

ss

AUTOSAR MCAL R4.0.3

User‟s Manual

MCU Driver Component Ver.1.0.5
Embedded User‟s Manual

Target Device:

RH850/P1x

All information contained in these materials, including products and product specifications,

represents information on the product at the time of publication and is subject to change by

Renesas Electronics Corp. without notice. Please review the latest information published by

Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.

website (http://www.renesas.com).

www.renesas.com Rev.0.01 Apr 2015

http://www.renesas.com/
http://www.renesas.com/

2

3

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to

change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest

product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different

information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third

parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license,

express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas

Electronics or others.

 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and

information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third

parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws

and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products

or the technology described in this document for any purpose relating to military applications or use by the military, including but

not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or

incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign

laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does

not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by

you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and

"Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated

below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may

not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas

Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the

prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by

you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which

the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of

each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data

books, etc.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti- crime

systems; safety equipment; and medical equipment not specifically designed for life support.

"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or

systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare

intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation

characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages

arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific

characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas

Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against

the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a

Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control

and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation

of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of

each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations

that regulate the inclusion or use of controlled substances, including without limitation, the EURoHS Directive. Renesas Electronics

assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas

Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this

document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority- owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

4

5

Abbreviations and Acronyms

Abbreviation / Acronym Description

ADC Analog to Digital Converter

ANSI American National Standards Institute

API Application Programming Interface

AUTOSAR AUTomotive Open System ARchitecture

CAN Controller Area Network

CVM Core Voltage Monitor

CLMA Clock Monitor

DEM/Dem Diagnostic Event Manager

DET/Det Development Error Tracer

DIO Digital Input Output

DMA Direct Memory Access

ECU Electronic Control Unit

EEPROM Electrically Erasable Programmable Read-Only Memory

ECM/Ecm Error Control Module

GNU GNU‟s Not Unix

GPT General Purpose Timer

HW HardWare

ICU Input Capture Unit

ID/Id IDentifier

ISR Interrupt Service Routine

I/O Input and Output

KB Kilo Byte

LIN Local Interconnect Network

MCAL Microcontroller Abstraction Layer

MCU/Mcu MicroController Unit

NA Not Applicable

NMI Non Maskable Interrupt

MI Maskable Interrupt

OS/Os Operating System

PWM Pulse Width Modulation

PLL Phase Locked Loop

RAM/Ram Random Access Memory

ROM Read Only Memory

RTE Run Time Environment

SPI Serial Peripheral Interface

SW SoftWare

WDT WatchDog Timer

6

Definitions

Term Represented by

Sl. No. Serial Number

7

Table of Contents

Chapter 1 Introduction ... 11

1.1. Document Overview .. 13

Chapter 2 Reference Documents .. 15

Chapter 3 Integration and Build Process 17

3.1. MCU Driver Component Makefile ... 17

Chapter 4 Forethoughts ... 19

4.1. General.. 19

4.2. Preconditions ... 19

4.3. Data Consistency ... 20

4.4. User Mode and Supervisor Mode ... 20

4.5. Deviation List ... 21

4.6. RAM Initialization ... 22

4.7. Callout API .. 22

Chapter 5 Architecture Details .. 23

Chapter 6 Registers Details ... 25

Chapter 7 Interaction between the User and MCU Driver

Component 33

7.1. Services Provided By MCU Driver Component To User .. 33

Chapter 8 MCU Driver Component Header And Source File

Description 35

Chapter 9 Generation Tool Guide .. 37

Chapter 10 Application Programming Interface 39

10.1. Imported Types .. 39

10.1.1. Standard Types ... 39

10.1.2. Other Module Types .. 39

10.2. Type Definitions ... 39

10.2.1 Mcu_ClockType ... 39

10.2.2 Mcu_RawResetType ... 39

10.2.3 Mcu_RamSectionType .. 39

10.2.4 Mcu_PllStatusTypes .. 40

10.2.5 Mcu_RamStateType .. 40

10.2.6 Mcu_ResetType .. 40

10.2.7 Mcu_ClmaIndexType .. 41

8

10.3. Function Definitions .. 42

Chapter 11 Development And Production Errors 43

11.1. MCU Driver Component Development Errors ... 43

11.2. MCU Driver Component Production Errors .. 44

Chapter 12 Memory Organization ... 45

Chapter 13 P1M Specific Information ... 47

13.1. Interaction between the User and MCU Driver Component ... 47

13.1.1. Translation Header File ... 47

13.1.2. ISR Function .. 47

13.1.3. Parameter Definition File ... 48

13.2. Sample Application ... 48

13.2.1 Sample Application Structure .. 48

13.2.2 Building Sample Application .. 50

13.2.2.1. Configuration Example .. 50

13.2.2.2. Debugging the Sample Application ... 51

13.3. Memory and Throughput .. 51

13.3.1. ROM/RAM Usage .. 51

13.3.2. Stack Depth ... 53

13.3.3. Throughput Details .. 53

Chapter 14 Release Details .. 557

9

List of Figures

Figure 1-1 System Overview Of AUTOSAR Architecture .. 11
Figure 1-2 System Overview Of The MCU Driver In AUTOSAR MCAL Layer 12
Figure 5-1 MCU Driver Architecture ... 23
Figure 12-1 MCU Driver Component Memory Organization .. 45
Figure 13-1 Overview of MCU Driver Sample Application ... 48

List of Tables

Table 4-1 Supervisor mode and User mode details .. 21
Table 4-2 MCU Driver Deviation List ... 21
Table 6-1 Register Details ... 25
Table 8-1 Description of the MCU Driver Component Files .. 35
Table 10-1 API Provided by MCU Driver Component ... 42
Table 11-1 DET Errors of MCU Driver Component... 43
Table 11-2 DEM Errors of MCU Driver Component .. 44
Table 13-1 ISR For MCU ... 48
Table 13-2 PDF information for P1M .. 48
Table 13-3 ROM/RAM Details without DET .. 52
Table 13-4 ROM/RAM Details with DET ... 52
Table 13-5 Throughput Details of the APIs ... 53

10

 Introduction Chapter 1

11

Chapter 1 Introduction

The purpose of this document is to describe the information related to

MCU Driver Component for Renesas P1x microcontrollers.

This document shall be used as reference by the users of MCU Driver

Component. The system overview of complete AUTOSAR architecture

is shown in the below Figure:

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

 MCU Driver

Microcontroller

Figure 1-1 System Overview Of AUTOSAR Architecture

The MCU Driver is part of the Microcontroller Abstraction Layer (MCAL),

the lowest layer of Basic Software in the AUTOSAR environment.

 Chapter 1 Introduction

12

P
W

M
 D

riv
e

r

IC
U

 D
riv

e
r

 F
le

x
R

a
y
 D

riv
e
r

C
A

N
 D

riv
e
r

L
IN

 D
riv

e
r

S
P

H
a

n
d

le
rD

riv
e
r

in
te

rn
a
l E

E
P

R
O

M
 D

riv
e
r

in
te

rn
a
l F

la
s
h
 D

riv
e
r

e
x
te

rn
a

l F
la

s
h
 D

riv
e
r

EEPRO

M

Flash

R
A

M
 T

e
s

C
o
re

 T
e
s
t

M
C

U
 D

riv
e
r

W
a
tc

h
d

o
g

 D
riv

e
r

G
P

T
 D

riv
e
r

 P
O

R
T

 D
riv

e
r

D
IO

 D
riv

e
r

A
D

C
 D

riv
e
r

Micro-

Controller

The Figure in the following page depicts the MCU Driver as part of layered

AUTOSAR MCAL Layer:

 Microcontroller Drivers Memory Drivers Communication Drivers I/O Drivers

Figure 1-2 System Overview Of The MCU Driver In AUTOSAR MCAL Layer

The RTE provides the encapsulation of Hardware channels and basic

services to the Application Software Components. So it is possible to map the

Application Software-Components between different ECUs.

The Basic Software Modules are located below the RTE. The Basic Software

itself is divided into the subgroups: System Services, Memory,

Communication and I/O Hardware-Abstraction. The Complex Drivers are also

located below the RTE. Among others, the Operating System (OS), the

Watchdog manager and the Diagnostic services are located in the System

Services subgroup. The Memory subgroup contains modules to provide

access to the non-volatile memories, namely Flash and EEPROM. In the I/O

Hardware-Abstraction subgroup the whole MCU Driver Component is

provided.

On board Device Abstraction provides an interface to physical values for

AUTOSAR software components. It abstracts the physical origin of signals

(their paths to the hardware ports) and normalizes the signals with respect to

their physical appearance. The Microcontroller driver provides services for

basic microcontroller initialization, power down functionality, reset and

microcontroller specific functions required from the upper layers.

