

MICROSAR OS SafeContext

Technical Reference

Version 9.01

Status Released

Document ID OS01.0280

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

2 / 136

Document Information

History

Author Date Version Remarks

Rmk 2012-06-26 6.00 creation based on AUTOSAR 3.0 version

Shk 2013-09-18 6.01 SingleSource template applied and
variants for ASR3.x, ASR4.x, SafeContext
and non-SafeContext prepared

Biv 2014-02-04 6.02 MultiCore references corrected

Zfa 2014-05-05 6.03 Updated timer description

Asl 2014-08-14 8.00 Examples chapter excluded

TimingAnalyzer removed

Updated counter related macros and
configuration

Asl 2014-10-16 8.01 Added PeripheralRegion API

Added Non-Trusted Function API

Added CheckMPUAccess API

Asl 2015-01-29 9.00 Updated interpretation of
OsSecondsPerTick and
OsCounterTicksPerBase

Rk 2015-06-17 9.01 Added MICROSAR OS Timing Hooks

Added table of terms to the glossary

Added the information that forcible
termination is currently not supported

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

3 / 136

Reference Documents

No. Title Version

[1] AUTOSAR_SWS_OS.pdf

AUTOSAR OS specification; This document is available in PDF-format on the
internet a the AUTOSAR homepage (http://www.autosar.org)

V5.0.0

[2] AUTOSAR_TR_BSWModuleList.pdf 1.6.0

[3] OSEK/VDX Operating System Specification

This document is available in PDF-format on the Internet at the OSEK/VDX
homepage (http://www.osek-vdx.org)

2.2.3

[4] TechincalReference_Microsar_Os_Multicore.pdf 1.00

[5] TechnicalReference_MicrosarOS_xxxx.pdf

Technical reference of Vector MICROSAR OS; Hardware specific part

--

[6] OIL: OSEK Implementation Language

This document is available in PDF-format on the Internet at the OSEK/VDX
homepage (http://www.osek-vdx.org)

2.3

[7] Tutorial_osCAN.pdf

Tutorial for the MICROSAR OS OSEK/AUTOSAR Realtime Operating System

1.00

[8] autosar.xsd

AUTOSAR XML schema

4.0.3

[9] MicrosarOS_xxxx_SafeContext_SafetyManual.pdf

Application Conditions for SEooC; Implementation specific document

--

Scope of the Document

MICROSAR OS is an operating system, compliant with the AUTOSAR OS and OSEK
standards. The general aspects of all SafeContext implementations are described in this
document. For each implementation, the hardware specific part is described in a separate
document [4].

The implementation is based on the AUTOSAR OS specification [1].

It is also based on the OSEK OS specification 2.2 described in the document [3].

As a SEooC, it is further based on assumptions regarding safety requirements. Details can
be found in [9].

This documentation assumes that the reader is familiar with both the OSEK OS
specification and the AUTOSAR OS specification.

This documentation describes only the operating system and the code generation tool.

OSEK is a registered trademark of Continental Automotive GmbH (until 2007: Siemens
AG).

http://www.autosar.org/
http://www.osek-vdx.org/
http://www.osek-vdx.org/

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

4 / 136

Caution
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

5 / 136

Contents

1 Component History .. 14

2 Introduction .. 15

2.1 Architecture Overview ... 15

3 Functional Description .. 17

3.1 Features .. 17

3.2 Main Functions .. 17

3.2.1 Timer and Alarms .. 18

3.2.1.1 Time Base ... 19

3.2.1.1.1 Counter Macros ... 19

3.2.1.1.2 Temporal Range of Alarms .. 19

3.2.1.2 Timer Interrupt Routine .. 19

3.2.1.2.1 Counter API ... 19

3.2.2 Stack Handling .. 20

3.2.2.1 Task Stack ... 20

3.2.2.2 Interrupt Stack ... 20

3.2.2.3 Stack Monitoring .. 21

3.2.2.4 Stack Usage .. 21

3.2.3 Interrupt Handling .. 21

3.2.3.1 Interrupt Categories... 22

3.2.3.1.1 Category 1: ... 22

3.2.3.1.2 Category 2: ... 22

3.2.3.2 Usage of the Interrupt API before StartOS ... 23

3.2.4 Timing Protection .. 24

3.2.4.1 Reaction on Protection Failure .. 24

3.2.4.2 Timing Measurement ... 24

3.2.4.2.1 Timing measurement configuration for a specific task/ISR 25

3.2.4.2.2 Global configuration of timing measurement ... 25

3.2.4.3 Hook functions .. 26

3.2.5 Memory Protection .. 26

3.2.6 Schedule Tables .. 27

3.2.6.1 Synchronization ... 27

3.2.6.1.1 Starting a synchronizable Schedule Table ... 27

3.2.6.1.2 Autostart .. 27

3.2.6.1.3 Suspending a Schedule Table and keeping its Synchronization 28

3.2.6.1.4 Providing a Global Time .. 28

3.2.6.1.5 Exact Synchronization ... 28

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

6 / 136

3.2.6.1.6 Limits of the Synchronization Algorithm ... 29

3.2.6.1.7 Details about using NextScheduleTable .. 30

3.2.6.1.8 Concurrent Actions .. 30

3.2.6.2 High-Resolution Schedule Tables .. 30

3.2.6.2.1 Setup .. 31

3.2.6.3 Cyclical Expiry Point Actions ... 31

3.2.7 Trusted Functions .. 31

3.2.7.1 Generated Stub Functions ... 31

3.3 Error Handling ... 33

3.3.1 Error Messages ... 33

3.3.2 OSEK / AUTOSAR OS Error Numbers .. 33

3.3.3 MICROSAR OS Error Numbers .. 34

3.3.3.1 Error Numbers of Group Task Management / (1) ... 35

3.3.3.2 Error Numbers of Group Interrupt Handling / (2) .. 37

3.3.3.3 Error Numbers of Group Resource Management / (3) 39

3.3.3.4 Error Numbers of Group Event Control / (4) .. 40

3.3.3.5 Error Numbers of Group Alarm Management / (5) ... 42

3.3.3.6 Error Numbers of Group Operating System Execution Control / (6) 44

3.3.3.7 Error Numbers of Schedule Table Control / (7) .. 46

3.3.3.8 Error Numbers of Group Counter API / (8) ... 49

3.3.3.9 Error Numbers of Group Timing Protection and Timing Measurement / (9) 51

3.3.3.10 Platform specific error codes (A) ... 53

3.3.3.11 Error Numbers of Group Application API (B) .. 53

3.3.3.12 Error Numbers of Group Semaphores (C) ... 54

3.3.3.13 Error Numbers of Group MultiCore related functions (D) 55

3.3.3.14 Error Numbers of Group (Non-)TrustedFunctions (E) 55

3.3.3.15 Error Numbers of Group IOC (F) ... 56

3.3.4 Reactions on Error Situations .. 56

4 Installation .. 57

4.1 Installation Requirements .. 57

4.2 Installation Disk ... 57

4.3 OIL Configurator .. 58

4.3.1 INI Files of the OIL Tool ... 58

4.3.2 OIL Implementation Files ... 58

4.3.3 Code Generator .. 58

4.4 OSEK Operating System ... 58

4.4.1 Installation Paths ... 58

4.5 XML Configurations ... 59

4.5.1 Parameter Definition Files ... 59

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

7 / 136

5 Integration .. 60

5.1 Scope of Delivery .. 60

5.1.1 Static Files ... 60

5.1.2 Dynamic Files.. 60

5.1.2.1 Code Generator GENxxxx ... 60

5.1.2.1.1 Generated file libconf .. 60

5.1.2.2 Application Template Generator GENTMPL .. 61

5.2 Include Structure ... 61

6 API Description .. 62

6.1 Standard API - Overview ... 62

6.2 API Functions defined by Vector - Overview .. 65

6.3 Timing Measurement API .. 66

6.3.1 GetTaskMaxExecutionTime ... 66

6.3.2 GetISRMaxExecutionTime .. 67

6.3.3 GetTaskMaxBlockingTime ... 67

6.3.4 GetISRMaxBlockingTime .. 68

6.3.5 GetTaskMinInterArrivalTime .. 69

6.3.6 GetISRMinInterArrivalTime .. 70

6.4 Implementation specific Behavior .. 70

6.4.1 Interrupt Handling .. 70

6.4.1.1 EnableAllInterrupts .. 71

6.4.1.2 DisableAllInterrupts ... 72

6.4.1.3 ResumeAllInterrupts .. 72

6.4.1.4 SuspendAllInterrupts ... 73

6.4.1.5 ResumeOSInterrupts ... 74

6.4.1.6 SuspendOSInterrupts .. 75

6.4.2 Resource Management ... 76

6.4.2.1 GetResource ... 76

6.4.2.2 ReleaseResource .. 77

6.4.3 Execution Control .. 78

6.4.3.1 StartOS ... 78

6.4.3.2 ShutdownOS ... 79

6.5 Hook Routines ... 80

6.5.1 Standard Hooks ... 80

6.5.1.1 StartupHook .. 80

6.5.1.2 PreTaskHook ... 81

6.5.1.3 PostTaskHook ... 81

6.5.1.4 ErrorHook .. 82

6.5.1.5 ShutdownHook .. 82

6.5.1.6 ProtectionHook .. 83

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

8 / 136

6.5.2 ISR Hooks ... 83

6.5.2.1 UserPreISRHook ... 83

6.5.2.2 UserPostISRHook ... 84

6.5.3 Alarm Hook ... 85

6.5.3.1 PreAlarmHook (currently not supported) ... 85

6.5.4 MICROSAR OS Timing Hooks .. 85

6.5.4.1 Hooks for arrival .. 86

6.5.4.1.1 OS_VTH_ACTIVATION ... 86

6.5.4.1.2 OS_VTH_SETEVENT ... 86

6.5.4.1.3 OS_VTH_TRANSFER_SEMA ... 87

6.5.4.2 Hook for context switch ... 88

6.5.4.2.1 OS_VTH_SCHEDULE .. 88

6.5.4.3 Hooks for locking ... 89

6.5.4.3.1 OS_VTH_GOT_RES ... 89

6.5.4.3.2 OS_VTH_REL_RES.. 90

6.5.4.3.3 OS_VTH_REQ_SPINLOCK .. 90

6.5.4.3.4 OS_VTH_GOT_SPINLOCK .. 91

6.5.4.3.5 OS_VTH_REL_SPINLOCK ... 92

6.5.4.3.6 OS_VTH_TOOK_SEMA .. 93

6.5.4.3.7 OS_VTH_REL_SEMA ... 93

6.5.4.3.8 OS_VTH_DISABLEDINT .. 94

6.5.4.3.9 OS_VTH_ENABLEDINT ... 95

6.6 Non-Trusted Functions .. 95

6.6.1 Functionality .. 95

6.6.2 API .. 96

6.7 MPU Access Checking API.. 96

6.8 Peripheral Regions .. 97

6.8.1 Reading functions ... 97

6.8.2 Writing functions .. 98

6.8.3 Modifying functions ... 99

7 Configuration.. 100

7.1 Configuration and generation process ... 100

7.1.1 XML Configuration ... 100

7.1.2 OIL Configurator .. 101

7.2 Configuration Variants ... 101

7.3 Configuration of the XML / OIL Attributes ... 101

7.3.1 OS ... 102

7.3.1.1 ProtectionHookReaction / OsOSProtectionHookReaction 105

7.3.1.2 TimingMeasurement / OsOSTimingMeasurement 106

7.3.1.3 PeripheralRegion / OsOSPeripheralRegion ... 107

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

9 / 136

7.3.2 Task .. 107

7.3.2.1 AUTOSTART / OsTaskAutostart .. 109

7.3.2.2 TIMING_PROTECTION / OsTaskTimingProtection 109

7.3.2.3 Task attributes concerning the timing analyzer .. 110

7.3.3 Counter .. 111

7.3.4 Alarm .. 112

7.3.4.1 ACTION / OsAlarmAction .. 113

7.3.4.2 AUTOSTART / OsAlarmAutostart .. 114

7.3.5 Resource ... 115

7.3.6 Event ... 116

7.3.7 ISR .. 116

7.3.7.1 UseSpecialFunctionName / OsIsrUseSpecialFunctionName 117

7.3.7.2 TIMING_PROTECTION / OsIsrTimingProtection ... 118

7.3.7.2.1 LOCKINGTIME / OsIsrResourceLock ... 119

7.3.7.3 ISR Attributes concerning the Timing Analyzer .. 119

7.3.8 COM ... 120

7.3.9 NM .. 120

7.3.10 APPMODE / OsAppMode.. 120

7.3.11 Application / OsApplication .. 121

7.3.11.1 Trusted Functions .. 122

7.3.12 Scheduletable ... 123

7.3.12.1 AUTOSTART / OsScheduleTableAutostart .. 123

7.3.12.2 EXPIRY_POINT / OsScheduleTableExpiryPoint .. 124

7.3.12.3 Expiry point action ADJUST .. 125

7.3.12.4 Expiry point action ACTIVATETASK .. 125

7.3.12.5 Expiry point action SETEVENT ... 126

7.3.12.6 LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION /
OsScheduleTableSync .. 126

8 System Generation .. 128

8.1 Code Generator .. 128

8.1.1 Generated Files ... 128

8.1.2 Automatic Documentation ... 128

8.1.3 Conditional Generation .. 129

8.1.4 Generated files backup ... 129

8.2 Application Template Generator .. 129

8.3 Compiler .. 129

8.3.1 Include Paths .. 129

9 AUTOSAR Standard Compliance .. 130

9.1 Deviations ... 130

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

10 / 136

9.2 Limitations ... 130

9.2.1 API Function OS_GetVersionInfo .. 130

9.2.2 Forcible Termination .. 130

9.2.3 AUTOSAR Debug support ... 130

9.2.4 Port Interface... 130

9.2.5 NULL Pointer Checks .. 130

9.2.6 SafeContext specific limitations ... 130

10 Debugging Support .. 132

10.1 Kernel aware Debugging ... 132

10.2 Version and Variant Coding ... 132

11 Glossary and Abbreviations .. 134

11.1 Abbreviations .. 134

11.2 Terms .. 135

12 Contact .. 136

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

11 / 136

Illustrations

Figure 2-1 AUTOSAR 3.x Architecture Overview ... 15
Figure 2-2 AUTOSAR architecture ... 15
Figure 3-1 Functional parts .. 18
Figure 3-2 Counter Macros .. 19
Figure 7-1 System overview of software parts .. 100
Figure 7-2 Relation between Physical Units, Counter Units and Driver Units 112

Tables

Table 3-1 Supported SWS features .. 17
Table 3-2 Not supported SWS features .. 17
Table 3-3 Interdependence between the OS attribute TimingMeasurement and

the task/ISR attribute TIMING_PROTECTION ... 26
Table 3-4 OSEK/AUTOSAR OS error numbers .. 33
Table 3-5 Implementation specific error numbers ... 34
Table 3-6 Error types .. 35
Table 3-7 API functions of group Task Management / (1) ... 35
Table 3-8 Error numbers of group Task Management / (1) .. 37
Table 3-9 API functions of group Interrupt Handling / (2) .. 38
Table 3-10 Error numbers of group Interrupt Handling / (2) .. 38
Table 3-11 API functions of group Resource Management / (3) 39
Table 3-12 Error numbers of group Resource Management / (3) 40
Table 3-13 API functions of group Event Control / (4) ... 40
Table 3-14 Error numbers of group Event Control / (4) ... 42
Table 3-15 API functions of group Alarm Management / (5) .. 42
Table 3-16 Error numbers of group Alarm Management / (5) 44
Table 3-17 API functions of group Operating System Execution Control / (6) 44
Table 3-18 Error numbers of group Operating System Execution Control / (6) 45
Table 3-19 API functions of group Schedule Table Control / (7) 46
Table 3-20 Error numbers of group Schedule Table Control / (7) 49
Table 3-21 API functions of group Counter API / (8) ... 49
Table 3-22 Error numbers of group Counter API / (8) ... 50
Table 3-23 API functions of group Timing Protection and Timing Measurement / (9) .. 51
Table 3-24 Error numbers of group Timing Protection and Timing Measurement / (9) 53
Table 3-25 API functions of group Application API / (B) .. 53
Table 3-26 Error numbers of group Application API / (B)... 54
Table 3-27 API functions of group Semaphores / (C) .. 54
Table 3-28 Error numbers of group Semaphores / (C) .. 55
Table 3-29 API functions of group (Non-)TrustedFunctions (E) 55
Table 3-30 Error numbers of group (Non-)TrustedFunctions (E) 56
Table 4-1 Installed components .. 57
Table 4-2 System configuration and generation tools ... 58
Table 5-1 Files generated by code generator GENxxxx .. 60
Table 5-2 Variables generated into the file libconf ... 61
Table 6-1 Standard API functions ... 65
Table 6-2 Vector API functions .. 66
Table 6-3 GetTaskMaxExecutionTime .. 67
Table 6-4 GetISRMaxExecutionTime .. 67
Table 6-5 GetTaskMaxBlockingTime .. 68
Table 6-6 GetISRMaxBlockingTime .. 69

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

12 / 136

Table 6-7 GetTaskMinInterArrivalTime .. 70
Table 6-8 GetISRMinInterArrivalTime ... 70
Table 6-9 EnableAllInterrupts ... 71
Table 6-10 DisableAllInterrupts ... 72
Table 6-11 ResumeAllInterrupts ... 73
Table 6-12 SuspendAllInterrupts .. 74
Table 6-13 ResumeOSInterrupts .. 75
Table 6-14 SuspendOSInterrupts ... 76
Table 6-15 GetResource .. 77
Table 6-16 ReleaseResource ... 78
Table 6-17 StartOS ... 79
Table 6-18 ShutdownOS .. 80
Table 6-19 StartupHook .. 80
Table 6-20 PreTaskHook .. 81
Table 6-21 PostTaskHook ... 81
Table 6-22 ErrorHook ... 82
Table 6-23 ShutdownHook ... 83
Table 6-24 ProtectionHook ... 83
Table 6-25 UserPreISRHook .. 84
Table 6-26 UserPostISRHook .. 84
Table 6-27 PreAlarmHook .. 85
Table 6-28 OS_VTH_ACTIVATION .. 86
Table 6-29 OS_VTH_SETEVENT .. 87
Table 6-30 OS_VTH_TRANSFER_SEMA .. 88
Table 6-31 OS_VTH_SCHEDULE .. 89
Table 6-32 OS_VTH_GOT_RES .. 90
Table 6-33 OS_VTH_REL_RES ... 90
Table 6-34 OS_VTH_REQ_SPINLOCK .. 91
Table 6-35 OS_VTH_GOT_SPINLOCK .. 92
Table 6-36 OS_VTH_REL_SPINLOCK .. 92
Table 6-37 OS_VTH_TOOK_SEMA ... 93
Table 6-38 OS_VTH_REL_SEMA .. 94
Table 6-39 OS_VTH_DISABLEDINT .. 95
Table 6-40 OS_VTH_ENABLEDINT ... 95
Table 6-41 API osCallNonTrustedFunction ... 96
Table 6-42 osCheckMPUAccess API .. 97
Table 6-43 ReadPeripheral API .. 98
Table 6-44 WritePeripheral API .. 99
Table 6-45 ModifyPeripheral API .. 99
Table 7-1 OS attributes... 105
Table 7-2 Sub-attributes of ProtectionHookReaction = SELECTED 105
Table 7-3 Sub-attributes of TimingMeasurement = TRUE 107
Table 7-4 Sub-attributes of PeripheralRegion .. 107
Table 7-5 Task attributes .. 109
Table 7-6 Sub-attributes of TASK->AUTOSTART=TRUE ... 109
Table 7-7 Sub-attributes of TASK-> TIMING_PROTECTION=TRUE 110
Table 7-8 Task attributes concerning the timing analyzer ... 111
Table 7-9 Attributes of COUNTER .. 112
Table 7-10 Attributes of ALARM ... 113
Table 7-11 Sub-attributes of ACTION = ACTIVATETASK .. 114
Table 7-12 Sub-attributes of ACTION = SETEVENT .. 114
Table 7-13 Sub-attributes of ACTION = ALARMCALLBACK 114
Table 7-14 Sub-attributes of AUTOSTART = TRUE ... 115

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

13 / 136

Table 7-15 Attributes of RESOURCE ... 116
Table 7-16 Sub-attributes of EVENT .. 116
Table 7-17 Attributes of ISR ... 117
Table 7-18 Sub-attributes of UseSpecialFunctionname /

OsIsrUseSpecialFunctionName .. 117
Table 7-19 Sub-attributes of TIMING_PROTECTION / OsIsrTimingProtection 119
Table 7-20 Sub-attributes of LOCKINGTIME / OsIsrResourceLock 119
Table 7-21 ISR attributes concerning the timing analyzer ... 120
Table 7-22 Attributes of Appmode / OsAppMode .. 121
Table 7-23 Attributes of Application / OsApplication .. 122
Table 7-24 Sub-attributes for trusted functions ... 122
Table 7-25 Attributes of SCHEDULETABLE ... 123
Table 7-26 Sub-attributes for auto start of a schedule table 124
Table 7-27 Sub-attributes of expiry points... 125
Table 7-28 Sub-attributes of expiry point action ADJUST ... 125
Table 7-29 Sub-attributes of expiry point action ACTIVATETASK 125
Table 7-30 Sub-attributes of expiry point action SETEVENT 126
Table 7-31 Sub-attributes SCHEDULETABLE->

LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION = TRUE 127
Table 10-1 Bit-definitions of the variant coding, ucSysVariant1 133
Table 10-2 Bit-definitions of the variant coding, osSysVariant2 133
Table 10-3 Bit definitions of the variant coding, osOrtiVariant 133
Table 11-1 Abbreviations .. 134
Table 11-2 Terms ... 135

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

14 / 136

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

This chapter is included in any MICROSAR component documentation. For the OS, the
history on the intended level is not relevant as MICROSAR OS implements all mandatory
requirements of AUTOSAR OS.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

15 / 136

2 Introduction

This document describes the functionality, API and configuration of the general part of the
AUTOSAR BSW module OS as specified in [1].

Supported AUTOSAR Release: 4.0.3

Supported Configuration Variants: pre-compile

Vendor ID: OS_VENDOR_ID 30 decimal (= Vector-
Informatik, according to
HIS)

Module ID: OS_MODULE_ID 1 decimal (according to
ref. [2])

2.1 Architecture Overview

The following figure shows where the OS is located in the AUTOSAR architecture.

Figure 2-1 AUTOSAR 3.x Architecture Overview

Figure 2-2 AUTOSAR architecture

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

16 / 136

The MICROSAR OS is an operating system based on the AUTOSAR OS standard V5.0.0
(ref. [1]) and on OSEK OS standard 2.2.3 (ref. [3]).

This MICROSAR OS operating system is a real time operating system, which was
specified for the usage in electronic control units on a range of small to large
microprocessors. MICROSAR OS has attributes which differ from commonly known
operating systems and which allow a very efficient implementation even on systems with
low resources of RAM and ROM.

As a requirement, there is no dynamic creation of new tasks at runtime; all tasks have to
be defined before compilation. The operating system has no dynamic memory
management and there is no shell for the control of tasks by hand.

The operating system and the application are compiled and linked together to one file,
which is loaded into an emulator or is burned into an EPROM or Flash EEPROM.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

17 / 136

3 Functional Description

3.1 Features

The features listed in this chapter cover the complete functionality specified in [1].

The "supported" and "not supported" features are presented in the following two tables.
For further information of not supported features, also see chapter 9.

The following features described in [1] are supported:

Supported Feature

The Vector MICROSAR OS implements all mandatory features described in the chapter about
System Scalability within [1]. However, some minor restrictions apply, see chapter 9 in this
document.

Table 3-1 Supported SWS features

The following features described in [1] are supported in MultiCore implementations.
However, they are currently not described in this document, but in the additional
documentation [4].

Conditionally Supported Feature

MultiCore

Inter OSApplication Communication (IOC)

Table 3-2 Not supported SWS features

The OSEK / AUTOSAR OS specifications leave many points open on implementation.
Every OSEK / AUTOSAR OS implementation for a specific microcontroller has to define
the open points to achieve an optimal solution for the processor. The operating system has
to fit the target microprocessor and the C-compiler. The programming model of the C-
compiler is as important as the hardware of the processor.

3.2 Main Functions

The operating system is started by the application. The startup module (which is not part of
the operating system) calls the function main. In the main function, the user has to call the

API function StartOS. StartOS will initialize the operating system, install the interrupt

routine for the alarm handling, and then call the scheduler. StartOS will never return to

the main function.

The function of the scheduler is to evaluate the task with the highest priority in the READY

state and call this task. If the task was previously pre-empted by another higher priority
task, the scheduler resumes the task.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

18 / 136

The operating system is controlled by external events. External events can be events from
interrupt routines, from the alarm management, or from schedule tables (Alarms and
schedule tables are also driven by interrupt service routines). Therefore, any external
event will result in the change of task states.

Figure 3-1 Functional parts

Interrupt routines are under the control of the application programmer. An OSEK operating
system allows a fast and efficient interrupt handling, so interrupts have a short latency
time. It is possible to call certain system functions from interrupt routines. It is necessary
that the operating system has knowledge of any existing interrupt routines.

3.2.1 Timer and Alarms

All time-based actions are performed in OSEK using counters, alarms, and schedule
tables. Counters are part of the kernel and are incremented by a specific hardware

resource or by means of the system service IncrementCounter. In case of a time-

based counter, the counter is incremented periodically. Alarms and schedule tables have
fixed references to counters. MICROSAR OS supports up to 256 counters.

An alarm, if activated, has a certain value. If the referenced counter reaches the given
value, a defined action is performed. The action to each alarm is defined by the OIL
Configurator and is compiled into the ROM. The alarm value is passed as a parameter to

the functions SetRelAlarm or SetAbsAlarm.

A schedule table, if activated, has a certain starting value. If the referred counter reaches
the given value, the first defined action is performed. The further actions are defined
relative to this first action. These relative starting times are defined together with the action
by the OIL Configurator and compiled into ROM. The starting value is passed as a

parameter to the functions StartScheduleTableRel or StartScheduleTableAbs.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

19 / 136

3.2.1.1 Time Base

3.2.1.1.1 Counter Macros

To support the portability of OSEK, application alarm related functions, for example

SetRelAlarm, should be called using macros for the calculation of ticks based on

millisecond or seconds:

SetRelAlarm (Alarm1, OS_xx2TICKS_<CounterName> (1200), OS_xx2TICKS_<CounterName>

(1200));

The macros OS_TICKS2xx_<CounterName>() (whereas xx denotes NS, US, MS or SEC;

described by the AUTOSAR standard) may be used to convert tick values (as returned for

example by GetElapsedTime() and GetCounterValue()) to into a second based

timer unit. Additionally, MICROSAR OS provides the inverse macros

OS_xx2TICKS_<CounterName>() for conversion into the opposite direction (see Figure

2-2).

Figure 3-2 Counter Macros

Caution
Depending on the hardware settings, certain nanosecond times may not be
representable accurately.

Therefore, if large times, very small times or very high precision is needed, use

AUTOSAR OS OsTimeConstant instead (see 7.3.3).

3.2.1.1.2 Temporal Range of Alarms

The temporal range of an alarm depends on the Counter, which drives the alarm. The

important configuration attributes here are OsSecondsPerTick and

OsCounterMaxAllowedValue (see 7.3.3).

3.2.1.2 Timer Interrupt Routine

The timer interrupt routines are category 2 ISRs and are part of the operating system. The
configuration is done automatically by the OS using information that has to be defined in
the OIL Configurator.

