

AUTOSAR MCAL R4.0.3
User‟s Manual

FLS Driver Component Ver.1.0.5

Embedded User‟s Manual

Target Device:

RH850/P1x

All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.

website (http://www.renesas.com).

www.renesas.com Rev.0.01 Apr 2015

http://www.renesas.com/
http://www.renesas.com/

2

3

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to

change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest

product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different

information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third

parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license,

express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas

Electronics or others.

 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and

information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third

parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the

technology described in this document for any purpose relating to military applications or use by the military, including but not limited

to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated

into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not

warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you

resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific".

The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You

must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any

Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics.

Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written

consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third

parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is

not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas

Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; auport and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti- crime

systems; safety equipment; and medical equipment not specifically designed for life support.

"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems

for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g.

excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation

characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages

arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific

characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas

Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against

the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a

Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and

malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of

microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each

Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that

regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics

assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas

Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this

document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority- owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

4

5

Abbreviations and Acronyms

Abbreviation / Acronym Description

ANSI American National Standards Institute

API Application Programming Interface

AUTOSAR AUTomotive Open System ARchitecture

BSW Basic SoftWare

DEM Diagnostic Event Manager

DET/Det Development Error Tracer

ECU Electronic Control Unit

EEPROM Electrically Erasable Programmable Read Only Memory

FCL Code Flash Library

FDL Data Flash Library

FLS FLaSh Driver

GNU GNU‟s Not Unix

HW HardWare

ID/Id Identifier

MCAL Microcontroller Abstraction Layer

NA Not Applicable

RAM Random Access Memory

ROM Read Only Memory

RTE Run Time Environment

SCHM/SchM Scheduler Manager

SW SoftWare

Definitions

Term Represented by

Sl. No. Serial Number

6

7

Table of Contents

Chapter 1 Introduction... 11

1.1 Document Overview ... 13

Chapter 2 Reference Documents .. 15

Chapter 3 Integration and Build Process ... 17

3.1. FLS Driver Component Make file .. 17

3.1.1. Folder Structure ... 17

Chapter 4 Forethoughts .. 19

4.1. General ... 19

4.2. Preconditions .. 21

4.3. Data Consistency .. 22

4.4. Deviation List .. 23

4.5. User mode and supervisor mode .. 23

Chapter 5 Architecture Details .. 27

Chapter 6 Registers Details ... 27

Chapter 7 Interaction Between The User And FLS Driver

Component .. 33

7.1. Services Provided By FLS Driver Component To The User ... 33

Chapter 8 FLS Driver Component Header And Source File

Description .. 35

Chapter 9 Generation Tool Guide ... 39

Chapter 10 Application Programming Interface 41

10.1. Imported Types ... 41

10.1.1. Standard Types .. 41

10.1.2. Other Module Types ... 41

10.2. Type Definitions .. 41

10.3. Function Definitions ... 42

Chapter 11 Development And Production Errors 43

11.1 FLS Driver Component Development Errors ... 43

11.2 FLS Driver Component Production Errors ... 44

Chapter 12 Memory Organization .. 47

Chapter 13 P1M Specific Information .. 51

13.1. Interaction between the User and FLS Driver Component ... 51

13.1.1. Translation header File .. 51

8

13.1.2. Services Provided By FLS Driver Component to the User 51

13.1.3. Parameter Definition File ... 52

13.1.4. ISR Functions for FLS module .. 52

13.2. Sample Application... 52

13.2.1 Sample Application Structure .. 52

13.2.2 Building Sample Application .. 55

13.2.2.1.Configuration Example ... 55

13.2.2.2.Debugging the Sample Application .. 55

13.3. Memory and Throughput ... 56

13.3.1 ROM/RAM Usage ... 56

13.3.2 Stack Depth .. 58

13.3.3 Throughput Details ... 58

Chapter 14 Release Details .. 61

9

List Of Figures

Figure 1-1 System Overview of FLS Driver Component in AUTOSAR MCAL Layer 11
Figure 1-2 System Overview Of AUTOSAR Architecture .. 12
Figure 5-1 FLS Driver Component Architecture .. 27
Figure 5-2 Component Overview Of FLS Driver Component .. 28
Figure 12-1 FLS Driver Component Memory Organization ... 47
Figure 13-1 Overview Of FLS Driver Sample Application ... 53

List of Tables

Table 4-1 FLS Driver Component Deviation List .. 23
Table 4-2 User mode and Supervisor mode details when Data Flash enabled 24
Table 4-3 User mode and Supervisor mode details When Code Flash enabled 25
Table 6-1 Register Details .. 27
Table 8-1 Description of the FLS Driver Component Files ... 36
Table 10-1 Fls_CommandType .. 41
Table 10-2 Fls_FlashType .. 41
Table 10-3 Function Definitions .. 42
Table 11-1 DET Errors of FLS Driver Component ... 43
Table 11-2 DEM Errors of FLS Driver Component .. 44
Table 13-1 PDF information for P1M .. 52
Table 13-2 Interrupt Functions For FLS Module ... 52
Table 13-3 ROM/RAM Details With DET ... 56
Table 13-4 ROM/RAM Details Without DET .. 57
Table 13-5 Stack Depth Table .. 58
Table 13-6 Throughput Details Of The APIs .. 58

10

Introduction Chapter 1

11

F
L
S

D

IO

A

D
C

 W

M

IC

U

F
le

x
R

a
y

C

A
N

L
IN

L
IN

In
te

rn
a
l E

E
P

R
O

M

In

te
rn

a
l F

las
h

E
x
t.

 na

l
 as

h

 M

C
o
re

P
o
w

e
r

U
n
it

M
C

U

W
a
tc

h
d

o
g

G
P

T

Chapter 1 Introduction

The purpose of this document is to describe the information related to FLS

Driver Component for Renesas P1x microcontrollers.

This document shall be used as reference by the users of FLS Driver

Component. The system overview of complete AUTOSAR architecture is

shown in the below Figure:

Micro control ler Drivers Memory Dri vers Communication Drivers I/O Drivers

Micro-

controller

Figure 1-1 System Overview of FLS Driver Component in AUTOSAR MCAL Layer

The FLS Driver Component is part of BSW which is accessible by RTE.

This RTE is a middle ware layer providing communication services for the

application software and thereby it is possible to map the application

software components between different ECUs.

The RTE provides the encapsulation of Hardware channels and basic

services to the Application Software Components. So it is possible to map

the Application Software-Components between different ECUs.

The Basic Software Modules are located below the RTE. The Basic

Software itself is divided into the subgroups: System Services, Memory,

Communication and IO Hardware-Abstraction. The Complex Drivers are

also located below the RTE. Among others, the Operating System (OS), the

Watchdog manager and the Diagnostic services are located in the System

Services subgroup. The Memory subgroup contains modules to provide

access to the non-volatile memories, namely Flash and EEPROM. Here the

flash operation will be handled by flash driver, this module uses a

underlying FCL and FDL SW libraries for accessing and programming of

flash.

On board Device Abstraction provides an interface to physical values for

AUTOSAR software components. It abstracts the physical origin of signals

(their paths to the hardware FLSs) and normalizes the signals with respect

to their physical appearance. The microcontroller driver provides services

for basic microcontroller initialization, power down functionality, reset and

microcontroller specific functions required from the upper layers.

 Chapter 1 Introduction

12

Figure 1-2 System Overview Of AUTOSAR Architecture

The FLS application software components are located at the top and can

gain access to the rest of the ECU and also to other ECUs only through the

RTE. This RTE is a middleware layer providing communication services for

the application software and thereby it is possible to map the application

software components between different ECUs.

This FLS Software Module is located below the RTE. The FLS Component

APIs are directly invoked by the application or RTE. The FLS Component is

responsible for erase/write/read/compare data on the code flash and data

flash memories.

The FLS component makes use of the FCL and FDL, which is an underlying

software library contains the FCL and FDL APIs to perform the activities like

accessing and programming the on-chip code flash and data flash

hardware. This means FCL and FDL offers all functions and commands

necessary to reprogram the application in a user friendly C language

interface.

The FLS Component layer provides the wrapper for the Code Flash and

Data Flash Library, which comprises of API for erase/write data to on-chip

code flash and data flash memory of the device. The FLS Component

conforms to the AUTOSAR standard and is implemented mapping to the

AUTOSAR FLS Software Specification.

FCL and FDL acts as a programming interface between the Flash memory

HW and higher level user applications; in this case it is the AUTOSAR FLS

module. The FCL and FDL offers all required functions to handle code flash

and data flash programming, that means programming the flash memory

without programming tools and during program execution. FCL and FDL

offer an easy- to-use interface to the internal firmware functionality. By

calling the FCL and FDL library functions from user program, the contents

of the flash memory can easily be rewritten in the field.

Application/RTE invoking

AUTOSTAR defined Flash operations

Flash Driver Software Components - FLS

Code Flash access layer / Data Flash

access Layer

Flash Hardware

Introduction Chapter 1

13

The functional parameters of FLS software components are statically

configurable to fit as far as possible to the real needs of each ECU.

1.1 Document Overview

The document has been segmented for easy reference. The table below

provides user with an overview of the contents of each section:

Section Contents

Section1 (Introduction) This section provides an introduction and overview of FLS Driver

Component.

Section 2 (Reference Documents) This section lists the documents referred for developing this document.

Section 3 (Integration And Build

Process)
This section explains the folder structure, Make file structure for FLS

Driver Component. This section also explains about the Make file

descriptions, Integration of FLS Driver Component with other

components, building the FLS Driver Component along with a sample

application.

Section 4 (Forethoughts) This section provides brief information about the FLS Driver Component,

the preconditions that should be known to the user before it is used,

diagnostic channel, limit check feature, sample and hold feature,

conversion time and stabilization time, DMA and ISR operations, data

consistency details, deviation list and user mode and supervisor mode.

Section 5 (Architecture Details) This section describes the layered architectural details of the FLS Driver

Component.

Section 6 (Registers Details) This section describes the register details of FLS Driver Component.

Section 7 (Interaction between

The User And FLS Driver

Component)

This section describes interaction of the FLS Driver Component with the

upper layers.

Section 8 (FLS Driver Component

Header And Source File

Description)

This section provides information about the FLS Driver Component

source files is mentioned. This section also contains the brief note on the

tool generated output file.

