Nm_Gmlan_Gm
Technical Reference

Version 2.03.01

Authors Marco Pfalzgraf

Status Released

vector”

Technical Reference Nm_Gmlan_Gm

1 Document Information

1.1 History

vector’

mm_ Version [Remarks

M. Radwick
M. Radwick

Klaus Emmert
Ralf Fritz

Ralf Fritz/ Laura Winder
Ralf Fritz
Ralf Fritz

Ralf Fritz

Ralf Fritz

Markus Schwarz

Markus Schwarz
Marco Pfalzgraf

Marco Pfalzgraf

Marco Pfalzgraf
Marco Pfalzgraf

Marco Pfalzgraf

Marco Pfalzgraf

©2015, Vector Informatik GmbH

2002-06-14
2002-12-24

2004-02-23

2004-10-12
2005-05-09
2005-08-02

2006-10-02

2007-03-23

2007-12-06

2010-07-16
2012-08-15

2012-08-31

2012-10-26
2013-05-15

2015-01-19

2015-12-18

1.1

1.2

1.3
1.4
1.5

1.6

1.7

2.00

2.00.01
2.01.00

2.02.00

2.02.01
2.02.02

2.03.00

2.03.01

creation

Incorporate comments from Armin
Happel.

Added Introduction, Overview and
Functional sections.

New Layout.

Minor changes.

Minor changes in API chapter.
Data types changed

Macros to access the return value of
IINwmlIsActiveVN added

Changed description of bus-off recovery
time.

Function description of
[INwmGetActiveListVN changed.
Calibration section removed
Description of AppINwmReinitRequest
corrected.

ESCAN00021184

added description for GENy

adapted to new template

changed order of chapters

ESCANO0030766: added chapter 4.5

ESCAN00055995,
ESCAN00055998:
adapted chapters 6.2 and 6.3.3

ESCANO00054683: Corrected code
example in chapter 5.3.2 ‘Periodic
tasks’

ESCANO00060804: Added chapter 4.11
Added chapter 2

ESCANO00067275: Adapted description
of callback AppINwmReinitRequest

ESCAN00080646: Added API
description for context switch support

ESCANO00069542: Adapted description
about activation of init active VNs

ESCANO00087111: Added limitation to
[INwmTask API description and chapter
5.3.2.

Version: 2.03.01 2/59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VQCtOf

Table 1-1 History of the Document

1.2 Reference Documents

No___ Source | Titi Version

[1] GM Communication Strategy Specification GMW 3104 1.5

[2] GM RSM Fault Detection and Mitigation Algorithm -

[3] GM RSM GMLAN Handler Robustness Changes V2 -

[4] GM RSM GMLAN Handler NM Race Condition Resolution -

[5] Vector Technical Reference GMLAN Calibration 2.01.00

Table 1-2 Reference Documents

f Please note
(: Lﬁ We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
guestionnaire.

©2015, Vector Informatik GmbH Version: 2.03.01 3/59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VeCtOf

Contents
1 Document Informationc 2
1.1 [115 (o) YU 2
1.2 Reference DOCUMENTS ... 3
2 Component HiStOryo 7
2.1 Nm_Gmlan_Gm Version 4.02.00ooii i 7
2.1.1 What IS NEW? ..o e e e eeaees 7
21.2 What has changed?cooi i e 7
2.2 Nm_Gmlan_Gm Version 4.03.00ooiiiiiiiiiiiciee e e e 7
2.2.1 What IS NEW? ... e e e e e eeaee 7
222 What has changed?coooi i 7
3 INtrOAUCLION...... ... e 8
3.1 (I)T g 0] o[=Y o | PP P PP PPPPPPPPPPPI 9
3.2 NIM FEALUIES ..ot e e e e e e e e e e e ees 10
3.3 AV NI OT0 g o= o | PO 11
4 Functional DescCription ... 12
4.1 Y] = (= 12
4.2 o]0 P= @] oT=T = 11} o AN 13
4.3 Low Voltage Tolerant MOde.............oovvviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 14
4.4 HIgh LOad ... 15
4.5 HighSpeed Mode ... 15
4.6 Normal Communication Halted Mode..............cccccoviiiiiiiii 16
4.7 BUS Off e 16
4.8 HLVW Failure Handling..........cooooi 16
4.9 VN Activation Failure...........cooo oo 17
410 VNMF MESSAJEcoiiiiiiiiiiiiiee e 18
4.11 Fault Detection and Mitigation Algorithm ... 18
4111 VN ACtiVE FaUlt ..o 19
4.11.2 Network Active Fault ... 19
4.11.3 No Sleep Confirmation Fault ... 19
B INtegration ... e 21
5.1 INVOIVE FlES 21
5.2 Necessary Steps to Integrate the NM in Your Project............ccccviieiiiiiiniiiinnn. 22
5.3 Necessary Stepsto Runthe NM ..., 23
5.3.1 INIEIAlIZALION ... e 23

©2015, Vector Informatik GmbH Version: 2.03.01 4/59

Technical Reference Nm_Gmlan_Gm VeCtOf

5.3.2 PeriodiCc tasKS......cccuuii e 23

5.4 Operating SYSIEMSuuiii i e 24

5.5 Other ASPECES .. e e 24

6 Configuration ... 25
6.1 L0701 o Te7= o) S0 USSP 25

6.2 Data base attributes...........cooii i 25

6.3 GEINY < e e e e e e aaaaaaana 28
6.3.1 LT T - | SN 28

6.3.2 System-specific Configuration Options............cccevvviiieiii e, 29

6.3.3 Channel-specific Configuration Optionsccccevvviiiiiieeinieiiin. 30

6.3.4 VN-specific Configuration OptionsS...........cooevviiiiiiiiiiiicii e, 31

T APIDeSCHIPLION.. ... e e e e e e e e e an 32
71 (7= =T = | PSRRI 32

7.2 CommMON Parameter.........cooiiiiiiiii e 32

7.3 SErviCe FUNCHONSciiii e et 33

7.4 Callback FUNCHONS.......coi i e e e e aaaees 43

7.5 Calibration Constants...........cccuiiiiiiii i 56

8 Glossary and Abbreviations ... 57
8.1 GIOSSAIY ..eeiiiiiiiieiee ettt 57

8.2 ADDIeviationSo i 58

(¢ T 07 o | - Vo2 RO P 59

©2015, Vector Informatik GmbH Version: 2.03.01 5/59

Technical Reference Nm_Gmlan_Gm VeCtOf

lllustrations

Figure 3-1 Example for Some ECU's in @a Modern Car...............uuuveiiiiiiiiiiiiiiiiiiiiiiiinnnns 8
Figure 3-2 Layer model of Vector's CAN communication modules CANbedded........... 9
Figure 4-1 States Of NIM ... e 12
Figure 4-2 VNMF Message Layout ..o 18
Figure 6-1 GENY OVEIVIBW ...ttt e e e a e 28
Figure 6-2 System-specific Configuration Optionscccooviiiiiiii e, 29
Figure 6-3 Channel-specific Configuration OptioNS................uuviiiiiiiiiiiiiiiiiiiiiies 30
Figure 6-4 VN-specific Configuration Options ... 31
Tables

Table 1-1 History of the DOCUMENTuuuiiiiiiiiiiiiiiiiiiiiiiiiiii bbb eeeananee 3
Table 1-2 Reference DOCUMENESccoiiiiiiiiie e 3
Table 5-1 StAtIC FlES .. i 21
Table 5-2 DYyNamiC FIlES ... 21

©2015, Vector Informatik GmbH Version: 2.03.01 6/59

Technical Reference Nm_Gmlan_Gm V@CtOf

2 Component History

This chapter describes the implementation history of the Vector Network Management for
General Motors (since version 4.02.00).

2.1 Nm_Gmlan_Gm Version 4.02.00
In this version robustness changes were implemented according to [3].

211 Whatis new?

> The signal/node supervision timer is not started for a calibrateable time ‘Sleep
Transition Time’ after VN activation.

> Additional ‘Sleep transition delay time’ was introduced as a calibrateable value.

Please refer to [5] “Technical Reference GMLAN Calibration’ for more information about
these new calibrateable values.

2.1.2 What has changed?

> |nitially active VNs are no more activated at power on. They are only activated by a
High Level Voltage Wakeup (HLVW).

2.2 Nm_Gmlan_Gm Version 4.03.00

In this version robustness changes were implemented according to [2] and [4].
2.2.1 Whatis new?

> Introduced Fault Detection and Mitigation Algorithm (see chapter 4.11)

2.2.2 What has changed?

> Removed the possibility that the GMLAN handler enters a loop where it transmits a
HLVW frame every 100ms (according to [4]).

©2015, Vector Informatik GmbH Version: 2.03.01 7159

Technical Reference Nm_Gmlan_Gm V@CtOf

3 Introduction

Nowadays cars are growing to become more and more complex systems. The functionality
of a modern car is not dominated by mechanical components anymore. Electrical Control
Units (ECU), sensors and actors became irreplaceable parts of a car. They are responsible
for the reasonable functions of the power train, the chassis and the body of a car. An
example for some ECUs is shown in Figure 3-1

In many ways the functionality of an ECU in a car depends on information provided by
other ECUs. For example the ECU of the dashboard needs the number of revolutions per
time of the wheels to display the car’s speed. As a result communication between the
ECUs is a significant component of a modern vehicle.

Figure 3-1 Example for Some ECU's in a Modern Car

The communication between ECUs should essentially remain encapsulated. The
application working on an ECU should not need to know how to transmit or receive data
from other ECUs. Therefore Vector Informatik GmbH provides a set of modules for the
communication of ECUs by the CAN bus.

These communication modules are called CANbedded. They relieve the application of its
communication assignment including the exchange of simple data, diagnostic data, NM
data, calibration data and more. This document is concerned with how ECU’s interact via
NM.

©2015, Vector Informatik GmbH Version: 2.03.01 8/59

Technical Reference Nm_Gmlan_Gm VQCtOf

3.1 Layer Concept

The implementation of the Network Management (NM) is intended to relieve the
application of communication tasks. The NM is one of the communications modules of
CANbedded offered by Vector Informatik GmbH. It is adapted to the specific requirements
of General Motors. The CANbedded communication modules are organized in layers as
shown in Figure 3-2. They consist of the Interaction Layer, the Network Management, the
Transport Protocol, the Diagnosis Layer, the CAN Calibration Protocol and the CAN Driver
(Data Link Layer).

