vector”

MICROSAR OS SafeContext
Technical Reference

Version 9.01

Status Released
Document ID 0S01.0280



Technical Reference MICROSAR OS SafeContext

Document Information

History

vector’

S S 2 [

creation based on AUTOSAR 3.0 version

Shk

Biv
Zfa
Asl

Asl

Asl

Rk

©2015, Vector Informatik GmbH

2012-06-26
2013-09-18

2014-02-04
2014-05-05
2014-08-14

2014-10-16

2015-01-29

2015-06-17

6.00
6.01

6.02
6.03
8.00

8.01

9.00

9.01

SingleSource template applied and

variants for ASR3.x, ASR4.x, SafeContext

and non-SafeContext prepared
MultiCore references corrected
Updated timer description
Examples chapter excluded
TimingAnalyzer removed

Updated counter related macros and
configuration

Added PeripheralRegion API
Added Non-Trusted Function API
Added CheckMPUAccess API

Updated interpretation of
OsSecondsPerTick and
OsCounterTicksPerBase

Added MICROSAR OS Timing Hooks
Added table of terms to the glossary

Added the information that forcible
termination is currently not supported

Version: 9.01

based on template version 4.3

2/136



Technical Reference MICROSAR OS SafeContext VeCtOf'

Reference Documents

No. |Title Version
[1] AUTOSAR_SWS_OS.pdf V5.0.0

AUTOSAR OS specification; This document is available in PDF-format on the
internet a the AUTOSAR homepage (http://www.autosar.org)

[2] AUTOSAR_TR_BSWModuleList.pdf 1.6.0
[3] OSEK/VDX Operating System Specification 2.2.3

This document is available in PDF-format on the Internet at the OSEK/VDX
homepage (http://www.osek-vdx.org)

[4] TechincalReference_Microsar_Os_Multicore.pdf 1.00

[5] TechnicalReference MicrosarOS_xxxx.pdf --
Technical reference of Vector MICROSAR OS; Hardware specific part

[6] OIL: OSEK Implementation Language 2.3

This document is available in PDF-format on the Internet at the OSEK/VDX
homepage (http://www.osek-vdx.org)

[7]  Tutorial_osCAN.pdf 1.00
Tutorial for the MICROSAR OS OSEK/AUTOSAR Realtime Operating System
[8] autosar.xsd 4.0.3

AUTOSAR XML schema
[9] MicrosarOS_xxxx_SafeContext SafetyManual.pdf --
Application Conditions for SEooC; Implementation specific document

Scope of the Document

MICROSAR OS is an operating system, compliant with the AUTOSAR OS and OSEK
standards. The general aspects of all SafeContext implementations are described in this
document. For each implementation, the hardware specific part is described in a separate
document [4].

The implementation is based on the AUTOSAR OS specification [1].
It is also based on the OSEK OS specification 2.2 described in the document [3].

As a SEo00C, it is further based on assumptions regarding safety requirements. Details can
be found in [9].

This documentation assumes that the reader is familiar with both the OSEK OS
specification and the AUTOSAR OS specification.

This documentation describes only the operating system and the code generation tool.

OSEK is a registered trademark of Continental Automotive GmbH (until 2007: Siemens
AG).

©2015, Vector Informatik GmbH Version: 9.01 3/136

based on template version 4.3


http://www.autosar.org/
http://www.osek-vdx.org/
http://www.osek-vdx.org/

Technical Reference MICROSAR OS SafeContext VeCtOf

Caution

{ ' }I: We have configured the programs in accordance with your specifications in the
guestionnaire. Whereas the programs do support other configurations than the one
specified in your guestionnaire, Vector’'s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
guestionnaire.

©2015, Vector Informatik GmbH Version: 9.01 4/136



Technical Reference MICROSAR OS SafeContext Vector

Contents

1 COMPONENT HISTOIY coiiiiiiiiiiiiiiiiiieee ettt 14

B2 | 011 o Yo LU o3 £ o ) o PP 15
2.1 ArChItECIUrE OVEIVIEW ... e e e e e e e 15

O UL e To Aol g Fo LI D=t of ] ] { o] o SN 17
3.1 FRALUIES ...ttt 17
3.2 MaIN FUNCHIONS ..o 17
3.2.1 BT T=T = Vg To AN F= T 1 3PP 18
3.2 1.1 TIME BASE ..iiiiiiiiiiiiiieeeeee ettt 19
7 I It R @01 U 1 (=) g 1 = o o 1= SRR 19
3.2.1.1.2 Temporal Range of Alarms ..........cooviiiiiiiiiiiiiiiiiiieeeeeeee e 19
3.2.1.2  Timer INterrupt ROULINE......coi i 19
T I R @ 11 1 (=1 g2 = PP PPPPPP 19
3.2.2 Stack HandliNg ......couviuiiiiiiee e e e e e aaaen 20
3.2.2. 1 TASK SEACK....ciiiiiiiiiiiiiiiieeeeee e 20
3.2.2.2  INEEITUPE SEACK ...ceiiiiiiiiiiiiieeeeeeee e 20
T2 TS = (o |V (o 11 (o ] o TSR 21
3.2.214  SEACK USAQE ....cciiiiiiiiiiiiiiieeeeeee ettt 21
3.2.3 Interrupt Handling.........oooooiiii 21
3.2.3.1 INErTUPL CatEQOIIES. . ..ouuiieie i e e eee et e e e e e e e e e e e e e e e ar e e eaeas 22
B.2.3.1.1 CaAlEgONY L ittt e et 22
G T2 T I O 1 =T [0 1Y/ 22
3.2.3.2 Usage of the Interrupt APl before StartOS.........cccooooiiiiiiiiii e, 23
3.24 TIMING PrOtECTION ...t 24
3.2.4.1 Reaction on Protection Failure ... 24
3.2.4.2  TimMING MEASUIEIMENT.......ciiiiiiiiiiiiiiiiiii ettt 24
3.2.4.2.1 Timing measurement configuration for a specific task/ISR .............ccccccceveee. 25
3.2.4.2.2 Global configuration of timing measurement ...........c.cccovvviiieeieeeeeeeeviieee e, 25
3.2.4.3  HOOK fUNCLONS ...uuiii et e e e e e e e e e e e an s 26
3.25 MEMOrY ProteCtiON .......cooiiiieieeeeeeee e 26
3.2.6 Schedule TabIes........ e e eeeees 27
3.2.6.1  SYNCRIONIZALION......ccoeiiiieieeeeee e 27
3.2.6.1.1 Starting a synchronizable Schedule Table ... 27
3.2.6.1.2 AULOSTAIT . ..o et e ettt e e e e 27
3.2.6.1.3 Suspending a Schedule Table and keeping its Synchronization .................... 28
3.2.6.1.4 Providing @ Global TIMe ......cooeiii e 28
3.2.6.1.5 EXact SYNChronization ..o 28

©2015, Vector Informatik GmbH Version: 9.01 5/136



Technical Reference MICROSAR OS SafeContext Vector

3.2.6.1.6 Limits of the Synchronization AlgOrithm ... 29
3.2.6.1.7 Details about using NextScheduleTable ...........cccoooiiiiiiiiiiin e, 30
3.2.6.1.8 CONCUITENT ACLIONS ...ceeiiiiiee e e e ettt e ettt e e e e e e e et e e e e e e e e eaeetnnaaeeeeeas 30
3.2.6.2 High-Resolution Schedule TablesS...........cccoiviiiiiiii e, 30
I G Tt R Y= U | o PP 31
3.2.6.3  Cyclical EXpiry POINTACLONS ......ccoviiiiiiiiiiiiiiiiiiieeieeeeeeeeee et 31
3.2.7 TrUSEEA FUNCLONS. ...ttt annennnes 31
3.2.7.1 Generated StUb FUNCHONS.........ooiiiiiiiie e 31
3.3 Error Handling ......cooo oo 33
3.3.1 o] Y ST T= T [ P 33
3.3.2 OSEK /AUTOSAR OS Error NUMDErS .........ooiiiiiiieeeiee e 33
3.3.3 MICROSAR OS Error NUMDEIS ...oocviiiiieei et e e 34
3.3.3.1  Error Numbers of Group Task Management / (1) ........ccccceveeeeieeeiiieiiiiiineeeenn, 35
3.3.3.2  Error Numbers of Group Interrupt Handling / (2).........ccovvveiiiiiiiiiiiiiiiiiiiiinnnn, 37
3.3.3.3  Error Numbers of Group Resource Management / (3) .....cccceeveeeeiveeiiiiiinnneennn. 39
3.3.3.4  Error Numbers of Group Event Control / (4) .....cceeeeeeeiveeiiiiieeeeeeeeeeeveee e 40
3.3.3.5 Error Numbers of Group Alarm Management / (5) ......ccccccvvvvviiiiiiiiiiiiiiinnnnnnn. 42
3.3.3.6  Error Numbers of Group Operating System Execution Control / (6)............... 44
3.3.3.7  Error Numbers of Schedule Table Control / (7) ..., 46
3.3.3.8  Error Numbers of Group Counter APl / (8).......ccouviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeee 49
3.3.3.9  Error Numbers of Group Timing Protection and Timing Measurement / (9).... 51
3.3.3.10 Platform SpecifiC €rror COUES (A) ....eiviiiiiiiiiiiiiiiiiiiiieiieeeeeeeeee e 53
3.3.3.11 Error Numbers of Group Application APl (B)......ccccooeiiiiiiiiiiiiiieeeeeeeeieee e, 53
3.3.3.12 Error Numbers of Group Semaphores (C) ......ccceeeveeeiiiiiiiiiiiiieeeeeeeeeee e 54
3.3.3.13 Error Numbers of Group MultiCore related functions (D) ...........cccovvvvvvvrennnnnn. 55
3.3.3.14 Error Numbers of Group (Non-)TrustedFunctions (E) ........ccccoeeeviiiiiiiiieenneeen. 55
3.3.3.15 Error Numbers of Group IOC (F) ...ccoviiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeee 56
3.34 Reactions on Error SitUatioNS...........uuuuiiiiie e e e 56
A INSTAIIALION L. 57
4.1 Installation REQUIFEMENTS .......iiiieiieeeeicee e e e e e e ar s 57
4.2 INSLANALION DISK ... e eeeieeeeeee e e e e et e e e e e e eeeeeenes 57
4.3 OIL CONFIQUIALON......utiiiiie e eee e e e e e e et e e e e e e e e e eat s e e eeaaeeennes 58
431 INI Files Of the OIL TOOI .......uiiiiee e 58
4.3.2 OIL IMpPIemMeNtation FileS...........uuuuiiiiiiiiiiiiiiiiiiiiiiiieieieeeee bbb eeeeeeeeeeeeeeenee 58
433 (OfaTo [ CT=T 0[] 7= (o] USRS 58
4.4 OSEK OPErating SYSTEIM.......uuuuuuuuuureiiuiiuiennnnnuennennennnnsnnesnsnnneneneeeneennes 58
44.1 INStallation PathS..........ooeiiiiii e 58
4.5 XML CONfIQUIALIONS ...ttt e et e e e e e e e e e eeenea e e e e eeeeenenes 59
45.1 Parameter Definition FileS ..........ccoveeiiiiiiii e 59

©2015, Vector Informatik GmbH Version: 9.01 6/136



Technical Reference MICROSAR OS SafeContext Vector

LI [ a1 =T o =1 o ] o PP 60
5.1 SCOPE OF DEIIVEIY .. 60
51.1 Y= 1ol ][ 60
5.1.2 DYNAMIC FIlES...uueiiiii e e e e e 60
5.1.2.1 Code GeNerator GENXXXX ... cuiteeetieeeuuuuaaseeeaeeeeenennaaseeaaeeeeennnnaaaeaeeeeeenennnns 60
5.1.2.1.1 Generated file lIDCONT ........oueiiii s 60
5.1.2.2 Application Template Generator GENTMPL .........ccccoooeiiiiiiiiiiiiiie e, 61
5.2 INCIUAE SLIUCLUIE ... e e e e e e e e eeeen s 61

LI N o B B TC Yot AT o) {0 ISP 62
6.1 Standard APL - OVEIVIEW .........uuuuiiii e e e e et e e e e e eaaeees 62
6.2 API Functions defined by Vector - Overview............cccceeeeeieeeeeeee, 65
6.3 Timing MeasuremMent AP ...... ... e 66
6.3.1 GetTaskMaXEXECULIONTIME .....uuuuie i eee et e e e e e e eeaeees 66
6.3.2 GetISRMaxXEXECULIONTIME ....cvviiiieieeeee s e et e e e e e s e e e e e eeneees 67
6.3.3 GetTaskMaxBIOCKINGTIME ........uuuiiii e e e eeeees 67
6.3.4 GetlSRMaxBIoCKINGTIME .....coviiiiii e e e e eaeees 68
6.3.5 GetTaskMInINterArriValTIME .........ie e e e e e eaeees 69
6.3.6 GetlSRMININGEIAMIVAITIME ....coiiiee e e e e e e aaeees 70
6.4 Implementation specific Behavior.............ccccoo 70
6.4.1 Interrupt Handling.........oooooiiii 70
6.4.1.1 ENaABICAIIINIEITUPLS ... oot e e e e e e e 71
6.4.1.2  DisableAllINTEITUPLS .....cooeeieeeeeeeee e 72
6.4.1.3 ReSUMEAIIINIEITUPLS ......ooviiiiiiei e e e e e e e e e e ar s 72
6.4.1.4  SUSPENAAIIINTEITUPLS ....ooiiiiiiiii i e e e e e e e 73
6.4.1.5 ReSUMEOSINTEITUPLS.....oomiiiiiii et e e e e e eeee s 74
6.4.1.6  SUSPENAOSINIEITUPLS ....coviiiiiei e e e e e e e e e e e e et e e e e e eeeraaaaas 75
6.4.2 Resource Management...........ooveeiiiiii e 76
B.4.2.1  GEIRESOUICE ... .ceiii ittt e et e et e et e e e e et e e e eaaa s 76
6.4.2.2  REIEASERESOUICE.......ccciieeiiicee et e e et e e e e e e e ear s 77
6.4.3 = To 11 T0] o I @] o 1o | PSP 78
B.4.3.1  StAOS ..o 78
6.4.3.2  ShUtdOWNOS ... 79
6.5 HOOK ROULINES.....ouiiiciiiie et eea e e e e et 80
6.5.1 Standard HOOKS........uuiiiiiiii e e e e et e e e e e e e eaa e eeees 80
6.5.1.1  StArtUPHOOK ... 80
B.5.1.2  PreTaskHOOK.........uci it e et eeaaa s 81
6.5.1.3  POSITASKHOOK .....cuuniiieiiii et e e e e e e e e e e e e e aaa s 81
B.5.1.4  EFTOIHOOK......u ittt et e et e e e e at e e e aaa s 82
6.5.1.5  SHULdOWNHOOK ........ciiiiiiiee et e et e e aaa s 82
R T00 Y G T o 0] (= ox 1 o] ] = o o 83

©2015, Vector Informatik GmbH Version: 9.01 71136



Technical Reference MICROSAR OS SafeContext Vector

6.5.2 ISR HOOKS ... 83
6.5.2.1  USEIPrelSRHOOK........ccooiiiiieeeeeeee e 83
6.5.2.2  USEIPOSLISRHOOK ......cciiiiiiiiiii e e e e 84
6.5.3 AJGIMN HOOK .. 85
6.5.3.1 PreAlarmHook (currently not supported) ..........oouviiiiiiieiiic e, 85
6.5.4 MICROSAR OS Timing HOOKS ......ccooeiieieieeeeeeeee e, 85
6.5.4.1  HOOKS fOr @rrival.........ccoooiiiiiie 86
6.5.4.1.1 OS_VTH_ACTIVATION ..ottt 86
6.5.4.1.2 OS_VTH_SETEVENT ...coiiiiiii e 86
6.5.4.1.3 OS_VTH_TRANSFER_SEMA......ccoiii, 87
6.5.4.2  HOOK for CONtext SWILCH .........coiiiiiiicie e 88
6.5.4.2.1 OS_VTH_SCHEDULE ........coiiiiiiii e, 88
6.5.4.3  HOOKS fOr IOCKING ... ..ceeiiiiiiiiie e e e 89
6.5.4.3.1 OS_VTH_GOT_RES ..., 89
6.5.4.3.2 OS_VTH_REL_RES.......coii i, 90
6.5.4.3.3 OS_VTH_REQ_SPINLOCK .....ccoiiiiiiiiee e, 90
6.5.4.3.4 OS_VTH_GOT_SPINLOCK .....coiiiiiiiieeee e, 91
6.5.4.3.5 OS_VTH_REL_SPINLOCK .....ccoiiiieiieee e 92
6.5.4.3.6 OS_VTH_TOOK_SEMA ..., 93
6.5.4.3.7 OS_VTH_REL_SEMA ..., 93
6.5.4.3.8 OS_VTH_DISABLEDINT ...ccoiiiiiiii e 94
6.5.4.3.9 OS_VTH_ENABLEDINT ...cooiiiiiiii e, 95
6.6 NON-Trusted FUNCLIONS ........cooiiiiiieeeeeee e 95
6.6.1 FUNCHONAITY ..eevti e e e e e e e e er s 95
6.6.2 AP 96
6.7 MPU Access CheCKiNg APL.........coooiii e 96
6.8 Peripheral REQIONS........cooo i 97
6.8.1 Reading fUNCHIONS .......oooiiiieeeeee e 97
6.8.2 WIHEING FUNCHIONS... ..o e 98
6.8.3 MOodifying FUNCHIONS .....oooiiiiieee e 99
B 10T 1 To [0 1= 110X o 1 100
7.1 Configuration and generation PrOCESS..........uceeieeeeeieiiiiiiie e e e e 100
7.1.1 XML CONFIQUIATION. ... et e e e e e e e e eeaetaa e e e e aeeeeenees 100
7.1.2 OIL CONTIGUIALON ...ttt eeeennnes 101
7.2 Configuration VariantS ..........ooeiiieii e 101
7.3 Configuration of the XML / OIL AttrDULES..........uuueeiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeannns 101
7.3.1 O 1 TSP 102
7.3.1.1 ProtectionHookReaction / OsOSProtectionHookReaction ................ccc........ 105
7.3.1.2 TimingMeasurement / OsOSTimingMeasurement .............cccoeeeeeeeeeeeeeeeeeenn. 106
7.3.1.3 PeripheralRegion / OsOSPeripheralRegion............ccceevviieiiiiiiiiieeeeeeeiiiinnn. 107

©2015, Vector Informatik GmbH Version: 9.01 8/136



Technical Reference MICROSAR OS SafeContext Vector

7.3.2 = TS G 107
7.3.2.1 AUTOSTART / OSTaSKAULOSIAIT ........cceeeeeeieeeeeeeeeeeeeeeeeeeee e 109
7.3.2.2 TIMING_PROTECTION / OsTaskTimingProtection ..............ccoeeeeeeeeeeeeeeeenn. 109
7.3.2.3 Task attributes concerning the timing analyzer ............ccccccovveeiiiieeereeeeiiinnnnn. 110
7.3.3 COUNLET ..ottt e e e e ettt et e e e e e e e e e eetbba e e eeaeas 111
7.34 Y = 4 0 112
7.3.4.1 ACTION / OSAIGIMACHON ....ccoieeeeeeeeeeeeeeeeee e 113
7.3.4.2 AUTOSTART / OSAIArMAULOSTAI .....evveieieeeeeeeeiiiiiee e et e e 114
7.3.5 RESOUICE. ...ttt e ettt e e e et e e e eaa e e e eaaans 115
7.3.6 Y= o | TP UPPPPPPPPTPR 116
7.3.7 LS R 116
7.3.7.1  UseSpecialFunctionName / OslsrUseSpecialFunctionName....................... 117
7.3.7.2 TIMING_PROTECTION / OslsrTimingProtection............cccccceeeeveeeeecveenvnnnnnn. 118
7.3.7.2.1 LOCKINGTIME / OSISIRESOUICELOCK .......ccevveeiiiiiiieiee e 119
7.3.7.3 ISR Attributes concerning the Timing Analyzer ...........cccovviiiiieeieeeeceeeviinnn, 119
7.3.8 L R 120
7.3.9 NV 120
7.3.10  APPMODE / OSAPPMOUE. .....ccoe e 120
7.3.11  Application / OSAPPLICALION........ccoeieieieeee e 121
7.3.11.1  TruSted FUNCHONS.....cciiieiiiiieie e e e e e e e e e e e e e e e eeeeenas 122
7.3.12  Scheduletable ... 123
7.3.12.1 AUTOSTART / OsScheduleTableAutostart ...........ccoooeeevvieiiiiiiiieeeeeeeeeiinn, 123
7.3.12.2 EXPIRY_POINT / OsScheduleTableEXpiryPoint.............cccccceeeeeeeeeriiiiiiinnnnn. 124
7.3.12.3 Expiry point action ADJUST ......coooiiiiiiiiiiieceeceeeiee e 125
7.3.12.4 Expiry point action ACTIVATETASK ......ooviuiuereeieeeeeeeeeeeeseeeeesesseesen s 125
7.3.12.5 Expiry point action SETEVENT .......ooiiiiiiiiiiicin e 126
7.3.12.6 LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION /
OSSCheduleTabIESYNC ......ccoeeeeece e 126
IS VAT 1=T 0 4 I 1T aT=T = Lo PP 128
8.1 (O7eTo [ CT=T =] =1 (o] 128
8.1.1 L= =T = 1= 0 1= 128
8.1.2 Automatic DOCUMENTALION ......ccoeiieeeeeeeeeeeeeeeeeeee e 128
8.1.3 Conditional GENEIAtION........ccccviii e e e 129
8.1.4 Generated fileS DaCKUP .....oooiiie e 129
8.2 Application Template GENETator .............uuuuuuuuummuiiiiiiiiiiiiiiiiieieeeeeeeeeee 129
8.3 (0] 111 011 1= SRR 129
8.3.1 INCIUdE Paths ... e 129
9 AUTOSAR Standard ComMpPlianCe ......uciiiiieiiieeiiiei e e e e 130
9.1 DEVIALIONS ..evtieeieet e aeaaans 130