Section 9 (Generation Tool Guide) This section provides information on the FLS Driver Component Code

Generation Tool.

Section 10 (Application

Programming Interface)
This section explains all the APIs provided by the FLS Driver

Component.

Section 11 (Development And

Production Errors)
This section lists the DET and DEM errors.

Section 12 (Memory

Organization)
This section provides the typical memory organization, which must be

met for proper functioning of component.

Section 13 (P1M Specific

Information)
This section provides the P1M Specific Information.

Section 14 (Release Details) This section provides release details with version name and base

version.

 Chapter 1 Introduction

14

Reference Documents Chapter 2

15

Chapter 2 Reference Documents

Sl. No. Title Version

1. AUTOSAR_SWS_FlashDriver.pdf 3.2.0

2. r01uh0436ej0070_rh850p1x.pdf 0.70

 3. AUTOSAR_SWS_CompilerAbstraction.pdf 3.2.0

 4. AUTOSAR_SWS_MemoryMapping.pdf 1.4.0

 5. AUTOSAR_SWS_PlatformTypes.pdf 2.5.0

 6. AUTOSAR_BSW_MakefileInterface.pdf 0.3

 7. AUTOSAR BUGZILLA (http://www.autosar.org/bugzilla)
Note: AUTOSAR BUGZILLA is a database, which contains concerns raised

against information present in AUTOSAR Specifications.

 -

 8. Code Flash Library for RH850 devices (FCL Library) V2.00

9. Data Flash Library for RH850 devices (FDL Library) V2.00

http://www.autosar.org/bugzilla

 Chapter 2 Reference Documents

16

Integration And Build Process Chapter 3

17

Chapter 3 Integration and Build Process

In this section the folder structure of the FLS Driver Component is explained.

Description of the Make files along with samples is provided in this section.

Remark The details about the C Source and Header files that are generated by the

FLS Driver Generation Tool are mentioned in the

“AUTOSAR_FLS_Tool_UserManual.pdf”.

3.1. FLS Driver Component Make file

The Make file provided with the FLS Driver Component consists of the GNU

Make compatible script to build the FLS Driver Component in case of any

change in the configuration. This can be used in the upper level Make file (of

the application) to link and build the final application executable.

3.1.1. Folder Structure

The files are organized in the following folders:

Remark Trailing slash „\‟ at the end indicates a folder

X1X\common_platform\modules\fls\src\Fls.c
\Fls_Internal.c
\Fls_Ram.c
\Fls_Version.c
\Fls_Irq.c

X1X\common_platform\modules\fls\include\Fls.h
\Fls_Debug.h
\Fls_Internal.h
\Fls_PBTypes.h
\Fls_Ram.h
\Fls_Types.h
\Fls_Version.h
\Fls_Irq.h

X1X\P1x\modules\fls\src\fdl_descriptor.c

\fcl_descriptor.c

\r_fcl_hw_access.c

\r_fcl_hw_access_asm.850

\r_fcl_user_if.c

\r_fdl_hw_access.c

\r_fdl_user_if.c

Chapter 3 Integration And Build Process

18

X1X\P1x\modules\fls\include

\fdl_cfg.h
\r_fcl.h
\r_fcl_env.h
\r_fcl_global.h
\r_fcl_types.h
\r_fdl.h
\r_fdl_env.h
\r_fdl_global.h
\r_fdl_mem_map.h
\r_fdl_types.h
\r_typedefs.h

X1X\P1x\modules\fls\sample_application\<SubVariant>\make\ghs

\App_FLS_<SubVariant>_Sample.mak

X1X\P1x\modules\fls\sample_application\<SubVariant>\obj\<compiler>

(Note: For example compiler can be ghs.)

X1X\common_platform\modules\fls\generator\Fls_X1x.exe

X1X\P1x\common_family\generator
\Global_Application_P1x.trxml

\Sample_Application_P1x.trxml

\P1x_translation.h

X1X\P1x\modules\fls\generator

\R403_FLS_P1x_BSWMDT.arxml

X1X\P1x\modules\fls\user_manual
(User manuals will be available in this folder)

Notes:

1. <Compiler> can be ghs.
2. <Device_name> can be 701304, 701305, 701310, 701311, 701312, 701313,

701314, 701315, 701318, 701319, 701320, 701321, 701322, 701323.

3. <SubVariant> can be P1M.

4. <AUTOSAR_version> can be 4.0.3.

 Forethoughts Chapter 4

19

Chapter 4 Forethoughts

4.1. General
Following information will aid the user to use the FLS Driver Component

software efficiently:

• The start-up code is ECU specific. FLS Driver Component does not

implement the start-up code.

• Example code mentioned in this document shall be taken only as

a reference for implementation.

• All development errors will be reported to DET by using the API

Det_ReportError provided by DET.

• All production errors will be reported to DEM by using the API

Dem_ReportErrorStatus provided by DEM.

• The FLS Driver Component is developed supports only on-chip ROM

and no external devices are considered. Hence the parameters related

to external devices are ignored by the Generation Tool.

• The FLS Driver Component does not provide functionalities for setting of

protection flags, boot cluster size, swapping of boot block and flashing of

boot block and they are out of scope for FLS Driver Component

implementations.

• Program execution from Flash ROM is prohibited during flash
programming.

Therefore all FLS Components are located in RAM. The FLS

components will be copied from Flash ROM to RAM during the startup.

The FLS user has to assure that the application for programming control

is also located to

RAM area during ongoing flash programming operations.

• The FLS Driver Component‟s job processing function (Fls_MainFunction)

is a polled function.

• Fls_SetMode does not provide any functionality to the user. Since there

are no different flash memory access modes available. This API shall

only be a dummy function.

• The configurations provided for fast mode operation are ignored by the

Generation Tool and only configurations for normal mode operations are

accepted as the underlying device and the FCL and FDL doesn‟t provide

any functionality.

• The Fls_Erase() API computes the sectors that need to be erased based

on the provided target address and length. When DET is enabled the

error will be reFLSed if the length of the bytes to be erased is not in

multiples of flash sector size.

• The configuration parameter FlsMaxEraseNormalMode which specifies

the maximum data can be erased in one cycle of Fls_MainFunction() for

data flash. The value for the parameter FlsMaxEraseNormalMode should

be in multiples of data flash sector size.

• Fls_CF_read_memory_u08() and R_FDL_FCUFct_ReadOperation() will

read the data from the flash memory depending on configuration of

parameters FlsMaxReadNormalMode and FlsMaxCFReadNormalMode

which specifies maximum data can be read in one cycle of

Fls_MainFunction().

• Maximum value of FlsMaxReadNormalMode and
FlsMaxCFReadNormalMode parameters specifies the size of a
temporary buffer in RAM which is used when Fls_Read and
Fls_Compare are called. The resulting RAM consumption has to be
considered.

• R_FCL_I_write_memory_u32() and R_FDL_I_write_memory_u32()

writes the data from target buffer to flash addresses depending on

configuration of parameters FlsMaxWriteNormalMode and

Chapter 4 Forethoughts

20

FlsMaxCFWriteNormalMode which specifies maximum data can be

written in one cycle of Fls_MainFunction().

• The length of the data that has to be programmed on to the flash should

be in multiples of flash page. The FLS Driver Component does not pad

bytes if the length is not in multiples of flash page. It is the responsibility

of the application to pad bytes such that the length of the data is in

multiples of flash page.

• The normal write verification using the direct memory read access is

performed when DET is enabled.

• The processing of blank check operation will be applicable for Data flash

only since no supporting APIs are in Code Flash Library.

• The component will support only the user mode of flash memory. Internal

mode is not in the scope of this implementation.

• During activated flash environment, the access to flash is not possible.

Hence the user should ensure that all the application and supporting

components code that needs to be executed during flash operation need

to locate in RAM.

• The device supports servicing of interrupts during self-programming.

During activated flash environment, the interrupt vector address in the

flash will not be available. The interrupt vectors can be relocated to RAM

during flash programming. For details please refer Exception Handling

Address Switching Function in the according device CPU user manual.

• The FLS Driver Component will only invoke the call back notification

functions. However, the implementation of the call back functions is the

responsibility of the upper layer.

• The configuration parameter „FlsFclRamAddress‟ minimum range is

0xFEDE0000 and the maximum range is „0xFEDFF4C8‟ instead of

„0xFEDFFFFF‟ (RAM end address) as per device specification. Since the

FCL routines are copied to RAM location during initialization. The RAM

size required for FCL routines is 0xB38 bytes. The maximum range is

provided with consideration of RAM size required for FCL routines.

• The user should ensure while configuring the parameter

„FlsFclRamAddress‟ value that the RAM area should not be effected the

RAM area used for FLS driver RAM memory sections.
• When the parameter „FlsTimeoutMonitoring‟ is configured as true then

the timeout values for Erase, Write, Read and blank check are
generating based on the parameters „FlsCFEraseTime‟,
„FlsCFWriteTime‟ and „FlsCFReadTime‟ and the values configured for
„FlsMaxCFEraseNormalMode‟, „FlsMaxCFWriteNormalMode‟ and
„FlsMaxCFReadNormalMode‟ for code flash. Time out values are
generating based on the parameters „FlsEraseTime‟, „FlsWriteTime‟ and
„FlsReadTime‟, „FlsBlankCheckTime‟ and the values configured for
„FlsMaxEraseNormalMode‟, „FlsMaxWriteNormalMode‟,
„FlsMaxReadNormalMode‟ for data flash.

• FLS driver supports three flash programming modes: Code Flash only

(CF), both Code Flash and Data Flash (CFDF) and Data Flash only (DF).

The flash programming mode can be configured via parameter

"FlsAccess". The first two programming modes (CF, CFDF) are relevant

for flash bootloader only. User application shall not program Code Flash

during system runtime. From safety point of view FLS module in

AUTOSAR BSW shall not include Code Flash programming functionality

and shall supFLS Data Flash access only. Note: Flash bootloader is so

far out of scope of AUTOSAR. User is responsible to verify and use FLS

driver with proper configurations according to use-cases.

• Fls_Cancel Api will not affect/cancel the Fls_Suspend or Fls_Resume

operations.

• In Fls_Suspend the timeout value for R_FDL_Handler will be 300

microseconds at 200MHz.