RECAN
Application
| : . : |
| Diagnostics
: Layer
i B | Universal
| Measure-
Interaction | | [Network ment
Layer : Management | | And
Communication | Calibration
Control ' | Transport Protocol Protocol
Layer :
CAN Driver
CAN Controller
Transceiver
CAN Bus

Figure 3-2 Layer model of Vector's CAN communication modules CANbedded

The availability of the CAN bus is controlled by the NM. The NM provides the following
features:

> Control the start-up and the shut-down of the IL
> Control the activation and deactivation of VNs
> Control the peripheral hardware (CAN Controller and Bus Transceiver)

> Error recovery after BusOff

©2015, Vector Informatik GmbH Version: 2.03.01 9/59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm V@CtOf

The Diagnosis Layer handles diagnostic services by CAN. It is used for the evaluation of
the diagnosis requests and for the exception handling of invalid conditions like unknown
services. To provide the diagnosis state, often rather long data, the Transport Protocol is
used.

The CAN Calibration Protocol is specially designed for calibration and measurement data
acquisition in ECUs. It has been defined by the European ASAP task force as a CAN
based high speed interface for measurement and calibration systems (MCS).

If any information which has to be transmitted by the CAN bus does not fit into a single
data frame because the data length exceeds 8 bytes, the Transport Protocol splits the data
into several CAN messages using the same identifier.

The CAN Driver provides a mostly hardware independent interface to the higher
communication layers. This enables the hardware independent implementation of the latter
modules and the target platform independent reuse of them.

3.2 NM Features
GM’s NM behavior is completely specified in [1].

The NM is used to control the start-up, shutdown, and error handling for the ECU. NM
introduces the concept of a Virtual Network (VN), which is used by the system designer to
divide the signals sent and received by an ECU into related functional groups. Use of VNs
help conserve power and CAN bus bandwidth by permitting transmission and reception of
only the signals and messages that are required at a given time. VNs may be individually
active or inactive. The state of all VNs is communicated between ECUs using a Virtual
Network Management Frame (VNMF). If a VN is active, then the ECU will be able to send
and receive the signals associated with the VN. The NM will defer application requests to
send a signal until one of its associated VNs is activated. If all the VNs of an ECU become
inactive, then the ECU application is given the opportunity to go to sleep, thus conserving
power.

The primary responsibilities of the NM are shown below:

> Keep VNs active on other nodes by sending out VNMF messages at fixed time
intervals

> Activate relevant VNs upon receipt of VNMFs.
> Restart VN timer on reception and transmission of VNMF
> Count down the VN timer and deactivate VN when VN timer expires

> Respond to and recover from bus failures.

©2015, Vector Informatik GmbH Version: 2.03.01 10/59

Technical Reference Nm_Gmlan_Gm V@CtOf

3.3 VN Concept

VNs are defined by the platform engineer to associate signals that are distributed among
different ECUs in the CAN network. Every signal that may be exchanged between ECUs is
associated with one or more VNs. The associations are defined using specific attributes in
the message database. The purpose of this association is to minimize the number of
messages being transmitted on the CAN bus at any given time. If there are no ECUs that
require any signals associated with a VN, then the VN is deactivated, and transmission of
those signals is halted.

ECUs are not required to participate in all VNs. The VNs an ECU participates in are
determined by configuration settings given in the database. VN participation should be
configured according to the CTS documentation released by GM.

There are four ways in which an ECU may be associated with a VN. The possible
relationships are:

> Activator (Network Activated): The ECU, in response to some application related
event, needs to send and/or receive signals. The application directs NM to activate
one or more VNs. The ECU begins transmitting VNMF messages to notify other ECUs
of the activation.

> Remotely Activated: The ECU is required respond to VN activations that are initiated
by other ECUs. Remote activations are initiated in response to a received VNMF
message.

> Shared Local: The ECU responds to an input event common to all modules that
participate in the VN.

> |nitially Active: The VN is temporarily activated by NM upon reception or transmission
of a HLVW message.

Each VN may be configured as any combination of Activator, Remotely Activated, and
Initially Active. However, if the VN is Shared Local, then the Activator and Remote options
are excluded. The reason is related to how the activation is communicated to other ECUs.
Normally, the NM will send a VNMF message on the CAN bus when an application
requests that a VN be activated. Since ECUs participating in a Locally Activated VNs all
see the same input event at the same time, there is no need to send or expect a VNMF
message.

©2015, Vector Informatik GmbH Version: 2.03.01 11/59

Technical Reference Nm_Gmlan_Gm VeCtOf

4 Functional Description

4.1 NM States

The behavior of VNs is defined for three primary states: COMM-OFF, COMM-ENABLED,
and COMM-ACTIVE.

Start
Comm Off

— s I—
Comm. Enablz Timer
Expires{d sea) HLVW Reaeived

(— a—

Comm Enabled|

Last Assogiated
WM Deagtivated WM Activated

— Comm Active [(+—

Figure 4-1 States of NM

COMM-OFF indicates that all VNs are deactivated, and that the CAN controller has been
disabled. The application developer has the option to put the ECU micro-controller to
sleep. During this state, no messages on the CAN bus can be processed. There are two
ways to wake up the communications kernel: The application activates a VN, or, another
ECU transmits a HLVW message. The NM responds to both of these events by entering
the COMM-ENABLED state.

COMM-ENABLED is an intermediate state. While in this state, the communications kernel
will process only one message: a VNMF. The VNMF message identifies all of the VNs that
are remotely active. The NM examines the contents of a VNMF to determine if the ECU
participates in any of the active VNs. If any relevant VNs are activated as a result of a
VNMF message, or due to an application request, then NM will enter the COMM-ACTIVE
state. If all relevant VNs remain inactive for a configured amount of time, the NM will return
to the COMM-OFF state.

The NM will remain in the COMM-ACTIVE state so long as any VN that the ECU
participates in is active. If the ECU application activates a (network-activated) VN, then NM
will periodically transmit a VNMF message. The NM will continue sending VNMFs until the
application deactivates all of the VNs that it started.

Reception of a VNMF is also used to keep VNs active. NM maintains a timer for each
remotely activated VN. The timer for a VN is reset to a fixed value each time a VNMF
message is received indicating that the VN is active. If the VNMF ceases to indicate that
the VN is active (or if it ceases to arrive), then the VN timer(s) will eventually reach zero.
When a timer reaches zero, NM will stop sending and receiving signals associated with the
VN.

NM will transition from the COMM-ACTIVE state to the COMM-ENABLED state when it
determines that all the VNs relevant to the ECU are inactive.

©2015, Vector Informatik GmbH Version: 2.03.01 12/59

Technical Reference Nm_Gmlan_Gm V@CtOf

4.2 Normal Operation

At power-up, the NM will initialize all VNs as inactive. Afterwards, NM will enter the
COMM-ENABLED state. After initialization, the application is free to activate any VN
configured as Activator or Locally Active. To activate a VN, the application invokes
I1NwmActivateVN (). Deactivation is accomplished using I1NwmDeactivateVN ().

Activation of a VN is affected by several factors. VNs configured as Activator or
Locally-Activated are completely under the control of the application. VNs activated by the
application will remain active until the application requests that the VN be deactivated. For
Locally-Activated VNs, transmission and reception of signals is halted immediately. VNs
configured as Activator are deactivated by NM 8 seconds after the application requests
deactivation.

When the application requests activation of an Activator VN, NM will check to see how
much time has elapsed since the last time a HLVW message has been sent. If the interval
is too large, NM will automatically send a HLVW message in order to wake up all the ECUs
on the network. NM will wait a short time (100ms) to give the other ECUs time to initialize,
and then transmit a VNMF to notify the other ECUs of the VN activation.

NM will activate all VNs configured as Initially Active whenever a HLVW message is
received. The VNs will remain active for 8 seconds and then automatically deactivate. If an
Initially Active VN is already active when a HLVW message is received, the HLVW will
reset the VN timers, allowing the Initially Active VNs to continue for 8 seconds after the
HLVW message was received.

©2015, Vector Informatik GmbH Version: 2.03.01 13/59

Technical Reference Nm_Gmlan_Gm V@CtOf

4.3 Low Voltage Tolerant Mode

Low Voltage Tolerant (LVT) mode is an optional feature intended to be used in situations
when it is possible to predict when the ECU’s voltage level will be low. In a low voltage
environment, communication errors between ECUs will be more frequent. The purpose of
LVT mode is to reduce the amount of time required to recover from the errors. LVT Mode is
a distributed operation: all active ECUs should be programmed to enter LVT mode when a
“‘LVT Master” ECU sends an entry request. The NM does not implement all the functions
needed to support LVT mode. ECUs are required to implement application-specific
behavior to completely support LVT mode. Please consult the CTS documentation for the
ECU to determine if the application is required to support LVT mode.

When LVT mode is active, the NM will not transmit any HLVW messages. Only VNMFs
needed to activate VNs will be transmitted (VNMFs needed to maintain active VNs will not
be transmitted). In addition, the timers that control deactivation of VNs and signal
supervision are disabled. As a result, active VNs will remain active until LVT mode is
disabled.

LVT mode is the default at power-up. If CAN-OFF during Low-Voltage Mode is enabled,
the application must exit Low Voltage mode before any messages can be transmitted.

Entry and exit from LVT mode is controlled by the ECU application via functions in the NM.
LVT mode is automatically in effect when NM leaves the COMM-OFF state. This implies
that the ECU responsible for LVT management (the “LVT Master”) must exit LVT mode
before activating the VN that carries the LVT exit signal. To enter LVT mode, call
[INwmEnterLowVoltageMode(). To enable transmission of HLVWsSs, call
[INwmEXxitLowVoltageMode().

The transmit path of the IL can also be disabled in LVT mode. The node will not send
messages associated with active and activated VNs in that case. This feature can be
enabled in the configuration.

LVT mode can be enabled in the configuration tool.

If enabled, the “CAN-Off during Low-Voltage Mode” option becomes available. The
CAN-Off option modifies the behavior when LVT mode is activated by the application. If the
CAN-Off option is selected, then ECU will stop sending all messages (instead of just
HLVW messages). This implies that the application will be unable to activate any Network
Activated VNs while LVT+CAN-Off mode is on.

