Safety Manual MICROSAR OS SafeContext vector [

MICROSAR OS SafeContext
Safety Manual

RH850 with Green Hills Compiler

Authors Senol Cendere, Yohan Humbert
Version 1.05
Status Released

Document ID 0S03.00124.10

©2015, Vector Informatik GmbH Version: 1.05 1/80

Safety Manual MICROSAR OS SafeContext vector [

Document Information

History

Author Date Version | Remarks

Senol Cendere 2014-02-17 1.00 Creation for RH850

Senol Cendere 2014-02-26 1.01 Updated the Requirement IDs

Senol Cendere 2014-05-09 1.02 Adaption for RH850 P1M

Senol Cendere 2014-08-18 1.03 Reworked after Safety Manual Review

Senol Cendere 2014-09-22 1.04 Added reference for Renesas Electronics RH850/P1M
Safety Application Note
Removed CPU derivative specification
Removed compiler options (both are specified in safety
case)

Yohan Humbert 2014-12-03 1.05 Added level support

©2015, Vector Informatik GmbH Version: 1.05 2/80

Safety Manual MICROSAR OS SafeContext vector [

©2015, Vector Informatik GmbH Version: 1.05 3/80

Safety Manual MICROSAR OS SafeContext

Reference Documents

Nosource ____Te ____ _ __ __ _ __|Vesion

[1]

[2]
[3]

[4]

[5]

[6]
[7]

[8]

[9]

Vector Informatik GmbH

Vector Informatik GmbH

Renesas Electronics
Renesas Electronics

Renesas Electronics

Green Hills Software

[10] Vector Informatik GmbH
[11] Renesas Electronics

" This document is available in PDF-format on the Internet at the Autosar homepage: http://www.Autosar.org

AUTOSAR Operating System Specification'

OSEK/VDX Operating System Specification?

User manual of Vector MICROSAR OS
TechnicalReference_Microsar_Os.pdf

User manual of Vector MICROSAR OS RH850,

hardware specific part

TechnicalReference. MICROSAROS_RH850_S

afeContext.pdf

International Organization for Standardization,
Draft International Standard ISO/DIS 26262
Road Vehicles - Functional Safety (all parts),
2009

V850E3v5 Architecture Specifications

RH850 G3M User’s Manual: Software
r01us0042ej0020_rh850g3m.pdf

RH850/P1x Group User’s Manual: Hardware
r01uh0436ej0041_rh850p1x.pdf

MULTI: Building Applications for Embedded
V850 and RH850 build_v800.pdf

Vector MICROSAR OS SafeContext Concept
RH850/P1M Safety Application Note

vector’

3.X-
4.x

223
6.03

1.04

(4™ edition)
Rev. 0.10
Oct. 2012

Rev. 0.60
Jul. 2014
PublD:

build_v800-
472243

Date:
September 12,
2012

1.03

Rev.0.20
September 1,
2014

2 This document is available in PDF-format on the Internet at the OSEK/VDX homepage: http://www.osek-vdx.org

©2015, Vector Informatik GmbH

Version: 1.05

4/80

http://www.autosar.org/
http://www.osek-vdx.org/

Safety Manual MICROSAR OS SafeContext vector [

Contents
T ¥ T 4 o - - SO 9
1.1 Safety Element out of Context (SE0OC)cccooiiiiiiiiiiiieiiceeeceee e, 9
1.2 Standards and Legal requirementscooiiiiiiiiiiiiicce e 9
72 0« 1o =T o 1 P 10
2.1 SafeContext Is One Partof aWholeoueiiiiiiiii e 10
2.2 SAfELY GOAI e 10
2.3 Safety REQUIFrEMENLSccooiiiiii e 10
24 SafeContext Functionalityccooooiiiiiiii e 11
241 Safety Part ... 13
24.2 Detailed List of Functionalityccccoiiieeiiiiiiiicce e, 15
24.21 Safety .o 15
2422 SHlENE oo 16
24.2.3 Not providedooiiiiiii e, 17
2.5 SaAfE S Al .. o 19
3 Overview of Requirements to the OS Usercooomiiiiecciiiiiirrre e 20
4 General SafeContext ASSUMPLIONScoeveeimeeciriirirrrrr e e 22
4.1 Context DefiNitiON. oo 23
5 OS Source CheCKSUMccoiiiiiiiiceeiassr e e rrrcmsssssss s s e e e s s ss s s e s e e s s mmnssnn s s s e nennnmnnsnsnnns 24
6 Patching the Configuration BIOCKcccooi s 26
6.1 USING EfCONVEIET ... 26
6.2 Using ConfigBIOCKCRCPAtChcuveiiiiiiiie e 27
7 General Configuration Guidelines..........cccccoi s 28
8 Review General Part of Configuration BIOCK..........cccccoiianes 30
8.1 How to Read Back the Configurationccccciii 30
8.1.1 USING HEXCONVEMETuuiiiiiiiiiiiiiiiiiiiiiii e 31
8.1.2 USING CONFIGQVIEWETeeiiiiiiiiieee e 31
8.2 General Configuration Informationeeeiiiiiii s 32
9 Review Generated Code........uuiemeciiiiiiirrrccecrsrs s rr s s 33
9.1 MaNUAl REVIEWScoviiiiii it e e e et e e e e e e eeannes 33
9.1.1 Review generated file tCh.N...........uuiiiiiiiiiie 33

©2015, Vector Informatik GmbH Version: 1.05 5/80

Safety Manual MICROSAR OS SafeContext vector [

10 Qualifying Silent OS Part ... 34
10.1 Using MICROSAR Safe Silence Verifier (MSSV) ... 34
11 Review User SOftWare ... s 36
12 Hardware Specific Part.........ccoeiiiiee st e 39
12.1 Interrupt VECtor Tablecoiiiieeeee e 42
1211 Header Include SecCtion...............uuuuiiiiiiiiiiiiiiiieees 42
12.1.2 Core Exception Vector Tableccoooeiiiiiiiiiiieicei e, 43
12.1.3 ElNT Vector Table ..o, 44
12,14 CAT2 ISR WIAPPEIS ... ieeeeeeeieeee ettt e e e e e e eeeee s 45
12.2 Configuration BIOCKoooiiiiiiee 46
12.2.1 How to read back the ConfigBlockcccoooiiiiiiiiiii e, 46
12.2.2 Additional Informationccooiiiiiiii 47
12.2.3 Howtostartthe review...........oooiiiiiii e 48

12.2.3.1 Indexes of applications, task , ISRs, trusted and non-
trusted fuNCtionS ... 49
12.2.3.2 Review against User's Designcccceeeeiiiiiiiiiiiieeneennn. 49
12.2.4 How to review the general information (block 0).............cccoeeeieeeeenn. 50
12.2.5 How to review the task start addresses (block 1)ceoeriiirnnnnnnn. 52
12.2.6 How to review the task trusted information (block 2) 53
12.2.7 How to review the task preemptive information (block 3).................. 54

12.2.8 How to review the task stack start and end addresses (block 4 and

5 IR 55
12.2.9 How to review the task ownership information (block 6)................... 56
12.2.10 How to review the category 2 ISR start addresses (block 7)............. 57
12.2.11 How to review the CAT2 ISR trusted information (block 8) 58
12.2.12 How to review the CAT2 ISR nested information (block 9) 59

12.2.13 How to review CAT2 ISR stack start and end addresses (block 10
ANA 11 e, 60
12.2.14 How to review the CAT2 ISR ownership information (block 12)........ 62
12.2.15 How to review the trusted functions start addresses (block 13)........ 63

12.2.16 How to review the non-trusted functions start addresses (block 14). 64
12.2.17 How to review the non-trusted functions ownership information

(DIOCK 15) ettt ettt e e e e e e e e ns 65
12.2.18 How to review the application dynamic MPU settings (block 16)...... 66
12.2.19 How to review the interrupt channel index (block 17) 67
12.2.20 How to review the ISR interrupt priority level (block 18) 68
12.2.21 How to review the peripheral regions configuration (block 19).......... 69
12.2.22 How to review the static MPU regions configuration (block 20) 70
12.2.23 How to review the application trusted information (block 21)............ 71

©2015, Vector Informatik GmbH Version: 1.05 6/80

Safety Manual MICROSAR OS SafeContext

12.3
12.4

12.5
12.6
12.7
12.8

12.2.24 How to review the core control block address information (block

) 72
Linker MemOry SECHONS.cuviiiiiiiiiiiiiiiiiieiiieeeeee ettt 73
LinKer INClUdE FileS 75
12.4.1 Review File osdata.dld...........cccoooiiiii e 75
12.4.2 Review File ossdata.dldcooooeeiiiiiiiii 76
12.4.3 Review File osstacks.dld..........ccooooiiiiiiiiiii e 77
1244 Review File osrom.dld...........ooouiiiiii e, 78
1245 Review File ostdata.dld ..o 78
Stack Size ConfigUuration...............ueuuuueiiuiiiiiiiiiii e 79
StACK MONITOIING ...ttt 79
Usage of MPU REQIONS.......ccccoiiiiiiiicee et 80
Usage of Peripheral INterrupt APL....... oo 80

©2015, Vector Informatik GmbH Version: 1.05 7180

vactor’

Safety Manual MICROSAR OS SafeContext vector [

lllustrations

Figure 2-1 Quality Levels of SafeContext Functionalitiesccccccciiiiiiiiiiinnnne. 12
Figure 2-2 Stored and active contexts........cccooiiiiiiiiic 14
Figure 3-1 Strategy for safety configurationccccoeeeiiiii i 21
Figure 7-1 LiNKING ©XaMPIE......uiiiiiiiiiiiiiiiiiiiiietiee ittt 29
Tables

Table 2-1 Safety Functionality ..., 15
Table 2-2 Silent FUNCLONAlItY..........ccoiii e 16
Table 2-3 Functionality — NOt provideduuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeaes 17
Table 4-1 General SafeContext ASSUMPLIONSoovviiiiiiiii e, 23
Table 6-1 ElfConverter parameters.ouuuciiiiiiiiiiecec e 26
Table 8-1 HexConverter parameters...........uoii i iiiiiiiicce e 31
Table 8-2 ConfigViewer Parametersuuuuiiiiiiiiiiiii e 31

©2015, Vector Informatik GmbH Version: 1.05 8/80

Safety Manual MICROSAR OS SafeContext vector [

1 Purpose

1.1 Safety Element out of Context (SEooC)

MICROSAR OS SafeContext is a Safety Element out of Context (SEooC). It is developed
based on assumptions on the intended functionality, use and context, including external
interfaces. To have a complete safety case, the validity of these assumptions has to be
checked in the context of the actual item after integration of the SEooC.

The application conditions for SEooC provide the assumptions made on the requirements
(including safety requirements) that are placed on the SEooC by higher levels of design
and also on the design external to the SEooC and the assumed safety requirements and
assumptions related to the design of the SEooC.

Information given by this document helps to check whether the SEooC fulfills the item
requirements, or whether a change to the SEooC is necessary in accordance with the
requirements of ISO 26262.

1.2 Standards and Legal requirements
Standards followed by the development of MICROSAR OS SafeContext:
> IS0 26262°

> OSEK 0s*
> AUTOSAR OS°

? International Standard ISO 26262 Road Vehicles - Functional Safety (all parts), 2011
* OSEK/VDX Operating System, v2.2.3
> AUTOSAR Specification of Operating System

©2015, Vector Informatik GmbH Version: 1.05 9/80

Safety Manual MICROSAR OS SafeContext vector [

2 Concept

This chapter provides a description of the assumed safety requirements and the main
concept.

2.1 SafeContext Is One Part of a Whole

SafeContext is part of Vector SafeExecution. SafeExecution consists of SafeContext for
prevention from corrupted data and SafeWatchdog for supervision of timing behavior. This
document covers SafeContext only. [SPMF92:0050]

2.2 Safety Goal

The safety goal is to ensure context integrity for all safety critical parts. Whenever a safety
critical code is executed, it is guaranteed that the code is executed with the correct
context. After pre-emption or interruption, execution is resumed with the correct context.
The integrity of the memory is ensured by usage of hardware (e.g. MPU) and software
measures.

2.3 Safety Requirements

To achieve this safety goal, the following assumed safety requirements are provided by
SafeContext:

ASA_OS_1: Non-trusted software must be prevented from overwriting data of safety
relevant software.

ASA_OS_2: A runtime context (Task, Hook, (Non-)Trusted-Function and ISR) must not be
destroyed by a switch (to another runtime context).

ASA_OS_3: A runtime context shall be set up according to compiler and processor
specifications.

ASA_OS 4: Services to prevent data inconsistencies by racing conditions shall be
provided.

ASA_OS_5: The OS never writes to unintended memory locations.

©2015, Vector Informatik GmbH Version: 1.05 10/80

Safety Manual MICROSAR OS SafeContext vector [

2.4 SafeContext Functionality

MICROSAR OS SafeContext implements the AUTOSAR OS and OSEK OS standards of a
real-time operating system with some restrictions.

The functionality provided by MICROSAR OS is task switching, interrupt handling, memory
protection handling, timer services and others. SafeContext provides an efficient solution
also in respect of safety. Therefore the OSEK/AUTOSAR OS functionality is divided into 3
groups:

1. Functionality implemented according ISO 26262 to achieve ASIL.

2. Functionality implemented according to “Silent” principle to prevent from safety data
overwritten by OS code.

3. Functionality which is not supported in SafeContext. It is assumed that this
functionality is not needed by a safety related ECU or it can be reached by other
existing means.