A
D

C
 D

IO

L
IN

 o
r

S
C

I

C
A

N

SP
I

Ext.B
u

s

P
W

M

IC
U

W
D

T

G
P

T

M
C

 P
o

w
er

&
 C

lo
ck

U
n

it

 Introduction Chapter 1

13

1.1. Document Overview

The document has been segmented for easy reference. The table below

provides user with an overview of the contents of each section:

Section Contents

Section1 (Introduction) This section provides an introduction and overview of MCU Driver

Component.

Section 2 (Reference Documents) This section lists the documents referred for developing this document.

Section 3 (Integration And Build

Process)
This section explains the folder structure, Makefile structure for MCU

Driver Component. This section also explains about the Makefile

descriptions, Integration of MCU Driver Component with other

components, building the MCU Driver Component along with a sample

application.

Section 4 (Forethoughts) This section provides brief information about the MCU Driver

Component, the preconditions that should be known to the user before

it is used, data consistency details and deviation list.

Section 5 (Architecture Details) This section describes the layered architectural details of the MCU Driver

Component.

Section 6 (Registers Details) This section describes the register details of MCU Driver Component.

Section 7 (Interaction between

The User And MCU Driver

Component)

This section describes interaction of the MCU Driver Component with

the upper layers.

Section 8 (MCU Driver

Component Header And Source

File Description)

This section provides information about the MCU Driver Component

source files is mentioned. This section also contains the brief note on

the tool generated output file.

Section 9 (Generation Tool Guide) This section provides information on the MCU Driver Component Code

Generation Tool.

Section 10 (Application

Programming Interface)
This section explains all the APIs provided by the MCU Driver

Component.

Section 11 (Development And

Production Errors)
This section lists the DET and DEM errors.

Section 12 (Memory

Organization)
This section provides the typical memory organization, which must be

met for proper functioning of component.

Section 13 (P1M Specific

Information)
This section provides P1M specific information also the information

about linker compiler and sample application.

Section 14 (Release Details) This section provides release details with version name and base

version.

Chapter 1 Introduction

14

Reference Documents Chapter 2

15

Chapter 2 Reference Documents

Sl. No. Title Version

1. AUTOSAR_SWS_MCUDriver.pdf 3.2.0

2. r01uh0436ej0070_rh850p1x.pdf 0.70

3. AUTOSAR_SWS_MemoryMapping.pdf 1.4.0

4. AUTOSAR_SWS_PlatformTypes.pdf 2.5.0

5. AUTOSAR_BSW_MakefileInterface.pdf 0.3

6. AUTOSAR_SWS_CompilerAbstraction.pdf 3.2.0

7. AUTOSAR BUGZILLA (http://www.autosar.org/bugzilla)

Note: AUTOSAR BUGZILLA is a database, which contains concerns

raised against information present in AUTOSAR Specifications.

-

http://www.autosar.org/bugzilla

Chapter 2 Reference Documents

16

Integration And Build Process Chapter 3

17

Chapter 3 Integration and Build Process

In this section the folder structure of the MCU Driver Component is explained.

Description of the Make files along with samples is provided in this section.

Remark The details about the C Source and Header files that are generated by the

MCU Driver Generation Tool are mentioned in the Generation Tool User‟s

Manual “AUTOSAR_MCU_Tool_UserManual.pdf”.

3.1. MCU Driver Component Makefile

The Makefile provided with the MCU Driver Component consists of the GNU

Make compatible script to build the MCU Driver Component in case of any

change in the configuration. This can be used in the upper level Makefile (of

the application) to link and build the final application executable.

3.1.1. Folder Structure

The files are organized in the following folders:

Remark Trailing slash „\‟ at the end indicates a folder

X1X\P1x\modules\mcu\src

\Mcu.c

\Mcu_Irq.c

\Mcu_Ram.c

\Mcu_Version.c

X1X\P1x\modules\mcu\include

\Mcu.h

\Mcu_Debug.h

\Mcu_Irq.h

\Mcu_PBTypes.h

\Mcu_Ram.h

\Mcu_Types.h

\Mcu_Version.h

X1X\P1x\modules\mcu\sample_application\<SubVariant>\make\<compiler>

\App_MCU_P1M_Sample.mak

X1X\P1x\modules\mcu\sample_application\<SubVariant>\obj\<Complier>

X1X\P1x\modules\mcu\generator

\Mcu_P1x.exe
\R403_MCU_P1x_BSWMDT.arxml

X1X\P1x\common_family\generator

\Global_Application_P1x.trxml

\Sample_Application_P1x.trxml

\P1x_translation.h

Chapter 3 Integration And Build Process

18

\Test_Application_P1x.trxml
X1X\P1x\modules\mcu\user_manual

(User manuals will be available in this folder)

 Note: 1. <Complier> can be ghs.
 2. <AUTOSAR_version> should be 4.0.3.
 3. <SubVariant> can be P1M.

Forethoughts Chapter 4

19

Chapter 4 Forethoughts

4.1. General

Following information will aid the user to use the MCU Driver Component

software efficiently:

• The MCU Driver does not enable or disable the ECU or Microcontroller

power supply. The upper layer should handle this operation.

• The start-up code is ECU and MCU specific. MCU Driver does

not implement the start-up code.

• MCU specific initializations such as reset registers, one time writable

registers, interrupt stack pointer, user stack pointer and MCU internal

watchdog, MCU specific features of internal memory and registers are not

implemented by MCU Driver. These initializations should be implemented

by the start-up code.

• MCU Driver does not implement any call-back notification functions.

• MCU Driver does not implement scheduled functions.

• The MCU Driver component is implemented as a Post build variant.

• MCU Driver depends on Scheduler and Wake-up source service Modules

for disabling all relevant interrupts to protect writing into the protected

registers and invoking the ECU state manager functions.

• In P1x PLL clocks are not configurable and it cannot be controlled by

software. It works with default values after main oscillator activated.

Hence in P1x Mcu dirver code Mcu_DistributePllClock()and

Mcu_GetPllStatus()API's none of the action are taken care except DET

errors.

• The file Interrupt_VectorTable.c provided is just a Demo and not all

interrupts will be mapped in this file. So the user has to update the

Interrupt_VectorTable.c as per his configuration

4.2. Preconditions

Following preconditions have to be adhered by the user, for proper

functioning of the MCU Driver Component:

• The Mcu_Cfg.h, Mcu_Cbk.h and Mcu_Reg.h files generated by the MCU

Driver component Code Generation Tool must be compiled and linked

along with MCU Driver component source files.

• The application has to be rebuilt, if there is any change in the Mcu_Cfg.h file

generated by the MCU Driver component Generation Tool.

• File Mcu_PBcfg.c generated for single configuration set or multiple

configuration sets using MCU Driver component Generation Tool can

be compiled and linked independently.

• The authorization of the user for calling the software triggering of a

hardware reset is not checked in the MCU Driver. This is the responsibility

of the upper layer.

• The MCU Driver component needs to be initialized before accepting

any request. The API Mcu_Init should be called by the ECU State

Manager Module to initialize MCU Driver Component.

Chapter 4 Forethoughts

20

The user should ensure that MCU Driver component API requests

are invoked in the correct and expected sequence and with correct

input arguments.

• Input parameters are validated only when the static configuration

parameter MCU_DEV_ERROR_DETECT is enabled. Application should

ensure that the right parameters are passed while invoking the APIs when

MCU_DEV_ERROR_DETECT is disabled.

• There are different clock settings possible. For more details, please refer

the respective device specific component user manual.

• If the handle of clock setting passed to the API Mcu_InitClock is not

configured to any one of the supported clock settings, then the

Development Error Detection function is invoked if the static configuration

parameter MCU_DEV_ERROR_DETECT is enabled.

• The MCU Driver initializes the clock generator as per the required

configuration settings and provides the configured clock sources for the

peripherals as applicable. It is the responsibility of the individual drivers to

select and initialize the respective driver specific registers as required for

their functionality with reference to the clock source provided by the MCU

Driver.

• The API Mcu_InitClock is implemented considering its invocation at run

time. Hence, there is a possibility of change in the baud rate set by the

peripheral drivers if the clock setting is different. Hence, the initialization of

the respective drivers after the invocation of Mcu_InitClock, is the

responsibility of the user of MCU Driver services.

• A mismatch in the version numbers of header and the source files results

in compilation error. User should ensure that the correct versions of the

header and the source files are used.

4.3. Data Consistency

To support the re-entrance and interrupt services, the MCU Driver will ensure

the data consistency while accessing its own RAM storage or hardware

registers or to prevent any interrupts between the two write instructions of the

write protected register and the corresponding write enable register.