©2015, Vector Informatik GmbH Version: 2.03.01 14 /59

Technical Reference Nm_Gmlan_Gm V@CtOf

4.4 High Load

Activation during High Load is another optional feature of NM. If the ECU configuration
includes this, then the application will have the ability to inhibit (and restore) VN activation.
If the application requests to activate a network activated VN (configured as Activator),
then NM will defer activation until the application informs NM to allow VN activation.
Requests to deactivate a deferred VN will clear the activation request. All outstanding
activation requests will be attempted by NM when the application allows activation.

The High Load option is enabled in the configuration tool. To enable this option, select “VN
Activation during high load” from the GMLAN Options tab. To inhibit VN activation, the
application should invoke IlINwminhibitActivationVN (), to restore activation, call
[INwmAIllowActivationVN () .

45 HighSpeed Mode

HighSpeed mode allows the ECU application to request an alternate communication
speed on the CAN bus. This is normally used in response to a diagnostics request to
download/flash calibration or program data.

Remote VN activation requests (via a received VNMF message) are ignored in HighSpeed
Mode.

HighSpeed mode is intended to be used only with single-wire CAN networks.
HighSpeed mode is available only if enabled in the configuration

When HighSpeed mode is enabled, the configuration tool provides two CAN initialization
objects (0=Standard, 1=HighSpeed). The CAN settings of these two initialization objects
determine the used baudrate for each mode. These settings are used to configure the
CAN controller hardware when a mode change occurs.

Typical baud rates are 33.333K for standard communication and 83.333K for HighSpeed
communication.

HighSpeed mode should only be activated after the application has requested
NormalCommunicationHalted mode.

To enter HighSpeed mode, the application calls INwmSetHispeedMode().
The standard communications rate is restored by invoking IINwmResetHispeedMode().

©2015, Vector Informatik GmbH Version: 2.03.01 15/59

Technical Reference Nm_Gmlan_Gm V@CtOf

4.6 Normal Communication Halted Mode

NormalCommunicationHalted (NCH) mode is wused to support diagnostics
communications. The application usually invokes this mode in response to a diagnostic
service request (DisableNormalCommunications). When the application requests this
mode, all VNs are deactivated. The diagnostics VN (VN 0) is activated. While in NCH
mode, all requests to activate a VN are denied.

The application should invoke [INwmNormalCommHalted() to halt normal
communications. Calling [INwmReturnToNormalMode () will restore normal
communications. Note that all VNs remain deactivated after returning to normal mode. The
application is responsible for re-activating any required VNs.

See also: GMW3110: GMLAN Enhanced Diagnostic Test Mode Specification

4.7 Bus Off

The CAN Data Link Layer specification requires that the CAN controller enters a BusOff
state in the event of too many transmit errors. The NM is notified of this event by the CAN
driver. In response to the first BusOff, the NM will re-initialize the CAN controller and
restart communications. Upon restart, NM will start the BusOff Recovery Timer. If a
subsequent BusOff event occurs before the timer expires, then the controller will be re-
initialized, but the transmit path will remain disabled until the timer reaches zero. After
enabling the transmit path, the NM will re-queue any messages pending transmission, and
restart the recovery timer.

After recovering from the BusOff event by re-initialization of the controller, it is possible to
receive signals from other ECUs.

If the application attempts to activate a Network Activated VN while NM is waiting to
recover from BusOff, the activation request will be deferred. Upon recovery, the VN
activation will attempted as normal.

If a remotely activated VN times out while waiting for BusOff recovery, then the VN will be
deactivated as normal. Deactivation requests made by the application during BusOff will
be granted, in which case messages associated with the VN that are pending transmission
will be de-queued.

The application can be configured to be notified about a BusOff (AppINwmBusoff()) and a
BusOff recovery (AppINwmBusoffEnd)().

The time required to recover from BusOff is also configurable. The value of “BusOff
recovery time” defines the recovery time in milliseconds. The default value is 3500ms for
body bus (single-wire) applications, and 110ms for powertrain (dual-wire) applications.

4.8 HLVW Failure Handling

On single-wire CAN networks, it is critical for the NM to confirm transmission of the HLVW
message when activating a VN. NM will retry transmission of the HLVW each time the NM
task is called for 100ms. If it fails, the CAN controller will be reset, and the activation is
retried three times.

©2015, Vector Informatik GmbH Version: 2.03.01 16 /59

Technical Reference Nm_Gmlan_Gm VeCtOf

4.9 VN Activation Failure

The application may be notified in the event of VN activation failures. There are two
notifications: VNMF Confirmation Timeout, and VN Activation Failed.

Activation of a Network Activated VN requires NM to transmit a VNMF to notify the other
ECUs. If NM is unable to transmit the VNMF over a configured time-period, the application
may be notified via the optional callback AppINwmVnmfConfirmationTimeout(). The
timeout time is determined by the value (in milliseconds) of the “VNMF confirmation time”.

In addition to the VNMF Confirmation Timeout, applications may select to be notified when
individual VNs fail to activate. This feature is configurable.

When enabled, the NM will invoke callback AppINwmVnActivationFailed() upon VN
activation failures.

©2015, Vector Informatik GmbH Version: 2.03.01 17159

Technical Reference Nm_Gmlan_Gm V@CtOf

4.10 VNMF Message

The NM communicates with the different ECUs via the VNMF. The composition of the
VNMF message is shown below:

VNMF messages always use an 11 bit CAN ID, defined by GM to be in the range 0x600 to
0x63F. VNMF messages contain 8 data bytes. The first data byte indicates the type of the
message: If bit 0 is set, then the message is a VNMF-Init message. Otherwise, the
message is a VNMF-Continue message. The remaining data bytes indicate which VN(s)
are active.

CAR Frame Id Byte O Byte 1- Byte 7
Constant | Device Id | Unused and Reserved |ritr
11000 ha-hi for future use Cantinue Virual Metwark |d Bits
h¥-b1 IndiE%tinn

Wirky 3l Metwork SActivation - &= 1 and2
Flalsfldl2f{2]2|o)7]lalsf[d]2]2]1]0
WN R WA

HEEFEEIEEE B ER

Figure 4-2 VNMF Message Layout

A VNMF-Init message is sent by NM whenever the application requests activation of one
or more Network-Activated VNs. The initialization message will identify all active VNs
managed by the ECU in addition to the new request(s).

Once the VNMF-Init message has been sent, NM will periodically send VNMF-Continue
messages to keep the other ECUs informed of the active VNs.

Each data byte contains a bit-mask that identifies the active VN. VNs are assigned
numeric values that are associated with a symbolic VN name in the message/signal
database. The configuration tool generates a macro for each VN that the ECU participates
in. The macros are defined in the file nm_cfg.h, and all have names of the form
VN_<virtual network name>. The application should use these macros as the VN
argument to all API functions that require a VN (e.g. INwmActivateVN ())

4.11 Fault Detection and Mitigation Algorithm

To enhance robustness of the NM, a fault detection and mitigation algorithm as specified in
[2] observes the activation state of each VN and the global NM state of each channel.

There might be conditions that cause the NM to inadvertently keep single VNs or channels
active, although all VNs and therefore the whole channel should not be active. This might
happen e.g. due to single bit flips in NM internal variables. To prevent such situations and

©2015, Vector Informatik GmbH Version: 2.03.01 18 /59

Technical Reference Nm_Gmlan_Gm V@CtOf

resulting battery drain situations, the algorithm performs consistency checks to detect
inadvertent activation of VNs and NM channels.

Note

To save RAM, ROM and runtime the whole Fault Detection and Mitigation Algorithm
can be disabled in GENy by the attribute ‘Fault Detection and Mitigation Algorithm’. See
chapter 6.3.2 ‘System-specific Configuration Options’.

In case a faulty activated VN or network has been detected the application will be notified
by callback functions and the corresponding VN or network will be deactivated. In
particular the following faults can be detected:

4.11.1 VN Active Fault

A ‘VN Active Fault’ is detected, if a VN that should be inactive is still active for more than
twice the VN timer time (= 16s).

After the fault has been detected the algorithm will deactivate the corresponding VN and
notify the application by calling AppINwmVnActiveFault() (see also chapter 7.4 ‘Callback
Functions’).

4.11.2 Network Active Fault

A ‘Network Active Fault’ is detected, if the NM does not enter COMM-OFF state for more
than twice the COMM-ENABLE timer time (= 16s) after the last VN has been deactivated.

After the fault has been detected the algorithm will start the shut-down sequence for the
channel and the application is informed about the fault by the call of
AppINwmNetworkActiveFault() (see also chapter 7.4 ‘Callback Functions’).

4.11.3 No Sleep Confirmation Fault

During shut-down the application has to optionally confirm the transition to sleep
(AppINwmSleepConfirmation()). If a shut-down is started due to the detection of a
‘Network Active Fault’, the algorithm is different:

A ‘No Sleep Confirmation Fault’ will be detected when the application does not confirm the
transition to sleep for more than a configurable threshold value.

The concrete shut-down sequence depends on the following configuration attributes (See
also chapter 6.3.2 ‘System-specific Configuration Options’):

> Sleep Confirmation: This attribute enables/disables the callback
AppINwmSleepConfirmation(). The callback informs the application that sleep mode
can be entered and gives the application the control over sleep mode. Depending on
the return value of the callback, sleep mode is directly entered or a time delay is
triggered that results in another callback invocation after 8s.
If this attribute is disabled, the Fault Detection Algorithm will directly shut down after
‘Network Active Fault’ has been detected, i.e. a ‘No Sleep Confirmation Fault’ will
never be detected.

©2015, Vector Informatik GmbH Version: 2.03.01 19/59

Technical Reference Nm_Gmlan_Gm V@CtOf

> No Sleep Confirmation Fault Reporting: If this attribute is enabled, the detection of
a ‘No Sleep Confirmation Fault’ will be reported to application by calling
AppINwmNoSleepConfirmationFault (see also chapter 7.4 ‘Callback Functions’).

> No Sleep Confirmation Fault Mitigation: If this attribute is enabled, the detection of
a ‘No Sleep Confirmation Fault’ will cause the Fault Detection Algorithm to shut down
the network even if the application still does not confirm sleep. If this attribute is
disabled, the mitigation of ‘No Sleep Confirmation Fault’ has to be handled by
application.