 Forethoughts Chapter 4

21

• Data Flash Memory Read Cycle Setting Register (EEPRDCYCL) is used to

specify the number of wait cycles to be inserted when reading the data in

the data flash. The initial value of the register is taken by default. If required

user application shall set this register as per P1M device user manual.

• The file Interrupt_VectorTable.c provided is just a Demo and not all

interrupts will be mapped in this file. So the user has to update the

Interrupt_VectorTable.c as per his configuration.

4.2. Preconditions

Following preconditions have to be adhered by the user, for proper

functioning of the FLS Driver Component:

• The user should ensure that FLS Driver Component API requests are

invoked in the correct and expected sequence and with correct input

arguments.

• Validation of input parameters is done only when the static configuration

parameter FLS_DEV_ERROR_DETECT is enabled. Application should

ensure that the right parameters are passed while invoking the APIs when

FLS_DEV_ERROR_DETECT is disabled.

• A mismatch in the version numbers will result in compilation error.
Ensure that the correct versions of the header and the source files are
used.

• The files Fls_Cfg.h, fcl_descriptor.h, fcl_cfg.h, Fls_Cbk.h, fdl_descriptor.h,

and Fls_PBcfg.c generated using FLS Generation Tool have to be linked

along with FLS Driver Component source files.

• The FLS Driver Component needs to be initialized by calling Fls_Init()
before calling any other Fls functions.

• Values for production code Event Ids should be assigned externally by the

configuration of the DEM.

• The Fls_MainFunction() should be invoked regularly by the Basic

Scheduler. Though not specified by AUTOSAR, calling Fls_MainFunction

by polling mechanism is also possible. Ensure that the FLS Driver

Component is initialized before enabling the invocation of this scheduled

function to avoid reporting of a DET error when enabled.

• It is prohibited to call user code in ROM or FCL functions, which need

ROM execution (i.e. Fls_Init()) during activated flash environment, this

means during code flash programming operations. In case of ROM

execution during code flash programming fatal error occurs.

• A blank check pass does not confirm that it is possible to write to this word

(4 Bytes). Also partly written/erased words may have a blank check pass

but write is not allowed under this condition. A blank check fail does not

confirm a stable read value. Even though parts of a word are at least

partly written, random read data are still possible, so are ECC error

indications for single error corrections and double error detection.

• Due to the above shown limitations the information which can be given by

Fls_BlankCheck, either passing or failing, is limited. It cannot be used to

determine the current state of a flash cell in a meaning full way without

additional information obtained by other means. The blank check should

only be used to confirm or check some flow status but should not be used

to determine if a flash cell can be read or written. FLS022, FLS055 from

AUTOSAR Specification of Flash Driver are not fulfilled here because

blank check itself is not able to identify erasure state of flash cell which is

ready for write operation. Please refer to application note document

"RV40F DataFlash Usage" for more details about blank check and usage

hints.

• Fls_ReadImmediate API should not be used to read blank cells. User

application shall handle the errors associated with blank cell read using

Fls_ReadImmediate API.

Chapter 4 Forethoughts

22

• Calling FLS functions, especially Cancel/Suspend/Resume/MainFunction

Apis by a higher priority ISR must be prevented by upper layer to avoid

possible re-entrancy issue.

• Interrupt mode supports Fls_Erase, Fls_Write APIs on Data Flash only.

• The watchdog timer does not stop during the execution of the FCL.

• It is not possible to change the content of the request structure during

command operation. If request data is changed during command

operation, the library will crash.

• Before executing a write operation, please make sure the given address

range is erased.

• If a cancel request is accepted, during an on-going write or erase

operation and a previous operation is already suspended, then both

operations will be cancelled.

• Cancel and suspend/resume operations are not allowed in case of two

library instances as the effect is not evaluated.

• Standby is allowed but both instances have to consider that wakeup is

required before continuing.

• Correct frequency configuration is essential for Flash programming

quality and stability. Wrong configuration could lead to loss of data

retention or Flash operation fail. If the CPU frequency is a fractional

value, round up the value to the nearest integer. The clock reference of

FLS driver is taken from the CPU clock.Do not change the CPU

frequency during operation. If the frequency has to be changed,

reinitialize the FLC with proper CPU frequency.

• All functions are not re-entrant. So, re-entrant calls of any FCL function

must be avoided.

• It is not possible to modify the Code Flash in parallel to a modification of

the Data Flash or vice versa due to shared hardware resources.

• If a cancel request is accepted, during an on-going write, erase, or blank

check operation and aprevious operation is already suspended, then

both operations will be cancelled.

• It is not always possible to nest suspend and/or stand-by.

E.g: Any operation ► suspend ► suspend – is not possible.

Any operation ► stand-by ► stand-by – is not possible.

Any operation ► stand-by ► suspend – is not possible.

Write or Erase ► suspend ► Erase operation – is not possible

Write operation ► suspend ► other Write operation – is not possible

Any operation ► suspend ► other operation ► suspend – is not

possible

4.3. Data Consistency
To support FLS the reentrancy and interrupt services, the FLS Software

component will ensure the data consistency while accessing their own

RAM storage or hardware registers. The FLS module will use below macro

for respective higher and lower version.

#if (FLS_AR_VERSION == FLS_AR_HIGHER_VERSION)

#define FLS_ENTER_CRITICAL_SECTION (Exclusive_Area)

SchM_Enter_Fls_##Exclusive_Area()

#define FLS_EXIT_CRITICAL_SECTION (Exclusive_Area)

SchM_Exit_Fls_##Exclusive_Area()

#elif (FLS_AR_VERSION == FLS_AR_LOWER_VERSION)

#define FLS_ENTER_CRITICAL_SECTION (Exclusive_Area)

SchM_Enter_Fls(Exclusive_Area)

 Forethoughts Chapter 4

23

#define FLS_EXIT_CRITICAL_SECTION (Exclusive_Area)

SchM_Exit_Fls(Exclusive_Area)

#endif

The following exclusive areas along with scheduler services are used to

provide data integrity for shared resources:

 FLS_DRIVERSTATE_DATA_PROTECTION

4.4. Deviation List

Table 4-1 FLS Driver Component Deviation List

Sl. No.

Description
AUTOSAR

Bugzilla

1. The fast mode parameters „FlsMaxReadFastMode‟ and

„FlsMaxWriteFastMode‟ of the container „FlsConfigSet are
unused.

-

2. The parameters „FlsAcLoadOnJobStart‟ and
„FlsUseInterrupts‟ of the container „FlsGeneral‟ is unused.

-

3. The flash access routines are not placed into a separate

C-module like 'Fls_ac.c'.
-

4. The flash access code is not loaded to RAM on job start. -

5. The parameters „FlsDefaultMode‟ and „FlsProtection‟,
FlsAcWrite‟ and „FlsAcErase‟ of the container „FlsConfigSet‟
are unused.

-

6. The parameters „FlsAcLocationErase‟, „FlsAcLocationWrite‟,
„FlsAcSizeErase‟ and „FlsAcSizeWrite‟ of the container
„FlsPublishedInformation‟ are unused.

-

7. The component will support only the on-chip flash memory.
External flash is not in the scope of this implementation.

-

8. FLS_E_READ_FAILED_DED error code will be reported to

DEM if read job is failed when double bit ECC error is

generated.

-

9. The API Fls_GetVersionInfo is implemented as macro

without DET error FLS_E_PARAM_POINTER.

-

4.5. User mode and supervisor mode

The below table specifies the APIs which can run in user mode, supervisor

mode or both modes

Chapter 4 Forethoughts

24

 Table 4-2 User mode and Supervisor mode details when Data Flash enabled

Sl. No API Name User Mode Supervisor
Mode

Known limitation in User mode

1

Fls_Init

-

x

The Fls_Init is failing in User

mode because the Library

initialization R_FDL_Init is failing

while executing the API's

R_FDL_IFct_ExeCodeInRAM

which is located in

r_fdl_hw_access.c file. This

function will execute from the

RAM and is fails due to ICCTRL

have access permission in only

supervisor mode.

2
.

Fls_Read x x -

3
.

Fls_SetMode

4
.

Fls_Write x x -

5 Fls_Cancel x x -

6
.

Fls_GetStatus x x -

7 Fls_GetJobResult x x -

8
.

Fls_Erase x x -

9
.

Fls_Compare x x -

10
Fls_GetVersionInfo

x x -

11 Fls_MainFunction
x x -

12 Fls_BlankCheck x x -

13 Fls_ReadImmediate
x x -

12. Fls_Suspend
x x -

13. Fls_Resume x x -

 Forethoughts Chapter 4

25

 Table 4-3 User mode and Supervisor mode details When Code Flash enabled

Sl. No API Name User Mode Supervisor
Mode

Known limitation in User mode

1

Fls_Init

- x The Fls_Init is failing in User mode

because the Library initialization

R_FCL_Init is failing while

executing the library functions in

RAM. This is because the function

“R_FCL_FCUFct_PrepareEnviron

ment" and internally calls the

function

"R_FCL_FCUFct_Clear_Cache"

which clears the flash cache. The

"R_FCL_FCUFct_Clear_Cache"

function will execute STSR

instruction (store contents of

system register) for storing

contents of ICCTRL (instruction

cache control) to system register.

Since the ICCTRL have the access

permission in only supervisor mode

and is fails in user mode.

2
.

Fls_Read x x -

3 Fls_SetMode

4
.

Fls_Write x x -

5
.

Fls_Cancel x x -

6
.

Fls_GetStatus x x -

7
.
.

Fls_GetJobResult x x -

8
.

Fls_Erase x x -

9
.

Fls_Compare x x -

 10 Fls_GetVersionInfo x x -

11

Fls_MainFunction

- x The Fls_MainFunction is failing in

User mode because it will process

all internal functions which will

execute the R_FCL_Handler and

_R_FCL_Execute functions in

RAM. This is because the function

"R_FCL_FCUFct_HandleMultiOper

ation" and internally calls the

function

"R_FCL_FCUFct_Clear_Cache"

which clears the flash cache. The

"R_FCL_FCUFct_Clear_Cache"

function will execute STSR

instruction (store contents of

system register) for storing

contents of ICCTRL (instruction

cache control) to system register.

Since the ICCTRL have the access

permission in only supervisor mode

and is fails in user mode.