©2015, Vector Informatik GmbH Version: 9.01 9/136



Technical Reference MICROSAR OS SafeContext Vector

9.2 [0 1 = 11 0] 130
9.2.1 API Function OS_GetVersionInfo ..........cccccceeiiiieiiiiiie i 130
9.2.2 Forcible Termination ............ooii e 130
9.2.3 AUTOSAR DEDUY SUPPOIT....utiiiiii et e et s s e e e e e et eeeeeenanes 130
9.24 POrt INTEITACE. ... 130
9.25 NULL POINter ChECKS ......uueiiii e 130
9.2.6 SafeContext specific lIMItatioNS...........cccooveiiiiiii e 130
OB T=T 10 Ko To 1T g Lo TS TUT o] o] o SRR 132
10.1 Kernel aware DebUGQING .......coooeiiiiieeeeeeeee e 132
10.2 Version and Variant CodiNg ...........uuuuuuummmuumniiiiiiiiiiieiiii e 132
11 Glossary and ADBDreVviatioNS ........cooiiiiiiiii e e 134
111 ADDIEVIALIONS ... 134
11.2 =11 00T SO PU PRSPPI 135
i O] ] - T} ST P PP U PPPPTSTPPPPPPI 136

©2015, Vector Informatik GmbH Version: 9.01 10/136



Technical Reference MICROSAR OS SafeContext

llustrations

Figure 2-1
Figure 2-2
Figure 3-1
Figure 3-2
Figure 7-1
Figure 7-2

Tables

Table 3-1
Table 3-2
Table 3-3

Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 3-12
Table 3-13
Table 3-14
Table 3-15
Table 3-16
Table 3-17
Table 3-18
Table 3-19
Table 3-20
Table 3-21
Table 3-22
Table 3-23
Table 3-24
Table 3-25
Table 3-26
Table 3-27
Table 3-28
Table 3-29
Table 3-30
Table 4-1
Table 4-2
Table 5-1
Table 5-2
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6

©2015, Vector Informatik GmbH

AUTOSAR 3.X Architecture OVEIVIEW ...........ccuuuuiiiieeaeeieeiiiiaee e e eee e 15
AUTOSAR arChiteCture..........ccooviiiiiiii 15
FUNCHONAI PAITS ...ttt nnnenne 18
COUNLET IMIBICTOS ...ttt ettt ettt e et e et e e e et e e e e aea s 19
System overview of software parts.........ccccceeeviieiiiiiii e, 100
Relation between Physical Units, Counter Units and Driver Units............ 112
SUppPOrted SWS fEATUIES ........uuiiiiiiiiiiiiiiiiiii e 17
Not supported SWS fEAtUIES ........ciiie e 17
Interdependence between the OS attribute TimingMeasurement and

the task/ISR attribute TIMING PROTECTION ...cccuvvveeiirieieesiineneeseineeeenans 26
OSEK/AUTOSAR OS €rIror NUMDBDEIS ..ooeviiiiei e 33
Implementation specific error NUMDBErs ..........ccccceeiiiiiiiiiiice e, 34
0T g 1Y/ 012 TP 35
API functions of group Task Management / (1) ......ccccccovvvvviiiiiiiiiiiiniinnnnnn, 35
Error numbers of group Task Management / (1) ...........uevvvvemviemeeimmimmiennnnnns 37
API functions of group Interrupt Handling / (2) .....ccoooovvvviiiiiieieeeeeeinn, 38
Error numbers of group Interrupt Handling / (2) ........eevvvveveeiiiiiiiiiiiiiiiinnnns 38
API functions of group Resource Management/ (3) .....ccccccvvvvviiviiiiinnnnnn. 39
Error numbers of group Resource Management / (3)....cccceeeeevvveeiiieennennn. 40
API functions of group Event Control / (4).......ccceeeeieieiiiiiiiiiie e, 40
Error numbers of group Event Control / (4) ..........uuveeveviiiiiiemiiiiiiiiiiniiiiennnns 42
API functions of group Alarm Management / (5).......ccccovviiiiieieeeeeiieiniinnnnn. 42
Error numbers of group Alarm Management / (5) ........ccceeeeveeeeiiiiiiiiienneennn, 44
API functions of group Operating System Execution Control / (6) ............. 44
Error numbers of group Operating System Execution Control / (6) ........... 45
API functions of group Schedule Table Control / (7).......cccoceeeeiieeiiiiiiiinnnnnn. 46
Error numbers of group Schedule Table Control / (7) ...........euvvvviiiieiiiennnnns 49
API functions of group Counter API/ (8) ....ccovvvvviiiiiiiiiiiii 49
Error numbers of group Counter API/ (8) ...uueeeiiiieiiiiiieeee e, 50

API functions of group Timing Protection and Timing Measurement / (9) .. 51
Error numbers of group Timing Protection and Timing Measurement / (9) 53

API functions of group Application API/ (B) ......uceeeieeeiiiiiiiiieeeeeeeeceeviin, 53
Error numbers of group Application APl / (B)......cccoovviiiieiiiieeiiiiceee e, 54
API functions of group Semaphores / (C)........ccccvvviiiiiiiiiiiiiiiiiiii, 54
Error numbers of group Semaphores / (C) ........uvuueuemiiiiiiiiieiiiiiiiiiiiiiiiinnnnns 55
API functions of group (Non-)TrustedFunctions (E)........cccccceeeeieriiiiininnnnnn. 55
Error numbers of group (Non-)TrustedFunctions (E) ...........cccoeeeiiiiiinneeen. 56
Installed COMPONENTS.........covviiiiiiiiiii e 57
System configuration and generation to0IS .............couiiiiiiiieiiiiii e, 58
Files generated by code generator GENXXXX.......ccoevuuviiiiiieeeiiiiiiiiiaeeeeeee, 60
Variables generated into the file libconf...........ccccc 61
Standard API fUNCLIONS ........ooviiiiii e 65
VeCtor API FUNCHONS........ue e 66
GetTaskMaxXEXECULIONTIME ....uvveiieii e 67
GetISRMaxXEXeCULIONTIME.....cuuieii e e e 67
GetTaskMaxBIocKiNgTIME ....ooouuiiiieee e 68
GetISRMaxBIOCKINGTIME .. ..ciiiii et e e e e 69

Version: 9.01

vector’



Technical Reference MICROSAR OS SafeContext

Table 6-7 GetTaskMININtEerAMIVaITIME ......oooue e 70
Table 6-8 GetlSRMININTEIAITIVAITIME ... 70
Table 6-9 ENabICAIINTEITUPLES .ovvvreii e 71
Table 6-10 DisSabIEANINIEITUPDLS. ...uveii e e e e 72
Table 6-11 RESUMEAIINTEITUPLS .....eeeeeiiiieieieieieeee et 73
Table 6-12 SUSPENTAITNTEITUPES ...t 74
Table 6-13 RESUMEOSINIEITUPLS ... e e e e e 75
Table 6-14 SUSPENAOSINLEITUPLS .....ceeieeeeiiicee e e e e e e 76
Table 6-15 LCT = EoT0 10 [ (o = 77
Table 6-16 REIEASERESOUICE ... e aaa s 78
Table 6-17 )= (O S T 79
Table 6-18 SHULAOWNOS ... e e e e e s s e s eaaeeans 80
Table 6-19 SEAMTUPHOOK . ... 80
Table 6-20 PreTaskHOOK ........oiiiii e aaaas 81
Table 6-21 POSITASKHOOK. .....uiiiiiiiii ettt e e e e e e e e e e e eas 81
Table 6-22 [ 0] [0 0 82
Table 6-23 SHULAOWNHOOK .....cveeiiieeii e e e et e e e et e e e 83
Table 6-24 ProteCtioNHOOK ... .ccveiie e 83
Table 6-25 USEIPIEISRHOOK ......iiiii i e e eas 84
Table 6-26 USEIPOSISRHOOK ......coviiiiiieee e 84
Table 6-27 PreAlarmMHOOK .......ccoue e 85
Table 6-28 OS_VTH_ACTIVATION ...ttt 86
Table 6-29 OS _VTH _SETEVENT ...ttt 87
Table 6-30 OS_VTH_TRANSFER_SEMA ...t 88
Table 6-31 OS _VTH _SCHEDULE ..ot 89
Table 6-32 OS VTH GOT _RES ... et 90
Table 6-33 OS VTH REL RES ...t 90
Table 6-34 OS_VTH_REQ _SPINLOCK . .....tciii it 91
Table 6-35 OS _VTH_GOT _SPINLOCK . ....ttciiiiieeeeeeecie et 92
Table 6-36 OS_VTH_REL_SPINLOCK ..ottt 92
Table 6-37 OS _VTH _TOOK _SEMA ...t 93
Table 6-38 OS VTH_REL_SEMA ..ottt ettt e, 94
Table 6-39 OS VTH DISABLEDINT ..o 95
Table 6-40 OS_VTH _ENABLEDINT ... 95
Table 6-41 APl 0sCallNONTrUSIEAFUNCLION .......ccuuiiii e e e e 96
Table 6-42 OSCRECKMPUACCESS AP ... 97
Table 6-43 ReadPeripheral APl .........coo oo 98
Table 6-44 WHtEPEripPheral APl ..........eiiie e 99
Table 6-45 MOdIfyPeripheral AP ...... ... e i eeeeeeeeeeenne 99
Table 7-1 O8 AtTIDULES. ... e e 105
Table 7-2 Sub-attributes of ProtectionHookReaction = SELECTED............ccou........ 105
Table 7-3 Sub-attributes of TimingMeasurement = TRUE........uuuuueurmmmemmmemmmnnnnnnnn 107
Table 7-4 Sub-attributes of PeripheralRegion .uueeeeeueeiuieiiiiiiiiiiiieiiieneennnnnnnnne 107
Table 7-5 = 1S3 Q= L ] o101 (=N 109
Table 7-6 Sub-attributes of TASK->AUTOSTARTETRUE.....iiivieieieeeieeeieeeeiee e 109
Table 7-7 Sub-attributes of TASK-> TIMING PROTECTION=TRUE........ccccceevurernnne. 110
Table 7-8 Task attributes concerning the timing analyzer............ccooeeeeieieeeeeeeeeee, 111
Table 7-9 Attributes of COUNTER ......cun e 112
Table 7-10 ATIDULES OF ALARM ... e 113
Table 7-11 Sub-attributes of ACTION = ACTIVATETASK ......oviviieiieeieeeeeeeeeeeeis 114
Table 7-12 Sub-attributes of ACTION = SETEVENT ....oouiiiiiie e 114
Table 7-13 Sub-attributes of ACTION = ALARMCALLBACK .......c.couuiiiiiiieiiieeeieeeeen, 114
Table 7-14 Sub-attributes of AUTOSTART = TRUE .uuiiiniii e et et e e e eans 115

©2015, Vector Informatik GmbH

Version: 9.01

vector’



Technical Reference MICROSAR OS SafeContext

Table 7-15
Table 7-16
Table 7-17
Table 7-18

Table 7-19
Table 7-20
Table 7-21
Table 7-22
Table 7-23
Table 7-24
Table 7-25
Table 7-26
Table 7-27
Table 7-28
Table 7-29
Table 7-30
Table 7-31

Table 10-1
Table 10-2
Table 10-3
Table 11-1
Table 11-2

©2015, Vector Informatik GmbH

Attributes of RESOURCE ... 116
Sub-attributes of EVENT .....ooviiiiiii e 116
AHbULES OF ISR .o 117
Sub-attributes of UseSpecialFunctionname /
OslsrUseSpecialFUNCiONNEIME ...........uuuuuiiiiiiiiiiiiiiiiiieiiieeeeeeeeeees 117
Sub-attributes of TIMING PROTECTION / OslIsrTimingProtection........... 119
Sub-attributes of LOCKINGTIME / OslIsrResourceLocK.................uveuene. 119
ISR attributes concerning the timing analyzer............ccccooeeeeii e, 120
Attributes of Appmode / OSAPPMOTE.........ccovviiiiiiiiiiiiiiiieee 121
Attributes of Application / OsApplication............ccccceeiiieeiiiiiiiiiiie e, 122
Sub-attributes for trusted fUNCLIONS ............uuuiiiiiiiiiiiiiii, 122
Attributes of SCHEDULETABLE ..........coooviiiiiiiiieeeeeeeeeeeeeeee 123
Sub-attributes for auto start of a schedule table................ccovieeein . 124
Sub-attributes of @Xpiry POINtS.........ccoiviiiiiiiiii e 125
Sub-attributes of expiry point action ADJUST ........covciiiiiiiiiiveeiiiieie e, 125
Sub-attributes of expiry point action ACTIVATETASK .......ccoovvviiiieinneenn. 125
Sub-attributes of expiry point action SETEVENT ......cccoooeeiiiiiiiiiiienneeennn, 126
Sub-attributes SCHEDULETABLE->
LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION = TRUE ......ccuvvvennnns 127
Bit-definitions of the variant coding, ucSysVariantl..............cccccccvvvvennnn. 133
Bit-definitions of the variant coding, osSysVariant2.................ccccccvvvvveen. 133
Bit definitions of the variant coding, osOrtiVariant.................ccoevvvvvivvnnnnn. 133
F Y o] o] =)V =i o] £ 1 SRSPPSR 134
L= 10 TSRO PP TUPPPPT PR 135

Version: 9.01

vector’

13/136



Technical Reference MICROSAR OS SafeContext Vector

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

This chapter is included in any MICROSAR component documentation. For the OS, the
history on the intended level is not relevant as MICROSAR OS implements all mandatory
requirements of AUTOSAR OS.

©2015, Vector Informatik GmbH Version: 9.01 14 /136



Technical Reference MICROSAR OS SafeContext VeCtOf

2 Introduction

This document describes the functionality, APl and configuration of the general part of the
AUTOSAR BSW module OS as specified in [1].

Supported AUTOSAR Release: 4.0.3

Supported Configuration Variants: pre-compile

Vendor ID: OS_VENDOR_ID 30 decimal (= Vector-
Informatik, according to
HIS)

Module ID: OS_MODULE_ID 1 decimal (according to
ref. [2])

2.1 Architecture Overview
The following figure shows where the OS is located in the AUTOSAR architecture.

E2E Protection Qi

RTE
SYS LS
0S BSWM DCM EA COM IPDUM NM PDUR DIOHWAB!
COMM DEM FEE TOHWAB!
DET FIM MEMIF SENT
el NV CAN LIN
;IC[;; J1939TP! LINXCP! FRXCP! ETHXCP DNS
e CANXCP* LINTP FRTP SOAD/DOIP EXI
CANTP LINSM FRISOTP TCPIP HTTP
WDGM .
CANNM LINIF FRNM ETHSM Sce
DBG CANSM FRSM ETHIF TLS
DLT CANIF FRIF XML Security
RTM?
XCP*
EXT
ADCDRV EEPDRV FRDRV TICDRV* PORTDRV SPIDRV CANTRCV FRTRCV
CANDRV ETHDRV? GPTDRV LINDRV PWMDRV WDGDRV DRVEXT? LINTRCV
DIODRV FLSDRV ICUDRV MCUDRV RAMTST ETHTRCV
Vector Standard Software 3rd Party Software !Available extensions for AUTOSAR

ZIncludes EXTADC, EEPEXT, FLSEXT, and WDGEXT
3 Includes E2E, CRC, CAL (CPL)

Figure 2-1 AUTOSAR 3.x Architecture Overview

Figure 2-2 AUTOSAR architecture

©2015, Vector Informatik GmbH Version: 9.01 15/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext Vector

The MICROSAR OS is an operating system based on the AUTOSAR OS standard V5.0.0
(ref. [1]) and on OSEK OS standard 2.2.3 (ref. [3]).

This MICROSAR OS operating system is a real time operating system, which was
specified for the usage in electronic control units on a range of small to large
microprocessors. MICROSAR OS has attributes which differ from commonly known
operating systems and which allow a very efficient implementation even on systems with
low resources of RAM and ROM.

As a requirement, there is no dynamic creation of new tasks at runtime; all tasks have to
be defined before compilation. The operating system has no dynamic memory
management and there is no shell for the control of tasks by hand.

The operating system and the application are compiled and linked together to one file,
which is loaded into an emulator or is burned into an EPROM or Flash EEPROM.

©2015, Vector Informatik GmbH Version: 9.01 16 /136



Technical Reference MICROSAR OS SafeContext VeCtOf

3 Functional Description

3.1 Features
The features listed in this chapter cover the complete functionality specified in [1].

The "supported” and "not supported” features are presented in the following two tables.
For further information of not supported features, also see chapter 9.

The following features described in [1] are supported:

Supported Feature

The Vector MICROSAR OS implements all mandatory features described in the chapter about
System Scalability within [1]. However, some minor restrictions apply, see chapter 9 in this
document.

Table 3-1  Supported SWS features

The following features described in [1] are supported in MultiCore implementations.
However, they are currently not described in this document, but in the additional
documentation [4].

Conditionally Supported Feature

MultiCore
Inter OSApplication Communication (I0C)

Table 3-2  Not supported SWS features

The OSEK / AUTOSAR OS specifications leave many points open on implementation.
Every OSEK / AUTOSAR OS implementation for a specific microcontroller has to define
the open points to achieve an optimal solution for the processor. The operating system has
to fit the target microprocessor and the C-compiler. The programming model of the C-
compiler is as important as the hardware of the processor.

3.2 Main Functions

The operating system is started by the application. The startup module (which is not part of
the operating system) calls the function main. In the main function, the user has to call the
API function Start0S. Start0sS will initialize the operating system, install the interrupt
routine for the alarm handling, and then call the scheduler. Startos will never return to
the main function.

The function of the scheduler is to evaluate the task with the highest priority in the READY
state and call this task. If the task was previously pre-empted by another higher priority
task, the scheduler resumes the task.

©2015, Vector Informatik GmbH Version: 9.01 17 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext Vector

The operating system is controlled by external events. External events can be events from
interrupt routines, from the alarm management, or from schedule tables (Alarms and
schedule tables are also driven by interrupt service routines). Therefore, any external
event will result in the change of task states.

;

ISR
Reset
A ¢ Y ¢ A
main() Scheduler Task 1 Task-
< < Activation
StartOS()
¢ Event-
handling
¢ > >
Task 2
Alarm-
StartOS() - - handling
————>» <
Task n

Figure 3-1 Functional parts

Interrupt routines are under the control of the application programmer. An OSEK operating
system allows a fast and efficient interrupt handling, so interrupts have a short latency
time. It is possible to call certain system functions from interrupt routines. It is necessary
that the operating system has knowledge of any existing interrupt routines.

3.2.1 Timer and Alarms

All time-based actions are performed in OSEK using counters, alarms, and schedule
tables. Counters are part of the kernel and are incremented by a specific hardware
resource or by means of the system service IncrementCounter. In case of a time-
based counter, the counter is incremented periodically. Alarms and schedule tables have
fixed references to counters. MICROSAR OS supports up to 256 counters.

An alarm, if activated, has a certain value. If the referenced counter reaches the given
value, a defined action is performed. The action to each alarm is defined by the OIL
Configurator and is compiled into the ROM. The alarm value is passed as a parameter to
the functions SetRelAlarm Or SetAbsAlarm.

A schedule table, if activated, has a certain starting value. If the referred counter reaches
the given value, the first defined action is performed. The further actions are defined
relative to this first action. These relative starting times are defined together with the action
by the OIL Configurator and compiled into ROM. The starting value is passed as a
parameter to the functions StartScheduleTableRel Or StartScheduleTableAbs.

©2015, Vector Informatik GmbH Version: 9.01 18/136



Technical Reference MICROSAR OS SafeContext Vector

3.2.1.1 Time Base

3.2.1.1.1 Counter Macros

To support the portability of OSEK, application alarm related functions, for example
SetRelAlarm, should be called using macros for the calculation of ticks based on
millisecond or seconds:

SetRelAlarm (Alarml, OS xx2TICKS <CounterName> (1200), OS xx2TICKS <CounterName>
(1200));

The macros 0S TICKS2xx <CounterName> () (whereas xx denotes NS, US, MS or SEC;
described by the AUTOSAR standard) may be used to convert tick values (as returned for
example by GetElapsedTime () and GetCounterValue () ) to into a second based
timer unit.  Additionallyy, MICROSAR OS provides the inverse macros
0OS_ xx2TICKS <CounterName> () for conversion into the opposite direction (see Figure
2-2).

Physical Units — —>
0S_SEC2TICKS myCounter(l) = 3
OS_TICKS2SEC myCounter (3) = 1
Counter Units (Software) — t } —» (e.g. 3Hz)

Figure 3-2  Counter Macros

Caution
( ! }L Depending on the hardware settings, certain nanosecond times may not be
representable accurately.

Therefore, if large times, very small times or very high precision is needed, use
AUTOSAR OS 0sTimeConstant instead (see 7.3.3).

3.2.1.1.2 Temporal Range of Alarms

The temporal range of an alarm depends on the Counter, which drives the alarm. The
important configuration attributes here are OsSecondsPerTick and
OsCounterMaxAllowedValue (see 7.3.3).

3.2.1.2 Timer Interrupt Routine

The timer interrupt routines are category 2 ISRs and are part of the operating system. The
configuration is done automatically by the OS using information that has to be defined in
the OIL Configurator.

3.2.1.2.1 Counter API

To obtain the counter specific Ilimits (e.g. maxallowedvalue) the function
GetAlarmBase can be used.

©2015, Vector Informatik GmbH Version: 9.01 19/136



Technical Reference MICROSAR OS SafeContext Vector

1.1.1.1.1.1 Initialization
Former versions of 0SCAN and MICROSAR OS provided the API functions:

StatusType InitCounter<CounterName> (TickType ticks);

These functions have been removed, as they do not conform to the standardized counter
API described in [1]. Instead, counters are always initialized to O during Start0sS ().

1.1.1.1.1.2 Read Counter

MICROSAR OS provides the API functions GetCounterValue and GetElapsedValue as
defined by [1].

Former versions of 0sSCAN and MICROSAR OS provided the API functions:

TickType GetCounterValue<CounterName> (void) ;

These functions have been removed, as they do not conform to the standardized counter
API described in [1]. It is recommended to use the API function GetCounterValue defined
by AUTOSAR Standard instead.

1.1.1.1.1.3 Increment Counter
StatusType IncrementCounter (CounterType CounterName) ;

This function is the AUTOSAR OS standardized function to trigger a counter.

Example

The ISR that triggers the counter must be of category 2.
ISR (MyCounterISR)

{

IncrementCounter (MyCounter) ;

}

Tig

Former versions of 0sSCAN and MICROSAR OS provided the API function
void CounterTrigger<CounterName> (void) ;

These functions have been removed, as they do not conform to the standardized counter
API described in [1]. It is recommended to use the API function IncrementCounter defined
by AUTOSAR Standard instead.

3.2.2 Stack Handling

3.2.21 Task Stack

Each task has its own stack. The task stack holds all local data and return addresses of
the task. In addition, the register context of the task is saved onto the stack if the task is
preempted. If the task is transferred to the running state again, the register context is
removed from the task stack to restore the previously saved registers.

3.2.2.2 Interrupt Stack
The implementation of interrupt stacks depends on the hardware, and is described in ref.

[4]

©2015, Vector Informatik GmbH Version: 9.01 20/136



Technical Reference MICROSAR OS SafeContext Vector

3.2.2.3 Stack Monitoring

MICROSAR OS SafeContext always initializes the last useable bytes of each stack with an
indicator value.

