

Interaction Layer for General Motors

Technical Reference

Il_Vector_Gm with GENy

Version 2.01.02

Authors Ralf Fritz, Gunnar Meiss, Heiko Hübler

Status Released

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

2 / 48

1 Document Information

This document may be revised and appear in several versions. The document will be

classified to permit identification of updates and versions.

This user manual is related to the source code version (Il_Vector_Gm) 1.01.00 or higher.

1.1 History

Author Date Version Remarks

Ralf Fritz 2003-08-05 1.00 creation

Ralf Fritz 2004-07-02 1.01 Changed description for ILSetTxMessageEnable

Ralf Fritz 2004-07-16 1.02 Sample corrected. Restriction added.

Ralf Fritz 2005-04-27 1.03 Timeout and Source Learning description extended.

New Layout.

Ralf Fritz 2005-08-01 1.04 Adaptation of return values of several functions.

Ralf Fritz 2007-03-29 1.05 Corrected chapter 3.1.2.2
and 3.1.2.3

Ralf Fritz 2007-05-01 1.06 Switch to new documentation template.

Gunnar Meiss 2008-01-17 2.00 Added GENy Support

Heiko Hübler 2012-10-18 2.01.00 Added Robustness Changes

Added Clearing Flags on Deactivate VN
(ESCAN00061059)

Heiko Hübler 2012-10-26 2.01.01 Changed description of Clearing Flags on Deactivate
VN

Heiko Hübler 2013-01-31 2.01.02 Updated GMLAN version (ESCAN00064595)

improved the description of Source Address Timeout
Supervision (ESCAN00064519)

Table 1-1 History of the Document

1.2 Reference Documents

No. Source Title Version

[1] Vector Technical Reference of Vector’s CAN driver
(TechnicalReference_CANDriver.pdf).

2.23.00

[2] Vector Vector Interaction Layer Technical Reference for GENy.
(TechnicalReference_GENy_InteractionLayer.pdf).

2.08.00

[3] Vector Technical Reference of Vector’s GMLAN Network Management
(TechnicalReference_GMLAN_NM.pdf).

1.07.00

[4] OSEK/VDX OSEK/VDX Communication Specification 3.0.3. 3.0.3

Table 1-2 Reference Documents

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

3 / 48

Please note
We have configured the programs in accordance with your specifications in the

questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

4 / 48

Contents

1 Document Information .. 2

1.1 History .. 2

1.2 Reference Documents ... 2

2 Component History ... 8

2.1 Il_Vector_Gm Version 1.00.00 ... 8

2.1.1 What is new? ... 8

2.1.2 What has changed?... 8

2.2 Il_Vector_Gm Version 1.01.00 ... 8

2.2.1 What is new? ... 8

2.2.2 What has changed?... 8

3 Functional Description ... 9

3.1 Data Transmission.. 9

3.1.1 Cyclic Transmission ... 9

3.1.2 Event Based Transmission .. 10

3.1.3 Mixed Transmission ... 13

3.2 Signal Access ... 14

3.3 Extended CAN Identifiers... 15

3.3.1 Source Learning .. 15

3.3.2 Source Address Timeout Supervision ... 16

3.4 Application Controlled Message Filter ... 17

3.5 Clearing Flags on Deactivate VN... 17

4 Integration .. 18

4.1 Include structure ... 18

4.2 Initialization... 18

4.3 Cyclic function .. 19

5 Configuration ... 21

5.1 Database Attributes .. 21

5.1.1 Send Type .. 21

5.1.2 Default Values .. 21

5.1.3 Tx NCA Message ... 22

5.1.4 Timeout Supervision .. 23

6 API Description .. 25

6.1 Administrative functions ... 25

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

5 / 48

6.1.1.1 IlInitPowerOn .. 25

6.1.1.2 IlInit.. 25

6.1.1.3 IlRxTask... 26

6.1.1.4 IlTxTask ... 26

6.1.1.5 IlRxStateTask .. 27

6.1.1.6 IlTxStateTask... 28

6.1.1.7 IlSetOwnNodeAddress ... 28

6.2 Service functions .. 29

6.2.1.1 IlSetEvent.. 29

6.2.1.2 IlGetNodeCommActiveState... 29

6.2.1.3 IlSetRxMessageSourceAddress....................................... 30

6.2.1.4 IlGetRxMessageSourceAddress 30

6.2.1.5 IlSetRxMessageEnable .. 31

6.2.1.6 IlSetTxMessageEnable... 31

6.2.1.7 IlGetTransmitMessageStatus ... 32

6.3 Callback functions .. 32

6.3.1 ApplIlSourceAddressLearned.. 33

6.3.2 ApplIlRxMsgSrcAddressLearned .. 33

6.3.3 ApplIlNodeCommActiveRecovery ... 34

6.3.4 ApplIlNodeCommActiveFailed... 34

7 Abbreviations... 36

8 Appendix .. 37

8.1 Nm_Gmlan_Gm Interface .. 37

8.1.1 IlRxStart.. 37

8.1.2 IlTxStart .. 37

8.1.3 IlRxStop.. 38

8.1.4 IlTxStop .. 39

8.1.5 IlRxWait .. 39

8.1.6 IlTxWait .. 40

8.1.7 IlRxRelease.. 40

8.1.8 IlTxRelease .. 41

8.1.9 IlRxActivateVnMsg... 41

8.1.10 IlRxDeactivateVnMsg .. 42

8.1.11 IlTxActivateVnMsg ... 43

8.1.12 IlTxDeactivateVnMsg... 43

8.1.13 IlRxStartVnMsgSupervision ... 44

8.1.14 IlRxDeactivateVnMsgSupervision ... 45

8.1.15 IlResetRxTimeoutFlags ... 45

8.1.16 IlRequeueTransmitMessages .. 46

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

6 / 48

8.2 Interaction Layer Internal Interfaces .. 47

9 Contact.. 48

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

7 / 48

Illustrations

Figure 3-1 Sequence Diagram of Cyclic Transmission ... 10
Figure 3-2 Sequence Diagram of Event based Transmission 11
Figure 3-3 Sequence Diagram of Event based Transmission with Delay 12
Figure 3-4 Sequence Diagram of Cyclic and Event based Transmission in

combination... 13
Figure 4-1 Including Il_Vector_Gm .. 18
Figure 4-2 Call of the Il_Vector cyclic function... 20

Tables

Table 1-1 History of the Document ... 2
Table 1-2 Reference Documents .. 2
Table 3-1 Validity Bit Value Interpretation ... 14
Table 3-2 VDA Bit Value Interpretation ... 15
Table 3-3 Extended CAN Identifier fields ... 15

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

8 / 48

2 Component History

This chapter describes the implementation of the Vector Interaction Layer for General

Motors in GENy.