Chapter 4 Forethoughts

26

 Architecture Details Chapter 5

27

Chapter 5 Architecture Details

The FLS Software architecture is shown in the following figure. The FLS user
shall directly use the APIs to configure and execute the FLS conversions:

Figure 5-1 FLS Driver Component Architecture

The basic architecture of the FLS Driver Component is illustrated in the

following Figure:

Application/RTE invoking

AUTOSTAR defined Flash operations

Flash Driver Software Components - FLS

Code Flash access layer / Data Flash

access Layer

Flash Hardware

Chapter 5 Architecture Details

28

Application layer

Fls_GetVersionInfo() Fls_Read() Fls_Co

mpare(

)

Fls_GetJobResult()

Fls_GetStatus()

Fls_Can

cel()

Fls_Write() Fls_Erase()

Fls_SetMode()

Fls_Init()

Fls_MainFunction()

Return

s

withou

t any

functio

nality

Return

s

version

inform

ation

Fls_Ge

nCom

mand

=

FLS_C

OMM

AND_

READ

Fls_Ge

nCom

mand

=

FLS_C

OMM

AND_

COMP

ARE

Compare bytes

in buffer with

flash memory

R_FCL_I

nit ()

R_FC

L_Cop

ySecti

ons ()

Return

s the

status/r

esult

R_FDL_

Init ()

Cancels

the

current

ongoing

job

Fls_Ge

nCom

mand

=

FLS_C

OMM

AND_

WRIT

R_FCL_Execute

R_FCL_Handler

R_FDL_Execute

R_FDL_Handler

Fls_GenC

ommand

=

FLS_CO

MMAND

_ERASE

FLS Driver layer

FDL layer FCL layer

Micro Controller

Figure 5-2 Component Overview Of FLS Driver Component

The internal architecture of FLS Driver Component is shown in the above

figure. The FLS Driver Component Software Component provides services for:

The FLS Driver Component is divided into the following sub modules based on

the functionality required:

• Initialization
• Erasing the flash memory
• Writing to the flash memory
• Reading the flash memory
• Fast Read to the application memory without performing blank check
• Validating contents of flash memory
• Cancellation of Request
• Reading result and status information
• Module version information
• Blank check of flash memory
• Job Processing
• Fls_Suspend suspends the ongoing job.
• Fls_Resume performs the resume of previous suspended job.

 Architecture Details Chapter 5

29

Initialization

The initialization sub-module provides the service for initialization of the flash

driver and initializes the global variables used by the FLS Component. FCL

initialization API (R_FCL_Init) will be used for successful initialization of

internal code flash programming environment and internal variables. After

successful FCL initialization, R_FCL_Copysections function will be called for

copying the FCL routines to RAM. FDL initialization API (R_FDL_Init) will be

used for successful initialization of internal data flash programming

environment and internal variables.

The API related to this sub-module is Fls_Init().

Flash Memory Erasing Module

This sub-module provides the service for erasing the blocks of the flash

memory. The request will be processed by the job processing function

Fls_MainFunction(). In this job processing function the FCL library functions

R_FCL_Execute and R_FCL_Handler are called to erase the requested

code flash memory blocks. The FDL library functions R_FDL_Execute and

R_FDL_Handler are called to erase the requested data flash memory blocks.

In single cycle of Fls_MainFunction() call, R_FCL_Handler() erase the

number of code flash memory blocks of flash memory depending on

configuration of parameter FlsMaxCFEraseNormalMode and

R_FDL_Handler() erase the number of data flash memory blocks of flash

memory depending on configuration of parameter FlsMaxEraseNormalMode.

The job is processed till the requested numbers of blocks are erased in the

flash memory.

The API related to this sub-module is Fls_Erase().

Flash Memory Reading Module

This sub-module provides the service for reading the contents of the flash

memory. The request will be processed by the job processing function

Fls_MainFunction (). In this job processing function blank check for the

specified words will be initiated first. If the cell is blank then the application

buffer will be filled with the value specified by the parameter

„FlsErasedValue‟. If the cell is not blank then reading of the specified words

from the Flash memory will be initiated by calling the FCL or FDL library

function. This function reads the specified number of words from consecutive

Flash addresses starting at the specified address and writes it into a buffer.

In single cycle of Fls_MainFunction() call, R_FDL_FCUFct_ReadOperation

will read the data from the data flash memory and

Fls_CF_read_memory_u08 will read byte data from code flash memory

depending on configuration of parameter FlsMaxReadNormalMode for data

flash and FlsMaxCFReadNormalMode foe code flash. The job is processed

till the requested bytes of length are copied into the application buffer.

The API related to this sub-module is Fls_Read ().

Flash Memory Writing Module

This sub-module provides the service for writing to the flash memory. The

request will be processed by the job processing function Fls_MainFunction().

In this job processing function the writing of specified number of data bytes

from buffer to flash memory will be initiated by calling either the FCL or FDL

library function. These functions write the specified number of words from

buffer to consecutive Flash addresses starting at the specified address. In

single cycle of Fls_MainFunction() call, either R_FCL_Handler() or

R_FDL_Handler() writes the data from target buffer to flash addresses

depending on configuration of parameter FlsMaxWriteNormalMode for data

Chapter 5 Architecture Details

30

flash and FlsMaxCFWriteNormalMode for code flash. The job is processed

till the requested number of bytes is written to the flash memory.

The API related to this sub-module is Fls_Write().

Flash Memory Contents Validating Module

This sub-module provides the service for comparing the contents of the flash

memory with the application buffer. The request will be processed by the job

processing function Fls_MainFunction (). This compare operation will be

implemented by calling either FCL or FDL library function. These functions

initiate reading of defined words in flash and store it in the temporary buffer.

Then actual data in application buffer will be compared with data in

temporary buffer. Here data will be compared in terms of bytes. In single

cycle of Fls_MainFunction() call, either R_FCL_Handler() or

R_FDL_Handler() will read the data from the flash memory depending on

configuration of parameter FlsMaxReadNormalMode for data flash and

FlsMaxCFReadNormalMode for code flash. The job is processed till the

requested number of bytes are read and compared with the application

buffer.

The API related to this sub-module is Fls_Compare().

Request Cancellation Module

This sub-module provides the service for cancelling an ongoing memory

request. After aborting the current ongoing memory operations this sub-

module prepares internal variables to accept the next Read/Write/Erase/

Compare command. The cancel request will be synchronous and a new job

can be requested immediately after the return from this function.

The API related to this sub-module is Fls_Cancel().

Result Reading And Status Information Providing Module

This sub-module provides the services for getting the current status of the

module or results of the initiated job request or the response to previously

issued command and return the current status of the current job execution. All

these services will be done by evaluating either FCL or FDL functions status

and error codes from FCL or FDL library.

The APIs related to this sub-module are Fls_GetStatus, Fls_GetJobResult.

Software Component Version Info Module

This module provides API for reading Module Id, Vendor Id and vendor

specific version numbers.

The API related to this sub-module is Fls_GetVersionInfo().

Job Processing Module

The command requests are always processed by the main function

(Fls_MainFunction) that is invoked cyclically by the scheduler. This function

will invoke the status check of the FCL or FDL library while processing the

flash operations requests. This API derives the internal driver status.

Completion of the flash operation needs to be checked in order to continue the

reprogramming flow.

Fls_BlankCheck
This sub-module provides the service for performing blank check of the flash

memory words. The request will be processed by the job processing function

 Architecture Details Chapter 5

31

Fls_MainFunction(). This function is invoked to perform the blank check of

the single word. The FDL library function R_FDL_Handler is called to

perform the requested data flash memory word blank check. The job is

processed till the requested numbers of words are performed with the blank

check in the flash memory.

The API related to this sub-module is Fls_BlankCheck().This API is

applicable for Data Flash only.

Fls_ReadImmediate

This sub-module provides the service for reading the contents of the flash

memory. The request will be processed by the job processing function

Fls_MainFunction (). This function reads the specified number of words from

consecutive Flash addresses starting at the specified address and writes it

into a buffer. In single cycle of Fls_MainFunction() call, R_FDL_Handler will

read the data from the data flash memory. The data from flash memory

(source address) is read to the data buffer (Target address) of application

without performing blank check before read. The job is processed till the

requested bytes of length are copied into the application buffer.

The API related to this sub-module is Fls_ReadImmediate (). This API is

applicable for Data Flash only.

Fls_Suspend

This sub-module provides the service of suspending the ongoing job.
Fls_Suspend is synchronous API. Fls_Suspend will block CPU (by calling FDL
handler) for certain of time to perform suspend operation
(R_FDL_SuspendRequest) and confirm the suspended status of the FDL
library.

Fls_Resume

This sub-module provides the service of resume of previous suspended job.
Fls_Resume is synchronous API. Fls_Resume acknowledges the resume
request by calling R_FDL_ResumeRequest command and it returns
immediately.

Chapter 5 Architecture Details

32

Registers Details Chapter 6

31

Chapter 6 Registers Details

This section describes the register details of FLS Driver Component.

Table 6-1 Register Details

API Name
Registers

Used

Register

Access

8/16/32

bits

Register

Access

R/W/RW

Config

Parame

ter

Macro/Variable

Fls_SetFLMD0

FLMDCNT 32 RW - FLS_FLMDCNT

FLMDPCM

D

32 RW - FLS_FLMDPCMD

Fls_SetFHVE

FHVE3 32 RW - FLS_FHVE3

FHVE15 32 RW - FLS_FHVE15

Chapter 6 Registers Details

32

Interaction Between The User And FLS Driver Component Chapter 7

33

Chapter 7 Interaction Between The User And FLS
Driver Component
The details of the services supported by the FLS Driver Component to the

upper layers users and the mapping of the channels to the hardware units is

provided in the following sections:

7.1. Services Provided By FLS Driver Component To The
User

The FLS Driver Component provides the following functions to upper layers:

• Programming of code flash
• Writing contents to data flash memory
• Erase flash memory sectors
• Read flash contents to the application memory
• Fast Read to the application memory without performing blank check
• Validate flash contents comparing with the application memory
• Cancel the ongoing erase, write, read or compare requests.
• Read the result of the last job
• Blank check of flash memory
• Read the status of the FLS Driver Component.
• Fls_Suspend suspends the ongoing job.
• Fls_Resume performs the resume of previous suspended job.

Chapter 7 Interaction Between The User And FLS Driver Component

34

FLS Driver Component Header And Source File Description Chapter 8

35

Chapter 8 FLS Driver Component Header And
Source File Description

This section explains the FLS Driver Component‟s C Source and C Header

files. These files have to be included in the project application while integrating

with other modules.

