR MCAL Layer............ 11
System Overview Of AUTOSAR ArchiteCture.........ccccvveeveeee i 12
FLS Driver Component ArChitECIUIeuuvviieeiiiiiiiiieeee e 27
Component Overview Of FLS Driver COMPONENt.........cevveeeeiiiiiiieieeeeeeiiivineeeens 28
FLS Driver Component Memory Organization..........ccccceveeeveiiiinneeeeeeesessiveeeeeens 47
Overview Of FLS Driver Sample Applicationccccocvveeee i, 53

List of Tables

FLS Driver Component DevViation LiSt...........occcviiiiiiiieiniiiieeiiiee e 23
User mode and Supervisor mode details when Data Flash enabled................... 24
User mode and Supervisor mode details When Code Flash enabled 25
REQISIEr DELAIIS ...t 27
Description of the FLS Driver Component FileS.........cccccccvvviviiiiiiiiiiiiiieieveeeeee, 36
[ST O] 0] ¢ F= T Lo 15/ 01 41
FIS FlaS Ty P . e e —————— 41
FUNCLION DEfINILIONS ... 42
DET Errors of FLS Driver COMPONENTccooeieii et 43
DEM Errors of FLS Driver COMPONENTccoiuuiiiiiiiie ettt 44
PDF information fOr PLMoooiiiiiiiiiee et 52
Interrupt Functions FOr FLS MOdUIEooiiiiiiiiiiic e 52
ROM/RAM Details With DETccoooiiiiiiieeee e 56
ROM/RAM Details WithOUE DETccoiiiiiiiiiieie et e e seeeeeeeee s 57
Stack Depth Table..........o 58
Throughput Details Of The APIScooviviiiieiee e 58

10

Introduction Chapter 1

Chapter 1 Introduction

The purpose of this document is to describe the information related to FLS
Driver Component for Renesas P1x microcontrollers.

This document shall be used as reference by the users of FLS Driver
Component. The system overview of complete AUTOSAR architecture is
shown in the below Figure:

Microcontroller Drivers Memory Drivers Communication Drivers 1/0 Drivers
1 — 1 — 1 r— J— — — — — R — —
e 1z 1|5
5|l < S ERIE % n
© o 3 2 = = o] i)
allo 3]s Tlcl| 2 2 9} gl elly,
3122l sEElm gzl =] % 2l gl18|alle
o S ol |® 2223 alloll 21| & < o
el z]]3 BB 13 o (=]l 9] 211 9119|8112
> = 2 < = = <)
gl z(l2e|]|% 2ol 1|2 SR ells|le|le]|]"
2 z o 3 e
o 2 -
]
— — _— — —_— — S— — — —_— -
o Micro- m
ol s llco J= [l = E m » wE o) T > o
S 5 = o| controller b z > s o] =
Sl S|Fsee ell 2=z | 2% 2 <l 2] 3|l o
= 7 I o -

Figure 1-1 System Overview of FLS Driver Component in AUTOSAR MCAL Layer

The FLS Driver Component is part of BSW which is accessible by RTE.
This RTE is a middle ware layer providing communication services for the
application software and thereby it is possible to map the application
software components between different ECUs.

The RTE provides the encapsulation of Hardware channels and basic
services to the Application Software Components. So it is possible to map
the Application Software-Components between different ECUs.

The Basic Software Modules are located below the RTE. The Basic
Software itself is divided into the subgroups: System Services, Memory,
Communication and 10 Hardware-Abstraction. The Complex Drivers are
also located below the RTE. Among others, the Operating System (OS), the
Watchdog manager and the Diagnostic services are located in the System
Services subgroup. The Memory subgroup contains modules to provide
access to the non-volatile memories, namely Flash and EEPROM. Here the
flash operation will be handled by flash driver, this module uses a
underlying FCL and FDL SW libraries for accessing and programming of
flash.

On board Device Abstraction provides an interface to physical values for
AUTOSAR software components. It abstracts the physical origin of signals
(their paths to the hardware FLSs) and normalizes the signals with respect
to their physical appearance. The microcontroller driver provides services
for basic microcontroller initialization, power down functionality, reset and
microcontroller specific functions required from the upper layers.

Chapter 1

Introduction

12

Figure 1-2

Application/RTE invoking
AUTOSTAR defined Flash operations

Flash Driver Software Components - FLS

Code Flash access layer / Data Flash
access Layer

Flash Hardware

System Overview Of AUTOSAR Architecture

The FLS application software components are located at the top and can
gain access to the rest of the ECU and also to other ECUs only through the
RTE. This RTE is a middleware layer providing communication services for
the application software and thereby it is possible to map the application
software components between different ECUs.

This FLS Software Module is located below the RTE. The FLS Component
APIs are directly invoked by the application or RTE. The FLS Component is
responsible for erase/write/read/compare data on the code flash and data
flash memories.

The FLS component makes use of the FCL and FDL, which is an underlying
software library contains the FCL and FDL APIs to perform the activities like
accessing and programming the on-chip code flash and data flash
hardware. This means FCL and FDL offers all functions and commands
necessary to reprogram the application in a user friendly C language
interface.

The FLS Component layer provides the wrapper for the Code Flash and
Data Flash Library, which comprises of API for erase/write data to on-chip
code flash and data flash memory of the device. The FLS Component
conforms to the AUTOSAR standard and is implemented mapping to the
AUTOSAR FLS Software Specification.

FCL and FDL acts as a programming interface between the Flash memory
HW and higher level user applications; in this case it is the AUTOSAR FLS
module. The FCL and FDL offers all required functions to handle code flash
and data flash programming, that means programming the flash memory
without programming tools and during program execution. FCL and FDL
offer an easy- to-use interface to the internal firmware functionality. By
calling the FCL and FDL library functions from user program, the contents
of the flash memory can easily be rewritten in the field.

Introduction Chapter 1

The functional parameters of FLS software components are statically
configurable to fit as far as possible to the real needs of each ECU.

1.1 Document Overview

The document has been segmented for easy reference. The table below
provides user with an overview of the contents of each section:

Section Contents
Sectionl (Introduction) This section provides an introduction and overview of FLS Driver
Component.

Section 2 (Reference Documents) | This section lists the documents referred for developing this document.

Section 3 (Integration And Build This section explains the folder structure, Make file structure for FLS
Process) Driver Component. This section also explains about the Make file
descriptions, Integration of FLS Driver Component with other
components, building the FLS Driver Component along with a sample
application.

Section 4 (Forethoughts) This section provides brief information about the FLS Driver Component,
the preconditions that should be known to the user before it is used,
diagnostic channel, limit check feature, sample and hold feature,
conversion time and stabilization time, DMA and ISR operations, data
consistency details, deviation list and user mode and supervisor mode.

Section 5 (Architecture Details) This section describes the layered architectural details of the FLS Driver

Component.
Section 6 (Registers Details) This section describes the register details of FLS Driver Component.
Section 7 (Interaction between This section describes interaction of the FLS Driver Component with the
The User And FLS Driver upper layers.
Component)
Section 8 (FLS Driver Component | This section provides information about the FLS Driver Component
Header And Source File source files is mentioned. This section also contains the brief note on the
Description) tool generated output file.

Section 9 (Generation Tool Guide) | This section provides information on the FLS Driver Component Code
Generation Tool.

Section 10 (Application This section explains all the APIs provided by the FLS Driver

Programming Interface) Component.

Section 11 (Development And This section lists the DET and DEM errors.

Production Errors)

Section 12 (Memory This section provides the typical memory organization, which must be

Organization) met for proper functioning of component.

Section 13 (P1M Specific This section provides the P1M Specific Information.

Information)

Section 14 (Release Details) This section provides release details with version name and base
version.

13

Chapter 1

Introduction

14

Reference Documents

Chapter 2

Chapter 2 Reference Documents

SI. No. Title Version
1. AUTOSAR_SWS_FlashDriver.pdf 3.2.0
2. r01uh0436ej0070_rh850p1x.pdf 0.70
3. AUTOSAR_SWS_CompilerAbstraction.pdf 3.2.0
4. AUTOSAR_SWS_MemoryMapping.pdf 1.4.0
5. AUTOSAR_SWS_PlatformTypes.pdf 250
6. AUTOSAR_BSW_MakefileInterface.pdf 0.3
7. AUTOSAR BUGZILLA (http://www.autosar.org/bugzilla) .
Note: AUTOSAR BUGZILLA is a database, which contains concerns raised
against information present in AUTOSAR Specifications.
8. Code Flash Library for RH850 devices (FCL Library) V2.00
9. Data Flash Library for RH850 devices (FDL Library) V2.00

15

http://www.autosar.org/bugzilla

Chapter 2

Reference Documents

16

Integration And Build Process Chapter 3

Chapter 3 Integration and Build Process

In this section the folder structure of the FLS Driver Component is explained.
Description of the Make files along with samples is provided in this section.

Remark The details about the C Source and Header files that are generated by the
FLS Driver Generation Tool are mentioned in the
“‘“AUTOSAR_FLS Tool_UserManual.pdf”.

3.1. FLS Driver Component Make file

The Make file provided with the FLS Driver Component consists of the GNU
Make compatible script to build the FLS Driver Component in case of any
change in the configuration. This can be used in the upper level Make file (of
the application) to link and build the final application executable.