2.1 Il_Vector_Gm Version 1.00.00

2.1.1 What is new?

> The Interaction Layer is configured with GENy.

> API to handle signal groups.

> Mask bit support.

2.1.2 What has changed?

> The Validity bit API is the same API as for Mask bits or signal groups.

> Reduction of the code size.

2.2 Il_Vector_Gm Version 1.01.00

2.2.1 What is new?

> IlRxDeactivateVnMsg clears now the flags of deactivated messages (see 3.5).

2.2.2 What has changed?

> The Rx timeout table(IlRxTimeoutTbl) was moved to gmlcal.c and can now be calibrated

(post build).

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

9 / 48

3 Functional Description

3.1 Data Transmission

This chapter describes the data transmission concept of Il_Vector_Gm.

Caution

The data transmission differs to the Il_Vector data transmission described in [2].

3.1.1 Cyclic Transmission

The cyclic transmission is configured in the network database with the attributes

GenMsgSendType and GenSigSendType (See in chapter 5.1.1 Send Type). If either the
message or a signal of the message is configured as cyclic, the message is transmitted
periodically. The period of the message is defined with the dbc attribute

GenMsgCycleTime (See in [2]).

The cyclic transmission of a message starts automatically, if the Il_Vector_Gm is initialized

and the transition IlTxStart is performed for the channel and a VN is active which is related
to a signal within a message.

The following sequence diagram describes the cyclic transmission of a message.

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

10 / 48

Figure 3-1 Sequence Diagram of Cyclic Transmission

3.1.2 Event Based Transmission

If the GenSigSendType OnAnyChange, OnChangeIfActive, OnDelta is defined in the
network database for signals, the application has to take care of the transmission event
and triggers the transmission of signals.

Caution

If the application does not trigger the transmission, data can get lost.

To implement this functionality, the Il_Vector_Gm provides to the application StateOn Flags

per signal and the IlSetEvent API (See in chapter 6.2.1.1 IlSetEvent). The following
sequence diagram shows the event based transmission in detail. The application checks
the VN activity of the signal and if a related VN is active, the application calls IlSetEvent to

set a transmission request. The transmission takes place either within the next call of the
IlTxTask (See Figure 3-2 Sequence Diagram of Event based Transmission), or the

transmission is delayed, until the message delay time is elapsed (See Figure 3-3
 Sequence Diagram of Event based Transmission with Delay and the description of the
GenMsgDelayTime in [2]).

Example

The following code is an example of a event based transmission.

/* Write the value to the data buffer for the signal

“EngOilTemp” */

IlPutTxEngOilTemp(5);

/* Check, that the signal is in an active VN */

if (IlGetTxEngOilTempStateOn())

{

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

11 / 48

 /* Perform the transmission request and

 use the generated signal handle from il_par.h as parameter */

 IlSetEvent(IlTxSigEngOilTemp);

}

The message transmission results of the implemented signal transmission modes. More
than one transmission type can be implemented in one message.

Figure 3-2 Sequence Diagram of Event based Transmission

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

12 / 48

Figure 3-3 Sequence Diagram of Event based Transmission w ith Delay

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

13 / 48

3.1.3 Mixed Transmission

The implementation of event based transmission modes for signals can be combined with
cyclic transmission. The event based transmission does not influence the periodic
transmission event. If the event transmission request is set in the same timeslot as the

periodic transmission event, the transmission request is merged.

If the GenSigSendType OnWrite, OnAnyChange, OnChangeIfActive, OnDelta is defined in

the network database for signals, the application has to take care of the transmission event
and triggers the transmission of signals.

Caution
If the application does not trigger the transmission, data can get lost.

Figure 3-4 Sequence Diagram of Cyclic and Event based Transmission in combination

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

14 / 48

3.2 Signal Access

The signal API for normal signals is performed as described in [2]. If GENy detects, that

the message contains a signal with a related validity, mask or VDA (Virtual Device
Availability) bit, the signals are merged into a new created signal group, to access the
signals consistently.

Example

The following code is an example for a Signal “EngOilTemp” with validity bit
EngOilTempV which is grouped into the signal group EngOilTempGroup. A indication
flag has been configured for the signal “EngOilTemp”. The shadow buffer for the signal
group is provided by the Interaction Layer.

vuint8 data = 0;

/* Check, that the signal is received */

if (IlGetRxEngOilTempIndication())

{

 /* Clear the indication flag */

 IlClrRxEngOilTempIndication();

 /* Check, that the signal is in an active VN */

 if (IlGetRxEngOilTempStateOn())

 {

 /* Read the complete signal group to a temporary buffer */

 IlGetRxEngOilTempStateOnGroup();

 /* Check the validity bit */

 if(IlGetRxEngOilTempV() == 0)

 {

 /* Read the signal value and continue data processing */

 data = IlGetRxEngOilTemp();

 }

 }

}

Validity Bit Value Description

0 The signal value is valid.

1 The signal value is NOT valid.

Table 3-1 Validity Bit Value Interpretation

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

15 / 48

VDA Bit Value Description

0 The virtual device is NOT available.

1 The virtual device is available.

Table 3-2 VDA Bit Value Interpretation

Caution
Due to historical compatibility reasons, the interpretation of validity and VDA bit value is
different.

3.3 Extended CAN Identifiers

GMLAN V3.1 is intended to be used with standard and extended CAN identifiers.

This extended CAN Identifiers are introduced to provide the so called Source Learning
with Supervision mechanism. This is an extension to the already provided timeout and

fault recovery functions.

3.3.1 Source Learning

The 29-bit header of an extended CAN Identifier is separated into different fields:

Priority Field Bit 28-26 3 bit field used to adjust a message's importance when the
transmitter arbitrates for the bus.

The value is specified in the network database and cannot
be changed at runtime.

Parameter Field Bit 25-13 13 bit field used to identify the parameter(s) contained
within the data field of the message. The parameter(s) will
be assigned as ID as they are added to the network
database.

The value is specified in the network database and cannot
be changed at runtime.

Reserved Bit 12-8 All remaining bits within the 29 bit header shall be
reserved for future use. All reserved bits are set to zero by
the CAN Driver.

Source Address Field Bit 7-0 8 bit field used to identify the module which transmitted the
message.

The source address of an ECU is set by the application in
the startup code at runtime via the API
IlSetOwnNodeAddress (See in chapter 6.1.1.7
IlSetOwnNodeAddress).