The C header file generated by FLS Software Generation Tool:

For only Code Flash access

• Fls_Cbk.h
• Fls_Cfg.h
• fcl_descriptor.h
• fcl_cfg.h

For only Data Flash access
• Fls_Cbk.h
• Fls_Cfg.h
• fdl_descriptor.h

For both Code Flash and Data Flash access
• Fls_Cbk.h
• Fls_Cfg.h
• fcl_descriptor.h
• fcl_cfg.h
• fdl_descriptor.h

The C source file generated by FLS Driver Generation Tool:

• Fls_PBcfg.c

The FLS Driver Component C header files:
• Fls.h
• Fls_Debug.h
• Fls_Internal.h
• Fls_Types.h
• Fls_PBTypes.h
• Fls_Version.h
• Fls_Ram.h
• Fls_Irq.h

The FLS Driver Component source files:
• Fls.c
• Fls_Internal.c
• Fls_Ram.c
• Fls_Version.c
• Fls_Irq.c

The FLS specific C header files:
• Compiler.h
• Compiler_Cfg.h
• MemMap.h
• Platform_Types.h

The FCL and FDL library header and source files:
• r_fcl.h
• r_fcl_env.h
• r_fcl_global.h

Chapter 8 FLS Driver Component Header And Source File Description

36

• r_fcl_types.h
• r_fdl.h
• r_fdl_env.h
• r_fdl_global.h
• r_fdl_types.h
• r_fdl_mem_map.h
• fdl_cfg.h
• r_typedefs.h
• r_fdl_user_if.c
• r_fdl_hw_access.c
• r_fcl_user_if.c
• r_fcl_hw_access_asm.850
• r_fcl_hw_access.c
• fcl_descriptor.c
• fdl_descriptor.c

The description of the FLS Driver Component files is provided in the table

below:

 Table 8-1 Description of the FLS Driver Component Files

File Details

Fls_Cfg.h This file is generated by the FLS Software Generation Tool for various

FLS Driver Component pre-compile time parameters. The macros and

the parameters generated will vary with respect to the configuration in the

input ECU Configuration description file. This file also contains the handles

for Fls Pin configuration set.

Fls_Cbk.h This file contains declarations of notification functions to be used by the

application. The notification function name can be configured.

fcl_cfg.h This file contains the device specific parameter that needs to be

configured for different devices.

Fls_PBcfg.c This file contains post-build configuration data. The structures

related to FLS Initialization are provided in this file. Data structures

will vary with respect to parameters configured.

Fls.h This file provides extern declarations for all the FLS Driver Component

APIs. This file provides service Ids of APIs, DET Error codes and type

definitions for FLS Software initialization structure. This header file shall be

included in other modules to use the features of FLS Driver Component.

Fls_Debug.h This file provides Provision of global variables for debugging purpose.

Fls_Internal.h This file contains the prototypes for internal functions of Flash Wrapper

Component.

Fls_Types.h This file contains the common macro definitions and the data types

required internally by the FLS software component.

Fls_Ram.h This file contains the extern declarations for the global variables that are

defined in Fls_Ram.c file and the version information of the file.

Fls_Version.h This file contains the macros of AUTOSAR version numbers of all modules

that are interfaced to FLS.

Fls_Irq.h This file contains the external declaration for the interrupt functions used

by FLS Driver Module.

Fls.c This file contains the implementation of all APIs.

Fls_Ram.c This file contains the global variables used by FLS Driver Component.

Fls_Internal.c This file contains the Internal functions implementations of flash wrapper

component.

FLS Driver Component Header And Source File Description Chapter 8

37

File Details

Fls_Version.c This file contains the code for checking version of all modules that are
interfaced to FLS.

Fls_Irq.c This file contains the implementation of all the interrupt functions used by
FLS Driver Module.

Compiler.h Provides compiler specific (non-ANSI) keywords. All mappings of

keywords, which are not standardized, and/or compiler specific are placed

and organized in this compiler specific header.

Compiler_Cfg.h This file contains the memory and pointer classes.

MemMap.h This file allows to map variables, constants and code of modules to

individual memory sections. Memory mapping can be modified as per ECU

specific needs.

Platform_Types.h This file provides provision for defining platform and compiler dependent
types.

fdl_descriptor.h This file contains FDL run-time configuration descriptor variable related
defines.

fdl_cfg.h This file contains FDL pre-compile definitions.

r_fcl.h Header file containing FCL user interface function prototypes.

r_fcl_types.h This File contains the FCL user interface type definitions.

r_fcl_global.h This file contains FCL Flash programming global type defines, function

and variables.

r_fcl_env.h This file contains FCL Flash programming hardware related definitions.

r_fdl.h Header file containing FDL user interface function prototypes.

r_fdl_types.h This File contains the FDL user interface type definitions.

r_fdl_global.h This file contains FDL Flash programming global type defines, function

and variables.

r_fdl_env.h This file contains FDL Flash programming hardware related definitions.

r_typedefs.h This file contains renesas standard type definitions.

fcl_descriptor.h This file contains FCL run-time configuration descriptor variable related
defines.

r_fcl_user_if.c This file contains the FCL user interface functions.

r_fcl_hw_access.c This file contains the FCL hardware interface functions.

fcl_descriptor.c This file contains the Descriptor variable definition.

r_fdl_user_if.c This file contains the FDL user interface functions.

r_fdl_hw_access.c This file contains the FDL hardware interface functions.

fdl_descriptor.c This file contains the Descriptor variable definition.

r_fcl_hw_access_as
m.850

This file contains the FCL hardware interface functions.

Fls_PBTypes.h This file contains the type definitions of post build parameters. It also

contains the macros used by the FLS Driver Component.

r_fdl_mem_map.h This file contains FDL section mapping definitions.

rh850_Types.h This file provides macros to perform supervisor mode (SV) write enabled

Register ICxxx and IMR register writing using OR/AND/Direct operation.

Chapter 8 FLS Driver Component Header And Source File Description

38

Generation Tool Guide Chapter 9

39

Chapter 9 Generation Tool Guide

For information on the FLS Driver Code Generation Tool, please refer

“AUTOSAR_FLS_Tool_UserManual.pdf” document.

Chapter 9 Generation Tool Guide

40

 Application Programming Interface Chapter 10

41

Chapter 10 Application Programming Interface

This section explains the Data types and APIs provided by the FLS Driver

Component to the Upper layers.

10.1. Imported Types

This section explains the Data types imported by the FLS Driver Component

and lists its dependency on other modules.

10.1.1. Standard Types

In this section all types included from the Std_Types.h are listed:
• Std_VersionInfoType

10.1.2. Other Module Types

In this section all types included from the Dem.h are listed.

• Dem_EventIdType

• Dem_EventStatusType

• Memif_JobResultType

• Memif_StatusType

10.2. Type Definitions

This section explains the type definitions of FLS Driver Component according

to AUTOSAR Specification

Table 10-1 Fls_CommandType

Name: Fls_CommandType

Type: Enumeration

Range:

FLS_COMMAND_NONE Used to Set the command to none.

FLS_COMMAND_ERASE Command used for Erase.

FLS_COMMAND_WRITE Command used for Write.

FLS_COMMAND_READ Command used for Read.

FLS_COMMAND_COMPARE Command used for Compare.

FLS_COMMAND_BLANKCHECK Command used for Blank check.

 FLS_COMMAND_READ_IMM Command used for fast Read.

Description: Enumeration for driver commands.

Table 10-2 Fls_FlashType

Name: Fls_FlashType

Type: Enumeration

Range:

FLS_DF_ACCESS Indicate the operations to be performed
for data flash.

FLS_CF_ACCESS Indicate the operations to be performed
for code flash.

Description: Enumeration for flash access type.

Chapter 10 Application Programming Interface

42

10.3. Function Definitions

 Table 10-3 Function Definitions

Sl. No API’s

API’s specific

1. Fls_Init -

2. Fls_Erase -

3. Fls_Write -

4. Fls_Cancel -

5. Fls_GetStatus -

6. Fls_GetJobResult -

7. Fls_Read -

8. Fls_Compare -

9. Fls_SetMode -

10. Fls_GetVersionInfo -

11. Fls_MainFunction -

12. FlsJobEndNotification -

13. FlsJobErrorNotification -

14. Fls_BlankCheck -

15. Fls_ReadImmediate -

16. Fls_Suspend -

17. Fls_Resume -

Development And Production Errors Chapter 11

43

Chapter 11 Development And Production Errors

In this section the development errors that are reported by the FLS Driver

Component are tabulated. The development errors will be reported only when

the pre compiler option FlsDevErrorDetect is enabled in the configuration.

The production code errors are not supported by FLS Driver Component.

11.1 FLS Driver Component Development Errors

The following table contains the DET errors that are reported by FLS Driver

Component. These errors are reported to Development Error Tracer Module

when the FLS Driver Component APIs are invoked with wrong input

parameters or without initialization of the driver.

Table 11-1 DET Errors of FLS Driver Component

Sl. No. 1

Error Code FLS_E_UNINIT

Related API(s) Fls_Erase, Fls_Write, Fls_Read, Fls_Compare, Fls_Cancel,

Fls_GetStatus, Fls_GetJobResult, Fls_MainFunction, Fls_Init,

Fls_ReadImmediate, Fls_BlankCheck, Fls_Suspend,

Fls_Resume

Source of Error When the API service is invoked before initialization.

Sl. No. 2

Error Code FLS_E_PARAM_ADDRESS

Related API(s) Fls_Erase, Fls_Write, Fls_Read, Fls_Compare, Fls_ReadImmediate,
Fls_BlankCheck

Source of Error When the API service is invoked with a wrong address.

Sl. No. 3

Error Code FLS_E_PARAM_LENGTH

Related API(s) Fls_Erase, Fls_Write, Fls_Read, Fls_Compare, Fls_ReadImmediate,
Fls_BlankCheck

Source of Error When the API service is invoked with a wrong length.

Sl. No. 4

Error Code FLS_E_PARAM_DATA

Related API(s) Fls_Write, Fls_Read, Fls_Compare, Fls_ReadImmediate

Source of Error When the API service is invoked with a NULL buffer address.