3.1.1.Folder Structure

The files are organized in the following folders:

Remark Trailing slash " at the end indicates a folder

X1X\common_platform\modules\fls\src\Fls.c
\FIs_Internal.c
\FIs_Ram.c
\FIs_Version.c
\FIs_Irg.c

X1X\common_platform\modules\fls\include\Fls.h
\FIs_Debug.h
\FIs_Internal.h
\FIs_PBTypes.h
\FIs_Ram.h
\FIs_Types.h
\FIs_Version.h
\Fls_Irg.h

X1X\P1x\modules\fls\src\fdl_descriptor.c
\fcl_descriptor.c
\r_fcl_hw_access.c
\r_fcl_hw_access_asm.850
\r_fcl_user _if.c
\r_fdl_hw_access.c
\r_fdl_user_if.c

17

Chapter 3

Integration And Build Process

18

Notes:

X1X\P1x\modules\fis\include
\fdl_cfg.h
\r_fcl.h
\r_fcl_env.h
\r_fcl_global.h
\r_fcl_types.h
\r_fdl.h
\r_fdl_env.h
\r_fdl_global.h
\r_fdl_mem_map.h
\r_fdl_types.h
\r_typedefs.h

X1X\P1x\modules\fls\sample_application\<SubVariant>\make\ghs
\App_FLS_<SubVariant>_Sample.mak

X1X\P1x\modules\fls\sample_application\<SubVariant>\obj\<compiler>

(Note: For example compiler can be ghs.)

X1X\common_platform\modules\fls\generator\FIs_X1x.exe

X1X\P1x\common_family\generator
\Global_Application_P1x.trxml

\Sample_Application_P1x.trxml

\P1x_translation.h

X1X\P1x\modules\fls\generator
\R403_FLS Pi1x BSWMDT.arxml

X1X\P1x\modules\fls\user_manual

(User manuals will be available in this folder)

<Compiler> can be ghs.

<Device_name> can be 701304, 701305, 701310, 701311, 701312, 701313,

701314, 701315, 701318, 701319, 701320, 701321, 701322, 701323.
<SubVariant> can be P1M.

<AUTOSAR_version> can be 4.0.3.

Forethoughts

Chapter 4

Chapter 4
4.1,

Forethoughts

General

Following information will aid the user to use the FLS Driver Component
software efficiently:

The start-up code is ECU specific. FLS Driver Component does not
implement the start-up code.

Example code mentioned in this document shall be taken only as
a reference for implementation.

All development errors will be reported to DET by using the API
Det_ReportError provided by DET.

All production errors will be reported to DEM by using the API
Dem_ReportErrorStatus provided by DEM.

The FLS Driver Component is developed supports only on-chip ROM
and no external devices are considered. Hence the parameters related
to external devices are ignored by the Generation Tool.

The FLS Driver Component does not provide functionalities for setting of
protection flags, boot cluster size, swapping of boot block and flashing of
boot block and they are out of scope for FLS Driver Component
implementations.

Program execution from Flash ROM is prohibited during flash
programming.

Therefore all FLS Components are located in RAM. The FLS
components will be copied from Flash ROM to RAM during the startup.
The FLS user has to assure that the application for programming control
is also located to

RAM area during ongoing flash programming operations.

The FLS Driver Component’s job processing function (Fls_MainFunction)
is a polled function.

Fls_SetMode does not provide any functionality to the user. Since there
are no different flash memory access modes available. This API shall
only be a dummy function.

The configurations provided for fast mode operation are ignored by the
Generation Tool and only configurations for normal mode operations are
accepted as the underlying device and the FCL and FDL doesn’t provide
any functionality.

The FIs_Erase() APl computes the sectors that need to be erased based
on the provided target address and length. When DET is enabled the
error will be reFLSed if the length of the bytes to be erased is not in
multiples of flash sector size.

The configuration parameter FlsMaxEraseNormalMode which specifies
the maximum data can be erased in one cycle of FIs_MainFunction() for
data flash. The value for the parameter FlsMaxEraseNormalMode should
be in multiples of data flash sector size.

Fls_CF_read_memory u08() and R_FDL_FCUFct_ReadOperation() will
read the data from the flash memory depending on configuration of
parameters FlIsMaxReadNormalMode and FIsMaxCFReadNormalMode
which specifies maximum data can be read in one cycle of
Fls_MainFunction().

Maximum value of FIsMaxReadNormalMode and
FlsMaxCFReadNormalMode parameters specifies the size of a
temporary buffer in RAM which is used when FIs_Read and
Fls_Compare are called. The resulting RAM consumption has to be
considered.

R_FCL_I write_memory_u32() and R_FDL_I_ write_memory_u32()
writes the data from target buffer to flash addresses depending on
configuration of parameters FlsMaxWriteNormalMode and

19

Chapter 4

Forethoughts

20

FlsMaxCFWriteNormalMode which specifies maximum data can be
written in one cycle of Fls_MainFunction().

The length of the data that has to be programmed on to the flash should
be in multiples of flash page. The FLS Driver Component does not pad
bytes if the length is not in multiples of flash page. It is the responsibility
of the application to pad bytes such that the length of the data is in
multiples of flash page.

The normal write verification using the direct memory read access is
performed when DET is enabled.

The processing of blank check operation will be applicable for Data flash
only since no supporting APIs are in Code Flash Library.

The component will support only the user mode of flash memory. Internal
mode is not in the scope of this implementation.

During activated flash environment, the access to flash is not possible.
Hence the user should ensure that all the application and supporting
components code that needs to be executed during flash operation need
to locate in RAM.

The device supports servicing of interrupts during self-programming.
During activated flash environment, the interrupt vector address in the
flash will not be available. The interrupt vectors can be relocated to RAM
during flash programming. For details please refer Exception Handling
Address Switching Function in the according device CPU user manual.
The FLS Driver Component will only invoke the call back notification
functions. However, the implementation of the call back functions is the
responsibility of the upper layer.

The configuration parameter ‘FlsFclRamAddress’ minimum range is
OXFEDEOOOO and the maximum range is ‘OXFEDFFA4CS8’ instead of
‘OXFEDFFFFF’ (RAM end address) as per device specification. Since the
FCL routines are copied to RAM location during initialization. The RAM
size required for FCL routines is 0xB38 bytes. The maximum range is
provided with consideration of RAM size required for FCL routines.

The user should ensure while configuring the parameter
‘FIsFclRamAddress’ value that the RAM area should not be effected the
RAM area used for FLS driver RAM memory sections.

When the parameter ‘FIsTimeoutMonitoring’ is configured as true then
the timeout values for Erase, Write, Read and blank check are
generating based on the parameters ‘FIsCFEraseTime’,
‘FIsCFWriteTime’ and ‘FIsCFReadTime’ and the values configured for
‘FIsMaxCFEraseNormalMode’, ‘FIsMaxCFWriteNormalMode’ and
‘FIsMaxCFReadNormalMode’ for code flash. Time out values are
generating based on the parameters ‘FlsEraseTime’, ‘FIsWriteTime’ and
‘FIsReadTime’, ‘FlsBlankCheckTime’ and the values configured for

‘FlsMaxEraseNormalMode’, ‘FlsMaxWriteNormalMode’,
‘FlIsMaxReadNormalMode’ for data flash.

FLS driver supports three flash programming modes: Code Flash only
(CF), both Code Flash and Data Flash (CFDF) and Data Flash only (DF).
The flash programming mode can be configured via parameter
"FIsAccess". The first two programming modes (CF, CFDF) are relevant
for flash bootloader only. User application shall not program Code Flash
during system runtime. From safety point of view FLS module in
AUTOSAR BSW shall not include Code Flash programming functionality
and shall supFLS Data Flash access only. Note: Flash bootloader is so
far out of scope of AUTOSAR. User is responsible to verify and use FLS
driver with proper configurations according to use-cases.

Fls_Cancel Api will not affect/cancel the Fls_Suspend or Fls_Resume
operations.

In Fls_Suspend the timeout value for R_FDL_Handler will be 300
microseconds at 200MHz.

Forethoughts

Chapter 4

4.2.

Data Flash Memory Read Cycle Setting Register (EEPRDCYCL) is used to
specify the number of wait cycles to be inserted when reading the data in
the data flash. The initial value of the register is taken by default. If required
user application shall set this register as per P1M device user manual.

The file Interrupt_VectorTable.c provided is just a Demo and not all
interrupts will be mapped in this file. So the user has to update the

Interrupt_VectorTable.c as per his configuration.

Preconditions

Following preconditions have to be adhered by the user, for proper
functioning of the FLS Driver Component:

The user should ensure that FLS Driver Component API requests are
invoked in the correct and expected sequence and with correct input
arguments.
Validation of input parameters is done only when the static configuration
parameter FLS DEV_ERROR_DETECT is enabled. Application should
ensure that the right parameters are passed while invoking the APIs when
FLS DEV_ERROR_DETECT is disabled.
A mismatch in the version numbers will result in compilation error.
Ensure that the correct versions of the header and the source files are
used.
The files Fls_Cfg.h, fcl_descriptor.h, fcl_cfg.h, FIs_Cbk.h, fdl_descriptor.h,
and FIs_PBcfg.c generated using FLS Generation Tool have to be linked
along with FLS Driver Component source files.
The FLS Driver Component needs to be initialized by calling Fls_Init()
before calling any other Fls functions.
Values for production code Event Ids should be assigned externally by the
configuration of the DEM.
The Fls_MainFunction() should be invoked regularly by the Basic
Scheduler. Though not specified by AUTOSAR, calling Fls_MainFunction
by polling mechanism is also possible. Ensure that the FLS Driver
Component is initialized before enabling the invocation of this scheduled
function to avoid reporting of a DET error when enabled.
It is prohibited to call user code in ROM or FCL functions, which need
ROM execution (i.e. Fis_Init()) during activated flash environment, this
means during code flash programming operations. In case of ROM
execution during code flash programming fatal error occurs.
A blank check pass does not confirm that it is possible to write to this word
(4 Bytes). Also partly written/erased words may have a blank check pass
but write is not allowed under this condition. A blank check fail does not
confirm a stable read value. Even though parts of a word are at least
partly written, random read data are still possible, so are ECC error
indications for single error corrections and double error detection.
Due to the above shown limitations the information which can be given by
FIs_BlankCheck, either passing or failing, is limited. It cannot be used to
determine the current state of a flash cell in a meaning full way without
additional information obtained by other means. The blank check should
only be used to confirm or check some flow status but should not be used
to determine if a flash cell can be read or written. FLS022, FLS055 from
AUTOSAR Specification of Flash Driver are not fulfilled here because
blank check itself is not able to identify erasure state of flash cell which is
ready for write operation. Please refer to application note document
"RV40F DataFlash Usage" for more details about blank check and usage
hints.
Fls_Readlmmediate APl should not be used to read blank cells. User
application shall handle the errors associated with blank cell read using
Fls_Readlmmediate API.

