-
o
o
ﬁ\.
7
=
O
=
=
QO

RENESAS

AUTOSAR MCAL R4.0.3
User’s Manual

MCU Driver Component Ver.1.0.5
Embedded User’s Manual

Target Device:
RH850/P1x

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.0.01 Apr 2015

http://www.renesas.com/
http://www.renesas.com/

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is subject to
change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest
product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different
information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third
parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license,
express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and
information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third
parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control laws
and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products
or the technology described in this document for any purpose relating to military applications or use by the military, including but
not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or
incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign
laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does
not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by
you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and
"Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated
below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may
not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas
Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the
prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by
you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which
the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of
each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data
books, etc.

""Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti- crime
systems; safety equipment; and medical equipment not specifically designed for life support.

""Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages
arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas
Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against
the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a

Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control
and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of
each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations
that regulate the inclusion or use of controlled substances, including without limitation, the EURoHS Directive. Renesas Electronics
assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority- owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Abbreviations and Acronyms

Abbreviation / Acronym

Description

ADC

Analog to Digital Converter

ANSI American National Standards Institute
API Application Programming Interface
AUTOSAR AUTomotive Open System ARchitecture
CAN Controller Area Network

CVM Core Voltage Monitor

CLMA Clock Monitor

DEM/Dem Diagnostic Event Manager
DET/Det Development Error Tracer

DIO Digital Input Output

DMA Direct Memory Access

ECU Electronic Control Unit

EEPROM Electrically Erasable Programmable Read-Only Memory
ECM/Ecm Error Control Module

GNU GNU’s Not Unix

GPT General Purpose Timer

HW HardWare

ICU Input Capture Unit

ID/Id IDentifier

ISR Interrupt Service Routine

I/0 Input and Output

KB Kilo Byte

LIN Local Interconnect Network

MCAL Microcontroller Abstraction Layer
MCU/Mcu MicroController Unit

NA Not Applicable

NMI Non Maskable Interrupt

Mi Maskable Interrupt

0OS/Os Operating System

PWM Pulse Width Modulation

PLL Phase Locked Loop

RAM/Ram Random Access Memory

ROM Read Only Memory

RTE Run Time Environment

SPI Serial Peripheral Interface

SwW SoftWare

WDT WatchDog Timer

Definitions

Term Represented by

Sl. No. Serial Number

Table of Contents

Chapter 1 INErOdUCTION ..ceeic e 11
1.1. DOCUMENT OVEIVIEW ...eiiiiiiiiiieitiiee e ittt e e sttt e e sttt e e s bae e e e stte e e e s bbb e e e abbeeeesbbseeesnnbeeeesannbeeessnneeeas 13
Chapter 2 Reference DOCUMENTSoovviiiiiiiiecc e 15
Chapter 3 Integration and Build Processcccocvvveiiiiiiiicciineeennn. 17
3.1. MCU Driver Component MaKefil€.......ccoii i 17
Chapter 4 FOrethoughtS ... 19
4.1. (CT=T T - | PO PP PTPP PP 19
4.2. PreconditionS ... 19
4.3. DAt CONSISTEIMCY .iitiiiiiiiiie ettt ettt ettt e sttt e s bbb et e s bbbt e e s bbbt e e s bbb e e e e anbneeesnnnneeas 20
4.4, User Mode and SUPEIrVISOr MOGE.ciiiiiiiieiiiiie ittt e e 20
4.5. Deviation LiSt ... 21
4.6. RAM INitialiZatioNooooiiiiii 22
4.7. (O 1| Lo T L AN = DR PROPUR PPN 22
Chapter 5 Architecture Detailscccuiiiiiiiiiiiii e, 23
Chapter 6 Registers DetailS.........coooeviiiiiiiiici e, 25
Chapter 7 Interaction between the User and MCU Driver

Component 33
7.1. Services Provided By MCU Driver Component TO USEr.......cccccceviiiiiiiiiiiie e 33

Chapter 8 MCU Driver Component Header And Source File

Description 35
Chapter 9 Generation Tool Guide.........ccceiiviiiiiiiiii e, 37
Chapter 10 Application Programming Interfacecccccooeevvevvnnnnn.. 39
10.1. [g] o XoT g (=T I V4 0= PP 39
10.1.1. StANAAI TYPES -ttt e ettt e e e e et e e e e e e e e e e nbareeeeaaeeeaaan 39
10.1.2. Other MOAUIE TYPES ..ottt ettt e et e et ee e e sbreeaeans 39
10.2. TYPE DEIINITIONS ettt e e ettt et e e e e e s e bbb et e e e e e e e e annbnneeaaeens 39
10.2.1 MCU_CIOCKTYPE .ttt st e et e e e snbee e e e neee 39
10.2.2 MCU_RBWRESEITYPEeeeeeieeieieieeeieieiee et rennnnnnrnne 39
10.2.3 MCU_RAMSECHONTYPE ..eeeeiiiiiee ettt sttt e e e e e e neee 39
10.2.4 [o o 1] = L LS Y 01 R 40
10.2.5 oW I =T 0 1S] = L= 1Y/ 0L 40
10.2.6 IMCU_RESEITYPIE ..ttt ettt ettt s s st s st s st s b sbs s bnbnbnbnbnnes 40
10.2.7 MCU_ClIMAINAEXTYPE ..iiteiieeee ettt ettt et e e e s et e e e e e e e e e b e e e e e e e e e annneeees 41

10.3. O Yo (1o] o B =) AT A LA Lo] =TT 42

Chapter 11 Development And Production Errors..........cccceevevennnnen, 43
11.1. MCU Driver Component DeVelOpPMENT ErTOTrScoouiiiiiiiiieiieeee e 43
11.2. MCU Driver Component Production EITOrSccoiiiiiiiiiiieiiiie e 44

Chapter 12 Memory Organizationccccoeeeuiieeeiiiie e 45

Chapter 13 P1M Specific Informationcccoeeviiiiiiii i, 47
13.1. Interaction between the User and MCU Driver COMPONENTcocvviieiiiiiieiiiieee e 47

13.1.1. Translation Header Fle ..o 47

13.1.2. ISR FUNCHION ...ttt ettt e st e e e e e e neee 47

13.1.3. Parameter Definition File ... 48

13.2. S F= 0] o1 TSI A o o] L= 4 o Y o 48
13.2.1 Sample ApPlCAtiON SIFUCIUIEveiiiiiiiiee e 48

13.2.2 Building Sample APPIICALIONueiiiiiiiee e 50
13.2.2.1. Configuration EXampPle...........ccoiuiiiiiiiiiieiiiee e 50

13.2.2.2. Debugging the Sample Application............cccceeviiiieiiiiieee e 51

13.3. Memory and ThroUGNPULoov i 51
13.3.1. ROM/RAM USBQE.....ccieiiiiitiiieeie ettt ettt et e et e e e e e e s s aaab b e e e e e e e s annneeees 51

13.3.2. SEACK DEPLN . ————— 53

13.3.3. Throughput DetalilSccoooiee i 53
Chapter 14 Release Details........cccocovviiiiiiiiiiiiiiccieeeee e, 557

Figure 1-1
Figure 1-2
Figure 5-1
Figure 12-1
Figure 13-1

Table 4-1
Table 4-2
Table 6-1
Table 8-1
Table 10-1
Table 11-1
Table 11-2
Table 13-1
Table 13-2
Table 13-3
Table 13-4
Table 13-5

List of Figures

System Overview Of AUTOSAR ArchiteCtureccccceeeviiiciiiiieee e 11
System Overview Of The MCU Driver In AUTOSAR MCAL Layercccccceeevvennnen. 12
MCU DIIVEr ArCHILECIUIE ...ttt 23
MCU Driver Component Memory Organizationccccuveereeeesiisinnneeeeeeessssnenennns 45
Overview of MCU Driver Sample AppliCationeeeeiiiiiiiiiieieee i e e 48

List of Tables

Supervisor mode and User mode detailS............uuuiuiiimiiiiiiiiiiiiiiiiiinn. 21
MCU Driver DeViation LiST..........occueiiiiiiireiiieie e 21
LS55 (T D= 7= 25
Description of the MCU Driver Component Files ... 35
API Provided by MCU Driver COMPONENT.......cocuetieiiiiiie ittt e e 42
DET Errors of MCU Driver COMPONENT.......cuuuiiiiiiiiieiiiiiie ettt 43
DEM Errors of MCU Driver COMPONENT..........uiiiiiiiieiiiiie ettt e e 44
ISR FOr MCU ..o 48
PDF information fOr PIMoooiiiiiioiiiiee e 48
ROM/RAM Details WItNOUE DETuviiiiiiiiicesiie et 52
ROM/RAM Details With DETccueiiiiieiiiiiiie e 52
Throughput Details of the APIS ..., 53

10

Introduction Chapter 1

Chapter 1 Introduction

The purpose of this document is to describe the information related to
MCU Driver Component for Renesas P1x microcontrollers.

