MICROSAR FEE

Technical Reference

Version 8.01.00

Authors Christian Kaiser

Status Released

vector’

Technical Reference MICROSAR FEE VeCEor [

Document Information

History

Author____IDate ____lVersion _[Remarks ___

Christian Kaiser 2012-06-26 8.00.00 - Removed revision history entries, due to
major changes in component.
- Removed all references to Fee30Inst2
- Added Ch. 2.4.2 “Partitions”,
- Added Ch. 4.3.2 “Fee_InitEx”, updated Ch.
4.3.1
- Reworked Ch. 2.3, Ch. 2.6, Ch. 2.10, Ch.
3.11,441,Ch. 5
- Changes throughout the document:
introduction of partitions
- Added Ch. 6.3.4
- Added Ch. 2.4.3.1
Christian Kaiser 2012-09-20 8.00.01 - Minor editorial changes in Ch. 5
- Added Ch.5.21
Christian Kaiser 2013-03-05 8.00.02 - Ch. 1: AUTOSAR version(s)
- Ch. 6.3.1: maximum number of Partitions
Christian Kaiser 2014-03-11 8.00.03 - Editorial changes (rework of review
findings)
- Ch. 5.1.5.5: corrected description of
“Suspend Long”
- Ch. 3.5: Critical Section description
- Ch. 1.1 — updated figure, added notes.
Claudia Mausz 2015-02-13 8.01.00 - Add new chapter:
2.12 Fee_MainFunction Triggering

Reference Documents

m Title Version

[11 AUTOSAR_SWS_Flash_EEPROM_Emulation.pdf -
[2] AUTOSAR_SWS_ DET.pdf V2.2.1
[3] AUTOSAR_BasicSoftwareModules.pdf V1.3.0

) Please note

. We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

©2015, Vector Informatik GmbH Version: 8.01.00 2/85

based on template version 3.1

Technical Reference MICROSAR FEE V@CEO([

Contents
1 Introduction..............o 9
1.1 Architecture OVEIVIEWooooiiiii e, 10
2 Functional DescCription................oiiiii i 12
21 Features ... 12
2.2 INitialiZation ... 13
2.3] €= 1 (=1 PSSP 13
2.3.1 MOAUIE SEAtESuuuiiiiiiiiiiiiiiiiiiiiiii b 13
23.2 Job States/ResUltS ..., 16
24 Flash organization............ccccciii 17
2.4.1 BIOCK HaNdliNgccouiiiii e 17
2411 BIOCK ChUNKS........iiiiiiiiicc e 17
2412 BIOCK Search........ccooiiiiiiiicees e 18
242 PartitioNSo 18
243 LOQICAl SECLOISuuiiiiiiiiiiiiiiiiiii e 19
2.5 g (0T e =TT T PP 20
2.5.11 Initial ProCesSINGcvivviiii i 20
251.2 Processing of Read JOb ... 21
2513 Processing of Write JObccoeiiiiiiiiiiiiici e, 21
2514 Processing of InvalidateBlock Job.................cccccnnnnnnnn. 21
2515 Processing of EraselmmediateBlock Job....................... 22
2516 Processing of GetEraseCycle Job................ccoeeeeeee. 22
2517 Processing of GetWriteCycle Job.............cccooeiiii. 22
26 Error Handling.........oooooiii 22
2.6.1 Development Error Reporting.........coovveeiiiiiiiiiee e 23
2.6.1.1 Parameter Checking ..., 24
26.2 Production Code Error ReEpOrtingeuuvveeeimmimiiiiieiiiiiiinininnnnnnnnns 25
2.6.3 Error NOtIfiCation.............uuiiiiiiiiiiiiiiiii e 25
2.7 SECIOr SWITCR ... e 26
2.71 Background Sector Switch (BSS)..........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnns 26
2.7.2 Foreground Sector SWitch (FSS)..........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiis 26
2.7.3 SECtOr OVEITIOW ..veei e 27
27.4 Sector switch reserves and thresholds............cccoeoeiieii . 27
2.7.5 Background Sector Switch Reserve/Thresholdcccccvvvvnnins 28
276 Foreground Sector Switch/Threshold...............ccccccooiiiiiii, 29
2.8 Data CONVEISIONccoiiiiiee e 29
29 Flash Page Size impacts...........ciiiii 30
210 Services for handling under-voltage situations..............cccccooiiiiiiiiiiie i 30

©2015, Vector Informatik GmbH Version: 8.01.00 3/85

Technical Reference MICROSAR FEE VT Ya
2.11 (O g1 Tor= I =] =T =] (o Tt (N 32
212 Fee_MainFunction TrQQEringccoiviiiiiiiiii e 33

3 INEEGratioNo 34
3.1 SCOPE Of DEIIVEIY ... e 34

3.1.1 StAtiC FileS .o 34

3.1.2 DyNamicC FileScovvuiiiiiiiee e 34

3.2 Compiler Abstraction and Memory Mapping........cccooeuiiiiiieeeeeiceiieee e, 35
3.3 Dependencies on SW ModUIEScoiii i 36
3.3.1 OSEK/AUTOSAR OS...e 36

3.3.2 Module SChM ... e 37

3.3.3 MOAUIE DEL ... 37

3.34 1T o (UL 37

3.35 Callback FUNCHONS........ccoieiiicie e 38

3.3.5.1 Lower layer interaction..........c.ccooooiiiiiiiiin e, 38

3.3.5.2 Upper layer interaction.........ccccooooiiiiiiiiin i, 38

3.3.5.3 User Error Callback..............oeeiiiiiiiiicii e, 39

3.4 Dependencies on HW mMoOdUIES........ccoouuiiiiiiiiii i 40
3.5 CritiCal SECHONS ...eevviiii e e e e e e e e e e e eaanee 40

4 APIDESCHIPHION e 41
4.1 INTEIFACES OVEIVIEW ...t e e e e e e e eaes 41
4.2 TYpe DEfiNItiONS ... 41

4.2.1 Fee_ SectorSwitchStatusTypecooovviiiiiiiiii e, 41
4.2.2 Fee SeCtorErmorTyPe. ..o 41
4.3 Services provided by FEEccooi i 42
4.3.1 =T [0 42
4.3.2 FEE INITEX .. i 43
4.3.3 Fee SetMOdeoovvuiiiiiie e 44
4.3.4 FEE REAU ... 45
4.3.5 FEE WG ..o 46
4.3.6 FEEe CanCElccooeeeiiee e 47
4.3.7 Fee GetStatus........uuiiii i 48
4.3.8 Fee GetJODRESUIL.........ccooiiiiiiii e 49
4.3.9 Fee_InvalidateBIlOCK...........ooouiiiiiii e 50
4.3.10 Fee_GetVersionInfoccooooiiioiiiiii 51
4.3.11 Fee_EraselmmediateBIOCKccooiiiiiiiiiii 51
4.3.12 Fee_MainFunctioncoooooiiiiii 52
4.313 Fee _GetEraseCyCle. ... 53
4.3.14 Fee_GetWriteCyCle.......uuiiiiiiiiiiii e 54
4.3.15 Fee_GetSectorSwitchStatus ..., 55

©2015, Vector Informatik GmbH Version: 8.01.00

tor”

4/85

Technical Reference MICROSAR FEE
4.3.16 Fee_ForceSectorSwitCh.........ccoooeiiiiiiiii 56
4.3.17 Fee_ConvertBlocKCONfiguuiiiiiiiiiiiiiiiiee e 57
4.3.18 Fee_SuspendWIteS......ccoviiiiiiiiiii e 59
4.3.19 Fee ReSUMEWIIESccooiiiiiiiiii e 59
4320 Fee DisableFSS.....ciii i 60
4.3.21 Fee ENabIEFSS.....ouuuiiiiiicee e 61
4.4 Services used by FEE..........oooi e 61
4.4.1 Data Conversion Callback..............couviieiiiiiiiieeeiece e 62
4.5 Callback FUNCHONS.t e e e e eeaeees 63
4.5.1 Fee JobEndNotification...........cccooooeiiiiiiii e, 63
4.5.2 Fee_JobErrorNotification ..., 63
4.6 Configurable Interfaces...........ouuueiiii i 64
B Configuration ... 65
5.1 Configuration with DaVinci Configurator.............cccoooviiiiiii e, 65
5.1.1 Start configuration of the FEEcooiiiii i, 65
51.2 Useful Chunk-Sizes (instance counts)...............uuveiiiiiiiiiiiiiiiiiiiiii, 65
51.3 Update of block configuration..............ccccoieeeiiiiiiiiiiiie e, 67
51.4 FEE Configuration tab................viiiiiiiiiiiiiiiiiii 67
51.5 General Settings tabccoooiiii 71
5.1.5.1 Error Detection — Development Modeccccocceeneennen. 71
5.1.5.2 Area “Error Callback”ccoeiiiiiiiiice 72
5.1.5.3 Area Buffer.......cooooiiiii, 73
5.1.54 Area “Upper Layer’ ... 73
5.1.5.5 Area “Critical Section Handling” ..., 74
5.1.6 PartitionNS... ..o 74
5.1.6.1 Area “‘Management” ... 76
5.1.6.2 Area “Lower Layer” ... 76
51.7 1V ToTo (U] L= e I =T o J 77
51.7.1 API Configuration.........ccoooeieooi 77
51.7.2 Provided APlei e 78
5.2 Configuration Parameters only visible in GCE..............ccccoiiiiiiiiiiiiiiiiiiiiiiins 78
5.2.1 Fis API deviating from AUTOSAR naming convention...................... 78
6 AUTOSAR Standard CompliancCe...................uuuuimiiiiiiiiiiiiiiiiiiieiiieeeeenennenans 80
6.1 DVIAtIONS ... e 80
6.1.1 Maximum Blocking TimMeouiiiiiiiiiiiiiiiee 80
6.2 AditioNS/ EXIENSIONS.....cuiiiiii i e 80
6.2.1 Parameter ChecCkinguuuuiiiiiiiiiiiiiiiiiiiiiiiiieeaeee 80
6.2.2 =TT L1 = 80
6.2.3 GEetEraseCyYCIEo 80

©2015, Vector Informatik GmbH Version: 8.01.00

tor”

5/85

Technical Reference

MICROSAR FEE VaC

6.2.4 GEtWIItECYCIE ... 80

6.2.5 GetSectorSwitchStatus ..o, 80

6.2.6 ForceSectorSWItCh ... 80

6.2.7 Fee ConvertBlIockConfiguuciiiiiiiiiiiiiiec e 80

6.2.8 Fee SuspendWrites / Fee_ ResumeWrites..........ccccccceeeeiieeeveeeiiinnnnn. 80

6.2.9 Fee EnableFss / Fee_DisableFssccccoooiiiiiiiiiiiiiiiiiiieein, 80

6.3 LIMIEAtIONS. .. e 80
6.3.1 PartitioNS.....cooe e 80

6.3.2 FIash US@Qe......uuuuiiiiiiiiiiiiiiiiiiiei e 81

6.3.3 Performanceoouuiiiii i 81

6.3.4 ADOMS/RESELS ... 81

6.3.5 Write Cycle and Erase Cycle Counterscccccvvvvvvviiiiiiiiiiiininnnnn, 82

7 Glossary and Abbreviations ... 83
71 (€110 1TT= | Y PP USRI 83

7.2 ADBDIrevIiatioNS 83

8 CONTACKo e an 85

©2015, Vector Informatik GmbH

Version: 8.01.00

tor”

6/85

Technical Reference MICROSAR FEE VEC

lllustrations

Figure 1-1 AUTOSAR architeCture............cooooviiiiiii 10
Figure 1-2 FEE in a typical (AUTOSAR) SW architecturecccccooeviiiiiiiiiiiinnne, 11
Figure 2-1 FEE Module States...........uuiiii i 15
Figure 2-2 From User Blocks to Flash Sectors.............oviii 17
Tables

Table 2-1 Supported SWS featuresuviiiiiiiiiec e 12
Table 2-2 Not supported SWS featuresccovvi i 12
Table 2-3 MOdUIE STAES ... 14
Table 2-4 JOD StateS .o 16
Table 2-5 Mapping of service IDS t0 SEIVICEScuvviiiiiiiiiiiiicie e 23
Table 2-6 Errors reported t0 DET ...t 24
Table 2-7 Development Error detection: Assignment of checks to services 25
Table 2-8 1Y =T o o) 4 = o 26
Table 3-1 STALIC fIlES .. anaane 34
Table 3-2 Generated fileSuuuueiii i 34
Table 3-3 Compiler abstraction and memory mapping..........cccuvveeeniieeeeiiviiiiiieeee e, 35
Table 3-4 Error Codes and FEE’s default behavior ..., 40
Table 4-1 Fee_SectorSwWitchStatuSTYPevveiii i 41
Table 4-2 Fee _SeCtOrErmor TYPE ... 42
Table 4-3 FEe INit oo 43
Table 4-4 FEEe INIEX .. s 44
Table 4-5 =T YRS T= 1117 (o To [T 45
Table 4-6 FEE REAU... ..o 46
Table 4-7 FEE Wt e e 47
Table 4-8 FEE _CaNCEL ... 48
Table 4-9 Fee GetStatusoovuiiii e 49
Table 4-10 Fee GetJODRESUIL........ccooeiiiieecee e 50
Table 4-11 Fee InvalidateBIlOCKcooviiiiiiiiii e 50
Table 4-12 Fee GetVersionInfo...........coovveiiiiiiii e 51
Table 4-13 Fee EraselmmediateBIOCK..........cccooeviiiiiiiii e, 52
Table 4-14 Fee MainFunCtioNcoooui i 53
Table 4-15 Fee GetEras@CYCIEuuiiiiiiiiiiiiiiiiiiiiiiii e 54
Table 4-16 TR 1oy A 1 (10 L= 55
Table 4-17 Fee GetSectorSwitchStatus.........ccooooeiiiiiiiii e, 55
Table 4-18 Fee ForceSectorSWitChoovvviiiiii 56
Table 4-19 Fee_ConvertBIOCKCONTIQuuuuuiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiiiiiieeeeeeeeeieieeeeeeenes 59
Table 4-20 Fee SUuSPeNdWIILEScciii i 59
Table 4-21 Fee ReSUMEWIIESuiii i 60
Table 4-22 Fee DisablEFSS.........uuiiiiiiiceee e 60
Table 4-23 FEE ENADIEFSS ... 61
Table 4-24 Services used by the FEE............cooiiiiiii e 62
Table 4-25 User defined conversion callbackccceoiiiiiiiiiiiiiii e, 63
Table 4-26 (TSR o] o] = gTo | N[0 1) Te%=1 i o] 1 63
Table 4-27 (TR o] of =l 4 o T \\ Lo} 1) o7=1 (o] o S 64
Table 4-28 Configurable iNterfaCes.......... ... 64
Table 5-1 Fee CONfIQUIatioNuuiiiiiiieiiiiiei bbb 71
Table 5-2 Error Detection — Development Mode ... 72
Table 5-3 o] 71| 7= o3 73
Table 5-4 L8] 1= g = 1= PP PTRPPTORRRRRPRRNS 74

©2015, Vector Informatik GmbH Version: 8.01.00

or

7185

Technical Reference MICROSAR FEE V@CEO([

Table 5-5 Critical SECON SEIVICESuuuuiiiiiiiiiiiiiiiiiiii e 74
Table 5-6 L OWET LAY ...ttt 75
Table 5-7 SECLOr SWItCH FESEIVEceiiiiiiii e 76
Table 5-8 0N = = S 76
Table 5-9 APIL Configuration ... 77
Table 5-10 Provided APL........ e e 78
Table 5-11 Parameters only visible in GCE VIeW.ccccooiiiiiiiiiiiiiii e, 78
Table 7-1 (€] [01T-T= Y 83
Table 7-2 ADBDreviations.... ... s 84

©2015, Vector Informatik GmbH Version: 8.01.00 8/85

Technical Reference MICROSAR FEE V@CEO([

1 Introduction

This document describes the functionality, APl and configuration of the AUTOSAR BSW
module FEE as specified in [1].

Supported AUTOSAR Release*: 3and 4

Supported Configuration Variants: link-time with AUTOSAR 3
pre-compile with AUTOSAR 4

Vendor ID: FEE_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: FEE_MODULE_ID 21 decimal

(according to ref. [3])
* For the precise AUTOSAR Release please see the release specific documentation.

The FEE enables you to access a dedicated flash area for storing data persistently. It is
intended to be used exclusively either by the NVRAM Manager or on SW instance within a
Flash-Boot-Loader in the Boot-Loader mode.

Further on, the module depends on some other modules, like DET for error handling, the
underlying Flash driver for hardware access and the MEMIF for consistent types.