Table 3-3 Extended CAN Identif ier f ields

If an extended CAN Identifier is received by an ECU, the priority and source address are

filtered by the use of masks generated by the generation tool. The filter for CAN identifier
of the CAN controller ignores the parameter values and reserved bits when the message is

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

16 / 48

received. This enables the system to learn the source address for a specific message. I.e.
the source address can be set dynamically.

The application is notified by the call of ApplIlSourceAddressLearned (See in chapter 6.3.1
ApplIlSourceAddressLearned), if a new source address has been learned by the ECU.

If the source address of message changes or the message is received the first time the

callback function ApplIlRxMsgSrcAddressLearned (See in chapter 6.3.2
ApplIlRxMsgSrcAddressLearned) is called additional to indicate the relationship between

the message and the current ECU, which transmits the message.

No source address is learned at the first ECU start up. The source addresses of all RX
messages are set by default to either 254 or 255. A message with a source address of 254

is not mandatory. Messages with a source address of 255 will be mandatory. The source
address can be read by the function IlGetRxMessageSourceAddress (See in chapter

6.2.1.4 IlGetRxMessageSourceAddress).

If the application needs to identify the current communication state of a learned node the
function IlGetNodeCommActiveState (See in chapter 6.2.1.2 IlGetNodeCommActiveState)

is provided by the Interaction Layer.

During the reception of messages the Interaction Layer learns and stores the source

address of each received message. The application has to store the source addresses in a
permanent memory location to avoid a new learning phase of the system. If the system is
powered up again, the application has to program the previously learned Source

addresses via IlSetRxMessageSourceAddress (See in chapter 6.2.1.3
IlSetRxMessageSourceAddress). An example of the relearning is provided in chapter 4.2

Initialization.

3.3.2 Source Address Timeout Supervision

The Node Communication Active message (NCA message) is transmitted by each ECU in
the network, if the communication is active for a VN (Except VN 0, this one is reserved for

diagnosis). With this message it is possible to learn the source address of an ECU, even if
no other extended Identifier message is transmitted.

The node timeout supervision starts with the reception of the first extened id message that

is no NCA message. If no extended Identifier message with the already learned source
address is received, a timeout occurs. The timeout is notified to the application by the call

of ApplIlNodeCommActiveFailed (See in chapter 6.3.4 ApplIlNodeCommActiveFailed) with
the missing source address. The timeout supervision is performed even for messages,
which are not learned by the ECU. If mandatory messages are missing, the source

address 255 is passed and 254 for optional messages. If the timeout of a source address
is detected, it can be assumed, that all signals related to that source address are in

timeout. Additional timeout notifications for extended Identifier messages (message
timeout function, signal timeout flags or timeout function) are called or set and timeout
default values are set if they are configured.

If an extended Identifier message with the already learned source address is received
again (e.g. the NCA message), the application is notified with the call of

ApplIlNodeCommActiveRecovery (See in chapter 6.3.3 ApplIlNodeCommActiveRecovery).

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

17 / 48

3.4 Application Controlled Message Filter

The application can enable and disable the transmission and the reception of messages,

which affects all signals included in that messages. See in chapter 6.2.1.5
IlSetRxMessageEnable and chapter 6.2.1.6 IlSetTxMessageEnable.

Example
Here is an example implementation of the message filter that has been prepared for
you.

void ApplIlInit(void)

{

 /* Disable the reception of the message RPM_F */

 vError = IlSetRxMessageEnable(IlRxMsgRPM_F,

kIlMessageDisabled);

 /* Disable the transmission of the message Vspeed */

 vError = IlSetTxMessageEnable(IlTxMsgVSpeed,

kIlMessageDisabled);

}

3.5 Clearing Flags on Deactivate VN

The switch “Enable Clearing Flags on Deactivate VN”, in the GENy GUI, enables clearing
flags if the function IlRxDeactivateVnMsg is called. This function is called by the NM to

deactivate a VN.

These flags are cleared: first value flags, timeout flags, node timeout flags and indication
flags.

Only flags of messages which have been deactivated in IlRxDeactivateVnMsg are cleared.

A message gets deactivated if all VNs a message is in are deactivated.

Info

The flags for a signal are cleared when all VNs associated to any signal of the message
are deactivated

Info
If you have an old project and activate this feature you may have to adapt your
application.

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

18 / 48

4 Integration

This chapter includes an example for the integration of the Interaction Layer. Most

configurations depend on the customer’s environment. Therefore, we can only describe a
single simple configuration just to show how it could look like. We use pseudo code for our

example. It won’t be possible to compile this code.

4.1 Include structure

To use the Vector Interaction Layer for GMLAN, only the file il_inc.h must be included in all

application components that want to use Interaction Layer functionality. The file can_inc.h
(which provides the CAN Driver interface and data buffers) must not be included

separately, it is automatically included by il_inc.h.

Figure 4-1 Including Il_Vector_Gm

4.2 Initialization

If the CCL is not used in the software stack, the application has to initialize the

components.

Example
Here is an example, if the initialization has to be implemented by the application.

/* Disable interrupts during the initialization of the

Components */

DisableInterrupts();

/* Initialize all components */

CanInitPowerOn();

IlInitPowerOn();

TpInitPowerOn();

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

19 / 48

DiagInit();

IlSetOwnNodeAddress(srcAddress);

/* Enabling Interrupts is no longer critical, but not

recommended. */

/* Relearn already learned source addresses from the EPROM

*/

for (Hnd = 0 ; Hnd < iNrOfEPROMElements ; Hnd++)

{

 IlSetRxMessageSourceAddress(ReadRxHandleFromEPROM(Hnd),

 ReadSrcAdressFromEPROM(Hnd));

}

/* Enable interrupts */

EnableInterrupts();

4.3 Cyclic function

The IlRxTask and IlTxTask must be called cyclically as configured in GENy by the
Application, OS or CCL.

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

20 / 48

Figure 4-2 Call of the Il_Vector cyclic function

Example

Here is an example, if the task calls have to be implemented by the application.

for(;;)

{

 /* periodic call of IlRxTask() and IlTxTask() */

 if (flag_10ms)

 {

 IlRxTask();

 IlTxTask();

 flag_10ms = 0; /* clear flag which was set by a timer

*/

 }

}

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

21 / 48

5 Configuration

5.1 Database Attributes

This chapter describes the dbc network database attributes, which can be used with
Il_Vector_Gm.

Info

The strings used for the enumerated database attributes are often OEM-specific and
can differ here from general descriptions. Do not change the order of string values in
enumerated database attributes. The code generator evaluates always the numerical
indexe of the string list.

Caution
Don’t mix up the order of enumeration values. Not the value of the attribute is
interpreted, the position of the selected value.