This chapter describes which of the groups certain functionality falls into.

Basic Knowledge

The idea of “Silent” code is not to disturb other software by means of unintended
memory writes. To provide high performance, this is not achieved by a hardware
protection mechanism (which would require MPU reconfiguration for each API call) but
by analysis of the OS code.

©2015, Vector Informatik GmbH Version: 1.05 11/80

Safety Manual MICROSAR OS SafeContext vector [

Dispatcher Scheduler
MPU management Task management
Interrupt management Alarm management

Event management

Resource management

Configuration (ASIL) Configuration (QM)

ASIL Silent

0OS

Figure 2-1 Quality Levels of SafeContext Functionalities

AUTOSAR OS is a statically configured operating system. The configuration uses
configuration editors and code generators to configure the OS. To ease the safety
development the configuration is divided into two parts.

1. Configuration of Safety relevant functionality. The configuration is stored in the ECU
in a separate configuration block.

2. Configuration of silent functionality: This configuration is generated and compiled
into the OS code.

Additionally some safety relevant configuration parameters are generated and compiled
into the OS code. Those have to be reviewed by the user according the rules in this
document.

©2015, Vector Informatik GmbH Version: 1.05 12 /80

Safety Manual MICROSAR OS SafeContext vector [

2.4.1 Safety Part
SafeContext provides the following functionality safely:

1. context switching

2. MPU management

3. Interrupt API

4. no unintended overwriting of memory

The context is defined as:
> The set of registers, which is used by the compiler

> The stack pointer
> CPU mode (including interrupt state and privilege mode)

> Memory Access Rights

Explanations:

> A context switch occurs in several situations. These are: Task start/switch, ISR
entry/exit, call of OS services, call of (Non-)Trusted Functions and Hook routines.

Conclusions:
> If a user program is executed, it will always be executed with the correct context

> After interruptions it is guaranteed that execution is resumed with the correct context

> Freedom from interference with respect to memory will be achieved by using memory
protection hardware (e.g. MPU) for non-trusted code.

> Data inconsistency due to race conditions can be prevented by using the interrupt
API.

- Note

Other OS functionality follows the silent principle. For example the sequence of task
executions (scheduling) including the Task pre-emption is provided on QM level.

©2015, Vector Informatik GmbH Version: 1.05 13/80

Safety Manual MICROSAR OS SafeContext vector'

The operating system provides safe switching of memory access rights during context
switches to ensure that non-trusted code does not modify data of other OS-Applications (if
not explicitly allowed). In addition the OS interrupts Tasks or ISRs to execute higher priority
ISRs. By switching to another context the correct context is set up. By switching back to an
interrupted Task or ISR, the correct and unchanged context is restored. To avoid change of
a saved context of an interrupted or waiting task, memory protecting hardware is used.

All points in the OS where context switches are performed or are necessary to perform are
identified and developed according the safety standard.

At each point in time only one context is active. All other contexts are saved and protected
by hardware against accidental alterations.

active inactive inactive inactive

1
inactive inactive
1
1
1
1

L.
. . time
MPU Protection now MPU Protection

|m— === 1 P o o e - - - - —

| ! : :
1 Register Register 1 Register 1 Register Register Register 1
| Context Context 1 Context | Context Context Context I
| I ! I
1 Stack Stack 1 Stack : Stack Stack Stack 1

|
| . - |
| I ! I
|
| ! L |

Figure 2-2 Stored and active contexts

©2015, Vector Informatik GmbH Version: 1.05 14 /80

Safety Manual MICROSAR OS SafeContext vector [

2.4.2 Detailed List of Functionality

2.4.2.1 Safety
The following OS services and there functionality is developed according to ASIL.

Class Description

OS Service APIs StartOs
osInitialize
0osInitINTC
ShutdownOS

DisableAllInterrupts
EnableAllInterrupts
SuspendAllInterrupts
ResumeAllInterrupts
SuspendOSInterrupts
ResumeOSInterrupts

CallTrustedFunction
CallNonTrustedFunction

osReadPeripherals8
osReadPeripherall6
osReadPeripheral3?2
osWritePeripheral8
osWritePeripherall6
osWritePeripheral32
osModifyPeripheral8
osModifyPeripherall6
osModifyPeripheral32

osCheckMPUAccess
osGetConfigBlockVersion
GetApplicationID
GetISRID

GetTaskID
osGetStackUsage
osGetSystemStackUsage
osGetISRStackUsage

OS System Hooks StartupHook
ErrorHook
ProtectionHook
ShutdownHook

Table 2-1 Safety Functionality

©2015, Vector Informatik GmbH Version: 1.05 15/80

Safety Manual MICROSAR OS SafeContext vector'

2.4.2.2 Silent

The following API functions are developed according to Silent principle. SafeContext
ensures that they do not violate the assumed safety goal mentioned. Exceptions may be
possible, if one of these features has been explicitly ordered as safety relevant. Read the
hardware specific part of this document if so.

Class Description

OS service API ActivateTask
TerminateTask
ChainTask
Schedule
GetTaskState
GetResource
ReleaseResource
SetEvent
ClearEvent
GetEvent
WaitEvent
GetAlarm
SetRelAlarm
SetAbsAlarm
CancelAlarm
GetActiveApplicationMode
CheckObjectAccess
CheckObjectOwnership
StartScheduleTableRel
StartScheduleTableAbs
StopScheduleTable
NextScheduleTable
GetScheduleTableStatus
IncrementCounter
GetElapsedValue/GetElapsedCounterValue

GetCounterValue

Timer handling The handling of timer hardware is realized as QM software.

Scheduling The correct sequence of processing application programs is realized with
QM-Software (priority handling, including Resources).

ORTI ORTl is only supported in Silent part of the OS.

Table 2-2 Silent Functionality

©2015, Vector Informatik GmbH Version: 1.05 16 /80

Safety Manual MICROSAR OS SafeContext vector'

2.4.2.3 Not provided

The features listed in the following table are not supported in SafeContext per default.
Exceptions may be possible, if one of these features has been explicitly ordered. Read the
hardware specific part of this document if so.

Class Description

OS service API TerminateApplication

CheckISRMemoryAccess

CheckTaskMemoryAccess

> For ShutdownOS the AUTOSAR OS requirement OS054 is not
supported, i.e. non-trusted OS-Applications may successfully call
ShutdownOS.

StartScheduleTableSynchron

SyncScheduleTable

SetScheduleTableAsync

COM OSEK COM inter task communication with messages is not supported
Interrupt resources | Resources are only available at task level.

Protection Reaction | The only allowed protection reaction in the ProtectionHook is
PRO_SHUTDOWN. Other reactions will be interpreted as PRO_SHUTDOWN.
[SPMF92:0020]

Killing Forcible terminating Tasks or Applications is not supported.
OS Hooks PreTaskHook (only for debugging!)
PostTaskHook (only for debugging!)
ISRHook
PreAlarmHook
OS Application StartupHook<ApplName>
specific Hooks ErrorHook<ApplName>

ShutdownHook<ApplName>

Address Parameter |In case API functions with out-parameters are called with illegal address,
Check they do not return with the error code E_OS_ILLEGAL_ADDRESS as
required by the AUTOSAR specification. Instead the out parameter is
written with the access rights of the caller, which may lead to a memory
protection violation in case the given pointer is invalid.

Stack optimization | Single stack model is not supported.

Internal Resources | Internal Resources are not supported.

Configuration The following hooks must be enabled:
Aspects StartupHook

ErrorHook

ShutdownHook

ProtectionHook

Only SCALABILITYCLASS SC3 or SC4 is supported. Memory protection
must be active.

STACKMONTITORING must be enabled.
OSInternalChecks must be configured to Additional.
ORTIVersion = 2.0 is not supported.
ErrorInfolevel = Modulenames is not supported.

Table 2-3 Functionality — Not provided

©2015, Vector Informatik GmbH Version: 1.05 17180

Safety Manual MICROSAR OS SafeContext vector [

©2015, Vector Informatik GmbH Version: 1.05 18 /80

Safety Manual MICROSAR OS SafeContext vector [

2.5 Safe State

The safe state in SafeContext is shutdown (endless loop with interrupts disabled). The
safe state is entered whenever the OS detects a violation of its safety goal or even an
attempt. Before the safe state is entered, the sShutdownHook is called. The
ShutdownHook may contain user code which is necessary to reach the defined safe state
of the system. This might lead to a reset in combination with a watchdog.

©2015, Vector Informatik GmbH Version: 1.05 19/80

Safety Manual MICROSAR OS SafeContext vector'

3 Overview of Requirements to the OS User

For integration of the SafeContext into a particular context, the user has the following
requirements to be fulfilled. They can be seen as steps to integrate the SEooC in the ECU
without harming the assumed safety goal.

The top level requirements are listed in the following table. They are considered in more
detail later. If all sub-requirements are checked, you can check the according top level
requirement too.

Description of requirements to the OS user Fulfilled

Check that all assumptions made by SafeContext are valid
(see chapter “General SafeContext Assumptions”)

Check code integrity of the used OS sources

(see chapter “OS Source Checksum”)

Add CRC into the configuration block after linkage

(see chapter “Patching the Configuration Block”)

Check general configuration guidelines

(see chapter “General Configuration Guidelines”)

Review the safety relevant configuration data

(see chapter “Review General Part of Configuration Block”)
Review the generated code

(see chapter “Review Generated Code”)

Review your software

(see chapter “Review User Software”)

Execute MICROSAR Safe Silence Verifier (MSSV) on silent OS part
(see chapter “Qualifying Silent OS Part”)

Check specific requirements to the user

(see chapter “Hardware Specific Part”)

f Caution
= All requirements listed in this document must be checked and fulfilled by the user!

©2015, Vector Informatik GmbH Version: 1.05 20/80

Safety Manual MICROSAR OS SafeContext

[OS Generator]7

OS Configuration
(OIL or ECUC)

Static OS
Sources

Generated OS
Sources

;

]

ConfigBlock

-

Qualify generated
Sources
(MssV)

Vs

.

User Review }

OS Source
Checksum
Application
Sources
Review User
Software
e N
Compiling +
> Linking
N\ \L J
Executable

!

Patching the

Configuration Block

!

Executable

Figure 3-1

Flashing

©2015, Vector Informatik GmbH

Configuration in

XML

v

Format

Intermediate

Read Back
ConfigBlock

Y

Hex Converter

In Human
) Readable
ConfigBlock

Hex File

[Verify ConfigBlock]

Read Back

Strategy for safety configuration

Version: 1.05

vector’

21/80

Safety Manual MICROSAR OS SafeContext vector [

4 General SafeContext Assumptions

All assumptions must be checked to be true. Assumptions concerning the focus of
SafeContext are given by the safety goals and related safety requirements described in
the safety case. Assumptions about the environment are described in this chapter.

Know the SafeContext concept

The system safety concept must not rely on OS functionality developed according to
the Silent principle. A complete list of API functions and the guarantees they give is
provided in chapter “Detailed List of Functionality”. [SPMF92:0075]

Know your memory configuration

Setup of memory sections must be planned by the system designer. Whether or not
the planned setup is configured correctly must be verified by reading the configuration
back from the ECU and reviewing it against system design and hardware manuals.
Know the OS specifications

The user shall read the OS specifications for OSEK OS and AUTOSAR OS.

Know how to use the OS
The user shall read the OS manuals:

> General Technical Reference Manual
> Specific Technical Reference Manual
Versions are listed in the delivered safety case.

Correctness of processor

The processor provides its functionality with sufficient safety, so that the OS needs
not take care about potential hardware failure. This might be assured by usage of a
lockstep processor.

Correctness of memory

The memory works with sufficient safety, so that the OS needs not to take care about
potential hardware failure.
Correctness of MPU

The MPU provides its functionality with sufficient safety, so that the OS needs not
take care about potential hardware failure.

The OS provides an AP| (osCheckMPUAccess) which can be used by the user to
check the MPU.
Correctness of hardware manuals

The Hardware manuals and the compiler manuals are sufficiently reliable, so that the
OS needs not take care about potential deviations between hardware functionality
and its description in the manuals.

Versions of the used hardware manuals are listed in the delivered safety case.
[SPMF92:0017]
Correctness of compiler tool chain

SafeContext assumes that the compiler, assembler and linker generate code with the
required safety level.

Correctness of compiler version and options

©2015, Vector Informatik GmbH Version: 1.05 22 /80

Safety Manual MICROSAR OS SafeContext

Description of requirements to the OS user

The used compiler version and options are identical to them which are used during
development.

Used compiler version and options are listed in the delivered safety case.

Code integrity
The source code and generated configuration of MICROSAR OS SafeContext is
compiled, linked and downloaded to the ECU correctly and not modified afterwards.