3.2.1.2.1 Counter API

To obtain the counter specific limits (e.g. maxallowedvalue) the function

GetAlarmBase can be used.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

20 / 136

1.1.1.1.1.1 Initialization

Former versions of osCAN and MICROSAR OS provided the API functions:

StatusType InitCounter<CounterName>(TickType ticks);

These functions have been removed, as they do not conform to the standardized counter

API described in [1]. Instead, counters are always initialized to 0 during StartOS().

1.1.1.1.1.2 Read Counter

MICROSAR OS provides the API functions GetCounterValue and GetElapsedValue as
defined by [1].

Former versions of osCAN and MICROSAR OS provided the API functions:

TickType GetCounterValue<CounterName>(void);

These functions have been removed, as they do not conform to the standardized counter
API described in [1]. It is recommended to use the API function GetCounterValue defined
by AUTOSAR Standard instead.

1.1.1.1.1.3 Increment Counter

StatusType IncrementCounter(CounterType CounterName);

This function is the AUTOSAR OS standardized function to trigger a counter.

Example
The ISR that triggers the counter must be of category 2.

ISR(MyCounterISR)

{

 IncrementCounter(MyCounter);

}

Former versions of osCAN and MICROSAR OS provided the API function

void CounterTrigger<CounterName>(void);

These functions have been removed, as they do not conform to the standardized counter
API described in [1]. It is recommended to use the API function IncrementCounter defined
by AUTOSAR Standard instead.

3.2.2 Stack Handling

3.2.2.1 Task Stack

Each task has its own stack. The task stack holds all local data and return addresses of
the task. In addition, the register context of the task is saved onto the stack if the task is
preempted. If the task is transferred to the running state again, the register context is
removed from the task stack to restore the previously saved registers.

3.2.2.2 Interrupt Stack

The implementation of interrupt stacks depends on the hardware, and is described in ref.
[4].

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

21 / 136

3.2.2.3 Stack Monitoring

MICROSAR OS SafeContext always initializes the last useable bytes of each stack with an
indicator value.

This indicator is then checked with each task switch or ISR exit. A change of the element
value indicates a stack overflow by the task or ISR. In this case, the system calls the

ErrorHook (if configured), the ShutdownHook (if configured) and enters the shutdown

state.

Note
MICROSAR OS checks the indicator value only at task switches and on a return from
an ISR. Therefore, stack overflows are not detected immediately. Detection might be
delayed arbitrary in case of a stack overflow in a hook routine. Some implementations
of MICROSAR OS implement additional checks of the indicator value, see [4]. If
memory protection is configured, stack overflows in tasks and ISRs of non-trusted
applications are found immediately by the memory protection if the stack is followed by
an area with no access rights.

In case a stack fault is detected by memory protection, the ProtectionHook is called with
parameter E_OS_PROTECTION_MEMORY. If a stack fault is detected by stack
monitoring, MICROSAR OS goes into shutdown after the ProtectionHook.

3.2.2.4 Stack Usage

If StackUsageMeasurement is set to TRUE, the OS fills all available stacks with the

indicator value 0xAA during StartOS (startup times will be slower). This allows measuring
the amount of stack used since StartOS by counting the amount of bytes that have not
been overwritten yet.

The following function is available to determine the amount of used stack:

osuint16 osGetStackUsage(TaskType taskId)

> Argument: Task number

> Return value: Maximum stack usage (bytes) by task since call of StartOS()

Additional implementations specific functions may be available. Please see the hardware
specific part of the documentation of this implementation [4].

Caution
Dependent on the stack size, the measurement operation can take a long time.

3.2.3 Interrupt Handling

Implementation specific details about interrupt handling are described in the hardware
specific part of this implementation [4].

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

22 / 136

Caution
Knowledge about the interrupt handling is very important. If interrupt routines are used
it is essential to read this chapter.

3.2.3.1 Interrupt Categories

The OSEK OS specification defines two groups of interrupts.

3.2.3.1.1 Category 1:

Interrupts of category 1 are in general not allowed to use API functions; as such, these
routines can be programmed without restrictions and are completely independent from the
kernel. The programming conventions depend on the utilized compiler and assembler.

Category 1 interrupts can be enabled before call of StartOS(). If interrupts of category 1

and 2 cannot be disabled separately, all interrupts must be disabled.

Interrupts of category 1 are allowed to call the interrupt API as an exception to the rule
presented above. If the interrupt API is used and the category 1 interrupts are enabled

before the call of StartOS, the user has to take care about variable initialization of the

interrupt API, as described in chapter 3.2.3.2.

1.1.1.1.1.4 Exceptions and SC2, SC3, SC4

According to the AUTOSAR-Standard, category 1 interrupts should be avoided with SC2,
SC3 and SC4. MICROSAR OS does not allow category 1 interrupts with

TimingProtection. Because non-maskable interrupts need to be configured to

category 1, some MICROSAR OS implementations allow exceptions even with timing
protection.

The user may write "normal" interrupt code in an exception routine, which returns to the
application. Please note that this sort of exception routines will cause the exception
handler to add runtime to the account of the interrupted task or ISR.

3.2.3.1.2 Category 2:

Interrupts of category 2 may use certain restricted API functions. Interrupts of category 2

can be programmed as normal C functions using the macro ISR(name). The C function

is called by the operating system. The necessary preparation for the interrupt routine is
done automatically by a generated function.

ISR (AnInterruptRoutine)

{

 /* code with API calls */

}

Caution

Category 2 interrupts must be disabled until call of StartOS()! This also applies for

the timer interrupts, i.e. this interrupt must be stopped by the user at a software reset.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

23 / 136

To ensure data consistency, the operating system needs to disable category 2
interrupts during critical sections of code. Therefore, applications must not use non-
maskable interrupts as category 2 interrupts.

3.2.3.2 Usage of the Interrupt API before StartOS

The usage of the interrupt API functions is in general allowed before the operating system
is started. The affected functions are:

> DisableAllInterupts, EnableAllInterrupts

> SuspendAllInterrupts, ResumeAllInterrupts

> SuspendOSInterrupts, ResumeOSInterrupts

However, these functions use some internal variables that have to be initialized to zero
before the first call of the interrupt API. Typically, this initialization is performed by the
startup code (which might be delivered with the compiler). In case no startup code is used,

the function osInitialize() needs to be called. osInitialize initializes the

variables which are used in the interrupt API.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

24 / 136

3.2.4 Timing Protection

The timing protection is implemented in the Scalability Classes 2 and 4. This chapter
provides some hints on the functionality according to the AUTOSAR OS standard [1] and
describes additional functionality provided by Vector MICROSAR OS. To enable the timing

protection of a task or ISR, the OIL-attribute TIMING_PROTECTION of the respective task

or ISR needs to be configured, as described in chapters 7.3.2.2 and 7.3.7.2 . (AUTOSAR
XML: OsTaskTimingProtection/OsIsrTimingProtection).

Caution
The runtime of all tasks and ISRs is observed, however parts of the time for task switch
and interrupt entry/exit cannot be monitored by the timing protection. Therefore, some
extra time for task switches and interrupt entry/exit needs to be considered in the
configuration of the timing protection.

Caution
Timing Protection is implemented with interrupts. If the application manually disables
interrupts anywhere, the timing protection cannot work as expected. In order to enable
and disable interrupts, the application must use the following API functions:

> DisableAllInterupts, EnableAllInterrupts

> SuspendAllInterrupts, ResumeAllInterrupts

> SuspendOSInterrupts, ResumeOSInterrupts

Caution
The timing protection works very precise. However, if an OS API function is called by a
task/ISR, the OS may enter a critical section; if a timing protection violation is detected
while the system is in a critical section, the call of the protection hook may be delayed
until the end of the critical section. Note, that critical sections in AUTOSAR OS are very
short.

3.2.4.1 Reaction on Protection Failure

The AUTOSAR specification describes different possibilities how to react to a protection
violation. In SafeContext implementations, reaction to such a situation is limited to
Shutdown.

3.2.4.2 Timing Measurement

MICROSAR OS is not only able to provide timing protection but allows using the same
functionality for timing measurement. If timing measurement is performed for a specific
task or ISR, the OS measures the following times for that task or ISR:

> the maximum run time since StartOS

> the maximum locking times for resources and interrupts since StartOS

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

25 / 136

> the minimum time distance between two arrivals since StartOS

The debugger can read the result of the timing measurement via ORTI. Alternatively, the
application may use the timing measurement API as described in chapter 6.4.

The OS attribute TimingMeasurement and the task/ISR attribute TIMING_PROTECTION

are provided to setup timing protection and measurement.

The hardware timers and internal data structures to store measured times are limited in
size. When this limit is exceeded by any measured time (e.g. of a resource or interrupt
lock), the ErrorHook function is called and the system goes into shutdown state.

3.2.4.2.1 Timing measurement configuration for a specific task/ISR

Timing measurement can be configured individually for each task and ISR. As timing
protection requires the OS to measure the timing values, timing measurement is
performed for all tasks and ISRs that have timing protection configured by means of the

attribute TIMING_PROTECTION. By selecting the sub attribute OnlyMeasure, the OS

disables the timing protection but still measures the timing values. Please note that this
configuration might be overridden by means of the global configuration, described in the
next chapter.

3.2.4.2.2 Global configuration of timing measurement

In order to save configuration time, the timing measurement can be configured globally for

all tasks and ISRs. MICROSAR OS provides the OIL-attribute TimingMeasurement

(AUTOSAR XML: OsOSTimingMeasurement) for that purpose. That attribute provides

the possibilities to:

> Disable the timing measurement globally. This is an optimization to save memory and

runtime of the timing measurement. Please set the attribute TimingMeasurement to

FALSE (deselect it) for this configuration.

> Collect timing data for all tasks and ISRS. The collected timing values can be used to
perform scheduleability analysis and to set up the timing protection later on. For this

configuration, please set the attribute TimingMeasurement to TRUE (select it) and

choose OnlyMeasureAll for the value of the sub attribute GlobalConfig.

> Perform timing measurement as configured for the task or ISR. Set the attribute

TimingMeasurement to TRUE (select it) and select AsSelected for the value of the

subattribute GlobalConfig to achieve this.

> Ignore the task/ISR attribute OnlyMeasure (perform timing measurement and protection

as if this attribute was set to FALSE). For this configuration, please set the attribute

TimingMeasurement to TRUE (select the attribute) and select

ProtectAndMeasureAll for the value of the subattribute GlobalConfig.

The chapter 7.3.2.2 provides a description of the attribute TIMING_PROTECTION for tasks

while chapter 7.3.7.2 provides the respective description for ISRs. Chapter 7.3.1.4

provides a description of the attribute TimingMeasurement. The table below documents

the interdependence between the OS-attribute TimingMasurement and the task/ISR-

Attribute TIMING_PROTECTION.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

26 / 136

OS TASK/ISR

 TIMING_PROTECTION

Timing-

Measuremen

t

Global-

Config

FALSE TRUE

 OnlyMeasure

 FALSE TRUE

FALSE
1
 No timing protection,

no timing
measurement,

Timing protection but no
timing measurement

Timing protection but no
timing measurement, warning
as the sub attribute
OnyMeasure is overridden

TRUE Only-

Measure-

All

No timing protection
but timing
measurement

No timing protection but
timing measurement,
warning as the sub
attribute OnlyMeasure is
overridden

No timing protection but
timing measurement

AsSelecte

d

No timing protection
and no timing
measurement

Timing protection and
measurement

No Timing protection but
timing measurement

ProtectAn

d-

MeasureAl

l

No timing protection
but timing
measurement

Timing protection and
measurement

Timing protection and
measurement, warning as the
sub attribute OnlyMeasure is
overridden.

Table 3-3 Interdependence between the OS attribute TimingMeasurement and the task/ISR attribute TIMING_PROTECTION

3.2.4.3 Hook functions

The runtime of the hook functions PreTaskHook and PostTaskHook (Chapters 6.6.2 and
6.6.3) is considered to belong to the runtime of the currently active task.

Caution
Depending on the implementation, the execution of the ProtectionHook might be
delayed until the PreTaskHook or PostTaskHook has finished. In case of a protection
violation during the PostTaskHook while a task state change into the states
SUSPENDED or WAITING, the call of the ProtectionHook gets lost.
Therefore, the PreTaskHook and the PostTaskHook are allowed for debugging
purposes only. They must be disabled in production code, see [9].

The runtime of the hook functions UserPreIsrHook and UserPostIsrHook (Chapters 6.6.7
and 6.6.8) is considered to belong to the runtime of the currently active ISR.

3.2.5 Memory Protection

MICROSAR OS uses the MPU of the microcontroller to implement memory protection as
described in [1]. Former versions of MICROSAR OS fulfilled the AUTOSAR requirement
OS195 and prevented write access to Task/ISR private data areas even within an

1 Optimization: The timing measurement API is unavailable

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

27 / 136

OSApplication. This behaviour is defined as optional by AUTOSAR and not implemented in
most current versions of MICROSAR OS. It is explicitly mentioned in [5] if supported.

3.2.6 Schedule Tables

MICROSAR OS implements schedule tables as defined by the AUTOSAR standard. The
document [1] provides the base description of schedule tables and their usage. This
chapter is meant as an extension that clarifies and corrects some points, provides details
about points left open and describes corrections and extensions by MICROSAR OS.

AUTOSAR defines schedule tables for all scalability classes, but synchronization to a
global time only for SC2 and SC4. MICROSAR OS offers some additional error checking
to the AUTOSAR standard.

3.2.6.1 Synchronization

In SC2 and SC4 or the High-Resolution Schedule Tables option, it is possible to
synchronize a schedule table to a global time source. The schedule table must be marked

with the OIL attribute LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION.

3.2.6.1.1 Starting a synchronizable Schedule Table

One way to start a synchronizable schedule table is to use the functions

StartScheduleTableRel(Tablename, TimeOffset) and

StartScheduleTableAbs(Tablename, Time). The time parameters refer to the local

time and not to the global time. It is assumed that the schedule table will not have an offset
to global time: when synchronization starts, the start of the schedule table is moved to
global time zero. Note that the schedule table always starts at the stated start time. A call

of SyncScheduleTable does not influence this start time. Synchronization starts after

execution of the first expiry point.

The recommended way to start a synchronizable schedule table is to use the combination

of StartScheduleTableSynchron(Tablename) and SyncScheduleTable(). The

first expiry point is executed at global time 0. The schedule table starts execution after a

global time is available, i.e. after calling SyncScheduleTable() for the schedule table. If

SyncScheduleTable() is never called for the schedule table, the schedule table is

never executed. The following algorithm describes a possibility to set up a timeout:

Set up an alarm to the timeout time. When the alarm expires and

GetScheduleTableStatus() indicates that the schedule table is still waiting, call

SyncScheduleTable() with an arbitrary time. Note: if the call to

SyncScheduleTable() is done in an interrupt, it may occur between the two API calls,

and thus gets overridden by the arbitrary time.

3.2.6.1.2 Autostart

For an automatic start of a schedule table on startup of the OS, the attribute AUTOSTART

must be set. The sub-attribute TYPE defines how the start is performed. The possibilities

are: ABSOLUT, RELATIVE and SYNCHRON. These types of autostart are similar to the

normal start of a schedule table using StartScheduleTableAbs,

StartScheduleTableRel or StartScheduleTableSynchron. For ABSOLUT and

RELATIVE, an absolute or relative start time needs to be provided. In case of SYNCHRON,

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

28 / 136

the schedule table starts after SynchScheduleTable has been called and the global time

reaches zero.

Note, that just like for StartScheduleTableSynchron(), the schedule table will wait

forever if SyncScheduleTable() is never called.

3.2.6.1.3 Suspending a Schedule Table and keeping its Synchronization

The AUTOSAR standard does not define a way to suspend the execution of a schedule
table and keep its synchronization for later restart. The suggested approach is to use

NextScheduleTable() to append a schedule table that effectively does nothing.

Currently, AUTOSAR does not define a way to retrieve the internal schedule table time
(neither the currently estimated global time nor the time relative to the first expiry point of
the schedule table).

3.2.6.1.4 Providing a Global Time

The current global time is handed to the schedule table via SyncScheduleTable(). If a

deviation of the schedule table to the global time is found, the schedule table starts to
synchronize at the next expiry point that allows synchronization.

The global time must be a continuous range of integers: So e.g. FlexRay’s time tuple
(cycle, macroticks) cannot directly be used as global time, but must be converted.

The provided global time must have the same resolution as the local time and the same

period as the schedule table time (i.e. the LENGTH of the schedule table). If this is not the

case, it must be converted before being handed to SyncScheduleTable().

Example
Converting the FlexRay time:

Be gMacroPerCycle the number of macroticks per cycle, cycle the current

cycle number, macroticks the current macrotick number and f is the factor to

convert the FlexRay tick length the HW counter tick length:

GlobalTime = (gMacroPerCycle * cycle + macroticks) * f

3.2.6.1.5 Exact Synchronization

There is always a time span between reading the global time and handing it to the
operating system. Therefore, synchronization is never absolutely exact.

If an interrupt interferes, the time span may be unexpectedly large. While this may be
ignorable if the resolution is large compared with the interrupt running times, it is
noticeable when using a fine grained global time, for example in conjunction with High-
Resolution Schedule Tables, or if some (higher prior) interrupts have long running times. It
is desirable to be undisturbed by (higher prior) interrupts during synchronization.

The AUTOSAR Standard demands, that calling any API functions is not allowed in
between function pairs

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

29 / 136

DisableAllInterrupts/EnableAllInterrupts,

SuspendAllInterrupts/ResumeAllInterrupts,

SuspendOSInterrupts/ResumeOSInterrupts.

MICROSAR OS makes an exception from the standard in this point:

SyncScheduleTable() can be called in between these function pairs.

Therefore, a Sync procedure may look like the following example:

DisableAllInterrupts();

now=getCurrentGlobalTime();

SyncScheduleTable(MyScheduleTable, now);

EnableAllInterrupts();

Caution

This is unnecessary if SyncScheduleTable() is called from an interrupt which does

not allow nesting.

Also note, that SuspendAllInterrupts()/DisableAllInterrupts() still allow

timing protection interrupts (if timing protection is used).

3.2.6.1.6 Limits of the Synchronization Algorithm

The synchronization algorithm as described by the AUTOSAR standard only corrects
deviations of the past – it does not make assumptions about deviations of the present or
the future. Differences in clock speed (between local time and global time) are not
completely compensated.

Simplified synchronization algorithm: When SyncScheduleTable is called, the

difference between the local schedule table time and the provided global time is computed
and stored internally. Nothing more happens until an expiry point expires. Then, the times
between subsequent expiry points are adapted. The adaptation stops once the computed
deviation is compensated or a new global time is provided. In case new deviations
between the global and local time occur, they are considered after the next call of

SyncScheduleTable in the same way as just described.

As a result of this algorithm, a permanent deviation in the speed of global and local clock
might not be compensated completely.

Example
The local schedule table time2 runs 10 % slower then the global time. Whenever the

global time reaches a multiple of 100, the function SyncScheduleTable is called to

provide the global time to the schedule table. Both times start simultaneously at zero.
When the global time reaches 100, the local time is 90 because of the 10 % difference.

SyncScheduleTable is called, and computes a difference of 10. We assume now

that the difference is compensated until the next call of SyncScheduleTable occurs.

The local time is then: 90+10+90=190 while the global time is 200. Again we have the
same difference, so 10 needs to be corrected. The same occurs for all subsequent

calls of SyncScheduleTable, too.

2 The local time is based on the MCU’s internal clock.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

30 / 136

Although the computed difference between current time values of global and local time is
corrected, the same difference occurs in the next synchronization step. However, using
synchronization the deviation stays constant. Without synchronization, it would
accumulate.

3.2.6.1.7 Details about using NextScheduleTable

The AUTOSAR standard leaves open certain details of using NextScheduleTable with

synchronizable schedule tables. The following describes the implementation of

NextScheduleTable MICROSAR OS.

If two schedule tables are chained using the API function NextScheduleTable(), the

second schedule table takes over the synchronized schedule table time of the
predecessor3.

When switching to a schedule table that does not allow synchronization, the remaining
difference to the global time is saved: upon switching to a schedule table that allows
synchronization it will immediately start to synchronize.

3.2.6.1.8 Concurrent Actions

If a task is activated at an expiry point, and an event for this task is set at the same expiry
point, always all tasks will be activated before events are set. However, if two schedule
tables are using the same counter; one of these schedule tables activates a task and the
other schedule table sets an event for this task at the same time, the behaviour is
undefined.

3.2.6.2 High-Resolution Schedule Tables

AUTOSAR schedule tables are driven by a counter (hardware or software), and thus offer
the same resolution. While it is possible to configure a higher resolution for the counter,
this increases also the interrupt load. High-Resolution Schedule Tables offer a
microsecond resolution or better4 without unnecessary additional interrupt load: At each
expiry point, a timer interrupt is reprogrammed so it will be reactivated exactly at the
following expiry point5.

Note that high resolution schedule tables are not supported by all MICROSAR OS
implementations.

It is possible to use standard schedule tables and High-Resolution Schedule Tables at the
same time. High-Resolution Schedule Tables support the full AUTOSAR API, including
synchronization (see 3.2.5.1) and are particularly suited for FlexRay.

3 Therefore, if the two schedule tables have a different LENGTH, switching from one to the other is undefined: it may work, but may

also lead to unexpected results. This is not checked at runtime (and cannot be checked at generation time).

4 The actually achievable best resolution depends on the hardware, hardware settings and application

5 while the activation of the schedule table handler is done as exact as the underlying counter (the hardware) allows it, a certain time

span will expire until the expiry point is actually processed. Interrupts, non-preemptive tasks and interrupt disabling times impose

an additional jitter.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

31 / 136

3.2.6.2.1 Setup

To create a High-Resolution Schedule Table, create a Schedule Table and choose any
High-Resolution Counter as the underlying counter. This counter is available only on the
MICROSAR OS implementations that support high resolution schedule tables; it is
automatically available if supported.

3.2.6.3 Cyclical Expiry Point Actions

Cyclical expiry point actions are a Vector specific extension of the AUTOSAR Standard to
ease the configuration of schedule table actions. In case an expiry point action shall be

executed cyclicly within a schedule table, the user may select the sub-attribute Cyclic.

This allows him to define a cycle time in the sub-attribute CycleTime. This informs the

generator that the expiry point action shall occur repeatedly with the configured cycle time
starting at the offset of the expiriy point, the action belongs to.

In case, the sub-attributes Cyclic and CycleTime have been configured, the generator

of the OS copies the expiry point actions to the configured locations within the schedule
table before it generates the schedule table. In case, there is already an expiry point at a
location where a cyclical expiry point action shall occur, the cyclical action is simply added
to the actions of that expiry point. In case there is no expiry point configured at the location
where a cyclical expiry point action schall occur, the generator invents an expiry point.
Please note that generator invented expiry points do not allow synchronization as there is
no configuration of the synchronization step width possible.

3.2.7 Trusted Functions

MICROSAR OS OSEK/AUTOSAR provides two possibilities to call trusted functions: by

direct call of API function CallTrustedFunction or by using generated stub functions.

It is possible to mix applications using direct calls and applications using generated stub
functions.

Caution
Inside trusted functions there is full access to all memory. Therefore, each trusted
function with address arguments for return values must check the access rights of the
caller before writing results through an address argument. The API provides the

functions CheckTaskMemoryAccess and CheckISRMemoryAccess for address

checking.

3.2.7.1 Generated Stub Functions

The generation of stubs for trusted functions is a Vector specific extension of the
AUTOSAR OS standard to ease the usage of trusted functions.

To enable stub generation for an application, the TRUSTED attribute of this application and

the sub-attribute GenerateStub must be set to TRUE.

In this case, a caller stub with the name Call_<name> is generated for each trusted

function of the application, where <name> is the name of the trusted function. The

generated stub function Call_<name> packs its parameters into a structure as needed by

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

32 / 136

the standard API function CallTrustedFunction and calls that API function. Another
generated stub function performs an unpacking of the parameters so that the user's
trusted function does not need to get all the parameters via one pointer, but can have a set
of parameters and a return value like any legal C-function.

In case the sub-attribute GenerateStub is set to TRUE, the user has to define the

parameters and the return value of the trusted function as well. The sub-attribute Params

shall contain a comma-separated list of type and parameter name (as they would occur in

a function definition in C). The sub-attribute ReturnType shall define the return type of

the function.

The stubs are generated into the file trustfct.c.

See 10.8 for an example using generated stub functions for trusted applications.

Caution
The generator does not produce prototypes for the trusted functions to be called by the
trusted function stubs. The prototypes shall be provided by the writer of these functions
and included into the file usrostyp.h. Parameter types and the return type need to be
defined there also in case they are no simple types of the C-language. The file
usrostyp.h is described in chapter 5.2.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

33 / 136

3.3 Error Handling

3.3.1 Error Messages

If the kernel detects errors, the OSEK error handling is called. The hook routine

ErrorHook is called if selected.

Depending on the situation in which an error was detected the error handling will return to
the current active task or the system will be shut down.

3.3.2 OSEK / AUTOSAR OS Error Numbers

The OSEK specification defines several error numbers that are returned by the API
functions. A certain error number has different meanings for different API functions. The
user has to know the API function to interpret the error number correctly.

With the AUTOSAR OS specification, the range of error numbers was extended. The
following table shows all specified error numbers.

Error Code Description

0 E_OK Service executed successfully

1 E_OS_ACCESS Several APIs: general access of object failure

2 E_OS_CALLEVEL Several APIs: service accessed from wrong context

3 E_OS_ID Several APIs: service called with wrong ID

4 E_OS_LIMIT Several APIs: service called too often

5 E_OS_NOFUNC Several APIs: (warning) service not executed

6 E_OS_RESOURCE Several APIs: service called with occupied resource

7 E_OS_STATE Several APIs: object is in wrong state

8 E_OS_VALUE Several APIs: passed parameter has wrong value

9 E_OS_SERVICEID Several APIs: service can not be called

10 E_OS_ILLEGAL_ADDRESS Several APIs: invalid address passed

11 E_OS_MISSINGEND Several APIs: task terminated without TerminatTask

12 E_OS_DISABLEDINT Several APIs: service called with disabled interrupts

13 E_OS_STACKFAULT Stack monitoring detected fault

14 E_OS_PROTECTION_MEMORY Memory access violation

15 E_OS_PROTECTION_TIME Execution time budget exceeded

16 E_OS_PROTECTION_ARRIVAL Arrival before the timeframe expired

17 E_OS_PROTECTION_LOCKED Task/ISR blocked too long (e.g. by disabled interrupts)

18 E_OS_PROTECTION_EXCEPTION A trap occurred

Table 3-4 OSEK/AUTOSAR OS error numbers

The additional implementation specific error numbers are defined as:

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

34 / 136

Error Code Description

20 E_OS_SYS_ASSERTION This error is generated if the kernel detects an
internal inconsistency. The reason and an exact
explanation is described below.

21 E_OS_SYS_ABORT This error is generated if the kernel has to shut down
the system but the reason was not an API function.

22 E_OS_SYS_DIS_INT This error number is no longer used. It is replaced by
the AUTOSAR OS conformant number

E_OS_DISABLEDINT.

23 E_OS_SYS_API_ERROR This error is generated if an error occurs in an API
function and there is no error code specified in the
OSEK specification. The reason and an exact
explanation is described below.

24 E_OS_SYS_ALARM_MANAGEMENT A general warning issued in certain cases involving
the alarm management. Detailed description

in the implementation specific manual

25 E_OS_SYS_WARNING A general warning issued in certain cases. Detailed
description in the implementation specific manual.

Table 3-5 Implementation specific error numbers

More implementation specific errors may be described in ref. [4].