Sl. No. 5

Error Code FLS_E_BUSY

Related API(s) Fls_Init, Fls_Erase, Fls_Write, Fls_Read, Fls_Compare,
Fls_ReadImmediate, Fls_BlankCheck

Source of Error When the API service is invoked when the driver is still busy.

 Sl. No. 6

Error Code FLS_E_VERIFY_ERASE_FAILED

Related API(s) Fls_MainFunction

Source of Error When the erase verification fails.

Sl. No. 7

Chapter 11 Development And Production Errors

44

Error Code FLS_E_VERIFY_WRITE_FAILED

Related API(s) Fls_MainFunction

Source of Error When the write verification fails.

Sl. No. 8

Error Code FLS_E_PARAM_CONFIG

Related API(s) Fls_Init

Source of Error API initialization service invoked with wrong parameter.

Sl. No. 9

Error Code FLS_E_TIMEOUT

Related API(s) Fls_MainFunction

Source of Error API service invoked when time out supervision of a read, write, erase or

compare job failed

Sl. No. 10

Error Code FLS_E_INVALID_DATABASE

Related API(s) Fls_Init

Source of Error API service Fls_Init called without/with a wrong database is reported

using following error code

11.2 FLS Driver Component Production Errors
The following table contains the DEM errors that are reported by FLS Driver
Component. These are the hardware errors reported during runtime.

Table 11-2 DEM Errors of FLS Driver Component

Sl. No. 1

Error Code FLS_E_ERASE_FAILED

Related API(s) Fls_CFProcessEraseCommand and Fls_DFProcessEraseCommand

Source of Error When the Erase API service is invoked and the FCL or FDL returns the job

result as failed. Error will be reported by the job processing function.

Sl. No. 2

Error Code FLS_E_WRITE_FAILED

Related API(s) Fls_CFProcessWriteCommand and Fls_DFProcessWriteCommand

Source of Error When the Write API service is invoked and the FCL or FDL returns the job

result as failed.

Error will be reported by the job processing function.

Sl. No. 3

Error Code FLS_E_READ_FAILED

Related API(s) Fls_CFProcessReadCommand and Fls_DFProcessReadCommand

Source of Error When the Read API service is invoked and the FCL or FDL returns the job

result as failed.

Error will be reported by the job processing function.

Sl. No. 4

Error Code FLS_E_COMPARE_FAILED

Related API(s) Fls_CFProcessCompareCommand and Fls_DFProcessCompareCommand

Development And Production Errors Chapter 11

45

Source of Error When the Compare API service is invoked and the FCL or FDL returns the job

result as failed.

Error will be reported by the job processing function.

Sl. No. 5

Error Code FLS_E_READ_FAILED_DED

Related API(s) Fls_DFProcessReadCommand

Source of Error When the Read API service is invoked and the FDL returns the job result

as failed when double bit ECC error is generated.

Error will be reported by the job processing function.

Chapter 11 Development And Production Errors

46

Memory Organization Chapter 12

47

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be met for

proper functioning of FLS Driver Component software.

Figure 12-1 FLS Driver Component Memory Organization

ROM Section

FLS Driver Component

Library/ Object Files
RAM Section

FLS Driver code related to
APIs are placed in this
memory. Segment Name:
FLS_PUBLIC_CODE_RAM

Segment Name:
FLS_PRIVATE_CODE_RAM

Segment Name:

FLS_SAMPLE_CODE_RAM

Segment Name:
R_FCL_CODE_ROM

Segment Name:
R_FCL_CODE_RAM

Segment Name:
R_FCL_CODE_ROMRAM

Segment Name:
R_FCL_CODE_RAM_EX_PROT

Segment Name:
R_FDL_Data

Segment Name:

R_FCL_DATA

Segment Name:
FLS_PUBLIC_CODE_RAM

Segment Name:

FLS_PRIVATE_CODE_RAM

 Segment Name:
 NOINIT_RAM_UNSPECIFIED

Segment Name:
reserved_FCLCopy

Segment Name:

FLS_SAMPLE_CODE_RAM

Segment Name:

Segment Name:
RAM_1BIT

 Segment Name:
 FLS_BUFFER_CODE_RAM

X1

X2

X3

X4

X6

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

Y10

X7

X5

Segment Name:

FLS_FAST_CODE_ROM

X8

Segment Name:

RAM_UNSPECIFIED

X9

Segment Name:
FLS_CFG_DBTOC_UNSPECIFIED

X10

Segment Name:
R_FDL_Text

Segment Name:
R_FDL_Const

X11

X12

Chapter 12 Memory Organization

48

ROM Sections:

FLS_PUBLIC_CODE_RAM (X1): This section consists of FLS Driver

Component internal functions and scheduler function that can be located in

code memory. This section is copied on to RAM by the GHS start-up routines.

FLS_PRIVATE_CODE_RAM (X2): This section consists of FLS Driver

Component APIs and FCL functions that can be located in code memory. This

section is copied on to RAM by the GHS start-up routines.

FLS_SAMPLE_CODE_RAM (X3): This section needs to be aligned at the

end of FLS code sections in RAM, for exception protection.

R_FCL_CODE_ROM (X4): This section needs to be aligned at the end of FCL

code sections in RAM, for exception protection. This section is copied to RAM

by FCL library internal mechanism.

R_FCL_CODE_RAM (X5): This section contains the code executed at the

beginning of self-programming. This code is executed at the original location,

e.g. internal Flash. The library initialization is part of this section

R_FCL_CODE_ROMRAM (X6): This section contains the FCL library. This

section is copied to RAM by FCL library internal mechanism.

R_FCL_CODE_RAM_EX_PROT (X7): This section contains the FCL library.

This section is copied to RAM by FCL library internal mechanism or remains in

the ROM depending on FCL mode setting.

FLS_FAST_CODE_ROM (X8): Interrupt functions of FLS Driver Component

code that can be located in code memory.

R_FDL_Text (X11): This section consists of the FDL code. This can be located
in code memory.

R_FDL_Const (X12): This section consists of the constants in ROM that are

used by FDL software component. This can be located in code memory.

RAM Sections: Following are the Ram sections mapped.

NOINIT_RAM_UNSPECIFIED (Y1): This section consists of the global RAM

variables that are used internally by FLS software component and other

software components. The specific sections of respective software

components will be merged into this RAM section accordingly.

R_FDL_Data (Y2): This section consists of the global RAM pointer variables

that are used by FDL software component. This can be located in data

memory.

R_FCL_DATA (Y3): This section consists of the global RAM pointer variables

that are used by FCL software component. This can be located in data

memory

FLS_PUBLIC_CODE_RAM (Y4): This section consists of FLS Driver

Memory Organization Chapter 12

49

Component. These sections are copied on to RAM by the GHS start-up

routines.

FLS_PRIVATE_CODE_RAM (Y5): This section consists of FLS internal

software component. These sections are copied on to RAM by the GHS start-

up routines.

FLS_SAMPLE_CODE_RAM (Y6): This section needs to be aligned at the end
of the FLS code sections in RAM, for exception protection. These sections are
copied on to RAM by the GHS start-up routines

reserved_FCLCopy (Y7): This section is required for locating the underlying

FCL library component. It must be assured to locate this section at the RAM

start. This needs to be in-line with FLS configuration parameter

“FclRamAddress”.

NOINIT_RAM_32BIT (Y8): This section consists of the global RAM variables

of 32-bit size that are used internally by FLS software component and other

software components. The specific sections of respective software

components will be merged into this RAM section accordingly.

RAM_1BIT (Y9): This section consists of the global RAM variables of 1-bit size

that are initialized by start-up code and used internally by FLS software

component and other software components. The specific sections of

respective software components will be merged into this RAM section

accordingly.

FLS_BUFFER_CODE_RAM(Y10): This section consists of the global RAM

variables used for temporary buffer that are initialized by start-up code and

used internally by FLS Driver Component and other software components.

The specific sections of respective software components will be merged into

this RAM section accordingly.

RAM_UNSPECIFIED(X9): This section consists of the global RAM variables

that are generated by FLS Driver Component Generation Tool. This can be

located in data memory.

FLS_CFG_DBTOC_UNSPECIFIED(X10): This section consists of FLS Driver

Component database table of contents generated by the FLS Driver

Component Generation Tool. This can be located in code memory.

Chapter 12 Memory Organization

50

 P1M Specific Information Chapter 13

51

Chapter 13 P1M Specific Information

P1M supports following devices:

 R7F701304

 R7F701305

 R7F701310

 R7F701311

 R7F701312

 R7F701313

 R7F701314

 R7F701315

 R7F701318

 R7F701319

 R7F701320

 R7F701321

 R7F701322

 R7F701323

13.1. Interaction between the User and FLS Driver

Component

The details of the services supported by the FLS Driver Component to the

upper layers users and the mapping of the channels to the hardware units is

provided in the following sections:

13.1.1. Translation header File

 The translation header file supports following devices:

 R7F701304

 R7F701305

 R7F701310

 R7F701311

 R7F701312

 R7F701313

 R7F701314

 R7F701315

 R7F701318

 R7F701319

 R7F701320

 R7F701321

 R7F701322

 R7F701323

13.1.2. Services Provided By FLS Driver Component to the User

The FLS Driver Component provides the following functions to upper layers:
• Programming of code flash
• Erase memory sectors
• Read flash contents to the application memory
• Fast read immediate to the application memory without blankcheck.

Chapter 13 P1M Specific Information

52

• Validate flash contents comparing with the application memory
• Cancel the ongoing erase, write, read or compare requests.
• Read the result of the last job
• Blank check of flash memory sector.
• Read the status of the FLS Driver Component.
• Suspend the erase, write and read operation.
• Resume the erase, write and read operation.

13.1.3. Parameter Definition File

 Table 13-1 PDF information for P1M

PDF files Devices

supported

R403_FLS_P1M_04_05.arxml 701304, 701305

R403_FLS_P1M_10_to_15.arxml
701310, 701311, 701312, 701313,

701314, 701315

R403_FLS_P1M_18_to_23.arxml
701318, 701319, 701320, 701321,

701322, 701323

13.1.4. ISR Functions for FLS module

The table below provides the list of handler addresses corresponding to the hardware unit ISR(s)

in FLS Driver Component. The user should configure the ISR functions mentioned below:

 Table 13-2 Interrupt Functions For FLS Module

Interrupt Source Name of the ISR Function

FLENDNM_ISR

FLS_FLENDNM_ISR

FLS_FLENDNM_CAT2_ISR

13.2. Sample Application

13.2.1 Sample Application Structure

The Sample Application is provided as reference to the user to understand the

method in which the FLS APIs can be invoked from the application. The

Sample Application is provided for three use-cases of only data flash or only

code flash or for both code flash and data flash supported. Depending on the

configured use-case, the Sample Application is built based on setting of the

flag 'FLS_ACCESS_FLAG' in „App_Fls_P1M_Sample.mak‟ file to either

„CODEFLASH_ACCESS‟ or „DATAFLASH_ACCESS‟ or „CFDF_ACCESS‟ by

the user during compile time in order to compile corresponding library source

files.