21

Chapter 4

Forethoughts

22

4.3.

Calling FLS functions, especially Cancel/Suspend/Resume/MainFunction
Apis by a higher priority ISR must be prevented by upper layer to avoid
possible re-entrancy issue.

Interrupt mode supports Fls_Erase, Fls_Write APIs on Data Flash only.
The watchdog timer does not stop during the execution of the FCL.

It is not possible to change the content of the request structure during
command operation. If request data is changed during command
operation, the library will crash.

Before executing a write operation, please make sure the given address
range is erased.

If a cancel request is accepted, during an on-going write or erase
operation and a previous operation is already suspended, then both
operations will be cancelled.

Cancel and suspend/resume operations are not allowed in case of two
library instances as the effect is not evaluated.

Standby is allowed but both instances have to consider that wakeup is
required before continuing.

Correct frequency configuration is essential for Flash programming
quality and stability. Wrong configuration could lead to loss of data
retention or Flash operation fail. If the CPU frequency is a fractional
value, round up the value to the nearest integer. The clock reference of
FLS driver is taken from the CPU clock.Do not change the CPU
frequency during operation. If the frequency has to be changed,
reinitialize the FLC with proper CPU frequency.

All functions are not re-entrant. So, re-entrant calls of any FCL function
must be avoided.

It is not possible to modify the Code Flash in parallel to a modification of
the Data Flash or vice versa due to shared hardware resources.

If a cancel request is accepted, during an on-going write, erase, or blank
check operation and aprevious operation is already suspended, then
both operations will be cancelled.

It is not always possible to nest suspend and/or stand-by.

E.g: Any operation » suspend » suspend — is not possible.
Any operation » stand-by » stand-by — is not possible.
Any operation P stand-by » suspend — is not possible.
Write or Erase » suspend P Erase operation — is not possible
Write operation » suspend » other Write operation — is not possible
Any operation » suspend P other operation » suspend — is not
possible

Data Consistency

To support FLS the reentrancy and interrupt services, the FLS Software
component will ensure the data consistency while accessing their own
RAM storage or hardware registers. The FLS module will use below macro
for respective higher and lower version.

#if (FLS_AR_VERSION == FLS_AR_HIGHER_VERSION)

#define FLS_ENTER_CRITICAL_SECTION (Exclusive_Area)
SchM_Enter_Fls_##Exclusive_Area()

#define FLS_EXIT_CRITICAL_SECTION (Exclusive_Area)
SchM_Exit_FIs_##Exclusive_Area()

#elif (FLS_AR_VERSION == FLS_AR_LOWER_VERSION)

#define FLS_ENTER_CRITICAL_SECTION (Exclusive_Area)
SchM_Enter_FlIs(Exclusive_Area)

Forethoughts

Chapter 4

4.4.

#define FLS_EXIT_CRITICAL_SECTION (Exclusive_Area)
SchM_Exit_FIs(Exclusive_Area)
#endif

The following exclusive areas along with scheduler services are used to
provide data integrity for shared resources:
FLS_DRIVERSTATE_DATA PROTECTION

Deviation List

Table 4-1 FLS Driver Component Deviation List

Sl. No.

AUTOSAR

Description Bugzilla

The fast mode parameters ‘FlIsMaxReadFastMode’ and -
‘FlIsMaxWriteFastMode’ of the container ‘FIsConfigSet are
unused.

The parameters ‘FIsAcLoadOnJobStart’ and -
‘FlsUselnterrupts’ of the container ‘FlsGeneral’ is unused.

The flash access routines are not placed into a separate
C-module like 'Fls_ac.c'.

The flash access code is not loaded to RAM on job start.

The parameters ‘FlsDefaultMode’ and ‘FlsProtection’, -
FIsAcWrite’ and ‘FlsAcErase’ of the container ‘FlsConfigSet’
are unused.

The parameters ‘FlsAcLocationErase’, ‘FIsAcLocationWrite’,
‘FlsAcSizeErase’ and ‘FIsAcSizeWrite’ of the container
‘FlsPublishedInformation’ are unused.

The component will support only the on-chip flash memory. | -
External flash is not in the scope of this implementation.

FLS_E_READ_FAILED_DED error code will be reported to
DEM if read job is failed when double bit ECC error is
generated.

The API Fls_GetVersioninfo is implemented as macro
without DET error FLS E PARAM_POINTER.

4.5.

User mode and supervisor mode

The below table specifies the APIs which can run in user mode, supervisor

mode or both modes

23

Chapter 4 Forethoughts
Table 4-2 User mode and Supervisor mode details when Data Flash enabled
Sl. No| API Name User Mode Supervisor Known limitation in User mode
Mode
The FlIs_lInit is failing in User
mode because the Library
initialization R_FDL_lInit is failing
while executing the API's
R_FDL_IFct_ExeCodelnRAM
. which is located in
1 Fis_{nit . X r_fdl_hw_access.c file. This
function will execute from the
RAM and is fails due to ICCTRL
have access permission in only
supervisor mode.
2 [FIs_Read X X -
3 Fls_SetMode
4 Fls_Write X X -
5 Fls_Cancel X X -
6 Fls_GetStatus X X -
7 |Fls_GetJobResult X X -
Fls_Erase X X -
Fls_Compare X X -
10 . X X -
Fls_GetVersioninfo
11 FIs_MainFunction X X)
12 Fls_BlankCheck X X -
13 Fls_Readlmmediate X X B
12. |FIs_Suspend X X)
13. Fls_Resume X X -

24

Forethoughts Chapter 4
Table 4-3 User mode and Supervisor mode details When Code Flash enabled
SI. No| API Name User Mode | Supervisor| Known limitation in User mode
Mode
1 - X The Fls_Init is failing in User mode
because the Library initialization
R_FCL_Init is failing while
executing the library functions in
RAM. This is because the function
“R_FCL_FCUFct_PrepareEnviron
ment" and internally calls the
function
_ "R_FCL_FCUFct_Clear_Cache"
Fls_Init which clears the flash cache. The
"R_FCL_FCUFct_Clear_Cache"
function will execute STSR
instruction (store contents of
system register) for storing
contents of ICCTRL (instruction
cache control) to system register.
Since the ICCTRL have the access
permission in only supervisor mode
and is fails in user mode.
2 [FIs_Read X X -
3 |FIs SetMode
4 Fls_Write X X -
5 Fls_Cancel X X -
6 Fls_GetStatus X X -
7 [FIs_GetJobResult X X -
8 [FIs_Erase X X -
9 [FIs_Compare X X -
10 Fls_GetVersioninfo X X -
11 - X The Fls_MainFunction is failing in

FIs_MainFunction

User mode because it will process
all internal functions which will
execute the R_FCL_Handler and
_R_FCL_Execute functions in
RAM. This is because the function
"R_FCL_FCUFct_HandleMultiOper
ation" and internally calls the
function
"R_FCL_FCUFct_Clear_Cache"
which clears the flash cache. The
"R_FCL_FCUFct_Clear_Cache"
function will execute STSR
instruction (store contents of
system register) for storing
contents of ICCTRL (instruction
cache control) to system register.
Since the ICCTRL have the access
permission in only supervisor mode
and is fails in user mode.

25

Chapter 4

Forethoughts

26

Architecture Details

Chapter 5

Chapter 5

Architecture Details

The FLS Software architecture is shown in the following figure. The FLS user
shall directly use the APIs to configure and execute the FLS conversions:

Application/RTE invoking
AUTOSTAR defined Flash operations

Flash Driver Software Components - FLS

Code Flash access layer / Data Flash
access Layer

Flash Hardware

Figure 5-1 FLS Driver Component Architecture

The basic architecture of the FLS Driver Component is illustrated in the
following Figure:

27

Chapter 5 Architecture Details

Application layer
FIs_CetVersioninfo() Fis_Read() Fis_Co Fls_CetJobResult() Fls_Can FIs_Wite() Hs_Erase()
mpare(Fls_CetStatus() cel()
)
A A A A
A A . .
Fls_SetMode() Fls_MainFunction()
. A
FIs_Init()
A A
A 4 A 4 A 4 A 4 A 4 A 4 A 4 \ 4 A 4 \ 4
Return Return Fls_Ce Fls_CGe R FCL_I Return Cancels Fls_Ge R_FCL_Execute Fls_GenC
S S nCom nCom nit () sthe the nCom R_FCL_Handler ommand
withou version mand mand status/r current mand R_FDL_Execute =
tany inform = = esult ongoing = R_FDL_Handler FLS_CO
functio ation FLS C FLS_C job FLS C MMAND
nality OMM OMM OMM _ERASE
AND_ AND_ AND_ A
READ COMP A 4 WRIT
ARE R FC \ 4 yy
v L_Cop R_FDL_
ySecti Init ()
Compare bytes ons ()
in buffer with
flash memory A
FLS Driver layer
\ 4 A\ 4 A 4 A 4
FDL layer FCL layer
Micro Controller

Figure 5-2 Component Overview Of FLS Driver Component

The internal architecture of FLS Driver Component is shown in the above
figure. The FLS Driver Component Software Component provides services for:

The FLS Driver Component is divided into the following sub modules based on
the functionality required:

* Initialization

* FErasing the flash memory

* Writing to the flash memory

* Reading the flash memory

* Fast Read to the application memory without performing blank check
* Validating contents of flash memory

* Cancellation of Request

* Reading result and status information

* Module version information

* Blank check of flash memory

» Job Processing

* Fls_Suspend suspends the ongoing job.

* Fls_Resume performs the resume of previous suspended job.