[SPMF92:0043]

Context definition
The user shall not rely on registers, which are not part of the context of the OS.
The context definition is listed in chapter 4.1

Hardware handled by the OS shall not be manipulated by user code
User code shall not handle hardware which is handled by the OS. This may include:

> Interrupt Controller [SPMF92:0083]
> MPU [SPMF92:0085]
> Timer

Don't manipulate short addressing base registers

Do not manipulate registers which are used by the compiler for relative addressing of
code or data. [SPMF92:0084]

Table 4-1 General SafeContext Assumptions

4.1 Context Definition

The context which is used by the OS consists of the following registers:

Register Size in Byte
R1 4
R2 4

R4 284 =112
R5

R30
R31
EIPC
EIPSW
CTPC
CTPSW

MPLAO
MPUAO

L S

©2015, Vector Informatik GmbH Version: 1.05

vector’

23/80

Safety Manual MICROSAR OS SafeContext vector'

5 OS Source Checksum

The OS is delivered as source code. To assure that source code files are not altered after
the testing and release a checksum is calculated. The user shall calculate the checksum to
verify the correctness of the source code he is using. [SPMF92:0042]

A checksum calculation program (CCodeSafe.exe) is provided to the user. It is called with
the following argument:

CCodeSafe <config.ini>

This tool calculates a CRC32 checksum over a given list of files given in <config.ini>.

Description of requirements to the OS user m

Use the delivered source files from Vector! Do not use changed copies in a productive
system! Also consider header include order of the compiler.

The <config.ini> shall contain the OS sources listed in the safety case.

The calculated checksum returned by CCodeSafe is identical to the checksum given
in the safety case.

©2015, Vector Informatik GmbH Version: 1.05 24 /80

Safety Manual MICROSAR OS SafeContext vector'

A Example
iz An example for a <config.ini> file:

src directory:

<INSTALLATION DIRECTORY>\BSW\Os\atosappl.c
<INSTALLATION DIRECTORY>\BSW\Os\atostime.c
<INSTALLATION DIRECTORY>\BSW\Os\osek.c
<INSTALLATION DIRECTORY>\BSW\Os\osekasm.c
<INSTALLATION DIRECTORY>\BSW\Os\osekalrm.c
<INSTALLATION DIRECTORY>\BSW\Os\osekerr.c
<INSTALLATION DIRECTORY>\BSW\Os\osekevnt.c
<INSTALLATION DIRECTORY>\BSW\Os\osekrsrc.c
<INSTALLATION DIRECTORY>\BSW\Os\oseksched.c
<INSTALLATION DIRECTORY>\BSW\Os\osekstart.c
<INSTALLATION DIRECTORY>\BSW\Os\osektask.c
<INSTALLATION DIRECTORY>\BSW\Os\osektime.c
<INSTALLATION DIRECTORY>\BSW\Os\osSysCallTable.c

include directory:

<INSTALLATION_ DIRECTORY>\BSW\Os\Os.h
<INSTALLATION_ DIRECTORY>\BSW\Os\Os_cfg.h
<INSTALLATION DIRECTORY>\BSW\Os\osek.h
<INSTALLATION DIRECTORY>\BSW\Os\osekasrt.h
<INSTALLATION DIRECTORY>\BSW\Os\osekcov.h
<INSTALLATION DIRECTORY>\BSW\Os\osekerr.h
<INSTALLATION_ DIRECTORY>\BSW\Os\osekext.h
<INSTALLATION_ DIRECTORY>\BSW\Os\osekasm.h
<INSTALLATION DIRECTORY>\BSW\Os\oseksched.h
<INSTALLATION DIRECTORY>\BSW\Os\emptymac.h
<INSTALLATION DIRECTORY>\BSW\Os\testmacl.h
<INSTALLATION DIRECTORY>\BSW\Os\vrm.h
<INSTALLATION_DIRECTORY>\BSW\Os\osSysCallTable.dld

©2015, Vector Informatik GmbH Version: 1.05 25/80

Safety Manual MICROSAR OS SafeContext vector [

6 Patching the Configuration Block

Configuration information which is relevant to reach the safety goal is stored in a data
structure called the configuration block. The integrity of this information is checked in
Start0Os using a CRC checksum.

The CRC must be calculated after compiling and linking the application. There are two
programs provided to calculate and apply the CRC to the binary file:

> ElfConverter For patching the CRC into an ELF file and optionally create an
intermediate file for reading back the configuration block.

> ConfigBlockCRCPatch For patching the CRC into an Intel Hex or Motorola SREC file.
The following steps are necessary to patch the configuration block:

1. Compile and link your application
2. Run CRC patch software
3. Write modified executable into flash memory

Description of requirements to the OS user Fulfilled

Check that CRC is non-zero. If so, change user configuration version to avoid zero
CRC. [SPMF92:0071]

6.1 Using ElfConverter
The program E1fConverter.exe is called with the following parameters:

ElfConverter <ELF File> <ConfigBlock Symbol> --out <Intermediate File>

Parameter Descripion.

--out <file> Dump the configuration block in intermediate format

--patch crc Calculate the configuration block's CRC and write it into the ELF file
--print header Print ELF header

--print sections Print ELF sections

--print symbols Print ELF symbols

--print hexdump Print a hex dump of the configuration block

--help Show help

Table 6-1 ElfConverter parameters

©2015, Vector Informatik GmbH Version: 1.05 26/80

Safety Manual MICROSAR OS SafeContext vector'

A 'I Example
l‘

- Patching the configuration block in ELF file testappl.out:

e

ElfConverter.exe testappl.out osConfigBlock --out testcfg.hex
--patch crc

6.2 Using ConfigBlockCRCPatch
The program ConfigBlockCRCPatch.exe is called with the following parameters:

ConfigBlockCRCPatch <HEX File> <Output file> <ConfigBlock Address>

T A 'l Example
iz Example (convert ELF file prj.out into prj.hex with modified CRC):

=

ConfigBlockCRCPatch prj.out prj.hex 0x00800000

The address of the configuration block may be taken from symbol osConfigBlock in the
linker generated map file. [SPMF92:0016]

©2015, Vector Informatik GmbH Version: 1.05 27 /1 80

Safety Manual MICROSAR OS SafeContext

7 General Configuration Guidelines

Non-ASIL user code shall be part of Non-Trusted Applications

All non-ASIL user code must be executed by Non-Trusted Applications with no write
access to safety relevant data (including stacks) and no read or write access to
safety relevant peripherals. [SPMF92:02.0034]

ASIL user code shall not violate the SafeContext safety goal

All user code, which has access to safety relevant data (including stacks, and OS
data) or peripherals, must be implemented on ASIL level. This code shall never
violate the safety goals of SafeContext. [SPMF92:0011]

Code which typically has access to safety relevant data (depending on user
configuration):

> Trusted Functions [SPMF92:0080] [SPMF92:03.0008]
> Trusted Tasks
> Trusted ISRs
> System Hooks
> StartupHook [SPMF92:0040] [SPMF92:03.0007]
> ErrorHook [SPMF92:0012] [SPMF92:03.0006]
> ProtectionHook [SPMF92:0009] [SPMF92:03.0005]
> ShutdownHook [SPMF92:0013] [SPMF92:03.0009]
> Reset handler / Startup Code [SPMF92:0005] [SPMF92:03.0001]
> Exception Handlers [SPMF92:0087]
> Category 1 ISRs [SPMF92:0054] [SPMF92:03.0004]

Alignment of data sections

All data sections shall be linked with MPU alignment granularity (e.g. 32 bytes). See
the controller's reference manual to know what your MPU granularity is.
[SPMF92:0065]

Consider category 1 ISRs

Category 1 ISRs are completely transparent to the OS. The OS does not perform
stack switching for category 1 ISRs! Consider this during configuration of stack
sizes. [SPMF92:0086]

NMiIs shall be category 1 ISRs

Non-maskable Interrupts (NMI) shall be configured to be category 1 ISRs.
[SPMF92:0053] [SPMF92:03.0002]

Link global safety data considering stack growing direction

Link global safety data (all OS data and at least ASIL relevant application data) so
that it cannot be corrupted by stack overflows (see Figure “Linking example” below
for an example). [SPMF92:0091]

©2015, Vector Informatik GmbH Version: 1.05

vactor’

281780

Safety Manual MICROSAR OS SafeContext vector [

Figure 7-1 Linking example

©2015, Vector Informatik GmbH Version: 1.05

Safety Manual MICROSAR OS SafeContext vector [

8 Review General Part of Configuration Block

The configuration of MICROSAR OS SafeContext is generated into C-code. The generator
itself has not been developed in accordance to ASIL. Therefore, the generated
configuration information needs to be reviewed. The safety relevant configuration is
generated into a structure called configuration block (or ConfigBlock). This chapter
describes how to review this ConfigBlock. As the ConfigBlock is simply a constant data
structure in the flash memory of an ECU, humans will have difficulties to read it. Therefore,
the configuration viewer is able to transform the ECU internal representation into a human
readable format. The process of reading the ConfigBlock and transforming it into the
human readable format is described in the following subchapter. [SPMF92:0038]

The setup of the memory protecting hardware depends on the correct configuration of the
OS. All configuration parameters, which are necessary to ensure the safety goal, are
stored in a contiguous memory block (configuration block). The configuration block can be
located to a fix address and can be read back from the ECU, e.g. by XCP or a debug
interface. [SPMF92:0034]

The configuration block is secured by a 16 bit CRC. The way how the configuration block
is read back does not need to be safe. The configuration block is translated into a human
readable format to allow a review against the intended configuration.

8.1 How to Read Back the Configuration
The configuration is read back in two steps:
1. Create intermediate ConfigBlock file format, by either using

> ElfConverter with parameter -out

> Or read back the ECU binary and convert it into the intermediate format (using the
HexConverter)

2. Conversion of the intermediate format into human readable output (using the
ConfigViewer)

The configuration block format is platform dependent. Also this information may be
retrieved in different ways, e.g. as the HEX output of the linker or as an upload from the
ECU via a protocol like XCP. As this may result in various file formats a conversion into an
intermediate format is required.

©2015, Vector Informatik GmbH Version: 1.05 30/80

Safety Manual MICROSAR OS SafeContext vector [

8.1.1 Using HexConverter
The program HexConverter.exe is called with the following parameters:

HexConverter —i <Input File> -o <Output File> -b <Base Address>
-s <ConfigBlock Size>

All parameters are mandatory.

Parameter |Value

-1 Input File Path & Name File containing the HEX data produced by the linker

-0 Output File Path & Name File with intermediate format generated by
HexConverter

-b Base Address Base address of the configuration block as defined in

the linker map file.
It is the address of the symbol ‘osConfigBlock’.
Value has to be given as HEX (e.g. 0x8001f000).

-s OxFFFF This value must be at least the size of the configuration
block in byte. Bigger values are also allowed.

E.g. this value can be set to OXFFFF

Table 8-1 HexConverter parameters

8.1.2 Using ConfigViewer
The program ConfigViewer.exe is called with the following parameters:

ConfigViewer —-i <Input File> -o <Output File> -c <XML File>

Parameter

-1 Input File Path & Name File containing the intermediate data produced by the
HexConverter

-0 Output File Path & Name File with human readable configuration description
generated by ConfigViewer

-c XML-ConfigFile XML file, generated by the OS generator describing the

OS configuration

Table 8-2 ConfigViewer parameters

The configuration viewer expects the intermediate format to contain nothing else than the
configuration block.

©2015, Vector Informatik GmbH Version: 1.05 31/80

Safety Manual MICROSAR OS SafeContext vector'

8.2 General Configuration Information

The following subchapters concentrate on the output of the configuration viewer and on
the rules to review it. The configuration viewer and the format converters are described
separately.

To minimize variants in code, the OS generator introduces dummies for each OS object
type. These dummies can be identified by the prefix “osSystem” and are handled the same
way like other OS objects. None of these objects is active at runtime.

Description of requirements to the OS user Fulfilled

Check that the listed configuration block address and length is correct and matches
the map file.

Check that the listed configuration block format is 2.00

Check that the listed version of MICROSAR OS SafeContext matches your
delivered version.

If you are using the user configuration version, check that the listed one matches
your configured value.

Check that the listed number of OS objects matches your configuration. (Consider
that dummy OS objects are generated, to minimize variants in the OS code.)

Check number of listed OS objects matches the elements in the sub containers.
[SPMF92:0074]

Check that the listed specific stack start and end addresses match your
configuration. (The stack end addresses in the configuration block point to the first
address outside the stack.)

©2015, Vector Informatik GmbH Version: 1.05 32/80

Safety Manual MICROSAR OS SafeContext vector'

9 Review Generated Code

MICROSAR OS is a massively configurable software component. As a result, the analysis
of the OS modules cannot be completely performed until the user’s configuration data is
available. The user shall use MICROSAR Safe Silence Verifier (MSSV) to qualify the
generated part of the OS, which depends on user’s configuration. MSSV is a Vector tool,
which performs checks of potential dangerous code constructs. [SPMF92:0049] For more
information about MSSV see the Technical Reference Manual of MSSV®.

Description of requirements to the OS user Fulfilled

The user must not modify a generated module configuration code file manually
unless explicitly required by the technical reference manual or explicitly direction
formulated by Vector.

All generated files of a software project shall be generated based on the same
configuration. Generated files of several configurations must not be mixed up unless
explicitly allowed by Vector.

The user shall apply steps for qualifying the generated sources on the final
configuration which is used for the production. If the configuration changes, source
qualification steps shall be reapplied.

9.1 Manual Reviews

Some generated code parts currently cannot be checked automatically. Therefore the user
has to check them manually.