 P1M Specific Information Chapter 13

53

Figure 13-1 Overview Of FLS Driver Sample Application

The Sample Application of the P1M is available in the path

X1X\P1x\modules\fls\sample_application

X1X\P1x\modules\fls\definition\<AUTOSAR_version>\<SubVariant>\
 \R403_FLS_P1M_04_05.arxml

 \R403_FLS_P1M_10_to_15.arxml

 \R403_FLS_P1M_18_to_23.arxml

X1X\P1x\modules\fls\sample_application\<SubVariant>\
 <AUTOSAR_version>\

\src\Fls_PBcfg.c

\include\fdl_descriptor.h

\include\Fls_Cfg.h

\include\Fls_Cbk.h

 \config\App_FLS_P1M_701304_Sample.arxml
 \config\App_FLS_P1M_701304_Sample.html
 \config\App_FLS_P1M_701304_Sample.one

 \config\App_FLS_P1M_701305_Sample.arxml
 \config\App_FLS_P1M_701305_Sample.html
 \config\App_FLS_P1M_701305_Sample.one

 \config\App_FLS_P1M_701310_Sample.arxml
 \config\App_FLS_P1M_701310_Sample.html
 \config\App_FLS_P1M_701310_Sample.one

 \config\App_FLS_P1M_701311_Sample.arxml
 \config\App_FLS_P1M_701311_Sample.html
 \config\App_FLS_P1M_701311_Sample.one

 \config\App_FLS_P1M_701312_Sample.arxml
 \config\App_FLS_P1M_701312_Sample.html
 \config\App_FLS_P1M_701312_Sample.one

 \config\App_FLS_P1M_701313_Sample.arxml
 \config\App_FLS_P1M_701313_Sample.html
 \config\App_FLS_P1M_701313_Sample.one

Chapter 13 P1M Specific Information

54

 \config\App_FLS_P1M_701314_Sample.arxml
 \config\App_FLS_P1M_701314_Sample.html
 \config\App_FLS_P1M_701314_Sample.one

 \config\App_FLS_P1M_701315_Sample.arxml
 \config\App_FLS_P1M_701315_Sample.html
 \config\App_FLS_P1M_701315_Sample.one

 \config\App_FLS_P1M_701318_Sample.arxml
 \config\App_FLS_P1M_701318_Sample.html
 \config\App_FLS_P1M_701318_Sample.one

 \config\App_FLS_P1M_701319_Sample.arxml
 \config\App_FLS_P1M_701319_Sample.html
 \config\App_FLS_P1M_701319_Sample.one

 \config\App_FLS_P1M_701320_Sample.arxml
 \config\App_FLS_P1M_701320_Sample.html
 \config\App_FLS_P1M_701320_Sample.one

 \config\App_FLS_P1M_701321_Sample.arxml
 \config\App_FLS_P1M_701321_Sample.html
 \config\App_FLS_P1M_701321_Sample.one

 \config\App_FLS_P1M_701322_Sample.arxml
 \config\App_FLS_P1M_701322_Sample.html
 \config\App_FLS_P1M_701322_Sample.one

 \config\App_FLS_P1M_701323_Sample.arxml
 \config\App_FLS_P1M_701323_Sample.html
 \config\App_FLS_P1M_701323_Sample.one

In the Sample Application all the FLS APIs are invoked in the following

sequence:

• The API Fls_GetVersionInfo is invoked to get the version Information of FLS

component with a variable of Std_VersionInfoType type, after the call of this

API the passed parameter will get updated with the FLS Driver Component

version details.

• The API Fls_Init is invoked with config pointer. This API performs the

initialization of the FLS Driver Component. This will in turn calls R_FCL_Init()

and R_FCL_Copysections() which will initialize FCL internal variables. This

API initializes all the elements (Global Variables) of Global structure.

• The API Fls_Erase() is invoked to erase one or more complete Flash

Sectors.

• The API Fls_Write() is invoked to write the one or more complete flash pages

to the flash device from the application data buffer

• The API Fls_Read() is invoked to read the requested length of flash memory

and stores it in the application data buffer.

• The API Fls_Compare() is invoked to compare the contents of an area of

flash memory with that of an application data buffer.

• The API Fls_Cancel() is invoked to cancel an ongoing flash operations like

read, write, erase or compare job.

• The API Fls_Getstatus() returns the FLS module state synchronously.

 P1M Specific Information Chapter 13

55

• The API Fls_GetJobResult() returns the result of the last job synchronously.

• The API Fls_Setmode(), this API does not provide any functionality.

• The API Fls_Mainfunction() is invoked performs processing of the flash

Read, Erase, write or compare jobs. It‟s a scheduled function. The
Fls_Mainfunction() accepts only read, write, erase or compare job at a time.

• The API Fls_ReadImmediate() is invoked for reading of the flash memory.
The data from flash memory (source address) is read to the data buffer
(Target address) of application without performing blank check before read.

• The API Fls_BlankCheck() is invoked to read the byte data from code flash
memory.

Remark The API Fls_MainFunction needs to be called in a certain time interval

configured using the parameter "FlsCallCycle". Hence, the sample application

invokes the API „Fls_MainFunction‟ periodically in a loop with sufficient

software delay. Since neither the interrupt vector table nor the interrupt handler

routines, which are normally located in the flash memory, are accessible while

self-programming is active, the timer interrupt is not used for this purpose. In

order to do so, interrupt acknowledges have to be re-routed to non-flash

memory. This can be achieved by suitably modifying the start-up code to

access the system registers (SW_CFG/SW_BASE respectively EH_CFG/

EH_BASE) to reroute the interrupt vector of the timer interrupt to the RAM

area.

13.2.2 Building Sample Application

13.2.2.1.Configuration Example

This section contains the typical configuration which is used for measuring

RAM/ROM consumption, stack depth and throughput details.
Configuration Details:
App_FLS_<SubVariant>_<Device_Name>_Sample.arxml

13.2.2.2.Debugging the Sample Application

Remark GNU Make utility version 3.81 or above must be installed and available in the

path as defined by the environment user variable “GNUMAKE” to complete the

build process using the delivered sample files.

Open a Command window and change the current working directory to “make”

directory present as mentioned in below path:

“external/X1X/P1x/common_family/make/<compiler>”

Now execute batch file SampleApp.bat with following parameters:

SampleApp.bat fls <AUTOSAR_version> <Device_Name>

After this, the tool output files will be generated with the configuration as

mentioned is available in the path:

“X1X\P1x\modules\fls\sample_application\<SubVariant>\<AUTOSAR_version>
\config”

• After this, all the object files, map file and the executable file

App_FLS_P1M_Sample.out will be available in the output folder

(“X1X\P1x\modules\fls\sample_application\<SubVariant>\obj\<compiler>” in
this case).

• The executable can be loaded into the debugger and the sample application

Chapter 13 P1M Specific Information

56

can be executed.

Remark Executable files with „*.out‟ extension can be downloaded into the target

hardware with the help of Green Hills debugger.

If any configuration changes (only post-build) are made to the ECU

Configuration Description files

“X1X\P1x\modules\fls\sample_application\<SubVariant>\<AUTOSAR_version>\
config\ App_FLS_P1M_<Device_name>_Sample.arxml”

App_FLS_P1M_<Device_name>_Sample.arxml” the database alone can be

generated by using the following commands.

 make –f App_FLS_<SubVariant>_Sample.mak generate_fls_config

 make –f App_FLS_<SubVariant>_Sample.mak

 App_FLS_<SubVariant>_Sample.s37

• After this, a flash able Motorola S-Record file App_FLS_

App_FLS_<SubVariant>_Sample.s37_Sample.s37 is available in the

output folder.

Note : 1. <compiler> for example can be “ghs”.

2. <Device_Name> indicates the device to be compiled, which can be 701304,
701305, 701310, 701311, 701312, 701313, 701314, 701315, 701318,
701319, 701320, 701321, 701322, 701323.

3. <SubVariant> can be P1M.

 4. <AUTOSAR_version> can be 4.0.3.

13.3. Memory and Throughput

13.3.1 ROM/RAM Usage

The details of memory usage for the typical configuration, with DET enabled as

provided in Section 13.3.2.1 Configuration Example are provided in this

section.

Table 13-3 ROM/RAM Details With DET

Sl. No. ROM/RAM Segment Name Size in bytes
for 701312

1. ROM ROM.FLS_PUBLIC_CODE_RAM

ROM.FLS_PRIVATE_CODE_RAM

ROM.FLS_APPL_CODE_RAM

R_FCL_CODE_ROM

R_FCL_CODE_RAM

R_FCL_CODE_ROMRAM

R_FCL_CODE_RAM_EX_PROT

FLS_FAST_CODE_ROM

3040

2312

1986

0

0

0

32

212

 P1M Specific Information Chapter 13

57

Table 13-4 ROM/RAM Details Without DET

2. RAM reserved_FCLCopy

FLS_PUBLIC_CODE_RAM

FLS_PRIVATE_CODE_RAM

FLS_APPL_CODE_RAM

R_FCL_DATA

R_FDL_Data

NOINIT_RAM_UNSPECIFIED

RAM_UNSPECIFIED

FLS_BUFFER_CODE_RAM

9216

3040

2312

1986

0

84

4

44

100

Sl. No. ROM/RAM Segment Name Size in bytes
for 701312

1. ROM ROM.FLS_PUBLIC_CODE_RAM

ROM.FLS_PRIVATE_CODE_RAM

ROM.FLS_APPL_CODE_RAM

R_FCL_CODE_ROM

R_FCL_CODE_RAM

R_FCL_CODE_ROMRAM

R_FCL_CODE_RAM_EX_PROT

FLS_FAST_CODE_ROM

3040

2312

2012

0

0

0

32

212

Chapter 13 P1M Specific Information

58

Remark The section “reserved_FCLCopy” might not be the actual RAM area, but only

the „reserved‟ area.