This document shall be used as reference by the users of MCU Driver
Component. The system overview of complete AUTOSAR architecture
is shown in the below Figure:

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

MCU Driver

Microcontroller

Figure 1-1 System Overview Of AUTOSAR Architecture

The MCU Driver is part of the Microcontroller Abstraction Layer (MCAL),
the lowest layer of Basic Software in the AUTOSAR environment.

11

Chapter 1

Introduction

The Figure in the following page depicts the MCU Driver as part of layered
AUTOSAR MCAL Layer:

Microcontroller Drivers

JaAuad NON

J|sAud 149
Januq Bopyorep

1S9 910D

Memory Drivers Communication Drivers 1/O Drivers
° 3
X = e
D ® > [%2]
< 3 D T n
35 = _
) =5 m Illc 0 o
0 = m) = > x
2 = g v 2 ||o Z B o) e
< % @ P |3]| 9 < Q s 35 913
— = > o = < 2 o B o)
@ ollz O||a < o O by
1} o 5 ES jol = E ollo o=
- = =] < S < = = =
< S = @ ol B || Z < o)
o) @ = = < < =
= = < = @ @ g Z
] - = @

12

wun

) =
SR

pEllok]
19Mmod N

Micro- o
g ol z 8 2 ws 2 5 | 2 g | 2
Controller ? 4 3 b} o} a = c 3 S 3

Figure 1-2

System Overview Of The MCU Driver In AUTOSAR MCAL Layer

The RTE provides the encapsulation of Hardware channels and basic
services to the Application Software Components. So it is possible to map the
Application Software-Components between different ECUs.

The Basic Software Modules are located below the RTE. The Basic Software
itself is divided into the subgroups: System Services, Memory,
Communication and I/O Hardware-Abstraction. The Complex Drivers are also
located below the RTE. Among others, the Operating System (OS), the
Watchdog manager and the Diagnostic services are located in the System
Services subgroup. The Memory subgroup contains modules to provide
access to the non-volatile memories, namely Flash and EEPROM. In the I/O
Hardware-Abstraction subgroup the whole MCU Driver Component is
provided.

On board Device Abstraction provides an interface to physical values for
AUTOSAR software components. It abstracts the physical origin of signals
(their paths to the hardware ports) and normalizes the signals with respect to
their physical appearance. The Microcontroller driver provides services for
basic microcontroller initialization, power down functionality, reset and
microcontroller specific functions required from the upper layers.

Introduction

Chapter 1

1.1.

Document Overview

The document has been segmented for easy reference. The table below
provides user with an overview of the contents of each section:

Section

Contents

Sectionl (Introduction)

This section provides an introduction and overview of MCU Driver
Component.

Section 2 (Reference Documents)

This section lists the documents referred for developing this document.

Section 3 (Integration And Build
Process)

This section explains the folder structure, Makefile structure for MCU
Driver Component. This section also explains about the Makefile
descriptions, Integration of MCU Driver Component with other
components, building the MCU Driver Component along with a sample
application.

Section 4 (Forethoughts)

This section provides brief information about the MCU Driver
Component, the preconditions that should be known to the user before
it is used, data consistency details and deviation list.

Section 5 (Architecture Details)

This section describes the layered architectural details of the MCU Driver
Component.

Section 6 (Registers Details)

This section describes the register details of MCU Driver Component.

Section 7 (Interaction between
The User And MCU Driver
Component)

This section describes interaction of the MCU Driver Component with
the upper layers.

Section 8 (MCU Driver
Component Header And Source
File Description)

This section provides information about the MCU Driver Component
source files is mentioned. This section also contains the brief note on
the tool generated output file.

Section 9 (Generation Tool Guide)

This section provides information on the MCU Driver Component Code
Generation Tool.

Section 10 (Application
Programming Interface)

This section explains all the APIs provided by the MCU Driver
Component.

Section 11 (Development And
Production Errors)

This section lists the DET and DEM errors.

Section 12 (Memory
Organization)

This section provides the typical memory organization, which must be
met for proper functioning of component.

Section 13 (P1M Specific
Information)

This section provides P1M specific information also the information
about linker compiler and sample application.

Section 14 (Release Details)

This section provides release details with version name and base
version.

13

Chapter 1 Introduction

14

Reference Documents Chapter 2
Chapter 2 Reference Documents
Sl. No. Title Version
1. AUTOSAR_SWS_MCUDriver.pdf 3.2.0
2. r01uh0436ej0070_rh850p1x.pdf 0.70
3. AUTOSAR_SWS_MemoryMapping.pdf 1.4.0
4. AUTOSAR_SWS_PlatformTypes.pdf 250
5. AUTOSAR_BSW_MakefileInterface.pdf 0.3
6. AUTOSAR_SWS_CompilerAbstraction.pdf 3.2.0
7. AUTOSAR BUGZILLA (http://www.autosar.org/bugzilla) -
Note: AUTOSAR BUGZILLA is a database, which contains concerns
raised against information present in AUTOSAR Specifications.

15

http://www.autosar.org/bugzilla

Chapter 2

Reference Documents

16

Integration And Build Process

Chapter 3

Chapter 3

Remark

3.1.

3.1.1.

Remark

Integration and Build Process

In this section the folder structure of the MCU Driver Component is explained.
Description of the Make files along with samples is provided in this section.

The details about the C Source and Header files that are generated by the
MCU Driver Generation Tool are mentioned in the Generation Tool User’s
Manual “AUTOSAR_MCU_Tool UserManual.pdf’.

MCU Driver Component Makefile

The Makefile provided with the MCU Driver Component consists of the GNU
Make compatible script to build the MCU Driver Component in case of any
change in the configuration. This can be used in the upper level Makefile (of
the application) to link and build the final application executable.

Folder Structure

The files are organized in the following folders:

Trailing slash ‘\" at the end indicates a folder
X1X\P1x\modules\mcu\src
\Mcu.c
\Mcu_Irg.c
\Mcu_Ram.c

\Mcu_Version.c

X1X\P1x\modules\mcu\include
\Mcu.h
\Mcu_Debug.h
\Mcu_Irg.h
\Mcu_PBTypes.h
\Mcu_Ram.h
\Mcu_Types.h

\Mcu_Version.h

X1X\P1x\modules\mcu\sample_application\<SubVariant>\make\<compiler>
\App_MCU_P1M_Sample.mak

X1X\P1x\modules\mcu\sample_application\<SubVariant>\obj\sComplier>

X1X\P1x\modules\mcu\generator
\Mcu_P1x.exe
\R403_MCU_P1x_BSWMDT.arxml

X1X\P1x\common_family\generator
\Global_Application_P1x.trxml
\Sample_Application_P21x.trxml
\P1x_translation.h

17

Chapter 3

Integration And Build Process

18

Note:

\Test_Application_P1x.trxml
X1X\P1x\modules\mculuser_manual

(User manuals will be available in this folder)

1. <Complier> can be ghs.
2. <AUTOSAR_version> should be 4.0.3.
3. <SubVariant> can be P1M.

Forethoughts

Chapter 4

Chapter 4

4.1.

4.2.

Forethoughts

General

Following information will aid the user to use the MCU Driver Component
software efficiently:

The MCU Driver does not enable or disable the ECU or Microcontroller
power supply. The upper layer should handle this operation.

The start-up code is ECU and MCU specific. MCU Driver does
not implement the start-up code.

MCU specific initializations such as reset registers, one time writable
registers, interrupt stack pointer, user stack pointer and MCU internal
watchdog, MCU specific features of internal memory and registers are not
implemented by MCU Driver. These initializations should be implemented
by the start-up code.

MCU Driver does not implement any call-back notification functions.
MCU Driver does not implement scheduled functions.
The MCU Driver component is implemented as a Post build variant.

MCU Driver depends on Scheduler and Wake-up source service Modules
for disabling all relevant interrupts to protect writing into the protected
registers and invoking the ECU state manager functions.

In P1x PLL clocks are not configurable and it cannot be controlled by
software. It works with default values after main oscillator activated.
Hence in P1x Mcu dirver code Mcu_DistributePIlIClock()and
Mcu_GetPIIStatus()API's none of the action are taken care except DET
errors.

The file Interrupt_VectorTable.c provided is just a Demo and not all
interrupts will be mapped in this file. So the user has to update the
Interrupt_VectorTable.c as per his configuration

Preconditions

Following preconditions have to be adhered by the user, for proper
functioning of the MCU Driver Component:

The Mcu_Cfg.h, Mcu_Cbk.h and Mcu_Reg.h files generated by the MCU
Driver component Code Generation Tool must be compiled and linked
along with MCU Driver component source files.

The application has to be rebuilt, if there is any change in the Mcu_Cfg.h file
generated by the MCU Driver component Generation Tool.

File Mcu_PBcfg.c generated for single configuration set or multiple
configuration sets using MCU Driver component Generation Tool can
be compiled and linked independently.