9.1.1 Review generated file tcb.h

Description of requirements to the OS user W

If interrupt level support is supported in your delivery, you shall review the system
level (osdSystemLevel) to be the maximum of all category 2 ISR priorities and
osdSystemLevelMask to be the corresponding value, which has to be stored in
PMR register to mask (disable) all category 2 interrupts. [SPMF92:02.0019]
[SPMF92:04.0017] [SPMF92:02.0033]
#define osdSystemLevel <MAXIMUM OF ALL CAT2 ISR PRIORITIES>
#define osdSystemLevelMask <PMR VALUE MASK ALL CAT2 ISR>

Check that osdExceptionDetails is defined = 1

#define osdExceptionDetails 1

8 TechnicalReference MSSV.pdf, v1.3

©2015, Vector Informatik GmbH Version: 1.05 33/80

Safety Manual MICROSAR OS SafeContext vector'

10 Qualifying Silent OS Part

MICROSAR OS is a massively configurable software component. As a result, the analysis
of the OS modules cannot be completely performed until the user’s configuration data is
available. The user shall use MICROSAR Safe Silence Verifier (MSSV) to qualify the
generated part of the OS, which dependent on user’s configuration. MSSV is a Vector tool,
which performs checks of potential dangerous code constructs inside BSW modules which
depend on user configuration data. [SPMF92:0049] For more information about MSSV see
the Technical Reference Manual of MSSV’. [SPMF92:0088]

10.1 Using MICROSAR Safe Silence Verifier (MSSV)
The following chapter tells how you shall apply MSSV on the OS sources.
MSSYV is called with the following parameters:

MSSV.exe --inputDir <PATH TO TCB> --inputDir <PATH TO 0S INCLUDE>

—--reportFile <REPORT.html> --define osdNOASM

<PATH TO TCB> Path to generated OS files (typically contained in the tcb folder).

<PATH_TO_OS_INCLUDE> Path to OS header files (typically contained in the implementation
folder).

<REPORT.html> File name which shall be used to save the MSSV report.

--define osdNOASM Disable assembler parts.

Description of requirements to the OS user m

The MICROSAR Safe Silence Verifier shall only be executed on Windows XP SP3+
(32Bit) or Windows 7 (32Bit or 64Bit).

The user must not modify the MICROSAR Safe Silence Verifier report.
The user shall verify that the used OS sources are checked by verifying the names
and paths of the modules within the report.

The user shall verify that the evaluated report matches to the execution of the
MICROSAR Safe Silence Verifier by verifying the name, creation date and time,
path and folder of the report.

Check that MSSV returns with no errors, no warnings and the final verdict of the
report is “pass”. If MSSV did not pass contact OS support. [SPMF92:0088]

’ TechnicalReference MSSV.pdf, v1.3

©2015, Vector Informatik GmbH Version: 1.05 34/80

Safety Manual MICROSAR OS SafeContext

vector’

=

A 'I Example
iz An example for qualifying generated OS sources:

MSSV.exe -1 "tcb" -i"..\..\include" --define osdNOASM

The output of MSSV should look like:

note: MICROSAR Safe Silence Verifier Version 1.01.02
note: Copyright (C) 2012-2013 Vector Informatik GmbH
note: License <CBD0900253> VDO AUTOMOTIVE AG
note: MSSV.exe started at 09:39:55 2014-02-19
note: MSSV.exe finished at 09:39:57 2014-02-19
note: 0 Errors
note: 0 Warnings
note: the final verdict of the report is 'pass'
©2015, Vector Informatik GmbH Version: 1.05 35/80

Safety Manual MICROSAR OS SafeContext vector [

11 Review User Software

Some code parts run in supervisor mode without any memory protection active or with
high memory access granted. Therefore, freedom from interference is not guaranteed by
the OS and the hardware. Trusted software has to guarantee freedom from interference on
its own. The application programmer typically knows best, what is to do in order to
guarantee freedom from interference. Anyhow, there are few additional points to be
covered when an OS is used.

The following requirements shall generally be fulfilled by trusted software (also valid for
software which runs in supervisor mode or with access to safety relevant memory areas):

OS code coverage shall be disabled

Check that osdEnableCoverage is not defined when you compile the OS.
[SPMF92:0077]

FPU usage shall be disabled

Check that o0sdRH850 FPU is not defined via compiler option —-DosdRH850 FPU
Check that 0sdRH850_FPU is only defined in file osekext.h

Unhandled exception details shall be enabled
Check that osdExceptionDetails is defined = 1 (see tcb.h)
Check that OS attribute EnumeratedUnhandledISRs is set TRUE

No usage of system call instructions in the user software

Any system call causes the CPU to change into supervisor mode. Therefore, the
application (trusted and non-trusted parts) shall not use system calls directly.
Instead, system calls shall only be used by using OS APIs.

User header usrostyp.h

If trusted functions are configured, ensure that usrostyp.h does not endanger
SafeContext safety requirements.

Enabling interrupts where it is not allowed

Interrupts shall not be enabled by the application where Category 2 ISRs are
disabled by default (e.g. in Hooks). This applies not to ISRs. In ISRs it is allowed to
enable interrupts. [SPMF92:0066]

Use only documented APls

Trusted software shall only call documented API functions, which are listed in
chapter “Detailed List of Functionality”. [SPMF92:0068]

Stack usage measurement is not exact

Stack usage measurement is implemented by counting magic patterns
(osdstackCheckPattern) on the stack which have been written there during
startup. The returned value may not be correct, if the magic pattern did not change
(e.g. the user application uses the same value). [SPMF92:0072]

Usage of osCheckMPUAccess API

If you are using the osCheckMPUAccess API, the destination address parameter
shall point to an address, where reading and writing does not produce other
exceptions than MPU exceptions.

©2015, Vector Informatik GmbH Version: 1.05 36 /80

Safety Manual MICROSAR OS SafeContext vector'

Description of requirements to the OS user Fulfilled ‘

Usage of osCheckMPUAccess API

If you are using the osCheckMPUAccess API, Check that the API function is only
called with addresses which, reading and writing does not have any side effects
(e.g. potentially not true for peripheral registers). [SPMF92:02.0017].

If you have write access to stacks, stack overflows cannot be detected by hardware

The OS cannot safely detect stack overflows in software which has write access to
all stacks. If write access to all stacks is really needed (e.g. for RAM checking), the
user has to ensure that the software does not produce a stack overflow!
[SPMF92:0078]

APlIs in exception handlers

Exception handlers must not call any OS API function beside:
DisableAllInterrupts

EnableAllInterrupts

SuspendAllInterrupts

ResumeAllInterrupts

vV V. VvV Vv V

SuspendOSInterrupts

> ResumeOSInterrupts
[SPMF92:0067]

Category 1 ISRs shall be transparent

All ISRs of category 1 must be implemented such that they are transparent with
respect to the processor state for the code they interrupt. This includes core
registers, MPU settings and the current interrupt priority.

APlIs in category 1 ISRs

Category 1 ISRs shall not call any OS API function beside:

> DisableAllInterrupts

> EnableAllInterrupts

> SuspendAllInterrupts

> ResumeAllInterrupts
[SPMF92:0067] [SPMF92:02.0018]

Check out-parameters in Trusted Functions

Trusted functions which get a pointer shall check the pointer address to be in an
expected range before they write to the pointer address. This shall prevent
overwriting of safety relevant data when writing to the pointer address.

[SPMF92:0001]

Check caller in Trusted Functions

Trusted functions shall validate whether they are called by an authorized caller only.
This may be done by using the API function GetApplicationID.

[SPMF92:0047]

No (Non-) Trusted Functions in Hooks
Hook routines shall not call any trusted function or non-trusted function.

No APIs in NMls
Non-maskable interrupts shall not use any OS APIs.

©2015, Vector Informatik GmbH Version: 1.05 37 /80

Safety Manual MICROSAR OS SafeContext vector [

Description of requirements to the OS user Fulfilled
[SPMF92:0019], [SPMF92:0067]

Using Interrupt API before calling StartOS
If the user needs to use the interrupt API before he calls start0s, he shall call
osInitialize and osInitINTC.

After calling these functions interrupt APl works only for the straight forward case.
OS error handling and MPU won'’t be initialized, so the OS won’t be able to handle
any user errors or detect stack overflows.

©2015, Vector Informatik GmbH Version: 1.05 38/80

Safety Manual MICROSAR OS SafeContext vector [

12 Hardware Specific Part

For RH850 SafeContext the following safety relevant requirements must be checked by the user:

= All assembly code (outside the SafeContext) shall be reviewed, not to change the content
of registers of R4 and R5 after StartOS is called [SPMF92:04.0001]. Check in list files that
only the startup module and the OS modules do modify registers R4 and R5.

= The user has to review that each ISR is called at least once (coverage of application). The
tests shall cover the activation of all ISRs and verify that the correct ISR was started. This
measure shall prevent the activation of wrong ISRs because of a mix up in the interrupt
vector table [SPMF92:0008].

= The user has to review the configuration by means of the ConfigBlock in accordance to the
review rules which are defined in chapter 12.2 [SPMF92:0014],[SPMF92:05.0008].

= The user has to review that all libraries fit to the used compiler options. All used libraries
need to be checked for using the correct compiler options (e.g. SDA usage need to be
identical to the specified options for the OS) [SPMF92:0010].

= The PreTaskHook and the PostTaskHook must not be used in safety code which is
released for serial production. Pre/PostTaskHook shall only be used for debugging or test
purposes. Absence of Pre/PostTaskHook must be reviewed in generated file tcb.h:
[SPMF92:02.0022],[SPMF92:02.0023],[SPMF92:05.0011]
The user must check that the following defines are set in the generated file tcb.h:
#define osdPreTaskHook 0
#define osdPostTaskHook 0

= The complete config block content must be reviewed by the means of the BackReader
[SPMF92:04.0002], [SPMF92:04.0006].

» The address value of the application specific linker symbols for MPU region start and end
address must be checked that between them only the corresponding application data
sections are mapped [SPMF92:04.0004], [SPMF92:04.0010], [SPMF92:04.0011].

» The address value of the Ilinker symbols _osGlobalShared_StartAddr and
_osGlobalShared_EndAddr must be checked that between them only the global shared
data sections are mapped [SPMF92:04.0013].

= The CPU must run in supervisor mode when StartOS is called [SPMF92:04.0007].

» The application shall check the config block version by using OS API function
osGetConfigBlockVersion [SPMF92:0045],[SPMF92:05.0010].

» The user has to review that all task stacks, all ISR stacks and the system stack have 4 Byte
alignment [SPMF92:04.0008].

= The user has to review the generated linker include files osdata.dld, osrom.dld, ossdata.dld
osstacks.dld and ostdata.dld if they are used for serial production [SPMF92:04.0014]. See
chapter 12.4.

©2015, Vector Informatik GmbH Version: 1.05 39/80

Safety Manual MICROSAR OS SafeContext vector'

= The user has to review that coverage is disabled [SPMF92:04.0015]. osdEnableCoverage
shall not be defined in header and source files and it shall not be defined via compiler
option —DosdEnableCoverage.

= The user has to consider DMA controller usage. The RH850 P1M series incorporates a
DMA controller (DMAC). The DMA controller has direct access to the data bus. Therefore
DMA access to memory is not controlled by MPU protection. This must be considered
especially for safety OS systems if any DMA access is wanted. [SPMF92:01.0002]

= The user has to review that oslnitialize and osInitINTC are called before StartOS is called if
OS interrupt API functions or OS peripheral interrupt API functions are used before StartOS
[SPMF92:0058], [SPMF92:0070].

= Interrupt priority level ceiling is not supported by MICROSAR OS RH850 SafeContext. The
user has to check that before StartOS is called the interrupt priority mask register PMR
must have the value 0x00000000 and it shall not be changed after StartOS.
[SPMF92:0059],[SPMF92:0060]. This is not checked by RH850 SafeContext.

= The user has to review that all generated files belong together [SPMF92:0064]. Each
generated header and source file must start with the following comment block:

/* file: <file path><file name> */

/* automatically generated by genRH850SCTX.exe, Version: 6.11 */
/* from: <configuration file name> */

/* Generation time: <date> <time> <year> */

/* <license_and licensee_information> */

/* Implementation: RenesasRH850 PIM */

/* Version of general code: 6.16 */

/* Dcf-file semantic version: 2.00 */

/* Dcf-file content version: 2.01 */

= The user has to review that all generated files are compiled and linked [SPMF92:0064]:
- intvect.c

osConfigBlock.c

osStacks.c

- tcb.c

trustfct.c

= The user has to check that the application does not modify interrupt controller registers
EBASE, INTBP, INTCFG, SCBP and SCCFG after StartOS is called [SPMF92:0069].