28

Architecture Details Chapter 5

Initialization

The initialization sub-module provides the service for initialization of the flash
driver and initializes the global variables used by the FLS Component. FCL
initialization APl (R_FCL_Init) will be used for successful initialization of
internal code flash programming environment and internal variables. After
successful FCL initialization, R_FCL_Copysections function will be called for
copying the FCL routines to RAM. FDL initialization API (R_FDL_Init) will be
used for successful initialization of internal data flash programming
environment and internal variables.

The API related to this sub-module is Fls_Init().

Flash Memory Erasing Module

This sub-module provides the service for erasing the blocks of the flash
memory. The request will be processed by the job processing function
Fls_MainFunction(). In this job processing function the FCL library functions
R_FCL_Execute and R_FCL_Handler are called to erase the requested
code flash memory blocks. The FDL library functions R_FDL_Execute and
R_FDL_Handler are called to erase the requested data flash memory blocks.
In single cycle of Fls_MainFunction() call, R_FCL_Handler() erase the
number of code flash memory blocks of flash memory depending on
configuration of parameter FlsMaxCFEraseNormalMode and
R_FDL_Handler() erase the number of data flash memory blocks of flash
memory depending on configuration of parameter FIsMaxEraseNormalMode.
The job is processed till the requested numbers of blocks are erased in the
flash memory.

The API related to this sub-module is Fls_Erase().

Flash Memory Reading Module

This sub-module provides the service for reading the contents of the flash
memory. The request will be processed by the job processing function
Fls_MainFunction (). In this job processing function blank check for the
specified words will be initiated first. If the cell is blank then the application
buffer will be filled with the value specified by the parameter
‘FlsErasedValue'. If the cell is not blank then reading of the specified words
from the Flash memory will be initiated by calling the FCL or FDL library
function. This function reads the specified number of words from consecutive
Flash addresses starting at the specified address and writes it into a buffer.
In single cycle of FIs_MainFunction() call, R_FDL FCUFct _ReadOperation
will read the data from the data flash memory and
Fls_CF_read_memory u08 will read byte data from code flash memory
depending on configuration of parameter FlIsMaxReadNormalMode for data
flash and FIsMaxCFReadNormalMode foe code flash. The job is processed
till the requested bytes of length are copied into the application buffer.

The API related to this sub-module is FIs_Read ().

Flash Memory Writing Module

This sub-module provides the service for writing to the flash memory. The
request will be processed by the job processing function Fls_MainFunction().
In this job processing function the writing of specified number of data bytes
from buffer to flash memory will be initiated by calling either the FCL or FDL
library function. These functions write the specified number of words from
buffer to consecutive Flash addresses starting at the specified address. In
single cycle of FIs_MainFunction() call, either R_FCL_Handler() or
R_FDL_Handler() writes the data from target buffer to flash addresses
depending on configuration of parameter FlIsMaxWriteNormalMode for data

29

Chapter 5

Architecture Details

30

flash and FlsMaxCFWriteNormalMode for code flash. The job is processed
till the requested number of bytes is written to the flash memory.

The API related to this sub-module is Fls_Write().

Flash Memory Contents Validating Module

This sub-module provides the service for comparing the contents of the flash
memory with the application buffer. The request will be processed by the job
processing function Fls_MainFunction (). This compare operation will be
implemented by calling either FCL or FDL library function. These functions
initiate reading of defined words in flash and store it in the temporary buffer.
Then actual data in application buffer will be compared with data in
temporary buffer. Here data will be compared in terms of bytes. In single
cycle of Fls_MainFunction() call, either R_FCL Handler() or
R_FDL_Handler() will read the data from the flash memory depending on
configuration of parameter FIsMaxReadNormalMode for data flash and
FlsMaxCFReadNormalMode for code flash. The job is processed till the
requested number of bytes are read and compared with the application
buffer.

The API related to this sub-module is Fls_Compare().

Request Cancellation Module

This sub-module provides the service for cancelling an ongoing memory
request. After aborting the current ongoing memory operations this sub-
module prepares internal variables to accept the next Read/Write/Erase/
Compare command. The cancel request will be synchronous and a new job
can be requested immediately after the return from this function.

The API related to this sub-module is Fls_Cancel().

Result Reading And Status Information Providing Module

This sub-module provides the services for getting the current status of the
module or results of the initiated job request or the response to previously
issued command and return the current status of the current job execution. All
these services will be done by evaluating either FCL or FDL functions status
and error codes from FCL or FDL library.

The APIs related to this sub-module are Fls_GetStatus, Fls_GetJobResult.

Software Component Version Info Module

This module provides API for reading Module Id, Vendor Id and vendor
specific version numbers.

The API related to this sub-module is FIs_GetVersioninfo().

Job Processing Module

The command requests are always processed by the main function
(FIs_MainFunction) that is invoked cyclically by the scheduler. This function
will invoke the status check of the FCL or FDL library while processing the
flash operations requests. This API derives the internal driver status.
Completion of the flash operation needs to be checked in order to continue the
reprogramming flow.

Fls_BlankCheck
This sub-module provides the service for performing blank check of the flash
memory words. The request will be processed by the job processing function

Architecture Details

Chapter 5

FIs_MainFunction(). This function is invoked to perform the blank check of
the single word. The FDL library function R_FDL_Handler is called to
perform the requested data flash memory word blank check. The job is
processed till the requested numbers of words are performed with the blank
check in the flash memory.

The API related to this sub-module is FIs_BlankCheck().This API is
applicable for Data Flash only.

Fls_Readlmmediate

This sub-module provides the service for reading the contents of the flash
memory. The request will be processed by the job processing function
FIs_MainFunction (). This function reads the specified number of words from
consecutive Flash addresses starting at the specified address and writes it
into a buffer. In single cycle of Fls_MainFunction() call, R_FDL_Handler will
read the data from the data flash memory. The data from flash memory
(source address) is read to the data buffer (Target address) of application
without performing blank check before read. The job is processed till the
requested bytes of length are copied into the application buffer.

The API related to this sub-module is Fls_Readlmmediate (). This API is
applicable for Data Flash only.

Fls_Suspend

This sub-module provides the service of suspending the ongoing job.
Fls_Suspend is synchronous API. Fls_Suspend will block CPU (by calling FDL
handler) for certain of time to perform suspend operation
(R_FDL_SuspendRequest) and confirm the suspended status of the FDL
library.

FIs_Resume
This sub-module provides the service of resume of previous suspended job.
FIs_Resume is synchronous API. FIs_Resume acknowledges the resume

request by calling R_FDL_ResumeRequest command and it returns
immediately.

31

Chapter 5

Architecture Details

32

Registers Details

Chapter 6

Chapter 6 Registers Details
This section describes the register details of FLS Driver Component.
Table 6-1 Register Details
Register Register Macro/Variable
Access Access Confi
Registers | 8/16/32 RIW/RW 2
API Name . Parame
Used bits
ter
FLMDCNT | 32 RW - FLS_FLMDCNT
Fls_SetFLMDO [F_MDPCM | 32 RW - FLS_FLMDPCMD
D
FHVES3 32 RW - FLS_FHVES3
Fls_SetFHVE [FHVE15 32 RW - FLS_FHVE15

31

Chapter 6

Registers Details

32

Interaction Between The User And FLS Driver Component Chapter 7

Chapter 7

7.1.

Interaction Between The User And FLS
Driver Component

The details of the services supported by the FLS Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

Services Provided By FLS Driver Component To The
User

The FLS Driver Component provides the following functions to upper layers:

Programming of code flash

Writing contents to data flash memory

Erase flash memory sectors

Read flash contents to the application memory

Fast Read to the application memory without performing blank check
Validate flash contents comparing with the application memory
Cancel the ongoing erase, write, read or compare requests.
Read the result of the last job

Blank check of flash memory

Read the status of the FLS Driver Component.

FIs_Suspend suspends the ongoing job.

Fls_Resume performs the resume of previous suspended job.

33

Chapter 7

Interaction Between The User And FLS Driver Component

34

FLS Driver Component Header And Source File Description Chapter 8

Chapter 8 FLS Driver Component Header And
Source File Description

This section explains the FLS Driver Component’s C Source and C Header
files. These files have to be included in the project application while integrating
with other modules.

The C header file generated by FLS Software Generation Tool:
For only Code Flash access

FIs_Cbk.h
FIs_Cfg.h
fcl_descriptor.h
fcl_cfg.h

For only Data Flash access
* Fls_Cbk.h

* FIs_Cfg.h

« fdl_descriptor.h

For both Code Flash and Data Flash access
* FIs_Cbk.h

Fls_Cfg.h

fcl_descriptor.h

fcl_cfg.h

fdl_descriptor.h

The C source file generated by FLS Driver Generation Tool:
* FIs_PBcfg.c

The FLS Driver Component C header files:
Fls.h

FIs_Debug.h

Fls_Internal.h

Fls_Types.h

Fls_PBTypes.h

Fls_Version.h

Fls_Ram.h

Fis_Irg.h

The FLS Driver Component source files:
* Fls.c

Fls_Internal.c

Fls_Ram.c

Fls_Version.c

Fls_lIrq.c

The FLS specific C header files:
+ Compiler.h

* Compiler_Cfg.h

* MemMap.h

* Platform_Types.h

The FCL and FDL library header and source files:
* r_fclh

* r_fcl_env.h

« r_fcl_global.h

35

Chapter 8

FLS Driver Component Header And Source File Description

36

r_fcl_types.h
r_fdl.h

r_fdl_env.h
r_fdl_global.h
r_fdl_types.h
r_fdl_mem_map.h
fdl_cfg.h
r_typedefs.h
r_fdl_user_if.c
r_fdl_hw_access.c
r_fcl_user_if.c
r_fcl_hw_access_asm.850
r_fcl_hw_access.c
fcl_descriptor.c
fdl_descriptor.c

The description of the FLS Driver Component files is provided in the table
below:

Table 8-1

Description of the FLS Driver Component Files

File

Details

Fls_Cfg.h

This file is generated by the FLS Software Generation Tool for various
FLS Driver Component pre-compile time parameters. The macros and
the parameters generated will vary with respect to the configuration in the
input ECU Configuration description file. This file also contains the handles
for Fls Pin configuration set.