The MCU Driver will use SchM_Enter_Mcu_<Exclusive Area> and

SchM_Exit_Mcu_<Exclusive Area> functions.

The SchM_Enter_Mcu_<Exclusive Area> function is called before the data

needs to be protected and SchM_Exit_Mcu_<Exclusive Area> function is

called after the data is accessed.

The flowchart will indicate the flow with the precompile option

“McuCriticalSectionProtection” enabled.

The following exclusive area along with scheduler services is used to provide

data integrity for shared resources:

REG_DATA_PROTECTION

The functions SchM_Enter_Mcu_<Exclusive Area> and SchM_Exit_Mcu

_<Exclusive Area> can be disabled by disabling the configuration parameter

„McuCriticalSectionProtection‟.

4.4. User Mode and Supervisor Mode

The below table specifies the APIs which can run in user mode, supervisor

Forethoughts Chapter 4

21

mode or both modes

Table 4-1 Supervisor mode and User mode details

Sl.No. API Name User Mode Supervisor
Mode

Known limitation in User
mode

1. Mcu_Init - x 1. The enabling of the

interrupt will not be

possible.

2. Critical section protection

cannot be enabled

2. Mcu_InitRamSection x x Critical section protection

cannot be enabled

3. Mcu_InitClock x x -

4. Mcu_DistributePllClock x x -

5. Mcu_GetPllStatus x x -

6. Mcu_GetResetReason x x -

7. Mcu_GetResetRawValue x x -

8. Mcu_PerformReset x x -

9. Mcu_SetMode x x -

 10. Mcu_GetRamState x x Critical section protection

cannot be enabled

11. Mcu_LockStepSelfDiagnosticTest x x Critical section protection

cannot be enabled

12. Mcu_CvmSelfDiagnosticTest x x -

13. Mcu_ClmaSelfDiagnosticTest x x -

14. Mcu_EcmSelfDiagnosticTest x x Critical section protection

cannot be enabled

 15. Mcu_SaveResetReason x x Critical section protection

cannot be enabled

4.5. Deviation List

Table 4-2 MCU Driver Deviation List

Sl. No. Description AUTOSAR Bugzilla / Mantis

1. The parameter McuResetSetting from the

sub-container McuModuleConfiguration is

not considered.

-

2. The MCU Driver considers the parameters of

RAM section configuration as pre-compile

parameters, since the number of RAM settings

are not known and hence the generation of

handles is not possible at post-build-time.

-

Chapter 4 Forethoughts

22

Sl. No. Description AUTOSAR Bugzilla / Mantis

3. The sub-container McuClockReferencePoint in

the Clock setting configuration is not used as

the reference frequencies specific to various

peripheral devices need to be published by

MCU Driver component.

-

4. The parameter McuClockSettingId range in

McuClockSettingConfig container is changed

from “1 to 255” to “0 to 255” since 0 is valid

minimum value for clock setting ID.

54536

5. If an invalid database is passed as a

parameter to API Mcu_Init, DET Error code

MCU_E_INVALID_DATABASE is reported to

DET.

-

6. The Mcu_GetVersionInfo API is

implemented as macro without DET error

 MCU_E_PARAM_POINTER.

-

4.6. RAM Initialization

RAM initialization done by an API call to Mcu_InitRamSection must not

overwrite other memory sections of static variables. A dedicated memory

section shall be defined in linker directive file.

4.7. Callout API

The MCU_RESET_CALLOUT() API is the call out API from the Mcu

module which will be called by Mcu_PerformReset() API for the software

reset when configuration parameter McuSwResetCall Api is true. This

callout API needs to be filled by user to do the software reset. If the

configuration parameter McuSwResetCall Api is false, the callout shall not

be available and the software reset shall be handled by the MCU itself

using HW feature of the SW reset.

Architecture Details Chapter 5

23

 MCU Driver

On-Chip Registers

On-Chip Hardware

Chapter 5 Architecture Details

 The MCU Driver architecture is shown in the following figure. The MCU user
 shall directly use the APIs to configure and execute the MCU conversions:

Application Software (MCU user)

 Figure 5-1 MCU Driver Architecture

The MCU driver accesses the microcontroller hardware directly and is located

in the MCAL. MCU component provides the functionalities related to PLL

Initialization, Clock Initialization and Distribution, RAM sections Initialization,

PreScaler Initialization, MCU reduced Power Modes Activation and MCU

Reset Activation and Reason.

The component consists of the following sub modules based on the

functionality:

• Initialization

• Self-Diagnostic test for ECM, CVM, Clock Monitor and Lock Step.

• Clock Initialization

• RAM sections Initialization and Status Verification

• MCU Reset Activation and Reason

• Version Information

Initialization

This sub module provides the structures and APIs for both global and

controller specific initialization. MCU specific initialization is necessary in

order to ensure different startup behaviors of the microcontroller. This sub

Chapter 5 Architecture Details

24

module also checks if the data base is flashed.

Self-Diagnostic test for ECM, CVM, Clock Monitor and Lock Step

This functionality is provided as part MCU module initialization.
Self-diagnostic test for ECM error source is helpful to check the ECM error
output signal by creating the real ECM error signal.
Self-diagnostic test for CVM and CLMA is possible in real scenario.

Clock Initialization

The clock initialization sub module provides the functionality for generating all

the required clock signals for microcontroller operation from any one of the

available sources. It enables the provision for individual clock source

selection for CPU and groups of peripherals.

This sub module also provides the functionality for obtaining various

frequencies required for individual peripheral devices.

For available clock sources, please refer to the respective device specific

component user manual.

RAM sections Initialization and Status Verification

This sub module provides the functionality for initializing the RAM with the any

given value, at the selected blocks of the RAM and to verify the status of RAM.

MCU Reset Activation and Reason

The microcontroller reset activation will be performed by forcing a software

reset. This functionality will be done by using software reset register. ECM

error sources can also be configured for internal reset so that if any error

occurs device will activate reset.

To provide the reset reason, this sub module captures the information

available with RESF – Reset factor register. This register contains

information.

Version Information

This module provides APIs for reading Module Id, Vendor Id and vendor

specific version numbers.

 Registers Details Chapter 6

25

Chapter 6 Registers Details

This section describes the register details of MCU Driver Component.

Table 6-1 Register Details

API Name Registers Used

Regist

er

Access

8/16/

32 bits

Config Parameter Macro/Variable

Mcu_Init

ECMIRCFG0 32

 (LpEcmSetting-

>ulEcmInternalResetReg

0value &

(~MCU_RAM_MASK0_V

ALUE))

MCU_IRCFG0_INIT_VAL

UE

LVICNT 32 LulLVICntValue MCU_LVI_MASK

PROT1PHCM

D
32 - MCU_WRITE_DATA

PROT1PS 32 - -

ECMMICFG0

HH
8 LucDataByte -

ECMNMICFG

0HH
8 LucDataByte -

ECMIRCFG0

HH
8 LucDataByte -

ECMMECLR 8 - MCU_ONE

ECMMPCMD

0
32 - MCU_WRITE_DATA

ECMCECLR 8 - MCU_ONE

ECMCPCMD0 32 - MCU_WRITE_DATA

ECMESSTC0 32 LulEcmStatusData -

CVMDEW 8 LucCVMCntValue -

PROTCMDCV

M
32 - MCU_WRITE_DATA

PROTSCVM 32 - -

ECMEPCTL 8 -
MCU_ECM_ERROUT_TI

MER

ECMPCMD1 32 - MCU_WRITE_DATA

ECMPS 8 - -

EIBD8 32 -
MCU_EIBD08_CPU1_VAL

UE

Chapter 6 Register Details

26

API Name Registers Used

Regist

er

Access

8/16/

32 bits

Config Parameter Macro/Variable

EIC8L 8 -
MCU_ENABLE_TABLE_I

NTERRUPT

ECMEMK0 32 -
MCU_ECMEMK0_FULL_

MASK

ECMEMK1 32 -
MCU_ECMEMK1_FULL_

MASK

ECMEPCFG 8 -
MCU_ECM_ERROUT_MO

DE

ECMMICFG0 32

((LpEcmSetting-

>ulEcmMaskInterReg0va

lue &

(~MCU_RAM_MASK0_V

ALUE)) |

MCU_IRCFG0_INIT_VA

LUE)

-

ECMMICFG1 32

(LpEcmSetting-

>ulEcmMaskInterReg1va

lue &

(~MCU_RAM_MASK1_V

ALUE))

-

ECMNMICFG

0
32

(LpEcmSetting-

>ulEcmNonMaskInterRe

g0value &

(~MCU_RAM_MASK0_V

ALUE))