= The application shall not modify any register in interrupt controller unit INTC by own
functions or routines after StartOS is called. The application shall only use the OS API
functions for changing registers in unit INTC. [SPMF92:0083]

= The user has to check validity and type of the reference parameter when calling the
following OS API functions [SPMF92:05.0001]:

- GetTaskID

- GetTaskState

- GetEvent

- GetAlarm

- GetScheduleTableStatus

- GetCounterValue

- GetElapsedValue/GetElapsedCounterValue

©2015, Vector Informatik GmbH Version: 1.05 40/80

Safety Manual MICROSAR OS SafeContext vector [

= The user has to review that the size of array oskAlarmHeaps is same as
osdNumberOfCounters and that each entry of the array looks like
[SPMF92:05.0002],[SPMF92:05.0004]:

{

os<CounterName>Heap,
&osAlarmHeapCount [<CounterName>]
},

= The user has to review that the values of the counter defines are an adjoining set from zero
to osdNumberOfCounters-1 in the generated file tcbpost.h [SPMF92:05.0003]:

example

tcb.h:
#define osdNumberOfCounters 8

tcbpost.h:

#define <CounterNameO> ((CounterType) O0)
#define <CounterNamel> ((CounterType) 1)
#define <CounterName2> ((CounterType) 2)

#define <CounterName7> ((CounterType) 7)

= The user has to review that the size of the heap arrays os<CounterName>Heap[] must be
equal to 1 plus the number of alarms that are related to the counter <CounterName> plus
the number of schedule tables that are related to the counter <CounterName>.
[SPMF92:05.0005]

= The user has to review that the first parameter of all calls of osSysSetEvent in tcb.c is a
task identifier which must be defined in tcbpost.h and that the value of the define is smaller
than osdNumberOfExtendedTasks. [SPMF92:05.0006]

= The user has to review that all calls of osWorkHeap in Timer ISR look like followed:
[SPMF92:05.0007]
osWorkHeap (&oskAlarmHeaps [<CounterDefineName>], <CounterDefineName>) ;

» The user has to review that the parameter of each call of osSysActivateTask in tcb.c is a
task identifier which must be defined in tcbpost.h [SPMF92:05.0009].

= The user has to review that the values of the task defines are adjoining set from zero to
osdNumberOfAllTasks-1 in the generated file tcbpost.h [SPMF92:05.0010].

= The wuser has to review that the size of the task activation arrays
osQTaskActivation_<index> which are listed in oskQActivationQueues is the same value as
oskQMaxActivations+1 [SPMF92:05.0012].

» The user has to review that the values of the Alarm defines are adjoining set from zero to
osdNumberOfAlarms-1 in the generated file tcbpost.h [SPMF92:05.0013].

= The user has to review that the array oskAlarmCounterRef[] contains exactly
osdNumberOfAlarms elements and that each element contains the index of the counter
related to that alarm [SPMF92:05.0014].

= The user has to review that the PMR register is not manipulated by his code
[SPMF92:04.0018].

©2015, Vector Informatik GmbH Version: 1.05 41/80

Safety Manual MICROSAR OS SafeContext vector [

12.1 Interrupt Vector Table

Basically the interrupt vector tables must be provided by the application. An example vector table is
generated into file intvect.c. This file is generated by QM software and must not be used directly as
ASIL code. It must be reviewed carefully for compliance to the description below because the code
which is called by the interrupt vector table runs automatically in supervisor mode and therefore
this code must be developed according to ASIL level [SPMF92:0004], [SPMF92:02.0020],
[SPMF92:02.0021], [SPMF92:04.0012].

The file intvect.c consists of the following parts:

Header Include Section
Core Exception Vector Table
EIINT Vector Table

CAT2 ISR Wrappers

The following subchapters describe these parts and do intentionally not describe any comments.
12.1.1 Header Include Section

This part of the code must be exactly like:

#if defined USE_QUOTE INCLUDES
#include "vrm.h"
#else

#include <vrm.h>
#endif
#define osdVrmGenMajRelNum 6
#define osdVrmGenMinRelNum 11
#if defined USE_QUOTE INCLUDES
#include "vrm.h"
#else

#include <vrm.h>
#endif

#if defined USE_QUOTE INCLUDES
#include "Os.h"

#else

#include <Os.h>

#endif

#if defined USE_QUOTE_INCLUDES
#include "osekext.h"

#else

#include <osekext.h>

#endif

©2015, Vector Informatik GmbH Version: 1.05 42 /80

Safety Manual MICROSAR OS SafeContext vector [

12.1.2 Core Exception Vector Table

The core exception vector table section starts exactly with the following lines:

#pragma asm
.align 512
.section ”.osExceptionVectortable”, ax
.globl _osExceptionVectorTable
_osExceptionVectorTable:

That part is followed by 32 vector table entries:

.offset <offset_addr>

.globl _osCoreException_<offset_ addr>
_osCoreException <offset addr>:

jr <handler_function>

<offset_addr> is the hexadecimal address offset for each exception interrupt vector.
The valid range is 0x0000, 0x0010, 0x0020 ... 0x01FO0

<handler_function> is the name of the function which is called when an exception occurs.
If no handler function is configured then osUnhandledCoreException is called.

The sequence of vector table entries starts at vector address 0x0000, increases in steps of 0x0010
and ends with vector address 0x01FO.

The core exception vector table section ends exactly with the following lines:

.globl _osExceptionVectorTableEnd
_osExceptionVectorTableEnd:
#fpragma endasm

©2015, Vector Informatik GmbH Version: 1.05 43 /80

Safety Manual MICROSAR OS SafeContext vector [

12.1.3 EIINT Vector Table

The EIINT vector table section starts exactly with the following lines:
#pragma asm

.align 512

.section ”.0sEIINTVectortable”, ax

.globl _osEIINTVectorTable
_osEIINTVectorTable:

For each unused interrupt source the following table entry must be generated:
.word _osUnhandledEIINT <index>

<index> is the channel index of the corresponding interrupt source. The valid range is O ... 383.

For each interrupt source used as category 1 ISR the following table entry must be generated:
.word _<catl_EIINT handler>

<cat1_EIINT _handler> is the name of the application specific EIINT handler which is called when
an interrupt on the corresponding source occurs.

For each interrupt source used as category 2 ISR the following table entry must be generated:
.word _<cat2_ EIINT handler> CAT2

<cat2_EIINT_handler> is the name of the OS ISR wrapper which is called when an interrupt on the
corresponding source occurs. The CAT2 ISR wrapper section is described in the next chapter.

The EIINT vector table section ends exactly with the following lines:
.globl _osExceptionVectorTableEnd
_osExceptionVectorTableEnd:

#pragma endasm

©2015, Vector Informatik GmbH Version: 1.05 44 /80

Safety Manual MICROSAR OS SafeContext vector [

12.1.4 CAT2 ISR Wrappers

The category 2 ISR wrapper section starts exactly with the following line:

#pragma ghs section text=".os_text"

Each category 2 ISR handler must be generated exactly like the following line [SPMF92:0044]:
0sCAT2ISR (<ISR_Function Name>, <ISR Priority Level>)
This macro is defined in osek.h. It defines the CAT2 ISR prologue for each interrupt priority level.

<ISR_Function_Name> is the unique name of the ISR function. This must be the same name as
used in the EIINT vector table at the corresponding channel index position with postfix _CAT2.

<ISR_Priority_Level> is the value of the interrupt priority level which is configured for the
corresponding ISR. The valid range of <ISR_Priority Level>is 0 ... 15

The category 2 ISR wrapper section ends exactly with the following line:
#ipragma ghs section text=default

©2015, Vector Informatik GmbH Version: 1.05 45/80

Safety Manual MICROSAR OS SafeContext vector [

12.2 Configuration Block

This chapter defines the rules to review and interpret the entries of the configuration block.

The configuration of MICROSAR OS RH850 SafeContext is generated into C-Code. The generator
itself has not been developed in accordance to safety requirements. Therefore, the generated
configuration information needs to be reviewed. The safety relevant configuration is generated into
a structure called ConfigBlock. This chapter describes how to review the ConfigBlock. As the
ConfigBlock is simply a constant structure in the memory of an ECU, users will have difficulties to
read it. Therefore, the configuration viewer is able to transform the ECU internal representation into
a user readable format. The process of reading the ConfigBlock and transforming it into the user
readable format is described in the following subchapter.

12.2.1 How to read back the ConfigBlock

The ConfigBlock is internal information of a program to control an ECU. It might be available in
different formats. Therefore it is difficult to provide one single configuration viewer program to read
the information and transform it into a human readable format.

So the configuration viewer is a console application which reads configuration information from a
proprietary intermediate file and writes it into a text file. Different reader programs are available to
transform the ConfigBlock from standard formats into the intermediate format. In addition, the
intermediate format is quite simple, so it may also be produced by manual adaptation of a
debugger output (hex dump) with any text editor.

The configuration viewer expects the intermediate format to contain nothing else than the
ConfigBlock. Therefore, the transformation programs need the information, where the ConfigBlock
is located. That information is passed to the transformation program by means of the parameter ‘—
b.

The address of the ConfigBlock is easily taken out of the linker map file. It is the address of the
constant osConfigBlock [SPMF92:0016].

The following subchapters concentrate on the output of the configuration viewer and on the rules to
review it. The configuration viewer and the format converters are described separately.

©2015, Vector Informatik GmbH Version: 1.05 46/ 80

Safety Manual MICROSAR OS SafeContext vector [

12.2.2 Additional Information

The operating system and therefore also the ConfigBlock typically use indexes instead of the
names of tasks, ISRs, applications and so on. Each index value is related to exactly one object in
the configuration of the OS. However, the relation to the configured object is typically not so
obvious.

Therefore, the configuration viewer provides the possibility to add the names of configuration
objects to its output. That information is taken from the so called XML config-file. The OS-generator
produces this file together with the source files it generates.

The configuration viewer outputs the object names in case a parameter is set to use the
information from the XML config-file. All information taken from the XML config-file is represented
between ‘(“ and ‘) to mark it as unsafe additional information.

The reviewer of the ConfigBlock has the possibility to make use of the information taken from the
XML config-file or to skip that information completely. The review rules in the chapters below
describe for both cases how the review shall be performed. The examples of configuration viewer
output below always contain the information from XML config-file.

Although the information taken from the XML config-file (information in parentheses) is unsafe, the
relation between index and name of an object is guaranteed to be fix. This means, once the
configuration viewer has read in the object names from the XML config-file, it always translates
each certain index to the exact same object name. So the relation between object index and object
name needs to be reviewed only once and can be seen as reliable everywhere else in the
configuration viewer output.

The review rules below already contain rules to validate the information taken from XML config-file,
so that information can safely be used although it is taken from an unsafe source.

©2015, Vector Informatik GmbH Version: 1.05 47 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.3 How to start the review

The configuration viewer starts the output with something like [SPMF92:0063]:

OS Configuration Viewer V3.00 (General) V1.02 (HW Specific) (Apr 24 2014 15:42:59)
(c) 2013 Vector Informatik GmbH

Started at:Tue May 13 16:23:24 2014

Remark: Text between '(' and ')' shall be treated as unsafe additional information
Start of Config Block 0x00002000

Length 588

CRC 0x9622

Config Block Format Version 02.00

MICROSAR OS RH850 SafeContext Version 06.05

User Config Version 2

The user should start with some consistency checks like:

¢ Is the date (Started at) equal to the date/time when the configuration viewer was started

¢ Do the start address (Start of configuration block), length (Length) and CRC fit to the
configuration block which shall be reviewed

e Check that the listed version of MICROSAR OS RH850 SafeContext matches your
delivered version.

o Review that the user config version represents the number which was configured by means
of the configuration attribute UserConfigurationVersion [SPMF92:0045].

o Is the output complete (see below)?

The output is complete when it ends on:

End of configuration block reached

©2015, Vector Informatik GmbH Version: 1.05 48 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.3.1 Indexes of applications, task , ISRs, trusted and non-trusted functions

Check indexes of listed applications:

The indexes must begin with 0

The indexes must be consecutive. Gaps are not allowed
The indexes must end at <Number of applications>-1

Check indexes of listed tasks:

The indexes must begin with 0

The indexes must be consecutive. Gaps are not allowed
The indexes must end at <Number of tasks>-1

Check indexes of listed category 2 ISRs:

The indexes must begin with 0

The indexes must be consecutive. Gaps are not allowed
The indexes must end at <Number of category 2 ISRs> - 1

Check indexes of listed trusted functions:

The indexes must begin with 0

The indexes must be consecutive. Gaps are not allowed
The indexes must end at <Number of trusted functions> - 1

Check indexes of listed non-trusted functions:

The indexes must begin with 0

The indexes must be consecutive. Gaps are not allowed

The indexes must end at <Number of non-trusted functions> - 1

Note: The table items in the configuration viewer output may not be sorted by index.

12.2.3.2 Review against User’s Design

The chapters below describe, how the configuration viewer output can be reviewed against the
OS-configuration. However, the review shall be performed against the user’s design of the system.

The reason is that OS developers can only describe, where the respective information can be
found in the configuration but have only limited knowledge about the system design.

©2015, Vector Informatik GmbH Version: 1.05 49 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.4 How to review the general information (block 0)

The configuration viewer generates the general information as followed [SPMF92:0063]:

0. General Information

Number of Tasks

Number of Cat2 ISRs

Number of All ISRs

Number of Trusted Functions
Number of Non-Trusted Functions
Number of Applications

Number of Peripheral Regions
Stack Usage Measurement

Number of MPU Regions

Number of Dynamic MPU Regions
Number of Static MPU Regions
Number of Available Cores
System Stack Start-Address 0xfedf04b0
System Stack End-Address O0xfedf0640

R BABENRFPFKOWOR MWD

The review shall be performed like this:

o Count the number of configured tasks and compare it against the number of tasks
presented by the configuration viewer in the part about general information

e Check the number of Cat2 ISRs:

o Count the number of configured ISRs with CATEGORY = 2 and compare it against
the number of Cat2 ISRs presented by the configuration viewer in the part about
general information.

o Consider that the OS internally uses a further Cat2 ISR for alarm and schedule table
handling. That ISR is only available in case at least one alarm or a schedule table
has been configured that uses the system timer.

e Check the number of all ISRs:

o Count the number of configured EIINT ISRs with CATEGORY = 1 and 2 and
compare it against the number of all ISRs presented by the configuration viewer in
the part about general information.

e Count the number of configured trusted functions and compare it against the number of
trusted functions presented by the configuration viewer in the part about general
information. Trusted function configurations may be found in the configuration of any OS-
applications with TRUSTED = TRUE.

e Count the number of configured non-trusted functions and compare it against the number of
non-trusted functions presented by the configuration viewer in the part about general
information. Non-trusted function configurations may be found in the configuration of any
OS-applications with TRUSTED = FALSE.