Fls_Cbk.h

This file contains declarations of notification functions to be used by the
application. The notification function name can be configured.

fcl_cfg.h

This file contains the device specific parameter that needs to be
configured for different devices.

FIs_PBcfg.c

This file contains post-build configuration data. The structures
related to FLS Initialization are provided in this file. Data structures
will vary with respect to parameters configured.

Fls.h

This file provides extern declarations for all the FLS Driver Component
APIs. This file provides service Ids of APIs, DET Error codes and type
definitions for FLS Software initialization structure. This header file shall be
included in other modules to use the features of FLS Driver Component.

Fls_Debug.h

This file provides Provision of global variables for debugging purpose.

Fls_Internal.h

This file contains the prototypes for internal functions of Flash Wrapper
Component.

Fls_Types.h This file contains the common macro definitions and the data types
required internally by the FLS software component.

Fls_Ram.h This file contains the extern declarations for the global variables that are
defined in FIs_Ram.c file and the version information of the file.

Fls_Version.h This file contains the macros of AUTOSAR version nhumbers of all modules
that are interfaced to FLS.

Fls_lIrg.h This file contains the external declaration for the interrupt functions used
by FLS Driver Module.

Fls.c This file contains the implementation of all APIs.

Fls_Ram.c This file contains the global variables used by FLS Driver Component.

Fls_Internal.c

This file contains the Internal functions implementations of flash wrapper
component.

FLS Driver Component Header And Source File Description

Chapter 8

File

Details

Fls_Version.c

This file contains the code for checking version of all modules that are
interfaced to FLS.

Fls_Irg.c This file contains the implementation of all the interrupt functions used by
FLS Driver Module.
Compiler.h Provides compiler specific (non-ANSI) keywords. All mappings of

keywords, which are not standardized, and/or compiler specific are placed
and organized in this compiler specific header.

Compiler_Cfg.h

This file contains the memory and pointer classes.

MemMap.h

This file allows to map variables, constants and code of modules to
individual memory sections. Memory mapping can be modified as per ECU
specific needs.

Platform_Types.h

This file provides provision for defining platform and compiler dependent
types.

fdl_descriptor.h

This file contains FDL run-time configuration descriptor variable related
defines.

fdl_cfg.h This file contains FDL pre-compile definitions.

r_fcl.h Header file containing FCL user interface function prototypes.

r_fcl_types.h This File contains the FCL user interface type definitions.

r_fcl_global.h This file contains FCL Flash programming global type defines, function
and variables.

r_fcl_env.h This file contains FCL Flash programming hardware related definitions.

r_fdl.h Header file containing FDL user interface function prototypes.

r_fdl_types.h This File contains the FDL user interface type definitions.

r_fdl_global.h This file contains FDL Flash programming global type defines, function
and variables.

r_fdl_env.h This file contains FDL Flash programming hardware related definitions.

r_typedefs.h

This file contains renesas standard type definitions.

fcl_descriptor.h

This file contains FCL run-time configuration descriptor variable related
defines.

r_fcl_user _if.c

This file contains the FCL user interface functions.

r_fcl_hw_access.c

This file contains the FCL hardware interface functions.

fcl_descriptor.c

This file contains the Descriptor variable definition.

r_fdl_user_if.c

This file contains the FDL user interface functions.

r_fdl_hw_access.c

This file contains the FDL hardware interface functions.

fdl_descriptor.c

This file contains the Descriptor variable definition.

r_fcl_hw_access_as
m.850

This file contains the FCL hardware interface functions.

Fls_PBTypes.h

This file contains the type definitions of post build parameters. It also
contains the macros used by the FLS Driver Component.

r_fdl_mem_map.h

This file contains FDL section mapping definitions.

rh850_Types.h

This file provides macros to perform supervisor mode (SV) write enabled
Register ICxxx and IMR register writing using OR/AND/Direct operation.

37

Chapter 8

FLS Driver Component Header And Source File Description

38

Generation Tool Guide

Chapter 9

Chapter 9

Generation Tool Guide

For information on the FLS Driver Code Generation Tool, please refer
“AUTOSAR_FLS Tool UserManual.pdf’ document.

39

Chapter 9

Generation Tool Guide

40

Application Programming Interface Chapter 10

Chapter 10 Application Programming Interface

This section explains the Data types and APIs provided by the FLS Driver
Component to the Upper layers.

10.1.Imported Types

This section explains the Data types imported by the FLS Driver Component
and lists its dependency on other modules.

10.1.1. Standard Types

In this section all types included from the Std_Types.h are listed:
» Std_VersionIinfoType

10.1.2. Other Module Types

In this section all types included from the Dem.h are listed.
* Dem_EventldType

* Dem_EventStatusType

* Memif_JobResultType

* Memif_StatusType

10.2. Type Definitions

This section explains the type definitions of FLS Driver Component according
to AUTOSAR Specification
Table 10-1 Fls_CommandType

Name: Fls_CommandType
Type: Enumeration
FLS_COMMAND_NONE Used to Set the command to none.
FLS COMMAND_ERASE Command used for Erase.
Range: FLS COMMAND WRITE Command used for Write.
FLS_COMMAND_READ Command used for Read.
FLS COMMAND_COMPARE Command used for Compare.
FLS _COMMAND_BLANKCHECK Command used for Blank check.
FLS COMMAND_READ_IMM Command used for fast Read.
Description: | Enumeration for driver commands.
Table 10-2 FIs_FlashType
Name: Fls_FlashType
Type: Enumeration
FLS_DF_ACCESS Indicate the operations to be performed
Range: for data flash.
FLS_CF_ACCESS Indicate the operations to be performed
for code flash.
Description: | Enumeration for flash access type.

41

Chapter 10

Application Programming Interface

42

10.3. Function Definitions

Table 10-3 Function Definitions

Sl. No API's API’s specific

1. Fls_Init -
2. Fls_Erase -
3. Fls_Write -
4, Fls_Cancel -
5. Fls_GetStatus -
6. Fls_GetJobResult -
7. Fls_Read -
8. Fls_Compare -
9. Fls_SetMode -
10. FIs_GetVersioninfo -
11. Fls_MainFunction -
12. FIsJobEndNotification -
13. FIsJobErrorNotification -
14. Fls_BlankCheck -
15. Fls_Readlmmediate -
16. Fls_Suspend -
17. Fls_Resume -

Development And Production Errors Chapter 11

Chapter 11 Development And Production Errors

In this section the development errors that are reported by the FLS Driver
Component are tabulated. The development errors will be reported only when
the pre compiler option FIsDevErrorDetect is enabled in the configuration.
The production code errors are not supported by FLS Driver Component.

11.1 FLS Driver Component Development Errors

The following table contains the DET errors that are reported by FLS Driver
Component. These errors are reported to Development Error Tracer Module

when the FLS Driver Component APIs are invoked with wrong input
parameters or without initialization of the driver.

Table 11-1 DET Errors of FLS Driver Component

Sl. No.

1

Error Code

FLS_E_UNINIT

Related API(s)

FIs_Erase, Fls_Write, FIs_Read, FIs_Compare, FIs_Cancel,
Fls_GetStatus, Fls_GetJobResult, FIs_MainFunction, Fls_Init,
Fls_Readlmmediate, FIs_BlankCheck, FIs_Suspend,
Fls_Resume

Source of Error

When the API service is invoked before initialization.

Sl. No.

2

Error Code

FLS_E_PARAM_ADDRESS

Related API(s)

Fls_Erase, FIs_Write, FIs_Read, Fls_Compare, FIs_Readimmediate,
Fls_BlankCheck

Source of Error

When the API service is invoked with a wrong address.

Sl. No.

3

Error Code

FLS_E_PARAM_LENGTH

Related API(s)

Fls_Erase, FIs_Write, FIs_Read, Fls_Compare, FIs_Readimmediate,
Fls_BlankCheck

Source of Error

When the API service is invoked with a wrong length.

Sl. No.

4

Error Code

FLS_E_PARAM_DATA

Related API(s)

Fls_Write, FIs_Read, FIs_Compare, FIs_Readlmmediate

Source of Error

When the API service is invoked with a NULL buffer address.

Sl. No.

5

Error Code

FLS_E_BUSY

Related API(s)

Fls_Init, FIs_Erase, FIs_Write, FIs_Read, Fls_Compare,
Fls Readlmmediate, FIs BlankCheck

Source of Error

When the API service is invoked when the driver is still busy.

Sl. No.

6

Error Code

FLS_E_VERIFY_ERASE_FAILED

Related API(s)

Fls_MainFunction

Source of Error

When the erase verification fails.

Sl. No.

7

43

Chapter 11

Development And Production Errors

Error Code

FLS_E_VERIFY_WRITE_FAILED

Related API(s)

Fls_MainFunction

Source of Error

When the write verification fails.

SI. No. 8
Error Code FLS_E_PARAM_CONFIG
Related API(s) Fls_Init

Source of Error

API initialization service invoked with wrong parameter.

Sl. No.

9

Error Code

FLS_E_TIMEOUT

Related API(s)

Fls_MainFunction

Source of Error

API service invoked when time out supervision of a read, write, erase or
compare job failed

SI. No. 10
Error Code FLS_E_INVALID DATABASE
Related API(s) Fls_Init

Source of Error

API service Fls_lInit called without/with a wrong database is reported
using following error code

44

11.2 FLS Driver Component Production Errors
The following table contains the DEM errors that are reported by FLS Driver
Component. These are the hardware errors reported during runtime.
Table 11-2 DEM Errors of FLS Driver Component
SI. No. 1
Error Code FLS_E_ERASE_FAILED

Related API(s)

Fls_CFProcessEraseCommand and Fls_DFProcessEraseCommand

Source of Error

When the Erase API service is invoked and the FCL or FDL returns the job
result as failed. Error will be reported by the job processing function.