This indicator is then checked with each task switch or ISR exit. A change of the element
value indicates a stack overflow by the task or ISR. In this case, the system calls the
ErrorHook (if configured), the ShutdownHook (if configured) and enters the shutdown
state.

Note

MICROSAR OS checks the indicator value only at task switches and on a return from
an ISR. Therefore, stack overflows are not detected immediately. Detection might be
delayed arbitrary in case of a stack overflow in a hook routine. Some implementations
of MICROSAR OS implement additional checks of the indicator value, see [4]. If
memory protection is configured, stack overflows in tasks and ISRs of non-trusted
applications are found immediately by the memory protection if the stack is followed by
an area with no access rights.

In case a stack fault is detected by memory protection, the ProtectionHook is called with
parameter E_OS _PROTECTION_MEMORY. If a stack fault is detected by stack
monitoring, MICROSAR OS goes into shutdown after the ProtectionHook.

3.2.2.4 Stack Usage

If StackUsageMeasurement is set to TRUE, the OS fills all available stacks with the
indicator value OxAA during StartOS (startup times will be slower). This allows measuring
the amount of stack used since StartOS by counting the amount of bytes that have not
been overwritten yet.

The following function is available to determine the amount of used stack:
osuintl6 osGetStackUsage (TaskType taskId)

> Argument: Task number
> Return value: Maximum stack usage (bytes) by task since call of Start0s ()

Additional implementations specific functions may be available. Please see the hardware
specific part of the documentation of this implementation [4].

Caution
( ' '}I: Dependent on the stack size, the measurement operation can take a long time.

3.2.3 Interrupt Handling

Implementation specific details about interrupt handling are described in the hardware
specific part of this implementation [4].

©2015, Vector Informatik GmbH Version: 9.01 21/136



Technical Reference MICROSAR OS SafeContext Vector

Q Caution
! Knowledge about the interrupt handling is very important. If interrupt routines are used
it is essential to read this chapter.

3.2.3.1 Interrupt Categories
The OSEK OS specification defines two groups of interrupts.

3.2.3.1.1 Category 1:

Interrupts of category 1 are in general not allowed to use API functions; as such, these
routines can be programmed without restrictions and are completely independent from the
kernel. The programming conventions depend on the utilized compiler and assembler.

Category 1 interrupts can be enabled before call of Start0s (). If interrupts of category 1
and 2 cannot be disabled separately, all interrupts must be disabled.

Interrupts of category 1 are allowed to call the interrupt APl as an exception to the rule
presented above. If the interrupt API is used and the category 1 interrupts are enabled
before the call of Start0s, the user has to take care about variable initialization of the
interrupt API, as described in chapter 3.2.3.2.

1.1.1.1.1.4 Exceptions and SC2, SC3, SC4

According to the AUTOSAR-Standard, category 1 interrupts should be avoided with SC2,
SC3 and SC4. MICROSAR OS does not allow category 1 interrupts with
TimingProtection. Because non-maskable interrupts need to be configured to
category 1, some MICROSAR OS implementations allow exceptions even with timing
protection.

The user may write "normal” interrupt code in an exception routine, which returns to the
application. Please note that this sort of exception routines will cause the exception
handler to add runtime to the account of the interrupted task or ISR.

3.2.3.1.2 Category 2:

Interrupts of category 2 may use certain restricted API functions. Interrupts of category 2
can be programmed as normal C functions using the macro ISR (name) . The C function
is called by the operating system. The necessary preparation for the interrupt routine is
done automatically by a generated function.

ISR (AnInterruptRoutine)
{

/* code with API calls */

Q Caution
! Category 2 interrupts must be disabled until call of Start0S () ! This also applies for
the timer interrupts, i.e. this interrupt must be stopped by the user at a software reset.

©2015, Vector Informatik GmbH Version: 9.01 22 /136



Technical Reference MICROSAR OS SafeContext Vector

To ensure data consistency, the operating system needs to disable category 2
interrupts during critical sections of code. Therefore, applications must not use non-
maskable interrupts as category 2 interrupts.

3.2.3.2 Usage of the Interrupt API before StartOS

The usage of the interrupt API functions is in general allowed before the operating system
is started. The affected functions are:

> DisableAllInterupts, EnableAllInterrupts
> SuspendAllInterrupts, ResumeAllInterrupts

> SuspendOSInterrupts, ResumeOSInterrupts

However, these functions use some internal variables that have to be initialized to zero
before the first call of the interrupt API. Typically, this initialization is performed by the
startup code (which might be delivered with the compiler). In case no startup code is used,
the function osInitialize() needs to be called. osInitialize initializes the
variables which are used in the interrupt API.

©2015, Vector Informatik GmbH Version: 9.01 23/136



Technical Reference MICROSAR OS SafeContext Vector

3.2.4 Timing Protection

The timing protection is implemented in the Scalability Classes 2 and 4. This chapter
provides some hints on the functionality according to the AUTOSAR OS standard [1] and
describes additional functionality provided by Vector MICROSAR OS. To enable the timing
protection of a task or ISR, the OlL-attribute TIMING PROTECTION of the respective task
or ISR needs to be configured, as described in chapters 7.3.2.2 and 7.3.7.2 . (AUTOSAR
XML: OsTaskTimingProtection/OslsrTimingProtection).

Caution

( ' '}I: The runtime of all tasks and ISRs is observed, however parts of the time for task switch
and interrupt entry/exit cannot be monitored by the timing protection. Therefore, some
extra time for task switches and interrupt entry/exit needs to be considered in the
configuration of the timing protection.

Q Caution

! Timing Protection is implemented with interrupts. If the application manually disables
interrupts anywhere, the timing protection cannot work as expected. In order to enable
and disable interrupts, the application must use the following API functions:

> DisableAllInterupts, EnableAllInterrupts
> SuspendAllInterrupts, ResumeAllInterrupts

> SuspendOSInterrupts, ResumeOSInterrupts

Caution

( ' '}I: The timing protection works very precise. However, if an OS API function is called by a
task/ISR, the OS may enter a critical section; if a timing protection violation is detected
while the system is in a critical section, the call of the protection hook may be delayed
until the end of the critical section. Note, that critical sections in AUTOSAR OS are very
short.

3.2.4.1 Reaction on Protection Failure

The AUTOSAR specification describes different possibilities how to react to a protection
violation. In SafeContext implementations, reaction to such a situation is limited to
Shutdown.

3.2.4.2 Timing Measurement

MICROSAR OS is not only able to provide timing protection but allows using the same
functionality for timing measurement. If timing measurement is performed for a specific
task or ISR, the OS measures the following times for that task or ISR:

> the maximum run time since StartOS

> the maximum locking times for resources and interrupts since StartOS

©2015, Vector Informatik GmbH Version: 9.01 24 /136



Technical Reference MICROSAR OS SafeContext Vector

> the minimum time distance between two arrivals since StartOS

The debugger can read the result of the timing measurement via ORTI. Alternatively, the
application may use the timing measurement API as described in chapter 6.4.

The OS attribute TimingMeasurement and the task/ISR attribute TIMING PROTECTION
are provided to setup timing protection and measurement.

The hardware timers and internal data structures to store measured times are limited in
size. When this limit is exceeded by any measured time (e.g. of a resource or interrupt
lock), the ErrorHook function is called and the system goes into shutdown state.

3.2.4.2.1 Timing measurement configuration for a specific task/ISR

Timing measurement can be configured individually for each task and ISR. As timing
protection requires the OS to measure the timing values, timing measurement is
performed for all tasks and ISRs that have timing protection configured by means of the
attribute TIMING PROTECTION. By selecting the sub attribute OnlyMeasure, the OS
disables the timing protection but still measures the timing values. Please note that this
configuration might be overridden by means of the global configuration, described in the
next chapter.

3.2.4.2.2 Global configuration of timing measurement

In order to save configuration time, the timing measurement can be configured globally for
all tasks and ISRs. MICROSAR OS provides the OIlL-attribute TimingMeasurement
(AUTOSAR XML: 0sOSTimingMeasurement) for that purpose. That attribute provides
the possibilities to:

> Disable the timing measurement globally. This is an optimization to save memory and
runtime of the timing measurement. Please set the attribute TimingMeasurement to
FALSE (deselect it) for this configuration.

> Collect timing data for all tasks and ISRS. The collected timing values can be used to
perform scheduleability analysis and to set up the timing protection later on. For this
configuration, please set the attribute TimingMeasurement to TRUE (select it) and
choose OnlyMeasureAll for the value of the sub attribute GlobalConfig.

> Perform timing measurement as configured for the task or ISR. Set the attribute
TimingMeasurement to TRUE (select it) and select AsSelected for the value of the
subattribute GlobalConfig to achieve this.

> Ignore the task/ISR attribute OnlyMeasure (perform timing measurement and protection
as if this attribute was set to FALSE). For this configuration, please set the attribute
TimingMeasurement to TRUE (select the attribute) and select
ProtectAndMeasureAll for the value of the subattribute GlobalConfig.

The chapter 7.3.2.2 provides a description of the attribute TIMING PROTECTION for tasks
while chapter 7.3.7.2 provides the respective description for ISRs. Chapter 7.3.1.4
provides a description of the attribute TimingMeasurement. The table below documents
the interdependence between the OS-attribute TimingMasurement and the task/ISR-
Attribute TIMING PROTECTION.

©2015, Vector Informatik GmbH Version: 9.01 25/136



Technical Reference MICROSAR OS SafeContext VQCEO('

TASKI/ISR
TIMING_ PROTECTION

Global- ‘ TRUE

Measuremen |Config ‘ OnlyMeasure

No timing protection, Timing protection but no Timing protection but no

no timing timing measurement timing measurement, warning

measurement, as the sub attribute
OnyMeasure is overridden

No timing protection No timing protection but No timing protection but

but timing timing measurement, timing measurement
measurement warning as the sub

attribute OnlyMeasure is

overridden
No timing protection Timing protection and No Timing protection but
and no timing measurement timing measurement
measurement
No timing protection Timing protection and Timing protection and
but timing measurement measurement, warning as the
measurement sub attribute OnlyMeasure is

overridden.

Table 3-3  Interdependence between the OS attribute TimingMeasurement and the task/ISR attribute TIMING PROTECTION

3.2.4.3 Hook functions

The runtime of the hook functions PreTaskHook and PostTaskHook (Chapters 6.6.2 and
6.6.3) is considered to belong to the runtime of the currently active task.

Q Caution

! Depending on the implementation, the execution of the ProtectionHook might be
delayed until the PreTaskHook or PostTaskHook has finished. In case of a protection
violation during the PostTaskHook while a task state change into the states
SUSPENDED or WAITING, the call of the ProtectionHook gets lost.
Therefore, the PreTaskHook and the PostTaskHook are allowed for debugging
purposes only. They must be disabled in production code, see [9].

The runtime of the hook functions UserPrelsrHook and UserPostlsrHook (Chapters 6.6.7
and 6.6.8) is considered to belong to the runtime of the currently active ISR.

3.2.5 Memory Protection

MICROSAR OS uses the MPU of the microcontroller to implement memory protection as
described in [1]. Former versions of MICROSAR OS fulfilled the AUTOSAR requirement
0S195 and prevented write access to Task/ISR private data areas even within an

! Optimization: The timing measurement API is unavailable

©2015, Vector Informatik GmbH Version: 9.01 26 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext Vector

OSApplication. This behaviour is defined as optional by AUTOSAR and not implemented in
most current versions of MICROSAR OS. It is explicitly mentioned in [5] if supported.

3.2.6 Schedule Tables

MICROSAR OS implements schedule tables as defined by the AUTOSAR standard. The
document [1] provides the base description of schedule tables and their usage. This
chapter is meant as an extension that clarifies and corrects some points, provides details
about points left open and describes corrections and extensions by MICROSAR OS.

AUTOSAR defines schedule tables for all scalability classes, but synchronization to a
global time only for SC2 and SC4. MICROSAR OS offers some additional error checking
to the AUTOSAR standard.

3.2.6.1 Synchronization

In SC2 and SC4 or the High-Resolution Schedule Tables option, it is possible to
synchronize a schedule table to a global time source. The schedule table must be marked
with the OIL attribute LOCAL TO GLOBAL TIME SYNCHRONIZATION.

3.2.6.1.1 Starting a synchronizable Schedule Table

One way to start a synchronizable schedule table is to use the functions
StartScheduleTableRel (Tablename, TimeOffset) and
StartScheduleTableAbs (Tablename, Time). The time parameters refer to the local
time and not to the global time. It is assumed that the schedule table will not have an offset
to global time: when synchronization starts, the start of the schedule table is moved to
global time zero. Note that the schedule table always starts at the stated start time. A call
of SyncScheduleTable does not influence this start time. Synchronization starts after
execution of the first expiry point.

The recommended way to start a synchronizable schedule table is to use the combination
of StartScheduleTableSynchron (Tablename) and SyncScheduleTable () . The
first expiry point is executed at global time 0. The schedule table starts execution after a
global time is available, i.e. after calling SyncScheduleTable () for the schedule table. If
SyncScheduleTable () is never called for the schedule table, the schedule table is
never executed. The following algorithm describes a possibility to set up a timeout:

Set up an alarm to the timeout time. When the alarm expires and
GetScheduleTableStatus () indicates that the schedule table is still waiting, call
SyncScheduleTable () with an arbitrary time. Note: if the call to
SyncScheduleTable () is done in an interrupt, it may occur between the two API calls,
and thus gets overridden by the arbitrary time.

3.2.6.1.2 Autostart

For an automatic start of a schedule table on startup of the OS, the attribute AUTOSTART
must be set. The sub-attribute TYPE defines how the start is performed. The possibilities
are: ABSOLUT, RELATIVE and SYNCHRON. These types of autostart are similar to the
normal start of a schedule table using StartScheduleTableAbs,
StartScheduleTableRel oOr StartScheduleTableSynchron. For ABSOLUT and
RELATIVE, an absolute or relative start time needs to be provided. In case of SYNCHRON,

©2015, Vector Informatik GmbH Version: 9.01 271136



Technical Reference MICROSAR OS SafeContext Vector

the schedule table starts after SynchScheduleTable has been called and the global time
reaches zero.

Note, that just like for StartScheduleTableSynchron (), the schedule table will wait
forever if SyncScheduleTable () is never called.

3.2.6.1.3 Suspending a Schedule Table and keeping its Synchronization

The AUTOSAR standard does not define a way to suspend the execution of a schedule
table and keep its synchronization for later restart. The suggested approach is to use
NextScheduleTable () to append a schedule table that effectively does nothing.

Currently, AUTOSAR does not define a way to retrieve the internal schedule table time
(neither the currently estimated global time nor the time relative to the first expiry point of
the schedule table).

3.2.6.1.4 Providing a Global Time

The current global time is handed to the schedule table via SyncScheduleTable (). If a
deviation of the schedule table to the global time is found, the schedule table starts to
synchronize at the next expiry point that allows synchronization.

The global time must be a continuous range of integers: So e.g. FlexRay’s time tuple
(cycle, macroticks) cannot directly be used as global time, but must be converted.

The provided global time must have the same resolution as the local time and the same
period as the schedule table time (i.e. the LENGTH of the schedule table). If this is not the
case, it must be converted before being handed to SyncScheduleTable ().

Example
Converting the FlexRay time:

Tlg

Be gMacroPerCycle the number of macroticks per cycle, cycle the current
cycle number, macroticks the current macrotick number and f is the factor to
convert the FlexRay tick length the HW counter tick length:

GlobalTime = (gMacroPerCycle * cycle + macroticks) * f

3.2.6.1.5 Exact Synchronization

There is always a time span between reading the global time and handing it to the
operating system. Therefore, synchronization is never absolutely exact.

If an interrupt interferes, the time span may be unexpectedly large. While this may be
ignorable if the resolution is large compared with the interrupt running times, it is
noticeable when using a fine grained global time, for example in conjunction with High-
Resolution Schedule Tables, or if some (higher prior) interrupts have long running times. It
is desirable to be undisturbed by (higher prior) interrupts during synchronization.

The AUTOSAR Standard demands, that calling any API functions is not allowed in
between function pairs

©2015, Vector Informatik GmbH Version: 9.01 28 /136



Technical Reference MICROSAR OS SafeContext Vector

DisableAllInterrupts/EnableAllInterrupts,
SuspendAllInterrupts/ResumeAllInterrupts,
SuspendOSInterrupts/ResumeOSInterrupts.

MICROSAR OS makes an exception from the standard in this point:
SyncScheduleTable () can be called in between these function pairs.

Therefore, a Sync procedure may look like the following example:

DisableAllInterrupts();
now=getCurrentGlobalTime () ;
SyncScheduleTable (MyScheduleTable, now);
EnableAllInterrupts () ;

Caution
( ' }L This is unnecessary if SyncScheduleTable () is called from an interrupt which does
not allow nesting.

Also note, that SuspendAllInterrupts () /DisableAllInterrupts () still allow
timing protection interrupts (if timing protection is used).

3.2.6.1.6 Limits of the Synchronization Algorithm

The synchronization algorithm as described by the AUTOSAR standard only corrects
deviations of the past — it does not make assumptions about deviations of the present or
the future. Differences in clock speed (between local time and global time) are not
completely compensated.

Simplified synchronization algorithm: When SyncScheduleTable is called, the
difference between the local schedule table time and the provided global time is computed
and stored internally. Nothing more happens until an expiry point expires. Then, the times
between subsequent expiry points are adapted. The adaptation stops once the computed
deviation is compensated or a new global time is provided. In case new deviations
between the global and local time occur, they are considered after the next call of
SyncScheduleTable in the same way as just described.

As a result of this algorithm, a permanent deviation in the speed of global and local clock
might not be compensated completely.

Example

The local schedule table time? runs 10 % slower then the global time. Whenever the
global time reaches a multiple of 100, the function SyncScheduleTable is called to
provide the global time to the schedule table. Both times start simultaneously at zero.
When the global time reaches 100, the local time is 90 because of the 10 % difference.
SyncScheduleTable is called, and computes a difference of 10. We assume now
that the difference is compensated until the next call of SyncScheduleTable occurs.
The local time is then: 90+10+90=190 while the global time is 200. Again we have the
same difference, so 10 needs to be corrected. The same occurs for all subsequent
calls of SyncScheduleTable, t00.

Tlg

2 The local time is based on the MCU’s internal clock.

©2015, Vector Informatik GmbH Version: 9.01 29/136



Technical Reference MICROSAR OS SafeContext Vector

Although the computed difference between current time values of global and local time is
corrected, the same difference occurs in the next synchronization step. However, using
synchronization the deviation stays constant. Without synchronization, it would
accumulate.

3.2.6.1.7 Details about using NextScheduleTable

The AUTOSAR standard leaves open certain details of using NextScheduleTable with
synchronizable schedule tables. The following describes the implementation of
NextScheduleTable MICROSAR OS.

If two schedule tables are chained using the API function NextScheduleTable (), the
second schedule table takes over the synchronized schedule table time of the
predecessor’.

When switching to a schedule table that does not allow synchronization, the remaining
difference to the global time is saved: upon switching to a schedule table that allows
synchronization it will immediately start to synchronize.

3.2.6.1.8 Concurrent Actions

If a task is activated at an expiry point, and an event for this task is set at the same expiry
point, always all tasks will be activated before events are set. However, if two schedule
tables are using the same counter; one of these schedule tables activates a task and the
other schedule table sets an event for this task at the same time, the behaviour is
undefined.

3.2.6.2 High-Resolution Schedule Tables

AUTOSAR schedule tables are driven by a counter (hardware or software), and thus offer
the same resolution. While it is possible to configure a higher resolution for the counter,
this increases also the interrupt load. High-Resolution Schedule Tables offer a
microsecond resolution or better* without unnecessary additional interrupt load: At each
expiry point, a timer interrupt is reprogrammed so it will be reactivated exactly at the
following expiry point”.

Note that high resolution schedule tables are not supported by all MICROSAR OS
implementations.

It is possible to use standard schedule tables and High-Resolution Schedule Tables at the
same time. High-Resolution Schedule Tables support the full AUTOSAR API, including
synchronization (see 3.2.5.1) and are particularly suited for FlexRay.

3 Therefore, if the two schedule tables have a different LENGTH, switching from one to the other is undefined: it may work, but may
also lead to unexpected results. This is not checked at runtime (and cannot be checked at generation time).

% The actually achievable best resolution depends on the hardware, hardware settings and application

% while the activation of the schedule table handler is done as exact as the underlying counter (the hardware) allows it, a certain time
span will expire until the expiry point is actually processed. Interrupts, non-preemptive tasks and interrupt disabling times impose
an additional jitter.

©2015, Vector Informatik GmbH Version: 9.01 30/136



Technical Reference MICROSAR OS SafeContext Vector

3.2.6.2.1 Setup

To create a High-Resolution Schedule Table, create a Schedule Table and choose any
High-Resolution Counter as the underlying counter. This counter is available only on the
MICROSAR OS implementations that support high resolution schedule tables; it is
automatically available if supported.

3.2.6.3 Cyclical Expiry Point Actions

Cyclical expiry point actions are a Vector specific extension of the AUTOSAR Standard to
ease the configuration of schedule table actions. In case an expiry point action shall be
executed cyclicly within a schedule table, the user may select the sub-attribute Cyclic.
This allows him to define a cycle time in the sub-attribute CycleTime. This informs the
generator that the expiry point action shall occur repeatedly with the configured cycle time
starting at the offset of the expiriy point, the action belongs to.

In case, the sub-attributes Cyclic and CycleTime have been configured, the generator
of the OS copies the expiry point actions to the configured locations within the schedule
table before it generates the schedule table. In case, there is already an expiry point at a
location where a cyclical expiry point action shall occur, the cyclical action is simply added
to the actions of that expiry point. In case there is no expiry point configured at the location
where a cyclical expiry point action schall occur, the generator invents an expiry point.
Please note that generator invented expiry points do not allow synchronization as there is
no configuration of the synchronization step width possible.

3.2.7 Trusted Functions
MICROSAR OS OSEK/AUTOSAR provides two possibilities to call trusted functions: by
direct call of API function Cal1TrustedFunction or by using generated stub functions.

It is possible to mix applications using direct calls and applications using generated stub
functions.

Q Caution

! Inside trusted functions there is full access to all memory. Therefore, each trusted
function with address arguments for return values must check the access rights of the
caller before writing results through an address argument. The API provides the
functions CheckTaskMemoryAccess and CheckISRMemoryAccess for address
checking.

3.2.7.1 Generated Stub Functions

The generation of stubs for trusted functions is a Vector specific extension of the
AUTOSAR OS standard to ease the usage of trusted functions.