¢ Count the number of configured OS-applications and compare it against the number of OS-
applications presented by the configuration viewer in the chapter about general information.

¢ Count the number of peripheral regions configured over all non-trusted applications and
compare it against the number of peripheral regions presented by the configuration viewer.

e Compare the configuration of stack usage measurement against the respective output of
the configuration viewer in the chapter about general information. The configuration of stack
usage measurement is found in the general configuration of the OS.

©2015, Vector Informatik GmbH Version: 1.05 50/80

Safety Manual MICROSAR OS SafeContext vector [

o Check the number of MPU regions which are provided by the used CPU derivative.

o Check the number of dynamic MPU regions which must be same as the number of MPU
regions configured in the application with most dynamic MPU regions.

e Check the number of static MPU regions configured for the OS.
o Check the number of CPU cores which are provided by the used CPU derivative.
o Review of system stack addresses [SPMF92:0056],[SPMF92:04.0003]:

o Compare the system stack start address in the configuration viewer output against
the label _osSystemStack StartAddr in the linker map-file.

o Compare the system stack end address in the configuration viewer output against
the label _osSystemStack _EndAddr in the linker map-file.

o Check that both labels are 4 Byte aligned [SPMF92:04.0002]. This prevents that any
data of other sections is accessible by the same MPU region.

o Check that only the array variable osSystemStack is located between the labels
described above.

o Check the difference between the system stack start- and end-address against the
designed (and therefore also configured) system stack size.

©2015, Vector Informatik GmbH Version: 1.05 51/80

Safety Manual MICROSAR OS SafeContext vector [

12.2.5 How to review the task start addresses (block 1)

The configuration viewer generates the task start addresses as followed [SPMF92:0063]:

1. Task start addresses:

Task-ID Task-Name Value Checked?
0 (eTaskl) 0x000030cc [1
1 (osSystemExtendedTask) 0x000059a2 [1
2 (bTaskl) 0x00003052 [1
3 (osSystemBasicTask) 0x000059a0 [1]

The review shall be performed like this:

e Check the linker-map-file of the project for a function called <TaskName>func. This

function must be linked to the address value as specified in the configuration viewer output
[SPMF92:02.0025].

©2015, Vector Informatik GmbH Version: 1.05 52 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.6 How to review the task trusted information (block 2)

The configuration viewer generates the task trusted information as followed:
[SPMF92:0061],[SPMF92:0063], [SPMF92:02.0027]

2. Task trustedness information:

Task-ID Task-Name Value Checked?
0 (eTaskl) non-trusted [1
1 (osSystemExtendedTask) trusted [1]
2 (bTaskl) non-trusted [1
3 (osSystemBasicTask) trusted [1

The review shall be performed like this:

o Check for each task, that the setting of the attribute TRUSTED of the owner application fits
to the value of the task trustedness information. In case the owner application has the
configuration TRUSTED=TRUE, the task must be trusted. In case the owner application
has the configuration TRUSTED=FALSE, the task must be non-trusted.

o o0sSystemExtendedTask and osSystemBasicTask must always be trusted.

©2015, Vector Informatik GmbH Version: 1.05 53/80

Safety Manual MICROSAR OS SafeContext vector [

12.2.7 How to review the task preemptive information (block 3)

The configuration viewer generates the task preemptive information as followed [SPMF92:0063]:

3. Task preemptiveness information:

Task-ID Task-Name Value Checked?
0 (eTaskl) fully-preemptible []
1 (osSystemExtendedTask) fully-preemptible []
2 (bTaskl) fully-preemptible [1
3 (osSystemBasicTask) non-preemptible [1

The review shall be performed like this:

o Take the task name (as printed) and check whether this respective task preemptive setting
was really configured as printed. If preemptive is printed here, the task configuration must
contain SCHEDULE = FULL, if non-preemptive is printed here, the task configuration must
contain SCHEDULE=NON. The OS generator assures that each task has the attribute
SCHEDULE exactly once with possible values FULL or NON.

©2015, Vector Informatik GmbH Version: 1.05 54 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.8 How to review the task stack start and end addresses (block 4 and 5)

The configuration viewer generates the task stack start addresses as followed [SPMF92:0063]:

4. Task stack lower boundary addresses:

Task-ID Task-Name Value Checked?
0 (eTaskl) O0xfedf0640 [1
1 (osSystemExtendedTask) 0x00000010 [1
2 (bTaskl) 0xfedf07d0 [1
3 (osSystemBasicTask) 0x00000010 [1]

The configuration viewer generates the task stack end addresses as followed:

5. Task stack upper boundary addresses:

Task-ID Task-Name Value Checked?
0 (eTaskl) 0xfedf07d0 [1
1 (osSystemExtendedTask) 0x00000000 [1
2 (bTaskl) O0xfedf0960 [1
3 (osSystemBasicTask) 0x00000000 [1

The review shall be performed like this [SPMF92:0056]:
o Check that the difference between stack start and stack end address fits to the configured
size of the task stack
o Check that the stacks do not overlap
o Compare printed address value of each stack with the address given in the linker map file.

e Check that all task stack sizes are a multiple of 4 Bytes [SPMF92:04.0008]. This prevents
that any data of another section is accessible in the same MPU region.

o Check that each defined address region (task stack start address, task stack end address)
only covers exactly one array variable named osTaskStack<Stackindex>.

©2015, Vector Informatik GmbH Version: 1.05 55/80

Safety Manual MICROSAR OS SafeContext vector [

12.2.9 How to review the task ownership information (block 6)

The configuration viewer generates the task ownership information as followed [SPMF92:0063]:

6. Task to application mapping:

Task-ID Task-Name Appl-ID Appl-Name Checked?
0 (eTaskl) 2 (xyzAppl) [1]
1 (osSystemExtendedTask) 1 (osSystemApplicationCore0) [1]
2 (bTaskl) 2 (xyzAppl) [1]
3 (osSystemBasicTask) 1 (osSystemApplicationCore0) [1

The review shall be performed like this [SPMF92:0062]:

o The configuration of each application contains a list of the tasks which it owns. Check for
each of the named applications that it owns exactly those tasks listed in the configuration
viewer output. The OS generator assures that each task has exactly one owner application.

©2015, Vector Informatik GmbH Version: 1.05 56 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.10 How to review the category 2 ISR start addresses (block 7)

The configuration viewer generates category 2 ISR start addresses as followed [SPMF92:0063]:
7. Category 2 ISR function start address:

ISR-ID ISR-Name Value Checked?
0 (ISR1) 0x000030£f4 [1
1 (osSystemCat2ISR) 0x000059%a4 [1
2 (osTimerInterrupt) 0x00009b9c [1

The review shall be performed like this:

e Check the linker map file of the project for symbol _<ISRName>func. This ISR function

must be linked to the address value as specified in the configuration viewer output
[SPMF92:02.0026].

o In case the ISR has a configured SpecialFunctionName, search for the symbol
_<SpecialFunctionName>func instead, which is located at the address, shown in the
configuration block.

©2015, Vector Informatik GmbH Version: 1.05 57 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.11 How to review the CAT2 ISR trusted information (block 8)

The configuration viewer generates CAT2 ISR trusted information as followed:
[SPMF92:0061],[SPMF92:0063], [SPMF92:02.0027]

8. Category 2 ISR trustedness:

ISR-ID ISR-Name Value Checked?

0 (ISR1) non-trusted [1

1 (osSystemCat2ISR) trusted [1]

2 (osTimerInterrupt) trusted [1

The review shall be performed like this:

o Check for each cat2 ISR, that the setting of the attribute TRUSTED of the owner application
fits to the value of the ISR trusted information. In case the owner application has the
configuration TRUSTED=TRUE, the ISR must be trusted. In case the owner application has
the configuration TRUSTED=FALSE, the ISR must be non-trusted. The trustedness of the
system timer ISR osTimerInterrupt cannot be configured and is always a trusted ISR.

©2015, Vector Informatik GmbH Version: 1.05 58 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.12 How to review the CAT2 ISR nested information (block 9)

The configuration viewer generates the CAT2 ISR nested information as followed [SPMF92:0063]:
9. Category 2 ISR nesting:

ISR-ID ISR-Name Value Checked?
0 (ISR1) nested [1
1 (osSystemCat2ISR) non-nested [1
2 (osTimerInterrupt) nested [1

The review shall be performed like this:

o Check for each cat2 ISR, that the setting of the attribute EnableNesting fits to the value of
the ISR nested information [SPMF92:02.0031]. In case the cat2 ISR has the configuration
EnableNesting =TRUE, the ISR must be nested. In case the cat2 ISR has the configuration
EnableNesting =FALSE, the ISR must be not nested. This setting for the system timer ISR
osTimerInterrupt is configured via OS attribute SystemTimerNestable. Check that the
setting of attribute SystemTimerNestable fits to the ISR nested information of ISR
osTimerlnterrupt.

©2015, Vector Informatik GmbH Version: 1.05 59 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.13 How to review CAT2 ISR stack start and end addresses (block 10 and 11)

The configuration viewer generates the CAT2 ISR stack start addresses as followed
[SPMF92:0063]:

10. Category 2 ISR stack start address:

Level Value Checked?
0 0x00000000 [1
1 0x00000000 [1]
2 0x00000000 [1
3 0x00000000 [1
4 0x00000000 [1]
5 0x00000000 [1
6 0x00000000 [1
7 0x00000000 [1
8 0x00000000 [1
9 0x00000000 [1
10 0xfedf0000 [1]
11 0x00000000 [1
12 0xfedf0320 [1
13 0x00000000 [1
14 0x00000000 [1
15 0x00000000 [1]

The configuration viewer generates the CAT2 ISR stack end addresses as followed
[SPMF92:0063]:

11. Category 2 ISR stack end address:

Level Value Checked?
0 0x00000000 [1
1 0x00000000 [1
2 0x00000000 [1
3 0x00000000 [1
4 0x00000000 [1
5 0x00000000 [1
6 0x00000000 [1
7 0x00000000 [1
8 0x00000000 [1
9 0x00000000 [1
10 Oxfed£f0320 [1
11 0x00000000 [1
12 0xfedf04b0 [1]
13 0x00000000 [1]
14 0x00000000 [1
15 0x00000000 [1]

The review shall be performed like this [SPMF92:0056]:

e Check that the difference between stack start and stack end address fits to the configured
size of the ISR stack

e Check that the stacks do not overlap

e Compare printed address value of each stack with the address given in the linker map file.

©2015, Vector Informatik GmbH Version: 1.05 60 /80

Safety Manual MICROSAR OS SafeContext vector [

o Check that all ISR stack sizes are a multiple of 4 Bytes [SPMF92:04.0008]. This prevents
that any data of another section is accessible in the same MPU region.

o Check that each defined address region (ISR stack start address, ISR stack end address)
only covers exactly one array variable named osIntStackLevel<PriorityLevel>.

©2015, Vector Informatik GmbH Version: 1.05 61/80

Safety Manual MICROSAR OS SafeContext vector [

12.2.14 How to review the CAT2 ISR ownership information (block 12)

The configuration viewer generates the CAT2 ISR ownership information as followed
[SPMF92:0063]:

12. Category 2 ISR to application assignment:

ISR-ID ISR-Name Appl-ID Appl-Name Checked?
0 (ISR1) 2 (xyzAppl) [1]
1 (osSystemCat2ISR) 1 (osSystemApplicationCore0) [1
2 (osTimerInterrupt) 1 (osSystemApplicationCore0) [1

The review shall be performed like this:

e The configuration of each application contains a list of the cat2 ISRs which it owns. Check
for each of the named applications that it owns exactly those ISRs listed in the configuration
viewer output [SPMF92:02.0028]. The OS generator assures that each ISR has exactly one
owner application. The owner of the ISR osTimerlnterrupt is the OS itself.

o Check that category 1 ISRs are not listed in the configuration block. [SPMF92:0055]

©2015, Vector Informatik GmbH Version: 1.05 62 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.15 How to review the trusted functions start addresses (block 13)

The configuration viewer generates trusted functions start addresses as followed [SPMF92:0063]:

13. Trusted function start address:

Tfunc-ID Tfunc-Name Value Checked?
0 (StartTestStep) 0x000039d8 [1
1 (GetTestStep) 0x000039%aa [1
2 (SetCheckPoint) 0x000039c2 []
3 (TF1) 0x00003006 [1
4 (TriggerISR1) 0x000039%ee [1
5 (TriggerISR2) 0x00003a06 [1
6 (osSystemTrustedFunction) 0x00005982 [1

The review shall be performed like this:

e Check the linker map file of the project for symbol TRUSTED_<FuncName>. This function
must be linked to the address value as specified in the configuration viewer output
[SPMF92:0048],[SPMF92:0057].