5.1.1 Send Type

Name GenMsgSendType

Description Message related transmission mode.

Type Of Object Message

Value Type Enumeration

Default CyclicX

Values CyclicX, SpontanX, NotUsed, NotUsed, NotUsed, NotUsed, NotUsed,
NotUsed, NoMsgSendType

Name GenSigSendType

Description Signal related transmission mode.

Type Of Object Signal

Value Type Enumeration

Default NoSigSendType

Values Periodic, NotUsed, NotUsed, NotUsed, NotUsed, NotUsed, NotUsed,
NoSigSendType, NotUsed, NotUsed, OnAnyChange, OnChangeIfActive,
OnDelta

5.1.2 Default Values

Caution
Please note, the attribute GenSigStartValue sets the Default value at initialization time,
not if IlRxStart or IlTxStart is called. Due to historical and compatibility reasons, this

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

22 / 48

confusing definition cannot be changed any more.

Name GenSigStartValue

Description This value is the default value for the signal, if IlInitPowerOn is called.

The string value type can represent hexadecimal and integer values.

Type Of Object Signal

Value Type String, Integer*, Float*

Default 0x0

Minimum 0x0

Maximum 0xffffffffffffffff

5.1.3 Tx NCA Message

Name NodeStatusMsgID

Description This value is the Extended CAN identifier of the Tx “Node Communication
Active” message.

Type Of Object Network

Value Type Hex

Default 0xFFF800

Minimum 0x1FFFFFFF

Maximum 0xffffffffffffffff

Name NodeStatusMsgCycleTime

Description This value is the cycle time of the Tx “Node Communication Avtive” message.
The message is transmitted, if a virtual network is active.

Type Of Object Network

Value Type Integer

Default 1200

Minimum 0

Maximum 65535

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

23 / 48

Name NodeStatusMsgTimeoutTime

Description This value is the timeout time supervision of the Rx Node Communication
Active message.

Type Of Object Network

Value Type Integer

Default 3000

Minimum 0

Maximum 65535

5.1.4 Timeout Supervision

Name GenMsgMandatoryToSupervision

Description This value represents the initial source address, which will be indicated to the
application via ApplIlNodeCommActiveFailed, if no other source address has
been learned. If No is set, the source address is set to 254, else 255 is set.

Type Of Object Message

Value Type Enumeration

Default No

Values No, Yes

Name GenSigSendOnInit

Description If a signal of a message has this value set to Handler, the SendOnInit property
of the message is activated and preconfigurated.

The message is transmitted, if IlSendOnInitMsg() or IlQueueVnMsg() is called
(Called if an initial active VN is activated) or the virtual network is activated (a
VN can start locally or remotely if a VNMF message is received).

Type Of Object Signal

Value Type Enumeration

Default NotInitialized

Values NotInitialized, Application, Handler

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

24 / 48

Name GenSigSuprvResp

Description This value preconfigurates the timeout flag and timeout default value.

0 : Preconfigure nothing

1 : A timeout flag is configured for the signal

2 : A timeout default value is configured for the signal

3 : A timeout flag and timeout default value is configured for the signal

Type Of Object Node – Mapped Rx Signal

Value Type Enumeration

Default None

Values None, Notify, Substitute, NotifySubstitute

Name GenSigSuprvRespSubValue

Description This Value is the timeout default value for the signal, if a timeout occurs.

The integer value allows the definition of timeout values for signals with a
maximum Length of 4 Bytes.

Type Of Object Node – Mapped Rx Signal

Value Type Integer

Default 0x0

Minimum 0x0

Maximum 4294967296

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

25 / 48

6 API Description

The following chapter extends or replaces API function descriptions provided in the

Technical Reference of the Interaction Layer [2].

6.1 Administrative functions

6.1.1.1 IlInitPowerOn

IlInitPowerOn

Prototype

void IlInitPowerOn (void)

Parameter

void none

Return code

void none

Functional Description

This method initializes the Il_Vector on all channels.

IlInit is called for every channel.

Particularities and Limitations

The function is called by the Application or Ccl (Communication Control Layer).

Call context

The function must be called with disabled interrupts.

The function must not interrupt IlRxTask, IlRxStateTask, IlTxTask, IlTxStateTask, IlInit, IlRxStart, IlTxStart,
IlRxStop, IlTxStop.

6.1.1.2 IlInit

IlInit

Prototype

Single Channel

Single Receive Channel void IlInit (void)

Multi Channel

Indexed (MRC) void IlInit (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Return code

void none

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

26 / 48

Functional Description

This method initializes the Il_Vector on a channel.

Rx and Tx data buffers and flags are set to the initial state. If no default value for a message is defined, the
data buffer is set to 0x00. IlNwmInit of Nm_Gmlan_Gm is called if the initialization is performed.

Particularities and Limitations

The function is called by the Application, Ccl (Communication Control Layer) or IlInitPowerOn.

Call context

The function must be called with disabled interrupts.

The function must not interrupt IlRxTask, IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlRxStart,
IlTxStart, IlRxStop, IlTxStop.

6.1.1.3 IlRxTask

IlRxTask

Prototype

Single Channel

Single Receive Channel void IlRxTask (void)

Multi Channel

Indexed (MRC) void IlRxTask (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Return code

void none

Functional Description

This method must be called periodically in the Rx task cycle time configured in the generation tool. The
IlRxTimerTask and IlRxStateTask are called by this method.

Particularities and Limitations

The function is called by the Application or Ccl (Communication Control Layer).

Call context

The function must be called on task level.

The function must not interrupt IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlInit, IlRxStart,
IlTxStart, IlRxStop, IlTxStop

6.1.1.4 IlTxTask

IlTxTask

Prototype

Single Channel

Single Receive Channel void IlTxTask (void)

Multi Channel

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

27 / 48

Indexed (MRC) void IlTxTask (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Return code

void none

Functional Description

This method must be called periodically in the Tx task cycle time configured in the generation tool. The
IlTxTimerTask and IlTxStateTask are called by this method.

Particularities and Limitations

The function is called by the Application or Ccl (Communication Control Layer).

Call context

The function must be called on task level.

The function must not interrupt IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlInit, IlRxStart,
IlTxStart, IlRxStop, IlTxStop

6.1.1.5 IlRxStateTask

IlRxStateTask

Prototype

Single Channel

Single Receive Channel void IlRxStateTask (void)

Multi Channel

Indexed (MRC) void IlRxStateTask (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Return code

void none

Functional Description

This method is called periodically by the IlRxTask. The function can be called in a faster rate than the
IlRxTask to check additionally for polled indication events. The usage of the IlRxTask shall be preferred.