-

ECMNMICFG

1
32

(LpEcmSetting-

>ulEcmNonMaskInterRe

g1value &

(~MCU_RAM_MASK1_V

ALUE))

-

ECMIRCFG1 32

(LpEcmSetting-

>ulEcmInternalResetReg

1value &

(~MCU_RAM_MASK1_V

ALUE))

-

ECMDTMCTL 8 -
MCU_ECM_DELY_TIMER

_STOP

ECMDTMCM

P
16 -

MCU_ECM_DLYTIMER_V

ALUE

ECMDTMCFG

0
32

LpEcmSetting-

>ulEcmDelayTimerReg0

Value, LpEcmSetting-

>ulEcmDelayTimerReg1

Value, LpEcmSetting-

>ulEcmDelayTimerReg2

Value, LpEcmSetting-

>ulEcmDelayTimerReg3

Value

-

Mcu_InitRamS
ection

ECMMESSTR

0
32 -

MCU_RAM_MASK0_VAL

UE

ECMESSTC0 32 -
MCU_RAM_MASK0_VAL

UE

 Registers Details Chapter 6

27

API Name Registers Used

Regist

er

Access

8/16/

32 bits

Config Parameter Macro/Variable

ECMMESSTR

1
32 -

MCU_RAM_MASK1_VAL

UE

ECMESSTC1 32 -
MCU_RAM_MASK1_VAL

UE

ECMPCMD1 32 - MCU_WRITE_DATA

ECMPS 8 - -

ECMMICFG0 32

LpEcmSetting-

>ulEcmMaskInterReg0va

lue

-

ECMMICFG1 32

LpEcmSetting-

>ulEcmMaskInterReg1va

lue

-

ECMNMICFG

0
32

LpEcmSetting-

>ulEcmNonMaskInterRe

g0value

-

ECMNMICFG

1
32

LpEcmSetting-

>ulEcmNonMaskInterRe

g1value

-

ECMIRCFG0 32

LpEcmSetting-

>ulEcmInternalResetReg

0value

-

ECMIRCFG1 32

LpEcmSetting-

>ulEcmInternalResetReg

1value

-

ECMEMK0 32

LpEcmSetting-

>ulEcmErrorMaskReg0V

alue

-

ECMEMK1 32

LpEcmSetting-

>ulEcmErrorMaskReg1V

alue

--

Mcu_InitClock

PROT1PHCM

D
32 - MCU_WRITE_DATA

PROT1PS 32 - -

CLMA0CMPH 16
Mcu_GpConfigPtr-

>usCLMA0CMPH
 -

CLMA0CMPL 16
Mcu_GpConfigPtr-

>usCLMA0CMPL
 -

CLMA0PCMD 8 - MCU_WRITE_DATA

CLMA0PS 8 - -

CLMA0CTL0 8 - MCU_ONE

CLMA1CMPH 16
Mcu_GpConfigPtr-

>usCLMA1CMPH
 -

CLMA1CMPL 16
Mcu_GpConfigPtr-

>usCLMA1CMPL
 -

Chapter 6 Register Details

28

API Name Registers Used

Regist

er

Access

8/16/

32 bits

Config Parameter Macro/Variable

CLMA1PCMD 8 - MCU_WRITE_DATA

CLMA1PS 8 - -

CLMA1CTL0 8 - MCU_ONE

CLMA2CMPH 16
Mcu_GpConfigPtr-

>usCLMA2CMPH
 -

CLMA2CMPL 16
Mcu_GpConfigPtr-

>usCLMA2CMPL
 -

CLMA2PCMD 8 - MCU_WRITE_DATA

CLMA2PS 8 - -

CLMA2CTL0 8 - MCU_ONE

CLMA3CMPH 16
Mcu_GpConfigPtr-

>usCLMA3CMPH
 -

CLMA3CMPL 16
Mcu_GpConfigPtr-

>usCLMA3CMPL
 -

CLMA3PCMD 8 - MCU_WRITE_DATA

CLMA3PS 8 - -

CLMA3CTL0 8 - MCU_ONE

Mcu_Distribute
PllClock

- - - -

Mcu_GetPllSta
tus

- - - -

Mcu_GetReset
Reason

- - - -

Mcu_GetReset
RawValue

- - - -

Mcu_PerformR
eset

SWRESA 32 -
MCU_RES_CORRECT_V

AL

PROT1PHCM

D
32 - MCU_WRITE_DATA

PROT1PS 32 - -

Mcu_SetMode - - - -

Mcu_GetRamS
tate

- - - -

Mcu_CvmSelf
DiagnosticTest

CVMDIAG 8 -
MCU_TWELVE,

MCU_ZERO

 Registers Details Chapter 6

29

API Name Registers Used

Regist

er

Access

8/16/

32 bits

Config Parameter Macro/Variable

CVMFC 8 -
MCU_CVM_FACTOR_CL

EAR

CVMF 8 -
MCU_CVM_FACTOR_CL

EAR

CVMDMASK 8 - MCU_ONE, MCU_ZERO

PROTCMDCV

M
32 - MCU_WRITE_DATA

PROTSCVM 32 - -

Mcu_ClmaSelf
DiagnosticTest

CLMATESTS 32 - -

CLMATEST 32 LulClmaXTestValue -

PROT1PHCM

D
32 - MCU_WRITE_DATA

PROT1PS 32 - -

Mcu_EcmSelf
DiagnosticTest

ECMEMK0 32

LpEcmSetting-

>ulEcmErrorMaskReg0V

alue

-

ECMMESSTR

0
32 LulEcmPseudoData -

ECMCESSTR

0
32 LulEcmPseudoData -

ECMEMK1 32

LpEcmSetting-

>ulEcmErrorMaskReg1V

alue

-

ECMMESSTR

1
32 LulEcmPseudoData

MCU_ERROROUT_STAT

US

ECMCESSTR

1
32 LulEcmPseudoData

MCU_ERROROUT_STAT

US

ECMESSTC1 32 LulEcmPseudoData -

ECMEMK0HH 8 -
MCU_ECM029_MASK_VA

LUE

ECMMICFG0

HH
8 -

(~MCU_ECM029_MASK_

VALUE)

ECMNMICFG

0HH
8 -

(~MCU_ECM029_MASK_

VALUE)

ECMIRCFG0

HH
8 -

(~MCU_ECM029_MASK_

VALUE)

ECMMECLR 8 - MCU_ONE

ECMMPCMD

0
32 - MCU_WRITE_DATA

Chapter 6 Register Details

30

API Name Registers Used

Regist

er

Access

8/16/

32 bits

Config Parameter Macro/Variable

ECMCECLR 8 - MCU_ONE

ECMCPCMD0 32 - MCU_WRITE_DATA

ECMESSTC0 32 LulEcmPseudoData

(MCU_ECM029_MASK_V

ALUE <<

MCU_TWENTYFOUR)

ECMPCMD1 32 - MCU_WRITE_DATA

ECMPE0 32 LulEcmPseudoData -

ECMPE1 32 LulEcmPseudoData -

ECMPS 8 - -

Mcu_LockStep
SelfDiagnostic
Test

TESTCOMPR

EG1
32 -

(~MCU_LOCKSTEP_DUM

MY_VALUE)

TESTCOMPR

EG0
32 -

MCU_LOCKSTEP_DUMM

Y_VALUE

ECMMESSTR

0
32 - MCU_TWO

ECMESSTC0 32 - MCU_TWO

ECMPCMD1 32 - MCU_WRITE_DATA

ECMPS 8 - -

Mcu_SaveRes
etReason

POF 32 - MCU_POF_RST

POFC 32 - MCU_POF_CLEAR

ECMMESSTR

0
32

Mcu_GpEcmSetting-

>ulEcmInternalResetReg

0value

-

ECMMESSTR

1
32

Mcu_GpEcmSetting-

>ulEcmInternalResetReg

1value

-

ECMESSTC0 32 LulEcmStatusData0 -

ECMESSTC1 32 LulEcmStatusData1 -

ECMPCMD1 32 - MCU_WRITE_DATA

ECMPS 8 - -

RESF 32 - MCU_ZERO

 Registers Details Chapter 6

31

API Name Registers Used

Regist

er

Access

8/16/

32 bits

Config Parameter Macro/Variable

RESFC 32 - MCU_RESF_CLEAR

Chapter 6 Register Details

32

Interaction Between The User And MCU Driver Component Chapter 7

33

Chapter 7 Interaction between the User and MCU
Driver Component

The details of the services supported by the MCU Driver Component to the

upper layers users and the mapping of the channels to the hardware units is

provided in the following sections:

7.1. Services Provided By MCU Driver Component To
User

The MCU Driver Component provides the following functions to upper layers,

if supported by hardware:

• To Perform the Self diagnostic test for the ECM, CVM, Clock Monitor and

Lock step.