> Max No Sleep Confirmation: This value defines the threshold for the number of times
the application may not confirm sleep before ‘No Sleep Confirmation Fault’ is detected.
This attribute can be configured for each channel. See chapter 6.3.3 ‘Channel-specific
Configuration Options’.

= Note
The configuration options for the Fault Detection and Mitigation Algorithm might be not
visible in GENy. In this case the attributes a pre-configured by Vector for your delivery.

©2015, Vector Informatik GmbH Version: 2.03.01 20/59

Technical Reference Nm_Gmlan_Gm VQCtOf

5 Integration

5.1 Involved Files
To integrate the NM in your project, you need the following (static) embedded files:

File Content
gmnm.c Source file of the NM. Contains all API and algorithms.
gmnmdef.h Header file of the NM. Contains all static prototypes for the APl and

definitions, such as symbolic constants.

_MemDef.h Sample file for definitions of memory qualifies which will be used in
gmlcal.c and gmical.h.

Table 5-1 Static Files

Additionally the following files have to be generated by the configuration tool (refer to
chapter 6 ‘Configuration’):

nm_cfg.h Scales the NM and provides constants.

nm_par.c Dynamic source file of the NM. Contains configuration tables.
nm_par.h Dynamic header file of the NM.

gmical.c Source file of the NM calibration data.

gmical.h Header file of the NM calibration data

Table 5-2 Dynamic Files

©2015, Vector Informatik GmbH Version: 2.03.01 21/59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VeCtOf

5.2 Necessary Steps to Integrate the NM in Your Project
Following steps may be necessary to integrate the NM in your project:
> Copy the NM-related files into your project.

> Make these files available in your project settings, e.g. set the correct paths in your
makefile.

> |In order to make the NM available to your application, include the header file il_inc.h
into all files that make use of NM services and functions.

> Start the configuration tool and configure the NM according to your needs (see chapter
“6 Configuration”).

> (Generate the configuration files (see chapter “6 Configuration”)

> Implement all necessary callbacks in your application (see chapter “7.4 Callback
Functions”).

> Build your project (compile & link).

©2015, Vector Informatik GmbH Version: 2.03.01 22 /59

Technical Reference Nm_Gmlan_Gm VeCtOf

5.3 Necessary Steps to Run the NM

The NM should already have been integrated in your project and the building process
should complete without any errors.

There are two main steps that have to be performed: Initialization and cyclic task calls.

= Info

! If you are using a CCL within the CANbedded stack, the initialization and the cyclic call
of the task functions can be handled by the CCL. Please refer to the documentation of
the CCL.

5.3.1 Initialization

The NM needs to be initialized only once after system start. Further calls for example after
canceling of sleep mode are not necessary. To initialize the IL and the NM the function
I1InitPowerOn () is provided by the IL. Please note that it is not allowed to call any
function of these modules before they are initialized. Therefore the interrupts should be
disabled until the module is initialized. If CAN driver will not be initialized by the NM, be
sure that this is done before the first call of a cyclic IL or NM task function.

DisableAllInterrupts();
CanInitPowerOn(); /* if not handled by NM */
IlInitPowerOn(); /* initializes IL and NM */
ReenableAllInterrupts();

5.3.2 Periodic tasks

Add a cyclic function call of IINwmTask() to your runtime environment. Ensure that the call
cycle matches the value which is configured in the configuration tool.

The recommend order to call the NM and IL tasks is first NM and then IL:
I1NwmTask () ;
I1RxTask () ;
I1TxTask () ;

| Caution

s In preemptive systems and when CAN driver operates in polling mode it must be
assured, that IINwmTask does not interrupt NmConfirmation(), NmHVConfirmation(),
NmPrecopy() and NmHVPrecopy().

©2015, Vector Informatik GmbH Version: 2.03.01 23/59

Technical Reference Nm_Gmlan_Gm V@CtOf

5.4 Operating Systems

The CANbedded stack is designed and programmed to work with or without operating
systems. Since the modules have to work without an operating system, resource locking
mechanisms are not handled. To lock critical resources, interrupts will be disabled and
restored. The CAN driver (Data Link Layer) provides functions to fulfill this task.

Each module has one or two functions (tasks) which have to be called periodically. For
operating systems it is advisable to create one task and call all the NM module functions
subsequently. To implement different periods of time, the OS task could have a counter to
implement this.

To ensure data consistency on pre-emptive multi-tasking operating systems or when using
kernel resources on interrupt level, there are two things to keep in mind.

> The kernel provides mechanisms to keep data consistent within multi-byte signals.
That means, reading multi-byte data is always done while interrupts are locked. In that
case, no task switch can occur. The disadvantage to that mechanism is a longer
interrupt latency time. If your system is critical to long latency times, ensure that your
system works properly in all cases.

> Bit field manipulation is done by macros. Some compilers and processors realize bit
field manipulation by read-modify-write accesses. If data accesses to bit fields in the
same byte are used on pre-emptive tasks or on interrupt level, a problem could be
caused. Try to avoid this or make resource locking to such accesses.

5.5 Other Aspects

If the CAN controller is not capable to detect a CAN wakeup, the application must call API
NmCanWakeUp() upon detection of a CAN wakeup event.

©2015, Vector Informatik GmbH Version: 2.03.01 24 /59

Technical Reference Nm_Gmlan_Gm V@CtOf

6 Configuration

6.1 Concept

The embedded component is configured with the help of a PC-based configuration tool
named GENy. Settings for the NM can be selected in the GUI. These settings are used to
generate the configuration files, which are needed to compile and run the component.

Some configuration options are based on information from the CAN database (DBC file).
Some other options depend on the OEM and cannot be changed.

6.2 Data base attributes
The following table contains all attributes related to the Nm_Gmlan_Gm?™.

Attribute Name Description

BusOffRecoveryTime Network |Integer | 3500 (*) This attribute defines the node recovery
time after a BusOff event.

This is an optional attribute.

BusWakeUpDelay Network |Integer | 100 (*) This attribute defines the time between a
High-Level Voltage Wakeup (HLVW) and
the activation of Initially Active VNs.

This parameter is also used as a delay
time between the Activation of shared-local
input VNs and the actual activation inside
the ECU.

This is an optional attribute.

NetworkType Network |String |> Bodybus This attribute defines the type of the
Infotainme network.
nt

> Powertrain

NmBaseAddress Network |Hex 0x620 This attribute defines the base address of
the NM messages (e.g. 0x620).

Only a certain number of nodes can
participate in the NM. The CAN identifiers
of NM messages are kept in a certain
range. This range starts with the ID given
by attribute NmBaseAddress. The size of
the range is given by attribute

NmMessageCount.
NmMessage Message |[Enum |> no This attribute defines if the corresponding
> yes (*) message is a NM message (“Yes") or not
y (“No”). The CAN ID of this message must
be within the range given by
! Default values are marked with (*).
©2015, Vector Informatik GmbH Version: 2.03.01 25/59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VeCtOf

NmBaseAddress and NmMessageCount.

NmMessageCount Network |Integer |32 This attribute defines the maximum
number of nodes within the NM.

The value is required to define the range
precopy-function of the CAN driver’s
precopy function that is used to receive the
NM messages.

There is the requirement that the value of
attribute NmMessageCount is 2*n (where
n is a natural number).

NmNode Node Enum |> no This attribute defines if the corresponding
> ves (*) node uses the NM (“Yes”) or not (“No”).
NmType Network |String | GMLAN (*) This attribute defines the OEM-specific
type of the NM. Must be set to “GMLAN”.
NodeSuprvStabilityTim | Node Integer |0..65535 This attribute defines a delay time between
e 5000 (*) activation of a VN and start of supervision

of the corresponding signals.
The default value is 5000ms.

The supervision stability time is used to
avoid 'Loss of Communication' DTCs due
to transient conditions after VN activation.

SourcelD Node Integer |0..255 The Source address of a node is given as
an attribute inside the database. There are
two possibilities to use this attribute:

Instead of initialization of the Source
Address by the application, the handler
could do this in the function llInit().

This would imply, that the value is always
fixed (MIM-modules will be handled
correctly depending on the pre-selection of
the application, which instant should run).

The transmit messages inside the handler
will already be pre-set with the Source
Address given in this attribute.

This would avoid the runtime effort of the
driver to add the source address every
time a message must be transmitted. The
dynamic setting will only be required for
MIM’s.

VN_<name> Network |Integer |0..55 Bit number (0 to 55) within the VNMF
message Network ID Bit field identifying
the VN associated with the Network Name.

Successive humbers must be given.
“Holes” are not allowed.

VNECU<name> node Enum | > None This attribute defines the VN type for a
> Activator specific ECU for the specific VN.
> Remoted
> Activator_
Remoted

> SharedLoc

©2015, Vector Informatik GmbH Version: 2.03.01 26 /59

Technical Reference Nm_Gmlan_Gm VeCtOf

al
VNInitAct<name> network | Enum > no (%) This attribute defines whether a VN is
> yes declared as ‘Initially Active’.
VNSig<name> Signal Enum |> no If yes, indicates that the signal will be
> yes (*) associated with the named virtual network.
y The name of the VN must match one of
those defined for the network attribute
VN_<name>,

©2015, Vector Informatik GmbH Version: 2.03.01 27159

vector’

Technical Reference Nm_Gmlan_Gm

6.3 GENy

The configuration tool GENy is used to configure the CANbedded components. This tool
generates source code and configuration files to make the CANbedded components run.

6.3.1 General

For a detailed description of the configuration tool and the description of the component-
specific configuration options, please refer to the online-documentation within GENy.