To enable stub generation for an application, the TRUSTED attribute of this application and
the sub-attribute GenerateStub must be set to TRUE.

In this case, a caller stub with the name Call <name> is generated for each trusted
function of the application, where <name> is the name of the trusted function. The
generated stub function Call_<name> packs its parameters into a structure as needed by

©2015, Vector Informatik GmbH Version: 9.01 31/136



Technical Reference MICROSAR OS SafeContext Vector

the standard API function CallTrustedFunction and calls that API function. Another
generated stub function performs an unpacking of the parameters so that the user's
trusted function does not need to get all the parameters via one pointer, but can have a set
of parameters and a return value like any legal C-function.

In case the sub-attribute GenerateStub is set to TRUE, the user has to define the
parameters and the return value of the trusted function as well. The sub-attribute Params
shall contain a comma-separated list of type and parameter name (as they would occur in
a function definition in C). The sub-attribute ReturnType shall define the return type of
the function.

The stubs are generated into the file trustfct.c.
See 10.8 for an example using generated stub functions for trusted applications.

Caution

( ' :‘I: The generator does not produce prototypes for the trusted functions to be called by the
trusted function stubs. The prototypes shall be provided by the writer of these functions
and included into the file usrostyp.h. Parameter types and the return type need to be
defined there also in case they are no simple types of the C-language. The file
usrostyp.h is described in chapter 5.2.

©2015, Vector Informatik GmbH Version: 9.01 32/136



Technical Reference MICROSAR OS SafeContext VeCtOf'

3.3  Error Handling

3.3.1 Error Messages

If the kernel detects errors, the OSEK error handling is called. The hook routine
ErrorHook is called if selected.

Depending on the situation in which an error was detected the error handling will return to
the current active task or the system will be shut down.

3.3.2 OSEK/AUTOSAR OS Error Numbers

The OSEK specification defines several error numbers that are returned by the API
functions. A certain error number has different meanings for different APl functions. The
user has to know the API function to interpret the error number correctly.

With the AUTOSAR OS specification, the range of error numbers was extended. The
following table shows all specified error numbers.

Descripton |

Error Code

0 E OK Service executed successfully

1 E _OS ACCESS Several APIs: general access of object failure

2 E 0OS CALLEVEL Several APIs: service accessed from wrong context
3 E 0S ID Several APIs: service called with wrong ID

4 E OS LIMIT Several APIs: service called too often

5 E OS NOFUNC Several APls: (warning) service not executed

6 E _OS RESOURCE Several APIs: service called with occupied resource
7 E OS STATE Several APIs: object is in wrong state

8 E OS VALUE Several APIs: passed parameter has wrong value

9 E_OS_SERVICEID Several APIs: service can not be called

10 E OS ILLEGAL ADDRESS Several APIs: invalid address passed

11 E OS MISSINGEND Several APIs: task terminated without TerminatTask
12 E OS DISABLEDINT Several APIs: service called with disabled interrupts
13 E OS STACKFAULT Stack monitoring detected fault

14 E _OS_PROTECTION MEMORY Memory access violation

15 E OS PROTECTION TIME Execution time budget exceeded

16 E_OS PROTECTION ARRIVAL Arrival before the timeframe expired

17 E _OS PROTECTION LOCKED Task/ISR blocked too long (e.g. by disabled interrupts)
18 E OS PROTECTION EXCEPTION A trap occurred

Table 3-4  OSEK/AUTOSAR OS error numbers

The additional implementation specific error numbers are defined as:

©2015, Vector Informatik GmbH

Version: 9.01

based on template version 4.3

33/136



Technical Reference MICROSAR OS SafeContext V@CtOf

Error Code Description

20 E _OS_SYS ASSERTION This error is generated if the kernel detects an
internal inconsistency. The reason and an exact
explanation is described below.

21 E_OS_SYS ABORT This error is generated if the kernel has to shut down
the system but the reason was not an API function.

22 E OS SYS DIS INT This error number is no longer used. It is replaced by
the AUTOSAR OS conformant number
E OS DISABLEDINT.

23 E _OS _SYS API ERROR This error is generated if an error occurs in an API
function and there is no error code specified in the
OSEK specification. The reason and an exact
explanation is described below.

24 E_OS SYS ALARM MANAGEMENT A general warning issued in certain cases involving
the alarm management. Detailed description

in the implementation specific manual

25 E OS SYS WARNING A general warning issued in certain cases. Detailed
description in the implementation specific manual.

Table 3-5  Implementation specific error numbers

More implementation specific errors may be described in ref. [4].

3.3.3 MICROSAR OS Error Numbers

In addition to the OSEK error numbers, all MICROSAR OS implementations provide
unigue error numbers for an exact error description. All error numbers are defined as a 16-
bit value. The error numbers are defined in the header file osekerr.h and are defined
according to the following syntax:

Oxgfee
| | +--- consecutive error number
| +-——-- number of function in the function group
+————- number of function group

The error numbers common to all MICROSAR OS implementations are described below.
The implementation specific error numbers have a function group number >= 0xA000 and
are described in the document [4].

To access these error numbers the ERRORHOOK has to be enabled. The numbers are then
accessible via the macro OSErrorGetosCANError () .

Error Types:

Error Type Description

OSEK OSEK / AUTOSAR error. After calling the ErrorHook, the program is
continued.

assertion System assertion error. After calling the ErrorHook the operating system
is shut down. Assertion checking is always enabled in SafeContext
implementations.

©2015, Vector Informatik GmbH Version: 9.01 347136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

Error Type Description

syscheck System error. After calling the ErrorHook the operating system is shut
down. Refer to the specific error for a description how to enable or disable
error checking.

Table 3-6  Error types

3.3.3.1 Error Numbers of Group Task Management / (1)
Group (1) contains the functions:

API Function Abbreviation |Function
Number
ActivateTask AT 1
TerminateTask TT 2
ChainTask HT 3
Schedule SH 4
GetTaskState GS 5
GetTaskID Gl 6
osMissingTerminateError  MT 7

Table 3-7  API functions of group Task Management / (1)

Error numbers of group (1):

Error Code Description
0x1101 osdErrATWrongTaskID OSEK Called with invalid task ID
0x1102 osdErrATWrongTask assertion  Task has wrong priority level
Prio
0x1103 osdErrATMultiple OSEK number of activation of activated task
Activation exceeds limit
0x1104 o0sdErrATIntAPI OSEK Interrupts are disabled with functions
Disabled provided by OSEK
0x1105 osdErrATAlarm OSEK Number of activation of activated task
MultipleActivation exceeds limit (task activation is performed
by alarm-expiration or expiry point action)
0x1106 osdErrATNoAccess OSEK Calling application has no access rights for
this task
0x1107 osdErrATCallContext OSEK Called from invalid call context
0x1108 osdErrATWrongAppState OSEK Referenced object is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x1201 osdErrTTDisabled OSEK TerminateTask called with disabled
Interrupts interrupts

0x1202 osdErrTTResources OSEK TerminateTask called with occupied

©2015, Vector Informatik GmbH Version: 9.01 35/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext

. lerormpelReasn

0x1203

0x1204

0x1205

0x1206
0x1208

0x1301

0x1302

0x1303
0x1304

0x1305

0x1306

0x1307

0x1308

0x1309
0x130A

0x130B

0x130D

0x1401

0x1402

0x1403

0x1405

Occupied

osdErrTTNotActivated

osdErrTTOnInterrupt
Level

osdErrTTNoImmediate
TaskSwitch

osdErrTTCallContext

osdErrTTWrongActiveTa
skID

osdErrHTInterrupts
Disabled

osdErrHTResources
Occupied

osdErrHTWrongTaskID
osdErrHTNotActivated

osdErrHTMultiple
Activation

osdErrHTOnInterrupt
Level

osdErrHTWrongTask
Prio

osdErrHTNoImmediate
TaskSwitch

osdErrHTCallContext

osdErrHTNoAccess

osdErrHTWrongAppState

osdErrHTWrongActiveTa
skID

osdErrSHInterrupts
Disabled

osdErrSHOnInterrupt
Level

osdErrSHScheduleNot
Allowed

osdErrSHResources
Occupied

©2015, Vector Informatik GmbH

assertion

OSEK

assertion

OSEK
assertion

OSEK

OSEK

OSEK
assertion

OSEK

OSEK

assertion

assertion

OSEK
OSEK

OSEK

assertion

OSEK

OSEK

assertion

OSEK

resources

TerminateTask attempted for a task with
activation counter == 0 (not activated)

TerminateTask called from an interrupt
service routine

TerminateTask has tried to start the
Scheduler without success.

Called from invalid call context

Task index is not valid during call of
TerminateTask

ChainTask called with disabled interrupts

ChainTask called with occupied
resources

New task has invalid ID

Tried to terminate a task which have an
activation counter which is zero

Number of activation of new task exceeds
limit
ChainTask called on interrupt level

ChainTask was called from wrong priority
level

ChainTask has tried to activate the
Scheduler without success.

Called from invalid call context

Calling application has no access rights for
this task

Referenced object is owned by an
OSApplication which was terminated.

Task index is not valid during call of
ChainTask

Schedule called with disabled interrupts
Schedule called on interrupt level

Schedule called from task with enabled
stack sharing by setting
NotUsingSchedule in the OIL
Configurator

Called with an occupied resource

Version: 9.01

based on template version 4.3

vector’

36/136



Technical Reference MICROSAR OS SafeContext VeCtOf

Error Code Description
0x1406 osdErrSHCallContext OSEK Called from invalid call context
0x1409 osdErrSHWrongActiveTa assertion  Task index is not valid during call of
skID Schedule
0x1501 osdErrGSWrongTaskID OSEK Called with invalid task ID
0x1502 o0sdErrGSIntAPI OSEK Interrupts are disabled with functions
Disabled provided by OSEK
0x1503 osdErrGSIllegalAddr OSEK Caller has no write access rights for
address argument
0x1504 osdErrGSCallContext OSEK Called from invalid call context
0x1505 osdErrGSNoAccess OSEK Calling application has no access rights for
this task
0x1506 osdErrGSWrongAppState OSEK Referenced object is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x1507 osdErrGSOoddInvocation assertion Invocation of internal function
osGetTaskState detected although
ReducedStatusChecks was enabled

0x1601 osdErrGIIntAPI OSEK Interrupts are disabled with functions
Disabled provided by OSEK
0x1602 osdErrGITIllegalAddr OSEK Caller has no write access rights for
address argument.
0x1603 osdErrGICallContext OSEK Called from invalid call context

0x1604 osdErrGIOddInvocation assertion Invocation of internal function
osGetTaskID detected although
ReducedStatusChecks was enabled

0x1701 osdErrMTMissing syscheck  Exit of task without the call of
TerminateTask TerminateTask or ChainTask. This
error is detected in EXTENDED STATUS
only.

Table 3-8  Error numbers of group Task Management / (1)

3.3.3.2 Error Numbers of Group Interrupt Handling / (2)
Group (2) contains the functions:

API Function Abbreviation |[Function
Number
4

EnableAllInterrupts EA

DisableAllInterrupts DA 5

ResumeOSInterrupts RI 6

SuspendOSInterrupts Sl 7

osUnhandledException UE 8

©2015, Vector Informatik GmbH Version: 9.01 37/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

API Function Abbreviation |Function
Number
osSaveDisablelevelNested SD 9
osRestoreEnablelLevelNested RE A
osSaveDisableGlobalNested SG B
osRestoreEnableGlobalNested RG C
ResumeAllInterrupts RA D
SuspendAllInterrupts SA E
GetISRID Il 2
Interrupt Exit (SC3 only) IX 3

Table 3-9  API functions of group Interrupt Handling / (2)

Error numbers of group (2):

Error Code Description

0x2401 osdErrEAIntAPIWrong assertion  DisableAllInterrupts not called

Sequence before
0x2501 osdErrDAIntAPI assertion Interrupts are disabled with functions
Disabled provided by OSEK
0x2801 osdErrUEUnhandled syscheck  An unhandled exception or interrupt was
Exception detected. This error check is always
enabled.

0x2901 osdErrSDWrongCounter  assertion Wrong counter value detected
0x2A01 osdErrREWrongCounter assertion  Wrong counter value detected
0x2B01 osdErrSGWrongCounter assertion  Wrong counter value detected
0x2C01 osdErrRGWrongCounter  assertion Wrong counter value detected

0x2201 osdErrIIIntAPI OSEK GetISRID was called with interrupts
Disabled disabled.

0x2202 osdErrIICallContext OSEK Called from invalid call context

0x2301 osdErrIXResources OSEK An ISR of category 2 was left with
Occupied resources still occupied.

0x2302 o0sdErrIXIntAPI OSEK An ISR of category 2 was left with
Disabled interrupts disabled by

DisableAllInterrupts,

SuspendAllInterrupts Or
SuspendOSInterrupts

Table 3-10 Error numbers of group Interrupt Handling / (2)

©2015, Vector Informatik GmbH Version: 9.01 38/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VeCtOf

3.3.3.3  Error Numbers of Group Resource Management / (3)
Group (3) contains the functions:

API Function Abbreviation |Function
Number

GetResource GR 1

ReleaseResource RR 2

Table 3-11  API functions of group Resource Management / (3)

Error numbers of group (3):

Error Code Description
Error Type
0x3101 osdErrGRWrongResource OSEK Invalid resource 1D
1D
0x3102 osdErrGRPriority assertion Ceiling priority of the specified resource
Occupied already in use
0x3103 osdErrGRResource OSEK Resource already occupied
Occupied
0x3104 osdErrGRNoAccess assertion  Task has no access to the specified
Rights resource
0x3105 osdErrGRWrongPrio OSEK Specified resource has a wrong priority.

Possible reason: the task has no access
rights to this resource.

0x3106 osdErrGRIntAPI OSEK Interrupts are disabled with functions
Disabled provided by OSEK
0x3107 osdErrGRNoAccess OSEK Calling application has no access rights for
this resource
0x3108 osdErrGRCallContext OSEK Called from invalid call context
0x3109 osdErrGRISRNoAccess OSEK Calling ISR has no access rights for this
Rights resource
0x310B osdErrGRWrongTaskID assertion Task index is not valid during call of
GetResource
0x3201 osdErrRRWrongResource OSEK Invalid resource ID
1D
0x3202 osdErrRRCeiling assertion  Ceiling priority of the resource not found in
PriorityNotSet the ready bit field
0x3203 osdErrRRWrongTask assertion  Resource occupied by a different task
0x3204 osdErrRRWrongPrio OSEK Specified resource has a wrong priority.
Possible reason: the task has no access
rights to this resource.
0x3206 osdErrRRNotOccupied OSEK The specified resource is not occupied by
the task
0x3207 osdErrRRWrongSequence OSEK At least one other resource must be
released before
©2015, Vector Informatik GmbH Version: 9.01 39/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Error Code Description
= e
0x3208 osdErrRRIntAPI OSEK Interrupts are disabled with functions
Disabled provided by OSEK
0x3209 osdErrRRNoAccess OSEK Calling application has no access rights for
this resource
0x320A osdErrRRCallContext OSEK Called from invalid call context
0x320B osdErrRRISRNoAccess OSEK Calling ISR has no access rights for this
Rights resource
0x320D osdErrRRNoReadyTaskFo assertion No valid priority found when calling
und ReleaseResource

0x320E osdErrRRWrongTaskID assertion  Task index is not valid during call of
ReleaseResource

0x320F osdErrRRWrongHighRdyP assertion No valid high ready priority task index
rio during call of ReleaseResource

Table 3-12  Error numbers of group Resource Management / (3)

3.3.3.4 Error Numbers of Group Event Control / (4)
Group (4) contains the functions:

API Function Abbreviation |Function
Number
SetEvent SE 1
ClearEvent CE 2
GetEvent GE 3
WaitEvent WE 4

Table 3-13  API functions of group Event Control / (4)

Error numbers of group (4):

Error Code Description
0x4101 osdErrSEWrongTaskID OSEK Invalid task ID
0x4102 osdErrSENotExtended OSEK Cannot setEvent to basic task
Task
0x4103 osdErrSETaskSuspended OSEK Cannot setEvent to task in SUSPENDED

state. The error code might occur in case
of API call SetEvent or in case of
alarm/schedule table action to set an

event.
0x4104 osdErrSEWrongTask assertion  Wrong task priority detected
Prio
©2015, Vector Informatik GmbH Version: 9.01 40/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCtOf

. lerormpelReasn

0x4105 osdErrSEIntAPI OSEK Interrupts are disabled with functions
Disabled provided by OSEK
0x4106 osdErrSECallContext OSEK Called from invalid call context
0x4107 osdErrSENoAccess OSEK Calling application has no access rights for
this task
0x4108 osdErrSEWrongAppState OSEK Referenced task is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x4201 osdErrCENotExtended OSEK A basic task cannot clear an event
Task
0x4202 osdErrCEOnInterrupt OSEK ClearEvent called on interrupt level
Level
0x4203 o0sdErrCEIntAPI OSEK Interrupts are disabled with functions
Disabled provided by OSEK
0x4204 osdErrCECallContext OSEK Called from invalid call context
0x4301 osdErrGEWrongTaskID OSEK Invalid task ID
0x4302 osdErrGENotExtended OSEK Cannot GetEvent from basic task
Task
0x4303 osdErrGETaskSuspended OSEK Cannot GetEvent from a task in
SUSPENDED state
0x4304 osdErrGEIntAPI OSEK Interrupts are disabled with functions
Disabled provided by OSEK
0x4305 osdErrGEIllegalAddr OSEK Caller has no write access rights for
address argument
0x4306 osdErrGECallContext OSEK Called from invalid call context
0x4307 osdErrGENoAccess OSEK Calling application has no access rights for
this task
0x4308 osdErrGEWrongAppState OSEK Referenced task is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x4309 osdErrGEOddInvocation assertion Invocation of internal function
osGetEvent detected although
ReducedStatusChecks was enabled

0x4401 osdErrWENotExtended OSEK WaitEvent called by basic task
Task
0x4402 osdErrWEResources OSEK WaitEvent called with occupied
Occupied resources
0x4403 osdErrWEInterrupts OSEK WaitEvent called with disabled interrupts
Disabled
0x4404 osdErrWEOnInterrupt OSEK WaitEvent called on interrupt level
Level
0x4405 osdErrWECallContext OSEK Called from invalid call context
©2015, Vector Informatik GmbH Version: 9.01 41/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VeCtOf

Table 3-14  Error numbers of group Event Control / (4)

3.3.3.5 Error Numbers of Group Alarm Management / (5)
Group (5) contains the functions:

API Function Abbreviation |Function
Number
GetAlarmBase GB 1
GetAlarm GA 2
SetRelAlarm SA 3
SetAbsAlarm SL 4
CancelAlarm CA 5
osWorkAlarm WA 6

Table 3-15 API functions of group Alarm Management / (5)

Error numbers of group (5):

Error Code Description
Error Type
0x5101 osdErrGBWrongAlarmID OSEK Invalid alarm ID
0x5102 osdErrGBIntAPI OSEK Interrupts are disabled with functions
Disabled provided by OSEK

0x5103 osdErrGBIllegalAddr OSEK Caller has no write access rights for
address argument

0x5104 osdErrGBCallContext OSEK Called from invalid call context

0x5105 osdErrGBNoAccess OSEK Calling application has no access rights for
this alarm

0x5106 osdErrGBWrongAppState OSEK Referenced object is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x5201 osdErrGAWrongAlarmID OSEK Invalid alarm ID

0x5202 osdErrGANotActive OSEK Alarm not active

0x5203 osdErrGAIntAPI OSEK Interrupts are disabled with functions

Disabled provided by OSEK

0x5204 osdErrGATllegalAddr OSEK Caller has no write access rights for
address argument

0x5205 osdErrGACallContext OSEK Called from invalid call context

0x5206 osdErrGANoAccess OSEK Calling application has no access rights for
this alarm

0x5207 osdErrGAWrongAppState OSEK Referenced alarm is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

©2015, Vector Informatik GmbH Version: 9.01 421136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext

vector’

. lerormpelReasn

0x5301
0x5302
0x5303
0x5304
0x5305

0x5306

0x5307

0x5308

0x5309

0x5401

0x5402

0x5403

0x5404
0x5405

0x5406
0x5407

0x5408

0x5501

0x5502
0x5503

0x5504

0x5505
0x5506

0x5507

osdErrSAWrongAlarmID
osdErrSAAlreadyActive
osdErrSAWrongCycle
osdErrSAWrongDelta

osdErrSAIntAPI
Disabled

osdErrSAZeroIncrement

osdErrSACallContext

osdErrSANoAccess

osdErrSAWrongAppState

osdErrSLWrongAlarmID
osdErrSLAlreadyActive
osdErrSLWrongCycle
osdErrSLWrongStart

o0sdErrSLIntAPI
Disabled

osdErrSILCallContext

osdErrSLNoAccess

osdErrSLWrongAppState

osdErrCAWrongAlarmID
osdErrCANotActive

osdErrCAIntAPI
Disabled

osdErrCAAlarmInternal

osdErrCACallContext

osdErrCANoAccess

osdErrCAWrongAppState

©2015, Vector Informatik GmbH

OSEK
OSEK
OSEK
OSEK
OSEK

OSEK
OSEK
OSEK
OSEK
OSEK
OSEK
OSEK

OSEK
OSEK

OSEK
OSEK

OSEK
OSEK

OSEK
OSEK

syscheck

OSEK
OSEK

OSEK

Invalid alarm id

Alarm already active
Specified cycle is out of range
Specified delta is out of range

Interrupts are disabled with functions
provided by OSEK

SetRelAlarm was called with the
parameter increment set to zero. (This is
no longer allowed with AUTOSAR OS)

Called from invalid call context

Calling application has no access rights for
this alarm

Referenced alarm is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

Invalid alarm ID

Alarm already active
Specified cycle is out of range
Specified start is out of range

Interrupts are disabled with functions
provided by OSEK

Called from invalid call context

Calling application has no access rights for
this alarm

Referenced alarm is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

Invalid alarm ID
Alarm not active

Interrupts are disabled with functions
provided by OSEK

Internal error detected while alarm was
cancelled. This error is only detected when
OSInternalChecks is setto
Additional.

Called from invalid call context

Calling application has no access rights for
this alarm

Referenced alarm is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

Version: 9.01 43 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Error Code Description

Error Type

0x5601 osdErrWAWrongIDonHeap assertion  Wrong alarm ID in heap data structure for
alarm management

0x5602 osdErrWAHeapOverflow assertion Overflow in internal data structure for
alarm management

0x5603 osdErrWAUnknownAction assertion Invalid alarm action type during processing
of an expired alarm

0x5604 osdErrWAWrongCounterI assertion Invalid counter ID during processing of an
D expired alarm with
OsAlarmAction=0sAlarmIncrementC

ounter.