©2015, Vector Informatik GmbH Version: 1.05 63 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.16 How to review the non-trusted functions start addresses (block 14)

The configuration viewer generates non-trusted functions start addresses as followed
[SPMF92:0063]:

14. Non-trusted function start address:

NTfunc-ID NTfunc-Name Value Checked?
0 (NTF1) 0x00002e6a [1
1 (NTF2) 0x00003de0 [1]

The review shall be performed like this:

e Check the linker map file of the project for symbol NONTRUSTED <FuncName>. This
function must be linked to the address value as specified in the configuration viewer output
[SPMF92:02.0024].

©2015, Vector Informatik GmbH Version: 1.05 64 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.17 How to review the non-trusted functions ownership information (block 15)

The configuration viewer generates the non-trusted functions ownership as followed
[SPMF92:0063]:

15. Non-trusted function to application assignment:

NTfunc-ID NTfunc-Name Appl-ID Appl-Name Checked?
0 (NTF1) 1 (NonTrustedApplA) []
1 (NTF2) 2 (NonTrustedApplB) [1

The review shall be performed like this:

e The configuration of each application contains a list of the functions which it owns. Check
for each of the named applications that it owns exactly those functions listed in the
configuration viewer output [SPMF92:02.0029]. The OS generator assures that each
function has exactly one owner application.

©2015, Vector Informatik GmbH Version: 1.05 65/80

Safety Manual MICROSAR OS SafeContext vector [

12.2.18 How to review the application dynamic MPU settings (block 16)

It is necessary to refer the Renesas Electronics user’s manual architecture [6] for exactly
understanding of the Memory Protection Unit (MPU).

The configuration viewer generates the dynamic MPU settings as followed [SPMF92:0063]:
16. Application MPU configuration (dynamic):

Appl-ID Appl-Name Region Start-Addr End-Addr Checked?
0 (AppTrusted) 1 0x00000010 0x00000000 [1]
2 0x00000010 0x00000000 [1
1 (NonTrustedApplA) 1 0xffe50000 Oxffe5fffc [1
2 O0xfedf0a80 Oxfedfla7f [1]
2 (NonTrustedApplB) 1 0xffe50000 OxffeS5fffc [1
2 0xfedf0a80 O0xfedfOb7f [1
3 (TraceAppl) 1 0x00000010 0x00000000 [1]
2 0x00000010 0x00000000 [1]
4 (osSystemApplicationCore0) 1 0x00000010 0x00000000 [1
2 0x00000010 0x00000000 [1

The review shall be performed like this [SPMF92:0052],[SPMF92:04.0003],[SPMF92:04.0005]:

e Each application must have the same number of rows.

e The number of rows for each application must be same as shown in the output of
configuration block 0: Number of Dynamic MPU Regions

o Trusted applications must always have Start-Addr = 0x00000010
o Trusted applications must always have End-Addr = 0x00000000
¢ Unused MPU regions in non-trusted applications must have Start-Addr = 0x00000010
e Unused MPU regions in non-trusted applications must have End-Addr = 0x00000000

e Check that values of Start-Addr and End-Addr in row of non-trusted applications are same
as configured in the applications settings

o Check that used MPU regions in non-trusted applications have Start-Addr value smaller
than the End-Addr value

e Check that all trusted and non-trusted applications are listed.

o Check that all Start-Addr values are aligned to 4 Byte boundary [SPMF92:04.0009]
e Check that all End-Addr values point to the last valid byte in the specified area.

e Overlapping of memory regions is not allowed [SPMF92:04.0010].

e The next region after the end address must be aligned at to a 4 Byte boundary.

e Compare Start-Addr of non-trusted applications that the address value fits to address of
the application specific linker symbol used in configuration settings [SPMF92:0052]

e Compare End-Addr of non-trusted applications that the address value fits to address of the
application specific linker symbol used in configuration settings [SPMF92:0052]

o If alinker section for application data memory region is empty then the end address is
below the start address. The start or end address may then overlap with other linker
sections. This can be ignored because it does not harm the MPU functionality.

©2015, Vector Informatik GmbH Version: 1.05 66 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.19 How to review the interrupt channel index (block 17)

The configuration viewer generates the interrupt channel index for CAT1 and CAT2 ISRs as
followed [SPMF92:0063]:

17. Category 2 ISR interrupt channel index:

ISR-ID ISR-Name Channel Checked?
0 (ISR1) 137 [1
1 (osSystemCat2ISR) 0 [1]
2 (osTimerInterrupt) 74 [1
3 (TestTimerl) 134 [1

The review shall be performed like this:

o Check for each cat1 and cat2 ISR that the number is corresponding to the default priority
number listed in the hardware user manual of the used processor derivative (look for
symbol EIINT<Number>).

e Check that the biggest listed number is not greater than 383.
e Channel index of ISR 0sSystemCat2ISR can be ignored because it is not used at all.

©2015, Vector Informatik GmbH Version: 1.05 67 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.20 How to review the ISR interrupt priority level (block 18)

The configuration viewer generates the interrupt priority level for CAT1 and CAT2 ISRs as followed
[SPMF92:0063]:

18. Category 2 ISR priority level:

ISR-ID ISR-Name Priority Checked?
0 (ISR1) 10 [1
1 (osSystemCat2ISR) 128 [1]
2 (osTimerInterrupt) 12 [1
3 (TestTimerl) 7 [1

The review shall be performed like this [SPMF92:02.0032]:

e Check for each category 1 and category 2 ISR that the setting of the attribute
InterruptPriority fits to the value of the printed ISR information “Priority” from configuration
viewer.

¢ Interrupt priority level of osSystemCat2ISR can be ignored because it is not used at all. The
priority value must always be 128.

©2015, Vector Informatik GmbH Version: 1.05 68 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.21 How to review the peripheral regions configuration (block 19)
The configuration viewer generates the application peripheral regions as followed [SPMF92:0063]:

19. Peripheral Regions Configuration:

Region Appl-Mask Start-Addr End-Addr Checked?

0 0x00000005 O0xfede0000 Oxfedelfff [1]
1 0x0000000c O0Oxfede4000 Oxfededfff [1]

The review shall be performed like this:

e Check that the listed peripheral region access rights match your configuration
[SPMF92:02.0030]

e Check for each row that Appl-Mask fits to the accessing applications. Each bit which is set
means that the corresponding application has access rights to this region. E.g. if bit 0 is set
then application with ID=0 has permission to access the region, if bit 1 is set then
application with ID=1 has permission to access the region etc.

e Check that the listed peripheral region start and end addresses matches your configuration
[SPMF92:02.0030]

e Check for each row that Start-Addr fits to the start address value of the configured
peripheral region. Start-Addr must point to the first valid byte in the region.

e Check for each row that End-Addr fits to the end address value of the configured peripheral
region. End-Addr must point to the last valid byte in the region.

e Check that the peripheral region index starts with O
e Check that the peripheral region index is consecutive with no gaps
e Check that the peripheral region belongs to the printed application.

©2015, Vector Informatik GmbH Version: 1.05 69 /80

Safety Manual MICROSAR OS SafeContext vector [

12.2.22 How to review the static MPU regions configuration (block 20)

The configuration viewer generates the static MPU regions configuration as followed:

20. MPU configuration (static):

Attributes Checked?

0x00000010
0x00000010
0x00000000
0x££000000
0xfedf0960
0xfed£0000
0x00000000
0x00000000
0x00000000
0x00000000

0x00000000
0x00000000
0x000ffffc
Oxfffffffc
0xfee00000
0xfedf0960
0x00000000
0x00000000
0x00000000
0x00000000

0x000000db
0x000000db
0x000000£d
0x000000d8
0x000000d9
0x000000c9
0x00000000
0x00000000
0x00000000
0x00000000

0x00000000 0x00000000 0x00000000

Start-Addr are the values which are written to MPU registers MPLAN
End-Addr are the values which are written to MPU registers MPUAnN
Attributes are the values which are written to MPU registers MPATnN

The review shall be performed like this:
o Check that all regions 1 ... 11 are listed.

o |If Start-Addr=0x00000010, End-Addr=0x00000000 and Attributes=0x000000db then the
MPU region is used dynamic, i.e. it is reprogrammed when the context is switched.

e [f Start-Addr=0x00000000, End-Addr=0x00000000 and Attributes=0x00000000 then the
MPU region is not used at all.

e All other regions are user specific MPU region settings.

e Check the user specific MPU region settings that Start-Addr, End-Addr and Attributes fit to
the corresponding configurations.

e Check each user specific MPU region setting that Start-Addr is lower than End-Addr.
e Check each user specific MPU region setting that Attributes contains correct application ID.

©2015, Vector Informatik GmbH Version: 1.05 70/ 80

Safety Manual MICROSAR OS SafeContext vector [

12.2.23 How to review the application trusted information (block 21)

The configuration viewer generates the application trusted information as followed:

21. Application trustedness information:

Appl-ID Appl-Name Value Checked?
0 (NTAppl) non-trusted [1
1 (abcAppl) trusted [1
2 (osSystemApplicationCore0) trusted [1
3 (xyzAppl) non-trusted [1

The review shall be performed like this:

o Check for each application, that the setting of the attribute TRUSTED fits to the value of the
application trustedness information.

o If the application has attribute TRUSTED=TRUE, then Value must be trusted.
e If application has attribute TRUSTED=FALSE, then Value must be non-trusted.
¢ OS system application osSystemApplicationCore0 must always be trusted.

©2015, Vector Informatik GmbH Version: 1.05 71/80

Safety Manual MICROSAR OS SafeContext vector [

12.2.24 How to review the core control block address information (block 22)

The configuration viewer generates the core control block information as followed:

22. Core control block address:

The review shall be performed like this:

o Check that Address value is the same value for linker symbol _osCtrlVarsCore0 in the
project map file which is generated by the linker.

©2015, Vector Informatik GmbH Version: 1.05 72 /80

Safety Manual MICROSAR OS SafeContext

12.3 Linker Memory Sections

The OS uses specific memory section names for the linker. Check that these section names are
used in the linker file and check that they are used in the assigned area.
The OS uses the linker memory section names described in the following table:

.0osExceptionVectorTable
section type .text

Contains the core exception vector table. It is generated into
file intvect.c

.OSEIINTVectorTable
section type .text

Contains the EIINT exception vector table. It is generated into
file intvect.c

.0s_text
section type .text

Contains the interrupt handler for category 2 ISRs. It is
generated into file intvect.c

Must be linked to program code section.

.0s_text
section type .text

Contains all OS program code, except those which must be
placed in special sections (e.g. vector table).

Must be linked to program code section.

.0s_rodata
section type .rodata

Contains the OS constant data, except those which must be
placed in special sections (e.g. configuration block
osConfigBlock).

Must be linked to constant data section.

.0s_rosdata
section type .rosdata

Contains all OS constants which are placed in ROSDA area,
except those which must be placed in special sections (e.g.
configuration block osConfigBlock).

Must be linked to the constant data in ROSDA section

.0sConfigBlock_rodata
section type .rodata

Contains the configuration block if SDA optimization is
disabled.

Must be linked to constant data section.

.0sConfigBlock_rosdata
section type .rosdata

Contains the configuration block if SDA optimization is enabled
Must be linked to constant data in ROSDA section.

.0s_bss
section type .bss

Contains the uninitialized OS variables
Optional initialized to zero by system startup code.
Must be linked to the data section.

.0s_data
section type .data

Contains the initialized OS variables which must be copied
from ROM to RAM by system startup code.

Must be linked to the data section. This section must be empty!

.0s_sbss
section type .sbss

Contains uninitialized OS variables which are placed in SDA
area if SDA optimization is enabled.

Optional initialized to zero by system startup code.
Must be linked to the SDA section.

.0s_sdata
section type .sdata

Contains initialized OS variables which are placed in SDA area
if SDA optimization is enabled.

Must be linked to the SDA section. This section must be empty!

©2015, Vector Informatik GmbH

Version: 1.05 731780

vactor’

Safety Manual MICROSAR OS SafeContext

vactor’

section type .bss

.osTaskStack<TaskIndex>

Contains the uninitialized task specific stack.
Must be linked to the data section.

.0sSystemStack
section type .bss

Contains the uninitialized OS system stack.
Must be linked to the data section.

section type .bss

.osIntStackLevel<Priority>

Contains the uninitialized ISR specific stack.
Must be linked to the data section.

section type .bss

.0sAppl_<AppIName>_bss

Contains uninitialized application data.
Optional initialized to zero by system startup code.
Must be linked to the data section.

section type .sbss

.0sAppl_<AppIName>_sbss

Contains uninitialized application data in SDA area if SDA
optimization is enabled.

Optional initialized to zero by system startup code.
Must be linked to SDA section.

section type .data

.0sAppl_<AppIName>_data

Contains initialized application data.
Must be linked to data section.

section type .sdata

.0sAppl_<AppIName>_sdata

Contains initialized application data in SDA area if SDA
optimization is enabled.

Must be linked to SDA section.

.0sGlobalShared_bss
section type .bss

Contains uninitialized global shared data.
Optional initialized to zero by system startup code.
Must be linked to data section.

.0sGlobalShared_sbss
section type .sbss

Contains uninitialized shared data in SDA area if SDA
optimization is enabled.

Optional initialized to zero by system startup code.
Must be linked to SDA section.