©2015, Vector Informatik GmbH Version: 8.01.00 9/85

Technical Reference MICROSAR FEE VeCEor [

1.1 Architecture Overview
The following figure shows where the FEE is located in the AUTOSAR architecture.

E2E Protection S
Aoplcation

RTE
0S BSWM DCM A COM IPDUM NM PDUR IOHWAB
i Oen il CAN N
DET FIM iy] : x ,
ECUM NVM J1939TP! LINXCP FRXCP’ ETHXCP DNS
LIBS? CANXCP! LINTP FRTP SOAD/DOIP EXI
SCHM CANTP LINSM FRISOTP TCPIP HTTP
WDGIF CANNM LINIF FRNM ETHSM scc
WDGM CANSM FRSM ETHIF TLS
1
CANIF FRIF XML Security
DBG
DLT
RTM!
Xcp?
BT
ADCDRV EEPDRV FRDRV IICDRV? PORTDRV SPIDRV CANTRCV FRTRCV
CANDRV ETHDRV! GPTDRV LINDRV PWMDRV WDGDRV DRVEXT? LINTRCV
DIODRV FLSDRV ICUDRV MCUDRV RAMTST ETHTRCV!
Vector Standard Software 3rd Party Software ! Available extensions for AUTOSAR

2 Includes EXTADC, EEPEXT, FLSEXT, and WDGEXT
3 Includes E2E, CRC, CAL (CPL)

Figure 1-1 AUTOSAR architecture

©2015, Vector Informatik GmbH Version: 8.01.00 10/85

based on template version 3.1

Technical Reference MICROSAR FEE

The following figure shows the FEE and its relationship to other modules.

EcuM

Det

Figure 1-2 FEE in a typical (AUTOSAR) SW architecture

&D

Note

vector’

SchM

NvM e
~ 1
|
T |
| |
! |
«usle» |
v '
|
|
gl |
MET «optilonal»
Y |
N~ T /1\ |
N ! | |
«initialize» «use» o |
S e 1 «include» |
~ |
~ | |
NN V X |
g)----
—————————— Fee —— e —— =>
«optional» «use»
A T «triggers»
| |
I «UI%»
«optilonal» \‘I/

Fls

Figure 1-2 shows the normal case. In general FEE does not depend on who actually

uses it, and who provides required services. E.g. it does not matter who provides

mechanisms to synchronize access to critical sections (chapter 3.5), or who actually

calls Fee MainFunction. It also doesn’t matter whether callbacks (Fls to FEE, FEE
to NvM) are directly called as depicted in the figure, or whether they are “intercepted”
by someone.

Caution

FEE assumes exclusive usage of Fls. Allowing other components to use FIs’s services
results in synchronization issues, which are hard to solve. Hence this shall be avoided.

©2015, Vector Informatik GmbH

Version: 8.01.00

11/85

Technical Reference MICROSAR FEE VeCEor [

2 Functional Description

2.1 Features
The features listed in this chapter cover the complete functionality specified in [1].

The "supported" and "not supported" features are presented in the following two tables.
For further information of not supported features also see chapter 6.

The following features described in [1] are supported:

The module operates on blocks provided by the NVRAM Manager. Read accesses to blocks are
handled byte-wise.

Hardware restrictions like erase cycles or sector sizes are abstracted and not visible for the
upper layer.

Incomplete writes (e.g. due to reset) are detected.
The virtual sectors use a wrap-around concept with backup of the most recent data blocks.

Possibility to retrieve the number of erase cycles of a logical sector (done via the API service
Fee GetEraseCycle ()). This feature is an add-on to the AUTOSAR standard.

Possibility to retrieve the number of write cycles of a block (done via the API service
Fee GetWriteCycle ()).This feature is an add-on to the AUTOSAR standard.

Possibility to force sector switches (done via the API service
Fee ForceSectorSwitch ()).This feature is an add-on to the AUTOSAR standard.

API to perform data conversion after configuration update i.e. blocks whose payload has
changed may be converted according to new configuration without data-loss. This feature is an
add-on to the AUTOSAR standard.

r '] Info
i S This feature is optional, i.e. it has to be ordered explicitly.

Fee supports Flash Address Spaces (provided by Fls) of up to 2GBytes, i.e. Sectors to be used
by FEE may resist in range 0x00000000 to Ox7FFFFFFF

Fee MainFunction Triggering: Possibility to call the Fee MainFunction in a cyclic task or in
a background task.

Table 2-1 Supported SWS features

The following features described in [1] are not supported:

The MAXIMUM BLOCK TIME is not supported by the FEE, because no time reference is provided
to the FEE.

Table 2-2 Not supported SWS features

©2015, Vector Informatik GmbH Version: 8.01.00 12/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEO([

2.2 Initialization

The FEE is initialized and operational after Fee Init () has been called.

Q Caution
. The FEE is driven asynchronously, i.e. jobs are requested via dedicated API, and they
are processed by calling Fee MainFunction ().

Initialization just prepares FEE to accept and process requests. Initialization of sectors
(checking their headers and determining new/old one) is deferred until first request is
being started on a partition.

Additionally after initialization, any sector switch processing is disabled:

> Sector Switch Processing in Background (see 2.7.1) can be enabled by
Fee SetMode (MEMIF MODE SLOW).

> Depending on “FSS Control API” (see Ch. 5.1.7.1) they can only be enabled by:

> Fee EnableFss (), if “FSS Control API" was enabled. In that case write requests
beyond Foreground Sector Switch Threshold are disabled; refer to chapter 2.10.

> Fee Write() /Fee InvalidateBlock() /Fee EraseImmediateBlock(),
otherwise.

These implicit defaults help to ensure that FEE does not perform any write, or even erase
operations during ECU start-up, unless explicitly requested by user.

| Caution

. It is not recommended to use any of the mentioned services during ECU’s start-up
phase. Special care needs to be taken about write requests: Proper initialization (order)
of application software is important to prevent from too early write accesses to NV
memory.

2.3 States
2.3.1 Module States

Point in Time Module State |

After Reset, before Fee_Init was called MEMIF UNINIT

When Fee_Init() returns MEMIF BUSY INTERNAL

When accepting a job request. MEMIF BUSY

If rejecting a job request. No change.

Upon completing a job (including returning from Fee SetMode ()) MEMIF BUSY INTERNAL
Pending internal operations (while no user job is pending) MEMIF BUSY INTERNAL

Not even an internal job is pending MEMIF IDLE

©2015, Vector Informatik GmbH Version: 8.01.00 13/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEO([

Table 2-3 Module states

’?] Note

State MEMIF_UNINIT can only be delivered after reset, if start-up code was executed,
’ and section FEE START SEC VAR INIT UNSPECIFIED was mapped toan
appropriate section, being initialized by startup code. See also: chapter 3.2

©2015, Vector Informatik GmbH Version: 8.01.00 14 /85

based on template version 3.1

Technical Reference MICROSAR FEE V@CEO([

Note

Normally (unless Fee_Cancel was called) FEE_IDLE state can only be entered via
FEE_BUSY_INTERNAL.

Whenever FEE leaves MEMIF_BUSY_STATE due to job completion it asynchronously
checks all partitions for their fill levels, and the necessity of sector switch. Therefore,
even if no sector switch is necessary or allowed, it takes few Fee MainFunction
cycles to finally become (and report) IDLE

stm GlobalFsm

/%we roff

Power-On Reset

MEMIF_UNINIT PoweroOff

power-off

Fee_Init

/ initialized \

EMIF_BUSY_INTERNAD Fee_Cancel MEMIF_IDLE

Fee_ForceSectorSwitch,
Fee_SetMode

jobCompleted

/jobResult = [MEMIF_JOB_OK,

MEMIF_JOB_FAILED, Fee_Cancel

MEMIF_BLOCK_INVALID, /jobResult = MEMIF_JOB_CANCELLED

MEMIF_BLOCK_INCONSISTENT]

Fee_Read, Fee_Write, Fee_Invalidate,
Fee_EraselmmediateBlock,
Fee_ConvertBlockConfig

/jobResult = MEMIF_JOB_PENDING

Fee_EraselmmediateBlock,
Fee_lInvalidate, Fee_Read, Fee_Write,
Fee_ConvertBlockConfig

JjobResult = MEMIF_JOB_PENDING MEMIF_BUSY

Fee_ForceSectorSwitch

- S

Figure 2-1 FEE Module States

©2015, Vector Informatik GmbH Version: 8.01.00 15/85

Technical Reference MICROSAR FEE

2.3.2 Job States/Results

vector”

Point in Time Job State

After successfully finished job
After a job has been accepted
After Fee Cancel ()

After a read job has been finished and an invalidated block

was found

After a block is read which has not been written successfully

before.

After a job has been finished and retrieving data (independent

from management information of payload data) from the Flash

failed

Table 2-4 Job states

©2015, Vector Informatik GmbH

MEMIF JOB_OK

MEMIF JOB_ PENDING
MEMIF JOB_ CANCELLED
MEMIF BLOCK INVALID

MEMIF BLOCK INCONSISTENT

MEMIF JOB FAILED

Version: 8.01.00 16/85

based on template version 3.1

Technical Reference MICROSAR FEE

2.4

Flash organization

vector’

Figure 2-2 gives an overview of how FEE organizes flash memory, and how FEE’s three

main concepts — (User) Blocks, Partitions and Logical Sectors — are related.

pkg Overall Flash management concepts/

Nv M

NVM::User Blocks

1.4

FEE

0.1

FEE::UserBlocks

1.1

0.1

1

FEE::Partition

1.1

2

FEE::Logical Sector

0.1

(Datp)Flash

1..*%

(Data)Flash::Physical Sector

2.9

24.1
24.1.1

Figure 2-2 From User Blocks to Flash Sectors

Block Handling
Block Chunks

Block chunks are the smallest entities the FEE can allocate dynamically in Flash. A chunk
allocation reserves space for a configurable number (refer to chapter 5.1.4) of versions of
the associated block. FEE continues writing new versions (aka instances) of this block into
its most recent chunk, until it's full. Writing the next instance requires allocation of a new

©2015, Vector Informatik GmbH

Version: 8.01.00

171785

Technical Reference MICROSAR FEE V@CEO([

chunk. Each block’s chunks build up a linked list in flash: each chunk points to its
SUCCeSSOr.

2.4.1.2 Block Search

A requested block is searched by following the links provided by the block chunks. The
start point is the default area of the block. If the chunk link is not valid the search is
continued within the current chunk using a binary search algorithm.

The search concept provides fast access to every block as only the needed block chunks
are accessed.

2.4.2 Partitions

FEE employs a concept of partitions. A partition can be thought of an emulation space that
is managed separately from other ones:

> Errors in one partition do not affect data in other ones
> Error states (e.g. Read-Only Mode) are local to a single partition.

> Job processing in one partition does (almost) not depend on sector switch processing
(chapter 2.7) in other partitions.

However, compared to two FEEs operating on two different flash devices, partitions still
require synchronization:

> FEE is still restricted to use one single flash driver.

> According to AUTOSAR, FEE is still limited to one pending user request.

> Only one partition can perform a sector switch at a time

> Sector switch processing can only be interrupted when processing a block completed.

Each partition consists of two logical sectors, which in turn are mapped to physical flash
sectors.

During configuration, each logical block must be assigned to a partition.

Note

FEE configurations for FBL and Application do not need to share all partitions. E.g. a
partition containing only application data may remain unknown to the FBL. However,
shared partitions must refer to identical Fls configurations (FIsConfigSet container), and
they must match in address and size, as well as in alignment settings.

©2015, Vector Informatik GmbH Version: 8.01.00

18/85

Technical Reference MICROSAR FEE V@CEO([

Example

Most typical as well as most recommended use case for partitions is the physical
separation of frequently and infrequently written data. Such a separation reduces
sector switch efforts, because a whole partition would be infrequently updated.
Therefore, separation also increases availability data. However, it may increase
number of flash’s erase cycles over life-time, because frequently written data will
usually (it depends on actual amounts) be spread over less flash memory.

Tlg

2.4.3 Logical Sectors

The FEE divides the physical flash assigned to a partition in two parts, called logical
sectors. Each logical sector must be mapped to one or more continuous physical Flash
sectors. Logical sectors do not need to be aligned on physical sector boundaries, i.e. they
may start and/or end within physical sectors. However, start and end addresses must
adhere to the configured address alignment.

Note
The mapping of logical to physical sectors is mutual exclusive, i.e. physical sectors
may not be shared between logical sectors.

It results in a minimum number of physical sectors that must be available to define
(additional) partitions: Per partition, two physical sectors must be provided by HW (and
Fls).

| Caution

. Unused flash space within a physical sector must not be used (neither read nor write)
by other software. It should be assumed to be erased, because FEE does never write
it, but it will be erased, too, with each sector erase triggered by FEE.

Besides the lower logical sector must be located at a smaller address than the upper one,
both sectors may be located anywhere within the flash space provided by the underlying
driver (considering restrictions imposed by hardware or the driver, of course), i.e. there
may be a gap between them.

Furthermore, the two logical sectors must be erasable independently from each other, i.e.
they must be mapped to distinctive physical sectors.

The size of the smaller logical sector defines the maximal number of blocks that can be
handled by the FEE.

- Info
Within AUTOSAR specification logical sectors are called virtual sectors.

©2015, Vector Informatik GmbH Version: 8.01.00 19/85

Technical Reference MICROSAR FEE V@CEO([

2.5 Processing

All jobs (Read, Write, InvalidateBlock, EraselmmediateBlock, GetWriteCycle,
GetEraseCycle, ForceSectorSwitch) will be executed asynchronously with the help of a job
state machine.

) Caution
H The FEE must be initialized before the services are called.

| Caution

. Only one job can be accepted at a time. Hence, it is not allowed to request an
asynchronous job to the FEE as long as the currently pending job has not been
completed.

While internal operations are performed (current status is equal to
MEMIF BUSY INTERNAL) a job can be accepted, but actual processing may be deferred
due to sector switch handling (see chapter 2.7 for more details).

2.5.1.1 Initial processing

In order to become able to process a request, FEE has to determine both logical sectors’
states, i.e. whether they are usable at all, and which one contains most recent data. Once
FEE determined these states, it maintains them in RAM.

Since a request is always associated with a partition, FEE performs this initialization step
at beginning of normal job processing.

©2015, Vector Informatik GmbH Version: 8.01.00 20/85

Technical Reference MICROSAR FEE V@CEO([

Expert Knowledge

FEE attempts to read both sector headers, i.e. the first 8 bytes in each logical sector.
This processing takes at least 3 cycles (from initial job request to start of actual job
processing), assuming FEE does not have to wait for Fls, i.e. FIs_Read processing
completes between two Fee MainFunction calls.

Info

If one of both Fee sector headers is erased or corrupted, and the other one is ok, FEE
tries to use the valid sector; erasing the other one will be done either when necessary,
or when no user jobs are pending (see also chapter 2.7)

If both sector headers are erased, FEE behaves as if flash is nearly full (see also
2.7.2): It will erase one logical sector and write its header, as part of first write class
job’s processing.

If both sector headers are corrupted or one header is corrupted and the other is
erased, FEE calls the user error callback function, if configured. Refer to chapter
3.3.5.3

2.5.1.2 Processing of Read Job

The FEE provides the service Fee Read () for reading a block. This service reads the
data of the block which has been most recently written.

This asynchronous job is initiated with the API function Fee Read () and is processed by
subsequent calls of Fee MainFunction () (see also chapter 2.3).

2.5.1.3 Processing of Write Job

To write the current block content to flash memory the API function Fee Write () is used.
FEE searches the next free position in the most recent block chunk to write block’s new
instance to.

This asynchronous job is initiated with the API function Fee Write () and is processed by
subsequent calls of Fee MainFunction () (see also chapter 2.3).

2.5.1.4 Processing of InvalidateBlock Job

To invalidate the block content in flash memory the APl function
Fee InvalidateBlock() is used. The FEE component marks the block as invalid;
upon success, subsequent read attempts report MEMIF BLOCK INVALID.

Expert Knowledge
Block Invalidation is very similar to Block Write, as it also creates a new instance, i.e. it
consumes flash memory.

-

This asynchronous job is initiated with the API function Fee InvalidateBlock () andis
processed by subsequent calls of Fee MainFunction () (see also chapter 2.3).

©2015, Vector Informatik GmbH Version: 8.01.00 21/85

Technical Reference MICROSAR FEE V@CEO([

2.5.1.5 Processing of EraseimmediateBlock Job

Immediate data is data of a block which should be written with a higher priority than the
other blocks.

To mark an immediate block as erased the API function Fee EraseImmediateBlock ()
is used. As the FEE component can’'t erase the corresponding block it writes invalid
information for the block to the flash memory.

Expert Knowledge
FEE processes EraselmmediateBlock jobs identically to InvalidateBlock jobs.