Table 3-16  Error numbers of group Alarm Management / (5)

3.3.3.6  Error Numbers of Group Operating System Execution Control / (6)
Group (6) contains the functions:

API Function Abbreviation |Function
Number
osCheckStackOverflow SO 1
osSchedulePrio SP 2
osGetStackUsage SuU 3
osCheckLibraryVersionAndVariant CL 4
osErrorHook EH 5
StartOs ST 6
osSchedInsertTask QI 7
osSchedRemoveRunningTask QR 8
osSchedOnHomePrio QS 9
osSchedOccupyInternalResource QO A

Table 3-17  API functions of group Operating System Execution Control / (6)

Error numbers of group (6):

Error Code Description

Error Type | Reason

0x6101 osdErrSOStackOverflow syscheck  Task stack overflow detected. This error is
only detected when the OIL attribute
WithStackCheck is set to TRUE.

0x6201 osdErrSPInterrupts assertion Scheduler called with enabled interrupts
Enabled

0x6301 osdErrSUWrongTaskID assertion Called with invalid task ID

©2015, Vector Informatik GmbH Version: 9.01 441136

based on template version 4.3



vector’

. lerormpelReasn

Technical Reference MICROSAR OS SafeContext

0x6401 osdErrCLWrongLibrary syscheck  Wrong library linked to application. This
error check is always enabled.
0x6501 osdErrEHInterrupts assertion ErrorHook called with enabled interrupts
Enabled
0x6601 osdErrSTMemoryError assertion StartoOs failed while initializing memory.
0x6602 osdErrSTNoImmediate assertion StartOs tried to activate the Scheduler
TaskSwitch without success.
0x6603 osdErrSTWrongAppMode  syscheck Start0s was called with an invalid
parameter value. This error is only
detected if the attribute STATUS is set to
EXTENDED.
0x6604 osdErrSTConfigCRCErro assertion Configuration CRC mismatch detected
r during Start0s
0x6606 osdErrSTConfigMagicNr assertion Error reading the magic number from
Error config block during Startos
0x6607 osdErrSTInvalidMajorV assertion Error reading the major version number
ersion from config block during Start0Ss
0x6608 osdErrSTInvalidMinorV assertion Error reading the minor version number
ersion from config block during Startos
0x6609 osdErrSTInvalidSTCfg assertion Schedule table has an invalid autostart
type value.
0x6701 osdErrQIWrongTaskPrio assertion  Wrong Task Priority in
osSchedInsertTask
0x6801 osdErrQRInterruptsEna assertion Interrupts are enabled during
bled osSchedRemoveRunningTask
0x6802 osdErrQRWrongTaskID assertion  Task index not valid in
osSchedRemoveRunningTask
0x6803 osdErrQRWrongTaskPrio assertion Priority not valid in
osSchedRemoveRunningTask
0x6804 osdErrQRWrongHighRdyP assertion High ready task priority not valid in
rio osSchedRemoveRunningTask
0x6901 osdErrQSInterruptsEna assertion Interrupts are enabled during
bled o0sSchedOnHomePrio
0x6902 osdErrQSNoReadyTaskFo assertion No High ready task has been found in
und osSchedOnHomePrio
0x6903 osdErrQSWrongPriority assertion Priority not valid in osSchedOnHomePrio
0x6A01 osdErrQOWrongTaskID assertion Task index not valid in

osSchedOccupyInternalResource

Table 3-18 Error numbers of group Operating System Execution Control / (6)

©2015, Vector Informatik GmbH

Version: 9.01

based on template version 4.3

45/136



Technical Reference MICROSAR OS SafeContext vector

3.3.3.7 Error Numbers of Schedule Table Control / (7)
Group (7) contains the functions:

API Function Abbreviation |Function
Number
StartScheduleTableRel SR 1
StartScheduleTableAbs SS 2
StopScheduleTable SP 3
GetScheduleTableStatus SG 4
NextScheduleTable SN 5
osWorkScheduleTable WS 6
SyncScheduleTable (SC2 and SC4) SY 7
SetScheduleTableAsync (SC2 and SC4) AY 8
StartScheduleTableSynchron (SC2 and SC4) TS C

Table 3-19  API functions of group Schedule Table Control / (7)

Error numbers of group (7):

Error Code Description
Error Type
0x7101 osdErrSRWrongID OSEK StartScheduleTableRel was called
with an invalid schedule table ID.
0x7102 osdErrSRAlready OSEK StartScheduleTableRel was called for
RunningOrNext a schedule table that is already running or
next.
0x7103 osdErrSRZeroOffset OSEK StartScheduleTableRel was called
with the parameter Offset set to zero.
0x7104 osdErrSROffsetTooBig OSEK StartScheduleTableRel was called

with the parameter Offset bigger than
MAXALLOWEDVALUE of the respective

counter.
0x7105 osdErrSRIntAPI OSEK StartScheduleTableRel was called
Disabled with disabled interrupts.
0x7106 osdErrSRCallContext OSEK Called from invalid call context
0x7107 osdErrSRNoAccess OSEK Calling application has no access rights for
this schedule table
0x7109 osdErrSRImplicite OSEK StartScheduleTableRel was called for
sSync an implicitly synchronized ScheduleTable
0x710a osdErrSRWrongAppState OSEK Referenced schedule table is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x7201 osdErrSSWronglID OSEK StartScheduleTablelAbs was called
with an invalid schedule table ID.
0x7202 osdErrSSAlready OSEK StartScheduleTableAbs was called for
©2015, Vector Informatik GmbH Version: 9.01 46 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext V@CtOf

. leormpelReasn

0x7203

0x7204

0x7205
0x7206

0x7207

0x7301

0x7302

0x7303

0x7304
0x7305

0x7306

0x7307

0x7401

0x7402

0x7403
0x7404

0x7405

0x7406

0x7407

RunningOrNext
osdErrSSTickvalueToo

Big

osdErrSSIntAPI
Disabled

osdErrSSCallContext

osdErrSSNoAccess

osdErrSSWrongAppState

osdErrSPWrongID

osdErrSPNotRunning

osdErrSPIntAPI
Disabled

osdErrSPCallContext

osdErrSPNoAccess
osdErrSPUnknownCase
osdErrSPWrongAppState
osdErrSGWrongID
osdErrSGIntAPI
Disabled

osdErrSGCallContext

osdErrSGNoAccess

osdErrSGIllegalAddr

osdErrSGWrongAppState

osdErrSGOddInvocation

©2015, Vector Informatik GmbH

OSEK

OSEK

OSEK
OSEK

OSEK

OSEK

OSEK

OSEK

OSEK
OSEK

Assertion
OSEK

OSEK

OSEK

OSEK
OSEK

OSEK

OSEK

assertion

a schedule table, which is already running
or next.

StartScheduleTableAbs was called
with the parameter TickValue bigger than
MAXALLOWEDVALUE of the respective
counter.

StartScheduleTableAbs was called
with disabled interrupts.

Called from invalid call context

Calling application has no access rights for
this schedule table

Referenced schedule table is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

StopScheduleTable was called with an
invalid schedule table ID.

StopScheduleTable was called for a
schedule table, which is in stopped or next
state.

StopScheduleTable was called with
disabled interrupts.

Called from invalid call context

Calling application has no access rights for
this schedule table

An internal error occured

Referenced schedule table is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

GetScheduleTableStatus was called
with an invalid schedule table ID.

GetScheduleTableStatus was called
with disabled interrupts

Called from invalid call context

Calling application has no access rights for
this schedule table

Caller has no write access rights for
address argument

Referenced schedule table is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

Invocation of internal function
osGetScheduleTableStatus detected
although ReducedStatusChecks was

Version: 9.01 47 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext V@CtOf

. lerormpelReason

0x7501

0x7502

0x7503

0x7504

0x7505

0x7506

0x7507
0x7508

0x7509

0x7601

0x7602

0x7603

0x7701
0x7702
0x7703

0x7704

0x7705
0x7706

0x7707

osdErrSNWrongCurrent
ID

osdErrSNWrongNextID

osdErrSNNotRunning

osdErrSNAlready
RunningOrNext

osdErrSNDifferent
Counters

0sdErrSNIntAPI
Disabled

osdErrSNCallContext

osdErrSNNoAccess

osdErrSNWrongAppState

osdErrWSUnknownAction

osdErrWSUnknown
Reaction

osdErrWSWrongID

osdErrSYCallContext
osdErrSYWrongID

osdErrSYNoAccess

osdErrSYIntAPI
Disabled

0sdErrSYSTNotRunning
osdErrSYGlobalTimeToo
Big
osdErrSYSyncKindNot
Explicit

©2015, Vector Informatik GmbH

OSEK

OSEK

OSEK

OSEK

OSEK

OSEK

OSEK
OSEK

OSEK

assertion

assertion

assertion

OSEK
OSEK
OSEK

OSEK

OSEK
OSEK

OSEK

enabled

NextScheduleTable was called with an
invalid schedule table ID for the parameter
ScheduleTableID current.

NextScheduleTable was called with an
invalid schedule table ID for the parameter
ScheduleTableID next

NextScheduleTable was called to chain
a schedule table after another schedule
table, that is currently not running.

NextScheduleTable was called to chain
a running schedule table after another
schedule table.

NextScheduleTable was called to chain
two schedule tables, which are driven by
different counters.

NextScheduleTable was called with
interrupts disabled.

Called from invalid call context

Calling application has no access rights for
this schedule table

Referenced schedule table is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

An invalid action was found in a schedule
table

An internal error occured

No valid schedule table index in
osWorkScheduleTable

Called from invalid call context
Called with wrong schedule table ID

Calling application has no access rights for
this schedule table

Called with interrupts disabled

The Schedule table is currently not running

The Global Time is larger than the LENGTH
of the schedule table

SyncScheduleTable was called for a
Schedule table that is not explicitly
synchronized.

Version: 9.01 48 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VeCtOf

Error Code Description
0x7708 osdErrSYWrongAppState OSEK Referenced schedule table is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x7801 osdErrAYCallContext OSEK Called from invalid call context
0x7802 osdErrAYWrongID OSEK Called with wrong schedule table ID
0x7803 osdErrAYNoAccess OSEK Calling application has no access rights for
this schedule table
0x7804 osdErrAYIntAPI OSEK Called with interrupts disabled
Disabled
0x7805 osdErrAYWrongAppState OSEK Referenced schedule table is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE
0x7C01 osdErrTSCallContext OSEK Called from invalid call context
0x7C02 osdErrTSWrongID OSEK Called with invalid schedule table id.
0x7C03 osdErrTSNoAccess OSEK Calling application has no access rights for
this schedule table
0x7C04 osdErrTSIntAPI OSEK Called with interrupts disabled
Disabled
0X7C05 osdErrTSSTAlready OSEK The schedule table is already running or
Running scheduled to run after a currently running
schedule table
0x7C06 o0sdErrTSGlobalTimeToo OSEK The offset to Global Time is larger than the
Big LENGTH of the schedule table
0x7C08 osdErrTSSyncKindNot OSEK StartScheduleTableSynchron was
Explicit called for a Schedule table that is not
explicitly synchronized.
0x7C09 osdErrTSWrongAppState OSEK Referenced schedule table is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

Table 3-20  Error numbers of group Schedule Table Control / (7)

3.3.3.8  Error Numbers of Group Counter API/ (8)
Group (8) contains the functions:

API Function Abbreviation |Function
Number
IncrementCounter IC 1
GetCounterValue GC 3
GetElapsedValue GV 4
Table 3-21  API functions of group Counter API / (8)
Error numbers of group (8):
©2015, Vector Informatik GmbH Version: 9.01 49/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext V@CtOf

. lerormpelReasn

0x8101 osdErrICWrongCounter OSEK IncrementCounter was called for an
ID invalid counter or a hardware counter.
0x8102 osdErrICIntAPI OSEK IncrementCounter was called with
Disabled interrupts disabled.
0x8103 osdErrICCallContext OSEK Called from invalid call context
0x8104 osdErrICNoAccess OSEK Calling application has no access rights for

this counter

0x8105 osdErrICWrongAppState OSEK Referenced counter is owned by an
OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x8301 osdErrGCCallContext OSEK Called from invalid call context.

0x8302 osdErrGCIntAPIDisabled OSEK Called with disabled interrupts

0x8303 o0sdErrGCWrongID OSEK Parameter CounterlD is invalid

0x8304 osdErrGCNoAccess OSEK Counter not accessible by the caller

0x8305 osdErrGCIllegalAddr OSEK Location the reference parameter Value
points to is not writable for the calling
application

0x8306 osdErrGCWrongAppState  OSEK Referenced ISR is owned by an
OSApplication that is not in state
APPLICATION_ACCESSIBLE

0x8307 osdErrGCOddInvocation  assertion Invocation of internal function
osGetCounterValue detected although
ReducedStatusChecks was enabled

0x8401 osdErrGvVCallContext OSEK Called from invalid call context.

0x8402 o0sdErrGVIntAPIDisabled OSEK Called with disabled interrupts

0x8403 osdErrGVWronglID OSEK Parameter CounterlID is invalid

0x8404 osdErrGVNoAccess OSEK Counter not accessible by the caller
0x8405 osdErrGVIllegalAddr OSEK Location a reference parameter points to is

not writable for the calling application

0x8406 osdErrGVWrongAppState  OSEK Referenced ISR is owned by an
OSApplication that is not in state
APPLICATION_ACCESSIBLE

0x8407 osdErrGVIllegalValue OSEK The passed value is illegal

0x8408 osdErrGVIllegalPointer OSEK The pointers for out parameters Value and
s Elapsed Value are identical.

0x8409 osdErrGvOddInvocation  assertion Invocation of internal function
osGetElapsedValue detected although
ReducedStatusChecks was enabled

Table 3-22  Error numbers of group Counter API / (8)

©2015, Vector Informatik GmbH Version: 9.01 50/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VeCtOf

3.3.3.9 Error Numbers of Group Timing Protection and Timing Measurement / (9)
Group (9) contains the functions:

API Function Abbreviation |Function
Number
GetTaskMinInterArrivalTime ™ 0
BlockingTimeMonitoring BM 7
GetTaskMaxExecutionTime TE 8
GetISRMaxExecutionTime IE 9
GetTaskMaxBlockingTime B A
GetISRMaxBlockingTime IB B
ExecutionTimeMonitoring ET D
GetISRMinInterArrivalTime Ml F

Table 3-23  API functions of group Timing Protection and Timing Measurement / (9)

Error numbers of group (9):

Error Code Description

0x9001 osdErrTMWrongTaskID OSEK Called with wrong TASK ID

0x9002 osdErrTMNoAccess OSEK The calling application has no access
rights for the TASK

0x9003 osdErrTMIllegalAddr OSEK The caller has no access rights for the
memory region

0x9004 osdErrTMWrongAppState OSEK Referenced task is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x9702 osdErrBMResAlready assertion A blocking time measurement was started
Measured that is already running. This might happen
if timing protection is active and
SuspendAllInterrupts is called after
DisableAllInterrupts has already

been called.
0x9703 osdErrBMInvalidProces assertion Internal error: attempt to start Block Timing
sInStart Protection with an invalid task or ISR
0x9704 osdErrBMInvalidProces assertion Internal error: attempt to stop Block Timing
sInStop Protection with an invalid task or ISR
0x9705 osdErrBMInvalidResour assertion  Attemptto monitor blocking time for an
ce invalid resource detected.
0x9801 osdErrTEWrongTaskID OSEK GetTaskMaxExecutionTime was called
with an invalid task identifier
0x9802 osdErrTENoAccess OSEK The calling application has no access
©2015, Vector Informatik GmbH Version: 9.01 51/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext V@CtOf

. lerormpelReason

rights for this task

0x9803 osdErrTEIllegalAddr OSEK The caller has no access rights for this
memory region

0x9804 osdErrTEWrongAppState OSEK Referenced task is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x9901 osdErrIEWrongISRID OSEK GetISRMaxExecutionTime was called
with an invalid ISR identifier

0x9902 osdErrIENoAccess OSEK The calling application has no access
rights for this ISR

0x9903 osdErrIEIllegalAddr OSEK The caller has no access rights for this
memory region.

0x9904 osdErrIEWrongAppState OSEK Referenced ISR is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x9A01 osdErrTBWrongTaskID OSEK Called with wrong Task ID

0x9A02 osdErrTBWrongBlock OSEK Called with wrong blocking type
Type

0x9A03 osdErrTBWrongResource OSEK Called with wrong resource ID
ID

0x9A04 osdErrTBNoAccessTo OSEK The calling application has no access
Task rights for the task

0x9A05 osdErrTBNoAccessTo OSEK The calling application has no access
Resource rights for the resource

0x9A06 osdErrTBIllegalAddr OSEK The caller has no access rights for this

memory region
0x9A07 osdErrTBWrongAppState OSEK Referenced task is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

0x9B01 osdErrIBWrongISRID OSEK Called with wrong ISR ID
0x9B02 osdErrIBWrongBlock OSEK Called with wrong blocking type
Type
0x9B03 osdErrIBWrongResource OSEK Called with wrong resource ID
1D
0x9B04 osdErrIBNoAccessToISR OSEK The calling application has no access
rights for the ISR
0x9B05 osdErrIBNoAccessTo OSEK The calling application has no access
Resource rights for the resource
0x9B06 osdErrIBIllegalAddr OSEK The caller has no access rights for the
memory region
0x9B07 osdErrIBWrongAppState OSEK Referenced ISR is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

©2015, Vector Informatik GmbH Version: 9.01 52/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Error Code Description
SO
0x9D01 osdErrETNoCurrent assertion Execution Time Monitoring has detected
Process an invalid process ID
Ox9F01 osdErrMIWrongISRID OSEK Called with wrong ISR ID
0x9F02 osdErrMINoAccess OSEK The calling application has no access
rights for the ISR
0X9F03 osdErrMITllegalAddr OSEK The caller has no access rights for the
memory region
O0x9F04 osdErrMIWrongAppState OSEK Referenced ISR is owned by an

OSApplication which is not in state
APPLICATION_ACCESSIBLE

Table 3-24  Error numbers of group Timing Protection and Timing Measurement / (9)

3.3.3.10 Platform specific error codes (A)
Group (A) contains platform specific error numbers. Please refer to [5] for further detail.

3.3.3.11 Error Numbers of Group Application API (B)
Group (B) contains the functions:

API Function Abbreviation |Function
Number
GetApplicationState AS 1
AllowAccess AA 2
TerminateApplication TA 4

Table 3-25 API functions of group Application API / (B)

Error numbers of group (B):

Error Code Description

Type
0xB101 osdErrASCallContext OSEK Called from invalid call context.
0xB102 osdErrASIntAPIDisabled OSEK Called with disabled interrupts
0xB103 osdErrASWrongAppID OSEK Called with invalid OSApplication ID

OxB104 osdErrASOddInvocation  assertion Invocation of internal function
osGetApplicationState detected
although ReducedStatusChecks was

enabled
0xB201 osdErrAACallContext OSEK Called from invalid call context.
0xB202 osdErrAAIntAPIDisabled OSEK Called with disabled interrupts
0xB203 osdErrAAWrongState OSEK Currently active application is not in state

APPLICATION_RESTARTING

©2015, Vector Informatik GmbH Version: 9.01 53/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Error Code Description
Error Reason
Type
0xB401 osdErrTAWrongRestart OSEK Invalid restart option
Option
0xB402 osdErrTACallContext OSEK Called from invalid call context
0xB403 osdErrTAIntAPI OSEK Called with interrupts disabled
Disabled
0xB404 osdErrTAWrongAppID OSEK Called with wrong OSApplication ID.
0xB405 osdErrTANoAccess OSEK Caller has not sufficient access rights to
terminate the given OSApplication.
0xB406 osdErrTAWrongAppState OSEK Referenced application is in wrong state.

0xB407 osdErrTAInvalidTaskSta assertion Task state corruptin TerminateApplication
te

Table 3-26  Error numbers of group Application API / (B)

3.3.3.12 Error Numbers of Group Semaphores (C)

'_]. Note
I ) This group is only available for implementations that have been ordered with the
feature Semaphores.

Group (C) contains the functions:

API Function Abbreviation |Function
Number

osGetSemaphore GM 1

osReleaseSemaphore RS 2

Table 3-27  API functions of group Semaphores / (C)

Error numbers of group (C):

Error Code Description

Error Reason
Type

0xC101 osdErrGMWrongSemaphore OSEK GetSemaphore called with wrong

ID Semaphore ID
0xC102 osdErrGMOnInterruptLev OSEK Called on Interrupt Level
el
0xC103 osdErrGMNotExtendedTas OSEK Called from a Basic Task
k
0xC104 osdErrGMResourcesOccup OSEK Called while resources are occupied
©2015, Vector Informatik GmbH Version: 9.01 54 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Error Code Description
Error Reason
Type
ied
0xC105 osdErrGMInterruptsDisa OSEK Interrupts are disabled with functions
bled provided by OSEK
0xC201 osdErrRSWrongSemaphore OSEK ReleaseSemaphore called with wrong
ID Semaphore ID
0xC203 osdErrRSAlreadyRelease OSEK Tried to release a semaphore that is not
d occupied
0xC204 osdErrRSWrongTaskPrio  assertion Task has wrong priority level
0xC205 osdErrRSInterruptsDisa OSEK Interrupts are disabled with functions
bled provided by OSEK

Table 3-28 Error numbers of group Semaphores / (C)

3.3.3.13 Error Numbers of Group MultiCore related functions (D)

Group (D) is reserved for MultiCore implementations. MultiCore specific detail is currently
contained in the additional documentation. Please refer to [4] for further detail.

3.3.3.14 Error Numbers of Group (Non-)TrustedFunctions (E)
Group (E) contains the functions:

API Function Abbreviation |Function
Number
CallTrustedFunction CT 3
CallNonTrustedFunction NT 4
PeripheralAPI functions PA 5

Table 3-29  API functions of group (Non-)TrustedFunctions (E)

Error numbers of group (E):

Error Code Description
Error Reason
Type
OxE301 osdErrCTWrongFctIdx OSEK Invalid function index for trusted function
OXE302 osdErrCTCallContext OSEK Called from invalid call context
O0XE303 o0sdErrCTIntAPI OSEK Called with interrupts disabled
Disabled
OXE404 osdErrNTWrongFctIdx OSEK Invalid function index for non-trusted
function
OXE405 osdErrNTCallContext OSEK Called from invalid call context
OXE406 osdErrNTIntAPI OSEK Called with interrupts disabled
Disabled
©2015, Vector Informatik GmbH Version: 9.01 55/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

Error Code Description

Error Reason
Type

OXE501 osdErrPAInvalidArealInd assertion Not a valid peripheral region ID used within
ex the API

OxE502 osdErrPANoAccessRight  assertion The current caller does not have access
rights to the peripheral region

OXE503 osdErrPAInvalidAddress assertion The address which is accessed is not
included within the passed peripheral
region

Table 3-30  Error numbers of group (Non-)TrustedFunctions (E)

3.3.3.15 Error Numbers of Group 10C (F)
Group (F) is reserved for implementations supporting 10C. I0C specific detail is currently

contained in the platform specific documentation. Please refer to [5] for further detail.