3.3.3 MICROSAR OS Error Numbers

In addition to the OSEK error numbers, all MICROSAR OS implementations provide
unique error numbers for an exact error description. All error numbers are defined as a 16-

bit value. The error numbers are defined in the header file osekerr.h and are defined

according to the following syntax:

0xgfee

 ||+--- consecutive error number

 |+---- number of function in the function group

 +----- number of function group

The error numbers common to all MICROSAR OS implementations are described below.
The implementation specific error numbers have a function group number >= 0xA000 and
are described in the document [4].

To access these error numbers the ERRORHOOK has to be enabled. The numbers are then

accessible via the macro OSErrorGetosCANError().

Error Types:

Error Type Description

OSEK OSEK / AUTOSAR error. After calling the ErrorHook, the program is

continued.

assertion System assertion error. After calling the ErrorHook the operating system

is shut down. Assertion checking is always enabled in SafeContext
implementations.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

35 / 136

Error Type Description

syscheck System error. After calling the ErrorHook the operating system is shut

down. Refer to the specific error for a description how to enable or disable
error checking.

Table 3-6 Error types

3.3.3.1 Error Numbers of Group Task Management / (1)

Group (1) contains the functions:

API Function Abbreviation Function
Number

ActivateTask AT 1

TerminateTask TT 2

ChainTask HT 3

Schedule SH 4

GetTaskState GS 5

GetTaskID GI 6

osMissingTerminateError MT 7

Table 3-7 API functions of group Task Management / (1)

Error numbers of group (1):

Error Code Description

 Error Type Reason

0x1101 osdErrATWrongTaskID OSEK Called with invalid task ID

0x1102 osdErrATWrongTask

Prio

assertion Task has wrong priority level

0x1103 osdErrATMultiple

Activation

OSEK number of activation of activated task
exceeds limit

0x1104 osdErrATIntAPI

Disabled

OSEK Interrupts are disabled with functions
provided by OSEK

0x1105 osdErrATAlarm

MultipleActivation

OSEK Number of activation of activated task
exceeds limit (task activation is performed
by alarm-expiration or expiry point action)

0x1106 osdErrATNoAccess OSEK Calling application has no access rights for
this task

0x1107 osdErrATCallContext OSEK Called from invalid call context

0x1108 osdErrATWrongAppState OSEK Referenced object is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x1201 osdErrTTDisabled

Interrupts

OSEK TerminateTask called with disabled

interrupts

0x1202 osdErrTTResources OSEK TerminateTask called with occupied

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

36 / 136

Error Code Description

 Error Type Reason

Occupied resources

0x1203 osdErrTTNotActivated assertion TerminateTask attempted for a task with

activation counter == 0 (not activated)

0x1204 osdErrTTOnInterrupt

Level

OSEK TerminateTask called from an interrupt

service routine

0x1205 osdErrTTNoImmediate

TaskSwitch

assertion TerminateTask has tried to start the

Scheduler without success.

0x1206 osdErrTTCallContext OSEK Called from invalid call context

0x1208 osdErrTTWrongActiveTa

skID

assertion Task index is not valid during call of
TerminateTask

0x1301 osdErrHTInterrupts

Disabled

OSEK ChainTask called with disabled interrupts

0x1302 osdErrHTResources

Occupied

OSEK ChainTask called with occupied

resources

0x1303 osdErrHTWrongTaskID OSEK New task has invalid ID

0x1304 osdErrHTNotActivated assertion Tried to terminate a task which have an
activation counter which is zero

0x1305 osdErrHTMultiple

Activation

OSEK Number of activation of new task exceeds
limit

0x1306 osdErrHTOnInterrupt

Level

OSEK ChainTask called on interrupt level

0x1307 osdErrHTWrongTask

Prio

assertion ChainTask was called from wrong priority

level

0x1308 osdErrHTNoImmediate

TaskSwitch

assertion ChainTask has tried to activate the

Scheduler without success.

0x1309 osdErrHTCallContext OSEK Called from invalid call context

0x130A osdErrHTNoAccess OSEK Calling application has no access rights for
this task

0x130B osdErrHTWrongAppState OSEK Referenced object is owned by an
OSApplication which was terminated.

0x130D osdErrHTWrongActiveTa

skID

assertion Task index is not valid during call of
ChainTask

0x1401 osdErrSHInterrupts

Disabled

OSEK Schedule called with disabled interrupts

0x1402 osdErrSHOnInterrupt

Level

OSEK Schedule called on interrupt level

0x1403 osdErrSHScheduleNot

Allowed

assertion Schedule called from task with enabled
stack sharing by setting

NotUsingSchedule in the OIL

Configurator

0x1405 osdErrSHResources

Occupied

OSEK Called with an occupied resource

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

37 / 136

Error Code Description

 Error Type Reason

0x1406 osdErrSHCallContext OSEK Called from invalid call context

0x1409 osdErrSHWrongActiveTa

skID

assertion Task index is not valid during call of
Schedule

0x1501 osdErrGSWrongTaskID OSEK Called with invalid task ID

0x1502 osdErrGSIntAPI

Disabled

OSEK Interrupts are disabled with functions
provided by OSEK

0x1503 osdErrGSIllegalAddr OSEK Caller has no write access rights for
address argument

0x1504 osdErrGSCallContext OSEK Called from invalid call context

0x1505 osdErrGSNoAccess OSEK Calling application has no access rights for
this task

0x1506 osdErrGSWrongAppState OSEK Referenced object is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x1507 osdErrGSOddInvocation assertion Invocation of internal function

osGetTaskState detected although

ReducedStatusChecks was enabled

0x1601 osdErrGIIntAPI

Disabled

OSEK Interrupts are disabled with functions
provided by OSEK

0x1602 osdErrGIIllegalAddr OSEK Caller has no write access rights for
address argument.

0x1603 osdErrGICallContext OSEK Called from invalid call context

0x1604 osdErrGIOddInvocation assertion Invocation of internal function

osGetTaskID detected although

ReducedStatusChecks was enabled

0x1701 osdErrMTMissing

TerminateTask

syscheck Exit of task without the call of

TerminateTask or ChainTask. This

error is detected in EXTENDED STATUS

only.

Table 3-8 Error numbers of group Task Management / (1)

3.3.3.2 Error Numbers of Group Interrupt Handling / (2)

Group (2) contains the functions:

API Function Abbreviation Function
Number

EnableAllInterrupts EA 4

DisableAllInterrupts DA 5

ResumeOSInterrupts RI 6

SuspendOSInterrupts SI 7

osUnhandledException UE 8

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

38 / 136

API Function Abbreviation Function
Number

osSaveDisableLevelNested SD 9

osRestoreEnableLevelNested RE A

osSaveDisableGlobalNested SG B

osRestoreEnableGlobalNested RG C

ResumeAllInterrupts RA D

SuspendAllInterrupts SA E

GetISRID II 2

Interrupt Exit (SC3 only) IX 3

Table 3-9 API functions of group Interrupt Handling / (2)

Error numbers of group (2):

Error Code Description

 Error Type Reason

0x2401 osdErrEAIntAPIWrong

Sequence

assertion DisableAllInterrupts not called

before

0x2501 osdErrDAIntAPI

Disabled

assertion Interrupts are disabled with functions
provided by OSEK

0x2801 osdErrUEUnhandled

Exception

syscheck An unhandled exception or interrupt was
detected. This error check is always
enabled.

0x2901 osdErrSDWrongCounter assertion Wrong counter value detected

0x2A01 osdErrREWrongCounter assertion Wrong counter value detected

0x2B01 osdErrSGWrongCounter assertion Wrong counter value detected

0x2C01 osdErrRGWrongCounter assertion Wrong counter value detected

0x2201 osdErrIIIntAPI

Disabled

OSEK GetISRID was called with interrupts

disabled.

0x2202 osdErrIICallContext OSEK Called from invalid call context

0x2301 osdErrIXResources

Occupied

OSEK An ISR of category 2 was left with
resources still occupied.

0x2302 osdErrIXIntAPI

Disabled

OSEK An ISR of category 2 was left with
interrupts disabled by

DisableAllInterrupts,

SuspendAllInterrupts or
SuspendOSInterrupts

Table 3-10 Error numbers of group Interrupt Handling / (2)

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

39 / 136

3.3.3.3 Error Numbers of Group Resource Management / (3)

Group (3) contains the functions:

API Function Abbreviation Function
Number

GetResource GR 1

ReleaseResource RR 2

Table 3-11 API functions of group Resource Management / (3)

Error numbers of group (3):

Error Code Description

 Error Type Reason

0x3101 osdErrGRWrongResource

ID

OSEK Invalid resource ID

0x3102 osdErrGRPriority

Occupied

assertion Ceiling priority of the specified resource
already in use

0x3103 osdErrGRResource

Occupied

OSEK Resource already occupied

0x3104 osdErrGRNoAccess

Rights

assertion Task has no access to the specified
resource

0x3105 osdErrGRWrongPrio OSEK Specified resource has a wrong priority.
Possible reason: the task has no access
rights to this resource.

0x3106 osdErrGRIntAPI

Disabled

OSEK Interrupts are disabled with functions
provided by OSEK

0x3107 osdErrGRNoAccess OSEK Calling application has no access rights for
this resource

0x3108 osdErrGRCallContext OSEK Called from invalid call context

0x3109 osdErrGRISRNoAccess

Rights

OSEK Calling ISR has no access rights for this
resource

0x310B osdErrGRWrongTaskID assertion Task index is not valid during call of
GetResource

0x3201 osdErrRRWrongResource

ID

OSEK Invalid resource ID

0x3202 osdErrRRCeiling

PriorityNotSet

assertion Ceiling priority of the resource not found in
the ready bit field

0x3203 osdErrRRWrongTask assertion Resource occupied by a different task

0x3204 osdErrRRWrongPrio OSEK Specified resource has a wrong priority.
Possible reason: the task has no access
rights to this resource.

0x3206 osdErrRRNotOccupied OSEK The specified resource is not occupied by
the task

0x3207 osdErrRRWrongSequence OSEK At least one other resource must be
released before

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

40 / 136

Error Code Description

 Error Type Reason

0x3208 osdErrRRIntAPI

Disabled

OSEK Interrupts are disabled with functions
provided by OSEK

0x3209 osdErrRRNoAccess OSEK Calling application has no access rights for
this resource

0x320A osdErrRRCallContext OSEK Called from invalid call context

0x320B osdErrRRISRNoAccess

Rights

OSEK Calling ISR has no access rights for this
resource

0x320D osdErrRRNoReadyTaskFo

und

assertion No valid priority found when calling
ReleaseResource

0x320E osdErrRRWrongTaskID assertion Task index is not valid during call of
ReleaseResource

0x320F osdErrRRWrongHighRdyP

rio

assertion No valid high ready priority task index

during call of ReleaseResource

Table 3-12 Error numbers of group Resource Management / (3)

3.3.3.4 Error Numbers of Group Event Control / (4)

Group (4) contains the functions:

API Function Abbreviation Function
Number

SetEvent SE 1

ClearEvent CE 2

GetEvent GE 3

WaitEvent WE 4

Table 3-13 API functions of group Event Control / (4)

Error numbers of group (4):

Error Code Description

 Error Type Reason

0x4101 osdErrSEWrongTaskID OSEK Invalid task ID

0x4102 osdErrSENotExtended

Task

OSEK Cannot SetEvent to basic task

0x4103 osdErrSETaskSuspended OSEK Cannot SetEvent to task in SUSPENDED

state. The error code might occur in case

of API call SetEvent or in case of

alarm/schedule table action to set an
event.

0x4104 osdErrSEWrongTask

Prio

assertion Wrong task priority detected

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

41 / 136

Error Code Description

 Error Type Reason

0x4105 osdErrSEIntAPI

Disabled

OSEK Interrupts are disabled with functions
provided by OSEK

0x4106 osdErrSECallContext OSEK Called from invalid call context

0x4107 osdErrSENoAccess OSEK Calling application has no access rights for
this task

0x4108 osdErrSEWrongAppState OSEK Referenced task is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x4201 osdErrCENotExtended

Task

OSEK A basic task cannot clear an event

0x4202 osdErrCEOnInterrupt

Level

OSEK ClearEvent called on interrupt level

0x4203 osdErrCEIntAPI

Disabled

OSEK Interrupts are disabled with functions
provided by OSEK

0x4204 osdErrCECallContext OSEK Called from invalid call context

0x4301 osdErrGEWrongTaskID OSEK Invalid task ID

0x4302 osdErrGENotExtended

Task

OSEK Cannot GetEvent from basic task

0x4303 osdErrGETaskSuspended OSEK Cannot GetEvent from a task in

SUSPENDED state

0x4304 osdErrGEIntAPI

Disabled

OSEK Interrupts are disabled with functions
provided by OSEK

0x4305 osdErrGEIllegalAddr OSEK Caller has no write access rights for
address argument

0x4306 osdErrGECallContext OSEK Called from invalid call context

0x4307 osdErrGENoAccess OSEK Calling application has no access rights for
this task

0x4308 osdErrGEWrongAppState OSEK Referenced task is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x4309 osdErrGEOddInvocation assertion Invocation of internal function

osGetEvent detected although

ReducedStatusChecks was enabled

0x4401 osdErrWENotExtended

Task

OSEK WaitEvent called by basic task

0x4402 osdErrWEResources

Occupied

OSEK WaitEvent called with occupied

resources

0x4403 osdErrWEInterrupts

Disabled

OSEK WaitEvent called with disabled interrupts

0x4404 osdErrWEOnInterrupt

Level

OSEK WaitEvent called on interrupt level

0x4405 osdErrWECallContext OSEK Called from invalid call context

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

42 / 136

Table 3-14 Error numbers of group Event Control / (4)

3.3.3.5 Error Numbers of Group Alarm Management / (5)

Group (5) contains the functions:

API Function Abbreviation Function
Number

GetAlarmBase GB 1

GetAlarm GA 2

SetRelAlarm SA 3

SetAbsAlarm SL 4

CancelAlarm CA 5

osWorkAlarm WA 6

Table 3-15 API functions of group Alarm Management / (5)

Error numbers of group (5):

Error Code Description

 Error Type Reason

0x5101 osdErrGBWrongAlarmID OSEK Invalid alarm ID

0x5102 osdErrGBIntAPI

Disabled

OSEK Interrupts are disabled with functions
provided by OSEK

0x5103 osdErrGBIllegalAddr OSEK Caller has no write access rights for
address argument

0x5104 osdErrGBCallContext OSEK Called from invalid call context

0x5105 osdErrGBNoAccess OSEK Calling application has no access rights for
this alarm

0x5106 osdErrGBWrongAppState OSEK Referenced object is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x5201 osdErrGAWrongAlarmID OSEK Invalid alarm ID

0x5202 osdErrGANotActive OSEK Alarm not active

0x5203 osdErrGAIntAPI

Disabled

OSEK Interrupts are disabled with functions
provided by OSEK

0x5204 osdErrGAIllegalAddr OSEK Caller has no write access rights for
address argument

0x5205 osdErrGACallContext OSEK Called from invalid call context

0x5206 osdErrGANoAccess OSEK Calling application has no access rights for
this alarm

0x5207 osdErrGAWrongAppState OSEK Referenced alarm is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

43 / 136

Error Code Description

 Error Type Reason

0x5301 osdErrSAWrongAlarmID OSEK Invalid alarm id

0x5302 osdErrSAAlreadyActive OSEK Alarm already active

0x5303 osdErrSAWrongCycle OSEK Specified cycle is out of range

0x5304 osdErrSAWrongDelta OSEK Specified delta is out of range

0x5305 osdErrSAIntAPI

Disabled

OSEK Interrupts are disabled with functions
provided by OSEK

0x5306 osdErrSAZeroIncrement OSEK SetRelAlarm was called with the

parameter increment set to zero. (This is
no longer allowed with AUTOSAR OS)

0x5307 osdErrSACallContext OSEK Called from invalid call context

0x5308 osdErrSANoAccess OSEK Calling application has no access rights for
this alarm

0x5309 osdErrSAWrongAppState OSEK Referenced alarm is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x5401 osdErrSLWrongAlarmID OSEK Invalid alarm ID

0x5402 osdErrSLAlreadyActive OSEK Alarm already active

0x5403 osdErrSLWrongCycle OSEK Specified cycle is out of range

0x5404 osdErrSLWrongStart OSEK Specified start is out of range

0x5405 osdErrSLIntAPI

Disabled

OSEK Interrupts are disabled with functions
provided by OSEK

0x5406 osdErrSLCallContext OSEK Called from invalid call context

0x5407 osdErrSLNoAccess OSEK Calling application has no access rights for
this alarm

0x5408 osdErrSLWrongAppState OSEK Referenced alarm is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x5501 osdErrCAWrongAlarmID OSEK Invalid alarm ID

0x5502 osdErrCANotActive OSEK Alarm not active

0x5503 osdErrCAIntAPI

Disabled

OSEK Interrupts are disabled with functions
provided by OSEK

0x5504 osdErrCAAlarmInternal syscheck Internal error detected while alarm was
cancelled. This error is only detected when

OSInternalChecks is set to

Additional.

0x5505 osdErrCACallContext OSEK Called from invalid call context

0x5506 osdErrCANoAccess OSEK Calling application has no access rights for
this alarm

0x5507 osdErrCAWrongAppState OSEK Referenced alarm is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

44 / 136

Error Code Description

 Error Type Reason

0x5601 osdErrWAWrongIDonHeap assertion Wrong alarm ID in heap data structure for
alarm management

0x5602 osdErrWAHeapOverflow assertion Overflow in internal data structure for
alarm management

0x5603 osdErrWAUnknownAction assertion Invalid alarm action type during processing
of an expired alarm

0x5604 osdErrWAWrongCounterI

D

assertion Invalid counter ID during processing of an
expired alarm with
OsAlarmAction=OsAlarmIncrementC

ounter.

Table 3-16 Error numbers of group Alarm Management / (5)

3.3.3.6 Error Numbers of Group Operating System Execution Control / (6)

Group (6) contains the functions:

API Function Abbreviation Function
Number

osCheckStackOverflow SO 1

osSchedulePrio SP 2

osGetStackUsage SU 3

osCheckLibraryVersionAndVariant CL 4

osErrorHook EH 5

StartOS ST 6

osSchedInsertTask QI 7

osSchedRemoveRunningTask QR 8

osSchedOnHomePrio QS 9

osSchedOccupyInternalResource QO A

Table 3-17 API functions of group Operating System Execution Control / (6)

Error numbers of group (6):

Error Code Description

 Error Type Reason

0x6101 osdErrSOStackOverflow syscheck Task stack overflow detected. This error is
only detected when the OIL attribute

WithStackCheck is set to TRUE.

0x6201 osdErrSPInterrupts

Enabled

assertion Scheduler called with enabled interrupts

0x6301 osdErrSUWrongTaskID assertion Called with invalid task ID

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

45 / 136

Error Code Description

 Error Type Reason

0x6401 osdErrCLWrongLibrary syscheck Wrong library linked to application. This
error check is always enabled.

0x6501 osdErrEHInterrupts

Enabled

assertion ErrorHook called with enabled interrupts

0x6601 osdErrSTMemoryError assertion StartOS failed while initializing memory.

0x6602 osdErrSTNoImmediate

TaskSwitch

assertion StartOS tried to activate the Scheduler

without success.

0x6603 osdErrSTWrongAppMode syscheck StartOS was called with an invalid

parameter value. This error is only

detected if the attribute STATUS is set to

EXTENDED.

0x6604 osdErrSTConfigCRCErro

r

assertion Configuration CRC mismatch detected

during StartOS

0x6606 osdErrSTConfigMagicNr

Error

assertion Error reading the magic number from

config block during StartOS

0x6607 osdErrSTInvalidMajorV

ersion

assertion Error reading the major version number

from config block during StartOS

0x6608 osdErrSTInvalidMinorV

ersion

assertion Error reading the minor version number

from config block during StartOS

0x6609 osdErrSTInvalidSTCfg assertion Schedule table has an invalid autostart
type value.

0x6701 osdErrQIWrongTaskPrio assertion Wrong Task Priority in
osSchedInsertTask

0x6801 osdErrQRInterruptsEna

bled

assertion Interrupts are enabled during
osSchedRemoveRunningTask

0x6802 osdErrQRWrongTaskID assertion Task index not valid in
osSchedRemoveRunningTask

0x6803 osdErrQRWrongTaskPrio assertion Priority not valid in
osSchedRemoveRunningTask

0x6804 osdErrQRWrongHighRdyP

rio

assertion High ready task priority not valid in
osSchedRemoveRunningTask

0x6901 osdErrQSInterruptsEna

bled

assertion Interrupts are enabled during
osSchedOnHomePrio

0x6902 osdErrQSNoReadyTaskFo

und

assertion No High ready task has been found in
osSchedOnHomePrio

0x6903 osdErrQSWrongPriority assertion Priority not valid in osSchedOnHomePrio

0x6A01 osdErrQOWrongTaskID assertion Task index not valid in
osSchedOccupyInternalResource

Table 3-18 Error numbers of group Operating System Execution Control / (6)

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

46 / 136

3.3.3.7 Error Numbers of Schedule Table Control / (7)

Group (7) contains the functions:

API Function Abbreviation Function
Number

StartScheduleTableRel SR 1

StartScheduleTableAbs SS 2

StopScheduleTable SP 3

GetScheduleTableStatus SG 4

NextScheduleTable SN 5

osWorkScheduleTable WS 6

SyncScheduleTable (SC2 and SC4) SY 7

SetScheduleTableAsync (SC2 and SC4) AY 8

StartScheduleTableSynchron (SC2 and SC4) TS C

Table 3-19 API functions of group Schedule Table Control / (7)

Error numbers of group (7):

Error Code Description

 Error Type Reason

0x7101 osdErrSRWrongID OSEK StartScheduleTableRel was called

with an invalid schedule table ID.

0x7102 osdErrSRAlready

RunningOrNext

OSEK StartScheduleTableRel was called for

a schedule table that is already running or
next.

0x7103 osdErrSRZeroOffset OSEK StartScheduleTableRel was called

with the parameter Offset set to zero.

0x7104 osdErrSROffsetTooBig OSEK StartScheduleTableRel was called

with the parameter Offset bigger than

MAXALLOWEDVALUE of the respective

counter.

0x7105 osdErrSRIntAPI

Disabled

OSEK StartScheduleTableRel was called

with disabled interrupts.

0x7106 osdErrSRCallContext OSEK Called from invalid call context

0x7107 osdErrSRNoAccess OSEK Calling application has no access rights for
this schedule table

0x7109 osdErrSRImplicite

Sync

OSEK StartScheduleTableRel was called for

an implicitly synchronized ScheduleTable

0x710a osdErrSRWrongAppState OSEK Referenced schedule table is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x7201 osdErrSSWrongID OSEK StartScheduleTableAbs was called

with an invalid schedule table ID.

0x7202 osdErrSSAlready OSEK StartScheduleTableAbs was called for

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

47 / 136

Error Code Description

 Error Type Reason

RunningOrNext a schedule table, which is already running
or next.

0x7203 osdErrSSTickvalueToo

Big

OSEK StartScheduleTableAbs was called

with the parameter TickValue bigger than

MAXALLOWEDVALUE of the respective

counter.

0x7204 osdErrSSIntAPI

Disabled

OSEK StartScheduleTableAbs was called

with disabled interrupts.

0x7205 osdErrSSCallContext OSEK Called from invalid call context

0x7206 osdErrSSNoAccess OSEK Calling application has no access rights for
this schedule table

0x7207 osdErrSSWrongAppState OSEK Referenced schedule table is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x7301 osdErrSPWrongID OSEK StopScheduleTable was called with an

invalid schedule table ID.

0x7302 osdErrSPNotRunning OSEK StopScheduleTable was called for a

schedule table, which is in stopped or next
state.

0x7303 osdErrSPIntAPI

Disabled

OSEK StopScheduleTable was called with

disabled interrupts.

0x7304 osdErrSPCallContext OSEK Called from invalid call context

0x7305 osdErrSPNoAccess OSEK Calling application has no access rights for
this schedule table

0x7306 osdErrSPUnknownCase Assertion An internal error occured

0x7307 osdErrSPWrongAppState OSEK Referenced schedule table is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x7401 osdErrSGWrongID OSEK GetScheduleTableStatus was called

with an invalid schedule table ID.

0x7402 osdErrSGIntAPI

Disabled

OSEK GetScheduleTableStatus was called

with disabled interrupts

0x7403 osdErrSGCallContext OSEK Called from invalid call context

0x7404 osdErrSGNoAccess OSEK Calling application has no access rights for
this schedule table

0x7405 osdErrSGIllegalAddr OSEK Caller has no write access rights for
address argument

0x7406 osdErrSGWrongAppState OSEK Referenced schedule table is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x7407 osdErrSGOddInvocation assertion Invocation of internal function

osGetScheduleTableStatus detected

although ReducedStatusChecks was

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

48 / 136

Error Code Description

 Error Type Reason

enabled

0x7501 osdErrSNWrongCurrent

ID

OSEK NextScheduleTable was called with an

invalid schedule table ID for the parameter

ScheduleTableID_current.

0x7502 osdErrSNWrongNextID OSEK NextScheduleTable was called with an

invalid schedule table ID for the parameter

ScheduleTableID_next.

0x7503 osdErrSNNotRunning OSEK NextScheduleTable was called to chain

a schedule table after another schedule
table, that is currently not running.

0x7504 osdErrSNAlready

RunningOrNext

OSEK NextScheduleTable was called to chain

a running schedule table after another
schedule table.

0x7505 osdErrSNDifferent

Counters

OSEK NextScheduleTable was called to chain

two schedule tables, which are driven by
different counters.

0x7506 osdErrSNIntAPI

Disabled

OSEK NextScheduleTable was called with

interrupts disabled.

0x7507 osdErrSNCallContext OSEK Called from invalid call context

0x7508 osdErrSNNoAccess OSEK Calling application has no access rights for
this schedule table

0x7509 osdErrSNWrongAppState OSEK Referenced schedule table is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x7601 osdErrWSUnknownAction assertion An invalid action was found in a schedule
table

0x7602 osdErrWSUnknown

Reaction

assertion An internal error occured

0x7603 osdErrWSWrongID assertion No valid schedule table index in
osWorkScheduleTable

0x7701 osdErrSYCallContext OSEK Called from invalid call context

0x7702 osdErrSYWrongID OSEK Called with wrong schedule table ID

0x7703 osdErrSYNoAccess OSEK Calling application has no access rights for
this schedule table

0x7704 osdErrSYIntAPI

Disabled

OSEK Called with interrupts disabled

0x7705 osdErrSYSTNotRunning OSEK The Schedule table is currently not running

0x7706 osdErrSYGlobalTimeToo

Big

OSEK The Global Time is larger than the LENGTH

of the schedule table

0x7707 osdErrSYSyncKindNot

Explicit

OSEK SyncScheduleTable was called for a

Schedule table that is not explicitly
synchronized.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

49 / 136

Error Code Description

 Error Type Reason

0x7708 osdErrSYWrongAppState OSEK Referenced schedule table is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x7801 osdErrAYCallContext OSEK Called from invalid call context

0x7802 osdErrAYWrongID OSEK Called with wrong schedule table ID

0x7803 osdErrAYNoAccess OSEK Calling application has no access rights for
this schedule table

0x7804 osdErrAYIntAPI

Disabled

OSEK Called with interrupts disabled

0x7805 osdErrAYWrongAppState OSEK Referenced schedule table is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x7C01 osdErrTSCallContext OSEK Called from invalid call context

0x7C02 osdErrTSWrongID OSEK Called with invalid schedule table id.