-

This asynchronous job is initiated with the API function Fee EraseImmediateBlock ()
and is processed by subsequent calls of Fee MainFunction () (see also chapter 2.3).

2.5.1.6 Processing of GetEraseCycle Job

The erase cycle counter is increased during every erase of a certain logical sector and
consequently counts the erase cycles of the flash.

To get the erase cycle counter of a specified logical sector, the APl function
Fee GetEraseCycle () is used. The availability of this service is configurable at pre-
compile time which can be done via the configuration tool.

This asynchronous job is initiated with the API function Fee GetEraseCycle () and is
processed by subsequent calls of Fee MainFunction () (see also chapter 2.3).

2.5.1.7 Processing of GetWriteCycle Job
The write cycle counter counts the write cycles of each block.

To get the write cycle counter of a specified block, the APl function
Fee GetWriteCycle () is used. The availability of this service is configurable at pre-
compile time which can be done via the configuration tool.

This asynchronous job is initiated with the API function Fee GetWriteCycle () and is
processed by subsequent calls of Fee MainFunction () (see also chapter 2.3).

2.6 Error Handling
The module offers detection of errors.
Errors are classified in development and production errors.

Development errors should be detected and fixed during development/integration phase.
Those errors are caused by faulty configuration or incorrect usage of the module’s API.

Production errors are hardware errors and software exceptions that cannot be avoided and
are also expected to occur in production code. FEE has no case to report a production
error.

©2015, Vector Informatik GmbH Version: 8.01.00 22 /85

Technical Reference MICROSAR FEE VeCEor [

2.6.1 Development Error Reporting

Development errors are reported to DET using the service Det ReportError () as
specified in [2], if development error detection and reporting, are enabled (see chapter
5.1.5.1).

If another module than DET is used for development error reporting, the function prototype
for reporting the error can be configured by the integrator, but must have the same
signature as the service Det ReportError () (see chapter 2.6.3).

The reported FEE ID can be found in chapter 1.

The reported service IDs identify the services which are described in 4.3. The following
table presents the service IDs and the related services:

Service ID Service

0x00u Fee Init() / Fee_ InitEx()
0x01u Fee SetMode ()

0x02u Fee Read()

0x03u Fee Write()

0x04u Fee Cancel(()

0x05u Fee GetStatus ()

0x06u Fee GetJobResult ()

0x07u Fee InvalidateBlock()
0x08u Fee GetVersionInfo ()

0x0%u Fee EraseImmediateBlock()
0x10u Fee JobEndNotification()
Ox11lu Fee JobErrorNotification()
0x12u Fee MainFunction()

0x20u Fee GetEraseCycle()

0x21u Fee GetWriteCycle()

0x22u Fee GetSectorSwitchStatus()
0x23u Fee ForceSectorSwitch ()
0x24u Fee ConvertBlockConfig()

Table 2-5 Mapping of service IDs to services

The errors reported to DET are described in the following table:

Error Code

0x02 FEE E INVALID BLOCK NO This error code is reported if an API service is called with
invalid block number.

0x10 FEE_E_PARAM DATABUFFERPTR It is reported if a pointer parameter of an API service is
called with the NULL PTR value.
0x11 FEE_E_PARAM SECTOR_NUMBER Itis reported if the Fee GetEraseCycle () API service is
called with an invalid logical sector number.
0x12 FEE_E_PARAM LENGTH_OFFSET |tis reported if the Fee Read () API service is called with
©2015, Vector Informatik GmbH Version: 8.01.00 23/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Error Code Description

invalid BlockOffset and Length values.

0x13 FEE E BUSY It is reported if one of the asynchronous API services has
been called in parallel.

0x14 FEE E NO_ INIT It is reported if one of the API services has been called
without an initialized FEE.

0x15 FEE E PARAM MODE Neither MEMIF MODE SLOW nor MEMIF MODE FAST
has been passed to Fee SetMode ()

Table 2-6 Errors reported to DET

;] Expert Knowledge
All error codes starting from 0x10 are defined in addition to [1].

—D

2.6.1.1 Parameter Checking

AUTOSAR requires that API functions check the validity of their parameters. The checks
listed in Table 2-7 are internal parameter checks of the API functions. These checks are
intended for development error detection and can be en-/disabled separately; it is
described in chapter 5.1.5.

Capability of controlling execution of single checks is an addition to AUTOSAR which just
requires to en-/disable the complete parameter checking via the parameter
FEE DEV_ERROR DETECT.

The following table shows which parameter checks are performed on which services:

Check

Service

FEE E INVALID BLOCK NO
FEE E PARAM DATABUFFERPTR
FEE E PARAM SECTOR NUMBER
FEE E PARAM LENGTH OFFSET
FEE E PARAM MODE

FEE E BUSY
FEE E NO INIT

Fee Init ()
Fee SetMode ()
Fee Read() [| [| [}]

Fee Write () | | |

Fee Cancel ()
Fee GetStatus ()
Fee GetJobResult ()]

©2015, Vector Informatik GmbH Version: 8.01.00 24 /85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Service

FEE E PARAM DATABUFFERPTR
FEE E PARAM SECTOR NUMBER
FEE E PARAM LENGTH OFFSET

FEE E PARAM MODE

B FEE E INVALID BLOCK NO

B FEE E BUSY
B FEE E NO INIT

Fee InvalidateBlock/()

Fee GetVersionInfo ()
Fee EraseImmediateBlock () u |
Fee JobEndNotification ()

Fee JobErrorNotification ()

Fee MainFunction ()

Fee GetEraseCycle ()] [[
Fee GetWriteCycle () E = u
Fee GetSectorSwitchStatus ()

Fee ForceSectorSwitch ()

Fee ConvertBlockConfig () u C I

Table 2-7 Development Error detection: Assignment of checks to services

2.6.2 Production Code Error Reporting
FEE does not report any production related error to an error/event manager like DEM.

2.6.3 Error notification

All detected errors in development mode are by default reported to the Development Error
Tracer (DET), but can be configured regarding called function and include file.

The error declaration must have following syntax:

Prototype

Prototype syntax described in chapter 8.2.2 Det_ReportError of [2].

Parameter

Moduleld Specifies the identifier of the module causing the error. The module Id of FEE
can be found in chapter 1.

Instanceld The identifier of the index based instance of a module, starting from 0. Thus
the FEE is a single instance module it will pass 0 as Instanceld.
Apild The identifier of the API function, which caused the error.
ErrorCode The number of the specific error.
©2015, Vector Informatik GmbH Version: 8.01.00 25/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Return code

void --

Functional Description
User function for the Fee Errorhook, which specifies development errors.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> This service is always available.
Expected Caller Context

> called in application context

Table 2-8 Det_ReportError

2.7 Sector Switch

The sector switch is responsible to gather most recent instances data of all
blocks/datasets from one logical sector (= source sector) and write them to the other one
(= target sector). After this procedure has been finished, the source sector can be erased
to prepare it for storing data again.

-ﬁ‘] Expert Knowledge
Under certain conditions, no copy is necessary at all. However, finally FEE has to erase
D a sector to reclaim free flash space.

There are different reasons to perform a sector switch
e Threshold exceeded (see below)
e User Request (Fee_ForceSectorSwitch)
e Critical Block Handling (refer to ch. 2.11)

2.7.1 Background Sector Switch (BSS)

Sector Switches will be processed in background, unless FEE was set to “Fast Mode”
(refer to ch. 4.3.3). This means that processing occurs only if no user job is pending.

Sector Switch processing is interruptible by user jobs after a block has been processed
(copied, or decision to skip copying was taken).

2.7.2 Foreground Sector Switch (FSS)

A Sector Switch being processed in Foreground defers a write job. That means a job
cannot be processed before a sector switch has been completed.

Such a sector switch is not interruptible by any other job.

©2015, Vector Informatik GmbH Version: 8.01.00 26/85

based on template version 3.1

Technical Reference MICROSAR FEE V@CEO([

Expert Knowledge
The actual reason is the pending job that was deferred. At most one job may be
pending at any time.

-

FSS processing is always initiated to a pending write job for a particular block. This block
is associated with a specific partition; thus a FSS will be performed on that partition only.

2.7.3 Sector Overflow

A sector overflow occurs, if FEE failed to complete data copy, because both logical sectors
ran out of space. Since in that case both sectors contain most recent data instances (of
different blocks), FEE is unable to continue with erase operation without losing most recent
data.

Such an event is caused by several consecutive aborted write attempts.

Q Caution

! Such aborts should be avoided wherever possible, i.e. they shall be considerable being
exceptional (thus rare) events. Especially a SW reset shall be performed only if FEE is
IDLE.

A sector overflow is local to one particular partition, i.e. other partitions are not affected.
Probability of an overflow depends on different parameters:

> Probability of resets, of course
> Partition’s write load, which can be defined as number of bytes over time.
> (Foreground) Sector Switch in relation to blocks’ sizes.

To minimize effects caused by under-voltage situations FEE provides additional services;
see chapter 2.10.

Accepting loss of most recent data instances, FEE may be instructed to perform a sector
erase in order to restore write ability; see chapter 3.3.5.3. Additionally the risk of losing
data can be restricted to certain “uncritical” blocks at configuration time. For details refer to
chapter 2.11.

2.7.4 Sector switch reserves and thresholds

The FEE determines the necessity of a sector switch based upon exceeding a related
threshold value. This value is always an offset relative to the start address of the currently
“‘newer” sector.

©2015, Vector Informatik GmbH Version: 8.01.00 27185

Technical Reference MICROSAR FEE V@CEO([

Basic Knowledge
A threshold is considered to have been exceeded, if one sector (the older one) is full
and the other one (newer sector) is filled up to (or exceeding) this certain level.

Note

To assure that a sector switch in FBL mode can copy FBL's data and an unknown
amount of application data, sector switch has to start as early as possible. Therefore in
FBL mode a sector switch starts once the newer logical sector is used. This might
degrade efficiency of flash usage, but since it would happen in FBL mode only, effects
are negligible.

In configuration “reserve values”, rather than the thresholds, need to be specified by user.
During generation the thresholds to be used by FEE are calculated based on these values
and block configuration. “Reserve” is meant as follows: How much space the FEE shall
reserve additionally to the space complete block configuration would consume in flash
(that is the amount of flash space that would be consumed, when every block was written
exactly once).

Thus a reserve value of 0 means: For every configured block, one chunk is reserved; FEE
shall start sector switch once less than one chunk per block fits into flash.

A reserve greater than 0 adds additional space resulting in more possible aborts until the
flash runs full (sector overflow).

The worst case number of additional resets the FEE can deal with is the FSS reserve
divided by the size of the largest chunk.

There is no standard recommendation how to configure this threshold, because this value
depends on the individual environment of the ECU and the configuration of the memory
stack, like:

e total available flash memory

e number of blocks/datasets

e size of the blocks/datasets

e page size of the flash hardware

e general handling of blocks, i.e. when blocks/datasets are written down to the non-
volatile memory

2.7.5 Background Sector Switch Reserve/Threshold

A sector switch in background mode (BSS) is the type of sector switch that should
normally occur. In flash, both sectors are currently in use, but there is quite much space
available.

Exceeding BSS threshold causes FEE to start BSS processing, as described above.

©2015, Vector Informatik GmbH Version: 8.01.00

28/85

Technical Reference MICROSAR FEE V@CEO([

2.7.6 Foreground Sector Switch/Threshold

If flash/partition fill level exceeds FSS threshold, it is quite full. It can be seen as “last
chance processing”. Therefore, a write job directed to that partition will be deferred in order
to complete FSS first.

FSS threshold also indicates most critical fill-level: once it is exceeded, a call to
Fee DisableFss () becomes effective, i.e. in that case FEE terminates write requests
delivering error result.

Since BSS is defined to start earlier than FSS, its threshold is smaller. This also means
that an FSS implies BSS, i.e. processing is done in Background, as described above.

Expert Knowledge

FEE keeps track of logical sector’s state. Once copying most recent data completed, it
internally marks the “older” sector as out-dated. This results in reducing criticality: Flash
is still almost full, but we just need to erase a sector. An FSS becomes rather a BSS;
after completing the copy process, a pending write job gets the chance to be processed
before sector format is being started. If Flash is too full, the job will be deferred again; it
has to wait for completion of sector format.

-

2.8 Data Conversion

- Info
This feature is optional, i.e. it has to be ordered explicitly.

Standard FEE implementation allows to update the block configuration, and to modify
block lengths with one restriction: Existing data of blocks, whose payload (length) was
changed, will be lost. Trying to read such a block will lead to job result
MEMIF BLOCK INVALID, until the block has been re-written according to new
configuration.

Data Conversion provides a “framework” enabling the SW to keep even those blocks: The
FEE scans Dataflash content. For each block (in detail: each block’s most recent instance)
it finds, a callback function will be invoked. This function gets following arguments:

> Unique block identifier (each dataset is treated separately)

> (pointer to) most recent data

> old length (as found in flash)

> new length (according to current configuration), if block is still configured.
Within the callback the user may decide what the FEE shall do with this block:
> skip it (it will be lost after finalization of Conversion)

> write it according to old length

> write it according to new length

©2015, Vector Informatik GmbH Version: 8.01.00 29/85

Technical Reference MICROSAR FEE V@CEO([

The data passed to the callback may be modified; the FEE will write them, if desired. This
is the actual conversion. Since the FEE is not able to detect internal configuration
changes, the callback will also be invoked for blocks whose length did not change.

Info

The callback might need to implement some code to make correct decisions, e.g. if
different blocks need to be treated differently, additionally depending on old
configuration (from which version the update to current version has been performed)

If a block does not contain any data, i.e. it was never (successfully) written, it had been
invalidated, or it became corrupted by other means, the callback will not be invoked; there
is no data to be converted.

| Caution

. Conversion must be triggered immediately after start-up, using
Fee ConvertBlockConfig (referto 4.3.17), before upper layers get running, and
before a sector switch (with complete configuration) has been performed. Therefore it
must happen before the first write request (including invalidate and erase) was issued
to the FEE, and before an explicit Fee ForceSectorSwitch has been requested.
Otherwise the sector switch would remove all out-dated (removed or payload changed)
data blocks

2.9 Flash Page Size impacts

The smallest writeable entity, called page size, differs for example from 2 byte on the
S12XDP512 up to 128 byte on the TC1796. The size of every kind of data to be written
must be rounded up to a multiple flash device’s page size. Therefore padding is added, if
the data doesn’t fit a multiple of the page size.

For example, if you want to write 13 byte (incl. management information) into the flash of a
TC1796, the padding which is needed is 115 byte to reach a multiple of the page size 128
byte. But if you want to write 13 byte (incl. management information) into the flash of a
S12XDP512, the padding which is needed is only 1 byte to reach a multiple of the page
size 2 byte.

This example shows, that the flash could be used much more efficient, if data which
should be written matches the page size or is only a little smaller. That is to say, that it is
possible to write more instances of a block/dataset of the same type into a smaller flash
with small page size than into a larger flash where plenty of padding has to be added.

2.10 Services for handling under-voltage situations

The FEE provides two sets of functions enabling you to handle under-voltage situations
properly.
Both sets focus on different use cases:

Fee SuspendWrites () is intended to react on actual under-voltage situation detected
via dedicated monitoring circuitry. Usually there is some amount of time (few milliseconds)

©2015, Vector Informatik GmbH Version: 8.01.00 30/85

Technical Reference MICROSAR FEE V@CEO([

to react on such conditions untii a low voltage reset occurs. Its counterpart,
Fee ResumeWrites (), was introduced in order to prevent from stalling, if voltage
reaches normal range, without any reset.

The other set, namely Fee EnableFss () and Fee DisableFss (), respectively, is
intended to signal the increased or decreased risk of resets to the FEE. For instance,
usually engine start (cranking) might be a situation of higher risk, while a running engine
might be a much safer situation. Since this function set deals with risks, they will only have
a noticeable effect if the flash becomes too full, i.e. if Foreground Sector Switch Threshold
exceeded. As long as flash is not at a critical fill level (denoted by Foreground Sector
Switch Threshold), the write operations and (background) sector switch are permitted. On
the other hand, execution of FSS may be disabled. In this case, write requests are
forbidden, once FSS became necessary; they will fail with error result.

| Caution

. If this set of functions is enabled in configuration, FEE does not automatically enable
FSS, i.e. execution of Foreground Sector Switches is disabled per default (after
Fee Init ()).In orderto enable execution of FSS, you will have to call
Fee EnableFss () once ECU start-up completed, and operating conditions are stable
(esp. normal voltage).