3.3.4 Reactions on Error Situations
Depending on the error that has occurred, different reactions are performed:

> Errors detected from wrong usage of API functions: Call of ErrorHook and return to
the calling task or interrupt routine.

> Errors detected in the kernel: Call of ErrorHook and call of ShutdownOs (which calls
ShutdownHook).

©2015, Vector Informatik GmbH Version: 9.01 56 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VeCtOf'

4 Installation

The MICROSAR OS package might be delivered together with other MICROSAR
embedded software. In this case, the OS is already included in the delivered package, and
no separate installation is necessary. If MICROSAR OS is delivered stand alone, it comes
up with an installation program, which installs the operating system source files and the
OIL Configurator. To use the OS with ARXML configurations, the DaVinci configurator
must be installed in addition.

4.1 Installation Requirements
The installation program and the OIL Configurator are 32-bit Windows programs.
Requirements:

> Microsoft Windows95, Windows98, Windows NT, Windows 2000, Windows XP,
Windows Vista, Windows 7

> 64 MByte of free disk space (for a complete installation)

4.2 Installation Disk

All parts of the OSEK system, the OIL Configurator, and the code generator are delivered
with a Windows installation program. The installation program copies all files onto the local
hard disk and sets all paths in the INI files. The installation program asks the user for an
installation path; this path is the root path for all installed components. The selected path is
referred to in the following as root. The delivered installation uses the path C:\OSEK as
the default root path.

There are two possible installation styles than can be selected:

> MICROSAR style: compatible with Vector AUTOSAR stack

> 0sCAN style: compatible with osCAN

The installation paths are determined depending on the selected style
The installed components are:

0SCAN style VICROSAR style

OIL Configurator root\OILTOOL root\Generators\Tools\OilTool
OSEK system root\HwPlatform root\BSW\Os

Table 4-1  Installed components

©2015, Vector Informatik GmbH Version: 9.01 57 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VeCtOf'

4.3 OIL Configurator

'_]. Info
| Please note that 'OIL Configurator' and 'OIL Tool' are used as synonyms in this
* document.

The OIL Configurator is a common tool for different OSEK implementations. The
implementation specific parts are the code generator and the OIL implementation files for
the code generator.

0SCAN style MICROSAR style

OIL Configurator root\OILTOOL root\Generators\Tools\OilTool
OIL implementation files root\OILTOOL\GEN root\Generators\Os
Code generator root\OILTOOL\GEN root\Generators\Os

Table 4-2  System configuration and generation tools

4.3.1 INI Files of the OIL Tool
The OIL Configurator has two INI files, which are in the directory of the OIL Configurator:
> OILGEN.INI

> OILCFG.INI

4.3.2 OIL Implementation Files

The implementation files are copied onto the local hard disk by the installation program.
The OIL tool has knowledge about these files through the INI file OTLGEN. INT (the correct
path is set by the installation program).

The implementation files are described in the hardware specific part of this manual [4].

4.3.3 Code Generator

The code generator GENxxxx .EXE is copied onto the local hard disk by the installation
program. The code generator is defined in the INI-file OILGEN.INI. (‘xxxx’ has to be
replaced by a hardware dependent abbreviation)

4.4  OSEK Operating System

4.4.1 Installation Paths
The delivered operating system parts are organized in different subdirectories.

The following structure is used by osCAN style installations:

> root\HwPlatform\APPL\Compiler\Derivative =~ Sample applications

> root\HwPlatform\BIN executable files (e.g. make tool)
> root\HwPlatform\bswmd_files XML parameter descrption files
©2015, Vector Informatik GmbH Version: 9.01 58 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext

> root\HwPlatform\DOC

> root\HwPlatform\INCLUDE
> root\HwPlatform\LIB

> root\HwPlatform\SRC

vector’

Documentation

OSEK include files

OSEK library (only if a library is available)
OSEK sources (C and Assembler)

The following structure is used by MICROSAR style installations:

\%

root\Demo\Os
> root\Generators\Os

> root\Generators\Components\_Schemes\
Os_<platform and derivate>_bswmd \bswmd

> root\Doc\TechnicalReferences
> root \Doc\UserManuals

> root\BSW\Os

> root\BSW\Os

> root\BSW\Os

45 XML Configurations

Sample applications
executable files (e.g. make tool)

XML parameter descrption files

Documentation

OSEK include files
OSEK library (only if a library is available)
OSEK sources (C and Assembler)

AUTOSAR uses for configuration files the XML format. An XML Schema (ref. [8]) defines
the structure. For each derivative there is an ECU Parameter Definition File (file extension
is arxml) which defines all attributes (standard attribute and vendor/platform specific

attributes).

The Vector implementation of AUTOSAR OS uses the OIL [6] configuration file format or
ECU Configuration files. A conversion of ECUC files to OIL, as it was necessary in former
versions of MICROSAR OS, is not required any more.

45.1 Parameter Definition Files

Parameter Definition Files for the implementation can be found in the directory
root\HwPlatform\BSWMD files (0SCAN style) or

root\Generators\Components\ Schemes\Os <platform and
derivate> bswmd\bswmd (MICROSAR style).

The files have the name 0S <platform and derivate> bswmd.arxml.

©2015, Vector Informatik GmbH

Version: 9.01 59/136



Technical Reference MICROSAR OS SafeContext VeCtOf'

5 Integration

This chapter gives necessary information for the integration of the MICROSAR OS into an
application environment of an ECU.

5.1 Scope of Delivery
The delivery of the OS contains the files that are described in the chapters 5.1.1 and 5.1.2:

5.1.1 Static Files
The static file list is described in the platform specific technical reference [4]

5.1.2 Dynamic Files

The dynamic files are generated by the code generator GENxxxx (xxxx is replaced by
hardware platform name).

5.1.2.1 Code Generator GENxxxx

tch.c tcb contains the task control block and other OS object

tcb.h task and other OS object related information, like task Ids — definitions
required by static include files (e.g. array sizes)

tcbpost.h task and other OS object related information, like task Ids — declarations
that require static include files (e.g. typedef's)

trustfct.h Header containing trusted function information

trustfct.c Trusted function data and generated stubs

libconf Information for usage in makefiles, not available on all platforms, see

chapter 5.1.2.1.1
<OILFileName>.ort Generated if kernel aware debugging with the ORTI interface is enabled,

Table 5-1  Files generated by code generator GENxxxx

In addition to the files listed in Table 5-1, some hardware dependent files are generated
which are described in the hardware specific technical reference [4].

5.1.2.1.1 Generated file libconf

The file libconf is meant for the inclusion into makefiles. It sets some variables in
accordance to general configuration settings of MICROSAR OS to inform the make
process about them. Dependent on the platform, the file may contain more information or
be even unavailable, so please see the hardware specific technical reference [4].

The table below describes the generated variables.

©2015, Vector Informatik GmbH Version: 9.01 60 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext V@Ctor

varicble . [Veaning

LIB Always 0, because MICROSAR OS SafeContext cannot be configured to library
variant.
STATUS LEVEL Reflects the setting of the configuration attribute STATUS of MICROSAR OS.

Possible values:
EXTENDED_STATUS =1

DEBUG_SUPPORT Always 1, because ORTIDebugSupport is always enabled for MICROSAR OS
SafeContext.

Table 5-2  Variables generated into the file libconf

5.1.2.2 Application Template Generator GENTMPL

Former versions of MICROSAR OS and osCAN came with a template code generator
which generates a main.c template file with empty implementations for the objects defined
in the configuration. This is not supported any more in newer implementations.

5.2 Include Structure

The header files tcb.h and tcbpost.h are included into the file os.h. The user must
include os.h in every module of his application. The headers tcb.h and tcbpost.h are
included automatically. Always recompile all files after a new generation of tcb.h and
tcbpost.h.

If an application is using trusted functions and the Vector extension “GenerateStubs”, an
include file named usrostyp.h must be present in the include path. This file must contain
all user specific data types used for trusted functions.

©2015, Vector Informatik GmbH Version: 9.01 61/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VeCtOf

6 API Description

6.1 Standard API - Overview

This chapter gives an overview of all standard API functions defined for the OS. The
following synonyms present the standard specifications:

> ASR: AUTOSAR standard, reference [1]
> OSEK: OSEK standard, reference [3]

These standard specifications contain the detailed API descriptions. In case part of an API
function is implementation specific, the detailed API description is given in a further
subchapter in this document.

API Function Prototype Standard Scalability
Specification |Class

Task Handling

StatusType ActivateTask (TaskType TaskID) " ol B R
StatusType TerminateTask (void) = i
StatusType ChainTask (TaskType TaskID) - i
StatusType Schedule (void) = e n
StatusType GetTaskID (TaskRefType TaskID) " .=
StatusType GetTaskState (TaskType TaskID, = i
TaskStateRefType State)
Event Control
StatusType SetEvent (TaskType TaskID, " e RN
EventMaskType Mask)
n "B B BE

StatusType ClearEvent (EventMaskType Mask)

StatusType GetEvent (TaskType TaskID, = nERn
EventMaskRefType Mask)

StatusType WaitEvent (EventMaskType Mask)
Interrupt Handling

The behavior of the interrupt handling functions is implementation specific. For a detailed
description see hardware specific technical reference [4].

void EnableAllInterrupts (void) " ol il
void DisableAllInterrupts (void) = ol el el
void ResumeAllInterrupts (void) " ol el el
void SuspendAllInterrupts (void) - Bl Rl
void ResumeOSInterrupts (void) - ol el el
void SuspendOSInterrupts (void) = e
©2015, Vector Informatik GmbH Version: 9.01 62/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VeCtOf

API Function Prototype Standard Scalability
Specification |Class

The behaviour of the resource management functions is implementation specific

Resource Management

StatusType GetResource (ResourceType ResID) = s n

StatusType ReleaseResource (ResourceType ResID) = s n

Alarms

StatusType GetAlarmBase (AlarmType AlarmID, - ol R R
AlarmBaseRefType Info)

StatusType GetAlarm (AlarmType AlarmID, " ol Bl R
TickRefType Tick)

StatusType SetRelAlarm (AlarmType AlarmID, " " en

TickType Increment,
TickType cycle)

StatusType SetAbsAlarm (AlarmType AlarmlD, = e n
TickType Start,
TickType cycle)

StatusType CancelAlarm (AlarmType AlarmID) " e e n
Execution Control
void Startos (AppModeType Mode) = e n
void ShutdownOS (StatusType Error) " e e n
ISRType GetISRID (void) = "-een
AppModeType GetActiveApplicationMode (void) = ol R R
ApplicationType GetApplicationID (void) = " .
m B

StatusType CallTrustedFunction
(TrustedFunctionIndexType FunctionIndex,
TrustedFunctionParameterRefType FunctionParams)

StatusType GetApplicationState
(ApplicationType Application,
ApplicationStateRefType Value)

Hook Routines

The context for called hook routines is implementation specific. For a detailed description see
see hardware specific technical reference [4].

void ErrorHook (StatusType Error) =

void PreTaskHook (void) =

void PostTaskHook (void) "

void StartupHook (void) =

void ShutdownHook (StatusType Error) =

ProtectionReturnType ProtectionHook = i R

(StatusType Fatalerror)
©2015, Vector Informatik GmbH Version: 9.01 63 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

API Function Prototype Standard Scalability
Specification |Class

Schedule Tables

StatusType StartScheduleTableRel = e Rn
(ScheduleTableType ScheduleTablelD,
TickType Offset)

StatusType StartScheduleTableAbs = - e
(ScheduleTableType ScheduleTablelD,
TickType Start)

StatusType StopScheduleTable " /e n
(ScheduleTableType ScheduleTablelD)
StatusType NextScheduleTable = e n

(ScheduleTableType ScheduleTableID From,
ScheduleTableType ScheduleTableID To)

StatusType StartScheduleTableSynchron = = =
(ScheduleTableType ScheduleTablelD)
StatusType SyncScheduleTable = = =

(ScheduleTableType ScheduleTablelD,
TickType Value)

StatusType SetScheduleTableAsync = = =
(ScheduleTableType ScheduleTablelD)
StatusType GetScheduleTableStatus " e Rnn

(ScheduleTableType ScheduleTablelD,
ScheduleTableStatusRefType ScheduleStatus)

Counters
StatusType IncrementCounter = .=
(CounterType CounterID)
m E = Ewm

StatusType GetCounterValue
(CounterType CounterID, TickRefType Value)

StatusType GetElapsedValue = s n
(CounterType CounterID, TickRefType Value,
TickRefType ElapsedValue)

Access Rights Management

AccessType CheckISRMemoryAccess
(ISRType ISRID,
MemoryStartAddressType Address,
MemorySizeType Size)

AccessType CheckTaskMemoryAccess
(TaskType TaskID,
MemoryStartAddressType Address,
MemorySizeType Size)

ObjectAccessType CheckObjectAccess
(ApplicationType ApplID,
ObjectTypeType ObjectType, ..)

©2015, Vector Informatik GmbH Version: 9.01 64 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

API Function Prototype Standard Scalability
Specification |Class

| | | | |

ApplicationType CheckObjectOwnership
(ObjectTypeType ObjectType, ..)

Table 6-1  Standard API functions

6.2 API Functions defined by Vector - Overview

This chapter gives an overview of all API functions defined for the OS by Vector. Further
chapters contain detailed descriptions of these API functions.

API Function Prototype Scalability
Class

Measurement API
For a detailed description see chapter 6.4.
StatusType GetTaskMaxExecutionTime " "
(TaskType TaskID, osTPTimeRefType MaxTime)
StatusType GetISRMaxExecutionTime = =
(ISRType TaskID, osTPTimeRefType MaxTime)
StatusType GetTaskMaxBlockingTime " "
(TaskType TaskID, BlockTypeType BlockType,
ResourceType ResourcelID, osTPTimeRefType MaxTime)
StatusType GetISRMaxBlockingTime " "
(ISRType ISRID, BlockTypeType BlockType,
ResourceType ResourcelID, osTPTimeRefType MaxTime)
StatusType osGetISRMinInterArrivalTime " "
(ISRType ISRID, osTPTimeStampRefType MinTime)
[] []

StatusType osGetTaskMinInterArrivalTime
(TaskType ISRID, osTPTimeStampRefType MinTime)

Non-Trusted Functions

Calling service functions from Non-Trusted Applications. The complement part of the AUTOSAR
API CallTrustedFunction.

StatusType osCallNonTrustedFunction " .
(NonTrustedFunctionIndexType FunctionIndex,
NonTrustedFunctionParameterRefType FunctionParams)

Peripheral Region API

API to access memory mapped hardware registers, which are only accessible in

privileged mode.

osuint8 osReadPeripheral8 (osuintlé area, osuint32 address) " .

osuintl6 osReadPeripherall6 (osuintl6 area, osuint32 address) " .

osuint32 osReadPeripheral32 (osuintl6 area, osuint32 address) " .

©2015, Vector Informatik GmbH Version: 9.01 65/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

API Function Prototype Scalability
Class

void osWritePeripheral8 (osuintl6 area, osuint32 address, osuint8 " .
value)
void osWritePeripherall6 (osuintl6 area, osuint32 address, osuintlé6 " .
value)
void osWritePeripheral32 (osuintl6é area, osuint32 address, osuint32 " .
value)
void osModifyPeripheral8 (osuintl6 area, osuint32 address, osuint8 .- -
clearmask, osuint8 setmask)
void osModifyPeripherall6 (osuintl6 area, osuint32 address, osuintlé6 " .
clearmask, osuintl6é setmask)
void osModifyPeripheral32 (osuintl6 area, osuint32 address, osuint32 ..
clearmask, osuint32 setmask)
MPU Access Checking API
Check whether you have read/write access to a given address.

| .

uint8 osCheckMPUAccess (uint8* DestinationAddress)

Table 6-2  Vector API functions

6.3 Timing Measurement API

6.3.1 GetTaskMaxExecutionTime

Prototype
StatusType GetTaskMaxExecutionTime ( TaskType TaskID, osTPTimeRefType MaxTime )

TaskID The task to be questioned
MaxTime Maximum execution time, measured in all finished time frames.

Return code
E_OK No errors

E_OS_ID The TaskID is not valid.

Functional Description

The maximum execution time of finished executions of the questioned task since StartOS. The value is in
ticks of the ExecutionTime hardware timer. The number of ticks per ms of this timer is printed into the HTML
list file.

Particularities and Limitations

> Available in Scalability Classes 2 and 4.
> This function is synchronous.

> This function is reentrant.

> This function is only available if the attribute TimingMeasurement is set to TRUE (is selected)

©2015, Vector Informatik GmbH Version: 9.01 66 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Expected Caller Context
> task orcat2 ISR

Table 6-3  GetTaskMaxExecutionTime

6.3.2 GetlISRMaxExecutionTime

Prototype
StatusType GetISRMaxExecutionTime ( ISRType TaskID, osTPTimeRefType MaxTime )

TaskID The task to be questioned
MaxTime Maximum execution time of the respective ISR for all finished ISR activations.

Return code
E _OK No errors
E OS ID The ISRID is not valid.

Functional Description

The maximum execution time of finished executions of the questioned ISR since StartOS. The value is in
ticks of the ExecutionTime hardware timer. The number of ticks per ms of this timer is printed into the HTML
list file.

Particularities and Limitations

> Available in Scalability Classes 2 and 4.

> This function is synchronous.

> This function is reentrant.

> This function is only available if the attribute TimingMeasurement is setto TRUE (is selected)
Expected Caller Context

> task orcat2 ISR

Table 6-4  GetlISRMaxExecutionTime

6.3.3 GetTaskMaxBlockingTime

Prototype
StatusType GetTaskMaxBlockingTime (

TaskType TaskID,
BlockTypeType BlockType,
ResourceType ResourcelD,

0sTPTimeRefType MaxTime )

Parameter

TaskID The task to be questioned

BlockType 0S_ALL INTERRUPTS, OS OS INTERRUPTS or OS_RESOURCE

ResourcelD If BlockType == 0S_RESOURCE, ResourcelD specifies the Resource
©2015, Vector Informatik GmbH Version: 9.01 67 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

MaxTime Maximum of all measured times.

Return code
E_OK No errors

E OS_ID The TaskID, the BlockType or the ResourceID are invalid.

Functional Description

The maximum blocking time of finished locking sequences of the questioned task and the resource or
interrupt lock type since StartOS. The value is in ticks of the BlockingTime hardware timer. The number of
ticks per ms of this timer is printed into the HTML list file.

Particularities and Limitations

> Available in Scalability Classes 2 and 4.

> This function is synchronous.

> This function is reentrant.

> This function is only available if the attribute TimingMeasurement is set to TRUE (is selected)
Expected Caller Context

> task or cat2 ISR

Table 6-5  GetTaskMaxBlockingTime

6.3.4 GetlISRMaxBlockingTime

Prototype
StatusType GetISRMaxBlockingTime (

ISRType ISRID,
BlockTypeType BlockType,
ResourceType ResourcelD,

osTPTimeRefType MaxTime )

ISRID The ISR to be questioned

BlockType 0S_ALL INTERRUPTS, OS_OS INTERRUPTS Of OS RESOURCE
ResourcelD If BlockType == 0S_RESOURCE, ResourcelD specifies the Resource
MaxTime Maximum of all measured times.

Return code
E_OK No errors

E_OS_ID The TaskID, the BlockType or the ResourceID are invalid.

Functional Description

The maximum blocking time of finished locking sequences of the questioned ISR and the resource or
interrupt lock type since StartOS. The value is in ticks of the BlockingTime hardware timer. The number of
ticks per ms of this timer is printed into the HTML list file.

Particularities and Limitations

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

> Available in Scalability Classes 2 and 4.

> This function is synchronous.

> This function is reentrant.

> This function is only available if the attribute TimingMeasurement is set to TRUE (is selected)
Expected Caller Context

> task orcat2 ISR

Table 6-6  GetlISRMaxBlockingTime

6.3.5 GetTaskMininterArrivalTime

Prototype

StatusType GetTaskMinInterArrivalTime( TaskType TaskID, osTPTimeStampRefType
MinTime )

TaskID The task to be questioned
MinTime Minimum time between two task arrivals

Return code

E_OK No errors
E_OS_ID The TaskID is not valid.
E_OS ACCESS No access rights to task (SC4 only)

E_OS_ILLEGAL_ADDRESS Memory address of MinTime not writeable (SC4 only)

Functional Description

Returns the minimum time span between two arrivals of a task (see [1]) as measured since StartOS. The
value is in ticks of the InterArrivalTime hardware timer. The number of ticks per ms of this timer is printed
into the HTML list file.

Particularities and Limitations

> Available in Scalability Classes 2 and 4.
> This function is synchronous.

> This function is reentrant.

> This function is only available if the attribute TimingMeasurement is set to TRUE (is selected)

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

69 /136



Technical Reference MICROSAR OS SafeContext VQCEO('

Expected Caller Context
> task orcat2 ISR

Table 6-7  GetTaskMinInterArrivalTime

6.3.6 GetISRMinInterArrivalTime

Prototype

StatusType GetISRMinInterArrivalTime ( ISRType IsrID, osTPTimeStampRefType
MinTime )

IsrID The ISR to be questioned
MinTime Minimum time between two ISR arrivals

Return code

E _OK No errors
E OS ID The ISRID is not valid.
E_OS_ACCESS No access rights for this ISR (SC4 only)

E_OS_ILLEGAL_ADDRESS  Memory address of MinTime not writeable (SC4 only)

Functional Description

Returns the minimum time span between two arrivals of an ISR (see [1]) as measured since StartOS. The
value is in ticks of the InterArrivalTime hardware timer. The number of ticks per ms of this timer is printed
into the HTML list file.

Particularities and Limitations

> Available in Scalability Classes 2 and 4.

> This function is synchronous.

> This function is reentrant.

> This function is only available if the attribute TimingMeasurement is setto TRUE (is selected)
Expected Caller Context

> task or cat? ISR

Table 6-8  GetISRMinInterArrivalTime

6.4 Implementation specific Behavior
The behaviour of the functions listed in this chapter is implementation specific.

6.4.1 Interrupt Handling

In general the usage of the interrupt API functions is allowed before the operating system
is started. The affected functions are:

> DisableAllInterupts

> EnableAllInterrupts

©2015, Vector Informatik GmbH Version: 9.01 70/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

> SuspendAllInterrupts
> ResumeAllInterrupts
> SuspendOSInterrupts
> ResumeOSInterrupts

The implementation specific behaviour is of these functions is described in [5].