- The source addresses queued for the source address learning are learned.

- The timeout counter for the source address is started, if the source address is not already known.

Particularities and Limitations

The function is called by the Application or IlRxTask.

Call context

The function must be called on task level.

The function must not interrupt IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlInit, IlRxStart,
IlTxStart, IlRxStop, IlTxStop

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

28 / 48

6.1.1.6 IlTxStateTask

IlTxStateTask

Prototype

Single Channel

Single Receive Channel void IlTxStateTask (void)

Multi Channel

Indexed (MRC) void IlTxStateTask (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Return code

void none

Functional Description

This method is called periodically by the IlTxTask. The function can be called in a faster rate, than the
IlTxTask, to check additionally for polled confirmation events. The usage of the IlTxTask shall be preferred.

Particularities and Limitations

The function is called by the Application or IlTxTask.

Call context

The function must be called on task level.

The function must not interrupt IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlInit, IlRxStart,
IlTxStart, IlRxStop, IlTxStop

6.1.1.7 IlSetOwnNodeAddress

IlSetOwnNodeAddress

Prototype

Single Channel

Single Receive Channel Il_Status IlSetOwnNodeAddress (vuint8 srcAddress)

Multi Channel

Indexed (MRC) Il_Status IlSetOwnNodeAddress (CanChannelHandle

channel, vuint8 srcAddress)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

srcAddress Source address of this ECU, which will be added to the low byte of each
extended ID transmitted by the CAN driver.

Return code

Il_Status IL_OK : the node address has been set.

IL_ERROR : the node is not configured for the usage of GMLAN extended
identifiers and the source address is not accepted.

Functional Description

This method sets the source address for this ECU.

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

29 / 48

Particularities and Limitations

none

Call context

The function must be called on task level after CanInitPowerOn is called AND before interrupts are
activated.

6.2 Service functions

6.2.1.1 IlSetEvent

IlSetEvent

Prototype

void IlSetEvent (IlTransmitHandle ilTxHnd)

Parameter

ilTxHnd Handle of the Tx message.

Return code

void none

Functional Description

This method serves to set a transmission request for a message.

Particularities and Limitations

The function is called by the Application or by IlPutTx method.

Call context

The function can be called on task and interrupt level.

6.2.1.2 IlGetNodeCommActiveState

IlGetNodeCommActiveState

Prototype

Single Channel

Single Receive Channel vuint8 IlGetNodeCommActiveState (vuint8 srcAddress)

Multi Channel

Indexed (MRC) vuint8 IlGetNodeCommActiveState (CanChannelHandle

channel, vuint8 srcAddress)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

srcAddress Source address of an ECU.

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

30 / 48

Return code

vuint8 kIlNodeUnknown : The given node address has not been learnt.

kIlNodeFailed : This node is in timeout state.

kIlNodeActive : Node is sending messages (at least one NCA).

kIlNodeIdle : Node address is in the list, but is currently inactive.

Functional Description

This method returns the state of an ECU in the network. The Il searches for the srcAddress and returns the
status.

Particularities and Limitations

none

Call context

The function must be called on task level.

6.2.1.3 IlSetRxMessageSourceAddress

IlSetRxMessageSourceAddress

Prototype

Il_Status IlSetRxMessageSourceAddress (IlReceiveHandle ilRxHnd, vuint8

srcAddress)

Parameter

ilRxHnd Handle of the Rx message.

srcAddress Source address of an ECU for this message.

Return code

Il_Status IL_OK : the source address is now configured for the Rx message

IL_ERROR : ilRxHnd is invalid or ilRxExtIdHnd is inconsistent or channel is
inconsistent

Functional Description

This method sets the source address as learned for a Rx message.

Particularities and Limitations

The function is only available if Extended-Identifiers are used.

Call context

The function must be called on task level.

6.2.1.4 IlGetRxMessageSourceAddress

IlGetRxMessageSourceAddress

Prototype

Il_Status IlGetRxMessageSourceAddress (IlReceiveHandle ilRxHnd, vuint8

*pSrcAddress)

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

31 / 48

Parameter

ilRxHnd Handle of the Rx message.

pSrcAddress Pointer to where the source address of a message has to be stored.

Return code

Il_Status IL_OK : the source address is now returned for the Rx message

IL_ERROR : ilRxHnd is invalid or ilRxExtIdHnd is inconsistent or channel is
inconsistent

Functional Description

This method returns the source address a Rx message learnt in the last session.

Particularities and Limitations

The function is only available if Extended-Identifiers are used.

Call context

The function must be called on task level.

6.2.1.5 IlSetRxMessageEnable

IlSetRxMessageEnable

Prototype

Il_Status IlSetRxMessageEnable (IlReceiveHandle ilRxHnd, vuint8 type)

Parameter

ilRxHnd Handle of the Rx message. Use the message handle generated in il_par.h!

type kIlMsgEnabled or kIlMsgDisabled

Return code

Il_Status IL_OK : the Rx messages handle has been activated or deactivated

IL_ERROR : the Rx messages handle is out of range

Functional Description

This method activates or deactivates the reception of a message.

Particularities and Limitations

Only messages which are handled by the Interaction Layer can be enabled or disabled. TP and NM
messages are not affected (NCA, HLVW, VNMF, USDT and UUDT messages).

Call context

The function must be called in the context of ApllIlInit().

6.2.1.6 IlSetTxMessageEnable

IlSetTxMessageEnable

Prototype

Il_Status IlSetTxMessageEnable (IlTransmitHandle ilTxHnd, vuint8 type)

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

32 / 48

Parameter

ilTxHnd Handle of the Tx message. Use the message handle generated in il_par.h!

type kIlMsgEnabled or kIlMsgDisabled

Return code

Il_Status IL_OK : the Tx messages handle has been activated or deactivated

IL_ERROR : the Tx messages handle is out of range

Functional Description

This method activates or deactivates the transmission of a message.

Particularities and Limitations

Only messages which are handled by the Interaction Layer can be enabled or disabled. TP and NM
messages are not affected (NCA, HLVW, VNMF, USDT and UUDT messages).

Call context

The function must be called in the context of ApllIlInit().

6.2.1.7 IlGetTransmitMessageStatus

IlGetTransmitMessageStatus

Prototype

vuint8 IlGetTransmitMessageStatus (IlTransmitHandle ilTxHnd)

Parameter

ilTxHnd Handle of the Tx message. Do not use the generated signal handles for the
message indirection!

Return code

vuint8 (vuint8) 0 : the message is idle and no transmission is expected from the Il

kIlTxMsgQueued : the transmission is requested to the CAN Driver and wait
for confirmation

kIlTxMsgPending : the message is pending for queuing in the Il.