Basic Knowledge

= Execution of Sector switch (“garbage collection”) is essential to keep FEE writable. In
case of exceeded Foreground Sector Switch Thresholds the flash is at a critical fill
level, i.e. cleaning up has become urgently necessary. Writing new data in this situation
might consume additional flash space; it would become insufficient to complete the
sector switch afterwards.

Q' Caution

. It should be ensured Fee EnableFss () will be called after start-up, at least under
normal conditions. Otherwise FSS’s intention of “last-chance processing” would be
foiled; exceeding FSS threshold would cause entering read only mode. This in turn
should be exceptional behaviour.

Expert Knowledge

As stated in chapter 2.7.6, criticality reduces once block copy has been completed.
Thus, if Fee DisableFss () was recently called, FEE remains writable, once block
copy completed, and only sector erase is outstanding.

©2015, Vector Informatik GmbH Version: 8.01.00 31/85

Technical Reference MICROSAR FEE V@CEO([

2.11 Critical Data Blocks

In order to keep FEE writable in case of sector overflows (chapter 2.7.3), it has to erase
one logical sector. Though this event is an exception, occurring really rarely, the erase
causes loss of recent data instances.

While such a loss would be uncritical to some data blocks, losing some other blocks’
recent instances might cause the whole ECU to cease working. Such data blocks are
essential to ECUs operability; losing them is critical (as would result in “defective ECU”
requiring service). FEE configuration provides the possibility to mark these blocks.

Basic Knowledge

Typically data block’s “criticality” rises with decreasing write frequency. The more
infrequently a block will be written the less number of older instances exist, and the
larger their semantic difference would be, disqualifying them for usage as fall-back
data.

As a result FEE ensures that any write access keeps all “critical” Data Blocks’ most recent
instances within one logical sector. Thus there is always one logical sector that might be
erased (in case of error) without losing such “critical” data.

Keeping critical data together requires conditional execution of sector switch. If necessary,
i.e. if a critical block cannot be written into the same logical sector containing all other
critical blocks, FEE performs a Foreground Sector Switch.

Since each block configured to be critical may cause an additional sector switch before
writing a new instance, flash usage over life-time increases due to additional block copies.

Note

Due to independency of partitions, the differentiation between critical and “not as
critical” data blocks is also local to a partition. On one hand FEE only has to care about
all critical blocks in a particular partition. On the other hand, resolving a sector overflow
(by formatting a sector) may cause loss of recent uncritical data in only that partition.

Basic Knowledge

By marking all Blocks assigned to one partition as “critical”, that partition can be
configured to operate with so called “single sector usage”, that is, FEE ensures that all
data blocks’ recent instances are located within a single logical sector. Before switching
to the other one, all recent instances will be copied. This results in most robust
operations (concerning aborts). However, there are penalties in performance,
especially because no BSS can actually be performed, as well as in flash usage,
because always all recent data instances will be copied.

©2015, Vector Informatik GmbH Version: 8.01.00

32/85

Technical Reference MICROSAR FEE VeCEO([

'E‘l Expert Knowledge

el Even though the FEE in FBL does not know anything about Application’s, critical blocks
can be handled safely, unless added to FBL configuration and set to “uncritical” (thus
configured inconsistently).

| Caution

. If Data Flash is being shared between Application and FBL, it is highly recommended
to configure all FBL blocks being “critical”. Typically there are some blocks, containing
information about Application’s validity and information whether to start Application or
FBL. These blocks are critical to an ECU!

= Note
T] It is not recommended to mark blocks as “critical” and “immediate”. Requirements on
both types contradict: while “immediate” data are required to be written fast, “critical”
data are required to be written very safely, implying additional operations, which slow
down write performance.

2.12 Fee_MainFunction Triggering

In AUTOSAR release 4.x an additional option is introduced, to be able to call the
Fee MainFunction in a cyclic task or in a background task.

The cyclic task (default configuration) is used when the main function shall be triggered
periodically. Typically the cycle time needs to be defined, for example 10ms.

If the Fee MainFunction shall be accessed quicker, the function shall be called in a
background task. The background task runs when the system has nothing to do further.
The Fee MainFunction is called as often as the available CPU load allow.

Q Caution
! If the system is overloaded, it may happen that the background task is no longer called.

e] Note
i The Fee MainFunction should not be triggered faster than F1s MainFunction,
because the FEE must wait for the FLS.

©2015, Vector Informatik GmbH Version: 8.01.00 33/85

Technical Reference MICROSAR FEE VeCEor [

3 Integration

This chapter gives necessary information for the integration of the MICROSAR FEE into
an application environment of an ECU.

3.1 Scope of Delivery

The delivery of the FEE contains the files which are described in the chapters 3.1.1 and
3.1.2.

3.1.1 Static Files

FiloName ____[Desription

Fee.h Defines the public interface of MICROSAR FEE module.

Fee Types.h Defines public types of FEE.

Fee.c Implements the MICROSAR FEE module. Contains the API part of the
implementation, as well as the state machine.

Fee IntBase.h Defines basic internal type definitions

Fee Int.h Defines the internal interface for all module internal source files, as well as

the container for all RAM variables which are used by the FEE.

Fee Partition.h Provide internal services to manage partitions

Fee Partition.c

Fee Sector.h Internal services abstracting access to logical sectors

Fee Sector.c

Fee ChunkInfo.h Internal services providing access to Chunks and instances contained

Fee ChunkInfo.c Within.

Fee Cbk.h Defines the callback interface for the lower layer.

Fee bswmd.arxml Contains the formal notation of all information, which belongs to the FEE.
Identifier.xml Defines all configuration parameters.

Fee.xml Defines the GUI which represents this module.

If AsrIfFee.jar Generator plug-in for DaVinci Configurator 5

Table 3-1 Static files

Only Fee.h shall be included directly by other components.

3.1.2 Dynamic Files
The dynamic files are generated by the configuration tool DaVinci Configurator.

FiloName ___|Description

Fee Cfg.h Contains the static configuration part of this module.
Fee Lcfg.c Contains the link-time part of configuration.

Fee PrivateCfg.h Contains the static configuration part, which is only included of this
module.

Table 3-2 Generated files

©2015, Vector Informatik GmbH Version: 8.01.00 34/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

3.2 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions — the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following table contains the memory section names and the compiler abstraction
definitions defined for the FEE and illustrate their assignment among each other.

Compiler Abstraction

Definitions
H
=] n <
2 8 8 & e
Memory Mappin [T O O A —
ry Mapping w8 2 :Hz | | | =
Sections 6 9 o 8 £ &8 & o
O = =
IE R L S SR |
H [aW) [aW) [aF] bz H H H e %
o 0 [al) ny @) 04 o a4 < <
O] A O A
= = = [Ea} = = [Ea} = = [Ea}
[Ea) [Ea) [Ea) [Ea} [Ea] [Ea] [Ea} [Ea] [Ea] [Ea)
[[[[£} £} [£} £} [
FEE START SEC CODE =]
FEE START SEC CONST UNSPECIFIED m =
FEE START SEC APPL CONFIG UNSPECIFIED m
FEE START SEC VAR NOINIT UNSPECIFIED =
FEE START SEC VAR INIT UNSPECIFIED m

Table 3-3 ~ Compiler abstraction and memory mapping

e FEE START SEC CODE / FEE STOP SEC_ CODE
— Placement of all API functions

— FEE API CODE
Calling convention for all API functions
Note that these functions are called from different modules, suitable
convention depends on global section mapping.

— FEE_PRIVATE CODE
Calling convention all internal functions
It is recommended to locate all FEE code sections into one single output
section and to make the internal function calls as “near” as possible.

e FEE START SEC APPL CONFIG UNSPECIFIED /
FEE_STOP SEC APPL CONFIG UNSPECIFIED

— FEE_APPL CONFIG
Configurable constants allocated in Fee_Lcfg.c

e FEE START SEC CONST UNSPECIFIED /
FEE _STOP SEC CONST UNSPECIFIED

©2015, Vector Informatik GmbH Version: 8.01.00 35/85

based on template version 3.1

Technical Reference MICROSAR FEE V@CEO([

— FEE PRIVATE CONST
Internal constants, to be accessed only from within FEE.

— FEE_CONST
All module constants, to be accessed from outside the FEE

- Expert Knowledge
. At least on 16bit platforms it is recommended to locate code and constants into same

memory area, in order to get most efficient access (“near”).

e FEE START SEC VAR NOINIT UNSPECIFIED /
FEE _STOP SEC VAR NOINIT UNSPECIFIED

— FEE VAR NOINIT
Module variables which do not need to be initialized (not even zeroed out)
There are not intended to be accessed outside FEE.

e FEE START SEC VAR INIT UNSPECIFIED /
FEE _STOP SEC VAR INIT UNSPECIFIED

— FEE VAR
Internal global variables of the module which must be initialized by start-up
code and which are not fixed to one type

Note

Currently Fee ModuleStatus_t is the only variable that needs to be initialized, in
order to get the “(Un)Init Development Check” working.

If this check was disabled at pre-compile time, FEE does not have any initialized
variables.

FEE APPL DATA is used to reference to buffers provided by client software.

' Caution
. The distance of FEE_APPL_DATA must be the same or bigger than the distance of
FEE VAR NOINIT.

3.3 Dependencies on SW Modules

3.3.1 OSEK/AUTOSAR OS

This operating system is used for task scheduling, interrupt handling, global suspend and
restore of interrupts and creating of the Interrupt Vector Table. Resources like shared
variables can be protected by the usage of OS services.

©2015, Vector Informatik GmbH Version: 8.01.00 36/85

Technical Reference MICROSAR FEE V@CEO([

Note

FEE does not directly depend on OS. Rather, dependency is actually created by
integrator when configuring OS services and assigning Fee_MainFunction to an OS
task

3.3.2 Module SchM

In an AUTOSAR environment, protection of “critical sections” is encapsulated by the
Scheduling Manager, SchM.

Integrator has to ensure, SchM maps critical section functions to appropriate services.
Therefore SchM just encapsulates dependency to OS.

= Note
Dependency on SchM can be globally disabled in DaVinci Configurator. Then the
(probable) more direct dependency to OS would be used.

3.3.3 Module Det

This module is the Development Error Tracer. It is optional and records all development
errors for diagnostic purposes.

Its usage can be enabled and disabled by the switch FEE DEV_ERROR_ DETECT.

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature
as the service Det ReportError () (see chapter2.6.3).

3.3.4 Module Fls

The Fls driver provides the access to the underlying hardware. The specific properties of
the flash hardware influence the configuration of the FEE component.

Its services are called to request a special job to the driver.

©2015, Vector Informatik GmbH Version: 8.01.00 37185

Technical Reference MICROSAR FEE V@CEO([

3.3.5 Callback Functions

3.3.5.1 Lower layer interaction

The FEE offers the usage of callback notification functions for the underlying driver to
inform the FEE that a job has finished successfully or not. The
Fee JobEndNotification() is called when a job is completed with a positive result
and the Fee JobErrorNotification () is called when a job is cancelled, aborted or
failed.

- Note
The interaction between FEE and the underlying driver does not need to be performed
via a notification mechanism. Also polling mode can be chosen if desired.

3.3.5.2 Upper layer interaction

The NVM offers the usage of callback notification functions for the FEE, to get informed
that a job has finished successfully or not. The Nvm JobEndNotification () is called
when a job is completed with a positive result and the Nvm JobErrorNotification ()
is called when a job is cancelled, aborted or failed.

Note
The interaction between NVM and FEE does not need to be performed via a
notification mechanism. Also polling mode can be chosen if desired.

©2015, Vector Informatik GmbH Version: 8.01.00 38/85

Technical Reference MICROSAR FEE VeCEor [

3.3.5.3 User Error Callback

Prototype

uint8 Appl CriticalErrorCallback (uint8 partitionId, Fee SectorError
errCode)

Parameter

partitionld ID of partition the error occurred.

Note that FEE publishes symbolic names
(macros) as chosen in configuration.

errCode See chapter 4.2.2
Return code

FEE ERRCBK REJECT WRITE FEE’s partition shall enter “read only mode”
currently pending and all subsequent write
requests will be completed with result
MEMIF JOB FAILED

FEE ERRCBK REJECT ALL FEE' partition shall enter “reject all mode” all
subsequent requests, including currently pending
one, will be completed with result
MEMIF JOB FAILED

FEE ERRCBK RESOLVE AUTOMATICALLY Try to resolve error automatically. This might
result in loss of most recent data instances.

Functional Description

This function may be implemented by environment software, if special handling for serious errors
is necessary. For instance, FEE'’s default behavior might not be feasible, or additional handling,
such as reporting an event to the DEM is required.

- '] Info
) FEE’s default behavior is to keep itself running and writable. This means, per default
% the FEE tries to resolve the problem automatically, unless the error code is
FEE SECTOR FORMAT FAILED, where it would enter read-only mode.

Additionally, if development mode is configured, checks are done and in case of failure they are
reported to the DET by default with the according service ID and the reason of occurrence (refer
to chapter 2.6.1).

Particularities and Limitations

m This service is synchronous.
m This service is non re-entrant.
m This service is always available.

Expected Caller Context
m This routine might be called on interrupt level, depending on the calling function.

Each error results in a specific default behavior, which becomes effective if User Error
Callback was disabled in configuration. This default behavior can also be requested from
User Error Callback by using FEE ERRCBK RESOLVE AUTOMATICALLY.

©2015, Vector Informatik GmbH Version: 8.01.00 39/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEO([

Defauit behavior |

FEE_SECTORS CORRUPTED Try to erase/re-init logical sectors.
FEE SECTOR OVERFLOW Erase the newer logical sector.
FEE SECTOR FORMAT FAILED Enter read only mode.

Return value FEE ERRCBK RESOLVE AUTOMATICALLY may
be used by user-implemented error callback. It results in
retrying logical sector format. Since it might fail with same error,
retries should be limited within error callback .

FEE_SECTOR_CRITICAL_FILL_LEVEL Just continue, i.e. perform foreground sector switch, if it is
enabled.

Table 3-4 Error Codes and FEE’s default behavior

3.4 Dependencies on HW modules

The FEE is principally hardware independent. Nevertheless, the Fls driver has to provide
some parameters (defined in the BSWMD file) the FEE relies on, e.g. the page size or
sector sizes.

35 Critical Sections

In general Fee MainFunction and FEE’s job APl may concurrently access variables;
they need to be synchronized. FEE defines one critical section,
FEE EXCLUSIVE AREA 0. Sections of code to be synchronized are very short; they
contain only few instructions, and their run times do not depend on configuration.
Therefore, a simple global interrupt lock may be used, though not necessary.

If Fee MainFunction (the OS task(s) it is running in) cannot be preempted by callers of
FEE API (especially NvM_ MainFunction) and vice versa, no synchronization mechanism
is necessary, at all.

’:] Changes

_~= " Asecond type of critical section, FEE_EXCLUSIVE AREA 1, became obsolete. It

"~ should not be used. Rather, it should just map to “nothing”. As specified by AUTOSAR
MainFunctions are not re-entrant.
If Fee MainFunction may be called from different (task) contexts, which may pre-
empt each other, a synchronization mechanism (e.g. an OS Resource) should be
locked and released outside.

Usually other Main Function calls, in particular NvM_MainFunction and/or
Fls MainFunction would require synchronization as well. Thus, an externally
defined mechanism could be better adapted to specific needs.

©2015, Vector Informatik GmbH Version: 8.01.00

based on template version 3.1

40/85

Technical Reference MICROSAR FEE VeCEor [

4 APl Description

4.1 Interfaces Overview
For an interfaces overview please see Figure 1-2.

4.2 Type Definitions
4.2.1 Fee_SectorSwitchStatusType

Description

This type specifies the possible status values of the sector switch.

Range
FEE SECTOR _SWITCH IDLE The sector switch is currently not running.

FEE_SECTOR_SWITCH_BLOCK_COPY The sector switch is currently busy with copying blocks/datasets in a
partition from the logical source sector to the logical target sector.

FEE SECTOR SWITCH ERASE The sector switch is currently busy formatting the previous source
sector in a partition.
FEE SECTOR SWITCH UNINIT The FEE is not initialized. Currently, this value is not used.

Table 4-1 Fee_SectorSwitchStatusType

'T] Info
| This is an addition to AUTOSAR.

—

4.2.2 Fee_SectorErrorType

Description

This type specifies the possible errors which shall describe erroneous situations the FEE can reach.

Range

FEE_SECTORS CORRUPTED The sector headers respectively the sector ID of both logical
sectors could not be read. Hence, the most recent sector could
not be determined.

FEE SECTOR OVERFLOW Both logical sectors are completely filled and it is not possible to
write any data. Nevertheless, it is still possible to read data from
the Flash memory.

FEE SECTOR FORMAT FAILED One logical sector could not be allocated correctly, e.g. sector
header is not valid.