Sl. No.

2

Error Code

FLS_E_WRITE_FAILED

Related API(s)

Fls_CFProcessWriteCommand and Fls_DFProcessWriteCommand

Source of Error

When the Write API service is invoked and the FCL or FDL returns the job
result as failed.
Error will be reported by the job processing function.

SI. No.

3

Error Code

FLS_E_READ_FAILED

Related API(s)

Fls_CFProcessReadCommand and Fls_ DFProcessReadCommand

Source of Error

When the Read API service is invoked and the FCL or FDL returns the job
result as failed.
Error will be reported by the job processing function.

Sl. No.

4

Error Code

FLS_E_COMPARE_FAILED

Related API(s)

Fls_CFProcessCompareCommand and Fls_DFProcessCompareCommand

Development And Production Errors

Chapter 11

Source of Error

When the Compare API service is invoked and the FCL or FDL returns the job
result as failed.
Error will be reported by the job processing function.

Sl. No.

5

Error Code

FLS_E_READ_FAILED_DED

Related API(s)

Fls_DFProcessReadCommand

Source of Error

When the Read API service is invoked and the FDL returns the job result
as failed when double bit ECC error is generated.
Error will be reported by the job processing function.

45

Chapter 11

Development And Production Errors

46

Memory Organization

Chapter 12

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be met for

proper functioning of FLS Driver Component software.

ROM Section

FLS Driver Component
Library/ Object Files

RAM Section

\ 4

FLS Driver code related to
APIs are placed in this
memory. Segment Name:
FLS_PUBLIC_CODE_RAM

Segment Name:
FLS PRIVATE CODE RAM

Segment Name:
FLS_SAMPLE_CODE_RAM

Segment Name:
R_FCL_CODE_ROM

Segment Name:
R_FCL_CODE_RAM

Segment Name:
R_FCL_CODE_ROMRAM

Segment Name:
R_FCL_CODE_RAM_EX_PROT

Segment Name:
FLS_FAST_CODE_ROM

Segment Name:
RAM_UNSPECIFIED

Segment Name:
FLS CFG_DBTOC_UNSPECIFIED

Segment Name:
R_FDL_Text

Segment Name:
R_FDL_Const

Segment Name:

NOINIT_RAM_UNSPECIFIED

Segment Name:
R_FDL_Data

St S e -

Segment Name:
R_FCL_DATA

S

x

Segment Name:

FLS_PUBLIC_CODE_RAM

Segment Name:

FLS_PRIVATE_CODE_RAM

D= 5 D= P&

x
4

Segment Name:

FLS_SAMPLE_CODE_RAM

Segment Name:

X9 reserved_FCLCopy
X10 Segment Name:

NOINIT_RAM_32BIT

4
X11 Segment Name:
‘ RAM_1BIT
X12
Segment Name:
‘ FLS _BUFFER_CODE_RAM

LD e = I =P e =T EF =P = =S = =5 =

Figure 12-1 FLS Driver Component Memory Organization

47

Chapter 12

Memory Organization

48

ROM Sections:

FLS_PUBLIC_CODE_RAM (X1): This section consists of FLS Driver
Component internal functions and scheduler function that can be located in
code memory. This section is copied on to RAM by the GHS start-up routines.

FLS_PRIVATE_CODE_RAM (X2): This section consists of FLS Driver
Component APIs and FCL functions that can be located in code memory. This
section is copied on to RAM by the GHS start-up routines.

FLS_SAMPLE_CODE_RAM (X3): This section needs to be aligned at the
end of FLS code sections in RAM, for exception protection.

R_FCL_CODE_ROM (X4): This section needs to be aligned at the end of FCL
code sections in RAM, for exception protection. This section is copied to RAM
by FCL library internal mechanism.

R_FCL_CODE_RAM (X5): This section contains the code executed at the
beginning of self-programming. This code is executed at the original location,
e.g. internal Flash. The library initialization is part of this section

R_FCL_CODE_ROMRAM (X6): This section contains the FCL library. This
section is copied to RAM by FCL library internal mechanism.

R_FCL_CODE_RAM_EX PROT (X7): This section contains the FCL library.
This section is copied to RAM by FCL library internal mechanism or remains in
the ROM depending on FCL mode setting.

FLS FAST_CODE_ROM (X8): Interrupt functions of FLS Driver Component
code that can be located in code memory.

R_FDL_Text (X11): This section consists of the FDL code. This can be located
in code memory.

R_FDL_Const (X12): This section consists of the constants in ROM that are
used by FDL software component. This can be located in code memory.

RAM Sections: Following are the Ram sections mapped.

NOINIT_RAM_UNSPECIFIED (Y1): This section consists of the global RAM
variables that are used internally by FLS software component and other
software components. The specific sections of respective software
components will be merged into this RAM section accordingly.

R_FDL_Data (Y2): This section consists of the global RAM pointer variables
that are used by FDL software component. This can be located in data
memory.

R_FCL_DATA (Y3): This section consists of the global RAM pointer variables
that are used by FCL software component. This can be located in data
memory

FLS_PUBLIC_CODE_RAM (Y4): This section consists of FLS Driver

Memory Organization

Chapter 12

Component. These sections are copied on to RAM by the GHS start-up
routines.

FLS_PRIVATE_CODE_RAM (Y5): This section consists of FLS internal
software component. These sections are copied on to RAM by the GHS start-
up routines.

FLS_SAMPLE_CODE_RAM (Y6): This section needs to be aligned at the end
of the FLS code sections in RAM, for exception protection. These sections are
copied on to RAM by the GHS start-up routines

reserved_FCLCopy (Y7): This section is required for locating the underlying
FCL library component. It must be assured to locate this section at the RAM
start. This needs to be in-line with FLS configuration parameter
“FclIRamAddress”.

NOINIT_RAM_32BIT (Y8): This section consists of the global RAM variables
of 32-bit size that are used internally by FLS software component and other
software components. The specific sections of respective software
components will be merged into this RAM section accordingly.

RAM_1BIT (Y9): This section consists of the global RAM variables of 1-bit size
that are initialized by start-up code and used internally by FLS software
component and other software components. The specific sections of
respective software components will be merged into this RAM section
accordingly.

FLS BUFFER_CODE_RAM(Y10): This section consists of the global RAM
variables used for temporary buffer that are initialized by start-up code and
used internally by FLS Driver Component and other software components.
The specific sections of respective software components will be merged into
this RAM section accordingly.

RAM_UNSPECIFIED(X9): This section consists of the global RAM variables
that are generated by FLS Driver Component Generation Tool. This can be
located in data memory.

FLS_CFG_DBTOC_UNSPECIFIED(X10): This section consists of FLS Driver

Component database table of contents generated by the FLS Driver
Component Generation Tool. This can be located in code memory.

49

Chapter 12

Memory Organization

50

P1M Specific Information Chapter 13

Chapter 13 P1M Specific Information

P1M supports following devices:

e R7F701304
e R7F701305
e R7F701310
e R7F701311
e R7F701312
e R7F701313
e R7F701314
e R7F701315
e R7F701318
e R7F701319
e R7F701320
e R7F701321
e R7F701322
e R7F701323

13.1. Interaction between the User and FLS Driver

Component

The details of the services supported by the FLS Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

13.1.1. Translation header File

The translation header file supports following devices:
e R7F701304
e R7F701305
e R7F701310
e R7F701311
e R7F701312
e R7F701313
e R7F701314
e R7F701315
e R7F701318
e R7F701319
e R7F701320
e R7F701321
e R7F701322
e R7F701323

13.1.2. Services Provided By FLS Driver Component to the User

The FLS Driver Component provides the following functions to upper layers:
* Programming of code flash

* Erase memory sectors

* Read flash contents to the application memory

* Fastread immediate to the application memory without blankcheck.

51

Chapter 13

P1M Specific Information

52

Validate flash contents comparing with the application memory
Cancel the ongoing erase, write, read or compare requests.
Read the result of the last job

Blank check of flash memory sector.

* Read the status of the FLS Driver Component.

* Suspend the erase, write and read operation.

* Resume the erase, write and read operation.

13.1.3. Parameter Definition File
Table 13-1 PDF information for P1M
PDF files Devices
supported
R403_FLS P1M_04 05.arxml 701304, 701305

R403_FLS_P1M_10_to_15.arxml

701310, 701311, 701312, 701313,
701314, 701315

R403_FLS_P1M_18_to_23.arxml

701318, 701319, 701320, 701321,
701322, 701323

13.1.4.

ISR Functions for FLS module

The table below provides the list of handler addresses corresponding to the hardware unit ISR(S)
in FLS Driver Component. The user should configure the ISR functions mentioned below:

Table 13-2 Interrupt Functions For FLS Module

Interrupt Source

Name of the ISR Function

FLENDNM_ISR

FLS_FLENDNM_ISR
FLS_FLENDNM_CAT2_ISR

13.2. Sample Application

13.2.1 Sample Application Structure

The Sample Application is provided as reference to the user to understand the
method in which the FLS APIs can be invoked from the application. The
Sample Application is provided for three use-cases of only data flash or only
code flash or for both code flash and data flash supported. Depending on the
configured use-case, the Sample Application is built based on setting of the
flag 'FLS_ACCESS_FLAG'in ‘App_Fls_P1M_Sample.mak’ file to either
‘CODEFLASH_ACCESS’ or ‘DATAFLASH_ACCESS' or ‘CFDF_ACCESS’ by
the user during compile time in order to compile corresponding library source
files.