Functional Description

The function provides the status of the message.

Particularities and Limitations

The function is called by the Application.

Call context

The function can be called on task and interrupt level.

6.3 Callback functions

The following functions have to be implemented by the application if the configuration in

GENy activates the callback function.

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

33 / 48

6.3.1 ApplIlSourceAddressLearned

ApplIlSourceAddressLearned

Prototype

Single Channel

Single Receive Channel void ApplIlSourceAddressLearned (vuint8 srcAddress)

Multi Channel

Indexed (MRC) void ApplIlSourceAddressLearned (CanChannelHandle

channel, vuint8 srcAddress)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

srcAddress Source address that has been learned.

Return code

void none

Functional Description

This method is called to indicate, that a new source address had been detected and learned from a node

on the network. This method can be influenced by the call of IlSetRxMessageSourceAddress. If a node
transmits the NCA message and other extended Ids are not used, ApplIlRxMsgSrcAddressLearned will
never be called, but this one will be called.

Particularities and Limitations

The function is only available if Extended-Identifiers are used.

Call context

The function is called in the context the IlRxStateTask or IlSetRxMessageSourceAddress.

6.3.2 ApplIlRxMsgSrcAddressLearned

ApplIlRxMsgSrcAddressLearned

Prototype

Single Channel

Single Receive Channel void ApplIlRxMsgSrcAddressLearned (IlReceiveHandle

ilRxHnd, vuint8 srcAddress)

Multi Channel

Indexed (MRC) void ApplIlRxMsgSrcAddressLearned (CanChannelHandle

channel, IlReceiveHandle ilRxHnd, vuint8 srcAddress)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

ilRxHnd Handle of the Il Rx message, where the source address has been learnt from.

srcAddress Source address that has been learned.

Return code

void none

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

34 / 48

Functional Description

This method is called to indicate, that a new source address had been detected and learned from a node

on the network from a specific message. This method is not influenced by the call of
IlSetRxMessageSourceAddress. The function shall be used, to store the learned value and reset it during
start-up via IlSetRxMessageSourceAddress where the ilRxHnd is needed.

Particularities and Limitations

The function is only available if Extended-Identifiers are used.

Call context

The function is called by the IlRxStateTask.

6.3.3 ApplIlNodeCommActiveRecovery

ApplIlNodeCommActiveRecovery

Prototype

Single Channel

Single Receive Channel void ApplIlNodeCommActiveRecovery (vuint8

srcAddress)

Multi Channel

Indexed (MRC) void ApplIlNodeCommActiveRecovery (CanChannelHandle

channel, vuint8 srcAddress)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

srcAddress Source address of an ECU.

Return code

void none

Functional Description

This method is called to indicate, that an extended Identifier from the source address has been received
again after a communication failure had been detected.

Particularities and Limitations

The function is only available if Extended-Identifiers are used.

Call context

The function is called in the context the IlRxStateTask or IlSetRxMessageSourceAddress.

6.3.4 ApplIlNodeCommActiveFailed

ApplIlNodeCommActiveFailed

Prototype

Single Channel

Single Receive Channel void ApplIlNodeCommActiveFailed (vuint8 srcAddress)

Multi Channel

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

35 / 48

Indexed (MRC) void ApplIlNodeCommActiveFailed (CanChannelHandle

channel, vuint8 srcAddress)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

srcAddress Source address of an ECU.

Return code

void none

Functional Description

This method is called to indicate, that timeout supervision of the Node Communication Active message of a
source address has been failed.

Particularities and Limitations

The function is only available if Extended-Identifiers are used.

Call context

The function is called by the IlRxTimerTask.

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

36 / 48

7 Abbreviations

Abbreviation Description

API Application Programming Interface

CAN Controller Area Network

CCL Communication Control Layer

ECU Electronic Control Unit

HLVW High Voltage Wake Up

MRC Multiple Receive Channel

NCA Node Communication Active

NM Network Management

OS Operating System

USDT Unacknowledged and Segmented Data Transfer

UUDT Unacknowledged and Unsegmented Data Transfer

VDA Virtual Device Availability

VN Virtual Network

VNMF Virtual Network Management Frame

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

37 / 48

8 Appendix

8.1 Nm_Gmlan_Gm Interface

The following methods are interface functions provided by the Interaction Layer for the
Gmlan Network Management.

Caution

Do not use this functions from within the application unless not explicitly required.

8.1.1 IlRxStart

IlRxStart

Prototype

Single Channel

Single Receive Channel void IlRxStart (void)

Multi Channel

Indexed (MRC) void IlRxStart (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Return code

void none

Functional Description

This method enables the reception of messages. The transition "start" of the Rx state machine is
performed.

- The flags used to indicate virtual network activity are cleared.

- Suspend the timeout counter for source address 255 and 254.

- Suspend the timeout counter for learned source addresses by clearing the number of active Rx messages
per source address.

Particularities and Limitations

The function is called by the Application or NM (Network Management).

Call context

The function must be called on task level.

The function must not interrupt IlRxTask, IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlInit,
IlTxStart, IlRxStop, IlTxStop.

8.1.2 IlTxStart

IlTxStart

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

38 / 48

Prototype

Single Channel

Single Receive Channel void IlTxStart (void)

Multi Channel

Indexed (MRC) void IlTxStart (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Return code

void none

Functional Description

This method enables the transmission of messages and starts the transmission of periodic messages. The
transition "start" of the Tx state machine is performed.

- The flags used to indicate virtual network activity are cleared.

- Requests are queued to be transmitted by the call of IlSendOnInitMsg.

Particularities and Limitations

The function is called by the Application or NM (Network Management).

Call context

The function must be called on task level.

The function must not interrupt IlRxTask, IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlInit,
IlTxStart, IlRxStop, IlTxStop.

8.1.3 IlRxStop

IlRxStop

Prototype

Single Channel

Single Receive Channel void IlRxStop (void)

Multi Channel

Indexed (MRC) void IlRxStop (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Return code

void none

Functional Description

This method disables the reception of messages. The transition "stop" of the Rx state machine is
performed. The method is used for example to enter the Sleep Mode of an ECU.

- The timeout flags for the application are cleared.

- All Rx virtual networks must be deactivated to call IlRxStop().

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

39 / 48

Particularities and Limitations

The function is called by the Application or NM (Network Management).

Call context

The function must be called on task level.

The function must not interrupt IlRxTask, IlRxStateTask, IlTxTask, IlTxStateTask, IlInitPowerOn, IlInit,
IlTxStart, IlRxStop, IlTxStop.