'T] Info

L The screen shots in this chapter can differ from your screen because some options
depend on the system setup.

i’.’g: GEMy - [GENy1 : Nmi_Gmilan_Gm*]
@File Edit Wiew Configuration ‘window Help

hEE s+ 2R &%

#]]vl:lv%_vgv %R[::'\-‘.—'.—

{;} My ECU Configurable Options Mrn_Gmlan_Gm
=B Components User Config File ${ProjectDir\UserConfig_MmGmlan
- B MameDecorator Do n it
— MM Feat
----- EZ* Hw_CanoeemuCpu = FArES
B2 [Mm_Grolar_Gm Initizlize CAMN driver [+
== WN List Inkioit YN Activation st High Load -
----- (=] TestyNOO_chi HighSpeed Mode W
----- (=] TestWNO1_chi
- = rt Lovy-voltage-hod .
----- 7 TestyNOZ_chd Hppor moevalage-ose r
_____] TestvNO3_chd Dizahble CAN TH during Lowve-Yoltage-Mode m*
----- (=] TestwNO4_chi |- Callback functions
----- =] TestyNOS_chi BusOff Start ¥
----- (=] TestwNOB_chi
- Bus O End *
----- B0 TestvND7_ch ik ~
..... £ TestNOB_chi Start Communication ¥
..... [=] TestWNO3_chi Stop Communication [+
----- £ TestN10_chl CaM Wiakeup § R of HLWWY r-
----- [=] TestwN11_chi —
- =l Confirmst *
----- B0 TestvN12_chd =eR o r
_____ e TestvN13_chd M Remate Activation Request *
5= Charnels W Activation Failed O
‘gt Channel 0 N Relnit Request r:
BB DrvCan_CanoeemuCanoeH|l VHMF Corfirmation Timeout r
-y TxMessages
[]___@ Fix Messages HLW W Message Transmizsion *
[+, Tx Signals |— Debug Options
[}l Fix Signals Extended Return Code *
Azzertions *
Aszertion Function Mridiszertion”
): Software Components My ECL | Channel 0 f :avégﬁtionanee Item Selected:
GenT ool GemyPluginMultipleldentities| [r m_larnian_am
Hw_CanoeemuCpu Ird v
DrvCan_CanoeemuCanosHI [™
zBrz_EmbeddedRunTimeSpstem - r
1| ector Il -
Mr_Gmlan_Gm | v
Testsite - r

Figure 6-1 GENy Overview

©2015, Vector Informatik GmbH

Version: 2.03.01

based on template version 3.7

28/59

Technical Reference Nm_Gmlan_Gm V@CtOf

6.3.2 System-specific Configuration Options

This configuration page allows to configure system-specific settings, e.g. the usage of
available features of the component.

Configurable Optionz | Mm_Gmlan_Gm |
Il=er Zonfig File E[E'rufui‘niiEtDir]'xLlserEu:unfig_Nmelan [I]

[— Mh Festures

Initizlize CAN driver *

Inhikit %1 Activation st High Load

HighSpeed Mode |:|

Support Low-Yoltage-hode |:| *

Dizable CAMN TX during Low-Yoltage-kode |:|

|: Callback functions
Bz ff Start
Bu=Off End
Start Communication
Stop Communication
CAMN Wakeup §REX of HLYWWWY
Sleep Confirmation
WM Remate Activation Reguest
WM Activation Failed
M Relnit Reguest
WRMF Confirmation Timeout
HLYWW Meszage Transmission
|: Debug Options

K| E|EEEE EEE EE

Extended Return Code |:| *
Aszerions |:| *
A=zertion Function

|: Fault Detection and Mitigation
Fault Detection and Mitigation Algorithm *
Mo Sleep Confirmation Fault Reporting *
Mo Sleep Confirmation Fault Mitigation *

Figure 6-2 System-specific Configuration Options

©2015, Vector Informatik GmbH Version: 2.03.01 29/59

Technical Reference Nm_Gmlan_Gm V@Ctor

6.3.3 Channel-specific Configuration Options

This configuration page allows to configure channel-specific settings, e.g. the network type
and the timing for each channel.

Configurable Optionz | Channeld
|: General Settings
Bus System Type

Manutacturer
|; Databaze Attributes
Metweork Type

Lefle] flel<]

Tranzceiver Type

MW Mezsage Count
M Base Address
|: Timing Parameters
Cycle Time [ms] 107
Init Delay Time [ms] 100¢
WHF Start Time [ms) a0
BusOff Recovery Time [ms]
WHF Canfirmation Time [ms] R00"
Supervizion Stability Time [ms] 1]
Sleep Transition Time [ms] 1580
|: Fault Detection and Mitigation
Mz Mo Sleep Confirmstion 5"

Figure 6-3 Channel-specific Configuration Options

©2015, Vector Informatik GmbH Version: 2.03.01 30/59

Technical Reference Nm_Gmlan_Gm V@CtOf

6.3.4 VN-specific Configuration Options

This configuration page gives an overview of the used VNs and allows to configure VN-
specific settings, e.g. the LV-susceptible mode.

W

ID |Channel | Type Activator| Bemoted] Local] Init | LY-Suzceptible
TestMNO0_chi 0* |Chanrel 0|Maone |- I n: B B
Tests MO _cho 1 Channel 0| Naone (I I : =+ IC*
TestMO2_chi 2 Channel 0| Nane | - I I ENI RES | Bk
TestMO3_chi 3 Channel 0| Mane |- N BRI
Test o4 _chi 4 Channel 0| Nane |- : : =+ IIC*
TestMNO5_chi 5 Channel 0| Shared Local |- I n: F ¥ |[T*
TestyMOE_chi B Channel 0| Naone |- L& : EN kR
TestMOY _chi 7 Channel 0| Bemated | - N ™l F+IF I
TestMOS_chi] Channel 0| Mane |- N BRI
TestMO3_chi g Channel 0| Nane | : EN kR
TestMN10_cho 10 |Chanrel 0|Maone |- 1l N R
TestM11 _chi 11 |Channel O|Maone |- N BRI
Testh12_chi 12 |Channel 0|MNone | - N N ENI RES| B
TestM13_cho 13 |Chanrel 0|Maone |- I n: M\ |IC*

Figure 6-4 VN-specific Configuration Options

©2015, Vector Informatik GmbH Version: 2.03.01 31/59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm V@CtOf

7 API Description

7.1 General

The NM uses different API prototypes. The usage depends on the number of channels in
the system. Both prototypes differ in the usage of a channel parameter as the first function
argument:

> The “Standard” prototype is used in single-channel applications. There is no channel
parameter due to optimization.

> The “Indexed” prototype is used in multi-channel applications. The first argument is
always the channel parameter.

7.2 Common Parameter
There are some parameters that are commonly used in multiple APlIs.

Parameter

channel CAN channel handle

vnHndI VN handle.

Note: The VN handles are defined to symbolic names in nm_cfg.h. The
symbolic name and the handle correspond to the value of the DBC network
attribute named VN_<name>.

©2015, Vector Informatik GmbH Version: 2.03.01 32/59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm

7.3 Service Functions

NM Handling
> lINwmTask

NM status
> |INwmGetStatus

LVT mode
> |[INwmEnterLowVoltageMode

> |[INwmExitLowVoltageMode

Diagnostic mode
> [INwmNormalCommHalted

> |[INwmReturnToNormalMode

HighSpeed mode
> |INwmSetHispeedMode

> [INwmResetHispeedMode

VN activation
> |[INwmActivateVN

> lINwmDeactivateVN

> lINwmAllowActivationVN
> lINwmlinhibitActivationVN
VN status

> [INwmGetActiveListVN

> lINwmlsActiveVN
Context Switch

> NmGetModuleContext

> NmSetModuleContext

©2015, Vector Informatik GmbH Version: 2.03.01

vector’

33/59

Technical Reference Nm_Gmlan_Gm VQCEO('

IINwmActivateVN
Standard Nm Status I1lNwmActivateVN(vuint8 VnHndl)
Indexed Nm Status I1lNwmActivateVN (CanChannelHandle channel,

vuint8 VnHndl)

Parameter

see “7.2 Common Parameter”

Return code

Nm_Status > NM_OK The activation request was accepted.
> NM_ACTIVE The VN is already active
> NM_ERROR The node is in the HighSpeed mode.
> NM_HALTED The node is in the NormalCommHalted mode.
> NM_INACTIVE The application is not permitted to activate the VN

(The node is neither an Activator nor Local.)
> NM_WRONG_ARG VnHndl is invalid

Functional Description

This function activates a VN given by VN handle <VnHndI>.

This function may only be called for VNs that are meant to be activated (Activator, Local).
When activation is complete, the callback function AppINwmVnActivated() is executed.
Related API: INwmDeactivateVN()

Particularities and Limitations

IINwmAIllowActivationVN

Prototype
Standard void I1NwmAllowActivationVN (void)
Indexed void I1NwmAllowActivationVN (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This function restores the VN activation. The NM will start all queued VN activation requests.
Related API: IINwmInhibitActivationVN()

Particularities and Limitations

> Availability of this function can be configured in GENy (“Inhibit VN Activation at Highload”).
> Only available if there are Activator VNs.

IINwmDeactivateVN

©2015, Vector Informatik GmbH Version: 2.03.01 34 /59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VQCEO('

Prototype
Standard Nm Status IlNwmDeactivateVN(vuint8 VnHndl)
Indexed Nm Status IlNwmDeactivateVN (CanChannelHandle channel,

vuint8 VnHndl)

Parameter

see “7.2 Common Parameter”

Return code

Nm_Status > NM_OK The deactivation request was accepted.
> NM_INACTIVE The VN was already deactivated.
> NM_WRONG_ARG VnHndI is invalid.

Functional Description

This function de-activates a VN given by VN handle <VnHndI>.

Local VNs are immediately de-activated. Activator VNs are deactivated when the VN-specific timeout timer
expires. The NM starts a VN timer for this VN.

May only be called for VNs that are meant to be activated (Activator, Local).
When de-activation is complete, the callback function AppINwmVnDeactivated() is executed.
Related API: INwmActivateVN()

Particularities and Limitations

lINwmEnterLowVoltageMode

Prototype
Standard void I1NwmEnterLowVoltageMode (void)
Indexed void I1NwmEnterLowVoltageMode (CanChannelHandle channel)

Parameter
see “7.2 Common Parameter”

Return code

Functional Description

This function activates the Low Voltage Tolerant (LVT) Mode.
The transmission of HLVW is disabled.

VN monitoring and signal supervision timers are disabled.
Please refer to “4.3 Low Voltage Tolerant Mode” for details.
Related API: IINwmEXxitLowVoltageMode()

Particularities and Limitations

> This function is only available if the LVT mode is enabled.