• To initialize the RAM and to verify the status, section wise.

• To initialize the MCU specific clock options.

• To activate the specific clock to the MCU clock distribution.

• To read the reset type from the hardware.

• To perform the micro controller reset.

• To read the MCU Driver component version information.

Chapter 7 Interaction Between The User And MCU Driver Component

34

Chapter 8 MCU Driver Component Header And Source File Description

35

Chapter 8 MCU Driver Component Header And
Source File Description

This section explains the MCU Driver Component‟s C Source and C Header

files. These files have to be included in the project application while

integrating with other modules.

The C header file generated by MCU Driver Generation Tool:

• Mcu_Cfg.h
• Mcu_Reg.h
• Mcu_Cbk.h

The C source file generated by MCU Driver Generation Tool:

• Mcu_PBcfg.c

The MCU Driver Component C header files:

• Mcu.h
• Mcu_Debug.h
• Mcu_Irq
• Mcu_PBTypes.h
• Mcu_Ram.h
• Mcu_Types.h
• Mcu_Version.h

The MCU Driver Component source files:

• Mcu.c
• Mcu_Irq.c
• Mcu_Ram.c
• Mcu_Version.c

The mcu specific C header files:

• Compiler.h
• Compiler_Cfg.h
• MemMap.h

• Platform_Types.h

• rh850_Types.h

The description of the MCU Driver Component files is provided in the table

below:

Table 8-1 Description of the MCU Driver Component Files

File Details

Mcu_Cfg.h This file is generated by the MCU Driver Module Code

Generation Tool for MCU Driver Module pre-compile time

parameters. The macros and the parameters generated will

vary with respect to the configuration in the input ARXML file.

Mcu_Reg.h This file contains the definitions for addresses of the hardware

registers used in the MCU Driver Module.

Mcu_Cbk.h This file contains the extern declaration of call back functions

used in the MCU Driver Module.

 Chapter 8 MCU Driver Component Header And Source File Description

36

File Details

Mcu_PBcfg.c This file contains post-build configuration data. The structures

related to MCU Initialization, clock and power mode setting are

provided in this file. Data structures will vary with respect to

parameters configured.

Mcu.h This file provides extern declarations for all the MCU Driver

Module APIs. This file provides service Ids of APIs, DET Error

codes and type definitions for MCU Driver initialization

structure. This header file shall be included in other modules to

use the features of MCU Driver Module.

Mcu_Irq.h This file contains the ISR functions prototypes of the MCU

Driver Module.

Mcu_Types.h This file provides data structure and type definitions for

initialization of MCU Driver.

Mcu_PBTypes.h This file contains the macros used for the post build time

parameters.

Mcu_Ram.h This file contains the extern declarations for the global variables

that are defined in Mcu_Ram.c file and the version information

of the file.

Mcu_Version.h This file contains the macros of AUTOSAR version numbers of

all modules that are interfaced to MCU.

Mcu_Debug.h This file provides Provision of global variables for debugging

purpose.

Mcu.c This file contains the implementation of all MCU Driver Module

APIs.

Mcu_Irq.c This file contains the ISR functions of the MCU Driver Module.

Mcu_Ram.c This file contains the global variables used by MCU Driver

Module.

Mcu_Version.c This file contains the code for checking version of all modules

that are interfaced to MCU.

Compiler.h Provides compiler specific (non-ANSI) keywords. All mappings

of keywords, which are not standardized, and/or compiler

specific are placed and organized in this compiler specific

header.

Compiler_Cfg.h This file contains the memory and pointer classes.

MemMap.h This file allows mapping of variables, constants and code of

modules to individual memory sections. Memory mapping can

be modified as per ECU specific needs.

Platform_Types.h This file provides provision for defining platform and compiler

dependent types.

rh850_Types.h

This file provides macros to perform supervisor mode (SV) write
enabled Register ICxxx and IMR register writing using
OR/AND/Direct operation

 Generation Tool Guide Chapter 9

37

Chapter 9 Generation Tool Guide

For more information on the MCU Driver Component Generation Tool, please

refer “AUTOSAR_MCU_Tool_UserManual.pdf”.

 Chapter 9 Generation Tool Guide

38

Application Programming Interface Chapter 10

39

Chapter 10 Application Programming Interface

This section explains the Data types and APIs provided by the MCU Driver

Component to the Upper layers.

10.1. Imported Types

This section explains the Data types imported by the MCU Driver Component

and lists its dependency on other modules.

10.1.1. Standard Types

In this section all types included from the Std_Types.h are listed:

• Std_ReturnType

• Std_VersionInfoType

10.1.2. Other Module Types

In this chapter all types included from the Dem.h are listed:

• Dem_EventIdType

• Dem_EventStatusType

10.2. Type Definitions

This section explains the type definitions of MCU Driver Component

according to AUTOSAR Specification.

For more type definitions refer the SWS of MCU driver as mentioned in

chapter 2.

10.2.1 Mcu_ClockType
Name: Mcu_ClockType

Type: uint8

Range: 1 to 2

Description: Type definition for Mcu_ClockType used by the API Mcu_InitClock.

10.2.2 Mcu_RawResetType
Name: Mcu_RawResetType

Type: uint32

Range: 0 to 4294967295

Description: Type definition for Mcu_RawResetType used by the API Mcu_GetResetRawValue.

 Note: Mcu_GetResetRawValue API is returning the RESF register status.

10.2.3 Mcu_RamSectionType
Name: Mcu_RamSectionType

Type: uint8

Range: 0 to 255

Description: Type definition for Mcu_RamSectionType used by the API Mcu_InitRamSection.

 Chapter 10 Application Programming Interface

40

10.2.4 Mcu_PllStatusTypes
Name: Mcu_PllStatusType

Type: Enumeration

Range:

MCU_PLL_LOCKED PLL is locked

MCU_PLL_UNLOCKED PLL is unlocked.

MCU_PLL_STATUS_UNDEFINED PLL status is unknown

Description: Status value returned by the API Mcu_GetPllStatus.

 Note: As per CPU manual Mcu_GetPllStatus API is not supporting the PLL clock implementation.
 Hence Mcu_GetPllStatus is returning always MCU_PLL_LOCKED Status.

10.2.5 Mcu_RamStateType
Following are the type definitions which are specific to R4.0 used by the MCU

Driver module:

Name: Mcu_RamStateType

Type: Enumeration

Range:

MCU_RAMSTATE_INVALID RAM State is valid.

MCU_RAMSTATE_VALID RAM State is invalid.

Description: Status value returned by the API Mcu_GetRamState

10.2.6 Mcu_ResetType
Name: Mcu_ResetType

Type: Enumeration

Range:

 MCU_POWER_ON_CLEAR_RST

 MCU_PIN_RST

 MCU_SW_RST

 MCU_WDT_RST

 MCU_LOCK_STEP_CORE_RST

 MCU_CLMA0_UPPER_LIMIT_RST

 MCU_CLMA0_LOWER_LIMIT_RST

 MCU_CLMA2_UPPER_LIMIT_RST

 MCU_CLMA2_LOWER_LIMIT_RST

 MCU_CLMA1_UPPER_LIMIT_RST

 MCU_CLMA1_LOWER_LIMIT_RST

 MCU_CLMA3_UPPER_LIMIT_RST

 MCU_CLMA3_LOWER_LIMIT_RST

 MCU_LRAM_ECC2_ADDPTY_RST

 MCU_GRAM_ECC2_ADDPTY_RST

 MCU_CASHE_RAM_ECC2_RST

 MCU_CFLH_ECC2_ADDPTY_RST

 MCU_DATA_FLSH_ECC2_RST

 MCU_DTS_RAM_ECC2_RST

 MCU_CSIH_RAM_ECC2_RST

 MCU_CAN_RAM_ECC2_RST

 MCU_FLXR_RAM_ECC2_RST

 MCU_MODE0_RST

 Application Programming Interface Chapter 10

41

 MCU_MODE1_RST

 MCU_MODE2_RST

 MCU_PEGUARD_RST

 MCU_GRAM_GUARD_RST

 MCU_PBUSGUARD_RST

 MCU_SAR_ADC_PTY_RST

 MCU_DATA_PRTY_RST

 MCU_ECM_COMP_RST

 MCU_LVI_RST

 MCU_TEMP_SENSE_RST

 MCU_DMA_TRANSF_RST

 MCU_DMA_REG_PROTECT_RST

 MCU_LRAM_ECC1_PTY_RST

 MCU_GRAM_ECC1_RST

 MCU_CFLH_ECC1_RST

 MCU_DATA_FLSH_ECC1_RST

 MCU_DTS_RAM_ECC1_RST

 MCU_ALL_PERI_RAM_ECC1_RST

 MCU_BIST_ECC1_RST

 MCU_BIST_ECC2_RST

 MCU_FACI_TRANSF_RST

 MCU_ECM_DELY_OVRFLW_RST

 MCU_RESET_UNDEFINED

 MCU_RESET_UNKNOWN

 Description: Type of reset supported by the hardware

Note:
1. All RAM related ECM error sources are enabled for maskable interrupts only after Ram

initialization.
2. User should configure only one ECM event for each ECM error source at a time priority

level for the ECM event should be as follow:

 Internal Reset

 Maskable Interrupt

 Non Maskable Interrupt

10.2.7 Mcu_ClmaIndexType
Name: Mcu_ClmaIndexType

Type: Enumeration

Range:

 MCU_CLMA0 CLMA0

 MCU_CLMA1 CLMA1

 MCU_CLMA2 CLMA2

 MCU_CLMA3 CLMA3

Description: Variable of this type is used to pass in Mcu_ClmaSelfDiagnosticTest API

 Chapter 10 Application Programming Interface

42

10.2.8 Mcu_ModeType

Name: Mcu_ModeType

Type: uint8

Range: 0 to 2

Description: Type definition for Mcu_ModeType used by the API Mcu_SetMode.

 Note: As per CPU Manual Mcu_SetMode API is not supporting for any standby mode.
 Hence the Mcu_ModeType parameter is unused for P1x MCU module implementation.

10.3. Function Definitions

Table 10-1 API Provided by MCU Driver Component

Sl. No API’s name

1. Mcu_Init

2. Mcu_InitRamSection

3. Mcu_InitClock

4. Mcu_DistributePllClock

5. Mcu_GetPllStatus

6. Mcu_GetResetReason

7. Mcu_GetResetRawValue

8. Mcu_PerformReset

9. Mcu_SetMode

10. Mcu_GetRamState

11. Mcu_LockStepSelfDiagnosticTest

12.

Mcu_CvmSelfDiagnosticTest

13. Mcu_ClmaSelfDiagnosticTest

14. Mcu_EcmSelfDiagnosticTest

15. Mcu_SaveResetReason

Development And Production Errors Chapter 11

43

Chapter 11 Development And Production Errors

In this section the development errors that are reported by the MCU Driver

Component are tabulated. The development errors will be reported only when

the pre-compiler option McuDevErrorDetect is enabled in the configuration.

The production code errors are not supported by MCU Driver Component.

11.1. MCU Driver Component Development Errors

The following table contains the DET errors that are reported by MCU Driver

Component. These errors are reported to Development Error Tracer Module

when the MCU Driver Component APIs are invoked with wrong input

parameters or without initialization of the driver.

Table 11-1 DET Errors of MCU Driver Component

Sl. No. 1

Error Code MCU_E_PARAM_CONFIG

Related API(s) Mcu_Init

Source of Error When the API service is called without module initialization.

Sl. No. 2

Error Code MCU_E_PARAM_CLOCK

Related API(s) Mcu_InitClock

Source of Error When Clock Setting is not within the settings defined in the configuration data

structure.

Sl. No. 3

Error Code MCU_E_PARAM_RAMSECTION

Related API(s) Mcu_InitRamSection

Source of Error When RamSection is not within the sections defined in the configuration data structure.

Sl. No. 4

Error Code MCU_E_PLL_NOT_LOCKED

Related API(s) Mcu_DistributePllClock

Source of Error When PLL is not locked.

Sl. No. 5

Error Code MCU_E_UNINIT

Related API(s) Mcu_InitRamSection, Mcu_InitClock, Mcu_DistributePllClock, Mcu_GetPllStatus,

Mcu_GetResetReason, Mcu_GetResetRawValue, Mcu_PerformReset,

Mcu_SetMode, Mcu_GetRamState

Source of Error When the APIs are invoked without the initialization of the MCU Driver Component.

Sl. No. 6

Error Code MCU_E_INVALID_DATABASE

Related API(s) Mcu_Init

Source of Error When the API is invoked with no database.

Sl. No. 7

Error Code MCU_E_PARAM_MODE

Related API(s) Mcu_SetMode

Source of Error When the API is invoked with invalid MCU mode.

 Chapter 11 Development And Production Errors

44

11.2. MCU Driver Component Production Errors

In this section the DEM errors identified in the MCU Driver component are
listed. MCU Driver component reports these errors to DEM by invoking
Dem_ReportErrorStatus API. This API is invoked, when the processing of the
given API request fails.

Table 11-2 DEM Errors of MCU Driver Component

Sl. No. 1

Error Code MCU_E_CLOCK_FAILURE

Related API(s) Mcu_InitClock

Source of Error When there is failure of the monitored clock frequency.

Sl. No. 2

Error Code MCU_E_WRITE_TIMEOUT_FAILURE

Related API(s) Mcu_PerformReset, Mcu_ProtectedWrite

Source of Error When writing to a write-protected register fails

Sl. No. 3

Error Code MCU_E_CVM_SELFDIAG_FAILURE

Related API(s) Mcu_CvmSelfDiagnosticTest

Source of Error When there is failure CVM self-diagnostic test.

Sl. No.

4

Error Code MCU_E_CLM_SELFDIAG_FAILURE

Related API(s) Mcu_ClmaSelfDiagnosticTest

Source of Error When there is failure CLMA self-diagnostic test.

Sl. No.

5

Error Code MCU_E_ECM_SELFDIAG_FAILURE

Related API(s) Mcu_EcmSelfDiagnosticTest

Source of Error When there is failure ECM self-diagnostic test.

 Memory Organization Chapter 12

 45

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be met

for proper functioning of MCU Driver Component software.

Figure 12-1 MCU Driver Component Memory Organization

ROM Section MCU Driver Component

Library Object es
RAM ect

MCU Driver code related to APIs is placed in

this memory.

Segment Name:

MCU PUBLIC_CODE_ROM

MCU Driver code related to internal
functions are placed in this memory

Segment Name:

MCU_PRIVATE_CODE_ROM

MCU Driver code related to ISR functions are

are placed in this memory

Segment Name:

MCU_START_SEC_CODE_FAST

Global RAM of unspecific size required for

MCU driver functioning.

Segment Name:

NOINIT_RAM_UNSPECIFIED

Global 8-bit RAM initialized by MCU Driver.

Segment Name:

NOINIT_RAM_8BIT

Global 8-bit RAM to be initialized by start-

up code

Segment Name:

RAM_8BIT

X1

X2

X3

Y1

Y2

Y3

Tool Generated Files

The const section (for MCU configuration

structure of type “Mcu_ConfigType”) in the file

Mcu_PBcfg.c is placed in this memory.

Segment Name:
MCU_CFG_DBTOC_UNSPECIFIED

The const section (other than

MCU Configuration structure) in the file

Mcu_PBcfg.c is placed in this memory.

Segmentname:

MCU_CFG_DATA_UNSPECIFIED

The const section in the file Mcu_Pbcfg.c is

placed in this memory.

Segment Name:
CONST_ROM_UNSPECIFIED

X4

X5

X6

Global RAM of unspecific size required for

MCU Driver functioning. The Generation tool

allocates this RAM.

Segment Name:
MCU_CFG_RAM_UNSPECIFIED

Y4

44

 Chapter 12 Memory organization

46

 ROM Section (X1, X2, X3, X4, X5 and X6):

MCU_PUBLIC_CODE_ROM (X1): API(s) of MCU Driver Component, which

can be located in code memory.

MCU_PRIVATE_CODE_ROM (X2): Internal functions of MCU Driver
Component code that can be located in code memory.

MCU_START_SEC_CODE_FAST (X3): Interrupt functions of MCU Driver
Component code that can be located in code memory.

MCU_CFG_DBTOC_UNSPECIFIED (X4): This section consists of MCU

Driver Component database table of contents generated by the MCU Driver

Component Generation Tool. This can be located in code memory.

MCU_CFG_DATA_UNSPECIFIED (X5): This section consists of MCU

Driver Component constant configuration structures. This can be located in

code memory.

CONST_ROM_UNSPECIFIED (X6): This section consists of MCU Driver

Component constant structures used for function pointers in MCU Driver

Component. This can be located in code memory.

RAM Section (Y1, Y2, Y3 and Y4):

NOINIT_RAM_UNSPECIFIED (Y1): This section consists of the global RAM

variables that are used internally by MCU Driver Component. This can be

located in data memory.

NOINIT_RAM_8BIT (Y2): This section consists of the global RAM variables of
8-bit size that are used internally by MCU Driver Component. This can be
located in data memory.