8.1.4 IlTxStop

IlTxStop

Prototype

Single Channel

Single Receive Channel void IlTxStop (void)

Multi Channel

Indexed (MRC) void IlTxStop (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Return code

void none

Functional Description

This method disables the transmission of messages (Sleep Mode). The transition "stop" of the Tx state
machine is performed. The method is used for example to enter the Sleep Mode of an ECU.

- All Tx virtual networks must be deactivated to call IlTxStop.

Particularities and Limitations

The function is called by the Application or NM (Network Management).

Call context

The function must be called on task level.

The function must not interrupt IlInitPowerOn, IlInit, IlRxTask, IlRxStateTask, IlRxTimerTask, IlTxTask ,
IlTxStateTask, IlTxTimerTask, IlRxStart, IlTxStart, IlRxStop

8.1.5 IlRxWait

IlRxWait

Prototype

Single Channel

Single Receive Channel void IlRxWait (void)

Multi Channel

Indexed (MRC) void IlRxWait (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

40 / 48

Return code

void none

Functional Description

This method halts the reception of messages. The transition "wait" of the Rx state machine is performed.
The method is used for example when the bus-off mode of an ECU was entered.

Particularities and Limitations

The function is called by the Application or NM (Network Management).

Call context

The function can be called on task and interrupt level.

8.1.6 IlTxWait

IlTxWait

Prototype

Single Channel

Single Receive Channel void IlTxWait (void)

Multi Channel

Indexed (MRC) void IlTxWait (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Return code

void none

Functional Description

This method halts the transmission of messages. The transition "wait" of the Tx state machine is
performed. The method is used for example when the bus-off mode of an ECU was entered.

Particularities and Limitations

The function is called by the Application or NM (Network Management).

Call context

The function can be called on task and interrupt level.

8.1.7 IlRxRelease

IlRxRelease

Prototype

Single Channel

Single Receive Channel void IlRxRelease (void)

Multi Channel

Indexed (MRC) void IlRxRelease (CanChannelHandle channel)

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

41 / 48

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Return code

void none

Functional Description

This method restarts the reception of messages from the "Waiting" state. The transition "release" of the Rx
state machine is performed.

- The timeout counters for all source addresses are restarted.

Particularities and Limitations

The function is called by the Application or NM (Network Management).

Call context

The function can be called on task and interrupt level.

8.1.8 IlTxRelease

IlTxRelease

Prototype

Single Channel

Single Receive Channel void IlTxRelease (void)

Multi Channel

Indexed (MRC) void IlTxRelease (CanChannelHandle channel)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Return code

void none

Functional Description

This method resumes the transmission of messages from the "Waiting" state. The transition "release" of the
Tx state machine is performed.

Particularities and Limitations

The function is called by the Application or NM (Network Management).

Call context

The function can be called on task and interrupt level.

8.1.9 IlRxActivateVnMsg

IlRxActivateVnMsg

Prototype

Single Channel

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

42 / 48

Single Receive Channel Il_Status IlRxActivateVnMsg (vuint8 ilVnHnd)

Multi Channel

Indexed (MRC) Il_Status IlRxActivateVnMsg (CanChannelHandle

channel, vuint8 ilVnHnd)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

ilVnHnd Il_Vector_Gm internal VN handle.

Return code

Il_Status IL_ERROR : a parameter check has failed OR the Rx state machine of the
channel is not in the running state

IL_VN_ALREADY_ACTIVE : an already activated VN has been requested for
activation

IL_VN_ACTIVATED : the VN is now activated

Functional Description

This method starts all Rx messages of a VN.

Particularities and Limitations

The function is called by Nm_Gmlan_Gm.

Call context

The function must be called on task level and if the Rx state machine of the dependent channel is in the
running state.

8.1.10 IlRxDeactivateVnMsg

IlRxDeactivateVnMsg

Prototype

Single Channel

Single Receive Channel Il_Status IlRxDeactivateVnMsg (vuint8 ilVnHnd)

Multi Channel

Indexed (MRC) Il_Status IlRxDeactivateVnMsg (CanChannelHandle

channel, vuint8 ilVnHnd)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

ilVnHnd Il_Vector_Gm internal VN handle.

Return code

Il_Status IL_ERROR : a parameter check has failed OR the Rx state machine of the
channel is not in the running state

an already deactivated VN has been requested for deactivation

IL_VN_DEACTIVATED : the VN is now deactivated.

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

43 / 48

Functional Description

This method stops all Rx messages of a VN. If enabled, the flags of the deactivated messages are cleared
(see 3.5).

Particularities and Limitations

The function is called by Nm_Gmlan_Gm.

Call context

The function must be called on task level and if the Rx state machine of the dependent channel is in the
running state.

8.1.11 IlTxActivateVnMsg

IlTxActivateVnMsg

Prototype

Single Channel

Single Receive Channel Il_Status IlTxActivateVnMsg (vuint8 ilVnHnd)

Multi Channel

Indexed (MRC) Il_Status IlTxActivateVnMsg (CanChannelHandle

channel, vuint8 ilVnHnd)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

ilVnHnd Il_Vector_Gm internal VN handle.

Return code

Il_Status IL_ERROR : a parameter check has failed OR the Tx state machine of the
channel is not in the running state

IL_VN_ALREADY_ACTIVE : an already activated VN has been requested for
activation

IL_VN_ACTIVATED : the VN is now activated

Functional Description

This method starts all Tx messages of a VN.

Particularities and Limitations

The function is called by Nm_Gmlan_Gm.

Call context

The function must be called on task level and if the Tx state machine of the dependent channel is in the
running state.

8.1.12 IlTxDeactivateVnMsg

IlTxDeactivateVnMsg

Prototype

Single Channel

Single Receive Channel Il_Status IlTxDeactivateVnMsg (vuint8 ilVnHnd)

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

44 / 48

Multi Channel

Indexed (MRC) Il_Status IlTxDeactivateVnMsg (CanChannelHandle

channel, vuint8 ilVnHnd)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

ilVnHnd Il_Vector_Gm internal VN handle.

Return code

Il_Status IL_ERROR : a parameter check has failed OR the Tx state machine of the
channel is not in the running state OR an already deactivated VN has been
requested for deactivation

IL_VN_DEACTIVATED : the VN is now deactivated.

Functional Description

This method stops all Tx messages of a VN.

Particularities and Limitations

The function is called by Nm_Gmlan_Gm.

Call context

The function must be called on task level and if the Tx state machine of the dependent channel is in the
running state.