.0sGlobalShared_data
section type .data

Contains initialized shared global data.
Must be linked to data section.

.0sGlobalShared_sdata
section type .sdata

Contains initialized shared data in SDA area if SDA
optimization is enabled.

Must be linked to SDA section.

©2015, Vector Informatik GmbH

Version: 1.05 74180

Safety Manual MICROSAR OS SafeContext vector [

12.4 Linker Include Files

The generated linker include files shall be reviewed if they are used for serial production.

12.4.1Review File osdata.did
File osdata.dld contains mapping of section types .bss and .data for trusted applications.

For each trusted application the generated lines must look like:
/* trusted application <ApplName> */
.0sAppl <ApplName> bss align(4) :>.
.0osAppl <ApplName> data align(4) :>.

The linker include file ends with the section mapping for OS data which must look like:

.0s_bss align(4) :>.
.os_data align(4) :>.

©2015, Vector Informatik GmbH Version: 1.05 75/ 80

Safety Manual MICROSAR OS SafeContext vector [

12.4.2Review File ossdata.dld

The generated example file ossdata.dld contains the mapping of section types .sbss and
.sdata for trusted and non-trusted applications.

For non-trusted applications it also contains the mapping of section types .bss and .data.
This is necessary due to optimization for MPU region settings.

For each trusted application the generated lines must look like:
/* trusted application <ApplName> */

.0osAppl <ApplName> sbss align(4) :>.
.0osAppl <ApplName> sdata align(4) :>.

For each non-trusted application the generated lines must look like:
/* non-trusted application <ApplName> */

.0sAppl <ApplName> bss align(4) :>.
.0osAppl <ApplName> data align(4) :>.
.0osAppl <ApplName> sbss align(4) :>.
.0osAppl <ApplName> sdata align(4) :>.

<Appl Section_StartAddr>
_<Appl_Section_EndAddr>

addr (.osAppl_ <ApplName> bss) ;
endaddr (.osAppl_ <ApplName> sdata)-1;

After the mapping of the application sections the mapping for OS SDA sections must be
generated like the following lines:

.os_sbss align(4) :>.

.0s_sdata align(4) :>.

After the mapping of the OS SDA sections the mapping for global shared sections must be
generated like the following lines:

.osGlobalShared sbss align(4) :>.

.osGlobalShared sdata align(4) :>.

.osGlobalShared bss align(4) :>.

.osGlobalShared data align(4) :>.

_osGlobalshared StartAddr = addr(.osGlobalShared sbss);

_osGlobalShared EndAddr = endaddr(.osGlobalShared data)-1;

©2015, Vector Informatik GmbH Version: 1.05 76 /80

Safety Manual MICROSAR OS SafeContext vector [

12.4.3Review File osstacks.dld
File osstacks.dld contains mapping of all stack sections.

Each stack section mapping for used interrupt priority levels must look like:

.osIntStackLevel<Priolevel> align(4) :>.
_osIntStackLevel<PrioLevel> StartAddr = addr(.osIntStackLevel<PrioLevel>) ;
_osIntStackLevel<PrioLevel> EndAddr = endaddr(.osIntStackLevel<PrioLevel>);

<PrioLevel> is the interrupt priority level O ... 15

The mapping for the system stack section must look like:

.osSystemStack align(4) :>.
osSystemStack StartAddr = addr(.osSystemStack) ;
_osSystemStack_EndAddr = endaddr (.osSystemStack) ;

The system stack section is followed by the OS task stack sections which must look like:

.osTaskStackosSystemApplicationCore00 align(4) :>.
_osTaskStackosSystemApplicationCore00_StartAddr =

addr (.osTaskStackosSystemApplicationCore00) ;
osTaskStackosSystemApplicationCore00 EndAddr =

endaddr (.osTaskStackosSystemApplicationCore00) ;

.osTaskStackosSystemApplicationCoreOl align(4) :>.
osTaskStackosSystemApplicationCore0l StartAddr =

addr (.osTaskStackosSystemApplicationCore01) ;
_osTaskStackosSystemApplicationCore0l_EndAddr =

endaddr (.osTaskStackosSystemApplicationCore0l) ;

The OS task stack sections are followed by the application task stack sections.
Each application task stack section mapping must look like:

.osTaskStack<applname><index> align(4) :>.
_osTaskStack<applname><index> StartAddr = addr(.osTaskStack<applname><index>) ;
_osTaskStack<applname><index> EndAddr = endaddr(.osTaskStack<applname><index>);

<applname> is the name of the owner application
<index> is the index number of the task stack: 0 ... number of tasks per application

©2015, Vector Informatik GmbH Version: 1.05 77 /80

Safety Manual MICROSAR OS SafeContext vector [

12.4.4Review File osrom.did
File osrom.dld contains the sections used for initialized variables.

For each application which has data to be initialized during startup code the following lines must be
generated:

.ROM osAppl <ApplName> data ROM(.osAppl <ApplName> data) :>.
.ROM_osAppl <ApplName> sdata ROM(.osAppl <ApplName> sdata) :>.
.ROM_osAppl <ApplName> tdata ROM(.osAppl <ApplName> tdata) :>.

File osrom.dld ends with the global shared initialized data sections which must look like:
.ROM GlobalShared data ROM(.osGlobalShared data) >,
.ROM GlobalShared sdata ROM(.osGlobalShared sdata) :>.
.ROM GlobalShared tdata ROM(.osGlobalShared tdata) :>.

12.4.5Review File ostdata.did
File ostada.dld contains the mapping for application data in TDA section.

For each application which has data in TDA section the following line must be generated:
.osAppl <ApplName> tdata align(4) MAX SIZE (0x0100) :>.

File ostdata.dld ends with the mapping for global shared data in TDA section which must look like:
.osGlobalShared tdata align(4) MAX SIZE(0x0100) :>.

©2015, Vector Informatik GmbH Version: 1.05 78 /80

Safety Manual MICROSAR OS SafeContext vector [

12.5 Stack Size Configuration

The size of task stacks, ISR stacks and the system stack is configured by the user. The application
code must not use more stack then configured. Before trusted or non-trusted application code
(tasks, ISRs, trusted and non-trusted functions) is executed the OS always reprogramms MPU
region 0O in order to protect the stack memory areas.

The following table provides an overview of the stacks and which code parts need to be considered
for the analysis of the required stack sizes.

Stack Usage
System Stack StartupHook
ErrorHook

ProtectionHook [SPMF92:0082]
ShutdownHook [SPMF92:0081]

Task Stacks the corresponding task function and its call tree
ISRs of category 1 (when interrupting a task)
ErrorHook
Storing a context (144 Byte)
ISR Stacks the corresponding category 2 ISR function and its call tree
ISRs of category 1 (when interrupting an ISR)
ErrorHook

Storing a context (144 Byte)

If no static analysis for the stack requirement is made, the stack usage may be measured by
means of the API functions osGetStackUsage, osGetlSRStackUsage and
osGetSystemStackUsage, when StackUsageMeasurement is configured. Measurement has to
consider the maximum stack usage of the code under measure. It has to be ensured, that all
directly and indirectly called functions are executed and use the maximum possible stack.

Stack Usage measurement is implemented by filling the stack with a pattern on startup and
counting the number of continuous patterns which have not been overwritten with another value.
This may lead to a too small measured value in case the function under measure uses this pattern
as value on its stack.

As the hardware allows to enable interrupts even in non-trusted code, any non-trusted ISR may
enable nesting. Therefore, the user shall expect that interrupt nesting can always occur when
defining the system stack size [SPMF92:0089].

The stack usage must be measured after the maximum call depth has been reached
[SPMF92:0090].

12.6 Stack Monitoring

The stack memory area is write protected via MPU region 0. Trusted and non-trusted applications
and the OS cannot write to stack areas which belong to other applications.

This hardware based stack monitoring does not detect all stack errors [SPMF92:0076]. Stack
overflow cannot be detected if the task or ISR stack is mapped immediately after the
corresponding application data or global shared section. Stack underflow cannot be detected if the
task or ISR stack is mapped immediately before the corresponding application data or global
shared section.

©2015, Vector Informatik GmbH Version: 1.05 79 /80

Safety Manual MICROSAR OS SafeContext vector [

12.7 Usage of MPU Regions

MPU region 0 is always used for stack area protection. It is always reprogrammed when
the context is switched. Therefore MPU region 0 cannot be configured by the user.

Each MPU region 1 ... 11 can be configured for static or dynamic usage:

= |If a MPU region is configured for static usage, then it is initialized in StartOS and not
changed any more. For static MPU regions the user must specify the access attributes.

= If a MPU region is configured for dynamic usage, then it is initialized in StartOS and not
always reprogrammed when the context is switched. The access attributes for dynamic
MU regions are configured by the OS.

All stack sections must be mapped to a consecutive memory area. A static MPU region
must be configured for this memory area so that trusted and non-trusted application have
only read access to it. That means in supervisor and in user mode only reading is possible.
Write access to dedicated stack is achieved at runtime via reprogrammed MPU region O
when a task or ISR is started.

A static MPU region must be configured for the applications data area so that in supervisor
mode read and write is possible and in user mode only reading is possible. Write access to
the dedicated application data area is achieved via dynamic MPU region which must be
configured for each non-trusted application.

A static MPU region must be configured for the code and const area (i.e. ROM/FLASH) so
that in supervisor mode (trusted applications) read, write and execute is possible and in
user mode (non-trusted applications) only read and execute is possible in that area.

12.8 Usage of Peripheral Interrupt API

The OS provides functions which allow write access to El level interrupt control registers
EICn and to El level interrupt mask registers IMRn in user mode. Non-trusted applications
can enable or disable peripheral interrupt sources by means of this functions. Call of the
OS peripheral interrupt API functions must be checked in every application that only valid
interrupt sources are modified [SPMF92:04.0016].

©2015, Vector Informatik GmbH Version: 1.05 80/80

	1 Purpose
	1.1 Safety Element out of Context (SEooC)
	1.2 Standards and Legal requirements

	2 Concept
	2.1 SafeContext Is One Part of a Whole
	2.2 Safety Goal
	2.3 Safety Requirements
	2.4 SafeContext Functionality
	2.4.1 Safety Part
	2.4.2 Detailed List of Functionality
	2.4.2.1 Safety
	2.4.2.2 Silent
	2.4.2.3 Not provided

	2.5 Safe State

	3 Overview of Requirements to the OS User
	4 General SafeContext Assumptions
	4.1 Context Definition

	5 OS Source Checksum
	6 Patching the Configuration Block
	6.1 Using ElfConverter
	6.2 Using ConfigBlockCRCPatch

	7 General Configuration Guidelines
	8 Review General Part of Configuration Block
	8.1 How to Read Back the Configuration
	8.1.1 Using HexConverter
	8.1.2 Using ConfigViewer

	8.2 General Configuration Information

	9 Review Generated Code
	9.1 Manual Reviews
	9.1.1 Review generated file tcb.h

	10 Qualifying Silent OS Part
	10.1 Using MICROSAR Safe Silence Verifier (MSSV)

	11 Review User Software
	12 Hardware Specific Part
	12.1 Interrupt Vector Table
	12.1.1 Header Include Section
	12.1.2 Core Exception Vector Table
	12.1.3 EIINT Vector Table
	12.1.4 CAT2 ISR Wrappers

	12.2 Configuration Block
	12.2.1 How to read back the ConfigBlock
	12.2.2 Additional Information
	12.2.3 How to start the review
	12.2.3.1 Indexes of applications, task , ISRs, trusted and non-trusted functions
	12.2.3.2 Review against User’s Design

	12.2.4 How to review the general information (block 0)
	12.2.5 How to review the task start addresses (block 1)
	12.2.6 How to review the task trusted information (block 2)
	12.2.7 How to review the task preemptive information (block 3)
	12.2.8 How to review the task stack start and end addresses (block 4 and 5)
	12.2.9 How to review the task ownership information (block 6)
	12.2.10 How to review the category 2 ISR start addresses (block 7)
	12.2.11 How to review the CAT2 ISR trusted information (block 8)
	12.2.12 How to review the CAT2 ISR nested information (block 9)
	12.2.13 How to review CAT2 ISR stack start and end addresses (block 10 and 11)
	12.2.14 How to review the CAT2 ISR ownership information (block 12)
	12.2.15 How to review the trusted functions start addresses (block 13)
	12.2.16 How to review the non-trusted functions start addresses (block 14)
	12.2.17 How to review the non-trusted functions ownership information (block 15)
	12.2.18 How to review the application dynamic MPU settings (block 16)
	12.2.19 How to review the interrupt channel index (block 17)
	12.2.20 How to review the ISR interrupt priority level (block 18)
	12.2.21 How to review the peripheral regions configuration (block 19)
	12.2.22 How to review the static MPU regions configuration (block 20)
	12.2.23 How to review the application trusted information (block 21)
	12.2.24 How to review the core control block address information (block 22)

	12.3 Linker Memory Sections
	12.4 Linker Include Files
	12.4.1 Review File osdata.dld
	12.4.2 Review File ossdata.dld
	12.4.3 Review File osstacks.dld
	12.4.4 Review File osrom.dld
	12.4.5 Review File ostdata.dld

	12.5 Stack Size Configuration
	12.6 Stack Monitoring
	12.7 Usage of MPU Regions
	12.8 Usage of Peripheral Interrupt API