The authorization of the user for calling the software triggering of a
hardware reset is not checked in the MCU Driver. This is the responsibility
of the upper layer.

The MCU Driver component needs to be initialized before accepting
any request. The APl Mcu_Init should be called by the ECU State
Manager Module to initialize MCU Driver Component.

19

Chapter 4

Forethoughts

20

4.3.

4.4,

The user should ensure that MCU Driver component API requests
are invoked in the correct and expected sequence and with correct
input arguments.

» Input parameters are validated only when the static configuration
parameter MCU_DEV_ERROR_DETECT is enabled. Application should
ensure that the right parameters are passed while invoking the APIs when
MCU_DEV_ERROR_DETECT is disabled.

* There are different clock settings possible. For more details, please refer
the respective device specific component user manual.

+ If the handle of clock setting passed to the APl Mcu_lInitClock is not
configured to any one of the supported clock settings, then the
Development Error Detection function is invoked if the static configuration
parameter MCU_DEV_ERROR_DETECT is enabled.

* The MCU Driver initializes the clock generator as per the required
configuration settings and provides the configured clock sources for the
peripherals as applicable. It is the responsibility of the individual drivers to
select and initialize the respective driver specific registers as required for
their functionality with reference to the clock source provided by the MCU
Driver.

» The API Mcu_InitClock is implemented considering its invocation at run
time. Hence, there is a possibility of change in the baud rate set by the
peripheral drivers if the clock setting is different. Hence, the initialization of
the respective drivers after the invocation of Mcu_InitClock, is the
responsibility of the user of MCU Driver services.

* A mismatch in the version numbers of header and the source files results
in compilation error. User should ensure that the correct versions of the
header and the source files are used.

Data Consistency

To support the re-entrance and interrupt services, the MCU Driver will ensure
the data consistency while accessing its own RAM storage or hardware
registers or to prevent any interrupts between the two write instructions of the
write protected register and the corresponding write enable register.

The MCU Driver will use SchM_Enter_Mcu_<Exclusive Area> and
SchM_Exit_Mcu_<Exclusive Area> functions.

The SchM_Enter_Mcu_<Exclusive Area> function is called before the data
needs to be protected and SchM_Exit Mcu_<Exclusive Area> function is
called after the data is accessed.

The flowchart will indicate the flow with the precompile option
“McuCriticalSectionProtection” enabled.

The following exclusive area along with scheduler services is used to provide
data integrity for shared resources:

REG_DATA PROTECTION

The functions SchM_Enter_Mcu_<Exclusive Area> and SchM_Exit_Mcu
_<Exclusive Area> can be disabled by disabling the configuration parameter
‘McuCriticalSectionProtection’.

User Mode and Supervisor Mode

The below table specifies the APIs which can run in user mode, supervisor

Forethoughts Chapter 4
mode or both modes
Table 4-1 Supervisor mode and User mode details
SI.No. API Name User Mode| Supervisor| Known limitation in User
Mode mode
1. Mcu_Init - X 1. The enabling of the
interrupt will not be
possible.
2. Critical section protection
cannot be enabled
2. Mcu_InitRamSection X X Critical section protection
cannot be enabled
3. Mcu_InitClock X X -
4, Mcu_DistributePlIClock X X -
5. Mcu_GetPllIStatus X X -
6. Mcu_GetResetReason X X -
7. Mcu_GetResetRawValue X X -
8. Mcu_PerformReset X X -
9. Mcu_SetMode X X -
10. Mcu_GetRamState X X Critical section protection
cannot be enabled
11. Mcu_LockStepSelfDiagnosticTest X X Critical section protection
cannot be enabled
12. Mcu_CvmSelfDiagnosticTest X X -
13. Mcu_ClmaSelfDiagnosticTest X X -
14, Mcu_EcmSelfDiagnosticTest X X Critical section protection
cannot be enabled
15. Mcu_SaveResetReason X X Critical section protection
cannot be enabled
4.5. Deviation List
Table 4-2 MCU Driver Deviation List
Sl. No. Description AUTOSAR Bugzilla / Mantis
1. The parameter McuResetSetting from the -
sub-container McuModuleConfiguration is
not considered.
2. The MCU Driver considers the parameters of -

RAM section configuration as pre-compile
parameters, since the number of RAM settings
are not known and hence the generation of
handles is not possible at post-build-time.

21

Chapter 4

Forethoughts

22

Sl. No.

Description

AUTOSAR Bugzilla / Mantis

3.

The sub-container McuClockReferencePoint in
the Clock setting configuration is not used as
the reference frequencies specific to various
peripheral devices need to be published by
MCU Driver component.

The parameter McuClockSettingld range in
McuClockSettingConfig container is changed
from “1 to 255” to “0 to 255" since 0 is valid
minimum value for clock setting ID.

54536

If an invalid database is passed as a
parameter to API Mcu_Init, DET Error code
MCU_E_INVALID_DATABASE is reported to
DET.

The Mcu_GetVersioninfo API is
implemented as macro without DET error
MCU_E_PARAM_POINTER.

4.6. RAM Initialization
RAM initialization done by an API call to Mcu_InitRamSection must not
overwrite other memory sections of static variables. A dedicated memory
section shall be defined in linker directive file.

4.7. Callout API

The MCU_RESET_CALLOUT() APl is the call out API from the Mcu
module which will be called by Mcu_PerformReset() API for the software
reset when configuration parameter McuSwResetCall Api is true. This
callout API needs to be filled by user to do the software reset. If the
configuration parameter McuSwResetCall Api is false, the callout shall not
be available and the software reset shall be handled by the MCU itself

using HW feature of the SW reset.

Architecture Details Chapter 5

Chapter 5 Architecture Details

The MCU Driver architecture is shown in the following figure. The MCU user
shall directly use the APIs to configure and execute the MCU conversions:

Application Software (MCU user)

MCU Driver

On-Chip Registers

On-Chip Hardware

Figure 5-1 MCU Driver Architecture

The MCU driver accesses the microcontroller hardware directly and is located
in the MCAL. MCU component provides the functionalities related to PLL
Initialization, Clock Initialization and Distribution, RAM sections Initialization,
PreScaler Initialization, MCU reduced Power Modes Activation and MCU
Reset Activation and Reason.

The component consists of the following sub modules based on the
functionality:

* [Initialization

+ Self-Diagnostic test for ECM, CVM, Clock Monitor and Lock Step.
» Clock Initialization

* RAM sections Initialization and Status Verification

+ MCU Reset Activation and Reason

« Version Information

Initialization

This sub module provides the structures and APIs for both global and
controller specific initialization. MCU specific initialization is necessary in
order to ensure different startup behaviors of the microcontroller. This sub

23

Chapter 5

Architecture Details

24

module also checks if the data base is flashed.

Self-Diagnostic test for ECM, CVM, Clock Monitor and Lock Step

This functionality is provided as part MCU module initialization.
Self-diagnostic test for ECM error source is helpful to check the ECM error
output signal by creating the real ECM error signal.

Self-diagnostic test for CVM and CLMA is possible in real scenario.

Clock Initialization

The clock initialization sub module provides the functionality for generating all
the required clock signals for microcontroller operation from any one of the
available sources. It enables the provision for individual clock source
selection for CPU and groups of peripherals.

This sub module also provides the functionality for obtaining various
frequencies required for individual peripheral devices.

For available clock sources, please refer to the respective device specific
component user manual.

RAM sections Initialization and Status Verification
This sub module provides the functionality for initializing the RAM with the any
given value, at the selected blocks of the RAM and to verify the status of RAM.

MCU Reset Activation and Reason

The microcontroller reset activation will be performed by forcing a software
reset. This functionality will be done by using software reset register. ECM
error sources can also be configured for internal reset so that if any error
occurs device will activate reset.

To provide the reset reason, this sub module captures the information
available with RESF — Reset factor register. This register contains
information.

Version Information

This module provides APIs for reading Module Id, Vendor Id and vendor
specific version numbers.

Registers Details

Chapter 6

Chapter 6

Registers Details

This section describes the register details of MCU Driver Component.