8.1.13 IlRxStartVnMsgSupervision

IlRxStartVnMsgSupervision

Prototype

Single Channel

Single Receive Channel void IlRxStartVnMsgSupervision (vuint8 ilVnHnd)

Multi Channel

Indexed (MRC) void IlRxStartVnMsgSupervision (CanChannelHandle

channel, vuint8 ilVnHnd)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

ilVnHnd Il_Vector_Gm internal VN handle.

Return code

void none

Functional Description

This method starts the Rx extended id timeout supervision for all Rx messages of a VN, if

- The arguments are valid.

- The Rx state machine is in the running state.

- The Rx VN is active.

- The Rx extended id timeout supervision is not already started.

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

45 / 48

Particularities and Limitations

The function is called by Nm_Gmlan_Gm.

Call context

The function must be called on task level and if the Rx state machine of the dependent channel is in the
running state.

8.1.14 IlRxDeactivateVnMsgSupervision

IlRxDeactivateVnMsgSupervision

Prototype

Single Channel

Single Receive Channel Il_Status IlRxDeactivateVnMsgSupervision (vuint8

ilVnHnd)

Multi Channel

Indexed (MRC) Il_Status IlRxDeactivateVnMsgSupervision

(CanChannelHandle channel, vuint8 ilVnHnd)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

ilVnHnd Il_Vector_Gm internal VN handle.

Return code

Il_Status IL_ERROR : a parameter check has failed OR the Rx VN is not running OR
the Rx state machine of the channel is not in the running state an already
supervision deactivated VN has been requested for deactivation

IL_VN_DEACTIVATED : the timeout supervision of the VN is now deactivated.

Functional Description

This method stops the Rx timeout supervision for all Rx messages of a VN.

Particularities and Limitations

The function is called by Nm_Gmlan_Gm.

Call context

The function must be called on task level and if the Rx state machine of the dependent channel is in the
running state.

8.1.15 IlResetRxTimeoutFlags

IlResetRxTimeoutFlags

Prototype

Single Channel

Single Receive Channel void IlResetRxTimeoutFlags (void)

Multi Channel

Indexed (MRC) void IlResetRxTimeoutFlags (CanChannelHandle

channel)

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

46 / 48

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Return code

void none

Functional Description

This method clears Rx timeout flags of the Application and internal ilNodeCommActiveTimeoutFlags.

- The flags used internal to indicate NCA timeout are cleared.

Particularities and Limitations

The function is called by the Application.

Caution

Do not call this Il internal API from the application!

Call context

The function can be called on task and interrupt level.

8.1.16 IlRequeueTransmitMessages

IlRequeueTransmitMessages

Prototype

Single Channel

Single Receive Channel void IlRequeueTransmitMessages (void)

Multi Channel

Indexed (MRC) void IlRequeueTransmitMessages (CanChannelHandle

channel)

Parameter

channel (Indexed) Handle of the logical CAN Driver channel.

Return code

void none

Functional Description

This method queues again all pending Tx messages and set a transmission request for these Tx
messages.

Particularities and Limitations

The function is called by Nm_Gmlan_Gm during a Busoff to queue again all Tx messages that are pended

for transmission to the CAN Driver. The transmit queue is cleared of the CAN Driver id cleared during a
bus-off. Therefore all issued messages must be retransmitted by the Il.

Call context

The function must be called on task level.

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

47 / 48

8.2 Interaction Layer Internal Interfaces

APIs which are not explicitly described in this or any other documentation for the usage

shall not be called from the application.

Caution
Do not use internal functions from within the application unless not explicitly required.

Technical Reference Interaction Layer for General Motors

2013, Vector Informatik GmbH Version: 2.01.02

based on template version 3.6

48 / 48

9 Contact

Visit our website for more information on

> News

> Products
> Demo software
> Support

> Training data
> Addresses

www.vector-informatik.com

	1 Document Information
	1.1 History
	1.2 Reference Documents

	2 Component History
	2.1 Il_Vector_Gm Version 1.00.00
	2.1.1 What is new?
	2.1.2 What has changed?

	2.2 Il_Vector_Gm Version 1.01.00
	2.2.1 What is new?
	2.2.2 What has changed?

	3 Functional Description
	3.1 Data Transmission
	3.1.1 Cyclic Transmission
	3.1.2 Event Based Transmission
	3.1.3 Mixed Transmission

	3.2 Signal Access
	3.3 Extended CAN Identifiers
	3.3.1 Source Learning
	3.3.2 Source Address Timeout Supervision

	3.4 Application Controlled Message Filter
	3.5 Clearing Flags on Deactivate VN

	4 Integration
	4.1 Include structure
	4.2 Initialization
	4.3 Cyclic function

	5 Configuration
	5.1 Database Attributes
	5.1.1 Send Type
	5.1.2 Default Values
	5.1.3 Tx NCA Message
	5.1.4 Timeout Supervision

	6 API Description
	6.1 Administrative functions
	6.1.1.1 IlInitPowerOn
	6.1.1.2 IlInit
	6.1.1.3 IlRxTask
	6.1.1.4 IlTxTask
	6.1.1.5 IlRxStateTask
	6.1.1.6 IlTxStateTask
	6.1.1.7 IlSetOwnNodeAddress

	6.2 Service functions
	6.2.1.1 IlSetEvent
	6.2.1.2 IlGetNodeCommActiveState
	6.2.1.3 IlSetRxMessageSourceAddress
	6.2.1.4 IlGetRxMessageSourceAddress
	6.2.1.5 IlSetRxMessageEnable
	6.2.1.6 IlSetTxMessageEnable
	6.2.1.7 IlGetTransmitMessageStatus

	6.3 Callback functions
	6.3.1 ApplIlSourceAddressLearned
	6.3.2 ApplIlRxMsgSrcAddressLearned
	6.3.3 ApplIlNodeCommActiveRecovery
	6.3.4 ApplIlNodeCommActiveFailed

	7 Abbreviations
	8 Appendix
	8.1 Nm_Gmlan_Gm Interface
	8.1.1 IlRxStart
	8.1.2 IlTxStart
	8.1.3 IlRxStop
	8.1.4 IlTxStop
	8.1.5 IlRxWait
	8.1.6 IlTxWait
	8.1.7 IlRxRelease
	8.1.8 IlTxRelease
	8.1.9 IlRxActivateVnMsg
	8.1.10 IlRxDeactivateVnMsg
	8.1.11 IlTxActivateVnMsg
	8.1.12 IlTxDeactivateVnMsg
	8.1.13 IlRxStartVnMsgSupervision
	8.1.14 IlRxDeactivateVnMsgSupervision
	8.1.15 IlResetRxTimeoutFlags
	8.1.16 IlRequeueTransmitMessages

	8.2 Interaction Layer Internal Interfaces

	9 Contact