6.4.1.1 EnableAllinterrupts

Prototype
void EnableAllInterrupts ( void )

Parameter

Return code

void --

Functional Description

This service restores the state saved by DisableAllInterrupts.

This service is a counterpart of DisableAllInterrupts service, which has to be called before, and its
aim is the completion of the critical section of code. No API service calls are allowed within this critical
section.

The implementation should adapt this service to the target hardware providing a minimum overhead.
Usually, this service enables recognition of interrupts by the central processing unit.

This function might be implemented using a global interrupt flag or an interrupt level register.

Particularities and Limitations

> When using before start0S, the function osInitialize must be called first to initialize the variables
which are used in the interrupt API.

> The function must not be used within handlers of non-maskable interrupts as this can violate the
consistancy of internal variables.

Expected Caller Context
DR

Table 6-9  EnableAllinterrupts

©2015, Vector Informatik GmbH Version: 9.01 71/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

6.4.1.2 DisableAllinterrupts

Prototype
void DisableAllInterrupts ( void )

Parameter

Return code
Void

Functional Description

This service disables all interrupts for which the hardware supports disabling. The state before is saved for
the EnableAllInterrupts call

This service is intended to start a critical section of the code. This section shall be finished by calling the
EnableAllInterrupts service. No API service calls are allowed within this critical section.

The implementation should adapt this service to the target hardware providing a minimum overhead.
Usually, this service disables recognition of interrupts by the central processing unit.

Note that this service does not support nesting. If nesting is needed for critical sections e.g. for libraries
SuspendOSInterrupts/ResumeOSInterrupts Or SuspendAllInterrupt/ResumeAllInterrupts
should be used.

This function might be implemented using a global interrupt flag or an interrupt level register.

Particularities and Limitations

> When using before start0S, the function osInitialize must be called first to initialize the variables
which are used in the interrupt API.

> The function must not be used within handlers of non-maskable interrupts as this can violate the
consistancy of internal variables.

Expected Caller Context

P

Table 6-10 DisableAllinterrupts

6.4.1.3 ResumeAllinterrupts

Prototype
void ResumeAllInterrupts ( void )

Parameter

Return code

void

©2015, Vector Informatik GmbH Version: 9.01 721136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Functional Description

This service restores the recognition status of all interrupts saved by the SuspendAllInterrupts
service.

This service is the counterpart of SuspendAllInterrupts service, which has to have been called
before, and its aim is the completion of the critical section of code. No API service calls beside
SuspendAllInterrupts/ResumeAllInterrupts pairs and
SuspendOSInterrupts/ResumeOSInterrupts pairs are allowed within this critical section.

The implementation should adapt this service to the target hardware providing a minimum overhead.

SuspendAllInterrupts/ResumeAllInterrupts can be nested. In case of nesting pairs of the calls
SuspendAllInterrupts and ResumeAllInterrupts the interrupt recognition status saved by the first
call of SuspendAllInterrupts is restored by the last call of the ResumeAllInterrupts service.

This function might be implemented using a global interrupt flag or an interrupt level register.

Particularities and Limitations

> When using before start0S, the function osInitialize must be called first to initialize the variables
which are used in the interrupt API.

> The function must not be used within handlers of non-maskable interrupts as this can violate the
consistancy of internal variables.

Expected Caller Context
DR

Table 6-11 ResumeAllinterrupts

6.4.1.4 SuspendAllinterrupts

Prototype
void SuspendAllInterrupts ( void )

Parameter

Return code

void --

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Functional Description

This service saves the recognition status of all interrupts and disables all interrupts for which the hardware
supports disabling.

This service is intended to protect a critical section of code from interruptions of any kind. This section shall
be finished by calling the ResumeAllInterrupts service. No API service calls beside
SuspendAllInterrupts/ResumeAllInterrupts pairs and
SuspendOSInterrupts/ResumeOSInterrupts pairs are allowed within this critical section.

The implementation should adapt this service to the target hardware providing a minimum overhead.

This function might be implemented using a global interrupt flag or an interrupt level register.

Particularities and Limitations

> When using before start0S, the function osInitialize must be called first to initialize the variables
which are used in the interrupt API.

> The function must not be used within handlers of non-maskable interrupts as this can violate the
consistancy of internal variables.

Expected Caller Context

P

Table 6-12 SuspendAllinterrupts

6.4.1.5 ResumeOSinterrupts

Prototype
void ResumeOSInterrupts ( void )

Parameter

Return code
void -

Functional Description

This service restores the recognition status of interrupts saved by the SuspendOSInterrupts service.

This service is the counterpart of SuspendOSInterrupts service, which has to have been called before,
and its aim is the completion of the critical section of code. No API service calls beside
SuspendAllInterrupts/ResumeAllInterrupts pairs and
SuspendOSInterrupts/ResumeOSInterrupts pairs are allowed within this critical section.

The implementation should adapt this service to the target hardware providing a minimum overhead.

SuspendOSInterrupts/ResumeOSInterrupts can be nested. In case of nesting pairs of the calls
SuspendOSInterrupts and ResumeOSInterrupts the interrupt recognition status saved by the first
call of SuspendOSInterrupts is restored by the last call of the ResumeOSInterrupts service.

This function might be implemented using a global interrupt flag or an interrupt level register

©2015, Vector Informatik GmbH Version: 9.01 74 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Particularities and Limitations

> When using before start0S, the function osInitialize must be called first to initialize the variables
which are used in the interrupt API.

> The function must not be used within handlers of non-maskable interrupts as this can violate the
consistancy of internal variables.

Expected Caller Context
b —

Table 6-13 ResumeOSiInterrupts

6.4.1.6 SuspendOSinterrupts

Prototype
void SuspendOSInterrupts ( void )

Parameter

Return code

void --

Functional Description

This service saves the recognition status of interrupts of category 2 and disables the recognition of these
interrupts.

This service is intended to protect a critical section of code. This section shall be finished by calling the
ResumeOSInterrupts service. No API service calls beside
SuspendAllInterrupts/ResumeAllInterrupts pairs and
SuspendOSInterrupts/ResumeOSInterrupts pairs are allowed within this critical section.

The implementation should adapt this service to the target hardware providing a minimum overhead.

It is intended only to disable interrupts of category 2. However, if this is not possible in an efficient way
more interrupts may be disabled.

This function might be implemented using a global interrupt flag or an interrupt level register.

Particularities and Limitations

> When using before start0S, the function osInitialize must be called first to initialize the variables
which are used in the interrupt API.

> The function must not be used within handlers of non-maskable interrupts as this can violate the
consistancy of internal variables.

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Expected Caller Context
b —

Table 6-14 SuspendOSinterrupts

6.4.2 Resource Management
The affected functions are:

> GetResource
> ReleaseResource

The implementation specific behaviour is of these functions is described in [4].

6.4.2.1 GetResource

Prototype
StatusType GetResource ( ResourceType ResID )

Parameter
ResID Reference to resource

Return code

E OK No error
E OS ID Resource ResID is invalid
E_OS_ACCESS Attempt to get a resource which is already occupied by any task or ISR, or the

statically assigned priority of the calling task or interrupt routine is higher than
the calculated ceiling priority.

©2015, Vector Informatik GmbH Version: 9.01 76 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

Functional Description

This call serves to enter critical sections in the code that are assigned to the resource referenced by
ResID. A critical section shall always be left using ReleaseResource.

Nested resource occupation is only allowed if the inner critical sections are completely executed within the
surrounding critical section (strictly stacked, Restrictions when using resources). Nested occupation of one
and the same resource is also forbidden!

It is recommended that corresponding calls to GetResource and ReleaseResource appear within the
same function.

It is not allowed to use services which are points of rescheduling for non preemptable tasks
(TerminateTask, ChainTask, Schedule and WaitEvent) in critical sections. Additionally, critical
sections are to be left before completion of an interrupt service routine.

Generally speaking, critical sections should be short.

The service may be called from an ISR and from task level.

Depending on the possibility to manipulate interrupt levels, this function may be used on interrupt level or
not and may be implemented differently.

If used on task level, the behavior and functionality is always the same (according to the specification).

Particularities and Limitations

V ‘
1
i

Expected Caller Context
> Task level or cat2 ISR

Table 6-15 GetResource

6.4.2.2 ReleaseResource

Prototype
StatusType ReleaseResource ( ResourceType ResID )

Parameter

ResID Reference to resource

Return code

E OK No error
E 0S ID Resource ResID is invalid
E_O0S NOFUNC Attempt to release a resource which is not occupied by any task or ISR, or

another resource shall be released before.

E _0OS_ACCESS Attempt to release a resource that has a lower ceiling priority than the
statically assigned priority of the calling task or interrupt routine.

©2015, Vector Informatik GmbH Version: 9.01 771136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Functional Description

ReleaseResource is the counterpart of GetResource and serves to leave critical sections in the code that
are assigned to the resource referenced by ResID.

For information on nesting conditions, see particularities of GetResource.

The service may be called from an ISR and from task level.

Depending on the possibility to manipulate interrupt levels, this function may be used on interrupt level or
not and may be implemented differently.

If used on task level, the behavior and functionality is always the same (according to the specification).

Particularities and Limitations

V ‘
]
i

Expected Caller Context
> Task level or cat2 ISR

Table 6-16 ReleaseResource

6.4.3 Execution Control
The affected functions are:

> StartOS
> ShutdownOS

The implementation specific behavior is of these functions is described in [4].

6.4.3.1 StartOS

Prototype
void StartOS ( AppModeType Mode )

Parameter
Mode application mode

Return code

void -

Functional Description

The user can call this system service to start the operating system in a specific mode.

Only allowed outside of the operating system, therefore implementation specific restrictions may apply.

After calling start0s the program never returns to the call level of Start0s.

Particularities and Limitations

V ‘
1
i

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Expected Caller Context
> C main function

Table 6-17 StartOS

6.4.3.2 ShutdownOS

Prototype
void ShutdownOS ( StatusType Error )

Parameter

Error error occurred

Return code

void -

Functional Description

The user can call this system service to abort the overall system (e.g. emergency off). The operating
system also calls this function internally, if it has reached an undefined internal state and is no longer ready
to run.

If a ShutdownHook is configured the hook routine shutdownHook is always called (with Error as
argument) before shutting down the operating system.

If ShutdownHook returns, further behaviour of Shutdown0S is implementation specific.

In case of a system where OSEK OS and OSEKtime OS coexist, ShutdownHook has to return.

Error needs to be a valid error code supported by OSEK OS. In case of a system where OSEK OS and
OSEKtime OS coexist, Error might also be a value accepted by OSEKtime OS. In this case, if enabled by
an OSEKtime configuration parameter, OSEKtime OS will be shut down after OSEK OS shutdown.

After this service the operating system is shut down.

Allowed at task level, ISR level, in ErrorHook and StartupHook, and also called internally by the
operating system.

If the operating system calls ShutdownOS it never uses E_OK as the passed parameter value.

After the call of ShutdownHook MICROSAR OS disables all interrupts and will never return to the call
level. The ShutdownHook is called with disabled interrupts.

Particularities and Limitations

V ‘
1
1

©2015, Vector Informatik GmbH Version: 9.01 79 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

Expected Caller Context
b —

Table 6-18 ShutdownOS

6.5 Hook Routines

MICROSAR OS calls several hook routines. These may be hook routines as described in
the OSEK or Autosar standard. Additionally, MICROSAR provides Hook routines for ISR
entry/exit, Alarm time and timing supervision (MICROSAR OS Timing Hooks).

These hook routines are described in the subchapters below.

The subchapters describe the prototypes of the called hook routines and their calling
contexts. The current stack in the hook routines is implementation specific and described
in [4].

6.5.1 Standard Hooks

The hook routines described in the subchapters are defined by the OSEK and Autosar
standards.

All these hook routines need to be implemented by the user if they are enabled in the
configuration. The OS calls these hook routines with interrupts disabled (if not stated
otherwise).

6.5.1.1 StartupHook

Prototypes
void StartupHook ( void ) /* general startup hook */

void StartupHook <App> ( void ) /* application specific startup hook */

Parameter

Return code

void --

Functional Description
The user may call the initialization routines for hardware drivers.

Particularities and Limitations

> -
Call Context

> interrupt or task context

> The StartupHook routine is called while the operating system is initialized.

Table 6-19 StartupHook

©2015, Vector Informatik GmbH Version: 9.01 80/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

6.5.1.2 PreTaskHook

Prototype
void PreTaskHook ( void

~

Parameter

Return code

void

Functional Description
The user can use the API function GetTaskID to determine the new task.

Particularities and Limitations

> The PreTaskHook may only be configured for debugging purpose in MICROSAR OS SafeContext, see
[9].

Call Context

> interrupt or task context

> PreTaskHook is called after a task is set into the RUNNING state (not into the READY state).

> For particularities of using PreTaskHook when using timing protection, please see [4]

Table 6-20 PreTaskHook

6.5.1.3 PostTaskHook

Prototype
void PostTaskHook ( void

~

Parameter

Return code

void

Functional Description
The user can use the API function GetTaskID to determine the currently left task.

Particularities and Limitations

> The PostTaskHook may only be configured for debugging purpose in MICROSAR OS SafeContext, see
[9].

Call Context

> interrupt or task context

> PostTaskHook is called before a task is taken out of the RUNNING state.

> For particularities of using the PostTaskHook when using timing protection, please see [4]

Table 6-21 PostTaskHook

©2015, Vector Informatik GmbH Version: 9.01 81/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

6.5.1.4 ErrorHook

Prototype
void ErrorHook ( StatusType ErrorCode ) /* general error hook */

void ErrorHook <App> ( StatusType ErrorCode ) /* appl. spec. error hook */

Parameter
ErrorCode Error code of AP| which detected the error and called the error hook

Return code

void --

Functional Description

The user may use the error number parameter to decide how to react on the error.

Additional error information is available in the error hook if the attributes USEGETSERVICEID and
USEPARAMETERACCESS are set to TRUE. This information can be accessed by access macros; for details
refer to the OSEK specification [3]. All possible access macros are supported by MICROSAR OS.

If EXTENDED STATUS is enabled and ErrorInfolLevel is set to Modulnames, additional error
information is available in the ErrorHook. The variable osActiveTaskModule is a pointer to the module
name and the variable osActiveTaskLineNumber is the line number in the C module where the API
function was called. Inspecting these two variables allows the user to locate the source code that caused
the error message.

Particularities and Limitations

V ‘
1
i

Call Context
> interrupt or task context

> ErrorHook is called every time an API function is called with wrong parameters or if the system detects
an error (e.g. stack overflow).

Table 6-22 ErrorHook

6.5.1.5 ShutdownHook

Prototype
void ShutdownHook ( StatusType ErrorCode ) /* general shutdown hook */

void ShutdownHook <App> (StatusType ErrorCode) /* appl. spec. shutdown hook */

Parameter

ErrorCode Error code of API that detected the error and called the shutdown hook, or the
parameter that was passed to ShutdownOS.

Return code

void --

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Functional Description
The ShutdownHook is called by ShutdownOS

Particularities and Limitations

v ‘
]
i

Call Context
> interrupt or task context
> The system calls the ShutdownHook routine if the function Shutdown0s was called.

Table 6-23 ShutdownHook

6.5.1.6 ProtectionHook

Prototype
ProtectionReturnType ProtectionHook ( StatusType Fatalerror )

Parameter
Fatalerror depending on the detected protection error

Return code

ProtectionReturnType The return value determines the strategy of further operation

Functional Description

Called on occurrence of a protection error. The application code has to decide about the recovery strategy
and pass an appropriate return value to the OS.

Particularities and Limitations

> In the scalability class SC1, no call of the ProtectionHook is supported.
Call Context
> interrupt or task context

> The ProtectionHook is called if a TimingProtection failure (SC2, SC4), a memory protection failure
(SC3, SC4), or processor exception (e.g. division by zero, illegal instruction etc.) is detected by
MICROSAR OS.

Table 6-24 ProtectionHook

6.5.2 ISR Hooks

6.5.2.1 UserPrelSRHook

Prototype
Void UserPreISRHook ( ISRType isr )

Parameter

Isr The identifier of the ISR that is about to be entered

Return code
Void --

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Functional Description
Called just before entering an ISR routine of a category 2 interrupt.

This Hook is intended to be used as a development aid. For example, it may be used to measure interrupt
run times.

This Hook is only available if the attribute CalllSRHooks is set to TRUE. Note that this is allowed only for
debugging purpose in MICROSAR OS SafeContext, see [9].

Particularities and Limitations

> Only API functions that are allowed in cat2 ISRs are allowed to be called in the UserPrelISRHook.
Call Context

> The UserPrelSRHook runs in the exact same context as the ISR that is executed afterwards. This
includes settings for interrupt nesting, timing protection, timing measurement and memory protection.

> All OS API functions, incl. GetISRID(), GetApplicationID(), CheckObjectAccess() etc, work just as if
called from within the ISR

Table 6-25 UserPrelSRHook

6.5.2.2 UserPostISRHook

Prototype
Void UserPostISRHook ( ISRType isr )

Parameter

Isr The identifier of the ISR that was just left

Return code
Void --

Functional Description
Called just after leaving an ISR routine of a category 2 interrupt.

This Hook is intended to be used as a development aid. For example, it may be used to measure interrupt
run times.

This Hook is only available if the attribute CalllSRHooks is set to TRUE. Note that this is allowed only for
debugging purpose in MICROSAR OS SafeContext, see [9].

Particularities and Limitations

The UserPostISRHook is called only after a regular return from the ISR routine. In particular:

> |If an ISR is interrupted by a higher priority ISR, the UserPostISRHook is not called before entering the
new ISR.

> If an ISR is killed, the UserPostISRHook is not called.
> Only API functions that are allowed in cat2 ISRs are allowed to be called in the UserPostISRHook.
Call Context

> The UserPrelSRHook runs in the exact same context as the ISR that was just executed. This includes
settings for interrupt nesting, timing protection, timing measurement and memory protection.

> All OS API functions, incl. GetISRID(), GetApplicationID(), CheckObjectAccess() etc, work just as if
called from within the ISR

Table 6-26 UserPostISRHook

©2015, Vector Informatik GmbH Version: 9.01 84 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

6.5.3 Alarm Hook

6.5.3.1 PreAlarmHook (currently not supported)

Prototype
void PreAlarmHook <CounterName> (void)

Parameter

void --

Return code

void --

Functional Description

Called in the timer ISR just before the alarm handling of the OS.

This Hook is only available if the timer attribute PreAlarmHook is set to TRUE

Particularities and Limitations

> Note that this feature is currently not supported. It will be available in future releases.

> Only API functions that are allowed in cat2 ISRs are allowed to be called in the PreAlarmHook.
> The execution time of the PreAlarmHook is not considered by the timing protection.

Call Context

> The PreAlarmHook runs in the same context as the system timer ISR. If an owner application is
configured, the system timer ISR and the PreAlarmHook is executed with the application rights of this
owner application.

> Interrupts of category 2 are disabled during the execution of the PreAlarmHook.

Table 6-27 PreAlarmHook

6.5.4 MICROSAR OS Timing Hooks

MICROSAR OS supports timing measurement and analysis by external tools. Therefor it
provides timing hooks. Timing hooks inform the external tools about several events within
the OS:

o Activation (arrival) of a task or ISR
J Context switch
o Locking of interrupts, resources or spinlocks
This documentation presents the respective hook routines in separate subchapters below.

The OS calls Timing hooks only if the user has configured them as described in Table 7-1,
attribute TimingHooks. The user shall implement the hooks as macros in the configured
header file. The OS provides empty definitions of these hooks. It uses the empty definition
of a hook in case of an unavailable definition by the user. Because of the empty definition,
the user needs not to implement all hooks.

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

6.5.4.1 Hooks for arrival

MICROSAR OS prvides hooks that allow an external tool to trace all activations of task as
well as further arrivals like the setting of an event or the release of a semaphore with
transfer to another task.

This shall allow the external tool to visualize the arrivals and to measure the time between
them in order to allow a schedulability analysis.

Mind that schedulability analysis requires the minimum time between arrivals while these
hooks only provide measured values.

6.54.1.1 OS VTH_ACTIVATION
Prototype

OS VTH ACTIVATION( TaskId, DestCorelId, CallerCoreId)

Parameter

TaskId Identifier of the task which is activated

DestCoreld Identifier of the core on which the task is activated

CallerCorelId Identifier of the core which performs the activation (has called ActivateTask,

has called TerminateTask or has performed an alarm/schedule table action to
activate a task)

Return code

Functional Description

This hook is called on the caller core when that core has successfully performed the activation of Taskld on
the destination core. On single core systems both core IDs are always identical.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-28 OS_VTH_ACTIVATION

6.5.4.1.2 OS_VTH_SETEVENT
Prototype

OS VTH SETEVENT ( TaskId, EventMask, StateChange, DestCorelId, CallerCoreId)

Parameter
TaskId Identifier of the task which receives this event
EventMask A bit mask with the events which shall be set
©2015, Vector Informatik GmbH Version: 9.01 86 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

StateChange TRUE: The task state has changed from WAITING to READY
FALSE: The task state hasn’t changed
DestCorelId Identifier of the core on which the task receives the event
CallerCorelId Identifier of the core which performs the event setting (has called SetEvent or

performed an alarm/schedule table action to set an event)

Return code

Functional Description

This hook is called on the caller core when that core has successfully performed the event setting on the
destination core. On single core systems both core IDs are always identical.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-29 OS_VTH_SETEVENT

6.5.4.1.3 OS_VTH_TRANSFER_SEMA

Prototype
OS VTH TRANSFER SEMA( FromThreadId, ToTaskId, Semald, DestCorelId, CallerCoreId)

FromThreadId Identifier of the thread (task; ISR) which releases the semaphore
ToTaskId Identifier ot the task which receives the semaphore

SemalId Identifier of the semaphore to be transferred

DestCoreId Identifier of the core on which the task igets the semaphore
CallerCoreId Identifier of the core which releases the semaphore

Return code

Functional Description

This hook is called on the caller core when that core has successfully performed release of the semaphore
while a task was waiting for that semaphore. On single core systems both core IDs are always identical.

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VeCtOf

Particularities and Limitations

> The hook is expected to be implemented as a macro.
> Reentrancy is possible on multicore systems with different caller core IDs
> Call of any operating system API function is prohibited in this hook routine

> The semaphore feature is optional, so this macro may not be necessary on all implementations of
MICROSAR OS.