P1M Specific Information Chapter 13
Generic
AUTOSARTYPES COMPILER RHE50 TYPES

Devices

Common Device

FLS FLS STUE STUB STUB STUB

Sample Sample CET DEM SchM Memilf

Application Application

Figure 13-1 Overview Of FLS Driver Sample Application

The Sample Application of the P1M is available in the path

X1X\P1x\modules\fls\sample_application

X1X\P1x\modules\fls\definition\<AUTOSAR _version>\<SubVariant>\

\R403_FLS_P1M_04_05.arxml
\R403_FLS_P1M_10_to_15.arxml

\R403_FLS P1M_18_to_23.arxml

X1X\P1x\modules\fls\sample_application\<SubVariant>\

<AUTOSAR_version>\
\src\Fls_PBcfg.c
\include\fdl_descriptor.h
\include\Fls_Cfg.h
\include\Fls_Cbk.h

\config\App_FLS_P1M_701304_Sample.arxml
\config\App_FLS_P1M_701304_Sample.html
\config\App_FLS P1M_701304_Sample.one

\config\App_FLS P1M_ 701305 Sample.arxml
\config\App_FLS P1M_ 701305 Sample.html
\config\App_FLS P1M_ 701305 Sample.one

\config\App_FLS P1M_701310_Sample.arxml
\config\App_FLS P1M_701310_Sample.html
\config\App_FLS P1M_701310_Sample.one

\config\App_FLS P1M_701311 Sample.arxml
\config\App_FLS P1M_701311 Sample.html
\config\App_FLS P1M_701311 Sample.one

\config\App_FLS P1M 701312 _Sample.arxml
\config\App_FLS P1M_701312_ Sample.html
\config\App_FLS P1M 701312 Sample.one

\config\App_FLS P1M 701313 Sample.arxml
\config\App_FLS P1M_701313 Sample.html
\config\App_FLS P1M_701313 Sample.one

53

Chapter 13

P1M Specific Information

54

\config\App_FLS_P1M_701314_Sample.arxml
\config\App_FLS P1M_701314 Sample.html
\config\App_FLS P1M 701314 Sample.one

\config\App_FLS P1M_ 701315 Sample.arxml
\config\App_FLS P1M 701315 Sample.html
\config\App_FLS P1M 701315 Sample.one

\config\App_FLS P1M_701318_ Sample.arxml
\config\App_FLS P1M_701318 Sample.html
\config\App_FLS P1M_701318 Sample.one

\config\App_FLS P1M_ 701319 Sample.arxml
\config\App_FLS P1M_701319 Sample.html
\config\App_FLS P1M_701319 Sample.one

\config\App_FLS P1M_701320_Sample.arxml
\config\App_FLS_P1M_701320_Sample.html
\config\App_FLS P1M_701320_Sample.one

\config\App_FLS P1M_ 701321 Sample.arxml
\config\App_FLS P1M_701321 Sample.html
\config\App_FLS P1M_ 701321 Sample.one

\config\App_FLS P1M_701322_Sample.arxml
\config\App_FLS_P1M_701322_Sample.html
\config\App_FLS P1M_701322_Sample.one

\config\App_FLS_P1M_701323_Sample.arxml
\config\App_FLS_P1M_701323_Sample.html
\config\App_FLS_P1M_701323_Sample.one

In the Sample Application all the FLS APIs are invoked in the following
sequence:

The API FIs_GetVersioninfo is invoked to get the version Information of FLS
component with a variable of Std_VersioninfoType type, after the call of this
API the passed parameter will get updated with the FLS Driver Component
version details.

The API FlIs_lInit is invoked with config pointer. This API performs the
initialization of the FLS Driver Component. This will in turn calls R_FCL_Init()
and R_FCL_Copysections() which will initialize FCL internal variables. This
APl initializes all the elements (Global Variables) of Global structure.

The API FIs_Erase() is invoked to erase one or more complete Flash
Sectors.

The API FIs_Write() is invoked to write the one or more complete flash pages
to the flash device from the application data buffer

The API FIs_Read() is invoked to read the requested length of flash memory
and stores it in the application data buffer.

The API FIs_Compare() is invoked to compare the contents of an area of
flash memory with that of an application data buffer.

The API FIs_Cancel() is invoked to cancel an ongoing flash operations like
read, write, erase or compare job.

The API Fls_Getstatus() returns the FLS module state synchronously.

P1M Specific Information Chapter 13

Remark

* The API Fls_GetJobResult() returns the result of the last job synchronously.
» The API FIs_Setmode(), this API does not provide any functionality.

* The API FIs_Mainfunction() is invoked performs processing of the flash
Read, Erase, write or compare jobs. It's a scheduled function. The
Fls_Mainfunction() accepts only read, write, erase or compare job at a time.

» The API FIs_ReadImmediate() is invoked for reading of the flash memaory.
The data from flash memory (source address) is read to the data buffer
(Target address) of application without performing blank check before read.

» The API FIs_BlankCheck() is invoked to read the byte data from code flash
memory.

The API FIs_MainFunction needs to be called in a certain time interval
configured using the parameter "FIsCallCycle". Hence, the sample application
invokes the API ‘FIs_MainFunction’ periodically in a loop with sufficient
software delay. Since neither the interrupt vector table nor the interrupt handler
routines, which are normally located in the flash memory, are accessible while
self-programming is active, the timer interrupt is not used for this purpose. In
order to do so, interrupt acknowledges have to be re-routed to non-flash
memory. This can be achieved by suitably modifying the start-up code to
access the system registers (SW_CFG/SW_BASE respectively EH_CFG/
EH_BASE) to reroute the interrupt vector of the timer interrupt to the RAM
area.

13.2.2 Building Sample Application

13.2.2.1.Configuration Example

This section contains the typical configuration which is used for measuring
RAM/ROM consumption, stack depth and throughput details.
Configuration Details:
App_FLS_<SubVariant>_<Device_Name>_Sample.arxm|

13.2.2.2.Debugging the Sample Application

Remark

GNU Make utility version 3.81 or above must be installed and available in the
path as defined by the environment user variable “GNUMAKE” to complete the
build process using the delivered sample files.

Open a Command window and change the current working directory to “make”
directory present as mentioned in below path:
“external/X1X/P1x/common_family/make/<compiler>"

Now execute batch file SampleApp.bat with following parameters:

SampleApp.bat fls <KAUTOSAR_version> <Device_Name>

After this, the tool output files will be generated with the configuration as
mentioned is available in the path:

“X1X\P1x\modules\fls\sample_application\<SubVariant>\<AUTOSAR_version>
\config”

» After this, all the object files, map file and the executable file
App_FLS_P1M_Sample.out will be available in the output folder

(“X1X\P1x\modules\fls\sample_application\<SubVariant>\obj\<compiler>" in
this case).

* The executable can be loaded into the debugger and the sample application

55

Chapter 13

P1M Specific Information

56

can be executed.

Remark Executable files with *“.out’ extension can be downloaded into the target

Note :

hardware with the help of Green Hills debugger.

If any configuration changes (only post-build) are made to the ECU
Configuration Description files

“X1X\P1x\modules\fls\sample_application\<SubVariant>\<AUTOSAR_version>\
config\ App_FLS P1M_<Device_name>_Sample.arxml”

App_FLS_P1M_<Device_name>_Sample.arxml” the database alone can be
generated by using the following commands.
make —f App_FLS_<SubVariant>_Sample.mak generate_fls_config
make —f App_FLS_<SubVariant>_Sample.mak
App_FLS_<SubVariant>_Sample.s37

» After this, a flash able Motorola S-Record file App_FLS
App_FLS_<SubVariant>_Sample.s37_Sample.s37 is available in the
output folder.

1. <compiler> for example can be “ghs”.

2. <Device_Name> indicates the device to be compiled, which can be 701304,
701305, 701310, 701311, 701312, 701313, 701314, 701315, 701318,
701319, 701320, 701321, 701322, 701323.

3. <SubVariant> can be P1M.

4. <AUTOSAR_version> can be 4.0.3.

13.3. Memory and Throughput

13.3.1 ROM/RAM Usage

The details of memory usage for the typical configuration, with DET enabled as
provided in Section 13.3.2.1 Configuration Example are provided in this
section.

Table 13-3 ROM/RAM Details With DET

SI. No. | ROM/RAM Segment Name Size in bytes
for 701312

1. ROM ROM.FLS_PUBLIC_CODE_RAM 3040
ROM.FLS_PRIVATE_CODE_RAM 2312
ROM.FLS_APPL_CODE_RAM 1986
R_FCL_CODE_ROM 0
R_FCL_CODE_RAM 0
R_FCL_CODE_ROMRAM 0
R_FCL_CODE_RAM_EX_PROT 32
FLS_FAST_CODE_ROM 212

P1M Specific Information

Chapter 13

2. RAM reserved_FCLCopy 9216
FLS_PUBLIC_CODE_RAM 3040
FLS_PRIVATE_CODE_RAM 2312
FLS_APPL_CODE_RAM 1986
R_FCL_DATA 0
R_FDL_Data 84
NOINIT_RAM_UNSPECIFIED 4
RAM_UNSPECIFIED 44
FLS_BUFFER_CODE_RAM 100
Table 13-4 ROM/RAM Details Without DET

SI. No. | ROM/RAM | Segment Name Size in bytes

for 701312

1. ROM ROM.FLS_PUBLIC_CODE_RAM 3040
ROM.FLS_PRIVATE_CODE_RAM 2312
ROM.FLS_APPL_CODE_RAM 2012
R_FCL_CODE_ROM 0
R_FCL_CODE_RAM 0
R_FCL_CODE_ROMRAM 0
R_FCL_CODE_RAM_EX_ PROT 32
FLS_FAST_CODE_ROM 212

57

Chapter 13 P1M Specific Information
2. RAM reserved_FCLCopy 9216
FLS_PUBLIC_CODE_RAM 3040
FLS_PRIVATE_CODE_RAM 2312
FLS_APPL_CODE_RAM 2012
R_FCL_DATA 0
R_FDL_Data 84
NOINIT_RAM_UNSPECIFIED 4
RAM_UNSPECIFIED 44
FLS_BUFFER_CODE_RAM 100
Remark The section “reserved_FCLCopy” might not be the actual RAM area, but only
the ‘reserved’ area.
13.3.2 Stack Depth
The worst-case stack depth for FLS Driver Component is for the typical
configuration provided in Section 13.3.2.1 Configuration Example.
Table 13-5 Stack Depth Table
SIHL Device Name Stack Depth (in Bytes)
1. R7F701312 384
13.3.3 Throughput Details
The throughput details of the APIs for the configuration mentioned in the
Section 13.3.2.1Configuration Example are listed here. The clock frequency
used to measure the throughput is 80MHz for all APIs.
Table 13-6 Throughput Details Of The APIs
Sl. No. | APl Name U] TS 0 Remarks
seconds for
701312
1. Fls_Init 487.80 -
2. Fls_Erase 9.450 -
3. Fls_Write 9.630 -
4. Fls_Cancel 1.440 -
5. Fls_GetStatus 0.630 -
6. Fls_GetJobResult 0.630 -
7. Fls_Read 2.520 -
8. Fls_Compare 2.430 -

58

P1M Specific Information

Chapter 13

Sl. No.