©2015, Vector Informatik GmbH Version: 8.01.00 41/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

FEE_SECTOR_CRITICAL_FILL_LEVEL Foreground Sector Switch Threshold exceeded, and both logical
sectors are currently in use. This means that the flash is nearly
full. If FSS was disabled, this error code also denotes a
temporary read only condition, since FEE won’t write to flash
unless Fee_EnableFss was called.

'_]. Note
i This code actually does not denote an error.
” Rather it denotes a “risky” situation; an error
(sector overflow) might follow.

Table 4-2 Fee_SectorError Type

'_]. Info
[This is an addition to AUTOSAR.

>

4.3 Services provided by FEE
The FEE API consists of services, which are realized by function calls.

'_]. Info
i Most of the following API functions report development errors as listed in chapter 2.6.1.
D If an error is detected the concerning API function will be left without any further
actions.

4.3.1 Fee_Init

Prototype
void Fee_Init (void)

Parameter

Return code

void --

©2015, Vector Informatik GmbH Version: 8.01.00 42/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Functional Description

This service initializes the FEE module and all needed internal variables.

The FEE module doesn't support any runtime configuration. Hence, a pointer to the configuration structure
is not needed by this service.

The FEE does not initialize the underlying Flash driver, but this shall be done by the ECUM module. (This is
no AUTOSAR deviation.)

This function is specified in [1], and it should be used unless, a different configuration shall be used by
FEE.

- Info
] This service calls Fee_InitEx (see clause 4.3.2), passing pointer to generated
Fee Config structure.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> This service is always available.

> This service shall not be called during a pending job.
Expected Caller Context

> Expected to be called in application context.

Table 4-3 Fee_Init

4.3.2 Fee_lnitEx

Prototype
void Fee_ InitEx (Fee ConfigType* config)

Parameter

config Pointer to FEE’s Block configuration, which is always named Fee Config; it
is defined in Fee_Lcfg.c, and its declaration is available via Fee.h.

Expert Knowledge
- This parameter enables sharing FEE code between a Flash
Bootloader and application, while both use different Block
configurations.

—

Return code

void --

Functional Description

This is an alternative/extended service to initialize the FEE module and all needed internal variables.

The FEE does not initialize the underlying Flash driver, but this shall be done by the ECUM module. (this is
no AUTOSAR deviation)

©2015, Vector Informatik GmbH Version: 8.01.00

based on template version 3.1

43 /85

Technical Reference MICROSAR FEE VeCEor [

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> This service is always available.

> This service shall not be called during a pending job.
Expected Caller Context

> Expected to be called in application context.

Table 4-4 Fee_InitEx

4.3.3 Fee_SetMode

Prototype
void Fee_SetMode (MemIf ModeType Mode)

Parameter

Mode MEMIF MODE SLOW: Enable processing of Background Sector Switches
MEMIF MODE FAST: Disable processing of Background Sector Switches

Return code

void --

©2015, Vector Informatik GmbH Version: 8.01.00 44185

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Functional Description

F ﬁ‘l] Expert Knowledge
Deviating from [1], this function does not call underlying Flash driver’s related
> function, F1s_ SetMode ().

e '] Info
[This service is a synchronous call and does not need to be processed by the
> Fee MainFunction().

Additionally, if development mode is configured, parameter checks are done and in case of failure they are
reported to the DET by default with the according service ID and the reason of occurrence (refer to chapter
2.6.1).

Q' Caution

. Calling Fee SetMode () has significant impact on FEE’s behavior. After startup of
the ECU (ReadAll-process by the NVM has finished), the FEE is set to
MEMIF MODE SLOW, which is initiated by the NVM, if configured accordingly. This is
an indicator to the FEE, which enables processing relative time consuming sector
switch in background, i.e. while no user jobs are pending. Refer to chapter 2.7 for
details on sector switches.
On the other hand, during shut-down, performing sector switches in background may
be inhibited by setting FEE to MEMIF MODE FAST.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> This service is always available.
Expected Caller Context

> Expected to be called in application context.

Table 4-5 Fee_SetMode

4.3.4 Fee Read

Prototype

Std ReturnType Fee_ Read
(
uintl6 BlockNumber,
uintl6 BlockOffset,
uint8 *DataBufferPtr,
uintl6 Length

©2015, Vector Informatik GmbH Version: 8.01.00 45/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

BlockNumber Handle of a block (depending on block configuration)
BlockOffset Read address offset inside the block

DataBufferPtr Number of bytes to read

Length Pointer to data buffer

E OK Read job has been accepted.

E_NOT_OK Read job has not been accepted.

Functional Description

This function starts the read processing for the specified block.

- Info
] The job processing is asynchronous. The result of the finished job can be polled by
” calling Fee GetJobResult ().

When the current block is found, the parameters BlockOffset and Length are used to call the Read function
of the underlying Fls driver to read out the content of the flash memory to the provided DataBufferPtr.

As the processing is asynchronous the return value of the Fls Read function can only be returned indirectly
via the job result.

Additionally, if development mode is configured, parameter checks are done and in case of failure they are
reported to the DET by default with the according service ID and the reason of occurrence (refer to chapter
2.6.1).

Particularities and Limitations

> This service is asynchronous.

> This service is non re-entrant.

> This service is always available.
Expected Caller Context

> Expected to be called in application context.

Table 4-6 Fee_Read

435 Fee_ Write

Prototype

Std ReturnType Fee Write
(
uintl6 BlockNumber,
uint8 *DataBufferPtr

‘

Parameter
BlockNumber Handle of the block (depending on block configuration)
DataBufferPtr Pointer to data buffer

©2015, Vector Informatik GmbH Version: 8.01.00

based on template version 3.1

46 /85

Technical Reference MICROSAR FEE VeCEor [

Return code

E_OK Write job has been accepted
E_NOT_OK Write job has not been accepted.

Functional Description

This function starts the write processing for the specified block.

'_]. Info
i The job processing is asynchronous. The result of the finished job can be polled by
O calling Fee GetJobResult ().

When the next free area for the block was found, the content of the provided DataBufferPtr is written to the
flash memory.

Additionally, management information is stored to identify the block.

The real count of bytes which must be written depends on the hardware specific page alignment and the
size of the management information.

As the processing is asynchronous the return value of the Fls write function can only be returned indirectly
via the job result.

Additionally, if development mode is configured, parameter checks are done and in case of failure they are
reported to the DET by default with the according service ID and the reason of occurrence (refer to chapter
2.6.1).

Particularities and Limitations

> This service is asynchronous.

> This service is non re-entrant.

> This service is always available.

Expected Caller Context

> Expected to be called in application context.

Table 4-7 Fee_Write

4.3.6 Fee_Cancel

Prototype
void Fee_Cancel (void)

Parameter

Return code

void --

©2015, Vector Informatik GmbH Version: 8.01.00 47185

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Functional Description

This service cancels a currently pending job.

The state of the FEE will be set to MEMIF IDLE.

If the FEE is currently IDLE, calling this service is without any effect.

;] Expert Knowledge

Additional actions, especially unwinding internal state machine stack and cancelling a
pending Fls job, will be done asynchronously, before a starting a subsequent write
job.
A read request, immediately following Fee Cancel (), would be deferred in order to
avoid cancelling sector switch processing in a destructive manner.

Ry

| Caution

. A running sector switch (on any partition) will not be cancelled in destructive manner,
if FSS threshold was exceeded. Therefore a subsequent write job will be deferred,
until a running copy process (for one single block) has been finished.
Additionally, a subsequent write request would be deferred due to performing
complete FSS, if FSS threshold was exceeded in requested block’s partition .

Fee_DisableFss() may be used to shorten response times, especially the latter case.
Copy would not be started and write requests would fail, rather than waiting for FSS
completion (see chapter 2.10).

Additionally, if development mode is configured, checks are done and in case of failure they are reported to
the DET by default with the according service ID and the reason of occurrence (refer to chapter 2.6.1).

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> This service is always available.

Expected Caller Context

> Expected to be called in application context.

Table 4-8 Fee_Cancel

4.3.7 Fee_GetStatus

Prototype
MemIf StatusType Fee_GetStatus (void)

Parameter

©2015, Vector Informatik GmbH Version: 8.01.00 48/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Return code

MEMIF_UNINIT The FEE is currently not initialized -> Fee Init () must be called to use
the functionality of the FEE.

MEMIF_IDLE The FEE is currently idle -> no asynchronous job available

MEMIF_BUSY The FEE is currently busy-> a asynchronous job is currently processed by
the FEE

MEMIF_BUSY_INTERNAL The FEE has to process internal operations to ensure further write and/or
invalidate jobs.

Functional Description
This service returns the FEE’s current module state synchronously. Refer to chapter 2.3.1 for more details.

Particularities and Limitations

> This service is synchronous.

> This service is re-entrant.

> This service is always available.
Expected Caller Context

> Expected to be called in application context.

Table 4-9 Fee_GetStatus

4.3.8 Fee_GetJobResult

Prototype ‘

MemIf JobResultType Fee_GetJobResult (void)

parameter
Retuncode

MEMIF_JOB_OK The last job has been finished successfully.
MEMIF_JOB_PENDING The last job is waiting for execution or currently being executed.
MEMIF_JOB_CANCELLED The last job has been cancelled by the Fee Cancel () service.
MEMIF_JOB_FAILED The Flash driver reported an error or the FEE could not achieve the

requested job due to hardware errors (e.g. memory cell defects).

MEMIF_BLOCK_INCONSISTENT The data of requested block could not be read, because the data are
corrupt.

MEMIF_BLOCK_INVALID The requested block has been invalidated previously by the service
Fee InvalidateBlock () orreading from an erased block is
achieved (independent from called Fee EraseImmediateBlock ()
or a never written block).

Functional Description ‘

This service returns the result of the last job executed. Refer to chapter 2.6.1 for more details.

©2015, Vector Informatik GmbH Version: 8.01.00 49/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Particularities and Limitations ‘

> This service is synchronous.

> This service is re-entrant.

> This service is always available.

Expected Caller Context

> Expected to be called in application context.

Table 4-10 Fee_GetJobResult

4.3.9 Fee_lnvalidateBlock

Prototype
Std_ReturnType Fee_InvalidateBlock (uintl6 BlockNumber)

Parameter

BlockNumber Number of the block (depending on block configuration).

Return code
E_OK Invalidate job has been accepted.

E_NOT_OK Invalidate job has not been accepted.

Functional Description

This service invokes the invalidation procedure for the selected block. If the service succeeds the most
recent data block is marked as INVALID.

'_]. Info
i The job processing is asynchronous. The result of the finished job can be polled by
D calling Fee GetJobResult ().

When the last/current block was found the next free area will be written with special invalidate information.
As this information is saved in flash memory it is resistant against resets.

Additionally, if development mode is configured, parameter checks are done and in case of failure they are
reported to the DET by default with the according service ID and the reason of occurrence (refer to chapter
2.6.1).

Particularities and Limitations

> This service is asynchronous.

> This service is non re-entrant.

> This service is always available.

Expected Caller Context

> Expected to be called in application context.

Table 4-11 Fee_lInvalidateBlock

©2015, Vector Informatik GmbH Version: 8.01.00 50/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

4.3.10 Fee_GetVersioninfo

Prototype
void Fee_GetVersionInfo (Std VersionInfoType *VersionInfoPtr)

Parameter

VersionInfoPtr Pointer to where to store the version information of this module.

Return code

void --

Functional Description

This service returns the version information of this module. The version information includes:
> Module ID

> Vendor ID

> Instance ID

> Vendor specific version numbers.

Additionally, if development mode is configured, parameter checks are done and in case of failure they are
reported to the DET by default with the according service ID and the reason of occurrence (refer to chapter
0). The function does not perform any action in case of a failure.

Particularities and Limitations

> This service is synchronous.
> This service is non re-entrant.

> This service is available, depending on pre-compile configuration checkbox 'Enable
Fee_GetVersionInfo API' which is configured within the configuration tool.

Expected Caller Context

> Expected to be called in application context.

Table 4-12 Fee_GetVersioninfo

4.3.11 Fee_EraselmmediateBlock

Prototype
Std ReturnType Fee EraseImmediateBlock (uintl6 BlockNumber)

Parameter

BlockNumber Number of the block (depending on block configuration).

Return code

E OK Erase job has been accepted.
E_NOT_OK Erase job has not been accepted.
©2015, Vector Informatik GmbH Version: 8.01.00 51/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Functional Description

This function doesn’t erase flash memory.

The addressed block is marked as invalid, thus a subsequent read request on the invalidated block
completes with MEMIF BLOCK_ INVALID.

'_]. Info
) The job processing is asynchronous. The result of the finished job can be polled by
D calling Fee GetJobResult ().

Additionally, if development mode is configured, parameter checks are done and in case of failure they are
reported to the DET by default with the according service ID and the reason of occurrence (refer to chapter
2.6.1).

Particularities and Limitations

> This service is asynchronous.
> This service is non re-entrant.
> This service is always available.
>

This service shall only be called by e.g. diagnostic or similar system service to pre-erase the
area for immediate data if necessary.

Expected Caller Context
> Expected to be called in application context.

Table 4-13 Fee_EraselmmediateBlock

4.3.12 Fee_MainFunction

Prototype
void Fee_MainFunction (void)

Parameter

Return code
void -

Functional Description

This service triggers the processing of the internal state machine and handles the asynchronous job and
management operations.

The complete handling of the job and the detection of invalidated or inconsistent blocks will be done in the
internal job state machine.

Additionally, if development mode is configured, checks are done and in case of failure they are reported to
the DET by default with the according service ID and the reason of occurrence (refer to chapter 2.6.1).

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> This service is always available.
Expected Caller Context

©2015, Vector Informatik GmbH Version: 8.01.00

based on template version 3.1

52/85

Technical Reference MICROSAR FEE VeCEor [

> Expected to be called in application context.

Table 4-14 Fee_MainFunction

4.3.13 Fee_GetEraseCycle

Prototype

Std_ReturnType Fee_GetEraseCycle (
uint8 SectorNumber,
uint32 *DataPtr

‘

Parameter
SectorNumber Identifies partition and logical sector whose erase cycle counter shall be
retrieved:

The least significant bit chooses the sector (0 or 1, meaning lower sector or
upper sector, respectively); higher bits identify the partition. Partitions’
symbolic names may be used, but values must be adapted (doubled).

DataPtr Pointer to data buffer.

Return code
E OK Job has been accepted.
E_NOT_OK Job has not been accepted.

Functional Description

This service retrieves the erase cycle counter of the specified logical sector in the provided buffer. The user
can determine how often the specific sector has been erased.

'_]. Info
i This API service is not used by the NVM. It is just a feature to retrieve the number of
> erase cycle of a specific logical sector.

Info
] The job processing is asynchronous. The result of the finished job can be polled by
” calling Fee GetJobResult ().

Additionally, if development mode is configured, parameter checks are done and in case of failure they are
reported to the DET by default with the according service ID and the reason of occurrence (refer to chapter
2.6.1).

'_]. Info
[> This is an addition to AUTOSAR.

©2015, Vector Informatik GmbH Version: 8.01.00 53/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Particularities and Limitations

> This service is asynchronous.
> This service is non re-entrant.

> This service is available, depending on pre-compile configuration checkbox 'Enable
Fee GetEraseCycle API' which is configured within the configuration tool.

Expected Caller Context
> Expected to be called in application context.

Table 4-15 Fee_GetEraseCycle

4.3.14 Fee_GetWriteCycle

Prototype

Std ReturnType Fee_GetWriteCycle
(

uintl6 BlockNumber,

uint32 *DataPtr

‘

Parameter
BlockNumber Number of the block, provided by the FEE.
DataPtr Pointer to data buffer.

Return code
E OK Job has been accepted.
E_NOT_OK Job has not been accepted.

Functional Description

This service retrieves the write cycle counter of a specified block and saves in the provided buffer.

'_]. Info
i This API service is not used by the NVM. It is just a feature to retrieve the number of
> write cycles of a specific block.

'_]. Info
| The job processing is asynchronous. The result of the finished job can be polled by calling
D Fee GetJobResult ().

Additionally, if development mode is configured, parameter checks are done and in case of failure they are
reported to the DET by default with the according service ID and the reason of occurrence (refer to chapter
2.6.1).

'T] Info
[> This is an addition to AUTOSAR.

©2015, Vector Informatik GmbH Version: 8.01.00

based on template version 3.1

54 /85

Technical Reference MICROSAR FEE VeCEor [

Particularities and Limitations

> This service is asynchronous.
> This service is non re-entrant.

> This service is available, depending on pre-compile configuration checkbox 'Enable
Fee GetWriteCycle API' which is configured within the configuration tool.

Expected Caller Context

> Expected to be called in application context.