13.3.2 Stack Depth

The worst-case stack depth for FLS Driver Component is for the typical

configuration provided in Section 13.3.2.1 Configuration Example.

Table 13-5 Stack Depth Table

Sl. No

Device Name

Stack Depth (in Bytes)

1.

R7F701312

384

13.3.3 Throughput Details
The throughput details of the APIs for the configuration mentioned in the

Section 13.3.2.1Configuration Example are listed here. The clock frequency

used to measure the throughput is 80MHz for all APIs.

Table 13-6 Throughput Details Of The APIs

Sl. No.

API Name
Throughput in µ

seconds for

701312

Remarks

1. Fls_Init 487.80 -

2. Fls_Erase 9.450 -

3. Fls_Write 9.630 -

4. Fls_Cancel 1.440 -

5. Fls_GetStatus 0.630 -

6. Fls_GetJobResult 0.630 -

7. Fls_Read 2.520 -

8. Fls_Compare 2.430 -

2. RAM reserved_FCLCopy

FLS_PUBLIC_CODE_RAM

FLS_PRIVATE_CODE_RAM

FLS_APPL_CODE_RAM

R_FCL_DATA

R_FDL_Data

NOINIT_RAM_UNSPECIFIED

RAM_UNSPECIFIED

FLS_BUFFER_CODE_RAM

9216

3040

2312

2012

0

84

4

44

100

 P1M Specific Information Chapter 13

59

Sl. No.

API Name
Throughput in µ

seconds for

701312

Remarks

9. Fls_SetMode NA This API does not

provide any

functionality

10. Fls_GetVersionInfo 0.540 -

11. Fls_BlankCheck 5.940 -

12. Fls_ReadImmediate 2.430 -

13. Erase Operation 9.090 This is the time taken for

the complete erase

operation of 256 bytes

data length.

14. Write Operation 9.990 This is the time taken

for the complete write

operation of 256 bytes

data length.

15. Fls_BlankCheck operation 6.120 This is the time taken

for performing blank

check operation of

256 bytes data length.

16. Fls_ReadImmediate 2.610 This is the time taken

for the complete fast

read operation of 256

bytes data length

without performing

blank check before

read.

17. Read Operation 2.340 This is the time taken

for the complete read

operation of 256 bytes

data length.

18. Compare Operation 2.520 This is the timetaken

for the complete

compare operation of

256 bytes data length.

Chapter 13 P1M Specific Information

60

Sl. No.

API Name
Throughput in µ

seconds for

701312

Remarks

19. FLENDNM_ISR operation 8.550 This is the time taken

for the complete Erase

of 1 block data length.

9.360 This is the time taken

for the complete Write

of 1 word data length.

20 Fls_Suspend

38.430 -

21 Fls_Resume

6.587 -

Release Details Chapter 14

61

Chapter 14 Release Details

FLS Driver Software

Version: 1.3.1

 Chapter 14 Release Details

62

63

Revision History

Sl.No. Description Version Date

1. Initial Version 1.0.0 28-Oct-2013

2. As per CR 066, below changes are made.

1. The Figure "Component Overview of FLS Driver Component “is
alignment corrected.

2. FLS driver component version information is updated.
3. In chapter 6 Register Details are updated.
4. Chapter 2 is updated for referenced documents version.
5. Section 4.1 is updated for removing information about

“FlsWriteInternalVerify”.
6. Section 4.1 and 5 are updated to replace API name

„R_FCL_I_read_memory_u08‟ by „Fls_CF_read_memory_u08‟.
7. Section 4.1, General is updated for adding information about time

out values of erase, read, write and blank check.
8. Section 4.2 is updated for removing Fls_LengthType restriction on

size as precondition.
9. Section 4.5 is updated for adding supervisor and user mode details

for added devices.
10. Section 13.1.1 is updated for adding the device names.
11. Section 13.2 is updated for assembler and linker details.
12. Section 13.3 is updated for naming convention change of

parameter definition files.
13. “FLS_E_PARAM_POINTER” is removed from Table11-1.
14. Section13.4 is updated for RAM/ROM usage details.

1.0.1 22-Jan-2014

3. As per CR 107 Following changes are made:

1. Chapter 2: „Reference document‟ is updated.
2. Chapter 4: „Forethoughts‟ is updated for Following:

• Section 4.1 „General‟ is updated for description.
• Section 4.2 „Preconditions is updated for description to

add Fls_BlankCheck and Fls_ReadImmediate API.
• Section 4.3 „Data consistency‟ is updated for description

to add macro for version.
• Section 4.4 „deviation List‟ is updated to add

Fls_GetVersionInfo API.
• Section 4.4 „User mode and supervisor mode‟: Table 4-2

is updated for „Fls_Cancel API‟ and to add
„Fls_BlankCheck‟ and „Fls_ReadImmediate‟ API.

• Section 4.4: Table 4.3 is updated to add „Fls_Suspend‟
and „Fls_Resume‟ API.

3. Chapter 5: „Architecture Details‟ is updated to add „Fls_Suspend‟,
„Fls_Resume‟, „Fls_BlankCheck‟ and „Fls_ReadImmediate‟ API.

4. Chapter 6: „Register Details‟ is updated for register access.
5. Chapter 7 and Section 13.1.2 is updated to add „Fls_Suspend‟,

„Fls_Resume‟, „Fls_BlankCheck‟ and „Fls_ReadImmediate‟
services.

6. Chapter 8 is updated to add „Fls_Irq.h‟ and „Fls_Irq.c‟
7. Chapter 10 is updated for following:

• Section 10.2 is updated to remove Fls_„VerifyType‟ type
definition.

• Section 10.3 is updated to add „Fls_Suspend‟,
„Fls_Resume‟, „Fls_BlankCheck‟ and
„Fls_ReadImmediate‟ API.

1.0.2 02-Sep-2014

64

Sl.No. Description Version Date

 8. Chapter 12: „Memory Organization‟:Figure 12-1 and desrcription is

updated to add „FLS_FAST_CODE_ROM‟,

„RAM_UNSPECIFIED‟,„FLS_CFG_DBTOC_UNSPECIFIED‟ and

„FLS_BUFFER_CODE_RAM‟.

9. Chapter 13 is updated for Following:

• Chapter 13 is updated to remove R7F701300-

R7F701303, R7F701306- R7F701309 and to add

R7F701318- R7F701323 P1M supported devices.

• Section 13.1.3 and section 13.1.4 are added for

parameter definition files and for ISR function

respectevely.

• Section 13.2.1 is updated for compiler, Linker and

Assembler options.

• Section 13.3 is updated for Sample Application path and

description to add „Fls_ReadImmediate‟ and

„Fls_BlankCheck‟ API.

• Section 13.4: „Memory and throughput‟ is updated.

10. Chapter 14: „Release Details‟ is updated for FLS Driver Version.

4 As per CR 31 Following changes are made:

1. Table 11-1 DET Errors of FLS Driver Component is updated.

2. Section 13.3.1 Sample Application Structure is updated.

3. Section 13.4.1 RAM/ROM details is updated.

4. Chapter 14 Release Details is updated to correct Chapter

heading.

5. Section 4.1 is updated to change the description from „F1L‟ to

„P1M‟.

1.0.3 14-Oct-2014

5 As per CR 82 Following changes are made:

1. Section 4.5 is updated for user and supervisory mode.

2. Section 13.2.1 is updated for removal –c option.

3. Chapter 3 is updated for update in trxml file path of sample

application.

4. Page 64 is updated for header correction.

5. Section 13.1.2 is updated for suspend and resume services.

6. Chapter 5 is updated for page number and header.

7. Section 13.4.3 is updated for throughput.

1.0.4 02-Dec-2014

6 The following changes are made:

1. Chapter 2: „Reference document‟ is updated

2. As part of device support activity for R7F701304, R7F701305,

R7F701313, R7F701315, R7F701318 to R7F701323 updated

sections 3.1.1, 13.1.1, 13.1.2, 13.3.1.

3. Updated version number and copyright year.

4. Updated section 13.4 for memory and throughput.

5. Removed section Compiler,Linker and Assembler in Chapter13.

6. Removed Test_Application_P1x.trxml path from Section 3.1.1.

7. Section 4.1 is updated for adding note in Forethoughts.

8. Chapter 12 is updated.

9. Section 4.2. Preconditions is updated.

10. Updated Tables 4-2 and 4-3 in Section 4.5.

11. Chapter 14: „Release Details‟ is updated for FLS Driver Version

1.0.5 24-Apr-2015

65

AUTOSAR MCAL R4.0.3 User's Manual
FLS Driver Component Ver.1.0.5
Embedded User’s Manual

Publication Date: Rev.0.01, April 24, 2015

Published by: Renesas Electronics Corporation

SALES OFFICES http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2015 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3

User‟s Manual

	Chapter 1 Introduction
	1.1 Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration and Build Process
	3.1. FLS Driver Component Make file
	3.1.1. Folder Structure

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. Data Consistency
	4.4. Deviation List
	4.5. User mode and supervisor mode

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction Between The User And FLS Driver Component
	7.1. Services Provided By FLS Driver Component To The User

	Chapter 8 FLS Driver Component Header And Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1. Imported Types
	10.1.1. Standard Types
	10.1.2. Other Module Types

	10.2. Type Definitions
	10.3. Function Definitions

	Chapter 11 Development And Production Errors
	11.1 FLS Driver Component Development Errors
	11.2 FLS Driver Component Production Errors

	Chapter 12 Memory Organization
	Chapter 13 P1M Specific Information
	13.1. Interaction between the User and FLS Driver Component
	13.1.1. Translation header File
	13.1.2. Services Provided By FLS Driver Component to the User
	13.1.3. Parameter Definition File
	13.1.4. ISR Functions for FLS module

	13.2. Sample Application
	13.2.1 Sample Application Structure
	13.2.2 Building Sample Application
	13.2.2.1.Configuration Example
	13.2.2.2.Debugging the Sample Application

	13.3. Memory and Throughput
	13.3.1 ROM/RAM Usage
	13.3.2 Stack Depth
	13.3.3 Throughput Details

	Chapter 14 Release Details