IINwmEXxitLowVoltageMode

©2015, Vector Informatik GmbH Version: 2.03.01 35/59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VQCEO('

Prototype
Standard void I1NwmExitLowVoltageMode (void)
Indexed void I1NwmExitLowVoltageMode (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This function de-activates the Low Voltage Tolerant (LVT) Mode.
VN monitoring and signal supervision timers are re-enabled.
VNs that are LV-susceptible will be initialized and reactivated.
Please refer to “4.3 Low Voltage Tolerant Mode” for details.
Related API: INwmEnterLowVoltageMode()

Particularities and Limitations

> This function is only available if the LVT mode is enabled.

©2015, Vector Informatik GmbH Version: 2.03.01 36 /59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VQCEO('

IINwmGetActiveListVN
Standard void I1NwmGetActiveListVN (vuint8 *VnList)
Indexed void I1NwmGetActiveListVN (CanChannelHandle channel, wvuint$8
*VnList)

Parameter

*VnList pointer to an application-defined array that should contain the VN activation status.
The application should declare the array as:
vuint8 VnList [(<VNs>+7)/8]
VNs = Amount of used VNs in this CAN channel (Remote, Activator and Local VNs).

see “7.2 Common Parameter”

Return code

Functional Description

This function retrieves the activation state of all VNs on the current channel.

The array pointed to by VnList is filled with a bit-mask. Each bit represents the status of a VN. If a bit is set,
the corresponding VN is active. Otherwise not.

The most significant bit of the first byte represents VN 0. For example:

Byte 0 Byte 1 Byte
7 6 5 4 1 0 7 6 5 4 3 2 1 0 Bit
0 1 2 6 7 8 9 10 M 12 13 14 15 VN

Particularities and Limitations

©2015, Vector Informatik GmbH Version: 2.03.01

based on template version 3.7

37/59

Technical Reference Nm_Gmlan_Gm VQCEO('

IINwmGetStatus
Standard nmStatusType I1lNwmGetStatus(void)
Indexed nmStatusType I1NwmGetStatus(CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

nmStatusType Flag field that contains the network status.

Functional Description

This function returns information about the NM status. The status is provided by a flag field within the return
value. This return value can be decoded with the macros shown below. Each macro will return true or false.
True indicates that the NM is within the specified mode:

[INwmStateNormalCommHalted (status) NormalCommHalted mode
INwmStateHispeedMode (status) HighSpeed mode

[INwmStateNoCommunication (status) Network communications are disabled. No messages can be
received or transmitted (BusOff or COMM-OFF state)

IINwmStateSleepModeEntered (status) Sleep mode (COMM-OFF state)
IINwmStateSleepModePending (status) Sleep mode is pending (COMM-ENABLE state)

[INwmStateBusOffOccured (status) At least 1 BusOff has occurred since the last activation of the
node.

IINwmStateNMActive (status) NM is active. At least 1 associated VN is active (COMM-ACTIVE
state).

[INwmStateLowVoltageMode (status) LVT mode is active

Particularities and Limitations

IINwmInhibitActivationVN

Prototype
Standard void I1NwmInhibitActivationVN (void)
Indexed void I1NwmInhibitActivationVN (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

VN activation is suspended. All requests to start a VN are queued until VN activation is allowed.
Related API: IINwmAllowActivationVN().

Particularities and Limitations

> Only available if enabled in the configuration

©2015, Vector Informatik GmbH Version: 2.03.01 38/59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VQCEO('

IINwmlsActiveVN

Prototype

Standard vuint8 I1NwmIsActiveVN(vuint8 VnHndl)

Indexed vuint8 I1lNwmIsActiveVN(CanChannelHandle channel, wvuint8
VnHndl)

Parameter

see “7.2 Common Parameter”

Return code

Status of the queried VN;
Any non-zero value indicates that the VN is active.

Functional Description

This function returns a flag field that contains the current state of a specific VN (given by VN handle
<VnHndI>).
If the return value is 0, the VN is inactive, otherwise active.

The NM provides function macros that can evaluate the return value to get more information on the VN
state. The macros evaluate to be true or false.

IINwmIsNmVnActivatorPending(vnState) Application has requested activation of VN

[INwmIsNmVnActive(vnState) VN is completely activated
[INwmIsNmVnActivator(vnState) Send out VNMF for this VN
[INwmIsNmVnLocal(vnState) VN is locally active
[INwmIsNmVnRxActive(vnState) Indicates Receive-enabled
[INwmIsNmVnNone(vnState) VN is not active

Particularities and Limitations

IINwmNormalCommHalted

Prototype
Standard Nm Status IlNwmNormalCommHalted(void)
Indexed Nm Status IlNwmNormalCommHalted(CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

> NM_OK Node state was changed to Normal Comm. Halted.
> NM_ERROR Error if the node is in the HighSpeed, Sleep, or LVT mode

Functional Description

This function initiates diagnostic mode communications. All active VNs are deactivated and the diagnostic
VN (VN 0) is activated.

Note: If the node was in HighSpeed mode before this call, the CAN controller and transceiver will be reset
into Normal mode by this function.

Also refer to chapter “4.6 Normal Communication Halted”
Related API: IINwmReturnToNormalMode()

©2015, Vector Informatik GmbH Version: 2.03.01

based on template version 3.7

39/59

Technical Reference Nm_Gmlan_Gm VQCEO('

Particularities and Limitations

IINwmResetHispeedMode

Prototype
Standard void I1NwmResetHispeedMode (void)
Indexed void I1NwmResetHispeedMode (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This function puts the transceiver and CAN controller in normal (low-speed) mode.
The diagnostics VN (VN 0) is deactivated.

After reinitializing the CAN controller, the user-defined function ApplTrcvrNormalMode() will be called, as
the application is responsible for switching the transceiver to normal mode.

After a delay, Rx and Tx functions of the IL are restarted.
Related API: IINwmSetHispeedMode()

Particularities and Limitations

IINwmReturnToNormalMode

Prototype
Standard void I1NwmReturnToNormalMode (void)
Indexed void I1NwmReturnToNormalMode (CanChannelHandle channel)

Parameter
see “7.2 Common Parameter”

Return code

Functional Description

This function requests the NM to return to the normal communication mode.
VNs cannot be activated during NormalCommHalted mode.

Note: If the node was in HighSpeed mode before this call, the CAN controller and transceiver will be reset
into normal mode by this function.

Also refer to chapter “4.6 Normal Communication Halted”
Related API: IINwmNormalCommHalted()

Particularities and Limitations

©2015, Vector Informatik GmbH Version: 2.03.01 40/59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VQCEO('

IINwmSetHispeedMode

Prototype
Standard Nm Status I1lNwmSetHispeedMode (void)
Indexed Nm Status IlNwmSetHispeedMode (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

> NM_OK Node state was changed to HighSpeed.
> NM_ERROR Error if the node is in the NormalCommHalted or Sleep state

Functional Description

This function requests the NM to switch over to HighSpeed mode.

The transceiver and CAN controller are set to a higher data transmission rate. After switching to HighSpeed
mode, the user-defined function ApplTrcvrHighSpeed() is called (the application is responsible for switching
the transceiver into high-speed mode).

Before calling this function, the application should place the GMLAN handler into the NormalCommHalted
mode.

Note that this function is only available for devices configured for single-wire CAN (Bodybus).
This feature is only available if enabled in the configuration.
Related API: IINwmResetHispeedMode()

Particularities and Limitations

IINwmTask
Standard void I1NwmTask(void)
Indexed void I1NwmTask (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This function is the NM cyclic task function. The function is responsible for VN activation/deactivation,
reception/transmission of HLVW messages, mode and state handling.

The user-application is responsible for periodically calling this function at a user-defined timing. This timing
can be configured in GENy.

Particularities and Limitations

> In preemptive systems and when CAN driver operates in polling mode it must be assured, that
[INwmTask does not interrupt NmConfirmation(), NmHVConfirmation(), NmPrecopy() and
NmHVPrecopy().

©2015, Vector Informatik GmbH Version: 2.03.01 41/59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VQCEO('

NmGetModuleContext

Prototype
void NmGetModuleContext(tNmModuleContextStructPtr pContext)

Parameter

pContext Pointer to structure which is filled by this function with the current module
context. The type definition is provided in the modules header file.

Return code

Functional Description

This function copies all internal and global variables of the network management into the passed structure.

Particularities and Limitations

> The function is usually called by the QNX Mini driver wrapper.
> The function is only available if the QNX Mini driver wrapper is enabled or
NM_ENABLE_GET_CONTEXT is defined in a user configuration file.

Call context

> Task level only

NmSetModuleContext

Prototype
vuint8 NmSetModuleContext (tNmModuleContextStructPtr pContext)

Parameter

pContext Pointer to structure which is filled by this function with the current module
context. The type definition is provided in the modules header file.

Return code

1: The magic number member of the passed structure matches the version of
the module.

0: The magic number does not match. The data from the passed structure is
not copied.

Functional Description

This function initializes all internal and global variables of the network management with the values from
the passed structure.

Particularities and Limitations

> The function is usually called by the QWrapper module
> The function is only available if the QWrapper module is enabled or NM_ENABLE_SET_CONTEXT is
defined in a user configuration file.

Call context

> Task level only

©2015, Vector Informatik GmbH Version: 2.03.01 42/59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm

7.4 Callback Functions

Transceiver Handling
> ApplTrcvrHighSpeed

> ApplTrcvrHighVoltage
> ApplTrcvrNormalMode
> ApplTrcvrSleepMode

VN Handling
> AppINwmReinitRequest

> AppINwmVnActivated

> AppINwmVnActivationFailed

> AppINwmVnDeactivated

> AppINwmVnmfConfirmationTimeout
> AppINwmVnRemoteActivateRequest

Wakeup/Sleep Handling
> AppINwm100MsgRecv

> AppINwmHLVWStart

> AppINwmHLVWStop

> AppINwmSleep

> AppINwmSleepConfirmation
> AppINwmWakeup

> AppINwmWakeupMsgRecv

BusOff Handling
> AppINwmBusoff

> AppINwmBusoffEnd

Fault Detection & Mitigation Algorithm
> AppINwmVnActiveFault

> AppINwmNetworkActiveFault
> AppINwmNoSleepConfirmationFault

©2015, Vector Informatik GmbH Version: 2.03.01

vector’

43 /59

Technical Reference Nm_Gmlan_Gm VQCEO('

AppINwm100MsgRecv

Prototype
Standard void ApplNwmlOOMsgRecv (void)
Indexed void ApplNwml0OMsgRecv (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This callback is executed to notify the application that a HLVW message was received with the CAN
controller being in an active state.