Table 4-16 Fee_GetWriteCycle

4.3.15 Fee_GetSectorSwitchStatus

Prototype
Fee SectorSwitchStatusType Fee_GetSectorSwitchStatus (void)

Parameter

Return code

Fee SectorSwitchStatusType see chapter4.2.1

Functional Description

This function returns the current status of the sector switch. See chapter 4.2.1 for the specific return values.
For more information about the sector switch see chapter 2.7.

- Info
T] This service determines FEE’s current sector switch processing state.
% Necessity of a sector switch does not imply this service to return a value different
FEE SECTOR_SWITCH IDLE. For example, FEE will also report
FEE SECTOR SWITCH IDLE when copying a block completed, until it starts the next
one.

'T] Info
| This is an addition to AUTOSAR.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> This service is always available.

Expected Caller Context

> Expected to be called in application context.

Table 4-17 Fee_GetSectorSwitchStatus

©2015, Vector Informatik GmbH Version: 8.01.00 55/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

4.3.16 Fee_ForceSectorSwitch

Prototype
Std ReturnType Fee_ ForceSectorSwitch (void)

Parameter

Return code

E_OK Job has been accepted.
E_NOT_OK Job has not been accepted.

Functional Description

This service forces a sector switch to be performed on all configured partitions in “Foreground Mode”, i.e.
the FEE will defer next incoming job until switch has been completed.

Purpose of this API is to compact partitions’ flash usages to one logical sector each.

Note
This API service is not used by the NVM.

' Caution
H Fee must be initialized and idle before calling Fee ForceSectorSwitch ().
il

D

- Note
] The processing state can be queried using Fee_GetStatus. It switches to
> MEMIF_IDLE once all partitions have been processed.

Additionally, if development mode is configured, parameter checks are done and in case of failure they are
reported to the DET by default with the according service ID and the reason of occurrence (refer to chapter
2.6.1).

'T] Note
| > This service is an addition to AUTOSAR.

Particularities and Limitations

> This service is asynchronous.
> This service is non re-entrant.

> This service is available, depending on pre-compile configuration checkbox 'Enable
Fee ForceSectorSwitch API' which is configured within the configuration tool.

Expected Caller Context

> Expected to be called in application context.

Table 4-18 Fee_ForceSectorSwitch

©2015, Vector Informatik GmbH Version: 8.01.00

based on template version 3.1

56 / 85

Technical Reference MICROSAR FEE VeCEor [

4.3.17 Fee_ConvertBlockConfig

Prototype
Std ReturnType Fee_ConvertBlockConfig

(

const Fee ConversionOptionsType* options

Parameter

‘

Options Pointer to structure of type Fee ConversionOptionsType, containing the
pointer to the user buffer and to the callback to be invoked for each block:

userBuffer Pointer to user buffer to hold block data. Note that the
area pointed to must be large enough to hold largest
possible block’s (across all configurations) data.

notificationPtr Pointer to callback function.

Return code

E OK Job has been accepted.
E_NOT_OK Job has not been accepted.
©2015, Vector Informatik GmbH Version: 8.01.00 57185

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Functional Description

This service requests conversion of block configuration, as described in 2.7.5.

FEE uses the buffer passed in options->userBuffer toread block data from data flash and to pass
them to the user callback options->notificationPtr for each block it finds in data flash (having a
VALID instance).

' Caution
. Fee must have been initialized and it must be idle before calling
Fee_ConvertBlockConfig ().

Additionally, the upper SW layers (NvM) shall be stalled, i.e. it must be prevented
from issuing requests to the FEE.

Basic Knowledge

== Block conversion affects all partitions, i.e. FEE will iterate over all partitions. Don’t

> expect any specific order; decisions should be based on parameters passed to “Data
Conversion Callback” (chapter 4.3.17).

-] Info
| 5 This API service is not used by the NVM.

e '] Info
I S Job corppletiop may be polled by calling Fee GetStatus (); Job result may be
determined using Fee GetJobResult ().

Additionally, if development mode is configured, parameter checks are done and in case of failure they are
reported to the DET by default with the according service ID and the reason of occurrence (refer to chapter
2.6.1).

- '] Info
| This service is an addition to AUTOSAR.

—D

Particularities and Limitations

> This service is asynchronous.
> This service is non re-entrant.

> This service is available, depending on pre-compile configuration checkbox 'Enable
Fee ConvertDataBlocks API' which is configured within the configuration tool.

Expected Caller Context

©2015, Vector Informatik GmbH Version: 8.01.00

based on template version 3.1

58 /85

Technical Reference MICROSAR FEE VeCEor [

> Expected to be called in application context.

Table 4-19 Fee_ConvertBlockConfig

4.3.18 Fee_SuspendWrites

Prototype
void Fee_SuspendWrites (void)

Parameter

Return code

void

Functional Description

This service instructs Fee to block all write class jobs (writing, invalidating and erasing a block).

Pending jobs will be blocked, i.e. they won’t be finished. Next Fee_MainFunction calls cause FEE to enter a
safe state (by means of Flash content). Once such state was reached, FEE does not issue new write
requests to Fls.

Multiple subsequent calls to this service don’t have additional effects, i.e. to re-enable write accesses only
one call to Fee_ResumeWrites is necessary.

- Info
[]> As long as write class jobs are suspended no sector switch will be executed!

For more information, refer to chapter 2.10.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> This service is always available.
Expected Caller Context

> May be called at interrupt level.

Table 4-20 Fee_SuspendWrites

4.3.19 Fee_ResumeWrites

Prototype
void Fee_ ResumeWrites (void)

Parameter

Return code

void

©2015, Vector Informatik GmbH Version: 8.01.00 59/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Functional Description
This service instructs Fee to allow all write class jobs (writing, invalidating and erasing a block), including
sector switch processing, again which have been suspended using Fee SuspendWrites ().

Multiple calls to this service enable write processing once, i.e. to disable it again there is still one call to
Fee SuspendWrites necessary.

For more information, refer to chapter 2.10.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> This service is always available.
Expected Caller Context

> May be called at interrupt level.

Table 4-21 Fee_ResumeWrites

4.3.20 Fee_DisableFss

Prototype
void Fee_DisableFss (void)

Parameter

Return code
Void -

Functional Description

This function disables execution of foreground sector switch when threshold is reached. A typical situation
using this function is start of engine.

Info
] When foreground sector switch threshold is reached and a write class job (writing,
> erasing or invalidating a block) shall be processed, this job ends with result
MEMIF_JOB_FAILED.

For more information, refer to chapter 2.10.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> Availability depends on setting of “Enable API to allow/prohibit FSS” (see ch. 5.1.7.1)
Expected Caller Context

> Expected to be called in application context.

Table 4-22 Fee_DisableFss

©2015, Vector Informatik GmbH Version: 8.01.00

based on template version 3.1

60 /85

Technical Reference MICROSAR FEE VeCEor [

4.3.21 Fee_EnableFss

Prototype
void Fee_EnableFss (void)

Parameter

Return code

void -

Functional Description

This function enables execution of foreground sector switch when threshold is reached.
For more information, refer to chapter 2.10.

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> Availability depends on setting of “Enable API to allow/prohibit FSS” (see ch. 5.1.7.1)
Expected Caller Context

> Expected to be called in application context.

Table 4-23 Fee_EnableFss

4.4 Services used by FEE

In the following table services provided by other components, which are used by the FEE
are listed. For details about prototype and functionality refer to the documentation of the
providing component.

Component API
DET Det_ReportError (optionally)
FLS Fls_Read

Fls_Write

Fls_Erase

Fis_GetStatus (if polling mode deactivated)
Fis_GetJobResult (if polling mode deactivated)

Fls_SetMode
Fls_Cancel
NVM NvM_JobEndNotification (optionally)
NvM_JobErrorNotification (optionally)
(O Interrupt locking/unlocking functions (optionally)
©2015, Vector Informatik GmbH Version: 8.01.00

based on template version 3.1

61/85

Technical Reference MICROSAR FEE VeCEor [

Table 4-24 Services used by the FEE

4.4.1 Data Conversion Callback

This user-implemented callback is related to the Feature “Data Conversion” (refer to
2.7.5); a pointer to such a function shall be passed to Fee ConvertBlockConfig (see

=
w
—
N
Y

Prototype
Single Channel

uint8 <Function Name>

(

uint8* userBuffer,
uint32 blockId,
uintl6 oldLength,
uintl6 newLength

Parameter

userBuffer Pointer to user data buffer, containing block’s most recent data read from
flash. Content may be modified. Points to the userBuffer originally passed to
Fee ConvertBlockConfig

‘

blockld Unique 28bit block identifier, consisting of 4bit Partition Index (bits 27:24) 16bit
“Block Tag” (bits 23..16) and 8bit data index (bits 7..0)"

oldLength Old data length, as found in flash; the user buffer will contain exactly
oldLength data bytes

newLength N.?hw data length as given in current configuration, the FEE has been initialized
with.

Return code

FEE CONVERSION WRITE Instruct the FEE to keep data (user buffer’s content) according to old length.

_OLD_LENGTH Data to be written will not be readable using the Fee Read (if the both lengths

actually differ), but they will be kept in flash, after
Fee ConvertBlockConfig processing completes.

It is useful if several subsequent runs of Fee ConvertBlockConfig are
necessary to perform update with multiple stages.

FEE CONVERSION WRITE Instruct the FEE to write data (user buffer’s content) according to new length.
_NEW LENGTH

FEE CONVERSION SKIP Instruct the FEE to skip this block. It will write nothing. Block data will actually
get lost when Fee ConvertBlockConfig processing completes.

Functional Description

This callback has to be implemented by user. It should synchronously perform any action that is necessary
to convert block data from old format to new format (e.g. lengths).

Particularities and Limitations

> Since the FEE is busy with Fee_ConvertBlockConfig processing, it is not allowed to issue any
other request to it.

! Bit 0 is defined to be the least significant bit, regardless of used platform.

©2015, Vector Informatik GmbH Version: 8.01.00

based on template version 3.1

62 /85

Technical Reference MICROSAR FEE VeCEor [

Call context
> Called from context of Fee MainFunction

Table 4-25 User defined conversion callback

45 Callback Functions

This chapter describes the callback functions that are implemented by the FEE and can be
invoked by other modules. The prototypes of the callback functions are provided in the
header file Fee_Cbk.h by the FEE.

45.1 Fee_JobEndNotification

Prototype
void Fee_JobEndNotification (void)

Parameter

Return code

void --

Functional Description

This routine shall be called by the underlying flash driver to report the successful end of an asynchronous
operation.

- Info
] This function is configurable at pre-compile time using the parameter
% FEE POLLING MODE.

Additionally, if development mode is configured, checks are done and in case of failure they are reported to
the DET by default with the according service ID and the reason of occurrence (refer to chapter 0).

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> This service is always available.

Expected Caller Context

> This routine might be called on interrupt level, depending on the calling function.

Table 4-26 Fee_JobEndNotification

45.2 Fee_JobErrorNotification

Prototype
void Fee_ JobErrorNotification (void)

Parameter

©2015, Vector Informatik GmbH Version: 8.01.00

based on template version 3.1

63 /85

Technical Reference MICROSAR FEE VeCEor [

Return code

void --

Functional Description

This routine shall be called by the underlying flash driver to report the failure of an asynchronous operation.

e '] Info
i This function is configurable at pre-compile time using the parameter
FEE POLLING MODE.

Additionally, if development mode is configured, checks are done and in case of failure they are reported to
the DET by default with the according service ID and the reason of occurrence (refer to chapter 0).

Particularities and Limitations

> This service is synchronous.

> This service is non re-entrant.

> This service is always available.

Expected Caller Context

> This routine might be called on interrupt level, depending on the calling function.

Table 4-27 Fee_JobErrorNotification

4.6 Configurable Interfaces

API Description

Function Fee GetVersionInfo () This function can be enabled/disabled by the configuration
switch ‘Enable Fee_GetVersioninfo API'. Refer to chapter
5.1.7.

Function Fee GetEraseCycle () This function can be enabled/disabled by the configuration
switch ‘Enable Fee_GetEraseCycle API'. Refer to chapter
5.1.7.

Function Fee GetWriteCycle () This function can be enabled/disabled by the configuration
switch ‘Enable Fee_GetWriteCycle API'. Refer to chapter
5.1.7.

Function Fee ForceSectorSwitch() This function can be enabled/disabled by the configuration

switch ‘Enable Fee_ForceSectorSwitch API'. Refer to
chapter 5.1.7.

Functions The functions can be enabled/disabled by the configuration

Fee JobEndNotification() switch ‘Poll Flash driver’. Refer to chapter 5.1.6.2.

Fee JobErrorNotification()

Functions The functions can be enabled/disabled by the configuration

Fee EnableFss () switch ‘Enable API to allow/prohibit FSS’. Refer to chapter
o 5.1.7.

Fee DisableFss()
Function Fee ConvertBlockConfig() The functions can be enabled/disabled by the configuration

switch ‘Enable Data Conversion API'. Refer to chapter 5.1.7.

Table 4-28 Configurable interfaces

©2015, Vector Informatik GmbH Version: 8.01.00

based on template version 3.1

64 /85

Technical Reference MICROSAR FEE V@CEO([

5 Configuration

FEE can be configured using following tools:

> DaVinci Configurator 5, domain “Memory” (AUTOSAR 4 packages only).
Parameters are explained within the tool; parameters described in this chapter might
not directly correspond to parameters visible in Configurator 5’s GUI.

> DaVinci Configurator 4 (AUTOSAR 3 packages only; for a detailed description see this
chapter)

> Using a generic configuration editor (GCE)

5.1 Configuration with DaVinci Configurator

5.1.1 Start configuration of the FEE

The component name of the Flash-EEPROM-Emulation in DaVinci Configurator is “FEE”.
In the “Architecture view” (initial page) of the DaVinci Configurator, the FEE can be opened
by its context menu to start its configuration. Optionally, the FEE can be opened for
configuration with the component list under the “Memory” tab located at the left side of the
DaVinci Configurator.

5.1.2 Useful Chunk-Sizes (instance counts)

Carefully chosen chunk-sizes may significantly improve FEE’s performance as well as
robustness.

Note

Chunk sizes’ effects are basically local to a single partition, i.e. a partition’s
performance and robustness is affected. Another partition might be affected indirectly
by sector switch processing (which is not immediately interruptible).

Therefore, when changing a block’s settings, other blocks in same partition must be
considered.

Though it is not necessary (usually it is not even possible) to estimate optimum chunk-
sizes, they should be configured to reasonable values. Therefore their effects are
summarized first:

Basically a block’s instance count depends on the estimated number of write cycles,
relative to other blocks’ write cycles, as well as on its size, in relation to logical sector size.
A*“(too) small” / “(too) large” chunk is meant to be related with “write cycle” and/or “block’s
size”.

Small chunks:

> In general small chunks are suited for large and/or infrequently written blocks.
Allocating a small chunk results in less flash-space being reserved for related block
(instances).

©2015, Vector Informatik GmbH Version: 8.01.00 65/85

Technical Reference MICROSAR FEE V@CEO([

> Smaller chunks result in less space wasted by aborts (resets), and more retries being
possible in a sector in case of resets.

> They result in more overhead in flash. This becomes significant with small blocks (little
payload), large page size, and number of write cycles.

> Decreased efficiency of flash usage, i.e. more erase cycles over life-time

> Result in increased average search efforts. Since FEE does not hold position
information in RAM (neither Look-up tables, nor any caching mechanisms), searching
must be done for each asynchronous block operation. Since one block’s chunks
(within one logical sector) build up a linked list; this list becomes longer. Each list node
(chunk) requires one additional flash request, requiring additional Fee_MainFunction
and Fls_MainFunction cycles.

Large chunks:

> Frequently written, small blocks usually benefit from larger chunks.
> Overhead in flash is reduced

> Decreased average search efforts, for two reasons:

> Skipping an obsolete chunk means skipping more obsolete instances; the linked list
becomes shorter.

> Searching within a chunk is implemented to have logarithmic effort.

> Allocating a large chunk results in more flash space (for more instances) being
reserved. If chunk is too large, it would never be used, because writing other blocks
already caused a sector switch.

> Increased flash usage also may increase vulnerability to aborts, because space for
other blocks shrinks. Usually each block requires at least one chunk per logical sector
(to hold at least data copied during sector switch).

The larger a block’s payload is, the smaller the instance count should be. It becomes less
and less possible that such a chunk could be too small, because there is an absolute
upper limit, how often a chunk fits into logical sector.