0x7C03 osdErrTSNoAccess OSEK Calling application has no access rights for
this schedule table

0x7C04 osdErrTSIntAPI

Disabled

OSEK Called with interrupts disabled

0x7C05 osdErrTSSTAlready

Running

OSEK The schedule table is already running or
scheduled to run after a currently running
schedule table

0x7C06 osdErrTSGlobalTimeToo

Big

OSEK The offset to Global Time is larger than the

LENGTH of the schedule table

0x7C08 osdErrTSSyncKindNot

Explicit

OSEK StartScheduleTableSynchron was

called for a Schedule table that is not
explicitly synchronized.

0x7C09 osdErrTSWrongAppState OSEK Referenced schedule table is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

Table 3-20 Error numbers of group Schedule Table Control / (7)

3.3.3.8 Error Numbers of Group Counter API / (8)

Group (8) contains the functions:

API Function Abbreviation Function
Number

IncrementCounter IC 1

GetCounterValue GC 3

GetElapsedValue GV 4

Table 3-21 API functions of group Counter API / (8)

Error numbers of group (8):

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

50 / 136

Error Code Description

 Error Type Reason

0x8101 osdErrICWrongCounter

ID

OSEK IncrementCounter was called for an

invalid counter or a hardware counter.

0x8102 osdErrICIntAPI

Disabled

OSEK IncrementCounter was called with

interrupts disabled.

0x8103 osdErrICCallContext OSEK Called from invalid call context

0x8104 osdErrICNoAccess OSEK Calling application has no access rights for
this counter

0x8105 osdErrICWrongAppState OSEK Referenced counter is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x8301 osdErrGCCallContext OSEK Called from invalid call context.

0x8302 osdErrGCIntAPIDisabled OSEK Called with disabled interrupts

0x8303 osdErrGCWrongID OSEK Parameter CounterID is invalid

0x8304 osdErrGCNoAccess OSEK Counter not accessible by the caller

0x8305 osdErrGCIllegalAddr OSEK Location the reference parameter Value
points to is not writable for the calling
application

0x8306 osdErrGCWrongAppState OSEK Referenced ISR is owned by an
OSApplication that is not in state
APPLICATION_ACCESSIBLE

0x8307 osdErrGCOddInvocation assertion Invocation of internal function

osGetCounterValue detected although

ReducedStatusChecks was enabled

0x8401 osdErrGVCallContext OSEK Called from invalid call context.

0x8402 osdErrGVIntAPIDisabled OSEK Called with disabled interrupts

0x8403 osdErrGVWrongID OSEK Parameter CounterID is invalid

0x8404 osdErrGVNoAccess OSEK Counter not accessible by the caller

0x8405 osdErrGVIllegalAddr OSEK Location a reference parameter points to is
not writable for the calling application

0x8406 osdErrGVWrongAppState OSEK Referenced ISR is owned by an
OSApplication that is not in state
APPLICATION_ACCESSIBLE

0x8407 osdErrGVIllegalValue OSEK The passed value is illegal

0x8408 osdErrGVIllegalPointer

s

OSEK The pointers for out parameters Value and
Elapsed Value are identical.

0x8409 osdErrGVOddInvocation assertion Invocation of internal function

osGetElapsedValue detected although

ReducedStatusChecks was enabled

Table 3-22 Error numbers of group Counter API / (8)

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

51 / 136

3.3.3.9 Error Numbers of Group Timing Protection and Timing Measurement / (9)

Group (9) contains the functions:

API Function Abbreviation Function
Number

GetTaskMinInterArrivalTime TM 0

BlockingTimeMonitoring BM 7

GetTaskMaxExecutionTime TE 8

GetISRMaxExecutionTime IE 9

GetTaskMaxBlockingTime TB A

GetISRMaxBlockingTime IB B

ExecutionTimeMonitoring ET D

GetISRMinInterArrivalTime MI F

Table 3-23 API functions of group Timing Protection and Timing Measurement / (9)

Error numbers of group (9):

Error Code Description

 Error Type Reason

0x9001 osdErrTMWrongTaskID OSEK Called with wrong TASK ID

0x9002 osdErrTMNoAccess OSEK The calling application has no access
rights for the TASK

0x9003 osdErrTMIllegalAddr OSEK The caller has no access rights for the
memory region

0x9004 osdErrTMWrongAppState OSEK Referenced task is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x9702 osdErrBMResAlready

Measured

assertion A blocking time measurement was started
that is already running. This might happen
if timing protection is active and

SuspendAllInterrupts is called after

DisableAllInterrupts has already

been called.

0x9703 osdErrBMInvalidProces

sInStart

assertion Internal error: attempt to start Block Timing
Protection with an invalid task or ISR

0x9704 osdErrBMInvalidProces

sInStop

assertion Internal error: attempt to stop Block Timing
Protection with an invalid task or ISR

0x9705 osdErrBMInvalidResour

ce

assertion Attempt to monitor blocking time for an
invalid resource detected.

0x9801 osdErrTEWrongTaskID OSEK GetTaskMaxExecutionTime was called

with an invalid task identifier

0x9802 osdErrTENoAccess OSEK The calling application has no access

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

52 / 136

Error Code Description

 Error Type Reason

rights for this task

0x9803 osdErrTEIllegalAddr OSEK The caller has no access rights for this
memory region

0x9804 osdErrTEWrongAppState OSEK Referenced task is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x9901 osdErrIEWrongISRID OSEK GetISRMaxExecutionTime was called

with an invalid ISR identifier

0x9902 osdErrIENoAccess OSEK The calling application has no access
rights for this ISR

0x9903 osdErrIEIllegalAddr OSEK The caller has no access rights for this
memory region.

0x9904 osdErrIEWrongAppState OSEK Referenced ISR is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x9A01 osdErrTBWrongTaskID OSEK Called with wrong Task ID

0x9A02 osdErrTBWrongBlock

Type

OSEK Called with wrong blocking type

0x9A03 osdErrTBWrongResource

ID

OSEK Called with wrong resource ID

0x9A04 osdErrTBNoAccessTo

Task

OSEK The calling application has no access
rights for the task

0x9A05 osdErrTBNoAccessTo

Resource

OSEK The calling application has no access
rights for the resource

0x9A06 osdErrTBIllegalAddr OSEK The caller has no access rights for this
memory region

0x9A07 osdErrTBWrongAppState OSEK Referenced task is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x9B01 osdErrIBWrongISRID OSEK Called with wrong ISR ID

0x9B02 osdErrIBWrongBlock

Type

OSEK Called with wrong blocking type

0x9B03 osdErrIBWrongResource

ID

OSEK Called with wrong resource ID

0x9B04 osdErrIBNoAccessToISR OSEK The calling application has no access
rights for the ISR

0x9B05 osdErrIBNoAccessTo

Resource

OSEK The calling application has no access
rights for the resource

0x9B06 osdErrIBIllegalAddr OSEK The caller has no access rights for the
memory region

0x9B07 osdErrIBWrongAppState OSEK Referenced ISR is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

53 / 136

Error Code Description

 Error Type Reason

0x9D01 osdErrETNoCurrent

Process

assertion Execution Time Monitoring has detected
an invalid process ID

0x9F01 osdErrMIWrongISRID OSEK Called with wrong ISR ID

0x9F02 osdErrMINoAccess OSEK The calling application has no access
rights for the ISR

0x9F03 osdErrMIIllegalAddr OSEK The caller has no access rights for the
memory region

0x9F04 osdErrMIWrongAppState OSEK Referenced ISR is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

Table 3-24 Error numbers of group Timing Protection and Timing Measurement / (9)

3.3.3.10 Platform specific error codes (A)

Group (A) contains platform specific error numbers. Please refer to [5] for further detail.

3.3.3.11 Error Numbers of Group Application API (B)

Group (B) contains the functions:

API Function Abbreviation Function
Number

GetApplicationState AS 1

AllowAccess AA 2

TerminateApplication TA 4

Table 3-25 API functions of group Application API / (B)

Error numbers of group (B):

Error Code Description

 Error
Type

Reason

0xB101 osdErrASCallContext OSEK Called from invalid call context.

0xB102 osdErrASIntAPIDisabled OSEK Called with disabled interrupts

0xB103 osdErrASWrongAppID OSEK Called with invalid OSApplication ID

0xB104 osdErrASOddInvocation assertion Invocation of internal function

osGetApplicationState detected

although ReducedStatusChecks was

enabled

0xB201 osdErrAACallContext OSEK Called from invalid call context.

0xB202 osdErrAAIntAPIDisabled OSEK Called with disabled interrupts

0xB203 osdErrAAWrongState OSEK Currently active application is not in state
APPLICATION_RESTARTING

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

54 / 136

Error Code Description

 Error
Type

Reason

0xB401 osdErrTAWrongRestart

Option

OSEK Invalid restart option

0xB402 osdErrTACallContext OSEK Called from invalid call context

0xB403 osdErrTAIntAPI

Disabled

OSEK Called with interrupts disabled

0xB404 osdErrTAWrongAppID OSEK Called with wrong OSApplication ID.

0xB405 osdErrTANoAccess OSEK Caller has not sufficient access rights to
terminate the given OSApplication.

0xB406 osdErrTAWrongAppState OSEK Referenced application is in wrong state.

0xB407 osdErrTAInvalidTaskSta

te

assertion Task state corrupt in TerminateApplication

Table 3-26 Error numbers of group Application API / (B)

3.3.3.12 Error Numbers of Group Semaphores (C)

Note
This group is only available for implementations that have been ordered with the
feature Semaphores.

Group (C) contains the functions:

API Function Abbreviation Function
Number

osGetSemaphore GM 1

osReleaseSemaphore RS 2

Table 3-27 API functions of group Semaphores / (C)

Error numbers of group (C):

Error Code Description

 Error
Type

Reason

0xC101 osdErrGMWrongSemaphore

ID

OSEK GetSemaphore called with wrong
Semaphore ID

0xC102 osdErrGMOnInterruptLev

el

OSEK Called on Interrupt Level

0xC103 osdErrGMNotExtendedTas

k

OSEK Called from a Basic Task

0xC104 osdErrGMResourcesOccup OSEK Called while resources are occupied

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

55 / 136

Error Code Description

 Error
Type

Reason

ied

0xC105 osdErrGMInterruptsDisa

bled

OSEK Interrupts are disabled with functions
provided by OSEK

0xC201 osdErrRSWrongSemaphore

ID

OSEK ReleaseSemaphore called with wrong
Semaphore ID

0xC203 osdErrRSAlreadyRelease

d

OSEK Tried to release a semaphore that is not
occupied

0xC204 osdErrRSWrongTaskPrio assertion Task has wrong priority level

0xC205 osdErrRSInterruptsDisa

bled

OSEK Interrupts are disabled with functions
provided by OSEK

Table 3-28 Error numbers of group Semaphores / (C)

3.3.3.13 Error Numbers of Group MultiCore related functions (D)

Group (D) is reserved for MultiCore implementations. MultiCore specific detail is currently
contained in the additional documentation. Please refer to [4] for further detail.

3.3.3.14 Error Numbers of Group (Non-)TrustedFunctions (E)

Group (E) contains the functions:

API Function Abbreviation Function
Number

CallTrustedFunction CT 3

CallNonTrustedFunction NT 4

PeripheralAPI functions PA 5

Table 3-29 API functions of group (Non-)TrustedFunctions (E)

Error numbers of group (E):

Error Code Description

 Error
Type

Reason

0xE301 osdErrCTWrongFctIdx OSEK Invalid function index for trusted function

0xE302 osdErrCTCallContext OSEK Called from invalid call context

0xE303 osdErrCTIntAPI

Disabled

OSEK Called with interrupts disabled

0xE404 osdErrNTWrongFctIdx OSEK Invalid function index for non-trusted
function

0xE405 osdErrNTCallContext OSEK Called from invalid call context

0xE406 osdErrNTIntAPI

Disabled

OSEK Called with interrupts disabled

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

56 / 136

Error Code Description

 Error
Type

Reason

0xE501 osdErrPAInvalidAreaInd

ex

assertion Not a valid peripheral region ID used within
the API

0xE502 osdErrPANoAccessRight assertion The current caller does not have access
rights to the peripheral region

0xE503 osdErrPAInvalidAddress assertion The address which is accessed is not
included within the passed peripheral
region

Table 3-30 Error numbers of group (Non-)TrustedFunctions (E)

3.3.3.15 Error Numbers of Group IOC (F)

Group (F) is reserved for implementations supporting IOC. IOC specific detail is currently
contained in the platform specific documentation. Please refer to [5] for further detail.

3.3.4 Reactions on Error Situations

Depending on the error that has occurred, different reactions are performed:

> Errors detected from wrong usage of API functions: Call of ErrorHook and return to

the calling task or interrupt routine.

> Errors detected in the kernel: Call of ErrorHook and call of ShutdownOS (which calls

ShutdownHook).

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

57 / 136

4 Installation

The MICROSAR OS package might be delivered together with other MICROSAR
embedded software. In this case, the OS is already included in the delivered package, and
no separate installation is necessary. If MICROSAR OS is delivered stand alone, it comes
up with an installation program, which installs the operating system source files and the
OIL Configurator. To use the OS with ARXML configurations, the DaVinci configurator
must be installed in addition.

4.1 Installation Requirements

The installation program and the OIL Configurator are 32-bit Windows programs.

Requirements:

> Microsoft Windows95, Windows98, Windows NT, Windows 2000, Windows XP,
Windows Vista, Windows 7

> 64 MByte of free disk space (for a complete installation)

4.2 Installation Disk

All parts of the OSEK system, the OIL Configurator, and the code generator are delivered
with a Windows installation program. The installation program copies all files onto the local
hard disk and sets all paths in the INI files. The installation program asks the user for an
installation path; this path is the root path for all installed components. The selected path is

referred to in the following as root. The delivered installation uses the path C:\OSEK as

the default root path.

There are two possible installation styles than can be selected:

> MICROSAR style: compatible with Vector AUTOSAR stack

> osCAN style: compatible with osCAN

The installation paths are determined depending on the selected style

The installed components are:

Components osCAN style MICROSAR style

OIL Configurator root\OILTOOL root\Generators\Tools\OilTool

OSEK system root\HwPlatform root\BSW\Os

Table 4-1 Installed components

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

58 / 136

4.3 OIL Configurator

Info
Please note that 'OIL Configurator' and 'OIL Tool' are used as synonyms in this
document.

The OIL Configurator is a common tool for different OSEK implementations. The
implementation specific parts are the code generator and the OIL implementation files for
the code generator.

Components osCAN style MICROSAR style

OIL Configurator root\OILTOOL root\Generators\Tools\OilTool

OIL implementation files root\OILTOOL\GEN root\Generators\Os

Code generator root\OILTOOL\GEN root\Generators\Os

Table 4-2 System configuration and generation tools

4.3.1 INI Files of the OIL Tool

The OIL Configurator has two INI files, which are in the directory of the OIL Configurator:

> OILGEN.INI

> OILCFG.INI

4.3.2 OIL Implementation Files

The implementation files are copied onto the local hard disk by the installation program.

The OIL tool has knowledge about these files through the INI file OILGEN.INI (the correct

path is set by the installation program).

The implementation files are described in the hardware specific part of this manual [4].

4.3.3 Code Generator

The code generator GENxxxx.EXE is copied onto the local hard disk by the installation

program. The code generator is defined in the INI-file OILGEN.INI. (‘xxxx’ has to be

replaced by a hardware dependent abbreviation)

4.4 OSEK Operating System

4.4.1 Installation Paths

The delivered operating system parts are organized in different subdirectories.

The following structure is used by osCAN style installations:

> root\HwPlatform\APPL\Compiler\Derivative Sample applications

> root\HwPlatform\BIN executable files (e.g. make tool)

> root\HwPlatform\bswmd_files XML parameter descrption files

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

59 / 136

> root\HwPlatform\DOC Documentation

> root\HwPlatform\INCLUDE OSEK include files

> root\HwPlatform\LIB OSEK library (only if a library is available)

> root\HwPlatform\SRC OSEK sources (C and Assembler)

The following structure is used by MICROSAR style installations:

> root\Demo\Os Sample applications

> root\Generators\Os executable files (e.g. make tool)

> root\Generators\Components_Schemes\
Os_<platform and derivate>_bswmd \bswmd

XML parameter descrption files

> root\Doc\TechnicalReferences

> root \Doc\UserManuals

Documentation

> root\BSW\Os OSEK include files

> root\BSW\Os OSEK library (only if a library is available)

> root\BSW\Os OSEK sources (C and Assembler)

4.5 XML Configurations

AUTOSAR uses for configuration files the XML format. An XML Schema (ref. [8]) defines
the structure. For each derivative there is an ECU Parameter Definition File (file extension

is arxml) which defines all attributes (standard attribute and vendor/platform specific

attributes).

The Vector implementation of AUTOSAR OS uses the OIL [6] configuration file format or
ECU Configuration files. A conversion of ECUC files to OIL, as it was necessary in former
versions of MICROSAR OS, is not required any more.

4.5.1 Parameter Definition Files

Parameter Definition Files for the implementation can be found in the directory

root\HwPlatform\BSWMD_files (osCAN style) or

root\Generators\Components_Schemes\Os_<platform and

derivate>_bswmd\bswmd (MICROSAR style).

The files have the name OS_<platform and derivate>_bswmd.arxml.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

60 / 136

5 Integration

This chapter gives necessary information for the integration of the MICROSAR OS into an
application environment of an ECU.

5.1 Scope of Delivery

The delivery of the OS contains the files that are described in the chapters 5.1.1 and 5.1.2:

5.1.1 Static Files

The static file list is described in the platform specific technical reference [4]

5.1.2 Dynamic Files

The dynamic files are generated by the code generator GENxxxx (xxxx is replaced by
hardware platform name).

5.1.2.1 Code Generator GENxxxx

File Name Description

tcb.c tcb contains the task control block and other OS object

tcb.h task and other OS object related information, like task Ids – definitions
required by static include files (e.g. array sizes)

tcbpost.h task and other OS object related information, like task Ids – declarations
that require static include files (e.g. typedef's)

trustfct.h Header containing trusted function information

trustfct.c Trusted function data and generated stubs

libconf Information for usage in makefiles, not available on all platforms, see
chapter 5.1.2.1.1

<OILFileName>.ort Generated if kernel aware debugging with the ORTI interface is enabled,

Table 5-1 Files generated by code generator GENxxxx

In addition to the files listed in Table 5-1, some hardware dependent files are generated
which are described in the hardware specific technical reference [4].

5.1.2.1.1 Generated file libconf

The file libconf is meant for the inclusion into makefiles. It sets some variables in
accordance to general configuration settings of MICROSAR OS to inform the make
process about them. Dependent on the platform, the file may contain more information or
be even unavailable, so please see the hardware specific technical reference [4].

The table below describes the generated variables.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

61 / 136

Variable Meaning

LIB Always 0, because MICROSAR OS SafeContext cannot be configured to library
variant.

STATUS_LEVEL Reflects the setting of the configuration attribute STATUS of MICROSAR OS.
Possible values:
EXTENDED_STATUS = 1

DEBUG_SUPPORT Always 1, because ORTIDebugSupport is always enabled for MICROSAR OS
SafeContext.

Table 5-2 Variables generated into the file libconf

5.1.2.2 Application Template Generator GENTMPL

Former versions of MICROSAR OS and osCAN came with a template code generator
which generates a main.c template file with empty implementations for the objects defined
in the configuration. This is not supported any more in newer implementations.

5.2 Include Structure

The header files tcb.h and tcbpost.h are included into the file os.h. The user must

include os.h in every module of his application. The headers tcb.h and tcbpost.h are

included automatically. Always recompile all files after a new generation of tcb.h and

tcbpost.h.

If an application is using trusted functions and the Vector extension “GenerateStubs”, an

include file named usrostyp.h must be present in the include path. This file must contain

all user specific data types used for trusted functions.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

62 / 136

6 API Description

6.1 Standard API - Overview

This chapter gives an overview of all standard API functions defined for the OS. The
following synonyms present the standard specifications:

> ASR: AUTOSAR standard, reference [1]

> OSEK: OSEK standard, reference [3]

These standard specifications contain the detailed API descriptions. In case part of an API
function is implementation specific, the detailed API description is given in a further
subchapter in this document.

API Function Prototype Standard
Specification

Scalability
Class

OSEK ASR 1 2 3 4

Task Handling

StatusType ActivateTask (TaskType TaskID)     

StatusType TerminateTask (void)     

StatusType ChainTask (TaskType TaskID)     

StatusType Schedule (void)     

StatusType GetTaskID (TaskRefType TaskID)     

StatusType GetTaskState (TaskType TaskID,

 TaskStateRefType State)

    

Event Control

StatusType SetEvent (TaskType TaskID,

 EventMaskType Mask)

    

StatusType ClearEvent (EventMaskType Mask)     

StatusType GetEvent (TaskType TaskID,

 EventMaskRefType Mask)

    

StatusType WaitEvent (EventMaskType Mask)     

Interrupt Handling

The behavior of the interrupt handling functions is implementation specific. For a detailed
description see hardware specific technical reference [4].

void EnableAllInterrupts (void)     

void DisableAllInterrupts (void)     

void ResumeAllInterrupts (void)     

void SuspendAllInterrupts (void)     

void ResumeOSInterrupts (void)     

void SuspendOSInterrupts (void)     

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

63 / 136

API Function Prototype Standard
Specification

Scalability
Class

OSEK ASR 1 2 3 4

Resource Management

The behaviour of the resource management functions is implementation specific

StatusType GetResource (ResourceType ResID)     

StatusType ReleaseResource (ResourceType ResID)     

Alarms

StatusType GetAlarmBase (AlarmType AlarmID,

 AlarmBaseRefType Info)

    

StatusType GetAlarm (AlarmType AlarmID,

 TickRefType Tick)

    

StatusType SetRelAlarm (AlarmType AlarmID,

 TickType Increment,

 TickType cycle)

    

StatusType SetAbsAlarm (AlarmType AlarmID,

 TickType Start,

 TickType cycle)

    

StatusType CancelAlarm (AlarmType AlarmID)     

Execution Control

void StartOS (AppModeType Mode)     

void ShutdownOS (StatusType Error)     

ISRType GetISRID (void)     

AppModeType GetActiveApplicationMode(void)     

ApplicationType GetApplicationID (void)   

StatusType CallTrustedFunction

 (TrustedFunctionIndexType FunctionIndex,

 TrustedFunctionParameterRefType FunctionParams)

   

StatusType GetApplicationState

 (ApplicationType Application,

ApplicationStateRefType Value)

   

Hook Routines

The context for called hook routines is implementation specific. For a detailed description see
see hardware specific technical reference [4].

void ErrorHook (StatusType Error) 

void PreTaskHook (void) 

void PostTaskHook (void) 

void StartupHook (void) 

void ShutdownHook (StatusType Error) 

ProtectionReturnType ProtectionHook

 (StatusType Fatalerror)

    

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

64 / 136

API Function Prototype Standard
Specification

Scalability
Class

OSEK ASR 1 2 3 4

Schedule Tables

StatusType StartScheduleTableRel

 (ScheduleTableType ScheduleTableID,

 TickType Offset)

     

StatusType StartScheduleTableAbs

 (ScheduleTableType ScheduleTableID,

 TickType Start)

     

StatusType StopScheduleTable

 (ScheduleTableType ScheduleTableID)

     

StatusType NextScheduleTable

 (ScheduleTableType ScheduleTableID_From,

 ScheduleTableType ScheduleTableID_To)

     

StatusType StartScheduleTableSynchron

 (ScheduleTableType ScheduleTableID)

   

StatusType SyncScheduleTable

 (ScheduleTableType ScheduleTableID,

 TickType Value)

   

StatusType SetScheduleTableAsync

 (ScheduleTableType ScheduleTableID)

   

StatusType GetScheduleTableStatus

 (ScheduleTableType ScheduleTableID,

 ScheduleTableStatusRefType ScheduleStatus)

     

Counters

StatusType IncrementCounter

 (CounterType CounterID)

     

StatusType GetCounterValue

 (CounterType CounterID, TickRefType Value)

     

StatusType GetElapsedValue

 (CounterType CounterID, TickRefType Value,

 TickRefType ElapsedValue)

     

Access Rights Management

AccessType CheckISRMemoryAccess

 (ISRType ISRID,

 MemoryStartAddressType Address,

 MemorySizeType Size)

   

AccessType CheckTaskMemoryAccess

 (TaskType TaskID,

 MemoryStartAddressType Address,

 MemorySizeType Size)

   

ObjectAccessType CheckObjectAccess

 (ApplicationType ApplID,

 ObjectTypeType ObjectType, …)

   

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

65 / 136

API Function Prototype Standard
Specification

Scalability
Class

OSEK ASR 1 2 3 4

ApplicationType CheckObjectOwnership

 (ObjectTypeType ObjectType, …)

   

Table 6-1 Standard API functions

6.2 API Functions defined by Vector - Overview

This chapter gives an overview of all API functions defined for the OS by Vector. Further
chapters contain detailed descriptions of these API functions.

API Function Prototype Scalability
Class

1 2 3 4

Measurement API

For a detailed description see chapter 6.4.

StatusType GetTaskMaxExecutionTime

 (TaskType TaskID, osTPTimeRefType MaxTime)

  

StatusType GetISRMaxExecutionTime

 (ISRType TaskID, osTPTimeRefType MaxTime)

  

StatusType GetTaskMaxBlockingTime

 (TaskType TaskID, BlockTypeType BlockType,

 ResourceType ResourceID, osTPTimeRefType MaxTime)

  

StatusType GetISRMaxBlockingTime

 (ISRType ISRID, BlockTypeType BlockType,

 ResourceType ResourceID, osTPTimeRefType MaxTime)

  

StatusType osGetISRMinInterArrivalTime

 (ISRType ISRID, osTPTimeStampRefType MinTime)

  

StatusType osGetTaskMinInterArrivalTime

 (TaskType ISRID, osTPTimeStampRefType MinTime)

  

Non-Trusted Functions

Calling service functions from Non-Trusted Applications. The complement part of the AUTOSAR
API CallTrustedFunction.

StatusType osCallNonTrustedFunction

 (NonTrustedFunctionIndexType FunctionIndex,

 NonTrustedFunctionParameterRefType FunctionParams)

  

Peripheral Region API

API to access memory mapped hardware registers, which are only accessible in
privileged mode.

osuint8 osReadPeripheral8(osuint16 area, osuint32 address)  

osuint16 osReadPeripheral16(osuint16 area, osuint32 address)  

osuint32 osReadPeripheral32(osuint16 area, osuint32 address)  

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

66 / 136

API Function Prototype Scalability
Class

1 2 3 4

void osWritePeripheral8(osuint16 area, osuint32 address, osuint8

value)

  

void osWritePeripheral16(osuint16 area, osuint32 address, osuint16

value)

  

void osWritePeripheral32(osuint16 area, osuint32 address, osuint32

value)

  

void osModifyPeripheral8(osuint16 area, osuint32 address, osuint8

clearmask, osuint8 setmask)

  

void osModifyPeripheral16(osuint16 area, osuint32 address, osuint16

clearmask, osuint16 setmask)

  

void osModifyPeripheral32(osuint16 area, osuint32 address, osuint32

clearmask, osuint32 setmask)

  

MPU Access Checking API

Check whether you have read/write access to a given address.

uint8 osCheckMPUAccess(uint8* DestinationAddress)  

Table 6-2 Vector API functions

6.3 Timing Measurement API

6.3.1 GetTaskMaxExecutionTime

Prototype

StatusType GetTaskMaxExecutionTime (TaskType TaskID, osTPTimeRefType MaxTime)

Parameter

TaskID The task to be questioned

MaxTime Maximum execution time, measured in all finished time frames.

Return code

E_OK No errors

E_OS_ID The TaskID is not valid.