Particularities and Limitations
> The availability of this callback can be configured: NM_ENABLE_WAKEUP_RECEIVED_FCT
Call context

> This function is called from task level only.

AppINwmBusoff

Prototype
Standard void ApplNwmBusoff (void)
Indexed void ApplNwmBusoff (CanChannelHandle channel)

Parameter
see “7.2 Common Parameter”

Return code

Functional Description

This callback is executed to notify the application that the CAN controller has entered BusOff state,
indicating that errors have occurred on the CAN bus.

Transmission and reception of messages are disabled at this time.

The NM starts a recovery timer. The recovery time can be selected in the configuration tool.
When the recovery time elapses, the NM will re-enable the CAN controller.

Related API: AppINwmBusoffEnd()

Particularities and Limitations

> The availability of this callback can be configured: NM_ENABLE_BUSOFF_FCT

> This callback might be executed in the CAN driver’s ISR. The application should exit this function as
quickly as possible, and should not call any other NM or CAN API functions.

Call context

> Same as CAN driver error handling

AppINwmBusoffEnd

©2015, Vector Informatik GmbH Version: 2.03.01

based on template version 3.7

44 /59

Technical Reference Nm_Gmlan_Gm VQCEO('

Prototype
Standard void ApplNwmBusoffEnd (void)
Indexed void ApplNwmBusoffEnd (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This callback is executed to notify the application that the CAN controller has recovered from a BusOff
state. Transmission and reception of messages are re-enabled.

Related API: AppINwmBusoff()

Particularities and Limitations
> The availability of this callback can be configured: NM_ENABLE_BUSOFF_END_FCT
Call context

> This function is called from task level only.

AppINwmHLVWStart

Prototype
Standard void ApplNwmHLVWStart (void)
Indexed void ApplNwmHLVWStart (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This callback is executed just before the transmission of a HLVW message.
Related API: AppINwmHLVWStop()

Particularities and Limitations
> The availability of this callback can be configured: NM_ENABLE_HLVW _INDICATION_FCT
Call context

> |f CAN driver transmit queue is activated this function may be called in interrupt context.

©2015, Vector Informatik GmbH Version: 2.03.01 45/59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VQCEO('

AppINwWmHLVWStop

Prototype
Standard void ApplNwmHLVWStop (void)
Indexed void ApplNwmHLVWStop (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This callback is executed just after the transmission of a HLVW message has completed (and confirmed).
Related API: AppINwmHLVWStart()

Particularities and Limitations
> The availability of this callback can be configured: NM_ENABLE_HLVW _INDICATION_FCT
Call context

> This function will maybe called in interrupt context.

©2015, Vector Informatik GmbH Version: 2.03.01 46 /59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VQCEO('

AppINwmReinitRequest

Prototype

Standard void ApplNwmReinitRequest (vuint8 VnHndl,
vuint8 ReinitRequest)

Indexed void ApplNwmReinitRequest (CanChannelHandle channel,
vuint8 VnHndl,
vuint8 ReinitRequest)

Parameter

ReinitRequest Reason for Re-init request
> 0 AVNMF-Continue message was received for an inactive VN.
> 1 AVNMF-Init message was received for an already active VN.

> 2 AVNMF-Init message was transmitted for an already active VN. This is the case
when an Activator VN is (re-)activated and VN is still active and VN timer is less than 4
seconds.

see “7.2 Common Parameter”

Return code

Functional Description

This callback is executed to notify the application that a VN is being re-initialized. The reason for the re-
initialization is given as parameter.

Particularities and Limitations
> The availability of this callback can be configured: NM_ENABLE_REINITREQUEST_FCT
Call context

> This function is called from task level only.

©2015, Vector Informatik GmbH Version: 2.03.01 47159

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VQCEO('

AppINwmSleep

Prototype
Standard void ApplNwmSleep (void)
Indexed void ApplNwmSleep (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This callback is executed to notify the application that NM is entering the COMM-OFF state.

The sleep indication may be used by the application to suspend network (and other) operations, including
cyclic calls to the NM task functions.

Related API: AppINwmWakeup()

Particularities and Limitations
> The availability of this callback can be configured: NM_ENABLE_SLEEP FCT
Call context

> This function is called from task level only.

AppINwmSleepConfirmation

Prototype
Standard vuint8 ApplNwmSleepConfirmation (void)
Indexed vuint8 ApplNwmSleepConfirmation (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

> NmSleepOk Enter Sleep mode
> NmSleepNo Stay awake for another 8 seconds.

Functional Description

The callback is executed to let the application decide if the NM can enter Sleep Mode. If the application
returns NmSleepNo from the callback, then the network will stay enabled for another 8 seconds. Unless
other events intervene (such as VN activation), NM will call this function again when the timer expires.

Particularities and Limitations
> The availability of this callback can be configured: NM_ENABLE_SLEEPCONFIRMATION_FCT
Call context

> This function is called from task level only.

©2015, Vector Informatik GmbH Version: 2.03.01

based on template version 3.7

48 /59

Technical Reference Nm_Gmlan_Gm VQCEO('

AppINwmVnActivationFailed

Prototype
Standard vuint8 ApplNwmVnActivationFailed (vuint8 VnHndl)
Indexed vuint8 ApplNwmVnActivationFailed (CanChannelHandle channel,

vuint8 VnHndl)

Parameter

see “7.2 Common Parameter”

Return code

> 0 Deactivate the VN
> 1 Reattempt activation of the VN.

Functional Description

This callback is executed to notify the application that an attempt to activate a VN has failed. The failure is
detected when the VN active timer counts down to 1 second while an activation attempt still pending.

This function gives the application the ability to decide whether to retry or abort the VN activation. The
return value from the function (see above) controls the behavior of NM.

If this callback is not enabled, then NM will deactivate the VN and does not reattempt the activation.

Particularities and Limitations
> The availability of this callback can be configured: NM_ENABLE_VN_ACTIVATION_FAILED_FCT
Call context

> This function is called from task level only.

AppINwmVnActivated

Prototype

Standard void ApplNwmVnActivated (vuint8 VnHndl)

Indexed void ApplNwmVnActivated (CanChannelHandle channel, vuint$8
VnHndl)

Parameter
see “7.2 Common Parameter”

Return code

Functional Description

The callback is executed to notify the application that a VN has been activated.
Related API: AppINwmVnDeactivated()

Particularities and Limitations

> Mandatory callback
Call context

> This function is called from task level only.

AppINwmVnDeactivated

©2015, Vector Informatik GmbH Version: 2.03.01

based on template version 3.7

49/59

Technical Reference Nm_Gmlan_Gm VQCEO('

Prototype
Standard void ApplNwmVnDeactivated (vuint8 VnHndl)
Indexed void ApplNwmVnDeactivated (CanChannelHandle channel,

vuint8 VnHndl)

Parameter
see “7.2 Common Parameter”

Return code

Functional Description

The callback is executed to notify the application that a VN has been deactivated.
Related API: AppINwmVnActivated()

Particularities and Limitations

> Mandatory callback
Call context

> This function is called from task level only.

AppINwmVnRemoteActivateRequest

Prototype
Standard vuint8 ApplNwmVnRemoteActivateRequest (vuint8 VnHndl)
Indexed vuint8 ApplNwmVnRemoteActivateRequest (

CanChannelHandle channel,
vuint8 VnHndl)

Parameter

see “7.2 Common Parameter”

Return code

The application must return a value indicating if the activation request should be accepted
or rejected.

> 1 Accept remote activation.
> 0 Reject remote activation.

Functional Description

This callback is executed when a VN activation request (VNMF-Init) message is received. This allows the
application to be notified of the activation, and to allow the activation request to be denied.

Note: It is not recommended that the application reject activation requests.
If this callback is disabled, the NM will accept the activation request.

Particularities and Limitations

> The availability of this callback can be configured:
NM_ENABLE_VN_REMOTE_ACTIVATE_REQUEST_FCT

Call context

> This function is called from task level only.

©2015, Vector Informatik GmbH Version: 2.03.01

based on template version 3.7

50/59

Technical Reference Nm_Gmlan_Gm VQCEO('

AppINwmVnmfConfirmationTimeout

Prototype

Standard void ApplNwmVnmfConfirmationTimeout (void)

Indexed void ApplNwmVnmfConfirmationTimeout (CanChannelHandle
channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This callback is executed to notify the application that transmission of a VNMF could not be completed
within the configured time limit.

Particularities and Limitations

> The availability of this callback can be configured:
NM_ENABLE_VNMF_CONFIRMATION_TIMEOUT_FCT

Call context

> This function is called from task level only.

AppINwmWakeup

Prototype
Standard void ApplNwmWakeup (void)
Indexed void ApplNwmWakeup (CanChannelHandle channel)

Parameter
see “7.2 Common Parameter”

Return code

Functional Description

This callback is executed to notify the application that the NM is leaving the COMM-OFF state, and
entering either COMM-ENABLED or COMM-ACTIVE.

Note: If the application does not call the cyclic task of the NM while the CAN is in sleep mode, the callback
AppINwmWakeupMsgRecv() must be activated. If it is called, application has to re-enable the cyclic call.

Related API: AppINwmSleep()

Particularities and Limitations

> The availability of this callback can be configured: NM_ENABLE_WAKEUP_FCT
Call context

> This function is called from task level only.

©2015, Vector Informatik GmbH Version: 2.03.01

based on template version 3.7

51/59

Technical Reference Nm_Gmlan_Gm VQCEO('

AppINwmWakeupMsgRecv

Prototype
Standard void ApplNwmWakeupMsgRecv (void)
Indexed void ApplNwmWakeupMsgRecv (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This callback is executed to notify the application that a HLVW message was received when the CAN
controller was asleep. This may be used by the application to restart network activities, such as invoking
the NM task functions periodically, or prevent entering the STOP mode.

Particularities and Limitations

> The availability of this callback can be configured: NM_ENABLE_WAKEUP_RECEIVED_FCT

> This callback might be executed in the CAN driver’s ISR. The application should exit this function as
quickly as possible, and should not call any other NM or CAN API functions.