Table 6-1 Register Details
Regist
er
API Name Registers Used | Access | Config Parameter Macro/Variable
8/16/
32 bits
(LpEcmSetting-
>ulEcminternalResetReg
ECMIRCFGO 32 Ovalue & BAEU—IRCFGOJNIT—VAL
(~MCU_RAM_MASKO0_V
ALUE))
LVICNT 32 LulLVICntValue MCU_LVI_MASK
EROTlPHCM 32 - MCU_WRITE_DATA
PROT1PS 32 - -
ECMMICFGO 8 LucDataByte -
HH
ECMNMICFG
OHH 8 LucDataByte -
ECMIRCFGO 8 LucDataByte -
HH
ECMMECLR 8 - MCU_ONE
ECMMPCMD 32 - MCU_WRITE_DATA
. 0 - -
Mcu_Init
ECMCECLR 8 - MCU_ONE
ECMCPCMDO 32 - MCU_WRITE_DATA
ECMESSTCO 32 LulEcmStatusData -
CVMDEW 8 LucCVMCntValue -
l\P/IROTCMDCV 32 - MCU_WRITE_DATA
PROTSCVM 32 - -
MCU_ECM_ERROUT_TI
ECMEPCTL 8 - MER
ECMPCMD1 32 - MCU_WRITE_DATA
ECMPS 8 - -
EIBDS 32) MCU_EIBD08_CPU1_VAL

UE

25

Chapter 6

Register Details

Regist
er
API Name Registers Used | Access | Config Parameter Macro/Variable
8/16/
32 bits
MCU_ENABLE_TABLE_|
EiCBL 8) NTERRUPT
MCU_ECMEMKO_FULL_
ECMEMKO 32 - MASK
MCU_ECMEMK1_FULL_
ECMEMK1 32 - MASK
ECMEPCEG 8) MCU_ECM_ERROUT_MO
DE
((LpEcmSetting-
>ulEcmMaskinterRegOva
lue &
ECMMICFGO 32 (~-MCU_RAM_MASKO_V -
ALUE)) |
MCU_IRCFGO_INIT_VA
LUE)
(LpEcmSetting-
>ulEcmMaskinterReglva
ECMMICFG1 32 lue & -
(~MCU_RAM_MASK1_V
ALUE))
(LpEcmSetting-
ECMNMICEG >ulEcmNonMaskInterRe
0 32 gOvalue & -
(~MCU_RAM_MASKO_V
ALUE))
(LpEcmSetting-
ECMNMICEG >ulEcmNonMaskInterRe
1 32 glvalue & -
(~MCU_RAM_MASK1_V
ALUE))
(LpEcmSetting-
>ulEcminternalResetReg
ECMIRCFG1 32 lvalue & -
(~MCU_RAM_MASK1_V
ALUE))
MCU_ECM_DELY_TIMER
ECMDTMCTL 8 - STOP
ECMDTMCM 16) MCU_ECM_DLYTIMER_V
P ALUE
LpEcmSetting-
>ulEcmDelayTimerReg0
Value, LpEcmSetting-
>ulEcmDelayTimerRegl
ECMDTMCFG 32 Value, LpEcmSetting- -
>ulEcmDelayTimerReg2
Value, LpEcmSetting-
>ulEcmDelayTimerReg3
Value
ECMMESSTR MCU_RAM_MASKO_VAL
0 32 i UE
Mcu_InitRamS
ection
ECMESSTCO 32 i MCU_RAM_MASKO_VAL

UE

26

Registers Details

Chapter 6

Regist
er
API Name Registers Used | Access | Config Parameter Macro/Variable
8/16/
32 bits
ECMMESSTR MCU_RAM_MASK1_VAL
32 - - -
1 UE
ECMESSTCL 32 . I\U/IEU_RAM_MASKl_VAL
ECMPCMD1 32 - MCU_WRITE_DATA
ECMPS 8 - -
LpEcmSetting-
ECMMICFGO 32 >ulEcmMaskinterRegOva -
lue
LpEcmSetting-
ECMMICFG1 32 >ulEcmMaskinterReglva -
lue
LpEcmSetting-
ECMNWCFG 32 >ulEcmNonMaskinterRe -
gOvalue
LpEcmSetting-
ECMNMICFG 32 >ulEcmNonMaskinterRe -
glvalue
LpEcmSetting-
ECMIRCFGO 32 >ulEcminternalResetReg -
Ovalue
LpEcmSetting-
ECMIRCFG1 32 >ulEcminternalResetReg -
lvalue
LpEcmSetting-
ECMEMKO 32 >ulEcmErrorMaskReg0OV -
alue
LpEcmSetting-
ECMEMK1 32 >ulEcmErrorMaskReg1lV --
alue
EROTlPHCM 32 - MCU_WRITE_DATA
PROT1PS 32 - -
Mcu_GpConfigPtr- i
CLMAOCMPH 16 >usCLMAOCMPH
Mcu_GpConfigPtr-
CLMAOCMPL 16 >usCLMAOCMPL ;
Mcu_InitClock CLMAOPCMD 8 - MCU_WRITE_DATA
CLMAOPS 8 - -
CLMAOCTLO 8 - MCU_ONE
Mcu_GpConfigPtr-
CLMAICMPH 16 >usCLMALCMPH -
Mcu_GpConfigPtr-
CLMA1CMPL 16 SUSCLMALCMPL -

27

Chapter 6

Register Details

Regist
er
API Name Registers Used | Access | Config Parameter Macro/Variable
8/16/
32 bits
CLMA1PCMD 8 - MCU_WRITE_DATA
CLMA1PS 8 - -
CLMALCTLO 8 - MCU_ONE
Mcu_GpConfigPtr-
CLMAZCMPH 16 >usCLMA2CMPH i
Mcu_GpConfigPtr- i
CLMAZCMPL 16 >usCLMA2CMPL
CLMA2PCMD 8 - MCU_WRITE_DATA
CLMA2PS 8 - -
CLMA2CTLO 8 - MCU_ONE
Mcu_GpConfigPtr- i
CLMA3CMPH 16| SusCLMA3CMPH
Mcu_GpConfigPtr-
CLMASCMPL 161 susCLmascmpL)
CLMA3PCMD 8 - MCU_WRITE_DATA
CLMA3PS 8 - -
CLMA3CTLO 8 - MCU_ONE
Mcu_Distribute |)) }
PliIClock
Mcu_GetPlISta | } } }
tus
Mcu_GetReset | }))
Reason
Mcu_GetReset |)))
RawValue
SWRESA 32) MCU_RES_CORRECT_V
AL
Mcu_PerformR | PROT1PHCM 32 ; MCU_WRITE_DATA
eset D - -
PROT1PS 32 - -
Mcu_SetMode - - - -
Mcu_GetRamS |)) }
tate
Mcu_CvmSelf MCU_TWELVE,
DiagnosticTest CVMDIAG 8) MCU_ZERO

28

6

Registers Details Chapter
Regist
er
API Name Registers Used | Access | Config Parameter Macro/Variable
8/16/
32 bits
MCU_CVM_FACTOR_CL
CVMFC 8 - EAR
MCU_CVM_FACTOR_CL
CVMF 8 - EAR
CVMDMASK 8 - MCU_ONE, MCU_ZERO
I'\DAROTCMDCV 32 - MCU_WRITE_DATA
PROTSCVM 32 - -
CLMATESTS 32 - -
CLMATEST 32 LulClmaXTestValue -
Mcu_ClmasSelf
DiagnosticTest
J EROTlPHCM 32 - MCU_WRITE_DATA
PROT1PS 32 - -
LpEcmSetting-
ECMEMKO 32 >ulEcmErrorMaskReg0OV -
alue
§CMMESSTR 32 LulEcmPseudoData -
ECMCESSTR 32 LulEcmPseudoData -
LpEcmSetting-
ECMEMK1 32 >ulEcmErrorMaskReglV -
alue
ECMMESSTR 32 LulEcmPseudoData MCU_ERROROUT_STAT
1 us
ECMCESSTR 32 LulEcmPseudoData EJ/ISCU_ERROROUT_STAT
Mcu_EcmSelf
DiagnosticTest | ECMESSTC1 32 LulEcmPseudoData -
ECMEMKOHH 8) MCU_ECMO029 MASK_VA
LUE
ECMMICFGO 8 i (~MCU_ECMO029_MASK _
HH VALUE)
ECMNMICFG 8 . (~MCU_ECMO029_MASK _
OHH VALUE)
ECMIRCFGO 8 i (~MCU_ECMO029_MASK _
HH VALUE)
ECMMECLR 8 - MCU_ONE
5CMMPCMD 32 - MCU_WRITE_DATA

29

Chapter 6 Register Details

Regist
er
API Name Registers Used | Access | Config Parameter Macro/Variable
8/16/
32 bits

ECMCECLR 8 - MCU_ONE

ECMCPCMDO 32 - MCU_WRITE_DATA

(MCU_ECM029_MASK_V
ECMESSTCO 32 LulEcmPseudoData ALUE <<
MCU_TWENTYFOUR)

ECMPCMD1 32 - MCU_WRITE_DATA
ECMPEO 32 LulEcmPseudoData -
ECMPE1 32 LulEcmPseudoData -
ECMPS 8 - -
TESTCOMPR 32) (~MCU_LOCKSTEP_DUM
EG1 MY_VALUE)
TESTCOMPR 32) MCU_LOCKSTEP_DUMM
EGO Y_VALUE
ECMMESSTR
Mcu_LockStep 0 32 B MCU_TWO
SelfDiagnostic
Test ECMESSTCO 32 - MCU_TWO
ECMPCMD1 32 - MCU_WRITE_DATA
ECMPS 8 - -
POF 32 - MCU_POF_RST
POFC 32 - MCU_POF_CLEAR
Mcu_GpEcmSetting-
ECMMESSTR 32 >ulEcminternalResetReg -
Ovalue
Mcu_GpEcmSetting-
ECMMESSTR 32 >ulEcminternalResetReg -
lvalue
Mcu_SaveRes
etReason ECMESSTCO 32 LulEcmStatusData0 -
ECMESSTC1 32 LulEcmStatusDatal -
ECMPCMD1 32 - MCU_WRITE_DATA
ECMPS 8 - -
RESF 32 - MCU_ZERO

30

Registers Details

Chapter 6

APl Name

Regist
er
Registers Used | Access | Config Parameter
8/16/
32 bits

Macro/Variable

RESFC 32 -

MCU_RESF_CLEAR

31

Chapter 6

Register Details

32

Interaction Between The User And MCU Driver Component Chapter 7

Chapter 7

7.1.