Functional Description

The maximum execution time of finished executions of the questioned task since StartOS. The value is in
ticks of the ExecutionTime hardware timer. The number of ticks per ms of this timer is printed into the HTML
list file.

Particularities and Limitations

> Available in Scalability Classes 2 and 4.

> This function is synchronous.

> This function is reentrant.

> This function is only available if the attribute TimingMeasurement is set to TRUE (is selected)

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

67 / 136

Expected Caller Context

> task or cat2 ISR

Table 6-3 GetTaskMaxExecutionTime

6.3.2 GetISRMaxExecutionTime

Prototype

StatusType GetISRMaxExecutionTime (ISRType TaskID, osTPTimeRefType MaxTime)

Parameter

TaskID The task to be questioned

MaxTime Maximum execution time of the respective ISR for all finished ISR activations.

Return code

E_OK No errors

E_OS_ID The ISRID is not valid.

Functional Description

The maximum execution time of finished executions of the questioned ISR since StartOS. The value is in
ticks of the ExecutionTime hardware timer. The number of ticks per ms of this timer is printed into the HTML
list file.

Particularities and Limitations

> Available in Scalability Classes 2 and 4.

> This function is synchronous.

> This function is reentrant.

> This function is only available if the attribute TimingMeasurement is set to TRUE (is selected)

Expected Caller Context

> task or cat2 ISR

Table 6-4 GetISRMaxExecutionTime

6.3.3 GetTaskMaxBlockingTime

Prototype

StatusType GetTaskMaxBlockingTime (

 TaskType TaskID,

 BlockTypeType BlockType,

 ResourceType ResourceID,

 osTPTimeRefType MaxTime)

Parameter

TaskID The task to be questioned

BlockType OS_ALL_INTERRUPTS, OS_OS_INTERRUPTS or OS_RESOURCE

ResourceID If BlockType == OS_RESOURCE, ResourceID specifies the Resource

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

68 / 136

MaxTime Maximum of all measured times.

Return code

E_OK No errors

E_OS_ID The TaskID, the BlockType or the ResourceID are invalid.

Functional Description

The maximum blocking time of finished locking sequences of the questioned task and the resource or
interrupt lock type since StartOS. The value is in ticks of the BlockingTime hardware timer. The number of
ticks per ms of this timer is printed into the HTML list file.

Particularities and Limitations

> Available in Scalability Classes 2 and 4.

> This function is synchronous.

> This function is reentrant.

> This function is only available if the attribute TimingMeasurement is set to TRUE (is selected)

Expected Caller Context

> task or cat2 ISR

Table 6-5 GetTaskMaxBlockingTime

6.3.4 GetISRMaxBlockingTime

Prototype

StatusType GetISRMaxBlockingTime (

 ISRType ISRID,

 BlockTypeType BlockType,

 ResourceType ResourceID,

 osTPTimeRefType MaxTime)

Parameter

ISRID The ISR to be questioned

BlockType OS_ALL_INTERRUPTS, OS_OS_INTERRUPTS or OS_RESOURCE

ResourceID If BlockType == OS_RESOURCE, ResourceID specifies the Resource

MaxTime Maximum of all measured times.

Return code

E_OK No errors

E_OS_ID The TaskID, the BlockType or the ResourceID are invalid.

Functional Description

The maximum blocking time of finished locking sequences of the questioned ISR and the resource or
interrupt lock type since StartOS. The value is in ticks of the BlockingTime hardware timer. The number of
ticks per ms of this timer is printed into the HTML list file.

Particularities and Limitations

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

69 / 136

> Available in Scalability Classes 2 and 4.

> This function is synchronous.

> This function is reentrant.

> This function is only available if the attribute TimingMeasurement is set to TRUE (is selected)

Expected Caller Context

> task or cat2 ISR

Table 6-6 GetISRMaxBlockingTime

6.3.5 GetTaskMinInterArrivalTime

Prototype

StatusType GetTaskMinInterArrivalTime(TaskType TaskID, osTPTimeStampRefType

MinTime)

Parameter

TaskID The task to be questioned

MinTime Minimum time between two task arrivals

Return code

E_OK No errors

E_OS_ID The TaskID is not valid.

E_OS_ACCESS No access rights to task (SC4 only)

E_OS_ILLEGAL_ADDRESS Memory address of MinTime not writeable (SC4 only)

Functional Description

Returns the minimum time span between two arrivals of a task (see [1]) as measured since StartOS. The
value is in ticks of the InterArrivalTime hardware timer. The number of ticks per ms of this timer is printed
into the HTML list file.

Particularities and Limitations

> Available in Scalability Classes 2 and 4.

> This function is synchronous.

> This function is reentrant.

> This function is only available if the attribute TimingMeasurement is set to TRUE (is selected)

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

70 / 136

Expected Caller Context

> task or cat2 ISR

Table 6-7 GetTaskMinInterArrivalTime

6.3.6 GetISRMinInterArrivalTime

Prototype

StatusType GetISRMinInterArrivalTime (ISRType IsrID, osTPTimeStampRefType

MinTime)

Parameter

IsrID The ISR to be questioned

MinTime Minimum time between two ISR arrivals

Return code

E_OK No errors

E_OS_ID The ISRID is not valid.

E_OS_ACCESS No access rights for this ISR (SC4 only)

E_OS_ILLEGAL_ADDRESS Memory address of MinTime not writeable (SC4 only)

Functional Description

Returns the minimum time span between two arrivals of an ISR (see [1]) as measured since StartOS. The
value is in ticks of the InterArrivalTime hardware timer. The number of ticks per ms of this timer is printed
into the HTML list file.

Particularities and Limitations

> Available in Scalability Classes 2 and 4.

> This function is synchronous.

> This function is reentrant.

> This function is only available if the attribute TimingMeasurement is set to TRUE (is selected)

Expected Caller Context

> task or cat2 ISR

Table 6-8 GetISRMinInterArrivalTime

6.4 Implementation specific Behavior

The behaviour of the functions listed in this chapter is implementation specific.

6.4.1 Interrupt Handling

In general the usage of the interrupt API functions is allowed before the operating system
is started. The affected functions are:

> DisableAllInterupts

> EnableAllInterrupts

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

71 / 136

> SuspendAllInterrupts

> ResumeAllInterrupts

> SuspendOSInterrupts

> ResumeOSInterrupts

The implementation specific behaviour is of these functions is described in [5].

6.4.1.1 EnableAllInterrupts

Prototype

void EnableAllInterrupts (void)

Parameter

-- --

Return code

void --

Functional Description

This service restores the state saved by DisableAllInterrupts.

This service is a counterpart of DisableAllInterrupts service, which has to be called before, and its

aim is the completion of the critical section of code. No API service calls are allowed within this critical
section.

The implementation should adapt this service to the target hardware providing a minimum overhead.
Usually, this service enables recognition of interrupts by the central processing unit.

This function might be implemented using a global interrupt flag or an interrupt level register.

Particularities and Limitations

> When using before StartOS, the function osInitialize must be called first to initialize the variables

which are used in the interrupt API.

> The function must not be used within handlers of non-maskable interrupts as this can violate the
consistancy of internal variables.

Expected Caller Context

> --

Table 6-9 EnableAllInterrupts

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

72 / 136

6.4.1.2 DisableAllInterrupts

Prototype

void DisableAllInterrupts (void)

Parameter

-- --

Return code

Void --

Functional Description

This service disables all interrupts for which the hardware supports disabling. The state before is saved for
the EnableAllInterrupts call.

This service is intended to start a critical section of the code. This section shall be finished by calling the
EnableAllInterrupts service. No API service calls are allowed within this critical section.

The implementation should adapt this service to the target hardware providing a minimum overhead.
Usually, this service disables recognition of interrupts by the central processing unit.

Note that this service does not support nesting. If nesting is needed for critical sections e.g. for libraries

SuspendOSInterrupts/ResumeOSInterrupts or SuspendAllInterrupt/ResumeAllInterrupts

should be used.

This function might be implemented using a global interrupt flag or an interrupt level register.

Particularities and Limitations

> When using before StartOS, the function osInitialize must be called first to initialize the variables

which are used in the interrupt API.

> The function must not be used within handlers of non-maskable interrupts as this can violate the
consistancy of internal variables.

Expected Caller Context

> --

Table 6-10 DisableAllInterrupts

6.4.1.3 ResumeAllInterrupts

Prototype

void ResumeAllInterrupts (void)

Parameter

-- --

Return code

void --

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

73 / 136

Functional Description

This service restores the recognition status of all interrupts saved by the SuspendAllInterrupts

service.

This service is the counterpart of SuspendAllInterrupts service, which has to have been called

before, and its aim is the completion of the critical section of code. No API service calls beside

SuspendAllInterrupts/ResumeAllInterrupts pairs and

SuspendOSInterrupts/ResumeOSInterrupts pairs are allowed within this critical section.

The implementation should adapt this service to the target hardware providing a minimum overhead.

SuspendAllInterrupts/ResumeAllInterrupts can be nested. In case of nesting pairs of the calls

SuspendAllInterrupts and ResumeAllInterrupts the interrupt recognition status saved by the first

call of SuspendAllInterrupts is restored by the last call of the ResumeAllInterrupts service.

This function might be implemented using a global interrupt flag or an interrupt level register.

Particularities and Limitations

> When using before StartOS, the function osInitialize must be called first to initialize the variables

which are used in the interrupt API.

> The function must not be used within handlers of non-maskable interrupts as this can violate the
consistancy of internal variables.

Expected Caller Context

> --

Table 6-11 ResumeAllInterrupts

6.4.1.4 SuspendAllInterrupts

Prototype

void SuspendAllInterrupts (void)

Parameter

-- --

Return code

void --

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

74 / 136

Functional Description

This service saves the recognition status of all interrupts and disables all interrupts for which the hardware
supports disabling.

This service is intended to protect a critical section of code from interruptions of any kind. This section shall

be finished by calling the ResumeAllInterrupts service. No API service calls beside

SuspendAllInterrupts/ResumeAllInterrupts pairs and

SuspendOSInterrupts/ResumeOSInterrupts pairs are allowed within this critical section.

The implementation should adapt this service to the target hardware providing a minimum overhead.

This function might be implemented using a global interrupt flag or an interrupt level register.

Particularities and Limitations

> When using before StartOS, the function osInitialize must be called first to initialize the variables

which are used in the interrupt API.

> The function must not be used within handlers of non-maskable interrupts as this can violate the
consistancy of internal variables.

Expected Caller Context

> --

Table 6-12 SuspendAllInterrupts

6.4.1.5 ResumeOSInterrupts

Prototype

void ResumeOSInterrupts (void)

Parameter

-- --

Return code

void --

Functional Description

This service restores the recognition status of interrupts saved by the SuspendOSInterrupts service.

This service is the counterpart of SuspendOSInterrupts service, which has to have been called before,

and its aim is the completion of the critical section of code. No API service calls beside

SuspendAllInterrupts/ResumeAllInterrupts pairs and

SuspendOSInterrupts/ResumeOSInterrupts pairs are allowed within this critical section.

The implementation should adapt this service to the target hardware providing a minimum overhead.

SuspendOSInterrupts/ResumeOSInterrupts can be nested. In case of nesting pairs of the calls

SuspendOSInterrupts and ResumeOSInterrupts the interrupt recognition status saved by the first

call of SuspendOSInterrupts is restored by the last call of the ResumeOSInterrupts service.

This function might be implemented using a global interrupt flag or an interrupt level register

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

75 / 136

Particularities and Limitations

> When using before StartOS, the function osInitialize must be called first to initialize the variables

which are used in the interrupt API.

> The function must not be used within handlers of non-maskable interrupts as this can violate the
consistancy of internal variables.

Expected Caller Context

> --

Table 6-13 ResumeOSInterrupts

6.4.1.6 SuspendOSInterrupts

Prototype

void SuspendOSInterrupts (void)

Parameter

-- --

Return code

void --

Functional Description

This service saves the recognition status of interrupts of category 2 and disables the recognition of these
interrupts.

This service is intended to protect a critical section of code. This section shall be finished by calling the

ResumeOSInterrupts service. No API service calls beside

SuspendAllInterrupts/ResumeAllInterrupts pairs and

SuspendOSInterrupts/ResumeOSInterrupts pairs are allowed within this critical section.

The implementation should adapt this service to the target hardware providing a minimum overhead.

It is intended only to disable interrupts of category 2. However, if this is not possible in an efficient way
more interrupts may be disabled.

This function might be implemented using a global interrupt flag or an interrupt level register.

Particularities and Limitations

> When using before StartOS, the function osInitialize must be called first to initialize the variables

which are used in the interrupt API.

> The function must not be used within handlers of non-maskable interrupts as this can violate the
consistancy of internal variables.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

76 / 136

Expected Caller Context

> --

Table 6-14 SuspendOSInterrupts

6.4.2 Resource Management

The affected functions are:

> GetResource

> ReleaseResource

The implementation specific behaviour is of these functions is described in [4].

6.4.2.1 GetResource

Prototype

StatusType GetResource (ResourceType ResID)

Parameter

ResID Reference to resource

Return code

E_OK No error

E_OS_ID Resource ResID is invalid

E_OS_ACCESS Attempt to get a resource which is already occupied by any task or ISR, or the
statically assigned priority of the calling task or interrupt routine is higher than
the calculated ceiling priority.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

77 / 136

Functional Description

This call serves to enter critical sections in the code that are assigned to the resource referenced by

ResID. A critical section shall always be left using ReleaseResource.

Nested resource occupation is only allowed if the inner critical sections are completely executed within the
surrounding critical section (strictly stacked, Restrictions when using resources). Nested occupation of one
and the same resource is also forbidden!

It is recommended that corresponding calls to GetResource and ReleaseResource appear within the

same function.

It is not allowed to use services which are points of rescheduling for non preemptable tasks

(TerminateTask, ChainTask, Schedule and WaitEvent) in critical sections. Additionally, critical

sections are to be left before completion of an interrupt service routine.

Generally speaking, critical sections should be short.

The service may be called from an ISR and from task level.

Depending on the possibility to manipulate interrupt levels, this function may be used on interrupt level or
not and may be implemented differently.

If used on task level, the behavior and functionality is always the same (according to the specification).

Particularities and Limitations

> --

Expected Caller Context

> Task level or cat2 ISR

Table 6-15 GetResource

6.4.2.2 ReleaseResource

Prototype

StatusType ReleaseResource (ResourceType ResID)

Parameter

ResID Reference to resource

Return code

E_OK No error

E_OS_ID Resource ResID is invalid

E_OS_NOFUNC Attempt to release a resource which is not occupied by any task or ISR, or
another resource shall be released before.

E_OS_ACCESS Attempt to release a resource that has a lower ceiling priority than the
statically assigned priority of the calling task or interrupt routine.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

78 / 136

Functional Description

ReleaseResource is the counterpart of GetResource and serves to leave critical sections in the code that

are assigned to the resource referenced by ResID.

For information on nesting conditions, see particularities of GetResource.

The service may be called from an ISR and from task level.

Depending on the possibility to manipulate interrupt levels, this function may be used on interrupt level or
not and may be implemented differently.

If used on task level, the behavior and functionality is always the same (according to the specification).

Particularities and Limitations

> --

Expected Caller Context

> Task level or cat2 ISR

Table 6-16 ReleaseResource

6.4.3 Execution Control

The affected functions are:

> StartOS

> ShutdownOS

The implementation specific behavior is of these functions is described in [4].

6.4.3.1 StartOS

Prototype

void StartOS (AppModeType Mode)

Parameter

Mode application mode

Return code

void --

Functional Description

The user can call this system service to start the operating system in a specific mode.

Only allowed outside of the operating system, therefore implementation specific restrictions may apply.

After calling StartOS the program never returns to the call level of StartOS.

Particularities and Limitations

> --

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

79 / 136

Expected Caller Context

> C main function

Table 6-17 StartOS

6.4.3.2 ShutdownOS

Prototype

void ShutdownOS (StatusType Error)

Parameter

Error error occurred

Return code

void --

Functional Description

The user can call this system service to abort the overall system (e.g. emergency off). The operating
system also calls this function internally, if it has reached an undefined internal state and is no longer ready
to run.

If a ShutdownHook is configured the hook routine ShutdownHook is always called (with Error as

argument) before shutting down the operating system.

If ShutdownHook returns, further behaviour of ShutdownOS is implementation specific.

In case of a system where OSEK OS and OSEKtime OS coexist, ShutdownHook has to return.

Error needs to be a valid error code supported by OSEK OS. In case of a system where OSEK OS and

OSEKtime OS coexist, Error might also be a value accepted by OSEKtime OS. In this case, if enabled by

an OSEKtime configuration parameter, OSEKtime OS will be shut down after OSEK OS shutdown.

After this service the operating system is shut down.

Allowed at task level, ISR level, in ErrorHook and StartupHook, and also called internally by the

operating system.

If the operating system calls ShutdownOS it never uses E_OK as the passed parameter value.

After the call of ShutdownHook MICROSAR OS disables all interrupts and will never return to the call

level. The ShutdownHook is called with disabled interrupts.

Particularities and Limitations

> --

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

80 / 136

Expected Caller Context

> --

Table 6-18 ShutdownOS

6.5 Hook Routines

MICROSAR OS calls several hook routines. These may be hook routines as described in
the OSEK or Autosar standard. Additionally, MICROSAR provides Hook routines for ISR
entry/exit, Alarm time and timing supervision (MICROSAR OS Timing Hooks).

These hook routines are described in the subchapters below.

The subchapters describe the prototypes of the called hook routines and their calling
contexts. The current stack in the hook routines is implementation specific and described
in [4].

6.5.1 Standard Hooks

The hook routines described in the subchapters are defined by the OSEK and Autosar
standards.

All these hook routines need to be implemented by the user if they are enabled in the
configuration. The OS calls these hook routines with interrupts disabled (if not stated
otherwise).

6.5.1.1 StartupHook

Prototypes

void StartupHook (void) /* general startup hook */

void StartupHook_<App> (void) /* application specific startup hook */

Parameter

-- --

Return code

void --

Functional Description

The user may call the initialization routines for hardware drivers.

Particularities and Limitations

> --

Call Context

> interrupt or task context

> The StartupHook routine is called while the operating system is initialized.

Table 6-19 StartupHook

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

81 / 136

6.5.1.2 PreTaskHook

Prototype

void PreTaskHook (void)

Parameter

-- --

Return code

void --

Functional Description

The user can use the API function GetTaskID to determine the new task.

Particularities and Limitations

> The PreTaskHook may only be configured for debugging purpose in MICROSAR OS SafeContext, see
[9].

Call Context

> interrupt or task context

> PreTaskHook is called after a task is set into the RUNNING state (not into the READY state).

> For particularities of using PreTaskHook when using timing protection, please see [4]

Table 6-20 PreTaskHook

6.5.1.3 PostTaskHook

Prototype

void PostTaskHook (void)

Parameter

-- --

Return code

void --

Functional Description

The user can use the API function GetTaskID to determine the currently left task.

Particularities and Limitations

> The PostTaskHook may only be configured for debugging purpose in MICROSAR OS SafeContext, see
[9].

Call Context

> interrupt or task context

> PostTaskHook is called before a task is taken out of the RUNNING state.

> For particularities of using the PostTaskHook when using timing protection, please see [4]

Table 6-21 PostTaskHook

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

82 / 136

6.5.1.4 ErrorHook

Prototype

void ErrorHook (StatusType ErrorCode) /* general error hook */

void ErrorHook_<App> (StatusType ErrorCode) /* appl. spec. error hook */

Parameter

ErrorCode Error code of API which detected the error and called the error hook

Return code

void --

Functional Description

The user may use the error number parameter to decide how to react on the error.

Additional error information is available in the error hook if the attributes USEGETSERVICEID and

USEPARAMETERACCESS are set to TRUE. This information can be accessed by access macros; for details

refer to the OSEK specification [3]. All possible access macros are supported by MICROSAR OS.

If EXTENDED_STATUS is enabled and ErrorInfoLevel is set to Modulnames, additional error

information is available in the ErrorHook. The variable osActiveTaskModule is a pointer to the module

name and the variable osActiveTaskLineNumber is the line number in the C module where the API

function was called. Inspecting these two variables allows the user to locate the source code that caused
the error message.

Particularities and Limitations

> --

Call Context

> interrupt or task context

> ErrorHook is called every time an API function is called with wrong parameters or if the system detects

an error (e.g. stack overflow).

Table 6-22 ErrorHook

6.5.1.5 ShutdownHook

Prototype

void ShutdownHook (StatusType ErrorCode) /* general shutdown hook */

void ShutdownHook_<App> (StatusType ErrorCode) /* appl. spec. shutdown hook */

Parameter

ErrorCode Error code of API that detected the error and called the shutdown hook, or the
parameter that was passed to ShutdownOS.

Return code

void --

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

83 / 136

Functional Description

The ShutdownHook is called by ShutdownOS

Particularities and Limitations

> --

Call Context

> interrupt or task context

> The system calls the ShutdownHook routine if the function ShutdownOS was called.

Table 6-23 ShutdownHook

6.5.1.6 ProtectionHook

Prototype

ProtectionReturnType ProtectionHook (StatusType Fatalerror)

Parameter

Fatalerror depending on the detected protection error

Return code

ProtectionReturnType The return value determines the strategy of further operation

Functional Description

Called on occurrence of a protection error. The application code has to decide about the recovery strategy
and pass an appropriate return value to the OS.

Particularities and Limitations

> In the scalability class SC1, no call of the ProtectionHook is supported.

Call Context

> interrupt or task context

> The ProtectionHook is called if a TimingProtection failure (SC2, SC4), a memory protection failure

(SC3, SC4), or processor exception (e.g. division by zero, illegal instruction etc.) is detected by
MICROSAR OS.

Table 6-24 ProtectionHook

6.5.2 ISR Hooks

6.5.2.1 UserPreISRHook

Prototype

Void UserPreISRHook (ISRType isr)

Parameter

Isr The identifier of the ISR that is about to be entered

Return code

Void --

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

84 / 136

Functional Description

Called just before entering an ISR routine of a category 2 interrupt.

This Hook is intended to be used as a development aid. For example, it may be used to measure interrupt
run times.

This Hook is only available if the attribute CallISRHooks is set to TRUE. Note that this is allowed only for

debugging purpose in MICROSAR OS SafeContext, see [9].

Particularities and Limitations

> Only API functions that are allowed in cat2 ISRs are allowed to be called in the UserPreISRHook.

Call Context

> The UserPreISRHook runs in the exact same context as the ISR that is executed afterwards. This
includes settings for interrupt nesting, timing protection, timing measurement and memory protection.

> All OS API functions, incl. GetISRID(), GetApplicationID(), CheckObjectAccess() etc, work just as if
called from within the ISR

Table 6-25 UserPreISRHook

6.5.2.2 UserPostISRHook

Prototype

Void UserPostISRHook (ISRType isr)

Parameter

Isr The identifier of the ISR that was just left

Return code

Void --

Functional Description

Called just after leaving an ISR routine of a category 2 interrupt.

This Hook is intended to be used as a development aid. For example, it may be used to measure interrupt
run times.

This Hook is only available if the attribute CallISRHooks is set to TRUE. Note that this is allowed only for

debugging purpose in MICROSAR OS SafeContext, see [9].

Particularities and Limitations

The UserPostISRHook is called only after a regular return from the ISR routine. In particular:

> If an ISR is interrupted by a higher priority ISR, the UserPostISRHook is not called before entering the
new ISR.

> If an ISR is killed, the UserPostISRHook is not called.

> Only API functions that are allowed in cat2 ISRs are allowed to be called in the UserPostISRHook.

Call Context

> The UserPreISRHook runs in the exact same context as the ISR that was just executed. This includes
settings for interrupt nesting, timing protection, timing measurement and memory protection.

> All OS API functions, incl. GetISRID(), GetApplicationID(), CheckObjectAccess() etc, work just as if
called from within the ISR

Table 6-26 UserPostISRHook

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

85 / 136

6.5.3 Alarm Hook

6.5.3.1 PreAlarmHook (currently not supported)

Prototype

void PreAlarmHook_<CounterName> (void)

Parameter

void --

Return code

void --

Functional Description

Called in the timer ISR just before the alarm handling of the OS.

This Hook is only available if the timer attribute PreAlarmHook is set to TRUE

Particularities and Limitations

> Note that this feature is currently not supported. It will be available in future releases.

> Only API functions that are allowed in cat2 ISRs are allowed to be called in the PreAlarmHook.

> The execution time of the PreAlarmHook is not considered by the timing protection.

Call Context

> The PreAlarmHook runs in the same context as the system timer ISR. If an owner application is
configured, the system timer ISR and the PreAlarmHook is executed with the application rights of this
owner application.

> Interrupts of category 2 are disabled during the execution of the PreAlarmHook.

Table 6-27 PreAlarmHook

6.5.4 MICROSAR OS Timing Hooks

MICROSAR OS supports timing measurement and analysis by external tools. Therefor it
provides timing hooks. Timing hooks inform the external tools about several events within
the OS:

 Activation (arrival) of a task or ISR

 Context switch

 Locking of interrupts, resources or spinlocks

This documentation presents the respective hook routines in separate subchapters below.

The OS calls Timing hooks only if the user has configured them as described in Table 7-1,
attribute TimingHooks. The user shall implement the hooks as macros in the configured
header file. The OS provides empty definitions of these hooks. It uses the empty definition
of a hook in case of an unavailable definition by the user. Because of the empty definition,
the user needs not to implement all hooks.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

86 / 136

6.5.4.1 Hooks for arrival

MICROSAR OS prvides hooks that allow an external tool to trace all activations of task as
well as further arrivals like the setting of an event or the release of a semaphore with
transfer to another task.

This shall allow the external tool to visualize the arrivals and to measure the time between
them in order to allow a schedulability analysis.

Mind that schedulability analysis requires the minimum time between arrivals while these
hooks only provide measured values.

6.5.4.1.1 OS_VTH_ACTIVATION

Prototype

OS_VTH_ACTIVATION(TaskId, DestCoreId, CallerCoreId)

Parameter

TaskId Identifier of the task which is activated

DestCoreId Identifier of the core on which the task is activated

CallerCoreId Identifier of the core which performs the activation (has called ActivateTask,
has called TerminateTask or has performed an alarm/schedule table action to
activate a task)

Return code

- -

Functional Description

This hook is called on the caller core when that core has successfully performed the activation of TaskId on
the destination core. On single core systems both core IDs are always identical.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-28 OS_VTH_ACTIVATION

6.5.4.1.2 OS_VTH_SETEVENT

Prototype

OS_VTH_SETEVENT(TaskId, EventMask, StateChange, DestCoreId, CallerCoreId)

Parameter

TaskId Identifier of the task which receives this event

EventMask A bit mask with the events which shall be set

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

87 / 136

StateChange TRUE: The task state has changed from WAITING to READY

FALSE: The task state hasn’t changed

DestCoreId Identifier of the core on which the task receives the event

CallerCoreId Identifier of the core which performs the event setting (has called SetEvent or
performed an alarm/schedule table action to set an event)

Return code

- -

Functional Description

This hook is called on the caller core when that core has successfully performed the event setting on the
destination core. On single core systems both core IDs are always identical.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-29 OS_VTH_SETEVENT

6.5.4.1.3 OS_VTH_TRANSFER_SEMA

Prototype

OS_VTH_TRANSFER_SEMA(FromThreadId, ToTaskId, SemaId, DestCoreId, CallerCoreId)

Parameter

FromThreadId Identifier of the thread (task; ISR) which releases the semaphore

ToTaskId Identifier ot the task which receives the semaphore

SemaId Identifier of the semaphore to be transferred

DestCoreId Identifier of the core on which the task igets the semaphore

CallerCoreId Identifier of the core which releases the semaphore

Return code

- -

Functional Description

This hook is called on the caller core when that core has successfully performed release of the semaphore
while a task was waiting for that semaphore. On single core systems both core IDs are always identical.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

88 / 136

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

> The semaphore feature is optional, so this macro may not be necessary on all implementations of
MICROSAR OS.