It is highly not recommended to try “optimizing” a block configuration in order to get only
one chunk per block, resulting in nearly completely filled logical sector. Rather the chunk
sizes should be set in a way that some reserve remains to be used dynamically. It is
advisable to use approximately 50% of smaller logical sector. However it is more important
to keep enough space to write even the largest blocks several times (regardless of actual
write cycles = due to aborts). On the other hand reserves might also be lower, if a
partition will be written (very) infrequently, and if written to, the situation is known to be
stable (very low risk of aborted writes).

Based on estimated number of write cycles, it is sufficient to care about chunk sizes of
most frequently written blocks only (additionally considering their sizes). In typical

©2015, Vector Informatik GmbH Version: 8.01.00 66 / 85

Technical Reference MICROSAR FEE VeCEor [

configurations the write cycles differ by magnitudes (1 ... 1°000°000) — only the largest
ones (e.g. more than 100°000 cycles, then more than 10’000 cycles) need to be
considered. Blocks being written less than one hundredth of most frequently written one,
may usually be considered to be constant; their instance count should be 1. If one or more
large blocks are frequently written, check their maximum possible number writes per
sector. This can be used as threshold to consider blocks being constant.

5.1.3 Update of block configuration

It is possible to update the block configuration (size, datasets,...) of each block. Every
block which should be readable after the block configuration update must get the same
BlocklID as before (preconditioned that the size of this block has not changed). The
BlockID could be set manually if the “BlocklID fixed” is checked.

e] Note
i It is not possible to “move” a block from one partition to another with an update, while
? keeping its data.

After flashing the new block configuration it is possible, but not actually necessary, to use
Fee ForceSectorSwitch () in order to clean up flash contents, causing flash layout to
be prepared. In order to perform a complete update of flash layout — i.e. to clean up /
update all logical sectors, across all partitions —, a second subsequent run of
Fee ForceSectorSwitch () may be used .

Writing updated blocks will be possible independent of usage of
Fee ForceSectorSwitch().

5.1.4 FEE Configuration tab

Attribute Values Description

Name The default value
is written in bold

Block Configuration

FBL - ON This checkbox must be checked, if the current block configuration

Configuration OFF is the flash boot loader configuration. Otherwise it must not be
checked.

Insert Block - -- This button inserts a FEE block into the table. This is only

necessary if additional blocks are needed. All NVM blocks are
inserted automatically.

Delete Block - -- This button deletes the selected block from the table. Only blocks
which where inserted with the "Insert Block" button should be
deleted with this button. NVM blocks should be deleted in the
NVM configuration. They are deleted automatically in the FEE
block table.

Move Up -- -- This button moves a selected block one row above. The order of
the block in the table influences the physical default position
within the Flash.

©2015, Vector Informatik GmbH Version: 8.01.00 67 /85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Attribute Values Description

Name The default value
is written in bold

Move Down -- - This button moves a selected block in the table one row below.
The order of the block in the table influences the physical default
position within the Flash.

Calculate -- -- This button calculates the FEE block numbers, as well as
BlockIDs, unless set to “fixed”.

| Caution
. This button must be pressed before generation
process is started.

BlockID uint16 no default The BlockID will be set automatically by clicking the “Calculate”-
0..65535 button. The BlockID could also be set manually (see BlockID
fixed).

The BlockID must be unique within a partition, i.e. amongst all
blocks assigned to same partition.

In order to save flash space it is recommended to start
numbering with 0 for each partition.

| Caution
. If the block configuration shall be updated, each

block which should be readable after the block
configuration update must get the same
BlockID as before.

NVM -- -- This field shows the name of the corresponding NVM block
Blockname entered within the NVM and is forwarded to the FEE.

For user added blocks (within the FEE) this field is empty.

e '] Info
| The NVM Blockname can not be modified at all. It
) provides the information to the user to associate the
FEE block configuration to the corresponding NVM
block.

©2015, Vector Informatik GmbH Version: 8.01.00 68 /85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Attribute Values Description
Name The default value
is written in bold
Fee C- Valid C This field shows the name of the configured FEE block.
Blockname | identifier | identifier, In the AUTOSAR ECUC file, it becomes the name of the Block
default: Configuration container.
Fee_User
Block<n>

pm Info
1]> As required by AUTOSAR, the linkage between
block name and its numeric handle (“Block
Num”) will be generated. Depending on global
tool settings, the prefix “Fee_” will be added, or
omitted.

Block Num uint16 2...65534,n0 The even number of the FEE block.

default These not modifiable values will be calculated by pressing the

button "Calculate". The dataset selection bits are used to
calculate the block number.

\ Caution
. The BlockNum should not be used directly. Instead

use the symbolic block names, defined in Fee_Cfg.h
(see chapter 3.1.2).

Datasets -- 1 This field determines the number of datasets configured for a
1...255 dedicated block.

e '] Info
|ll_ The number of datasets can not be modified if the
> block is configured within and forwarded from the
NVM. If the block is created within the FEE, the
datasets can be adjusted for corresponding block.

Size uint16 1 The natural size (in bytes) of the block (payload).
1...65535

- '] Info
| The size can not be modified if the block is
> configured within and forwarded from the NVM,
because these blocks provide their size on their own.

©2015, Vector Informatik GmbH Version: 8.01.00 69/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Attribute
Name

Chunk block --
count

Partition Ref.
Write Cycles --

High Prio -

Critical Data --

BlockID fixed --

©2015, Vector Informatik GmbH

Values Description

The default value
is written in bold

1,3,7, This field determines the number of blocks which can be stored
15 31. 63 within one block chunk. For blocks which are written often the
4127 255 511. humber should be larger and vice versa.

1023, 2047,

4095, 8191, Caution
16383, 32767 z ! '}{ This value must always be adjusted within the FEE

and is never forwarded from the upper layer,
because this value is responsible to abstract
hardware constraints to the upper layer.

-- Reference to a defined partition container.

1... The estimated/desired number of write cycles which are required
10000 for the block. According to this value, the number of blocks within

a chunk shall be influenced, but which is not done automatically
~-10000000 and is left to the user.

e '] Info
IIl_ Currently, the adjustment of this value has no effect.
' Instead the number of blocks within a chunk (Chunk
block count) influences the distribution of the
data/blocks on the Flash memory.

ON This field denotes that the block contains high priority data. If it is

OFF 'ON' the block/dataset can be erased and contains high priority
data. If it is 'OFF' the block/dataset cannot be erased and
contains "normal" data.

For example, high priority data can be supposed as crash data.

e '] Info
IIl_ The marker for high priority data can not be modified
i the block is configured within and forwarded from
the NVM. If the block is created within the FEE, the
datasets can be adjusted for corresponding block.

| Caution
. Ablock can only be erased by the API function

Fee EraseImmediateBlock() ifthe
appropriate block is set to contain high priority data.

ON Marks a block to be critical, i.e. essential, for ECU operation.
OFF Refer to chapter 2.11.
ON This checkbox must be checked, to be able to set the BlocklD
OFF manually.
Version: 8.01.00 70/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Table 5-1 Fee configuration

5.1.5 General Settings tab
5.1.5.1 Error Detection — Development Mode

Attribute Values Description
Name The default
value is written
in bold
Check -- ON Preprocessor switch for enabling/disabling checking the block
Parameter Block OEF number, whether it is in allowed range.
Number Affected API functions:
> Fee Read()
> Fee Write()
> Fee InvalidateBlock()
> Fee FraseImmediateBlock()

> Fee GetWriteCycle()

Enable -- ON Preprocessor switch to enable/disable development error
Development OFF detection and reporting.

Error Detection It is the main switch over following items:

> Check Uninitialized Module

> Check Parameter (except parameter Block Number)
> Errorhook

> Include File

In production mode, this switch should be disabled to save
ROM/RAM and to speed up the module.

Check -- ON Preprocessor switch to enable/disable the check of an

Uninitialized OFF initialized module before any API service of the FEE (expect

Module Fee Init () and Fee GetVersionInfo ())is used.

Check Busy - ON If this check is enabled, it will be checked if an asynchronous

Module OFF job is currently running and another shall be started.

Check -- ON If this check is activated, it will be checked if a block is

Immediate Data OFF configured to hold high priority data and shall be erased via
the service Fee EraseImmediateBlock.

Check -- ON Preprocessor switch for enabling/disabling parameter

Parameter OFF checking of API services at all.

It is the main switch over following items:

> Check Parameter Block Number

Check Sector Number

Check Parameter Length and Offset

Check Parameter DataBufferPtr for Null Pointer
Check Parameter Mode

vV V V V

©2015, Vector Informatik GmbH Version: 8.01.00 71/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Attribute Values Description
Name The default
value is written
in bold
Check -- ON Preprocessor switch for enabling/disabling checking the sector
Parameter OFF number, whether it is in allowed range.
Sector Number Affected API function:

> Fee GetEraseCycle()

Check - ON Preprocessor switch for enabling/disabling checking the length
Parameter OFF and offset values, whether they are in allowed range.
Length and Affected API function:
Offset

> Fee Read()
Check -- ON Preprocessor switch for enabling/disabling checking, whether
Parameter for OFF the pointer parameter are different from a null pointer.
Null Pointer Affected API functions:

> Fee Read()

> Fee Write()

> Fee GetEraseCycle()

> Fee GetWriteCycle()

> Fee GetVersionInfo()
Check - ON Preprocessor switch for enabling/disabling checking the mode
Parameter Mode OFF values, whether it is in allowed range.

> Fee SetMode ()

Development -- ON Preprocessor switch for enabling/disabling the Development
Error Reporting OFF Error Reporting.
Errorhook C-function Valid C- Specifies the function that shall be called if a development
identifier function error has occurred.
identifier, (see chapter 2.6.3 for function signature)
default:
Det_ Report
Error
Include File header Valid header Specifies the file that shall be included if development error
file file, default: reporting shall be used. The APl used by the FEE must be
Det.h specified within this file.

Table 5-2 Error Detection — Development Mode

5.1.5.2 Area “Error Callback”

Attribute Values Description
Name The default value is written
in bold
Use Error -- ON, Defines whether the Error Callback notification mechanism
Callback OFF shall be used to inform the application about a serious

condition the Fee had detected.

©2015, Vector Informatik GmbH Version: 8.01.00 72/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Attribute Values Description

Name The default value is written
in bold

Callback C-function Valid C-function Defines the function of the application that will be called if

Function identifier identifier, default: a critical condition has been entered by the Fee. Itis
Appl_CriticalError expected, that the application is responsible to react on
Callback this situation according to the parameter value which has

been passed.
Refer to chapter 3.3.5.3

Include File header file Valid header file, Defines the header file containing the Error Callback
default: function.
Appl_Include.h

Table 5-3 Error Callback

5.1.5.3 Area Buffer

Attribute Values Description
Name The default value is
written in bold
Internal uint16 64, 128, 256, Size of internal buffer to be used for instance allocation during
Buffer Size 512, 1024 write job processing and for instance copy during sector switch.

Must be an integral power of two.
Must be larger than largest “Write Alignment” setting.

’_]. Info

) The number of FIs_Read — Fls_Write request

> pairs necessary to copy a whole block
depends on its size and Internal Buffer size.

5.1.5.4 Area “Upper Layer”

Following controls are visible only, if an NvM is enabled (part of configuration) and its
parameter "Use Polling Mode" (NvmPollingMode) is unchecked (set to False). A hint about
NVM’s current polling mode setting (including availability at all) will be additionally shown.

FEE should be used in polling mode, if NVM is disabled.

Attribute Values Description
Name The default value is written
in bold
Job End C-function Valid C-function The name of the job end callback function shall be
Notification identifier identifier, default: inserted to this field.
NvM_JobEnd It is called to report to the upper layer that the job
Notification processing was finished successfully.

Usually this function is provided by the NVM.

Job Error C-function Valid C-function The name of the job error callback function shall be
Notification identifier identifier, default: inserted to this field.
©2015, Vector Informatik GmbH Version: 8.01.00 73/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Attribute Values Description
Name The default value is written
in bold
NvM_dJobError It is called to report to the upper layer that the job
Notification processing was finished with failure. Usually this
function is provided by the NVM.
Include File for header file Valid header file, In this field it can be inserted the name of the include
Callbacks default: file that holds the callback declarations of the upper
NvM_Cbk.h layer.

Table 5-4 Upper Layer

5.15.5 Area “Critical Section Handling”

f F] Changes
el Fee 8.xx.xx only supports Critical Section services provided by an AUTOSAR Basic

Software Scheduler (SchM). It ignores manual settings made, if “Use BSW Scheduler
(SchM)” was disabled in “Board Setting / OS Sevices”

Attribute Values Description
Name The default value is
written in bold
Short-Lasting - Use Suspend Defines the function set that will be called when short-
Actions Functions lasting critical sections are entered or left. Refer to
UseOS Functions ~ chapter 3.5.
UseEnable
Functions
Long-Lasting -- Use Suspend Defines the function set that will be called when long-
Actions Functions lasting critical sections are entered or left. Long-lasting
UseOS Functions actions are Fee_MainFunction as a whole. Refer to
chapter 3.5.
UseEnable
Functions

Table 5-5 Critical Section Services

'_]. Note
| Both dropdown lists are invisible, if the BSW Scheduler is enabled within the OS configuration
> tab of the ECU configuration.

5.1.6 Partitions

The left panel of partitions shows a tree-like overview of currently configured partitions. In
this panel partitions can be added, deleted and renamed, as well.

©2015, Vector Informatik GmbH Version: 8.01.00 74/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

Attribute Value | Values Description
Name The default value is
written in bold
Partition Ref. - Choose a flash configuration.
Device All partitions in one single flash device must refer to the same

Flash Configuration (of type
/AUTOSAR/Fls/FlsConfigSet)

Currently, FEE is restricted to use one Flash Driver only, i.e. all
partitions must point the same configuration.

Lower Sector -- -- In this combo box the start address of the lower logical sector

Start Address shall be selected. The values of the list are just typical values.
A custom value may be entered; it must adhere to the “Fls
address alignment” (see below).

Lower Sector -- 1024 Choose lower logical sector’s size in bytes. The combo box

Size suggests some typical values; a custom size may be entered.
The size must also adhere to “Fls address alignment” (see
below).

Upper Sector -- -- In this combo box the start address of the upper logical sector

Start Address shall be selected. The values of the list are suggestions,

derived from the chosen Fls driver (which depends on the
used controller). A custom value may be entered; it must
adhere to the “FIs address alignment” (see below).

The upper sector’s start address must be located in a distinct
physical sector, with higher address, than the last address of
the lower sector.

Upper Sector -- 1024 Choose upper logical sector’s size in bytes. The combo box
Size suggests some typical values; a custom size may be entered.
The size must also adhere to “Fls address alignment” (see
below).
Fls address -- 8, In this drop down list the virtual page size in bytes will be set.
alignment 64. 128. 256. 512 This must be a power of two and be equal to or larger than the
1024 ' " “Flash page size for write jobs”. This value will be used to

check logical sectors’ alignment, to align of block instances as
well as Fee management information.

Fls Page -- 8, In this drop down list the Fls page size for write jobs in bytes
Size for write 64 128. 256. 512 will be set. This must be an integral multiple of the hardware
jobs 1024 specific flash page size. This value will be used for the write

alignment, instead of the Fls page size of the hardware.

Table 5-6 Lower Layer

©2015, Vector Informatik GmbH Version: 8.01.00 75/85

based on template version 3.1

Technical Reference MICROSAR FEE VeCEor [

5.1.6.1 Area “Management”

Attribute Values Description
Name The default value is
written in bold
Background uint32 -- If there is less free space by writing data continuously to the
Reserve Fee, the sector switch in background mode will be started.

'_]. Info
| See chapter 2.7 for more details.
S—

D

Foreground uint32 -- If there is less free space by writing data continuously to the
Reserve Fee, the sector switch in foreground mode will be started.

'_]. Info
) See chapter 2.7 for more details.

D

Table 5-7 sector switch reserve

5.1.6.2 Area “Lower Layer”

This panel is independent from partitions; its setting has global meaning.

Attribute Value |Values Description
Name The default value is
written in bold
Poll Flash -- ON Enables/disables polling of the underlying Flash driver.
Driver OFF If polling is disabled, make sure, that the callbacks

Fee JobEndNotification () and
Fee JobErrorNotification (), respectively, have been
configured in the Flash driver.

'_]. Info
| If polling is enabled the callback functions are not

e . .
> available, because there is no needed to. An
additional hint will be visible in that case.
Table 5-8 Lower Layer
©2015, Vector Informatik GmbH Version: 8.01.00 76/85

based on template version 3.1

Technical Reference MICROSAR FEE

5.1.7 Module API tab
5.1.7.1 API Configuration
Attribute Name Values
The default
value is
written in
bold
Enable -- ON
Fee_GetVersioninfo API OFEF
Enable -- ON
Fee_GetEraseCycle API OFF
Enable -- ON
Fee_GetWriteCycle API OFF
Enable -- ON
Fee_ForceSectorSwitch OFF
API
Enable Data Conversion -- ON
API OFF
Enable API to - ON
allow/prohibit FSS OFF

Table 5-9 API Configuration

©2015, Vector Informatik GmbH

vector”

Description

Preprocessor switch to enable/disable the existence of the
APl service Fee GetVersionInfo ().

n

—D

Info

If this checkbox is switched off, the
corresponding parameter check ("Check
Parameter VersionInfo") within the "General
Settings" tab is deselected and disabled.