Interaction between the User and MCU
Driver Component

The details of the services supported by the MCU Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

Services Provided By MCU Driver Component To
User

The MCU Driver Component provides the following functions to upper layers,
if supported by hardware:

To Perform the Self diagnostic test for the ECM, CVM, Clock Monitor and
Lock step.

+ Toinitialize the RAM and to verify the status, section wise.
+ Toinitialize the MCU specific clock options.

+ To activate the specific clock to the MCU clock distribution.
* To read the reset type from the hardware.

» To perform the micro controller reset.

» To read the MCU Driver component version information.

33

Chapter 7

Interaction Between The User And MCU Driver Component

34

MCU Driver Component Header And Source File Description Chapter 8

Chapter 8 MCU Driver Component Header And

Source File Description

This section explains the MCU Driver Component’s C Source and C Header
files. These files have to be included in the project application while
integrating with other modules.

The C header file generated by MCU Driver Generation Tool:

* Mcu_Cfg.h
* Mcu_Reg.h
* Mecu_Cbk.h

The C source file generated by MCU Driver Generation Tool:
* Mcu_PBcfg.c

The MCU Driver Component C header files:

* Mcu.h

* Mcu_Debug.h

e Mcu_lIrg

* Mcu_PBTypes.h
* Mcu_Ram.h

* Mcu_Types.h
* Mcu_Version.h

The MCU Driver Component source files:

* Mcu.c

* Mcu_lrg.c

e Mcu_Ram.c

* Mcu_Version.c

The mcu specific C header files:

+ Compiler.h

* Compiler_Cfg.h

« MemMap.h

* Platform_Types.h

* rh850_Types.h

The description of the MCU Driver Component files is provided in the table
below:

Table 8-1 Description of the MCU Driver Component Files

File Details

Mcu_Cfg.h This file is generated by the MCU Driver Module Code
Generation Tool for MCU Driver Module pre-compile time
parameters. The macros and the parameters generated will
vary with respect to the configuration in the input ARXML file.

Mcu_Reg.h This file contains the definitions for addresses of the hardware
registers used in the MCU Driver Module.

Mcu_Cbk.h This file contains the extern declaration of call back functions
used in the MCU Driver Module.

35

Chapter 8

MCU Driver Component Header And Source File Description

36

File

Details

Mcu_PBcfg.c

This file contains post-build configuration data. The structures
related to MCU Initialization, clock and power mode setting are
provided in this file. Data structures will vary with respect to
parameters configured.

Mcu.h

This file provides extern declarations for all the MCU Driver
Module APIs. This file provides service Ids of APIs, DET Error
codes and type definitions for MCU Driver initialization
structure. This header file shall be included in other modules to
use the features of MCU Driver Module.

Mcu_lIrqg.h

This file contains the ISR functions prototypes of the MCU
Driver Module.

Mcu_Types.h

This file provides data structure and type definitions for
initialization of MCU Diriver.

Mcu_PBTypes.h

This file contains the macros used for the post build time
parameters.

Mcu_Ram.h

This file contains the extern declarations for the global variables
that are defined in Mcu_Ram.c file and the version information
of the file.

Mcu_Version.h

This file contains the macros of AUTOSAR version numbers of
all modules that are interfaced to MCU.

Mcu_Debug.h This file provides Provision of global variables for debugging
purpose.

Mcu.c This file contains the implementation of all MCU Driver Module
APIs.

Mcu_Irg.c This file contains the ISR functions of the MCU Driver Module.

Mcu_Ram.c This file contains the global variables used by MCU Driver

Module.

Mcu_Version.c

This file contains the code for checking version of all modules
that are interfaced to MCU.

Compiler.h

Provides compiler specific (non-ANSI) keywords. All mappings
of keywords, which are not standardized, and/or compiler
specific are placed and organized in this compiler specific
header.

Compiler_Cfg.h

This file contains the memory and pointer classes.

MemMap.h

This file allows mapping of variables, constants and code of
modules to individual memory sections. Memory mapping can
be modified as per ECU specific needs.

Platform_Types.h

This file provides provision for defining platform and compiler
dependent types.

rh850_Types.h

This file provides macros to perform supervisor mode (SV) write
enabled Register ICxxx and IMR register writing using
OR/AND/Direct operation

Generation Tool Guide

Chapter 9

Chapter 9

Generation Tool Guide

For more information on the MCU Driver Component Generation Tool, please
refer “AUTOSAR_MCU_Tool_UserManual.pdf”.

37

Chapter 9

Generation Tool Guide

38

Application Programming Interface Chapter 10

Chapter 10 Application Programming Interface

This section explains the Data types and APIs provided by the MCU Driver

10.1.

10.1.1.

10.1.2.

10.2.

10.2.1

Component to the Upper layers.

Imported Types

This section explains the Data types imported by the MCU Driver Component

and lists its dependency on other modules.
Standard Types

In this section all types included from the Std_Types.h are listed:
+ Std_ReturnType
+ Std_VersioninfoType

Other Module Types

In this chapter all types included from the Dem.h are listed:
+ Dem_EventldType
+ Dem_EventStatusType

Type Definitions

This section explains the type definitions of MCU Driver Component
according to AUTOSAR Specification.

For more type definitions refer the SWS of MCU driver as mentioned in

chapter 2.
Mcu ClockType

Name:

Mcu_ClockType

Type:

uint8

Range:

1to2

Description:

Type definition for Mcu_ClockType used by the APl Mcu_InitClock.

10.2.2

Mcu RawResetType

Name:

Mcu_RawResetType

Type:

uint32

Range:

0 to 4294967295

Description:

Type definition for Mcu_RawResetType used by the API Mcu_GetResetRawValue.

Note:

10.2.3

Mcu_GetResetRawValue API is returning the RESF register status.

Mcu RamSectionType

Name:

Mcu_RamSectionType

Type:

uint8

Range:

0 to 255

Description:

Type definition for Mcu_RamSectionType used by the APl Mcu_InitRamSection.

39

Chapter 10 Application Programming Interface

10.2.4 Mcu_ PlIStatusTypes

Name: Mcu_PIIStatusType
Type: Enumeration
MCU_PLL_LOCKED PLL is locked
R MCU_PLL_UNLOCKED PLL is unlocked.
MCU_PLL_STATUS_UNDEFINED PLL status is unknown
Description: Status value returned by the API Mcu_GetPlIStatus.

Note: As per CPU manual Mcu_GetPlIStatus API is not supporting the PLL clock implementation.
Hence Mcu_GetPlIStatus is returning always MCU_PLL_LOCKED Status.

10.2.5 Mcu_RamStateType
Following are the type definitions which are specific to R4.0 used by the MCU
Driver module:

Name: Mcu_RamStateType
Type: Enumeration
' MCU_RAMSTATE_INVALID| RAM State is valid.
AELE MCU_RAMSTATE_VALID | RAM State is invalid.
Description: Status value returned by the APl Mcu_GetRamState
10.2.6 Mcu_ResetType
Name: Mcu_ResetType
Type: Enumeration
Range: MCU_POWER_ON_CLEAR_RST
MCU_PIN_RST
MCU_SW_RST

MCU_WDT_RST
MCU_LOCK_STEP_CORE_RST
MCU_CLMAO_UPPER_LIMIT_RST
MCU_CLMAO_LOWER_LIMIT_RST
MCU_CLMA2_UPPER_LIMIT _RST
MCU_CLMA2_LOWER_LIMIT_RST
MCU_CLMA1_UPPER_LIMIT RST
MCU_CLMA1_LOWER_LIMIT_RST
MCU_CLMA3_UPPER_LIMIT_RST
MCU_CLMA3_LOWER_LIMIT _RST
MCU_LRAM_ECC2_ADDPTY_RST
MCU_GRAM_ECC2_ADDPTY_RST
MCU_CASHE_RAM_ECC2_RST
MCU_CFLH_ECC2_ADDPTY_RST
MCU_DATA_FLSH_ECC2_RST
MCU_DTS_RAM_ECC2_RST
MCU_CSIH_RAM_ECC2_RST
MCU_CAN_RAM_ECC2_RST
MCU_FLXR_RAM_ECC2_RST
MCU_MODEO_RST