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-30 OS_VTH_TRANSFER_SEMA

6.5.4.2 Hook for context switch

MICROSAR OS provides a hook routine allowing external tools to trace all context
switches from task to ISR and back as well as between tasks. So external tools may
visualize the information or measure the execution time of tasks and ISRs.

Mind that measured values may not reflect the worst case, which would be necessary for
schedulability analysis.

6.5.4.2.1 OS_VTH_SCHEDULE

Prototype

OS_VTH_SCHEDULE(FromThreadId, FromThreadReason,

 ToThreadId, ToThreadReason,

 CallerCoreId)

Parameter

FromThreadId Identifier of the thread (task, ISR) which has run on the caller core before the
switch took place

FromThreadReason OS_VTHP_TASK_TERMINATION: The thread is a task, which has just been
terminated.

OS_VTHP_ISR_END: The thread is an ISR, which has reached its end.

OS_VTHP_TASK_WAITEVENT: The thread is a task, which waits for an
event.

OS_VTHP_TASK_WAITSEMA: The thread is a task, which waits tor the
release of a semaphore.

OS_VTHP_THREAD_PREEMPT: The thread is interrupted by another one,
which has higher priority.

ToThreadId The identifier of the thread, which will run from now on

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

89 / 136

ToThreadReason OS_VTHP_TASK_ACTIVATION: The thread is a task, which was activated.

OS_VTHP_ISR_START: The thread is an ISR, which will now start execution.

OS_VTHP_TASK_SETEVENT: The thread is a task, which has just received
an event it was waiting for. It resumes execution right behind the call of
WaitEvent.

OS_VTHP_GOTSEMA: The thread is a task, which has just got the
semaphore it was waiting for.

OS_VTHP_THREAD_RESUME: The thread is a task or ISR, which was
preempted before and becomes running again as all higher priority tasks and
ISRs do not run anymore.

CallerCoreId Identifier of the core which performs the thread switch

Return code

- -

Functional Description

This hook is called on the caller core when that core in case it performs a thread switch (from one task or
ISR to another task or ISR). On single core systems both core IDs are always identical.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

Call context

> The hook routine is called from within operating system internal functions with interrupts disabled.

Table 6-31 OS_VTH_SCHEDULE

6.5.4.3 Hooks for locking

MICROSAR OS provides hooks, which allow an external tool to trace locks. This is
important as locking times of tasks and ISRs influence the exectution of other tasks and
ISRs. The kind of influence is different for different locks and is presented below in the
functional description of the respective hooks.

Please keep in mind that measured times for locking may not reflect the worst case.

6.5.4.3.1 OS_VTH_GOT_RES

Prototype

OS_VTH_GOT_RES(ResId, CallerCoreId)

Parameter

ResId Identifier of the resource which has been taken

CallerCoreId Identifier of the core where GetResorce was called

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

90 / 136

Return code

- -

Functional Description

The OS calls this hook on a successful call of the API function GetResource. The priority of the calling task
or ISR has been increased so that other tasks and ISRs on the same core may need to wait until they can
be executed.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-32 OS_VTH_GOT_RES

6.5.4.3.2 OS_VTH_REL_RES

Prototype

OS_VTH_REL_RES(ResId, CallerCoreId)

Parameter

ResId Identifier of the resource which has been released

CallerCoreId Identifier of the core where ReleaseResorce was called

Return code

- -

Functional Description

The OS calls this hook on a successful call of the API function ReleaseResource. The priority of the calling
task or ISR has been decreased so that other tasks and ISRs on the same core may become running as a
result.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-33 OS_VTH_REL_RES

6.5.4.3.3 OS_VTH_REQ_SPINLOCK

Prototype

OS_VTH_REQ_SPINLOCK(SpinlockId, CallerCoreId)

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

91 / 136

Parameter

SpinlockId Identifier of the spinlock which has been requested

CallerCoreId Identifier of the core where GetSpinlock was called

Return code

- -

Functional Description

The OS calls this hook on an unsuccessfull attempt to get a spinlock. The calling task or ISR enters a busy
waiting state. Tasks or ISRs of lower priority have to wait until this task or ISR has taken and released the
spinlock.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

> The hook is not called for optimized spinlocks

> The hook is not called for operating system internal spinlocks

> The hook is called only on multicore operating system implementations

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-34 OS_VTH_REQ_SPINLOCK

6.5.4.3.4 OS_VTH_GOT_SPINLOCK

Prototype

OS_VTH_GOT_SPINLOCK(SpinlockId, CallerCoreId)

Parameter

SpinlockId Identifier of the spinlock which has been taken

CallerCoreId Identifier of the core where GetSpinlock or TryToGetSpinlock were called

Return code

- -

Functional Description

The OS calls this hook whenever a spinlock has successfully been taken. If the task or ISR was not
successful immediately (entered busy waiting state), this hook means that it leaves the busy waiting state.
From now on no other task or ISR may get the spinlock until the current task or ISR has released it.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

92 / 136

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

> The hook is not called for optimized spinlocks

> The hook is not called for operating system internal spinlocks

> The hook is called only on multicore operating system implementations

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-35 OS_VTH_GOT_SPINLOCK

6.5.4.3.5 OS_VTH_REL_SPINLOCK

Prototype

OS_VTH_REL_SPINLOCK(SpinlockId, CallerCoreId)

Parameter

SpinlockId Identifier of the spinlock which has been released

CallerCoreId Identifier of the core where ReleaseSpinlock was called

Return code

- -

Functional Description

The OS calls this hook on a release of a spinlock. Other tasks and ISR may take the spinlock now.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

> The hook is not called for optimized spinlocks

> The hook is not called for operating system internal spinlocks

> The hook is called only on multicore operating system implementations

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-36 OS_VTH_REL_SPINLOCK

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

93 / 136

6.5.4.3.6 OS_VTH_TOOK_SEMA

Prototype

OS_VTH_TOOK_SEMA(TaskId, SemaId, CallerCoreId)

Parameter

TaskId Identifier of the task which has taken the semaphore

SemaId Identifier of the semaphore which has been taken

CallerCoreId Identifier of the core where GetSemaphore was called

Return code

- -

Functional Description

The OS calls this hook in the API function GetSemaphore if the semaphore was free before the call. If the
semaphore was held by another task, the current task is transferred to the waiting state, which is signaled
to the external tool by means of the OS_VTH_SCHEDULE hook as described in chapter 6.5.4.2.1.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

> The semaphore feature is optional, so this macro may not be necessary on all implementations of
MICROSAR OS.

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-37 OS_VTH_TOOK_SEMA

6.5.4.3.7 OS_VTH_REL_SEMA

Prototype

OS_VTH_REL_SEMA(ThreadId, SemaId, CallerCoreId)

Parameter

ThreadId Identifier of the task or ISR which has released the semaphore

SemaId Identifier of the semaphore which has been released

CallerCoreId Identifier of the core where ReleaseSemaphore was called

Return code

- -

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

94 / 136

Functional Description

The OS calls this hook in the API function ReleaseSemaphore if the semaphore becomes free after the
call. If a task is currently waiting for the semaphore, the API function GetSemaphore calls
OS_VTH_TRANFER_SEMA instead, as described in chapter 6.5.4.1.3.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

> The semaphore feature is optional, so this macro may not be necessary on all implementations of
MICROSAR OS.

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-38 OS_VTH_REL_SEMA

6.5.4.3.8 OS_VTH_DISABLEDINT

Prototype

OS_VTH_DISABLEDINT(IntLockId, CallerCoreId)

Parameter

IntLockId OS_VTHP_CAT2INTERRUPTS: Interrupts have been disabled by means of
the current interrupt level. That interrupt level has been changed in order to
disable all category 2 interrupts, which also prevents task switch and
alarm/schedule table management.

OS_VTHP_ALLINTERRUPTS: Interrupts have been disabled by means of the
global interrupt enable/disable flag. Additionally to the effects described above,
also category 1 interrupts are disabled.

CallerCoreId Identifier of the core where interrupts are disabled

Return code

- -

Functional Description

The OS calls this hook if the application has called an API function to disable interrupts. The parameter
IntLockId describes whether category 1 interrupts may still occur.

Mind that the two types of interrupt locking (as described by the IntLockId) are independent from each other
so that the hook may be called twice before the hook OS_VTH_ENABLEDINT is called, dependent on the
application.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

> The hook is not called for operating system internal interrupt locks

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

95 / 136

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-39 OS_VTH_DISABLEDINT

6.5.4.3.9 OS_VTH_ENABLEDINT

Prototype

OS_VTH_ENABLEDINT(IntLockId, CallerCoreId)

Parameter

IntLockId OS_VTHP_CAT2INTERRUPTS: Interrupts had been disabled by means of the
current interrupt level until this hook was called. The OS releases this lock
right after the hook has returned.

OS_VTHP_ALLINTERRUPTS: Interrupts had been disabled by means of the
global interrupt enable/disable flag before this hook was called. The OS
releases this lock right after the hook has returned.

CallerCoreId Identifier of the core where interrupts are disabled

Return code

- -

Functional Description

The OS calls this hook if the application has called an API function to enable interrupts.

Mind that the two types of interrupt locking (as described by the IntLockId) are independent from each other
so that interrupts may still be disabled by means of the other locking type after this hook has returned.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

> The hook is not called for operating system internal interrupt locks

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-40 OS_VTH_ENABLEDINT

6.6 Non-Trusted Functions

Non-trusted functions are a VECTOR extension to the AUTOSAR OS specification. This concept
allows non-trusted applications to provide service functions, which are callable by trusted or non-
trusted tasks and ISRs, comparable to the AUTSAR OS API CallTrustedFunction.

6.6.1 Functionality

The OS executes Non-trusted functions with the memory access rights and service protection
rights of the owner application. These functions can access local data of the owner application

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

96 / 136

without the possibility to overwrite private data of other applications. Non-trusted functions have no
access to the data on the callers stack.

6.6.2 API

Prototype

StatusType osCallNonTrustedFunction(NonTrustedFunctionIndexType FunctionIndex,

NonTrustedFunctionParameterRefType FunctionParams);

Parameter

FunctionIndex Index of the function to be called.

FunctionParams Pointer to the parameters for the function to be called. If no parameters are provided,
a NULL pointer has to be passed.

Return code

E_OK No error

E_OS_SERVICEID No function defined for this index

Functional Description

Executes the non-trusted function referenced by FunctionIndex and passes argument FunctionParams.

The non-trusted function must conform to the following C prototype:

void NONTRUSTED_<name of the non-trusted function(NonTrustedFunctionIndexType,

NonTrustedFunctionParameterRefType);

The arguments are the same as the arguments of CallNonTrustedFunction.

Particularities and Limitations

> The non-trusted function is called in user mode with memory protection enabled

> The function has memory access rights of the owner application

> The function has the service protection rights of the owner application

Call context

> Task, CAT2 ISR, trusted function, non-trusted function

Table 6-41 API osCallNonTrustedFunction

Note
Vector MICROSAR OS implementations offer the possibility of stub function generation
for trusted functions. This mechanism is not available for non-trusted functions.

6.7 MPU Access Checking API

MISCROSAR OS provides API, which returns whether the caller has access to a given
adderss.

Prototype

uint8 osCheckMPUAccess(uint8* DestinationAddress)

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

97 / 136

Parameter

DestinationAddress The address to be checked for access

Return code

uint8 0: Current Software part has write access

1: Current Software part has no write access

Particularities and Limitations

> The value of DestinationAddress may be temporarly altered within this function (depending on the
platform).

> Due to data consistency, the function should not be used on addresses, which are shared among cores.

> A protection violation may occur during this function. But this protection violation does not lead to a
shutdown of the OS

> This function cannot be called prior to StartOS

Call context

> ProtectionHook

> Task trusted/non-trusted

> ISR Cat2 trusted/non-trusted

> ErrorHook

> ShutdownHook,

> trusted function

> non trusted function

> StartupHook

Table 6-42 osCheckMPUAccess API

6.8 Peripheral Regions

On some platforms, there are memory mapped hardware registers, which are only
accessible in privileged mode. To access this kind of registers even in non-trusted
applications (i.e. non-privileged mode), MICROSAR OS provides Peripheral Regions.

To access such registers you have to configure a Peripheral Region and pass it’s ID to the
Peripheral Region API. The OS checks whether the caller has access to this region and
performs the requested access operation.

The OS provides access functions for the following access types: 8, 16, and 32 bit.

6.8.1 Reading functions

Prototype

osuint8 osReadPeripheral8(osuint16 area, osuint32 address)

osuint16 osReadPeripheral16(osuint16 area, osuint32 address)

osuint32 osReadPeripheral32(osuint16 area, osuint32 address)

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

98 / 136

Parameter

area Identifier of peripheral regions to the read from

address Address to be read from

Return code

 The content of “address” interpreted as 8 bit, 16 bit or 32 bit value

Functional Description

> reads either an 8 bit, or a 16 bit or a 32 bit value from “address”

> The function performs accessing checks (whether the caller has accessing rights to the peripheral
region and whether the address to be read from is within the configured range of the peripheral region)

> The error hook is raised in case of an error

> A shutdown is not issued in case of an error

Particularities and Limitations

> These functions may not be called from OS hooks

Call context

> These functions may be called from Task context

> These functions may be called from category 2 ISR context

> These functions can be called with interrupts enabled or with interrupts disabled

Table 6-43 ReadPeripheral API

6.8.2 Writing functions

Prototype

void osWritePeripheral8(osuint16 area, osuint32 address, osuint8 value)

void osWritePeripheral16(osuint16 area, osuint32 address, osuint16 value)

void osWritePeripheral32(osuint16 area, osuint32 address, osuint32 value)

Parameter

area Identifier of peripheral regions to the read from

address Address to write to

Value Value to be written

Return code

None

Functional Description

> Writes to either an 8 bit, or a 16 bit or a 32 bit value

> The function performs accessing checks (whether the caller has accessing rights to the peripheral
region and whether the address to be read from is within the configured range of the peripheral region)

> The error hook is raised in case of an error

> A shutdown is not issued in case of an error

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

99 / 136

Particularities and Limitations

> These functions may not be called from OS hooks

Call context

> These functions may be called from Task context

> These functions may be called from category 2 ISR context

> These functions can be called with interrupts enabled or with interrupts disabled

Table 6-44 WritePeripheral API

6.8.3 Modifying functions

Prototype

void osModifyPeripheral8(osuint16 area, osuint32 address, osuint8 clearmask,

osuint8 setmask)

void osModifyPeripheral16(osuint16 area, osuint32 address, osuint16 clearmask,

osuint16 setmask)

void osModifyPeripheral32(osuint16 area, osuint32 address, osuint32 clearmask,

osuint32 setmask)

Parameter

area Identifier of peripheral regions to the read from

address Address to be modified

clearmask Bitmask which is bitwise “ANDed” to “address”

setmask Bitmask which is bitwise “ORed” to “address”

Return code

None

Functional Description

> The function performs accessing checks (whether the caller has accessing rights to the peripheral
region and whether the address to be read from is within the configured range of the peripheral region)

> The error hook is raised in case of an error

> A shutdown is not issued in case of an error

> After the access checks has passed first the “clearmask” is ANDed to “address” and afterwards the
“setmask” is ORed to it.

Particularities and Limitations

> These functions may not be called from OS hooks

Call context

> These functions may be called from Task context

> These functions may be called from category 2 ISR context

> These functions can be called with interrupts enabled or with interrupts disabled

Table 6-45 ModifyPeripheral API

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

100 / 136

7 Configuration

Since AUTOSAR OS 3.0.0 specification, XML is used to define and describe an OS
configuration. However, OIL is still supported as an alternative description language,
especially if the OS shall be used stand-alone without any other AUTOSAR software
modules.

All OSEK objects and their attributes have to be defined by one of these description
languages.

7.1 Configuration and generation process

.h

AUTOSAR XML
Configuration Tool

Code
Generator

.oil

.c

OIL
Configurator

.xml

Configuration
files .h

.c Application
files.h

.cOS source
files

Compile and Link

Executable

Figure 7-1 System overview of software parts

The figure above shows the complete configuration process of a MICROSAR OS. First all
OS objects have to be defined. This can be done either by an AUTOSAR XML
configuration tool or by the OIL Configurator (in OIL).

An OIL or XML file is the base of the code generation process. After code generation all
files (OS source files, application files and generated OS configuration files) have to be
compiled and linked to an executable.

7.1.1 XML Configuration

A configuration which is based on XML must conform to the AUTOSAR XML schema[8].

To edit a MICROSAR OS XML configuration the DaVinci Configurator Pro or Base of
Vector Informatik GmbH can be used. Other tools that are able to edit AUTOSAR
configurations may also be used.

The XML file that the tool produces has to be passed to the code generator to generate the
configuration files.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

101 / 136

7.1.2 OIL Configurator

The OIL specification is based on the document "OIL: OSEK Implementation Language –
Version: 2.3” (ref. [6]). Additional Attributes are defined by Vector Informatik GmbH; the
resulting version of OIL is 4.0.

The OIL Configurator is a Windows based program that is used to configure an OSEK
application. The OIL Configurator reads and writes OIL files (OSEK Implementation Lan-
guage). The usage of the OIL Configurator is described in the online help of the OIL Con-
figurator.

The OIL Configurator has separate property tabs for each OSEK object type. Each object
has several standard attributes that are defined in the OIL specification. Additional
attributes that are implementation specific are described in the hardware specific
document [4].

7.2 Configuration Variants

The OS supports the configuration variants

> VARIANT-PRE-COMPILE

The MICROSAR OS system is typically delivered with the source code. The kernel is
implemented in several optimized variants, which are enabled from the OIL Configurator
using C defines. The source code of the operating system has to be compiled if the
configuration has changed. For some implementations, a library version of the operating
system is also supplied. For different configurations, different libraries have to be linked to
the application.

The configuration classes of the OS parameters depend on the supported configuration

variants. For their definitions please see the OS_<platform and

derivate>_bswmd.arxml file.

7.3 Configuration of the XML / OIL Attributes

Some of the attributes of an OSEK object are standard for all OSEK implementations, and
some are specific for each implementation.

This chapter describes the attributes the user can set for each OSEK object. Please note

that setting an attribute to TRUE is used as a synonym for selecting it and setting to FALSE

is used as a synonym for deselecting it. The reason is that a selection in the OIL

Configurator corresponds to setting the attribute to TRUE in the OIL file (this can be

checked by opening the OIL file with a normal text editor).

Caution
If a library version of the operating system is used, some attributes or attribute values
are not available or predefined.

1.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

102 / 136

7.3.1 OS

The OS object can only be defined once. The OS object controls general aspects of the
operating system.

Attribute Name Values

The default value
is written in bold

Description

OIL XML

Name n.a. -- > OIL: Freely selectable name, not used by
the code generator.

> XML: Not available in XML

Comment n.a. -- Any comment.

CC OsOSCC ECC2, AUTO MICROSAR OS SafeContext must always be
configured to support Conformance class
ECC2.

STATUS OsStatus EXTENDED MICROSAR OS SafeContext must always be
configured to support extended status (error)
messages.

SCALABILITY
CLASS

OsScalabilityClass SC3, SC4,
AUTO.

MICROSAR OS SafeContext can be ordered in
Scalability classes SC3 or SC4. It must be
configured with the ordered Scalability class.

SCHEDULE OsOSSchedule MIXED,
AUTO

MICROSAR OS SafeContext always supports
preemptive and non-preemptive tasks, thus
scheduling policy must be configured to mixed
preemptive.

n.a. OsHooks hook
routines as
stated below
(as
Booleans)

> XML: Used as a container to store hook
routine information.

> OIL: not available

STARTUPHOOK OsStartupHook TRUE

The StartupHook is always called at system

startup of a MICROSAR OS SafeContext.

> XML: This attribute is placed in container
OsHooks

ERRORHOOK OsErrorHook TRUE

The ErrorHook is always called if an error

occurs in a MICROSAR OS SafeContext.

> XML: This attribute is placed in container
OsHooks

SHUTDOWNHOOK OsShutdownHook TRUE

The ShutdownHook is always called at

system shutdown of a MICROSAR OS
SafeContext.

> XML: This attribute is placed in container
OsHooks

PRETASKHOOK OsPreTaskHook FALSE The PreTaskHook is not supported by

MICROSAR OS SafeContext. However, there is
a debug switch to turn it on during
development, see 6.5.1.2 and [9].

> XML: This attribute is placed in container
OsHooks

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

103 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

POSTTASKHOOK OsPostTaskHook FALSE The PostTaskHook is not supported by

MICROSAR OS SafeContext. However, there is
a debug switch to turn it on during
development, see 6.5.1.3 and [9].

> XML: This attribute is placed in container
OsHooks

PROTECTIONHOO
K

OsProtectionHook TRUE

The ProtectionHook is always called when a

protection error is detected in a MICROSAR OS
SafeContext.

> XML: This attribute is placed in container
OsHooks

CallISRHooks OsOSCallISRHook
s

FALSE The UserPreISRHook and

UserPostISRHook are not supported by

MICROSAR OS SafeContext. However, there is
a debug switch to turn them on during
development, see 6.5.2.1, 6.5.2.2 and [9].

USEGET
SERVICEID

OsUseGetService
Id

TRUE

Access macros for the service ID information
are always available in the error hook.

USEPARAMETER-
ACCESS

OsUseParameter
Access

FALSE Access macros for the context related
information in the error hook are not supported
in MICROSAR OS SafeContext.

USERES
SCHEDULER

OsUseRes
Scheduler

TRUE,

FALSE

This parameter is available, as the AUTOSAR
standard requires it. Since AUTOSAR 4 the
resource RES_SCHEDULER was removed as
special case, therefore this attribute is silently
ignored by MICROSAR OS.

STACK
MONITORING

OsStackMonitoring TRUE

A stack check is performed with each task
switch. See also chapter 3.2.2.3 for details.

StackUsageMeasure
ment

OsStackUsageMe
asurement

TRUE,

FALSE,

AUTO

If selected, the stacks are filled with an indicator
value during StartOS. This allows measuring
the stack usage of tasks and ISRs. See also
chapter 3.2.2.5. If AUTO is selected,
StackUsageMeasurement uses the same
setting as STACKMONITORING.

ErrorInfoLevel OsOSErrorInfo
Level

STANDARD MICROSAR OS SafeContext will report
standard OSEK error codes and unique error
numbers, but no additional information about
the error location.

OSInternalChecks OsOSInternal
Checks

ADDITIONAL MICROSAR OS SafeContext will always
perform all available runtime error checks.

Compiler OsOSCompiler Implementatio
n specific

The compiler can be chosen. If there is only
one compiler this attribute is also set by default.

ORTIDebug Support OsOSORTIDebug
Support

TRUE

The OS generator always produces an ORTI.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

104 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

ORTIDebugLevel OsOSORTIDebug
Level

ORTI_22_Add
itional

MICROSAR OS SafeContext will always
support version 2.2 of the ORTI standard with
all available features.

UserConfigurationV
ersion

OsOSUserConfigu
rationVersion

1...65535 Version number of the OS configuration. This
numeric value is not used by the OS, but
enables the user to track changes in the
configuration and validate the configuration
version actually used in the ECUC. Therefore, it
is suggested to increment this value each time
the OS configuration is modified.

ProtectionHook
Reaction

OsOSProtection
HookReaction

SELECTED MICROSAR OS SafeContext does not support
forcible termination, thus requires this
parameter to be set to SELECTED.

See chapter 7.3.1.3 for information about the
sub-attributes and required values for
MICROSAR OS SafeContext.

Timing
Measurement

OsOSTiming
Measurement

TRUE

MICROSAR OS SafeContext will always
perform Timing measurement if delivered in
Scalability class SC4.

See chapter 7.3.1.4 for information about the
sub-attributes. Chapter 3.2.4.2 provides more
detailed information about configuration of
timing measurement.

TypeHeader Include OsOSTypeHeader
Include

TRUE,

FALSE

If selected, the AUTOSAR type headers are
included in the file os_cfg.h. This is included in
the file os.h, which has to be included in all
source files that use API functions of
MICROSAR OS OSEK/AUTOSAR. The
AUTOSAR type headers are not necessary for
the usage of MICROSAR OS
OSEK/AUTOSAR, so it is safe to deselect this
attribute.

EnumeratedUnhandl
edISRs

OsOSEnumerated
UnhandledISRs

TRUE,

FALSE

Determines the handling of unassigned
interrupt sources. The default of this attribute is

FALSE.

FALSE: This is the normal handling for

unassigned interrupt sources. If no interrupt
service routine is defined in OIL for an interrupt
source the corresponding interrupt vector will
be directed to one common unhandled
exception handler. This setting must be chosen
for the final application software.

TRUE: During application development, there

may be interrupts issued by unassigned
interrupt sources. In such case it could be a big
effort to determine the interrupt source. If this

attribute is set to TRUE the interrupt vector of

each unassigned interrupt source will be
directed to an unhandled exception routine. If
an unhandled exception occurs in that case, the

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

105 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

interrupt source which causes this exception
can easily be determined by the variable
“osISRUnhandledException_Number“. The
corresponding interrupt source can be
distinguished by having a look into the interrupt
vector table which normally is generated to
intvect.c. This is a debug feature only and is not
permitted for the final application software
running on a MICROSAR OS SafeContext.

This feature is optional. Please refer to [5] to
find out whether a specific implementation of
MICROSAR OS supports this feature.

ConditionalGenerati
ng

/MICROSAR/Boar
d/BoardGeneral/B
oardConditionalGe
nerating

TRUE,

FALSE

Determines whether the OS code generator
creates the files only if the relevant
configuration has been modified since the last
generator run (ConditionalGenerating = TRUE).

If ConditionalGenerating = FALSE, the OS files
are always generated.

For details about this attribute, see chapter
8.1.3.

Table 7-1 OS attributes

7.3.1.1 ProtectionHookReaction / OsOSProtectionHookReaction

> MICROSAR OS SafeContext requires this attribute to be set to SELECTED with the

following subattributes:

Attribute Name Values

The default value
is written in bold

Description

OIL XML

KILLTASKISR OsOSKILLTASK
ISR

FALSE MICROSAR OS SafeContext does not support
the return value PRO_TERMINATETASKISR.

KILLAPPL OsOSKILLAPPL FALSE MICROSAR OS SafeContext does not support
the return value PRO_TERMINATEAPPL.

KILLAPPL_
RESTART

OsOSKILLAPPL_
RESTART

FALSE MICROSAR OS SafeContext does not support
the return value

PRO_TERMINATEAPPL_RESTART.

SHUTDOWN OsOS
SHUTDOWN

TRUE PRO_SHUTDOWN is the only return value

supported by MICROSAR OS SafeContext.

Table 7-2 Sub-attributes of ProtectionHookReaction = SELECTED

Caution
Currently MICROSAR OS does not support killing. So only SHUTDOWN should be
selected!

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

106 / 136

Caution
If the Protection hook returns a value that is not configured by means of the sub-

attributes of ProtectioHookReaction, the OS performs a Shutdown.

Note
MICROSAR OS allows to use the return values

 PRO_KILLTASKISR,

 PRO_KILLAPPL and

 PRO_KILLAPPL_RESTART
In the protection hook as synonyms for

 PRO_TERMINATETASKISR,

 PRO_TERMINATEAPPL and

 PRO_TERMINATEAPPL_RESTART
as long as no macro OS_SUPPRESS_PROTHOOK_OLD_RET_VALS is defined.