Call context

> Same as CAN driver wakeup handling.

ApplTrcvrHighSpeed

Prototype
Standard void ApplTrcvrHighSpeed (void)
Indexed void ApplTrcvrHighSpeed (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This callback is executed when the transceiver has to be set to HighSpeed mode.
The application has to set the transceiver in the corresponding state.

Particularities and Limitations

> This callback is available if a single-wire transceiver is used and HighSpeed mode is enabled
Call context

> Same as IINwmSetHispeedMode.

©2015, Vector Informatik GmbH Version: 2.03.01 52/59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VQCEO('

ApplTrcvrHighVoltage

Prototype
Standard void ApplTrcvrHighVoltage (void)
Indexed void ApplTrcvrHighVoltage (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This callback is executed when a HLVW message has to be transmitted.

The application has to set the transceiver in the corresponding state where High-Voltage transmission is
possible.

Particularities and Limitations

> This callback is available if a single-wire transceiver is used
Call context

> If CAN driver transmit queue is activated this function will maybe called in interrupt context.

ApplTrcvrNormalMode

Prototype
Standard void ApplTrcvrNormalMode (void)
Indexed void ApplTrcvrNormalMode (CanChannelHandle channel)

Parameter
see “7.2 Common Parameter”

Return code

Functional Description

This callback is executed when the transceiver has to be set to normal mode, e.g. after transmission of a
HLVW message.

The application has to set the transceiver in the corresponding state (normal mode).

Particularities and Limitations

> Mandatory callback: always used
Call context

> This function may be called in interrupt context.

©2015, Vector Informatik GmbH Version: 2.03.01 53 /59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VQCEO('

ApplTrcvrSleepMode

Prototype
Standard void ApplTrcvrSleepMode (void)
Indexed void ApplTrcvrSleepMode (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This callback is executed when the transceiver has to be set to sleep mode, i.e. the NM enters COMM-OFF
state.

The application has to set the transceiver in the corresponding state (sleep mode).

Particularities and Limitations

> This callback is available if a sleep/wake-able transceiver is used (single-wire, HighSpeed with sleep)

Call context

> This function is called from task level only.

©2015, Vector Informatik GmbH Version: 2.03.01 54 /59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm VQCEO('

AppINwmVnActiveFault

Prototype
Standard void ApplNwmVnActiveFault (vuint8 wvnHndl)
Indexed void ApplNwmVnActiveFault (CanChannelHandle channel,

vuint8 wvnHndl)

Parameter
see “7.2 Common Parameter”

Return code

Functional Description

This callback informs the application about a ‘VN Active Fault’ detected by the ‘Fault Detection and
Mitigation Algorithm’. Please refer to chapter 4.11 for more information.

Particularities and Limitations

> This callback is available only if ‘Fault Detection and Mitigation Algorithm’ is enabled in GENy.
Call context

> This function is called from task level only.

AppINwmNetworkActiveFault

Prototype
Standard void ApplNwmNetworkActiveFault (void)
Indexed void ApplNwmNetworkActiveFault (CanChannelHandle channel)

Parameter

see “7.2 Common Parameter”

Return code

Functional Description

This callback informs the application about a ‘Network Active Fault’ detected by the ‘Fault Detection and
Mitigation Algorithm’. Please refer to chapter 4.11 for more information.

Particularities and Limitations

> This callback is only available if ‘Fault Detection and Mitigation Algorithm’ is enabled in GENy.
Call context

> This function is called from task level only.

©2015, Vector Informatik GmbH Version: 2.03.01

based on template version 3.7

55/59

Technical Reference Nm_Gmlan_Gm VQCEO('

AppINwmNoSleepConfirmationFault

Prototype

Standard void ApplNwmNoSleepConfirmationFault (void)

Indexed void ApplNwmNoSleepConfirmationFault (CanChannelHandle
channel)

Parameter
see “7.2 Common Parameter”

Return code

Functional Description

This callback informs the application about a ‘No Sleep Confirmation Fault’ detected by the ‘Fault Detection
and Mitigation Algorithm’. Please refer to chapter 4.11 for more information.

Particularities and Limitations

> This callback is available only if ‘Fault Detection and Mitigation Algorithm’ and ‘No Sleep Confirmation
Fault Reporting’ is enabled in GENy.

Call context

> This function is called from task level only.

7.5 Calibration Constants

Please see TechnicalReferenceGMLANCalibration.pdf for more details on calibrate
constants of the GMLAN handler.

©2015, Vector Informatik GmbH Version: 2.03.01

based on template version 3.7

56 /59

Technical Reference Nm_Gmlan_Gm

8 Glossary and Abbreviations

8.1 Glossary

CAN Driver

CANbedded

Communication
Database

Data Dictionary
Data Link Layer

Deadline Monitoring

Delay Time

Configuration Tool

Interaction Layer

Message

Message Manager

Network Database

Network
Management

OSEK OS

OSEK COM
Physical Layer

©2015, Vector Informatik GmbH

The CAN Driver represents an implementation of the Data Link Layer by
Vector Informatik GmbH.

CANbedded stands for a group of products offered by Vector Informatik
GmbH including communication modules for CAN communication and a
configuration tool to configure these modules.

See Network Database

See Network Database

The Data Link Layer defines the connection between two network nodes
in the same network. It is responsible for error detection, error correction
and flow control.

Deadline Monitoring is used to monitor the receipt of periodic messages
related to the ECU. Each time a periodic message is received a timer or
counter will be restarted. If the timer elapses the application will be
notified.

To prevent high bus load the Interaction Layer waits a defined time after
the transmission of a message before transmitting the next message. A
delay time is related to a specific message.

Tool to generate parts of the code of the communication modules. The
generated code will be specific for an application and will include the
interface for the signals, messages, flags ...

By the Interaction Layer the data is structured. It is responsible for the
consistency of the data offered to the upper layer.

Variable for data exchange of which the length depends on the length of
the frames used by the underlying field bus. CAN for example use 0-8
bytes per data frame.

The Message Manager is a part of the Interaction Layer. By the Message
Manager the messages received by the CAN bus is offered and the state
machine of the Interaction Layer is controlled. It is responsible for the
periodic transmission of messages.

Database which contains information about a network, including the
nodes and the data to be exchanged over the network. The Network
Database is used by the Configuration Tool, CANoe, and CANalyzer.

By the NM a set of services for monitor the nodes in a network are
defined. It is responsible for start-up the network, co-ordination of global
operation modes, support of diagnostics, ...

Specification of an operating system for micro controllers (ECU)
especially designed for cars

Specification of a communication layer for the use with OSEK

By the Physical Layer all the electrical, mechanical and functional
parameters of the connections between network nodes are defined. (ISO

Version: 2.03.01

vector’

57159

Technical Reference Nm_Gmlan_Gm V@CtOf

OSI-Model)

Signal Variable for data exchange of which the length is defined by the
application developer. One or more signals are mapped to a message.

Signal Interface The Signal Interface is a part of the Interaction Layer. By the Signal
Interface the messages offered by the Interaction Layer are split into
signals. It is responsible for the combination of signals to messages and
the splitting of messages into signals.

Start Delay Time Time used to delay the beginning of the transmission of a periodic
message. The start delay time should prevent transmission bursts caused
by interference.

Transmission Mode Mode to transmit signals or messages. A transmission mode defines
whether a message has to be send out periodically or on an event or
even in both cases. There are several modes defined to satisfy the needs
of the customer’s application.

Transport Protocol By the Transport Protocol the data longer than a CAN frame is handled. It
is responsible for correct splitting and combining data, error detection and
error correction.

Note: OSEK refers to the “Transport Protocol” as “Network Layer”. They
put it in layer 3, not in layer 4 of the ISO OSI Layer Model.

8.2 Abbreviations

CAN Controller Area Network

CTS Component Technical Specification. Platform specific document provided by the
car manufacturer. Provides technical details for the component.

ECU Electronic Control Unit

IL Interaction Layer

NM Network Management

OSEK Offene Systeme und deren Schnittstellen fir die Elektronik im Kraftfahrzeug

TP Transport Protocol

VN Virtual Network

VNMF Virtual Network Management Frame

HLVW High-Voltage Wake-Up

©2015, Vector Informatik GmbH Version: 2.03.01 58 /59

based on template version 3.7

Technical Reference Nm_Gmlan_Gm

9 Contact

Visit our website for more information on

News

Products
Demo software
Support
Training data
Addresses

VVVYVVYV

www.vector.com

©2015, Vector Informatik GmbH

Version: 2.03.01

vector’

59/59

	1 Document Information
	1.1 History
	1.2 Reference Documents

	2 Component History
	2.1 Nm_Gmlan_Gm Version 4.02.00
	2.1.1 What is new?
	2.1.2 What has changed?

	2.2 Nm_Gmlan_Gm Version 4.03.00
	2.2.1 What is new?
	2.2.2 What has changed?

	3 Introduction
	3.1 Layer Concept
	3.2 NM Features
	3.3 VN Concept

	4 Functional Description
	4.1 NM States
	4.2 Normal Operation
	4.3 Low Voltage Tolerant Mode
	4.4 High Load
	4.5 HighSpeed Mode
	4.6 Normal Communication Halted Mode
	4.7 Bus Off
	4.8 HLVW Failure Handling
	4.9 VN Activation Failure
	4.10 VNMF Message
	4.11 Fault Detection and Mitigation Algorithm
	4.11.1 VN Active Fault
	4.11.2 Network Active Fault
	4.11.3 No Sleep Confirmation Fault

	5 Integration
	5.1 Involved Files
	5.2 Necessary Steps to Integrate the NM in Your Project
	5.3 Necessary Steps to Run the NM
	5.3.1 Initialization
	5.3.2 Periodic tasks

	5.4 Operating Systems
	5.5 Other Aspects

	6 Configuration
	6.1 Concept
	6.2 Data base attributes
	6.3 GENy
	6.3.1 General
	6.3.2 System-specific Configuration Options
	6.3.3 Channel-specific Configuration Options
	6.3.4 VN-specific Configuration Options

	7 API Description
	7.1 General
	7.2 Common Parameter
	7.3 Service Functions
	7.4 Callback Functions
	7.5 Calibration Constants

	8 Glossary and Abbreviations
	8.1 Glossary
	8.2 Abbreviations

	9 Contact