40

Application Programming Interface

Chapter 10

MCU_MODE1_RST

MCU_MODE2_RST

MCU_PEGUARD_RST

MCU_GRAM_GUARD_RST

MCU_PBUSGUARD_RST

MCU_SAR_ADC_PTY_RST

MCU_DATA_PRTY_RST

MCU_ECM_COMP_RST

MCU_LVI_RST

MCU_TEMP_SENSE_RST

MCU_DMA_TRANSF_RST

MCU_DMA_REG_PROTECT RST

MCU_LRAM_ECC1_PTY_RST

MCU_GRAM_ECC1_RST

MCU_CFLH_ECC1_RST

MCU_DATA_FLSH_ECC1_RST

MCU_DTS_RAM_ECC1_RST

MCU_ALL_PERI_RAM_ECC1_RST

MCU_BIST_ECC1_RST

MCU_BIST_ECC2_RST

MCU_FACI_TRANSF_RST

MCU_ECM_DELY_OVRFLW_RST

MCU_RESET_UNDEFINED

MCU_RESET_UNKNOWN

Description:

Type of reset supported by the hardware

Note:

1. AllRAM related ECM error sources are enabled for maskable interrupts only after Ram
initialization.
2. User should configure only one ECM event for each ECM error source at a time priority
level for the ECM event should be as follow:

¢ Internal Reset
e Maskable Interrupt

e Non Maskable Interrupt

10.2.7 Mcu_ClmalndexType

Name: Mcu_ClmalndexType
Type: Enumeration
MCU_CLMAO CLMAO
Range:
MCU_CLMA1 CLMA1
MCU_CLMA2 CLMA2
MCU_CLMA3 CLMA3
Description: Variable of this type is used to pass in Mcu_ClmaSelfDiagnosticTest API

41

Chapter 10

Application Programming Interface

42

10.2.8 Mcu_ModeType

Name: Mcu_ModeType

Type: uint8

Range: Oto2

Description: Type definition for Mcu_ModeType used by the APl Mcu_SetMode.

Note: As per CPU Manual Mcu_SetMode API is not supporting for any standby mode.
Hence the Mcu_ModeType parameter is unused for P1x MCU module implementation.

10.3. Function Definitions

Table 10-1 API Provided by MCU Driver Component

SI. No

API’'s name

Mcu_Init

Mcu_InitRamSection

Mcu_InitClock

Mcu_DistributePlIClock

Mcu_GetPlIStatus

Mcu_GetResetReason

Mcu_GetResetRawValue

Mcu_PerformReset

Ol Nl W N F

Mcu_SetMode

[EnY
©

Mcu_GetRamState

=
=

Mcu_LockStepSelfDiagnosticTest

=
N

Mcu_CvmSelfDiagnosticTest

[EnY
w

Mcu_ClmaSelfDiagnosticTest

[EnY
&

Mcu_EcmSelfDiagnosticTest

=
o1

Mcu_SaveResetReason

Development And Production Errors Chapter 11

Chapter 11 Development And Production Errors

In this section the development errors that are reported by the MCU Driver
Component are tabulated. The development errors will be reported only when
the pre-compiler option McuDevErrorDetect is enabled in the configuration.
The production code errors are not supported by MCU Driver Component.

11.1. MCU Driver Component Development Errors

The following table contains the DET errors that are reported by MCU Driver
Component. These errors are reported to Development Error Tracer Module
when the MCU Driver Component APIs are invoked with wrong input
parameters or without initialization of the driver.

Table 11-1 DET Errors of MCU Driver Component

Sl. No. 1

Error Code MCU_E_PARAM_CONFIG

Related API(s) Mcu_Init

Source of Error When the API service is called without module initialization.

Sl. No. 2

Error Code MCU_E_PARAM_CLOCK

Related API(s) Mcu_InitClock

Source of Error When Clock Setting is not within the settings defined in the configuration data
structure.

Sl. No. 3

Error Code MCU_E_PARAM_RAMSECTION

Related API(s) Mcu_InitRamSection

Source of Error When RamSection is not within the sections defined in the configuration data structure.

Sl. No. 4

Error Code MCU_E_PLL_NOT_LOCKED

Related API(s) Mcu_DistributePIlIClock

Source of Error When PLL is not locked.

Sl. No. 5

Error Code MCU_E_UNINIT

Related API(s) Mcu_InitRamSection, Mcu_InitClock, Mcu_DistributePlIClock, Mcu_GetPlIStatus,
Mcu_GetResetReason, Mcu_GetResetRawValue, Mcu_PerformReset,
Mcu_SetMode, Mcu_GetRamState

Source of Error When the APIs are invoked without the initialization of the MCU Driver Component.

Sl. No. 6

Error Code MCU_E_INVALID_DATABASE

Related API(s) Mcu_Init

Source of Error When the API is invoked with no database.

Sl. No. 7

Error Code MCU_E_PARAM_MODE

Related API(s) Mcu_SetMode

Source of Error When the API is invoked with invalid MCU mode.

43

Chapter 11

Development And Production Errors

11.2.

Table 11-2

MCU Driver Component Production Errors

In this section the DEM errors identified in the MCU Driver component are
listed. MCU Driver component reports these errors to DEM by invoking

Dem_ReportErrorStatus API. This APl is invoked, when the processing of the

given API request fails.

DEM Errors of MCU Driver Component

Sl. No.

1

Error Code

MCU_E_CLOCK_FAILURE

Related API(s)

Mcu_InitClock

Source of Error

When there is failure of the monitored clock frequency.

Sl. No.

2

Error Code

MCU_E_WRITE_TIMEOUT_FAILURE

Related API(s)

Mcu_PerformReset, Mcu_ProtectedWrite

Source of Error

When writing to a write-protected register fails

Sl. No.

3

Error Code

MCU_E_CVM_SELFDIAG_FAILURE

Related API(s)

Mcu_CvmSelfDiagnosticTest

Source of Error

When there is failure CVM self-diagnostic test.

Sl. No.

4

Error Code

MCU_E_CLM_SELFDIAG_FAILURE

Related API(s)

Mcu_ClmaSelfDiagnosticTest

Source of Error

When there is failure CLMA self-diagnostic test.

Sl. No.

5

Error Code

MCU_E_ECM_SELFDIAG_FAILURE

Related API(s)

Mcu_EcmSelfDiagnosticTest

Source of Error

When there is failure ECM self-diagnostic test.

44

Memory Organization

Chapter 12

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be met
for proper functioning of MCU Driver Component software.

ROM Section

MCU Driver Component
Library / Object Files

RAM Section

MCU Driver code related to APIs is placed in
this memory.

Segment Name:
MCU PUBLIC CODE ROM

X1

MCU Driver code related to internal
functions are placed in this memory

Segment Name:
MCU_PRIVATE_CODE_ROM

MCU Driver code related to ISR functions are
are placed in this memory

Segment Name:
MCU_START_SEC_CODE_FAST

X3

¢

S

Global RAM of unspecific size required for
MCU driver functioning.

Segment Name:
NOINIT RAM UNSPECIFIED

Global 8-bit RAM initialized by MCU Diriver.

Segment Name:
NOINIT_RAM_8BIT

Global 8-bit RAM to be initialized by start-
up code

Segment Name:
RAM_8BIT

Tool Generated Files

The const section (for MCU configuration
structure of type “Mcu_ConfigType”) in the file
Mcu_PBcfg.c is placed in this memaory.

Segment Name:
MCU_CFG_DBTOC_UNSPECIFIED

X4

The const section (other than
MCU Configuration structure) in the file
Mcu_PBcfg.c is placed in this memory.

Segmentname:

MCU_CFG_DATA_UNSPECIFIED

The const section in the file Mcu_Pbcfg.c is
placed in this memory

Segment Name:
CONST_ROM_UNSPECIFIED

X6

Y1

!

Y3

¢

Global RAM of unspecific size required for
MCU Driver functioning. The Generation tool
allocates this RAM.

Segment Name:
MCU_CFG_RAM_UNSPECIFIED

Y4

Figure 12-1 MCU Driver Component Memory Organization

45

Chapter 12

Memory organization

46

Remark

ROM Section (X1, X2, X3, X4, X3 and X6);

MCU_PUBLIC_CODE_ROM (X1): API(s) of MCU Driver Component, which
can be located in code memory.

MCU_PRIVATE_CODE_ROM (X2): Internal functions of MCU Driver
Component code that can be located in code memory.

MCU_START_SEC_CODE_FAST (X3): Interrupt functions of MCU Driver
Component code that can be located in code memory.

MCU_CFG_DBTOC_UNSPECIFIED (X4): This section consists of MCU
Driver Component database table of contents generated by the MCU Driver
Component Generation Tool. This can be located in code memory.