7.3.1.2 TimingMeasurement / OsOSTimingMeasurement

This Attribute must be set to TRUE for a MICROSAR OS SafeContext that has been

delivered in Scalability class SC4.

Please see also 3.2.4.2 and 7.3.2.2.

> If this attribute is set to TRUE, the subattribute GlobalConfig allows to globally override

theTask/ISR settings for Timing Protection and Timing Measurement:

Attribute Name Values

The default value is written in
bold

Description

OIL XML

GlobalConfig OsGlobalConfig ProtectAndMeasureAll

AsSelected

OnlyMeasureAll

> ProtectAndMeasureAll: The OS

provides timing measurement for all tasks
and ISRs regardless of their setting in the

attribute TIMING_PROTECTION. Timing

protection however is provided only for all
tasks and ISRs that have the attribute

TIMING_PROTECTION set to TRUE. In

case the subattribute OnlyMeasure is set

to TRUE, that setting is ignored with a

warning. In case the attribute

TIMING_PROTECTION of a task or ISR is

set to FALSE, the OS provides no timing

protection.

> AsSelected: The os provides timing

protection for a task or ISR if that is
configured, the attribute OnlyMeasure is
honored.

> OnlyMeasureAll: The OS does not

provide timing protection for any Task or
ISR. Instead, it provides timing

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

107 / 136

Attribute Name Values

The default value is written in
bold

Description

OIL XML

measurement for all tasks and ISRs. In
case a task or ISR is configured to have
timing protection and has the subattribute

OnlyMeasure set to FALSE, that setting is

overridden with a warning.

Table 7-3 Sub-attributes of TimingMeasurement = TRUE

7.3.1.3 PeripheralRegion / OsOSPeripheralRegion

OIL Name XML Name Values Description

StartAddress OsOSStartAddress - Numeric value

Specifies the start address of the
peripheral region, which shall be
configured.

EndAddress OsOSEndAddress - Numeric value

Specifies the end address of the
peripheral region, which shall be
configured.

Identifier OsOSIdentifier - Area name

Must be a unique C-identifier, which can
be used in an application or BSW module
to access the peripheral region.

ACCESSING_
APPLICATION

OsOSAccessingApplication - Grants access for this Peripheral Region.
Multiple applications can be defined for
the same Peripheral Region.

Table 7-4 Sub-attributes of PeripheralRegion

Caution
The application is allowed to access memory addresses in the interval of StartAddress
<= memory to be accessed <= EndAddress
The “EndAddress” value is included! All bytes of a peripheral access must fit into the
peripheral region.

7.3.2 Task

In the section Task all tasks and their attributes have to be defined.

Attribute Name Values

The default value
is written in bold

Description

OIL XML

Name Short-Name - Name of the task. This name is used as an
argument to all task-related OSEK API

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

108 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

functions (e.g. ActivateTask). The task

function (or task body) has to be defined using

the C macro TASK() (which appends the suffix

func to the task name).

Comment n.a. -- Any comment.

TYPE OsTaskTYPE BASIC,

EXTENDED,

AUTO

Type of the task: either BASIC or EXTENDED.
If set to AUTO, the type is calculated based on
the settings for events and the activation count.

SCHEDULE OsTaskSchedule NON,

FULL

Scheduling policy for this task.

PRIORITY OsTaskPriority - The priority of the task. A higher number
represents a higher priority (according to the
OSEK specification). The priority may be set
with gaps, though the gaps will be eliminated by
the code generator. Several tasks may be set
on the same priority level.

ACTIVATION OsTaskActivation - The number of activations that are recorded in
the kernel while the task is possibly running or
delayed by higher priority tasks.

If ACTIVATION is set to a value bigger than 1,

no events can be received.

AUTOSTART OsTaskAutostart - If set to TRUE, the task will be activated at

startup of the operating system. See chapter
7.3.2.1 for details about the sub-attributes.

EVENT OsTaskEventRef - Reference to an event that is used by this task.
This attribute can only be used for extended

tasks (the attribute TYPE might be set to

EXTENDED or AUTO). This attribute can be used

multiply if more than one EVENT has to be

assigned.

If events are used with this task, the attribute
ACTIVATION cannot be bigger than 1.

RESOURCE OsTaskResource
Ref

- Reference to a resource that is occupied by this
task. This attribute can be used multiply if more
than one RESOURCE shall be assigned.

StackSize OsTaskStackSize - Task stack size in byte. This attribute is only
available if the implementation supports
configurable task stacks.

TIMING_PROTECTI
ON

OsTaskTiming
Protection

- Selects timing protection for the task. See
chapter 7.3.2.2 for information about the sub-
attributes.

ACCESSING_
APPLICATION

OsTaskAccessing
Application

- Defines access rights of an application for this
task. This attribute can be defined multiply, so
different applications might have access right to
the same task. This attribute can be used in

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

109 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

scalability classes SC3 and SC4 only.

Table 7-5 Task attributes

7.3.2.1 AUTOSTART / OsTaskAutostart

> OIL: If attribute set to FALSE:

 No sub-attributes.

> XML: If this container is not present:

 AUTOSTART switched off.

> If attribute is set to TRUE:

Attribute Name Values

The default value
is written in bold

Description

OIL XML

APPMODE OsTaskAppMode
Ref

- Defines an application mode in which the task
is started in automatically. This attribute might
be defined several times to start the task in
different application modes.

Table 7-6 Sub-attributes of TASK->AUTOSTART=TRUE

7.3.2.2 TIMING_PROTECTION / OsTaskTimingProtection

Please note that TIMING_PROTECTION = TRUE can only be selected for a MICROSAR

OS SafeContext that has been delivered in Scalability class SC4.

> If attribute is set to FALSE:

No sub-attributes.

> If this attribute is not defined in XML:

Timing protection is switched off.

The value of this attribute might be overridden by the OS attribute TimingMeasurement,

as described in chapters 7.3.1.4 and 3.2.4.2

> If attribute is set to TRUE:

Attribute Name Values

The default value
is written in bold

Description

OIL XML

EXECUTION
BUDGET

OsTaskExecution
Budget

- Defines the maximum execution time for the
task

TIMEFRAME OsTaskTimeFrame - Defines the minimum time between task
activations

MAXOS OsTaskOsInterrupt - Maximum time OS interrupts are locked (by

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

110 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

INTERRUPT
LOCKTIME

LockBudget SuspendOSInterrupts)

MAXALL
INTERRUPT
LOCKTIME

OsTaskAllInterrupt
LockBudget

- Maximum time ALL interrupts are locked (by

SuspendAllInterrupts or

DisableAllInterrupts)

LOCKINGTIME =
RESOURCELOCK

OsTaskResource
Lock

- Is intended to be a container for sub-attributes
concerning the locking time of resources

LOCKINGTIME =
RESOURCELOCK/
RESOURCE

Inside the
container
OsTaskResource
Lock:

OsTaskResource
LockResourceRef

- The resource for which the locking time is
specified.

LOCKINGTIME =
RESOURCELOCK/
RESOURCELOCK
TIME

Inside the
container
OsTaskResource
Lock:

OsTaskResource
LockBudget

- Maximum time the resource is locked (by
GetResource)

OnlyMeasure OsOnlyMeasure TRUE

FALSE

If set to FALSE, timing values of this task are

measured and violations against the configured
values lead to a call of the ProtectionHook. If

set to TRUE, the timing values are still

measured but no call of the ProtectionHook
occurs.

Table 7-7 Sub-attributes of TASK-> TIMING_PROTECTION=TRUE

7.3.2.3 Task attributes concerning the timing analyzer

The following attributes have to be used when working with the timing analyzer tool. They
are used as input for this tool.

Attribute Name Values

The default value
is written in bold

Description

OIL XML

ComputationTime OsTask
ComputationTime

- The worst case execution time (in
nanoseconds)

Period OsTaskPeriod - The minimum activation period of the task (in
nanoseconds)

Deadline OsTaskDeadline - The deadline of the task (in nanoseconds)

PRIORITY OsTaskPriority - Priority of the task

UseResource
Occupation

OsTaskUse
Resource
Occupation

- If set to TRUE the occupation of resources can

be taken into consideration by the analysis tool.

UseResource
Occupation=TRUE/

OsTaskUse
Resource

- Reference to the resource that is occupied.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

111 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

Resource Occupation
=TRUE/OsTask
Resource

UseResource
Occupation=TRUE/
OccupationTime

OsTaskUse
Resource
Occupation
=TRUE/OsTask
OccupationTime

- Maximum resource occupation time (in
nanoseconds)

Table 7-8 Task attributes concerning the timing analyzer

7.3.3 Counter

The Counter container provides the following configuration attributes.

Attribute Name Values

The default
value is written
in bold

Description

OIL XML

Name Short-Name - Name of the counter. This name is used
for the Alarm configuration.

Comment n.a. Any comment.

MINCYCLE OsCounterMinCycle - This attribute specifies the minimum
allowed number of ticks for a cyclic
alarm linked to the counter.

MAXALLOWED
VALUE

OsCounterMaxAllowedValue - Maximum value, which is reachable by
the counter in counter ticks.

TICKSPERBASE OsCounterTicksPerBase - This attribute specifies the number of
hardware timer ticks required to reach a
counterspecific unit. E.g. if you have a
periodic tick timer, which is running with
16MHz and it is configured to trigger a
timer interrupt with 1kHz. You have
16000 ticks per base.

TYPE OsCounterType SOFTWARE,

HARDWARE

Defines the type of the counter.

Possible settings are SOFTWARE or

HARDWARE. SOFTWARE means the

counter is incremented by means of the
system service IncrementCounter,
which has to be called by the

application. HARDWARE means the

counter is incremented by MICROSAR
OS internally.

DRIVER OsDriver - This Container contains the information
who will drive the counter. This
configuration is only valid if the counter

has OsCounterType set to HARDWARE.

Sub-Attributes are hardware dependent
(see [5]).

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

112 / 136

Attribute Name Values

The default
value is written
in bold

Description

OIL XML

TIMECONSTANT OsTimeConstant - This Container allows the user to define
constants, to be used e.g. to compare
physical time values with timer tick
values.

TIMECONSTANT/
CONSTNAME

OsConstName - The name, to be used by the application
to get OsTimeValue in counter units.

TIMECONSTANT/
VALUE

OsTimeValue - This attribute contains the value of the
constant in seconds.

SECONDSPERTICK OsSecondsPerTick - This attribute contains the time of one
counter tick in seconds.

ACCESSING_
APPLICATION

OsCounter Accessing
Application

- Defines access rights of an application
for this counter. This attribute can be
used multiply, so different applications
might have access rights to this counter.
This attribute can only be used in
scalability classes SC3 and SC4.

Table 7-9 Attributes of COUNTER

Figure 7-2 Relation between Physical Units, Counter Units and Driver Units

Note
If the OS supports High-Resolution, there is no periodic counter tick. The OS programs
the driver to interrupt on demand (e.g. next Alarm, next Expiry Point, etc.). Therefore,

the counter has the same resolution as the driver (OsCounterTicksPerBase is 1).

7.3.4 Alarm

The action of an alarm has to be defined statically.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

113 / 136

Attribute Name Values

The default value is
written in bold

Description

OIL XML

Name Short-Name - Name of the alarm. This name is used as an
argument to all alarm related OSEK API

functions (e.g. SetRelAlarm).

Comment n.a. -- Any comment

COUNTER OsAlarmCounter
Ref

 Reference to the counter that drives the
alarm.

ACTION OsAlarmAction > OIL:

SETEVENT,
ACTIVATETASK,
INCREMENTCOU
NTER

> XML:

Choice container:

OsAlarmActivateT
ask,
OsAlarmIncrement
Counter,
OsAlarmSetEvent

See chapter 7.3.4.1 for more information.

AUTOSTART OsAlarmAutostart TRUE

FALSE

> OIL: If set to TRUE, the alarm will be

activated at startup of the system.

> XML: If attribute is present, the alarm will
be activated at startup of the system.

See chapter 7.3.4.2 for more information
about the sub-attributes and chapter 3.2.1.3
for more information about static alarms.

ACCESSING_
APPLICATION

OsAlarmAccessin
gApplication

 Defines access rights of an application for
this alarm. This attribute can be used
multiply, so different applications might have
access rights to this alarm. This attribute can
be used in scalability classes SC3 and SC4
only.

Table 7-10 Attributes of ALARM

7.3.4.1 ACTION / OsAlarmAction

> Attribute / ChoiceContainer is set to ACTIVATETASK / OsAlarmActivateTask:

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

114 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

TASK OsAlarmActivate
TaskRef

- Task to be activated

Table 7-11 Sub-attributes of ACTION = ACTIVATETASK

> Attribute / ChoiceContainer is set to SETEVENT / OsAlarmSetEvent:

Attribute Name Values

The default value
is written in bold

Description

OIL XML

TASK OsAlarmSetEvent
TaskRef

- Task to which the event should be sent

EVENT OsAlarmSetEvent
Ref

 Event to be sent to the specified task

Table 7-12 Sub-attributes of ACTION = SETEVENT

> Attribute / ChoiceContainer is set to INCREMENTCOUNTER /

OsAlarmIncrementCounter:

Attribute Name Values

The default value
is written in bold

Description

OIL XML

COUNTER OsAlarmIncrement
CounterRef

- Name of the counter to be incremented

Table 7-13 Sub-attributes of ACTION = ALARMCALLBACK

7.3.4.2 AUTOSTART / OsAlarmAutostart

> OIL: This attribute can be either TRUE or FALSE. Depending on the value, there may be

different sub-attributes.

> XML: This attribute can be present in the configuration or it can be omitted. In case this
container is present, it has sub-attributes, which are described below.

> If AUTOSTART is set to TRUE (OIL) or if the container is present (XML):

Attribute Name Values

The default value
is written in bold

Description

OIL XML

ALARMTIME OsAlarmAlarmTim
e

- The relative or absolute tick value when the
alarm expires for the first time. Note that for an
alarm which is RELATIVE the value should be
bigger than 0.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

115 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

TYPE OsAlarmAutostar
tType

ABSOLUTE

RELATIVE

The value corresponds to a call of the API-
Functions SetRelAlarm or SetAbsAlarm

CYCLETIME OsAlarmCycleTim
e

 This atttibute defines the cycle time of a cyclic
alarm in counter units. A zero value indicates
that the alarm is not cyclic.

APPMODE OsAlarmAppMode
Ref

 Reference to the application modes for which
the AUTOSTART shall be performed.

Table 7-14 Sub-attributes of AUTOSTART = TRUE

7.3.5 Resource

Resources have to be defined with the following attributes:

Attribute Name Values

The default value
is written in bold

Description

OIL XML

Name Short-Name - Name of the resource. This name is used as an
argument to all resource related OSEK API

functions (e.g. GetResource).

Comment n.a. -- Any comment

RESOURCE
PROPERTY

OsResource
Property

STANDARD,
LINKED

This attribute can take the following values:

> STANDARD: A normal resource that is not

linked to another resource and is not an
internal resource.

> LINKED: A resource that is linked to another

resource with the property STANDARD or

LINKED.

Internal resources are not supported by
MICROSAR OS SafeContext.

ACCESSING_
APPLICATION

OsResource
Accessing
Application

 Defines access rights of an application for this
resource. This attribute can be used multiply, so
different applications might have access rights
to this resource. This attribute can only be used
in scalability classes SC3 and SC4.

RESOURCE
PROPERTY

=LINKED / LINKED
RESOURCE

OsResourceLinked
ResourceRef

 > OIL: If the resource property is set to

LINKED, the LINKEDRESOURCE attribute

holds a reference to a resource.

> XML: This attribute holds a reference to a
resource.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

116 / 136

Table 7-15 Attributes of RESOURCE

7.3.6 Event

Events in the OSEK operating system are always implemented as bits in bit-fields. The
user could use bit-masks like ‘0x0001’, but to achieve portability between different OSEK
implementations, the user should use event names, which are mapped to defined bits by
the code generator.

Attribute Name Values

The default value
is written in bold

Description

OIL XML

Name Short-Name - Name of the event. This name is used as an
argument to all event related OSEK-API-

functions (e.g. SetEvent).

Comment n.a. -- Any comment

MASK OsEventMask - > OIL: Eventmask or AUTO

> XML: If EventMasks shall be defined

automatically this attribute shall be omitted

Table 7-16 Sub-attributes of EVENT

Caution

If the user selects AUTO for the mask, the code generator will search for free bits in the

bit mask of the receiving task. It is important to specify each task that receives an
event, otherwise the code generator will generate wrong bit-masks.

7.3.7 ISR

Attribute Name Values

The default value
is written in bold

Description

OIL XML

Name Short-Name - Name of the interrupt service routine.

Comment n.a. -- Any comment

CATEGORY OsIsrCategory - > OIL: Number of category for the interrupt
service routine (1-2)

> XML: this attribute can be CATEGORY_1 or
CATEGORY_2

RESOURCE OsIsrResourceRef - Resource management for ISRs is not
supported by MICROSAR OS SafeContext.

TIMING_
PROTECTION

OsIsrTiming
Protection

- Selects timing protection for the ISR. See
chapter 7.3.7.2 for information about the sub-
attributes.

EnableNesting OsIsrEnable
Nesting

- If set to TRUE the OS will call the user ISR in a

way that interrupts will be enabled again during
user ISR. Thus, it is possible that the user ISR
can be interrupted by other ISRs.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

117 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

UseSpecialFunction
Name

OsIsrUseSpecial
FunctionName

- Normally the attribute Name/Short-Name

defines the C-Name of the ISR. Since this
name must be unique, it would not be possible
to map different interrupt Sources to a single
ISR. This can be done by this attribute.

If this attribute is set to TRUE, it is possible to

define the function name of the ISR in a
separate sub-attribute. These names do not
have to be unique.

ACCESSING_
APPLICATION

OsIsrAccessing
Application

- Defines access rights of an application for this
ISR. This attribute can be used multiply, so
different applications might have access rights
to this alarm.

Table 7-17 Attributes of ISR

7.3.7.1 UseSpecialFunctionName / OsIsrUseSpecialFunctionName

If this attribute is set to TRUE a function name can be specified which is taken as ISR

name instead of the Name (OIL) / Short-Name (XML) attribute.

This can be used to map several interrupt sources to one ISR routine.

Attribute Name Values

The default
value is written
in bold

Description

OIL XML

FunctionName OsIsrFunctionName - Name of the ISR routine.

Table 7-18 Sub-attributes of UseSpecialFunctionname / OsIsrUseSpecialFunctionName

Example
Given two Interrupts MyISR1 and MyISR2. Both shall trigger the same ISR routine.
Activate SpecialFuntionName for MyISR2, and set FunctionName to “MyISR1”. Now,
MyISR2 is mapped onto the MyISR1 routine, which is implemented as usual:

ISR(MyISR1)

{

 …

}

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

118 / 136

Note

The ISR() macro MUST be used for the definition of category 2 ISR handlers. If this

is not possible, a wrapper using this macro can be used to call the respective ISR
handler:

ISR(MyISR1) /* “MyISR1” is the configured */

{ /* FunctionName in OIL or XML */

 MyISRHandlerFunction(); /* “MyISRHandlerFunction” is */

} /* the name of the actual ISR */

/* handler provided by the */

/* application */

7.3.7.2 TIMING_PROTECTION / OsIsrTimingProtection

> OIL: This attribute has to be set to TRUE to switch on timing protection. The sub-

attributes are only visible if TIMING_PROTECTION is TRUE.

> XML: This attribute has to be present to switch on timing protection.

Please note that timing protection can only be switched on for a MICROSAR OS
SafeContext that has been delivered in Scalability class SC4.

Attribute Name Values

The default value
is written in bold

Description

OIL XML

EXECUTIONTIME OsIsrExecution
Budget

- The parameter contains the maximum allowed
execution time of the interrupt.

> OIL: the times are given in nanoseconds.

> XML: the times are given in seconds.

TIMEFRAME OsIsrTimeFrame - This parameter contains the minimum inter-
arrival time between successive interrupts

> OIL: the times are given in nanoseconds.

> XML: the times are given in seconds.

MAXOSINTERRUP
TLOCKTIME

OsIsrOsInterrupt
LockBudget

- This parameter contains the maximum time for
which the ISR is allowed to lock all Category 2

interrupts (via SuspendOSInterrupts()).

> OIL: the times are given in nanoseconds.

> XML: the times are given in seconds.

MAXALLINTERRUP
TLOCKTIME

OsIsrAllInterrupt
LockBudget

- This parameter contains the maximum time for
which the ISR is allowed to lock all interrupts

(via SuspendAllInterrupts() or

DisableAllInterrupts())

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

119 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

> OIL: the times are given in nanoseconds.

> XML: the times are given in seconds.

LOCKINGTIME OsIsrResource
Lock

- > OIL: This is a (empty) list of all lock times, in
nanoseconds

> XML: This container holds resource lock
times, in seconds.

Resource lock times are the maximum times an
ISR is allowed to hold a resource.

OnlyMeasure OsOnlyMeasure TRUE

FALSE

If set to FALSE, timing values of this ISR are

measured and violations against the configured
values lead to a call of the ProtectionHook. If

set to TRUE, the timing values are still

measured but no call of the ProtectionHook
occurs. The value of this attribute might be
overridden by the OS attribute

TimingMeasurement, as described in

chapters 7.3.1.4 and 3.2.4.2.

Table 7-19 Sub-attributes of TIMING_PROTECTION / OsIsrTimingProtection

7.3.7.2.1 LOCKINGTIME / OsIsrResourceLock

Attribute Name Values

The default value
is written in bold

Description

OIL XML

LOCKINGTIME=
RESOURCELOCK/
RESOURCELOCK
TIME

OsIsrResource
LockBudget

- The parameter contains the maximum allowed
time an ISR is allowed to hold a resource

> OIL: the times are given in nanoseconds.

> XML: the times are given in seconds.

LOCKINGTIME=
RESOURCELOCK/
RESOURCE

OsIsrResource
LockResourceRef

 Holds the reference to this resource

Table 7-20 Sub-attributes of LOCKINGTIME / OsIsrResourceLock

7.3.7.3 ISR Attributes concerning the Timing Analyzer

Attribute Name Values

The default value
is written in bold

Description

OIL XML

ComputationTime OsIsrComputation
Time

- The worst case execution time (in
nanoseconds)

Period OsIsrPeriod The minimum activation period of the ISR (in
nanoseconds)

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

120 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

Deadline OsIsrDeadline The deadline of the ISR (in nanoseconds)

AnalysisPriority OsIsrAnalysis
Priority

 The AnalysisPriority corresponds to the

Task attribute PRIORITY / osTaskPriority.

The AnalysisPriority is an extension of

the priority values from tasks to ISRs, so all ISR
priorities must have higher values as all task
priorities to get correct analysis results. (Some
OS Implementations use an attribute similar to

priority for the hardware interrupt level.

Therefore to the timing analysis an own
attribute was introduced).

UseResource
Occupation

OsIsrUseResource
Occupation

 If set to TRUE the occupation of resources can

be taken into consideration by the analysis tool.

UseResource
Occupation=
TRUE/Resource

OsIsrUseResource
Occupation=TRUE
/OsIsrResource

 Reference to the resource that is occupied.

UseResource
Occupation= TRUE/
OccupationTime

OsIsrUseResource
Occupation=TRUE
/OsIsrOccupation
Time

 Maximum resource occupation time (in
nanoseconds)

Table 7-21 ISR attributes concerning the timing analyzer

7.3.8 COM

The section COM is not used by MICROSAR OS.

7.3.9 NM

The section NM is not used with the current MICROSAR OS implementation.

7.3.10 APPMODE / OsAppMode

Application modes have to be defined with the following attributes:

Attribute Name Values

The default value
is written in bold

Description

OIL XML

Name Short-Name - Name of the application mode. This name is
used as an argument to all related OSEK-API-
functions and for the definition of the

AUTOSTART functionality of tasks and alarms.

Comment n.a. -- Any comment

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

121 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

n.a. OsAppModeId Internal ID of an Appmode. The value of this

attribute is ignored by MICROSAR OS.

Table 7-22 Attributes of Appmode / OsAppMode

7.3.11 Application / OsApplication

The object APPLICATION is meant for the usage with scalability classes SC3 and SC4.

Attribute Name Values

The default value
is written in bold

Description

OIL XML

Name Short-Name -- Freely selectable name, not used by the code
generator.

Comment n.a. -- Any comment.

n.a. OsApplication
Hooks

FALSE MICROSAR OS SafeContext does not support
any application specific Hook routines.

STARTUPHOOK OsAppStartup
Hook

FALSE MICROSAR OS SafeContext does not support
any application specific Hook routines.

(XML: is contained in OsApplicationHooks)

ERRORHOOK OsAppErrorHook FALSE MICROSAR OS SafeContext does not support
any application specific Hook routines.

(XML: is contained in OsApplicationHooks)

SHUTDOWNHOOK OsAppShutdown
Hook

FALSE MICROSAR OS SafeContext does not support
any application specific Hook routines.

(XML: is contained in OsApplicationHooks)

TRUSTED OsTrusted TRUE,

FALSE

> OIL: Defines whether the application is
trusted or not. See chapter 7.3.11.1 for
information about the sub-attributes.

> XML: This is only a boolean which marks the
Application as trusted application

HAS_RESTART
TASK

n.a. FALSE > OIL: MICROSAR OS SafeContext does not
support terminating or restarting an
application.

TASK OsAppTaskRef - Reference to all tasks belonging to this
application.

ISR OsAppIsrRef - Reference to all ISRs belonging to this
application.

ALARM OsAppAlarmRef - Reference to all alarms belonging to this
application.

SCHEDULETABLE OsAppSchedule
TableRef

- Reference to all schedule tables belonging to
this application.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

122 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

COUNTER OsAppCounterRef - Reference to all counters belonging to this
application.

n.a. OsApplication
TrustedFunction

- Container that is used to define trusted
functions.

NonTrusted_Functio
n

OsApplicationNon
Trusted_Function

- List of non-trusted functions provided by this
application (only for non-trusted applications).

Table 7-23 Attributes of Application / OsApplication

7.3.11.1 Trusted Functions

> OIL: trusted functions are defined as sub-attributes of 'TRUSTED=TRUE'.

> XML: there are containers for trusted functions.

The preconditions for editing the sub-attributes in the next table are

TRUSTED=TRUE/TRUSTED_FUNCTION=TRUE for OIL and the existence of (at least one)

OsApplicationTrustedFunction container.

Attribute Name Values

The default value
is written in bold

Description

OIL XML

TRUSTED_
FUNCTION
=TRUE/TRUSTED
FUNCTION
=TRUE/NAME

OsTrustedFunction
Name

- List of trusted functions provided by this
application.

TRUSTED_
FUNCTION
=TRUE/TRUSTED
FUNCTION
=TRUE/Params

OsApplication
Params

- Parameter (arguments) of trusted function.
Empty string means void. Used for stub

generation only. See attribute GenerateStub.

TRUSTED_
FUNCTION
=TRUE/TRUSTED
FUNCTION
=TRUE/ReturnType

OsApplication
ReturnType

- Return value data type of trusted function.
Empty string means void. Used for stub

generation only. See attribute GenerateStub.

TRUSTED_
FUNCTION
=TRUE/Generate
Stub

OsApplication
GenerateStub

- If set to TRUE, stub functions are generated for

all trusted functions of this application.

Table 7-24 Sub-attributes for trusted functions

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

123 / 136

7.3.12 Scheduletable

Schedule tables have to be defined with the following attributes.

Attribute Name Values

The default value
is written in bold

Description

OIL XML

Name Short-Name - Name of the SCHEDULETABLE. This name is

used as an argument to all related OSEK API
functions.

Comment n.a. -- Any comment

COUNTER OsScheduleTable
CounterRef

- Defines the counter used as time basis for this
schedule table.