RAM_1BIT (Y3): This section consists of the global RAM variables of 1-bit

size that are initialized by start-up code and used internally by MCU Driver

Component. This can be located in data memory.

MCU_CFG_RAM_UNSPECIFIED (Y4): This section consists of the global

RAM variables that are generated by MCU Driver Component Generation

Tool. This can be located in data memory.

Remark

• X1, X2, Y1, Y2 and Y3 pertain to only MCU Driver Component and do not

include memory occupied by Mcu_PBcfg.c file generated by MCU Driver Component

Generation Tool.

User must ensure that none of the memory areas overlap with each other. Even

„debug‟ information should not overlap.

 P1M Specific Information Chapter 13

47

Chapter 13 P1M Specific Information

P1M supports following devices:

 R7F701304
 R7F701305
 R7F701310
 R7F701311
 R7F701312
 R7F701313
 R7F701314
 R7F701315
 R7F701318
 R7F701319
 R7F701320
 R7F701321
 R7F701322
 R7F701323

13.1. Interaction between the User and MCU Driver Component

The details of the services supported by the MCU Driver Component to the

upper layers users and the mapping of the channels to the hardware units is

provided in the following sections:

13.1.1. Translation Header File

The P1x_translation.h translation header file supports following devices:

 R7F701304
 R7F701305

 R7F701310
 R7F701311
 R7F701312
 R7F701313
 R7F701314
 R7F701315
 R7F701318
 R7F701319
 R7F701320
 R7F701321
 R7F701322
 R7F701323

13.1.2. ISR Function

The table below provides the list of handler addresses corresponding to the

hardware unit ISR(s) in MCU Driver Component. The user should configure

the ISR functions mentioned below:

 Chapter 13 P1M Specific Information

48

Table 13-1 ISR For MCU

Interrupt Source Name of the ISR Function

INTECM

MCU_FEINT_ISR

MCU_ECM_EIC_ISR

13.1.3. Parameter Definition File

 Parameter definition files support information for P1M

Table 13-2 PDF information for P1M

PDF Files Devices supported

R403_MCU_P1M_04_05.arxml 701304, 701305

R403_MCU_P1M_10_to_15_18_to_23.arx
ml

701310, 701311, 701312, 701313,
701314, 701315, 7013018, 701319,
701320, 701321, 701322, 7013023

13.2. Sample Application

13.2.1 Sample Application Structure

The Sample Application is provided as reference to the user to understand

the method in which the MCU APIs can be invoked from the application.

G eneri c

A U T O S A R
T Y P E S C O M P I L E R

R H 8 5 0
T Y P E S

D evices

P 1 x

M CU
S ample

 Application

S T U B

D e t

S T U B

D e m

S T U B

S chM

S T U B

O s

 Figure 13-1 Overview of MCU Driver Sample Application

P1M Specific Information Chapter 13

49

The Sample Application of the P1M is available in the path:

X1X\P1x\modules\mcu\sample_application

The Sample Application consists of the following folder structure:

X1X\P1x\modules\mcu\definition\<AUTOSAR_version>\<SubVariant>

 \R403_MCU_P1M_04_05.arxml
 \R403_MCU_P1M_10_to_15_18_to_23.arxml

X1X\P1x\modules\mcu\sample_application
\<SubVariant>\<AUTOSAR_version>

\src\Mcu_PBcfg.c
\include\Mcu_Cfg.h
\include\Mcu_Cbk.h
\include\Mcu_Reg.h

\config\App_MCU_P1M_701304_Sample.arxml
\config\App_MCU_P1M_701304_Sample.html
\config\App_MCU_P1M_701304_Sample.one

\config\App_MCU_P1M_701305_Sample.arxml
\config\App_MCU_P1M_701305_Sample.html
\config\App_MCU_P1M_701305_Sample.one

\config\App_MCU_P1M_701310_Sample.arxml
\config\App_MCU_P1M_701310_Sample.html
\config\App_MCU_P1M_701310_Sample.one

\config\App_MCU_P1M_701311_Sample.arxml
\config\App_MCU_P1M_701311_Sample.html
\config\App_MCU_P1M_701311_Sample.one

\config\App_MCU_P1M_701312_Sample.arxml
\config\App_MCU_P1M_701312_Sample.html
\config\App_MCU_P1M_701312_Sample.one

\config\App_MCU_P1M_701313_Sample.arxml
\config\App_MCU_P1M_701313_Sample.html
\config\App_MCU_P1M_701313_Sample.one

\config\App_MCU_P1M_701314_Sample.arxml
\config\App_MCU_P1M_701314_Sample.html
\config\App_MCU_P1M_701314_Sample.one

\config\App_MCU_P1M_701315_Sample.arxml
\config\App_MCU_P1M_701315_Sample.html
\config\App_MCU_P1M_701315_Sample.one

\config\App_MCU_P1M_701318_Sample.arxml
\config\App_MCU_P1M_701318_Sample.html
\config\App_MCU_P1M_701318_Sample.one

\config\App_MCU_P1M_701319_Sample.arxml
\config\App_MCU_P1M_701319_Sample.html
\config\App_MCU_P1M_701319_Sample.one

\config\App_MCU_P1M_701320_Sample.arxml
\config\App_MCU_P1M_701320_Sample.html
\config\App_MCU_P1M_701320_Sample.one

Chapter 13 P1M Specific Information

50

\config\App_MCU_P1M_701321_Sample.arxml
\config\App_MCU_P1M_701321_Sample.html
\config\App_MCU_P1M_701321_Sample.one

\config\App_MCU_P1M_701322_Sample.arxml
\config\App_MCU_P1M_701322_Sample.html
\config\App_MCU_P1M_701322_Sample.one

\config\App_MCU_P1M_701323_Sample.arxml
\config\App_MCU_P1M_701323_Sample.html
\config\App_MCU_P1M_701323_Sample.one

In the Sample Application all the MCU APIs are invoked in the following

sequence:

• The API Mcu_Init is invoked with a valid database address for the proper

initialization of the MCU Driver, all the MCU Driver control registers and

RAM variables will get initialized after this API is called.

• The API Mcu_InitRamSection is invoked to initialize the RAM section wise

as provided from the configuration structure.

• The API Mcu_InitClock is invoked to initialize the clock sources Main Osc,

High Speed Internal ring Oscillator.

• The API Mcu_GetPllStatus is invoked to provide the lock status of the

PLL. This API will return the PLLstatus as MCU_PLL_LOCKED or

MCU_PLL_UNLOCKED.

• The API Mcu_GetResetReason is invoked to read the reset type from

the hardware by checking the RESF register and if not supported,

returns MCU_POWER_ON_RESET. This API shall clear the reset

factor register.

• The API Mcu_GetResetRawValue is invoked to return reset type value

from the hardware register RESF

• The API Mcu_GetVersionInfo is invoked to get the version of the MCU

Driver module with a variable of Std_VersionInfoType, after the call of

this API the passed parameter will get updated with the MCU Driver

version details.

• The API Mcu_PerformReset invoked to microcontroller reset is

performed by accessing the software reset register.

• The API Mcu_SetMode is invoked to activate the MCU power modes.

Remark To unmask all resets „target pinmask k‟ command is used.

13.2.2 Building Sample Application

13.2.2.1. Configuration Example
This section contains the typical configuration which is used for measuring

RAM/ROM consumption, stack depth and throughput details.

P1M Specific Information Chapter 13

51

Configuration Details: App_MCU_P1M_701312_Sample.html

13.2.2.2. Debugging the Sample Application

Remark GNU Make utility version 3.81 or above must be installed and available in the

path as defined by the environment user variable “GNUMAKE” to complete

the build process using the delivered sample files.

Open a Command window and change the current working directory to “make”
directory present as mentioned in below path:

 “X1X\P1x\common_family\make\<compiler>”

Now execute the batch file SampleApp.bat with following parameters:

SampleApp.bat mcu <AUTOSAR_version> <Device_name>

• After this, the tool output files will be generated with the configuration

as mentioned in App_MCU_P1M_701312_Sample.html file available

in the path:

“X1X\P1x\modules\mcu\sample_application\<SubVariant>\<AUTOSAR_ve
rsion>\config\App_MCU_P1M_701312_Sample.html”

• After this, all the object files, map file and the executable file

App_MCU_P1M_Sample.out will be available in the output folder:

(“X1X\P1x\modules\mcu\sample_application\<SubVariant>

\obj\<compiler>”)

• The executable can be loaded into the debugger and the sample

application can be executed

Remark Executable files with „*.out‟ extension can be downloaded into the target

hardware with the help of Green Hills debugger.