MCU_CFG_DATA_UNSPECIFIED (X5): This section consists of MCU
Driver Component constant configuration structures. This can be located in
code memory.

CONST_ROM_UNSPECIFIED (X6): This section consists of MCU Driver
Component constant structures used for function pointers in MCU Driver
Component. This can be located in code memory.

RAM Section (Y1, Y2, Y3 and Y4);

NOINIT_RAM_UNSPECIFIED (Y1): This section consists of the global RAM
variables that are used internally by MCU Driver Component. This can be
located in data memory.

NOINIT_RAM_8BIT (Y2): This section consists of the global RAM variables of
8-bit size that are used internally by MCU Driver Component. This can be
located in data memory.

RAM_1BIT (Y3): This section consists of the global RAM variables of 1-bit
size that are initialized by start-up code and used internally by MCU Driver
Component. This can be located in data memory.

MCU_CFG_RAM_UNSPECIFIED (Y4): This section consists of the global

RAM variables that are generated by MCU Driver Component Generation
Tool. This can be located in data memory.

X1, X2, Y1, Y2 and Y3 pertain to only MCU Driver Component and do not

include memory occupied by Mcu_PBcfg.c file generated by MCU Driver Component
Generation Tool.

User must ensure that none of the memory areas overlap with each other. Even
‘debug’ information should not overlap.

P1M Specific Information Chapter 13

Chapter 13 P1M Specific Information

P1M supports following devices:

R7F701304
R7F701305
R7F701310
R7F701311
R7F701312
R7F701313
R7F701314
R7F701315
R7F701318
R7F701319
R7F701320
R7F701321
R7F701322
R7F701323

13.1. Interaction between the User and MCU Driver Component

The details of the services supported by the MCU Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

13.1.1. Translation Header File

The P1x_translation.h translation header file supports following devices:

e R7F701304
R7F701305
R7F701310
R7F701311
R7F701312
R7F701313
R7F701314
R7F701315
R7F701318
R7F701319
R7F701320
R7F701321
R7F701322
R7F701323

13.1.2. ISR Function

The table below provides the list of handler addresses corresponding to the
hardware unit ISR(s) in MCU Driver Component. The user should configure
the ISR functions mentioned below:

47

Chapter 13 P1M Specific Information

Table 13-1 ISR For MCU

Interrupt Source Name of the ISR Function
MCU_FEINT_ISR
INTECM MCU_ECM_EIC_ISR
13.1.3. Parameter Definition File

Parameter definition files support information for P1M

Table 13-2 PDF information for P1M

PDF Files Devices supported

R403_MCU_P1M_04_05.arxml 701304, 701305

R403_MCU_P1M_10_to_15 18 to_23.arx| 701310, 701311, 701312, 701313,
ml 701314, 701315, 7013018, 701319,
701320, 701321, 701322, 7013023

13.2. Sample Application

13.2.1 Sample Application Structure

The Sample Application is provided as reference to the user to understand
the method in which the MCU APIs can be invoked from the application.

G eneric
AUTOSAR RH850
TYPES COMPILER TYPES
D evices
P1x
STUB STUB STUB STUB
M CU
Sample Det Dem SchM Os
Application

Figure 13-1 Overview of MCU Driver Sample Application

48

P1M Specific Information

Chapter 13

The Sample Application of the P1M is available in the path:

X1X\P1x\modules\mcu\sample_application

The Sample Application consists of the following folder structure:

X1X\P1x\modules\mcu\definition\sAUTOSAR_version>\<SubVariant>
\R403_MCU_P1M_04_05.arxml
\R403_MCU_P1M 10 to_15 18 to 23.arxml
X1X\P1x\modules\mcu\sample_application

\<SubVariant>\<AUTOSAR_version>

\src\Mcu_PBcfg.c

\include\Mcu_Cfg.h
\include\Mcu_Cbk.h
\include\Mcu_Reg.h

\config\App_MCU_P1M_701304_Sample.arxml
\config\App_MCU_P1M_701304_Sample.html
\config\App_MCU_P1M_701304_Sample.one

\config\App_MCU_P1M_701305_Sample.arxm|
\config\App_MCU_P1M_701305_Sample.html
\config\App_MCU_P1M_701305_Sample.one

\config\App_MCU_P1M_701310_Sample.arxml|
\config\App_MCU_P1M_701310_Sample.html
\config\App_MCU_P1M_701310_Sample.one

\config\App_MCU_P1M_701311_Sample.arxml
\config\App_MCU_P1M_701311_Sample.html
\config\App_MCU_P1M_701311_Sample.one

\config\App_MCU_P1M_701312_Sample.arxml|
\config\App_MCU_P1M_701312_Sample.html
\config\App_MCU_P1M_701312_Sample.one

\config\App_MCU_P1M_701313_Sample.arxml
\config\App_MCU_P1M_701313_Sample.html
\config\App_MCU_P1M_701313_Sample.one

\config\App_MCU_P1M_701314 Sample.arxml
\config\App_MCU_P1M_701314_Sample.html
\config\App_MCU_P1M_701314_Sample.one

\config\App_MCU_P1M_ 701315 Sample.arxml|
\config\App_MCU_P1M_701315 Sample.html
\config\App_MCU_P1M_701315 Sample.one

\config\App_MCU_P1M_701318 Sample.arxml
\config\App_MCU_P1M_701318_Sample.html
\config\App_MCU_P1M_701318_Sample.one

\config\App_MCU_P1M_701319 Sample.arxml
\config\App_MCU_P1M_701319 Sample.html
\config\App_MCU_P1M_701319 Sample.one

\config\App_MCU_P1M_701320_Sample.arxml|
\config\App_MCU_P1M_701320_Sample.html
\config\App_MCU_P1M_701320_Sample.one

49

Chapter 13

P1M Specific Information

50

Remark

13.2.2

13.2.2.1.

\config\App_MCU_P1M_701321_Sample.arxml
\config\App_MCU_P1M_ 701321 Sample.html
\config\App_MCU_P1M_701321 Sample.one

\config\App_MCU_P1M_701322_Sample.arxml|
\config\App_MCU_P1M_701322_ Sample.html
\config\App_MCU_P1M_701322_ Sample.one

\config\App_MCU_P1M_701323_Sample.arxml
\config\App_MCU_P1M_701323_Sample.html
\config\App_MCU_P1M_701323_Sample.one

In the Sample Application all the MCU APIs are invoked in the following
sequence:

The API Mcu_Init is invoked with a valid database address for the proper
initialization of the MCU Driver, all the MCU Driver control registers and
RAM variables will get initialized after this API is called.

The API Mcu_InitRamSection is invoked to initialize the RAM section wise

as provided from the configuration structure.

The API Mcu_InitClock is invoked to initialize the clock sources Main Osc,

High Speed Internal ring Oscillator.

The API Mcu_GetPIIStatus is invoked to provide the lock status of the
PLL. This API will return the PLLstatus as MCU_PLL_LOCKED or
MCU_PLL_UNLOCKED.

The API Mcu_GetResetReason is invoked to read the reset type from
the hardware by checking the RESF register and if not supported,
returns MCU_POWER_ON_RESET. This API shall clear the reset
factor register.

The API Mcu_GetResetRawValue is invoked to return reset type value
from the hardware register RESF

The APl Mcu_GetVersionlinfo is invoked to get the version of the MCU
Driver module with a variable of Std_VersionIinfoType, after the call of
this API the passed parameter will get updated with the MCU Driver
version details.

The API Mcu_PerformReset invoked to microcontroller reset is
performed by accessing the software reset register.

The API Mcu_SetMode is invoked to activate the MCU power modes.

To unmask all resets ‘target pinmask k' command is used.

Building Sample Application

Configuration Example
This section contains the typical configuration which is used for measuring
RAM/ROM consumption, stack depth and throughput details.

P1M Specific Information Chapter 13

13.2.2.2.

Remark

Remark

13.3.
13.3.1.

Configuration Details: App_MCU_P1M_701312_Sample.html

Debugging the Sample Application

GNU Make utility version 3.81 or above must be installed and available in the
path as defined by the environment user variable “GNUMAKE” to complete
the build process using the delivered sample files.

Open a Command window and change the current working directory to “make”
directory present as mentioned in below path:

“X1X\P1x\common_family\make\<compiler>”
Now execute the batch file SampleApp.bat with following parameters:
SampleApp.bat mcu <AUTOSAR_version> <Device_name>

» After this, the tool output files will be generated with the configuration
as mentioned in App_MCU_P1M_701312_Sample.html file available
in the path:

“X1X\P1x\modules\mcu\sample_application\<SubVariant>\<AUTOSAR_ve
rsion>\config\App_MCU_P1M_701312_Sample.html”

« After this, all the object files, map file and the executable file
App_MCU_P1M_Sample.out will be available in the output folder:
(“X1X\P1x\modules\mcu\sample_application\<SubVariant>
\obj\<compiler>")

* The executable can be loaded into the debugger and the sample
application can be executed

Executable files with **.out’ extension can be downloaded into the target

hardware with the help of Green Hills debugger.