REPEATING OsScheduleTable
Repeating

- If selected, the schedule table is performed
periodically after it is started. If deselected, the
schedule table is performed once per activation.

DURATION OsScheduleTable
Duration

- Defines the length of the schedule table in ticks,
based on the underlying counter. This is the
time from the first expiry point to the end of the
schedule table or in the case of a periodic
schedule table, between two subsequent first
expiry points. The length is defined in units of
ticks of the underlaying counter.

AUTOSTART OsScheduleTable
Autostart

- > OIL: If set to TRUE, the schedule table is

activated at startup of the operating system.

> XML: If attribute is present, the schedule
table is activated at startup of the operating
system.

See chapter 7.3.13.1 for more information
about the sub-attributes.

LOCAL_TO_
GLOBAL_TIME_SY
NCHRONIZATION

OsScheduleTable
Sync

- Defines, whether the schedule table shall be
synchronized to a global time source. This
attribute is only supported in scalability class
SC4. Sub-attributes are described in chapter
7.3.13.6.

EXPIRY_POINT OsScheduleTable
ExpiryPoint

- Defines an expiry point for this schedule table

ACCESSING_
APPLICATION

OsSchTbl
Accessing
Application

- Defines access rights of an application for this
schedule table. This attribute can be used
multiply, so different applications might have
access rights to this schedule table.

Table 7-25 Attributes of SCHEDULETABLE

7.3.12.1 AUTOSTART / OsScheduleTableAutostart

> OIL: If this attribute is set to TRUE sub-attributes are visible and the schedule table is

auto started.

> XML: If this container is present in the configuration the schedule table is auto started

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

124 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

APPMODE OsScheduleTable
AppModeRef

- Defines an application mode in which the
schedule table is started automatically. This
attribute might be defined several times to start
the schedule table in several application
modes.

TYPE OsScheduleTable
AutostartType

ABSOLUTE

RELATIVE

SYNCHRON

Defines the method how the schedule table is
autostarted.

TYPE=ABSOLUT/
ABSVALUE

OsScheduleTable
StartValue

- Absolute autostart tick value when the schedule
table starts. Only used if the

OsScheduleTableAutostartType is

ABSOLUTE.

TYPE=RELATIVE/
RELOFFSET

OsScheduleTableS
tartValue

- Relative offset in ticks when the schedule table
starts. Only used if the

OsScheduleTableAutostartType is

RELATIVE.

Table 7-26 Sub-attributes for auto start of a schedule table

7.3.12.2 EXPIRY_POINT / OsScheduleTableExpiryPoint

An expiry point consists of a sequence of actions which are performed on a given tick time
of the schedule table. There are the following sub-attributes. Some of them also have sub-
attributes.

Attribute Name Values

The default value
is written in bold

Description

OIL XML

ACTION n.a. > OIL :

ACTIVATETA
SK

SETEVENT

ADJUST

> OIL: a list of actions

OFFSET OsScheduleTbl
ExpPointOffset

- Defines the time at which the defined actions
occur in ticks based on the underlying counter.
The time is absolute to the start of the schedule
table and is given in ticks of the underlying
counter.

ACTION=ADJUST OsScheduleTbl
AdjustableExp
Point

- > XML: containers for holding the sub-
attributes in case of expiry point action
ADJUST

ACTION
=ACTIVATETASK

OsScheduleTable
TaskActivation

- > XML: containers for holding the sub-
attributes in case of expiry point action

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

125 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

ACTIVATESTASK

ACTION
=SETEVENT

OsScheduleTable
EventSetting

- > XML: containers for holding the sub-
attributes in case of expiry point action
SETEVENT

Table 7-27 Sub-attributes of expiry points

7.3.12.3 Expiry point action ADJUST

> OIL: the following attributes are visible if the expiry point action is ADJUST

> XML: the following attributes are located in the container
OsScheduleTblAdjustableExpPoint

Those attributes are only relevant in SC2 or SC4 if synchronization mechanisms are used.

Attribute Name Values

The default value
is written in bold

Description

OIL XML

MAXLENGTHEN OsScheduleTable
MaxLengthen

 The maximum positive adjustment that can be
made to the expiry point offset to achieve
synchronizationin ticks based on the underlying
counter.

MAXSHORTEN OsScheduleTable
MaxShorten

- The maximum negative adjustment that can be
made to the expiry point offset to achieve
synchronization in ticks based on the underlying
counter.

Table 7-28 Sub-attributes of expiry point action ADJUST

7.3.12.4 Expiry point action ACTIVATETASK

Attribute Name Values

The default value
is written in bold

Description

OIL XML

TASK OsScheduleTable
ActivateTaskRef

 Reference to the task to be activated.

Cyclic OsScheduleTable
Cyclic

TRUE,

FALSE

> OIL: If set to TRUE, this action is repeatedly

added to the schedule table.

> XML: This is a choice container. If set to

TRUE the action will be repeatedly added to

the schedule table.

The cycle time is located in a sub-attribute. See
chapter 3.2.6.3 for more details.

Cyclic=TRUE/Cycle
Time

OsScheduleTable
CycleTime

 If the action is declared as cyclic, this attribute
holds the cycle time in counter ticks.

Table 7-29 Sub-attributes of expiry point action ACTIVATETASK

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

126 / 136

7.3.12.5 Expiry point action SETEVENT

Attribute Name Values

The default value
is written in bold

Description

OIL XML

TASK OsScheduleTable
SetEventTaskRef

- Task to which the event should be sent

EVENT OsScheduleTable
SetEventRef

- Event to be sent to the specified task

Cyclic OsScheduleTable
Cyclic

TRUE,

FALSE

> OIL: If set to TRUE, this action is repeatedly

added to the schedule table.

> XML: This is a choice container. If set to

TRUE the action will be repeatedly added to

the schedule table.

The cycle time is located in a sub-attribute. See
chapter 3.2.6.3 for more details.

Cyclic=TRUE/Cycle
Time

OsScheduleTable
CycleTime

- If the action is declared as cyclic, this attribute
holds the cycle time in counter ticks.

Table 7-30 Sub-attributes of expiry point action SETEVENT

7.3.12.6 LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION / OsScheduleTableSync

> OIL: If set to TRUE, the synchronization of this schedule table is switched on and the

sub-attributes will be visible.

> XML: If this attribute is present in the configuration the synchronization is used for this
schedule table.

This is only relevant in SC4.

Attribute Name Values

The default value
is written in bold

Description

OIL XML

SYNC_STRATEGY OsScheduleTbl
SyncStrategy

EXPLICIT

IMPLICIT

NONE

Defines the synchronization strategy of this
schedule table.

> EXPLICIT: The schedule table is driven by

an OS counter, but processing needs to be
synchronized with a different counter, which
is not an OS counter object.

> IMPLICIT: The counter driving the schedule

table is the counter with which
synchronisation is required

> NONE: no synchronization is applied at all

SYNC_STRATEGY
=EXPLICIT/PRECIS
ION

OsScheduleTbl
ExplicitPrecision

- Defines the synchronization tolerance (in ticks)
for this schedule table.

If the absolute value of the deviation between
the schedule table counter and the
synchronization counter is smaller than this

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

127 / 136

Attribute Name Values

The default value
is written in bold

Description

OIL XML

value schedule table state is set to
SCHEDULETABLE_RUN-

NING_AND_SYNCHRONOUS

Table 7-31 Sub-attributes SCHEDULETABLE-> LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION = TRUE

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

128 / 136

8 System Generation

This chapter describes the generation of the executable program. The definition of the OIL
/ XML file was described in the chapter 7 Configuration. The general steps programming
an application using the OSEK operating systems are illustrated in chapter 7.1
Configuration and generation process.

The dependencies on include files are described in chapter 5.2 Include Structure.

8.1 Code Generator

The code generator GENxxxx.EXE is delivered with the MICROSAR OS package (xxxx is

replaced by the hardware platform name). The code generator is implemented as a 32-bit
Windows console application and can be started from the OIL Configurator or directly from
the command line.

The code generator has different command-line options. When started without any
parameters, a list of all parameters is printed:

GENxxxx.EXE, Version: 6.00, Vector Informatik GmbH, 2012

Usage: GENxxxx.EXE [options] <Filename>

-s : print symboltable

-r <Filename> : write errors into file

-g : generate code

-d <Pathname> : path to write generated code

-m : prints list of known implementations

-i <Pathname>: include path for implementation files

-x : include path equals to generator exe path

-f <Filename>: read options and filename from command file

-y : perform a syntax check on OIL file

8.1.1 Generated Files

The code generator generates several files as described in chapter 5.1.2 Dynamic Files.

The files always have the same name. They are written to the generation path specified in
the OIL Configurator or with the command line option -d.

The '.c' modules have to be compiled and linked to the application.

8.1.2 Automatic Documentation

Automatic documentation of the generation process is provided by two list files, which are
generated by the code generator. A basic list file is generated in text format. The more
detailed list file is generated in HTML format and can be used to publish a system design
in the internet or an intranet. Both files have the same name as the OIL file, i.e.:

> <OILFileName>.lst (basic list file in text format)

> <OILFileName>.htm (extended list file in HTML format)

The files are located in the directory of the OIL file.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

129 / 136

8.1.3 Conditional Generation

If MICROSAR OS is configured using an OIL file, the OS object provides the attribute
ConditionalGenerating. If AUTOSAR ECUC files are used for configuration, the parameter
for conditional generation is not located in the OS configuration but in the BSWMD file of
the Board, as other modules also use this parameter.

If conditional generation is selected, the generated files are overridden only if the OS
configuration has changed since the last generator run. This allows using the file
modification date of the generated files to decide which modules need recompilation after
configuration changes. Compile times of a complete AUTOSAR stack may be dramatically
reduced with this setting in the development cycle.

Setting ConditionalGenerating = FALSE forces the MICROSAR OS code generator to
generate the files newly on each run. This is the recommended setting for the final,
productive build.

8.1.4 Generated files backup

To avoid a mixed set of generated files from various runs of the generator, already existing
files are either deleted or renamed before the new generation starts.

Before previously generated files are overwritten in a new run of a generator, the complete
file set is renamed to files with the original name plus a “.bak” suffix (backup file set). This
file set contains the last valid generated file set even if a consecutive generator run fails for
any reason.

8.2 Application Template Generator

The application template generator is not available in current versions of MICROSAR OS.

8.3 Compiler

The supported compiler package has to be installed, and the search path of the compiler,
assembler and linker has to be set. If special options are required, they are described in
the hardware specific manual.

8.3.1 Include Paths

The operating system is delivered with include files in the subdirectory

root\HwPlatform\include (osCAN style) or root\BSW\Os (MICROSAR style).

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

130 / 136

9 AUTOSAR Standard Compliance

9.1 Deviations

Currently no known deviations

9.2 Limitations

9.2.1 API Function OS_GetVersionInfo

The function

void OS_GetVersionInfo(Std_VersionInfoType *version info)

is not supported by MICROSAR OS. The version information can be collected by the
following #defines:

Vendor ID OS_VENDOR_ID

Module ID OS_MODULE_ID

Major version number OS_SW_MAJOR_VERSION

Minor version number OS_SW_MINOR_VERSION

Patch version number OS_SW_PATCH_VERSION

9.2.2 Forcible Termination

MICROSAR OS does currently not support forcible termination. The only possible reaction
on a protection error is to shutdown the system.

9.2.3 AUTOSAR Debug support

MICROSAR OS does not provide any variables and type definitions for AUTOSAR
Debugging (See requirements OS549-551 in [1]). The suggested way to gather information
about the internals of the OS is to use the ORTI feature supported by MICROSAR OS.

9.2.4 Port Interface

The Port interface described by requirements OS560, OS561 in [1] is not supported by
MICROSAR OS.

9.2.5 NULL Pointer Checks

Null pointer checks described by requirements OS566 is [1] are not implemented in
MICROSAR OS.

9.2.6 SafeContext specific limitations

In order to achieve a safe execution environment and fulfill the requirement for reduced
complexity of ISO26262, the following OSEK/AUTOSAR OS features are not implemented
in MICROSAR OS SafeContext.

> Pre- and PostTaskHook as well as ISRHooks are only supported as a debug feature
and not released for use in safety environments.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

131 / 136

> Application specific hook routines are not supported.

> Forcible termination of Tasks, ISRs or OS-Applications is neither supported through the
service TerminateApplication, nor as a reaction to a protection violation.

> All checks of the OS must be turned on any time (StackMonitoring, OSInternalChecks).

> ORTI Debug information is always recorded and cannot be turned off.

> Internal resources are not supported.

> StartupHook, ErrorHook, ShutdownHook and ProtectionHook cannot be turned off in the
configuration.

Further restrictions may be found in [5] and/or [9].

On the other hand, there are additional features and measures implemented in
MICROSAR OS SafeContext to increase safety:

> StartOS is protected against calls from non-trusted code to avoid unintended reboot.

> An API is provided to allow protected access to peripherals (either by peripheral
protection subsystem if provided by the hardware, or by memory protection, see [5] for
details). However, trusted applications are always granted full access to all peripherals.

> A global Shared Memory Area allows quick exchange of non-critical data between OS-
Applications.

> Non-trusted functions allow a safe execution of non-trusted code triggered by trusted
code.

> A user configuration version can be freely assigned and read via an API
(osGetConfigBlockVersion), allowing verification that the correct configuration is used
during runtime.

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

132 / 136

10 Debugging Support

10.1 Kernel aware Debugging

All implementations of MICROSAR OS support kernel-aware debugging according to the
ORTI specification. On some platforms, proprietary solutions are available.

Refer to the hardware specific documentation [4] for details.

10.2 Version and Variant Coding

The version and the variant are coded into the generated binary or HEX file. The user has
the possibility to read version and variant using an emulator, or if the electronic control unit
is accessible via the CCP protocol via the CAN bus.

The generator writes version and variant information into a structure, defined in osek.h.

typedef struct

{

 osuint8 ucMagicNumber1; /* magic number: */

 osuint8 ucMagicNumber2; /* defined as uint8 for independency of */

 osuint8 ucMagicNumber3; /* byte order */

 osuint8 ucMagicNumber4;

 osuint8 ucSysVersionMaj; /* version of operating system, Major */

 osuint8 ucSysVersionMin; /* version of operating system, Minor */

 osuint8 ucGenVersionMaj; /* version of code generator */

 osuint8 ucGenVersionMin; /* version of code generator */

 osuint8 ucSysVariant1; /* general variant coding 1 */

 osuint8 ucSysVariant2; /* general variant coding 2 */

 osuint8 ucOrtiVariant; /* ORTI version and variant */

 … /* implementation specific variant coding */

} osVersionVariantCodingType;

The structure contains the version of the operating system (major and minor version
number), the version of the code generator used (major and minor version number),

information about the OS configuration bit-encoded into 8-bit values (ucSysVariantX)

and information about usage of the OSEK runtime interface (ORTI):

The magic number is defined as 0xAFFEDEAD and may be used for an identification of
the version in hex or binary files.

Bits Meaning Possible Values

0..1 Conformance Class 3: ECC2

2 Status Level 1: EXTENDED STATUS

3..4 Scheduling policy 2: mixed preemptive

5 Stack Check 1: enabled

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

133 / 136

Bits Meaning Possible Values

6 Error information level 0 STANDARD

7 OS internal checks 1 Additional

Table 10-1 Bit-definitions of the variant coding, ucSysVariant1

Bits Meaning Possible Values

0..1 Scalability Class 2: SC3 3: SC4

2 Usage of Schedule tables 0: no schedule tables in system

1: schedule tables are used

3 Usage of high resolution
schedule tables

0: no high resolution tables in system

1: high resolution schedule tables are used

4 Schedule table
synchronization

0: synchronization is not used

1: synchronization is used

5 Timing protection 0: timing protection is used

1: timing protection is switched off

Table 10-2 Bit-definitions of the variant coding, osSysVariant2

Bits Meaning Possible Values

0..6 ORTI version 0x22: ORTI 2.2 used

7 ORTI additional information 1: The full set of ORTI information is provided by the
OS

Table 10-3 Bit definitions of the variant coding, osOrtiVariant

The data for the structure is located in the constant oskVersionVariant and specified in the
OS module osek.c.

The structure also contains implementation specific variant coding which is described in
the separate documentation [4].

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

134 / 136

11 Glossary and Abbreviations

11.1 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

CCP CAN Calibration Protocol

COM Communication (= module COM in AUTOSAR/MICROSAR)

CPU Central Processing Unit

ECU Electronic Control Unit

EPROM Erasable Programmable Read Only Memory

EEPROM Electrically Erasable Programmable Read Only Memory

HIS Hersteller Initiative Software

IRQ Interrupt ReQuest

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

NM Network Management (= module NM in AUTOSAR/MICROSAR)

NMI Non Maskable Interrupt

OIL OSEK Implementation Language

ORTI OSEK RunTime Debugging Interface

OS Operating System

OSEK Abbreviation of the German term "Offene Systeme und deren
Schnittstellen für die Elektronik im Kraftfahrzeug" - Open Systems and
the Corresponding Interfaces for Automotive Electronics

RAM Random Access Memory

ROM Read-Only Memory

SC1, SC2, SC3, SC4 Scalability Class 1, -2, -3, -4

SEooC Safety Element out of Context; a safety related element, which is not
developed for a specific item

SRS Software Requirement Specification

SWC Software Component

SWS Software Specification

WCET Worst Case Execution Time

XML Extensible Markup Language

Table 11-1 Abbreviations

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

135 / 136

11.2 Terms

Terms Description

Forcible Termination Forcible termination means that a task, an ISR or even a whole OS
application is terminated before it has reached its end. This may be
caused by a call of the API function TerminateApplication or by returning
certain values in the protection hook.

Killing The term ‘killing’ is used as a synonym for forcible termination within this
document.

Process The term ‘process’ is used within this document as a short form of ‘task or
ISR’.

Thread The term ‘thread’ is used as a synonym of the term ‘process’ within this
document.

Table 11-2 Terms

Technical Reference MICROSAR OS SafeContext

2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

136 / 136

12 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

For support requests you may write to osek-support@vector.com

http://www.vector.com/
mailto:osek-support@vector.com

	MICROSAR OS SafeContext
	Technical Reference
	Version 9.01
	Document Information
	History
	Scope of the Document
	Illustrations
	Tables
	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.2 Main Functions
	3.2.1 Timer and Alarms
	3.2.1.1 Time Base
	3.2.1.1.1 Counter Macros
	3.2.1.1.2 Temporal Range of Alarms

	3.2.1.2 Timer Interrupt Routine
	3.2.1.2.1 Counter API
	1.1.1.1.1.1 Initialization
	1.1.1.1.1.2 Read Counter
	1.1.1.1.1.3 Increment Counter

	3.2.2 Stack Handling
	3.2.2.1 Task Stack
	3.2.2.2 Interrupt Stack
	3.2.2.3 Stack Monitoring
	3.2.2.4 Stack Usage

	3.2.3 Interrupt Handling
	3.2.3.1 Interrupt Categories
	3.2.3.1.1 Category 1:
	1.1.1.1.1.4 Exceptions and SC2, SC3, SC4

	3.2.3.1.2 Category 2:

	3.2.3.2 Usage of the Interrupt API before StartOS

	3.2.4 Timing Protection
	3.2.4.1 Reaction on Protection Failure
	3.2.4.2 Timing Measurement
	3.2.4.2.1 Timing measurement configuration for a specific task/ISR
	3.2.4.2.2 Global configuration of timing measurement

	3.2.4.3 Hook functions

	3.2.5 Memory Protection
	3.2.6 Schedule Tables
	3.2.6.1 Synchronization
	3.2.6.1.1 Starting a synchronizable Schedule Table
	3.2.6.1.2 Autostart
	3.2.6.1.3 Suspending a Schedule Table and keeping its Synchronization
	3.2.6.1.4 Providing a Global Time
	3.2.6.1.5 Exact Synchronization
	3.2.6.1.6 Limits of the Synchronization Algorithm
	3.2.6.1.7 Details about using NextScheduleTable
	3.2.6.1.8 Concurrent Actions

	3.2.6.2 High-Resolution Schedule Tables
	3.2.6.2.1 Setup

	3.2.6.3 Cyclical Expiry Point Actions

	3.2.7 Trusted Functions
	3.2.7.1 Generated Stub Functions

	3.3 Error Handling
	3.3.1 Error Messages
	3.3.2 OSEK / AUTOSAR OS Error Numbers
	3.3.3 MICROSAR OS Error Numbers
	3.3.3.1 Error Numbers of Group Task Management / (1)
	3.3.3.2 Error Numbers of Group Interrupt Handling / (2)
	3.3.3.3 Error Numbers of Group Resource Management / (3)
	3.3.3.4 Error Numbers of Group Event Control / (4)
	3.3.3.5 Error Numbers of Group Alarm Management / (5)
	3.3.3.6 Error Numbers of Group Operating System Execution Control / (6)
	3.3.3.7 Error Numbers of Schedule Table Control / (7)
	3.3.3.8 Error Numbers of Group Counter API / (8)
	3.3.3.9 Error Numbers of Group Timing Protection and Timing Measurement / (9)
	3.3.3.10 Platform specific error codes (A)
	3.3.3.11 Error Numbers of Group Application API (B)
	3.3.3.12 Error Numbers of Group Semaphores (C)
	3.3.3.13 Error Numbers of Group MultiCore related functions (D)
	3.3.3.14 Error Numbers of Group (Non-)TrustedFunctions (E)
	3.3.3.15 Error Numbers of Group IOC (F)

	3.3.4 Reactions on Error Situations

	4 Installation
	4.1 Installation Requirements
	4.2 Installation Disk
	4.3 OIL Configurator
	4.3.1 INI Files of the OIL Tool
	4.3.2 OIL Implementation Files
	4.3.3 Code Generator

	4.4 OSEK Operating System
	4.4.1 Installation Paths

	4.5 XML Configurations
	4.5.1 Parameter Definition Files

	5 Integration
	5.1 Scope of Delivery
	5.1.1 Static Files
	5.1.2 Dynamic Files
	5.1.2.1 Code Generator GENxxxx
	5.1.2.1.1 Generated file libconf

	5.1.2.2 Application Template Generator GENTMPL

	5.2 Include Structure

	6 API Description
	6.1 Standard API - Overview
	6.2 API Functions defined by Vector - Overview
	6.3 Timing Measurement API
	6.3.1 GetTaskMaxExecutionTime
	6.3.2 GetISRMaxExecutionTime
	6.3.3 GetTaskMaxBlockingTime
	6.3.4 GetISRMaxBlockingTime
	6.3.5 GetTaskMinInterArrivalTime
	6.3.6 GetISRMinInterArrivalTime

	6.4 Implementation specific Behavior
	6.4.1 Interrupt Handling
	6.4.1.1 EnableAllInterrupts
	6.4.1.2 DisableAllInterrupts
	6.4.1.3 ResumeAllInterrupts
	6.4.1.4 SuspendAllInterrupts
	6.4.1.5 ResumeOSInterrupts
	6.4.1.6 SuspendOSInterrupts

	6.4.2 Resource Management
	6.4.2.1 GetResource
	6.4.2.2 ReleaseResource

	6.4.3 Execution Control
	6.4.3.1 StartOS
	6.4.3.2 ShutdownOS

	6.5 Hook Routines
	6.5.1 Standard Hooks
	6.5.1.1 StartupHook
	6.5.1.2 PreTaskHook
	6.5.1.3 PostTaskHook
	6.5.1.4 ErrorHook
	6.5.1.5 ShutdownHook
	6.5.1.6 ProtectionHook

	6.5.2 ISR Hooks
	6.5.2.1 UserPreISRHook
	6.5.2.2 UserPostISRHook

	6.5.3 Alarm Hook
	6.5.3.1 PreAlarmHook (currently not supported)

	6.5.4 MICROSAR OS Timing Hooks
	6.5.4.1 Hooks for arrival
	6.5.4.1.1 OS_VTH_ACTIVATION
	6.5.4.1.2 OS_VTH_SETEVENT
	6.5.4.1.3 OS_VTH_TRANSFER_SEMA

	6.5.4.2 Hook for context switch
	6.5.4.2.1 OS_VTH_SCHEDULE

	6.5.4.3 Hooks for locking
	6.5.4.3.1 OS_VTH_GOT_RES
	6.5.4.3.2 OS_VTH_REL_RES
	6.5.4.3.3 OS_VTH_REQ_SPINLOCK
	6.5.4.3.4 OS_VTH_GOT_SPINLOCK
	6.5.4.3.5 OS_VTH_REL_SPINLOCK
	6.5.4.3.6 OS_VTH_TOOK_SEMA
	6.5.4.3.7 OS_VTH_REL_SEMA
	6.5.4.3.8 OS_VTH_DISABLEDINT
	6.5.4.3.9 OS_VTH_ENABLEDINT

	6.6 Non-Trusted Functions
	6.6.1 Functionality
	6.6.2 API

	6.7 MPU Access Checking API
	6.8 Peripheral Regions
	6.8.1 Reading functions
	6.8.2 Writing functions
	6.8.3 Modifying functions

	7 Configuration
	7.1 Configuration and generation process
	7.1.1 XML Configuration
	7.1.2 OIL Configurator

	7.2 Configuration Variants
	7.3 Configuration of the XML / OIL Attributes
	7.3.1 OS
	7.3.1.1 ProtectionHookReaction / OsOSProtectionHookReaction
	7.3.1.2 TimingMeasurement / OsOSTimingMeasurement
	7.3.1.3 PeripheralRegion / OsOSPeripheralRegion

	7.3.2 Task
	7.3.2.1 AUTOSTART / OsTaskAutostart
	7.3.2.2 TIMING_PROTECTION / OsTaskTimingProtection
	7.3.2.3 Task attributes concerning the timing analyzer

	7.3.3 Counter
	7.3.4 Alarm
	7.3.4.1 ACTION / OsAlarmAction
	7.3.4.2 AUTOSTART / OsAlarmAutostart

	7.3.5 Resource
	7.3.6 Event
	7.3.7 ISR
	7.3.7.1 UseSpecialFunctionName / OsIsrUseSpecialFunctionName
	7.3.7.2 TIMING_PROTECTION / OsIsrTimingProtection
	7.3.7.2.1 LOCKINGTIME / OsIsrResourceLock

	7.3.7.3 ISR Attributes concerning the Timing Analyzer

	7.3.8 COM
	7.3.9 NM
	7.3.10 APPMODE / OsAppMode
	7.3.11 Application / OsApplication
	7.3.11.1 Trusted Functions

	7.3.12 Scheduletable
	7.3.12.1 AUTOSTART / OsScheduleTableAutostart
	7.3.12.2 EXPIRY_POINT / OsScheduleTableExpiryPoint
	7.3.12.3 Expiry point action ADJUST
	7.3.12.4 Expiry point action ACTIVATETASK
	7.3.12.5 Expiry point action SETEVENT
	7.3.12.6 LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION / OsScheduleTableSync

	8 System Generation
	8.1 Code Generator
	8.1.1 Generated Files
	8.1.2 Automatic Documentation
	8.1.3 Conditional Generation
	8.1.4 Generated files backup

	8.2 Application Template Generator
	8.3 Compiler
	8.3.1 Include Paths

	9 AUTOSAR Standard Compliance
	9.1 Deviations
	9.2 Limitations
	9.2.1 API Function OS_GetVersionInfo
	9.2.2 Forcible Termination
	9.2.3 AUTOSAR Debug support
	9.2.4 Port Interface
	9.2.5 NULL Pointer Checks
	9.2.6 SafeContext specific limitations

	10 Debugging Support
	10.1 Kernel aware Debugging
	10.2 Version and Variant Coding

	11 Glossary and Abbreviations
	11.1 Abbreviations
	11.2 Terms

	12 Contact