APl Name

Throughput in p
seconds for
701312

Remarks

Fls_SetMode

NA

This API does not
provide any
functionality

10.

Fls_GetVersioninfo

0.540

11.

Fls_BlankCheck

5.940

12.

Fls_Readlmmediate

2.430

13.

Erase Operation

9.090

This is the time taken for
the complete erase
operation of 256 bytes
data length.

14.

Write Operation

9.990

This is the time taken

for the complete write

operation of 256 bytes
data length.

15.

Fls_BlankCheck operation

6.120

This is the time taken
for performing blank
check operation of
256 bytes data length.

16.

Fls_Readlmmediate

2.610

This is the time taken
for the complete fast
read operation of 256
bytes data length
without performing
blank check before
read.

17.

Read Operation

2.340

This is the time taken
for the complete read
operation of 256 bytes
data length.

18.

Compare Operation

2.520

This is the timetaken
for the complete
compare operation of
256 bytes data length.

59

Chapter 13

P1M Specific Information

Throughput in p

SI. No. | API Name Remarks
seconds for
701312
19. FLENDNM_ISR operation 8.550 This is the time taken
for the complete Erase
of 1 block data length.
9.360 This is the time taken
for the complete Write
of 1 word data length.
20 Fls_Suspend 38.430 -
21 Fls_Resume 6.587 -

60

Release Details

Chapter 14

Chapter 14 Release Details

FLS Driver Software

Version: 1.3.1

61

Chapter 14

Release Details

62

Revision History

SI.No. | Description Version Date
1. Initial Version 1.0.0 28-0Oct-2013
2. As per CR 066, below changes are made. 1.0.1 22-Jan-2014
1. The Figure "Component Overview of FLS Driver Component “is
alignment corrected.
2. FLS driver component version information is updated.
3. In chapter 6 Register Details are updated.
4. Chapter 2 is updated for referenced documents version.
5. Section 4.1 is updated for removing information about
“FIsWriteInternalVerify”.
6. Section 4.1 and 5 are updated to replace APl name
‘R_FCL_I_read_memory_u08’ by ‘FIs_CF_read_memory u08’.
7. Section 4.1, General is updated for adding information about time
out values of erase, read, write and blank check.
8. Section 4.2 is updated for removing Fls_LengthType restriction on
size as precondition.
9. Section 4.5 is updated for adding supervisor and user mode details
for added devices.
10. Section 13.1.1 is updated for adding the device names.
11. Section 13.2 is updated for assembler and linker details.
12. Section 13.3 is updated for naming convention change of
parameter definition files.
13. “FLS_E_PARAM_POINTER” is removed from Table11-1.
14. Section13.4 is updated for RAM/ROM usage details.
3. As per CR 107 Following changes are made: 1.0.2 02-Sep-2014

1. Chapter 2: ‘Reference document’ is updated.

2. Chapter 4: ‘Forethoughts’ is updated for Following:

+ Section 4.1 ‘General’ is updated for description.

+ Section 4.2 ‘Preconditions is updated for description to
add FIs_BlankCheck and FIs_Readlmmediate API.

- Section 4.3 ‘Data consistency’ is updated for description
to add macro for version.

« Section 4.4 ‘deviation List’ is updated to add
Fls_GetVersioninfo API.

« Section 4.4 ‘User mode and supervisor mode’: Table 4-2
is updated for ‘Fls_Cancel API’ and to add
‘FIs_BlankCheck’ and ‘FIs_Readimmediate’ API.

« Section 4.4: Table 4.3 is updated to add ‘FIs_Suspend’
and ‘FIs_Resume’ API.

3. Chapter 5: ‘Architecture Details’ is updated to add ‘FIs_Suspend’,
‘FIs_Resume’, ‘Fls_BlankCheck’ and ‘FIs_Readimmediate’ API.

4. Chapter 6: ‘Register Details’ is updated for register access.

5. Chapter 7 and Section 13.1.2 is updated to add ‘FIs_Suspend’,
‘FIs_Resume’, ‘FIs_BlankCheck’ and ‘FIs_Readimmediate’
services.

6. Chapter 8 is updated to add ‘FIs_Irq.h’ and ‘FIs_Irg.c’

7. Chapter 10 is updated for following:

Section 10.2 is updated to remove Fls_*VerifyType’ type
definition.

« Section 10.3 is updated to add ‘FIs_Suspend’,
‘FIs_Resume’, ‘FIs_BlankCheck’ and
‘Fls_Readimmediate’ API.

63

SI.No.

Description

Version

Date

8.

Chapter 12: ‘Memory Organization’:Figure 12-1 and desrcription is
updated to add ‘FLS_FAST_CODE_ROM’,
‘RAM_UNSPECIFIED’,'FLS_CFG_DBTOC_UNSPECIFIED’ and
‘FLS_BUFFER_CODE_RAM'.

Chapter 13 is updated for Following:

Chapter 13 is updated to remove R7F701300-
R7F701303, R7F701306- R7F701309 and to add
R7F701318- R7F701323 P1M supported devices.
Section 13.1.3 and section 13.1.4 are added for
parameter definition files and for ISR function
respectevely.

+ Section 13.2.1 is updated for compiler, Linker and
Assembler options.
Section 13.3 is updated for Sample Application path and
description to add ‘FIs_Readlmmediate’ and
‘Fls_BlankCheck’ API.

+ Section 13.4: ‘Memory and throughput’ is updated.

10. Chapter 14: ‘Release Details’ is updated for FLS Driver Version.

As per CR 31 Following changes are made:

N

Table 11-1 DET Errors of FLS Driver Component is updated.
Section 13.3.1 Sample Application Structure is updated.
Section 13.4.1 RAM/ROM details is updated.

Chapter 14 Release Details is updated to correct Chapter
heading.

Section 4.1 is updated to change the description from ‘F1L’ to
‘P1M'.

1.03

14-Oct-2014

As per CR 82 Following changes are made:

wnN

o gk

~

Section 4.5 is updated for user and supervisory mode.
Section 13.2.1 is updated for removal —c option.

Chapter 3 is updated for update in trxml file path of sample
application.

Page 64 is updated for header correction.

Section 13.1.2 is updated for suspend and resume services.
Chapter 5 is updated for page number and header.

Section 13.4.3 is updated for throughput.

104

02-Dec-2014

The following changes are made:

n

©oNOOOAW®

Chapter 2: ‘Reference document’ is updated

As part of device support activity for R7F701304, R7F701305,
R7F701313, R7F701315, R7F701318 to R7F701323 updated
sections 3.1.1, 13.1.1, 13.1.2, 13.3.1.

Updated version number and copyright year.

Updated section 13.4 for memory and throughput.

Removed section Compiler,Linker and Assembler in Chapter13.

Removed Test_Application_P1x.trxml path from Section 3.1.1.
Section 4.1 is updated for adding note in Forethoughts.
Chapter 12 is updated.

Section 4.2. Preconditions is updated.

10 Updated Tables 4-2 and 4-3 in Section 4.5.
11. Chapter 14: ‘Release Details’ is updated for FLS Driver Version

1.0.5

24-Apr-2015

64

65

AUTOSAR MCAL R4.0.3 User's Manual
FLS Driver Component Ver.1.0.5
Embedded User’s Manual

Publication Date: Rev.0.01, April 24, 2015

Published by: Renesas Electronics Corporation

LENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany

Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632

Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2015 Renesas Electronics Corporation. All rights reserved.
Colophon 1.0

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3
User’s Manual

RENESAS

Renesas Electronics Corporation

	Chapter 1 Introduction
	1.1 Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration and Build Process
	3.1. FLS Driver Component Make file
	3.1.1. Folder Structure

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. Data Consistency
	4.4. Deviation List
	4.5. User mode and supervisor mode

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction Between The User And FLS Driver Component
	7.1. Services Provided By FLS Driver Component To The User

	Chapter 8 FLS Driver Component Header And Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1. Imported Types
	10.1.1. Standard Types
	10.1.2. Other Module Types

	10.2. Type Definitions
	10.3. Function Definitions

	Chapter 11 Development And Production Errors
	11.1 FLS Driver Component Development Errors
	11.2 FLS Driver Component Production Errors

	Chapter 12 Memory Organization
	Chapter 13 P1M Specific Information
	13.1. Interaction between the User and FLS Driver Component
	13.1.1. Translation header File
	13.1.2. Services Provided By FLS Driver Component to the User
	13.1.3. Parameter Definition File
	13.1.4. ISR Functions for FLS module

	13.2. Sample Application
	13.2.1 Sample Application Structure
	13.2.2 Building Sample Application
	13.2.2.1.Configuration Example
	13.2.2.2.Debugging the Sample Application

	13.3. Memory and Throughput
	13.3.1 ROM/RAM Usage
	13.3.2 Stack Depth
	13.3.3 Throughput Details

	Chapter 14 Release Details