« If any configuration changes (only post-build) are made to the ECU
Configuration Description files
“X1X\P1x\modules\mcu\sample_application\<SubVariant>\<AUTOSAR_versi
on>\config\App_MCU_P1M_701312_Sample.arxml”

* The database alone can be generated by using the following commands.
make —f App_MCU_P1M_Sample.mak generate_mcu_config
make —f App_MCU_P1M_Sample.mak App_MCU_P1M_Sample.s37

« After this, a flash able Motorola S-Record file App_MCU_P1M_Sample.s37
is available in the output folder.

Note: The <Device_name> indicates the device to be compiled, which can be
701304, 701305, 701310, 701311, 701312, 701313, 701314, 701315, 701318,
701319, 701320, 701321, 701322, 701323.

Memory and Throughput
ROM/RAM Usage

The details of memory usage for the typical configuration, with DET disabled
as provided in Section 13.3.2.1 Configuration Example are provided in this
section.

51

Chapter 13

P1M Specific Information

52

Table 13-3 ROM/RAM Details without DET
Sl. No. | ROM/RAM Segment Name gi:lgin B
1. ROM MCU_PUBLIC_CODE_ROM 3578
MCU_PRIVATE_CODE_ROM 2788
MCU_FAST_CODE_ROM 1276
MCU_CFG_DBTOC_UNSPECIFIED 52
MCU_CFG_DATA_UNSPECIFIED 760
ROM.RAM_1BIT 3
ROM.RAM_32BIT 8
2. RAM RAM_UNSPECIFIED 16
RAM_1BIT 3
NOINIT_RAM_8BIT 0
RAM_32BIT 8
NOINIT_RAM_UNSPECIFIED 16
MCU_CFG_RAM_UNSPECIFIED 0
The details of memory usage for the typical configuration, with DET enabled
and all other configurations as provided in 13.3.2.1 Configuration Example
are provided in this section.
Table 13-4 ROM/RAM Details with DET
SI. No. | ROM/RAM | Segment Name gﬁgi” DS
1. ROM MCU_PUBLIC_CODE_ROM 3566
MCU_PRIVATE_CODE_ROM 2788
MCU_FAST_CODE_ROM 1276
MCU_CFG_DBTOC_UNSPECIFIED 52
MCU_CFG_DATA_UNSPECIFIED 760
ROM.RAM_1BIT 3
ROM.RAM_32BIT 8

P1M Specific Information

Chapter 13

Sl. No. | ROM/RAM Segment Name S (2= [0
GHS
2. RAM RAM_UNSPECIFIED 16
RAM_1BIT 3
NOINIT_RAM_8BIT 0
RAM_32BIT 8
NOINIT_RAM_UNSPECIFIED 16
MCU_CFG_RAM_UNSPECIFIED 0
13.3.2. Stack Depth
The worst-case stack depth for MCU Driver Component for the typical
configuration provided in Section 13.3.2.1 Configuration Example is
approximately 64 bytes.
13.3.3. Throughput Details
The throughput details of the APIs for the configuration mentioned in the
Section 13.3.2.1 Configuration Example is as given below.
Table 13-5 Throughput Details of the APIs
Throughput in
SI. No. APl Name microseconds in GHS | Remarks
1. Mcu_Init 45.5391 -
2. Mcu_InitClock 154.55 -
3. Mcu_GetPlIStatus 0.25 -
4. Mcu_InitRamSection 9.137 -
5. Mcu_GetResetReason 0.25 -
6. Mcu_GetResetRawValue 0.25 -
7. Mcu_GetVersioninfo 0.12 -
8. Mcu_GetRamState 0.562 -
9. Mcu_DistributePlIClock 0.12
10. Mcu_SetMode 0.12 -
11. Mcu_PerformReset 0.12 -
12. Mcu_FEINT_ISR 0.437 -

53

Chapter 13 P1M Specific Information

54

Release Details

Chapter 14

Chapter 14 Release Details

MCU Driver Software

Version: 1.0.3

55

Chapter 14 Release Details

56

Revision History

SI. No. | Description Version | Date
1. Initial Version 1.0.0 18-Oct-2013
2. Following changes are made: 1.0.1 30-Apr-2014
1. Chapter 2 is updated for reference documents.
2. Section 4.3 is updated for Exclusive Area name change.
3. Section 4.4 is updated for adding user and supervisor mode
details for new APIs.
4. Chapter 6 is updated for Register details used in APlIs.
5. Chapter 8 is updated for adding file description for tool
generated file ‘Mcu_Cbk.h’.
6. Section 10.3 is updated for adding new APIs in function
definition.
7. Section 11.1 is updated for adding DET error.
8. Chapter 13 and section 13.1.1 is updated for adding new
supported devices.
9. Section 13.2 is updated for change in compiler and linker version
details.
10. Section 13.3 is updated for adding latest configuration details for
supported devices.
11. Section 13.3.2 is updated for change in configuration example
for sample application testing.
12. Section 13.4 is updated for updating ROM/RAM, Stack and
Throughput details.
13. Chapter 14 is updated for increment in MCU Driver software
version.
3. Following changes are made: 1.0.2 09-May-2014
1. Chapter 4 is updated for adding a new section regarding RAM
Initialization.
2. Chapter 13 and section 13.3.1 is updated for removal of
unsupported devices.
4. Following changes are made: 1.0.3 20-Oct-2014
1. Chapter 2 is updated for referenced documents version.
2. Section 13.1.1 is updated for adding the device names.
3. Section 13.2 is updated for compiler, assembler and linker
details.
4. Section 13.3 is updated to add parameter definition file and
sample application configuration files for all P1M devices.
5. Chapter 14 is updated for MCU driver component version
information.
6. Deviation list is updated to add MCU_E_PARAM_POINTER
error for Mcu_GetVersiolnfo APl and AUTOSAR requirement.
5 Following changes are made: 1.04 12-Dec-2014
1. Chapters 7 to 11 updated to start at odd page.
2. Date in Revision History updated.
3. Document page numbers are corrected.
4. Chapter 11 updated to add MCU_E_PARAM_MODE DET.
5. Page number is removed from publication info page.
6. Section 13.2 is updated for compiler, assembler and linker details.
7. Chapter 8 is update to include rh850_types.h file.
8. Section 13.4 is updated for Memory and throughput details.

57

Following changes are made:

1.
2.

3.

o

New section, “4.7 Callout API” added to chapter 4.

Information regarding Interrupt vector table is added to “Section
4.1 General”.

As part of device support activity for R7F701304, R7F701305,
R7F701313, R7F701315, R7F701318 to R7F701323 updated
sections 3.1.1, 13.1, 13.2.

Removed section Compiler,Linker and Assembler in Chapter13.
Updated section 13.3 for memory and throughput

Copyright information has been changed to 2015

1.05

30-Apr-2015

58

59

AUTOSAR MCAL R4.0.3 User's Manual
MCU Driver Component Ver.1.0.5
Embedded User’s Manual

Publication Date: Rev.0.01, Apr 30, 2015

Published by: Renesas Electronics Corporation

RRENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany

Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2015 Renesas Electronics Corporation. All rights reserved.
Colophon 1.0

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3

User’s Manual

RENESAS

Renesas Electronics Corporation

	Chapter 1 Introduction
	1.1. Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration and Build Process
	3.1. MCU Driver Component Makefile

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. Data Consistency
	4.4. User Mode and Supervisor Mode
	4.5. Deviation List
	4.6. RAM Initialization
	4.7. Callout API

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction between the User and MCU Driver Component
	7.1. Services Provided By MCU Driver Component To User

	Chapter 8 MCU Driver Component Header And Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1. Imported Types
	10.1.1. Standard Types
	10.1.2. Other Module Types

	10.2. Type Definitions
	10.2.1 Mcu_ClockType
	10.2.2 Mcu_RawResetType
	10.2.3 Mcu_RamSectionType
	10.2.4 Mcu_PllStatusTypes
	10.2.5 Mcu_RamStateType
	10.2.6 Mcu_ResetType
	10.2.7 Mcu_ClmaIndexType

	10.3. Function Definitions

	Chapter 11 Development And Production Errors
	11.1. MCU Driver Component Development Errors
	11.2. MCU Driver Component Production Errors

	Chapter 12 Memory Organization
	Chapter 13 P1M Specific Information
	13.1. Interaction between the User and MCU Driver Component
	13.1.1. Translation Header File
	13.1.2. ISR Function
	13.1.3. Parameter Definition File

	13.2. Sample Application
	13.2.1 Sample Application Structure
	13.2.2 Building Sample Application
	13.2.2.1. Configuration Example
	13.2.2.2. Debugging the Sample Application

	13.3. Memory and Throughput
	13.3.1. ROM/RAM Usage
	13.3.2. Stack Depth
	13.3.3. Throughput Details

	Chapter 14 Release Details