• If any configuration changes (only post-build) are made to the ECU
Configuration Description files
“X1X\P1x\modules\mcu\sample_application\<SubVariant>\<AUTOSAR_versi
on>\config\App_MCU_P1M_701312_Sample.arxml”

• The database alone can be generated by using the following commands.

make –f App_MCU_P1M_Sample.mak generate_mcu_config

 make –f App_MCU_P1M_Sample.mak App_MCU_P1M_Sample.s37

• After this, a flash able Motorola S-Record file App_MCU_P1M_Sample.s37

is available in the output folder.

Note: The <Device_name> indicates the device to be compiled, which can be
701304, 701305, 701310, 701311, 701312, 701313, 701314, 701315, 701318,
701319, 701320, 701321, 701322, 701323.

13.3. Memory and Throughput
13.3.1. ROM/RAM Usage

The details of memory usage for the typical configuration, with DET disabled

as provided in Section 13.3.2.1 Configuration Example are provided in this

section.

Chapter 13 P1M Specific Information

52

Table 13-3 ROM/RAM Details without DET

Sl. No.

ROM/RAM

Segment Name
Size in bytes in

GHS

1. ROM MCU_PUBLIC_CODE_ROM

MCU_PRIVATE_CODE_ROM

MCU_FAST_CODE_ROM

MCU_CFG_DBTOC_UNSPECIFIED

MCU_CFG_DATA_UNSPECIFIED

ROM.RAM_1BIT

ROM.RAM_32BIT

3578

2788

1276

52

760

3

8

2. RAM RAM_UNSPECIFIED

RAM_1BIT

NOINIT_RAM_8BIT

RAM_32BIT

NOINIT_RAM_UNSPECIFIED

MCU_CFG_RAM_UNSPECIFIED

16

3

0

8

16

0

The details of memory usage for the typical configuration, with DET enabled

and all other configurations as provided in 13.3.2.1 Configuration Example

are provided in this section.

Table 13-4 ROM/RAM Details with DET

Sl. No.

ROM/RAM

Segment Name
Size in bytes in

GHS

1. ROM MCU_PUBLIC_CODE_ROM

MCU_PRIVATE_CODE_ROM

MCU_FAST_CODE_ROM

MCU_CFG_DBTOC_UNSPECIFIED

MCU_CFG_DATA_UNSPECIFIED

ROM.RAM_1BIT

ROM.RAM_32BIT

3566

2788

1276

52

760

3

8

P1M Specific Information Chapter 13

53

Sl. No.

ROM/RAM

Segment Name
Size in bytes in

GHS

2. RAM RAM_UNSPECIFIED

RAM_1BIT

NOINIT_RAM_8BIT

RAM_32BIT

NOINIT_RAM_UNSPECIFIED

MCU_CFG_RAM_UNSPECIFIED

16

3

0

8

16

0

13.3.2. Stack Depth

The worst-case stack depth for MCU Driver Component for the typical

configuration provided in Section 13.3.2.1 Configuration Example is

approximately 64 bytes.

13.3.3. Throughput Details

The throughput details of the APIs for the configuration mentioned in the

Section 13.3.2.1 Configuration Example is as given below.

Table 13-5 Throughput Details of the APIs

Sl. No.

API Name

Throughput in

microseconds in GHS

Remarks

1. Mcu_Init 45.5391 -

2. Mcu_InitClock 154.55 -

3. Mcu_GetPllStatus 0.25 -

4. Mcu_InitRamSection 9.137 -

5. Mcu_GetResetReason 0.25 -

6. Mcu_GetResetRawValue 0.25 -

7. Mcu_GetVersionInfo 0.12 -

8. Mcu_GetRamState 0.562 -

9. Mcu_DistributePllClock 0.12

10. Mcu_SetMode 0.12 -

11. Mcu_PerformReset 0.12 -

12. Mcu_FEINT_ISR 0.437 -

Chapter 13 P1M Specific Information

54

Release Details Chapter 14

55

Chapter 14 Release Details

MCU Driver Software

Version: 1.0.3

Chapter 14 Release Details

56

57

Revision History

Sl. No. Description Version Date

1. Initial Version 1.0.0 18-Oct-2013
2. Following changes are made:

1. Chapter 2 is updated for reference documents.

2. Section 4.3 is updated for Exclusive Area name change.

3. Section 4.4 is updated for adding user and supervisor mode
details for new APIs.

4. Chapter 6 is updated for Register details used in APIs.

5. Chapter 8 is updated for adding file description for tool
generated file „Mcu_Cbk.h‟.

6. Section 10.3 is updated for adding new APIs in function
definition.

7. Section 11.1 is updated for adding DET error.

8. Chapter 13 and section 13.1.1 is updated for adding new
supported devices.

9. Section 13.2 is updated for change in compiler and linker version
details.

10. Section 13.3 is updated for adding latest configuration details for
supported devices.

11. Section 13.3.2 is updated for change in configuration example
for sample application testing.

12. Section 13.4 is updated for updating ROM/RAM, Stack and
Throughput details.

13. Chapter 14 is updated for increment in MCU Driver software
version.

1.0.1 30-Apr-2014

3. Following changes are made:

1. Chapter 4 is updated for adding a new section regarding RAM
Initialization.

2. Chapter 13 and section 13.3.1 is updated for removal of
unsupported devices.

1.0.2 09-May-2014

4. Following changes are made:

1. Chapter 2 is updated for referenced documents version.
2. Section 13.1.1 is updated for adding the device names.
3. Section 13.2 is updated for compiler, assembler and linker

details.
4. Section 13.3 is updated to add parameter definition file and

sample application configuration files for all P1M devices.
5. Chapter 14 is updated for MCU driver component version

information.

6. Deviation list is updated to add MCU_E_PARAM_POINTER
error for Mcu_GetVersioInfo API and AUTOSAR requirement.

1.0.3 20-Oct-2014

5 Following changes are made:

1. Chapters 7 to 11 updated to start at odd page.

2. Date in Revision History updated.

3. Document page numbers are corrected.

4. Chapter 11 updated to add MCU_E_PARAM_MODE DET.

5. Page number is removed from publication info page.

6. Section 13.2 is updated for compiler, assembler and linker details.

7. Chapter 8 is update to include rh850_types.h file.

8. Section 13.4 is updated for Memory and throughput details.

1.0.4 12-Dec-2014

58

6 Following changes are made:

1. New section, “4.7 Callout API” added to chapter 4.

2. Information regarding Interrupt vector table is added to “Section
4.1 General”.

3. As part of device support activity for R7F701304, R7F701305,
R7F701313, R7F701315, R7F701318 to R7F701323 updated
sections 3.1.1, 13.1, 13.2.

4. Removed section Compiler,Linker and Assembler in Chapter13.

5. Updated section 13.3 for memory and throughput

6. Copyright information has been changed to 2015

1.0.5 30-Apr-2015

59

AUTOSAR MCAL R4.0.3 User's Manual
MCU Driver Component Ver.1.0.5
Embedded User’s Manual

Publication Date: Rev.0.01, Apr 30, 2015

Published by: Renesas Electronics Corporation

SALES OFFICES http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2015 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3

User‟s Manual

	Chapter 1 Introduction
	1.1. Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration and Build Process
	3.1. MCU Driver Component Makefile

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. Data Consistency
	4.4. User Mode and Supervisor Mode
	4.5. Deviation List
	4.6. RAM Initialization
	4.7. Callout API

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction between the User and MCU Driver Component
	7.1. Services Provided By MCU Driver Component To User

	Chapter 8 MCU Driver Component Header And Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1. Imported Types
	10.1.1. Standard Types
	10.1.2. Other Module Types

	10.2. Type Definitions
	10.2.1 Mcu_ClockType
	10.2.2 Mcu_RawResetType
	10.2.3 Mcu_RamSectionType
	10.2.4 Mcu_PllStatusTypes
	10.2.5 Mcu_RamStateType
	10.2.6 Mcu_ResetType
	10.2.7 Mcu_ClmaIndexType

	10.3. Function Definitions

	Chapter 11 Development And Production Errors
	11.1. MCU Driver Component Development Errors
	11.2. MCU Driver Component Production Errors

	Chapter 12 Memory Organization
	Chapter 13 P1M Specific Information
	13.1. Interaction between the User and MCU Driver Component
	13.1.1. Translation Header File
	13.1.2. ISR Function
	13.1.3. Parameter Definition File

	13.2. Sample Application
	13.2.1 Sample Application Structure
	13.2.2 Building Sample Application
	13.2.2.1. Configuration Example
	13.2.2.2. Debugging the Sample Application

	13.3. Memory and Throughput
	13.3.1. ROM/RAM Usage
	13.3.2. Stack Depth
	13.3.3. Throughput Details

	Chapter 14 Release Details