Preprocessor switch to enable/disable the existence of the
APl service Fee GetEraseCycle ().

n

—D

Info

If this checkbox is switched off, the
corresponding parameter check ("Check
Parameter Sector Number") within the
"General Settings" tab is deselected and
disabled.

Preprocessor switch to enable/disable the existence of the
API service Fee GetWriteCycle ().

Preprocessor switch to enable/disable the existence of the
API service Fee ForceSectorSwitch ().

Preprocessor switch to enable/disable the existence of
Fee ConvertDataBlocks.

n

—

Info

If this feature was disabled at delivery time,
this switch is still available, but it is disabled.
It cannot be used to enable the feature “Data
Conversion”.

Preprocessor switch to enable/disable function set
Fee EnableFss ()/Fee_Disablers ()

Refer to chapter 2.10.

Version: 8.01.00

based on template version 3.1

77185

Technical Reference MICROSAR FEE VeCEor [

5.1.7.2 Provided API

Attribute Values Description

Name The default value is
written in bold

Provided APl -- -- This group shows the API services which are currently
provided by the FEE depending on its configuration.

Table 5-10 Provided API

5.2 Configuration Parameters only visible in GCE

There are parameters that cannot be configured using the comfort view of DaVinci
Configurator. These parameters should only be modified, if really necessary, and if the
user knows about their effects. These parameters’ default values are usable in very most
cases.

To meet platform specific requirements and/or restrictions, they may also be pre-
configured during integration/delivery, i.e. they might not be changeable at all.

Attribute Name Values |Description
The default

value is
written in
bold

FeeMaxLinkTableSize Integer 0...4095 Defines the maximum size of the Link Table. The link table

(Maximum Number of itself improves performance of FEE, but it reduces space

LinkTable Entries) available for user data. Thus it might be desirable to limit its
size. Especially on devices with very limited flash space
and/or considerably large pages (e.g. TriCore TC179x) the
performance penalty resulting from reducing the link table
size (or disabling it completely, i.e. by setting size to 0),
would be feasible.

Table 5-11 Parameters only visible in GCE view.

5.2.1 FlIs APl deviating from AUTOSAR naming convention

FEE is able to use any AUTOSAR compliant Fls “out of the box”, i.e. associating a partition
with a driver, its API is defined and FEE can be generated. This is the case for all internal
device drivers whose API shall exactly match the naming given in Flash Driver SWS. It is
also true for an external device driver, which shall include Vendor ID and a so-called “API
infix”; both shall be published in its module description file.

However, sometimes an Fls doesn’t fully comply, or there might be technical reasons to
deviate from AUTOSAR.

'T] Example

£> Due to address space limitiation mentioned in chapter 2.1, it is necessary to use some
“proxy Fls”, if FEE (a partition) shall address an FlIs’s sectors beyond 2GB limit (=
0x80000000). Using this Feature of FEE, its function names do not need to comply with
AUTOSAR.

In such a case FEE would not compile (or not link) because used function names do not
match FIs’s provided ones. This can be solved as follows:

©2015, Vector Informatik GmbH Version: 8.01.00 78/85

based on template version 3.1

Technical Reference MICROSAR FEE V@CEO([

Add container FeeF1lsApi to container FeeGeneral.
New Container may be renamed
Enter name of Fls’s include file

w0 nh P

Change function names according to your needs. Parameter names are self-
explaining; they map from SWS function names (e.g. F1s Read) to actually
implemented names (e.g. MyVeryOwn ReadFunction).

5. Associate this container with an existing Fls configuration (FeeFlsDeviceIndex is a
reference to a container of type F1s/FlsGeneral).

Expert Knowledge

Container FeeF1sApi has a multiplicity of 0..*, i.e. you may create an arbitrary number
of Flses. Generator matches references to Fls drivers with partitions’ references to Fls
(runtime) configurations to generate necessary information of drivers which are actually
used. Of course, each Fls driver instance must be referenced at most once.

©2015, Vector Informatik GmbH Version: 8.01.00 79/85

Technical Reference MICROSAR FEE V@CEO([

6 AUTOSAR Standard Compliance

6.1 Deviations

6.1.1 Maximum Blocking Time

The parameter FEE MAXIMUM BLOCK TIME is not supported by the current version of the
FEE, because a time reference is missing to support this requirement.

6.2 Additions/ Extensions

6.2.1 Parameter Checking

The internal parameter checks of the API functions can be en-/disabled separately. The
AUTOSAR standard requires en-/disabling of the complete parameter checking only. For
details see chapter 2.6.1.

6.2.2 Fee_InitEx

See chapter 4.3.2 for further information.

6.2.3 GetEraseCycle

See chapter 2.5.1.6 and 4.3.13 for further information.
6.2.4 GetWriteCycle

See chapter 2.5.1.7 and 4.3.14 for further information.
6.2.5 GetSectorSwitchStatus

See chapter 4.3.15 for further information.

6.2.6 ForceSectorSwitch

See chapter 4.3.16 for further information.

6.2.7 Fee_ConvertBlockConfig

This Service, and all related types, settings, etc. add the capability of performing data
conversion after a configuration update. Note that this extension is optional; it must be
ordered explicitly.

For more information refer to chapter 2.8.

6.2.8 Fee_SuspendWrites / Fee_ResumeWrites
See chapters 2.10, 4.3.18 and 4.3.19 for further information.

6.2.9 Fee EnableFss / Fee DisableFss
See chapters 2.10, 4.3.20 and 4.3.21 for further information.

6.3 Limitations

AUTOSAR does not specify how a FEE implementation shall organize flash memory.
Additionally there are no requirements on performance or robustness. Following
restrictions result from postulating and implementing such requirements.

6.3.1 Partitions
Current implementation limits the maximum number of partitions to 4.

©2015, Vector Informatik GmbH Version: 8.01.00 80/85

Technical Reference MICROSAR FEE V@CEO([

6.3.2 Flash Usage
Fee cannot provide whole configured flash memory for user data storage.

Net payload to be stored in flash memory is roundabout 25% of assigned flash memory, or
more precisely, 50% of the smaller logical sector’s size.

In addition to memory overhead caused by internal management information to be stored
along with user data, and to overhead caused by flash space to be reserved for dynamic
allocation (in order to process write requests), the FEE must adhere to HW’s alignment
requirements. Usually this alignment is determined by flash’s smallest writable entity, i.e.
the flash page size. However, on some platforms, alignment must be even more stringent,
because read and write accesses must be secured, so that they don’t endanger already
stored information.

This means: it might be possible to add stuffing bytes carrying no information. Depending
on flash device and related alignment requirements, this overhead might become
significant, additionally reducing the total amount of user data that may be stored in flash.

6.3.3 Performance

Due to dynamic flash allocation, dependent on configuration and actual write accesses,
the performance, by means of request processing time (i.e. number of Fee_MainFunction
call cycles), fluctuates. Starting with an empty flash, job processing time increases over
time up to a maximum search effort (one logical sector is completely filled). When the
other sector is initially used, search efforts reduce again.

Additionally worst case blocking times are mostly affected by clean-up operation (copy
recent data instances) and sector erase. Latter one is determined by HW; usually erase
timings are at scales of hundreds of milliseconds per 16kBytes. Their frequency highly
depends on flash usage (data amount as well as write frequency).

Expert Knowledge

The worst case — a complete sector switch that includes copying all data and erase the
logical sector — is a very exceptional case, as it would mean that nothing was
successfully copied so far, but flash is full, i.e. erase is necessary in order to remain
writeable.

6.3.4 Aborts/Resets

Aborts/resets during write operations result in artifacts in flash memory, increasing flash
usage. Frequent resets may prevent FEE from completing a clean-up operation (Sector
Switch), but cause much wasted space due to the artifacts.

Finally the partition may overflow. There is no space left to copy data from one logical
sector to the other one, which is the precondition to perform a sector erase without any
recent data instance. This overflow may be reported by FEE, and an erase may be
executed, accepting the risk of data loss. For more information, refer to chapter 3.3.5.3.

©2015, Vector Informatik GmbH Version: 8.01.00 81/85

Technical Reference MICROSAR FEE V@CEO([

Additionally the FEE allows marking data blocks as essential for ECU’s operation; they
must never be lost (chapter 2.11).

Finally, FEE provides services for handling under-voltage situations in safer ways; see
chapter 2.10.

6.3.5 Write Cycle and Erase Cycle Counters

Blocks’ Write Cycle and Sectors’ Erase Counters allow monitoring flash usage over time.
Especially, they allow re-evaluating initial estimations of blocks write cycles.

Erase cycle counters can be used to estimate total flash usage over ECU’s life-time. A key
parameter is the number of erase cycles per physical sector, which is limited on Flash
EEPROM devices.

Precisions of both kinds of cycle counters are limited. Especially interrupted accesses
and/or resets reduce precision, for certain reasons.

| Caution
. Blocks’ Write Cycle and Sectors’ Erase Cycle counters shall be used for statistical
purposes only. Especially, they shall not be used to affect code execution in any way.

©2015, Vector Informatik GmbH Version: 8.01.00

82/85

Technical Reference MICROSAR FEE VeCEor [

7 Glossary and Abbreviations

7.1 Glossary

Term Description

DaVinci Configurator Tool to create a consistent and optimized ECU configuration. Generation
and validation tool for MICROSAR components.

Block Tag Identifies a block in data flash. See also: Block Id
Block Id Identifier used to uniquely identify blocks in a partition. Stored in data
flash, it consists of Block Tag and Data Index.

In conjunction with partition 1D, every block in FEE can be uniquely
identified.

The Block Id abstracts from 16Bit Block Number passed via API; it
depends on current configuration, in particular on Dataset Selection Bits.

The block tag is one cornerstone in FEE’s update capability: As long as a
Block Id does not change across configuration updates, it can be found in
data flash, data may be kept, if block length also remained unchanged.

Table 7-1 Glossary

7.2 Abbreviations

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

DEM Diagnostic Event Manager

DET Development Error Tracer

ECU Electronic Control Unit

ECUM ECU Manager

EEPROM Electrically Erasable Programmable Read Only Memory

FBL Flash Bootloader

FEE Flash EEPROM Emulation Module

FLS Flash Driver

HIS Hersteller Initiative Software

MEMIF Memory Abstraction Interface Module

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR

solution)

NVM NVRAM Manager

NVRAM Non Volatile Random Access Memory

SchM (AUTOSAR) Scheduling Manager
©2015, Vector Informatik GmbH Version: 8.01.00 83/85

based on template version 3.1

Technical Reference MICROSAR FEE V@CEO([

SRS Software Requirement Specification
SWC Software Component
SWS Software Specification

Table 7-2 Abbreviations

©2015, Vector Informatik GmbH Version: 8.01.00 84 /85

Technical Reference MICROSAR FEE

8 Contact

Visit our website for more information on

News

Products
Demo software
Support
Training data
Addresses

VVVYVVYV

www.vector-informatik.com

©2015, Vector Informatik GmbH

Version: 8.01.00

vector’

85/85

http://www.vector-informatik.com/

	1 Introduction
	1.1 Architecture Overview

	2 Functional Description
	2.1 Features
	2.2 Initialization
	2.3 States
	2.3.1 Module States
	2.3.2 Job States/Results

	2.4 Flash organization
	2.4.1 Block Handling
	2.4.1.1 Block Chunks
	2.4.1.2 Block Search

	2.4.2 Partitions
	2.4.3 Logical Sectors

	2.5 Processing
	2.5.1.1 Initial processing
	2.5.1.2 Processing of Read Job
	2.5.1.3 Processing of Write Job
	2.5.1.4 Processing of InvalidateBlock Job
	2.5.1.5 Processing of EraseImmediateBlock Job
	2.5.1.6 Processing of GetEraseCycle Job
	2.5.1.7 Processing of GetWriteCycle Job

	2.6 Error Handling
	2.6.1 Development Error Reporting
	2.6.1.1 Parameter Checking

	2.6.2 Production Code Error Reporting
	2.6.3 Error notification

	2.7 Sector Switch
	2.7.1 Background Sector Switch (BSS)
	2.7.2 Foreground Sector Switch (FSS)
	2.7.3 Sector Overflow
	2.7.4 Sector switch reserves and thresholds
	2.7.5 Background Sector Switch Reserve/Threshold
	2.7.6 Foreground Sector Switch/Threshold

	2.8 Data Conversion
	2.9 Flash Page Size impacts
	2.10 Services for handling under-voltage situations
	2.11 Critical Data Blocks
	2.12 Fee_MainFunction Triggering

	3 Integration
	3.1 Scope of Delivery
	3.1.1 Static Files
	3.1.2 Dynamic Files

	3.2 Compiler Abstraction and Memory Mapping
	3.3 Dependencies on SW Modules
	3.3.1 OSEK/AUTOSAR OS
	3.3.2 Module SchM
	3.3.3 Module Det
	3.3.4 Module Fls
	3.3.5 Callback Functions
	3.3.5.1 Lower layer interaction
	3.3.5.2 Upper layer interaction
	3.3.5.3 User Error Callback

	3.4 Dependencies on HW modules
	3.5 Critical Sections

	4 API Description
	4.1 Interfaces Overview
	4.2 Type Definitions
	4.2.1 Fee_SectorSwitchStatusType
	4.2.2 Fee_SectorErrorType

	4.3 Services provided by FEE
	4.3.1 Fee_Init
	4.3.2 Fee_InitEx
	4.3.3 Fee_SetMode
	4.3.4 Fee_Read
	4.3.5 Fee_Write
	4.3.6 Fee_Cancel
	4.3.7 Fee_GetStatus
	4.3.8 Fee_GetJobResult
	4.3.9 Fee_InvalidateBlock
	4.3.10 Fee_GetVersionInfo
	4.3.11 Fee_EraseImmediateBlock
	4.3.12 Fee_MainFunction
	4.3.13 Fee_GetEraseCycle
	4.3.14 Fee_GetWriteCycle
	4.3.15 Fee_GetSectorSwitchStatus
	4.3.16 Fee_ForceSectorSwitch
	4.3.17 Fee_ConvertBlockConfig
	4.3.18 Fee_SuspendWrites
	4.3.19 Fee_ResumeWrites
	4.3.20 Fee_DisableFss
	4.3.21 Fee_EnableFss

	4.4 Services used by FEE
	4.4.1 Data Conversion Callback

	4.5 Callback Functions
	4.5.1 Fee_JobEndNotification
	4.5.2 Fee_JobErrorNotification

	4.6 Configurable Interfaces

	5 Configuration
	5.1 Configuration with DaVinci Configurator
	5.1.1 Start configuration of the FEE
	5.1.2 Useful Chunk-Sizes (instance counts)
	5.1.3 Update of block configuration
	5.1.4 FEE Configuration tab
	5.1.5 General Settings tab
	5.1.5.1 Error Detection – Development Mode
	5.1.5.2 Area “Error Callback”
	5.1.5.3 Area Buffer
	5.1.5.4 Area “Upper Layer”
	5.1.5.5 Area “Critical Section Handling”

	5.1.6 Partitions
	5.1.6.1 Area “Management”
	5.1.6.2 Area “Lower Layer”

	5.1.7 Module API tab
	5.1.7.1 API Configuration
	5.1.7.2 Provided API

	5.2 Configuration Parameters only visible in GCE
	5.2.1 Fls API deviating from AUTOSAR naming convention

	6 AUTOSAR Standard Compliance
	6.1 Deviations
	6.1.1 Maximum Blocking Time

	6.2 Additions/ Extensions
	6.2.1 Parameter Checking
	6.2.2 Fee_InitEx
	6.2.3 GetEraseCycle
	6.2.4 GetWriteCycle
	6.2.5 GetSectorSwitchStatus
	6.2.6 ForceSectorSwitch
	6.2.7 Fee_ConvertBlockConfig
	6.2.8 Fee_SuspendWrites / Fee_ResumeWrites
	6.2.9 Fee_EnableFss / Fee_DisableFss

	6.3 Limitations
	6.3.1 Partitions
	6.3.2 Flash Usage
	6.3.3 Performance
	6.3.4 Aborts/Resets
	6.3.5 Write Cycle and Erase Cycle Counters

	7 Glossary and Abbreviations
	7.1 Glossary
	7.2 Abbreviations

	8 Contact