Call context
> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-30 OS_VTH_TRANSFER_SEMA

6.5.4.2 Hook for context switch

MICROSAR OS provides a hook routine allowing external tools to trace all context
switches from task to ISR and back as well as between tasks. So external tools may
visualize the information or measure the execution time of tasks and ISRs.

Mind that measured values may not reflect the worst case, which would be necessary for
schedulability analysis.

6.5.4.2.1 0OS_VTH_SCHEDULE

Prototype

OS VTH SCHEDULE ( FromThreadId, FromThreadReason,
ToThreadId, ToThreadReason,

CallerCoreld )
FromThreadId Identifier of the thread (task, ISR) which has run on the caller core before the
switch took place
FromThreadReason OS__VTHF(;_TASK_TERMINATION: The thread is a task, which has just been
terminated.

OS_VTHP_ISR_END: The thread is an ISR, which has reached its end.

OS_VTHP_TASK_WAITEVENT: The thread is a task, which waits for an
event.

OS_VTHP_TASK_WAITSEMA: The thread is a task, which waits tor the
release of a semaphore.

OS_VTHP_THREAD_PREEMPT: The thread is interrupted by another one,
which has higher priority.

ToThreadId The identifier of the thread, which will run from now on

©2015, Vector Informatik GmbH Version: 9.01 88 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

ToThreadReason OS_VTHP_TASK_ACTIVATION: The thread is a task, which was activated.
OS_VTHP_ISR_START: The thread is an ISR, which will now start execution.

OS_VTHP_TASK_SETEVENT: The thread is a task, which has just received
an event it was waiting for. It resumes execution right behind the call of
WaitEvent.

OS_VTHP_GOTSEMA: The thread is a task, which has just got the
semaphore it was waiting for.

OS_VTHP_THREAD_RESUME: The thread is a task or ISR, which was
preempted before and becomes running again as all higher priority tasks and
ISRs do not run anymore.

CallerCoreld Identifier of the core which performs the thread switch

Return code

Functional Description

This hook is called on the caller core when that core in case it performs a thread switch (from one task or
ISR to another task or ISR). On single core systems both core IDs are always identical.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

Call context

> The hook routine is called from within operating system internal functions with interrupts disabled.

Table 6-31 OS_VTH_SCHEDULE

6.5.4.3 Hooks for locking

MICROSAR OS provides hooks, which allow an external tool to trace locks. This is
important as locking times of tasks and ISRs influence the exectution of other tasks and
ISRs. The kind of influence is different for different locks and is presented below in the
functional description of the respective hooks.

Please keep in mind that measured times for locking may not reflect the worst case.

6.54.3.1 OS_VTH_GOT_RES
Prototype

OS VTH GOT RES( ResId, CallerCoreId)

Parameter
ResId Identifier of the resource which has been taken
CallerCoreld Identifier of the core where GetResorce was called
©2015, Vector Informatik GmbH Version: 9.01 89 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Return code

Functional Description

The OS calls this hook on a successful call of the API function GetResource. The priority of the calling task
or ISR has been increased so that other tasks and ISRs on the same core may need to wait until they can
be executed.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-32 OS_VTH_GOT_RES

6.5.4.3.2 OS_VTH _REL_RES

Prototype
OS VTH REL RES( ResId, CallerCoreId)

Parameter
ResId Identifier of the resource which has been released
CallerCoreId Identifier of the core where ReleaseResorce was called

Return code

Functional Description

The OS calls this hook on a successful call of the API function ReleaseResource. The priority of the calling
task or ISR has been decreased so that other tasks and ISRs on the same core may become running as a
result.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-33 OS_VTH_REL_RES

6.5.4.3.3 OS_VTH_REQ_SPINLOCK
Prototype

OS_VTH REQ SPINLOCK( SpinlockId, CallerCoreId)

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

SpinlockId Identifier of the spinlock which has been requested
CallerCoreld Identifier of the core where GetSpinlock was called

Return code

Functional Description

The OS calls this hook on an unsuccessfull attempt to get a spinlock. The calling task or ISR enters a busy
waiting state. Tasks or ISRs of lower priority have to wait until this task or ISR has taken and released the
spinlock.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

> The hook is not called for optimized spinlocks

> The hook is not called for operating system internal spinlocks

> The hook is called only on multicore operating system implementations

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-34 OS_VTH_REQ_SPINLOCK

6.5.4.34 OS_VTH_GOT_SPINLOCK
Prototype

0S_VTH GOT_ SPINLOCK( SpinlockId, CallerCoreld)

SpinlockId Identifier of the spinlock which has been taken
CallerCorelId Identifier of the core where GetSpinlock or TryToGetSpinlock were called

Return code

Functional Description

The OS calls this hook whenever a spinlock has successfully been taken. If the task or ISR was not
successful immediately (entered busy waiting state), this hook means that it leaves the busy waiting state.
From now on no other task or ISR may get the spinlock until the current task or ISR has released it.

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

> The hook is not called for optimized spinlocks

> The hook is not called for operating system internal spinlocks

> The hook is called only on multicore operating system implementations

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-35 OS_VTH_GOT_SPINLOCK

6.54.3.5 OS VTH_REL_SPINLOCK
Prototype

0S_VTH REL SPINLOCK( SpinlockId, CallerCoreld)

Parameter
SpinlockId Identifier of the spinlock which has been released
CallerCorelId Identifier of the core where ReleaseSpinlock was called

Return code

Functional Description

The OS calls this hook on a release of a spinlock. Other tasks and ISR may take the spinlock now.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

> The hook is not called for optimized spinlocks

> The hook is not called for operating system internal spinlocks

> The hook is called only on multicore operating system implementations

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-36 OS_VTH_REL_SPINLOCK

©2015, Vector Informatik GmbH Version: 9.01 92 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

6.5.4.3.6 OS_VTH_TOOK_SEMA
Prototype

OS _VTH TOOK SEMA ( TaskId, SemalId, CallerCoreId)

TaskId Identifier of the task which has taken the semaphore
SemalId Identifier of the semaphore which has been taken
CallerCoreld Identifier of the core where GetSemaphore was called

Return code

Functional Description

The OS calls this hook in the API function GetSemaphore if the semaphore was free before the call. If the
semaphore was held by another task, the current task is transferred to the waiting state, which is signaled
to the external tool by means of the OS_VTH_SCHEDULE hook as described in chapter 6.5.4.2.1.

Particularities and Limitations

> The hook is expected to be implemented as a macro.
> Reentrancy is possible on multicore systems with different caller core IDs
> Call of any operating system API function is prohibited in this hook routine

> The semaphore feature is optional, so this macro may not be necessary on all implementations of
MICROSAR OS.

Call context
> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-37 OS_VTH_TOOK_SEMA

6.5.4.3.7 OS_VTH_REL_SEMA

Prototype
OS VTH REL SEMA( ThreadId, Semald, CallerCoreld)

ThreadId Identifier of the task or ISR which has released the semaphore
SemalId Identifier of the semaphore which has been released
CallerCorelId Identifier of the core where ReleaseSemaphore was called

Return code

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Functional Description

The OS calls this hook in the API function ReleaseSemaphore if the semaphore becomes free after the
call. If a task is currently waiting for the semaphore, the API function GetSemaphore calls
OS _VTH_TRANFER_SEMA instead, as described in chapter 6.5.4.1.3.

Particularities and Limitations

> The hook is expected to be implemented as a macro.
> Reentrancy is possible on multicore systems with different caller core IDs
> Call of any operating system API function is prohibited in this hook routine

> The semaphore feature is optional, so this macro may not be necessary on all implementations of
MICROSAR OS.

Call context
> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-38 OS_VTH_REL_SEMA

6.5.4.3.8 OS VTH DISABLEDINT
Prototype

OS_VTH DISABLEDINT ( IntLockId, CallerCoreId)
Parameter

IntLockId OS_VTHP_CAT2INTERRUPTS: Interrupts have been disabled by means of
the current interrupt level. That interrupt level has been changed in order to
disable all category 2 interrupts, which also prevents task switch and
alarm/schedule table management.

OS_VTHP_ALLINTERRUPTS: Interrupts have been disabled by means of the
global interrupt enable/disable flag. Additionally to the effects described above,
also category 1 interrupts are disabled.

CallerCorelId Identifier of the core where interrupts are disabled

Return code

Functional Description

The OS calls this hook if the application has called an API function to disable interrupts. The parameter
IntLockld describes whether category 1 interrupts may still occur.

Mind that the two types of interrupt locking (as described by the IntLockld) are independent from each other
so that the hook may be called twice before the hook OS_VTH_ENABLEDINT is called, dependent on the
application.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs
> Call of any operating system API function is prohibited in this hook routine
> The hook is not called for operating system internal interrupt locks

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

Call context
> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-39 OS_VTH_DISABLEDINT

6.5.4.39 OS VTH _ENABLEDINT
Prototype

OS VTH ENABLEDINT ( IntLockId, CallerCoreId)
Parameter

IntLockId OS_VTHP_CAT2INTERRUPTS: Interrupts had been disabled by means of the
current interrupt level until this hook was called. The OS releases this lock
right after the hook has returned.

OS_VTHP_ALLINTERRUPTS: Interrupts had been disabled by means of the
global interrupt enable/disable flag before this hook was called. The OS
releases this lock right after the hook has returned.

CallerCorelId Identifier of the core where interrupts are disabled

Return code

Functional Description

The OS calls this hook if the application has called an API function to enable interrupts.

Mind that the two types of interrupt locking (as described by the IntLockld) are independent from each other
so that interrupts may still be disabled by means of the other locking type after this hook has returned.

Particularities and Limitations

> The hook is expected to be implemented as a macro.

> Reentrancy is possible on multicore systems with different caller core IDs

> Call of any operating system API function is prohibited in this hook routine

> The hook is not called for operating system internal interrupt locks

Call context

> The hook routine is called from within operating system API functions with interrupts disabled.

Table 6-40 OS_VTH_ENABLEDINT

6.6 Non-Trusted Functions

Non-trusted functions are a VECTOR extension to the AUTOSAR OS specification. This concept
allows non-trusted applications to provide service functions, which are callable by trusted or non-
trusted tasks and ISRs, comparable to the AUTSAR OS API CallTrustedFunction.

6.6.1 Functionality

The OS executes Non-trusted functions with the memory access rights and service protection
rights of the owner application. These functions can access local data of the owner application

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

without the possibility to overwrite private data of other applications. Non-trusted functions have no
access to the data on the callers stack.

6.6.2 API
Prototype

StatusType osCallNonTrustedFunction (NonTrustedFunctionIndexType FunctionIndex,

NonTrustedFunctionParameterRefType FunctionParams) ;

Functionindex Index of the function to be called.
FunctionParams Pointer to the parameters for the function to be called. If no parameters are provided,

a NULL pointer has to be passed.
Return code

E OK No error
E_OS_SERVICEID  No function defined for this index

Functional Description

Executes the non-trusted function referenced by Functionindex and passes argument FunctionParams.

The non-trusted function must conform to the following C prototype:

void NONTRUSTED <name of the non-trusted function (NonTrustedFunctionIndexType,
NonTrustedFunctionParameterRefType) ;

The arguments are the same as the arguments of CallNonTrustedFunction.

Particularities and Limitations

> The non-trusted function is called in user mode with memory protection enabled
> The function has memory access rights of the owner application

> The function has the service protection rights of the owner application

Call context

> Task, CAT2 ISR, trusted function, non-trusted function

Table 6-41 APl osCallNonTrustedFunction

'_]. Note
) Vector MICROSAR OS implementations offer the possibility of stub function generation
> for trusted functions. This mechanism is not available for non-trusted functions.

6.7 MPU Access Checking API

MISCROSAR OS provides API, which returns whether the caller has access to a given
adderss.

Prototype

uint8 osCheckMPUAccess (uint8* DestinationAddress)

©2015, Vector Informatik GmbH Version: 9.01 96 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

Parameter

DestinationAddress The address to be checked for access

Return code
uint8 0: Current Software part has write access

1: Current Software part has no write access

Particularities and Limitations

> The value of DestinationAddress may be temporarly altered within this function (depending on the
platform).

> Due to data consistency, the function should not be used on addresses, which are shared among cores.

> A protection violation may occur during this function. But this protection violation does not lead to a
shutdown of the OS

> This function cannot be called prior to StartOS

Call context

> ProtectionHook

> Task trusted/non-trusted

> ISR Cat2 trusted/non-trusted
> ErrorHook

> ShutdownHook,

> trusted function

> non trusted function

> StartupHook

Table 6-42 o0sCheckMPUAccess API

6.8 Peripheral Regions

On some platforms, there are memory mapped hardware registers, which are only
accessible in privileged mode. To access this kind of registers even in non-trusted
applications (i.e. non-privileged mode), MICROSAR OS provides Peripheral Regions.

To access such registers you have to configure a Peripheral Region and pass it'’s ID to the
Peripheral Region API. The OS checks whether the caller has access to this region and
performs the requested access operation.

The OS provides access functions for the following access types: 8, 16, and 32 bit.

6.8.1 Reading functions

Prototype
osuint8 osReadPeripheral8 (osuintl6 area, osuint32 address)
osuintl6 osReadPeripherall6 (osuintl6 area, osuint32 address)

osuint32 osReadPeripheral32 (osuintl6 area, osuint32 address)

©2015, Vector Informatik GmbH Version: 9.01 97 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

area Identifier of peripheral regions to the read from
address Address to be read from

Return code
The content of “address” interpreted as 8 bit, 16 bit or 32 bit value

Functional Description

> reads either an 8 bit, or a 16 bit or a 32 bit value from “address”

> The function performs accessing checks (whether the caller has accessing rights to the peripheral
region and whether the address to be read from is within the configured range of the peripheral region)

> The error hook is raised in case of an error

> A shutdown is not issued in case of an error

Particularities and Limitations

> These functions may not be called from OS hooks

Call context

> These functions may be called from Task context

> These functions may be called from category 2 ISR context

> These functions can be called with interrupts enabled or with interrupts disabled

Table 6-43 ReadPeripheral API

6.8.2 Writing functions

Prototype
void osWritePeripheral8 (osuintl6 area, osuint32 address, osuint8 wvalue)
void osWritePeripherall6 (osuintl6 area, osuint32 address, osuintl6 value)

void osWritePeripheral32 (osuintl6 area, osuint32 address, osuint32 value)

area Identifier of peripheral regions to the read from
address Address to write to
Value Value to be written

Return code

None

Functional Description
> Writes to either an 8 bit, or a 16 bit or a 32 bit value

> The function performs accessing checks (whether the caller has accessing rights to the peripheral
region and whether the address to be read from is within the configured range of the peripheral region)

> The error hook is raised in case of an error

> A shutdown is not issued in case of an error

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Particularities and Limitations

> These functions may not be called from OS hooks

Call context

> These functions may be called from Task context

> These functions may be called from category 2 ISR context

> These functions can be called with interrupts enabled or with interrupts disabled

Table 6-44 WritePeripheral API

6.8.3 Modifying functions

Prototype

void osModifyPeripheral8 (osuintl6 area, osuint32 address, osuint8 clearmask,
osuint8 setmask)

void osModifyPeripherall6 (osuintl6 area, osuint32 address, osuintl6 clearmask,
osuintl6 setmask)

void osModifyPeripheral32 (osuintl6 area, osuint32 address, osuint32 clearmask,
osuint32 setmask)

area Identifier of peripheral regions to the read from
address Address to be modified

clearmask Bitmask which is bitwise “ANDed” to “address”
setmask Bitmask which is bitwise “ORed” to “address”

Return code

None

Functional Description

> The function performs accessing checks (whether the caller has accessing rights to the peripheral
region and whether the address to be read from is within the configured range of the peripheral region)

> The error hook is raised in case of an error
> A shutdown is not issued in case of an error

> After the access checks has passed first the “clearmask” is ANDed to “address” and afterwards the
“setmask” is ORed to it.

Particularities and Limitations

> These functions may not be called from OS hooks

Call context

> These functions may be called from Task context

> These functions may be called from category 2 ISR context

> These functions can be called with interrupts enabled or with interrupts disabled

Table 6-45 ModifyPeripheral API

©2015, Vector Informatik GmbH Version: 9.01 99/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext V@CtOf

7 Configuration

Since AUTOSAR OS 3.0.0 specification, XML is used to define and describe an OS
configuration. However, OIL is still supported as an alternative description language,
especially if the OS shall be used stand-alone without any other AUTOSAR software
modules.

All OSEK objects and their attributes have to be defined by one of these description
languages.

7.1  Configuration and generation process

AUTOSAR XML Code . OIL
Configuration Tool xml Generator -oil Configurator
(0N sour_ce < Configuration Application
files .h  files files

Compile and Link

Executable

Figure 7-1  System overview of software parts

The figure above shows the complete configuration process of a MICROSAR OS. First all
OS objects have to be defined. This can be done either by an AUTOSAR XML
configuration tool or by the OIL Configurator (in OIL).

An OIL or XML file is the base of the code generation process. After code generation all
files (OS source files, application files and generated OS configuration files) have to be
compiled and linked to an executable.

7.1.1 XML Configuration
A configuration which is based on XML must conform to the AUTOSAR XML schemal8].

To edit a MICROSAR OS XML configuration the DaVinci Configurator Pro or Base of
Vector Informatik GmbH can be used. Other tools that are able to edit AUTOSAR
configurations may also be used.

The XML file that the tool produces has to be passed to the code generator to generate the
configuration files.

©2015, Vector Informatik GmbH Version: 9.01 100/ 136



Technical Reference MICROSAR OS SafeContext Vector

7.1.2 OIL Configurator

The OIL specification is based on the document "OIL: OSEK Implementation Language —
Version: 2.3” (ref. [6]). Additional Attributes are defined by Vector Informatik GmbH; the
resulting version of OIL is 4.0.

The OIL Configurator is a Windows based program that is used to configure an OSEK
application. The OIL Configurator reads and writes OIL files (OSEK Implementation Lan-
guage). The usage of the OIL Configurator is described in the online help of the OIL Con-
figurator.

The OIL Configurator has separate property tabs for each OSEK object type. Each object
has several standard attributes that are defined in the OIL specification. Additional
attributes that are implementation specific are described in the hardware specific
document [4].

7.2  Configuration Variants
The OS supports the configuration variants
> VARIANT-PRE-COMPILE

The MICROSAR OS system is typically delivered with the source code. The kernel is
implemented in several optimized variants, which are enabled from the OIL Configurator
using C defines. The source code of the operating system has to be compiled if the
configuration has changed. For some implementations, a library version of the operating
system is also supplied. For different configurations, different libraries have to be linked to
the application.

The configuration classes of the OS parameters depend on the supported configuration
variants.  For  their  definitons please see the 0S <platform and
derivate> bswmd.arxml file.

7.3 Configuration of the XML / OIL Attributes

Some of the attributes of an OSEK object are standard for all OSEK implementations, and
some are specific for each implementation.

This chapter describes the attributes the user can set for each OSEK object. Please note
that setting an attribute to TRUE is used as a synonym for selecting it and setting to FALSE
is used as a synonym for deselecting it. The reason is that a selection in the OIL
Configurator corresponds to setting the attribute to TRUE in the OIL file (this can be
checked by opening the OIL file with a normal text editor).

Q Caution
! If a library version of the operating system is used, some attributes or attribute values
are not available or predefined.

©2015, Vector Informatik GmbH Version: 9.01 101/136



Technical Reference MICROSAR OS SafeContext

731 OS

vector’

The OS object can only be defined once. The OS object controls general aspects of the
operating system.

Attribute Name

Name n.a.

Comment n.a.

CcC OsOSCC
STATUS OsStatus
SCALABILITY OsScalabilityClass
CLASS

SCHEDULE OsOSSchedule
n.a. OsHooks
STARTUPHOOK OsStartupHook
ERRORHOOK OsErrorHook
SHUTDOWNHOOK OsShutdownHook
PRETASKHOOK OsPreTaskHook

©2015, Vector Informatik GmbH

Values

The default value

is written in bold

ECC2, AUTO

EXTENDED

SC3, SC4,
AUTO.

MIXED,
AUTO

hook
routines as
stated below
(as
Booleans)

TRUE

TRUE

TRUE

FALSE

Description

> OIL: Freely selectable name, not used by
the code generator.

> XML: Not available in XML

Any comment.

MICROSAR OS SafeContext must always be
configured to support Conformance class
ECC2.

MICROSAR OS SafeContext must always be
configured to support extended status (error)
messages.

MICROSAR OS SafeContext can be ordered in
Scalability classes SC3 or SC4. It must be
configured with the ordered Scalability class.

MICROSAR OS SafeContext always supports
preemptive and non-preemptive tasks, thus
scheduling policy must be configured to mixed
preemptive.

> XML: Used as a container to store hook
routine information.

> OIL: not available

The StartupHook is always called at system
startup of a MICROSAR OS SafeContext.

> XML: This attribute is placed in container
OsHooks

The ErrorHook is always called if an error
occurs in a MICROSAR OS SafeContext.

> XML: This attribute is placed in container
OsHooks

The shutdownHook is always called at
system shutdown of a MICROSAR OS
SafeContext.

> XML: This attribute is placed in container
OsHooks

The PreTaskHook is not supported by
MICROSAR OS SafeContext. However, there is
a debug switch to turn it on during
development, see 6.5.1.2 and [9].

> XML: This attribute is placed in container
OsHooks

Version: 9.01 102/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCtOf

Attribute Name Values Description

The default value
XML is written in bold
POSTTASKHOOK  OsPostTaskHook  FALSE The PostTaskHook is not supported by
MICROSAR OS SafeContext. However, there is
a debug switch to turn it on during
development, see 6.5.1.3 and [9].

> XML: This attribute is placed in container
OsHooks

PROTECTIONHOO OsProtectionHook TRUE The ProtectionHook is always called when a
K protection error is detected in a MICROSAR OS
SafeContext.

> XML: This attribute is placed in container
OsHooks

CalllISRHooks OsOSCalllSRHook FALSE The UserPreISRHook and
S UserPostISRHook are not supported by
MICROSAR OS SafeContext. However, there is
a debug switch to turn them on during
development, see 6.5.2.1, 6.5.2.2 and [9].

USEGET OsUseGetService TRUE Access macros for the service ID information

SERVICEID Id are always available in the error hook.

USEPARAMETER- OsUseParameter FALSE Access macros for the context related

ACCESS Access information in the error hook are not supported
in MICROSAR OS SafeContext.

USERES OsUseRes TRUE, This parameter is available, as the AUTOSAR

SCHEDULER Scheduler FALSE standard requires it. Since AUTOSAR 4 the

resource RES_SCHEDULER was removed as
special case, therefore this attribute is silently
ignored by MICROSAR OS.

STACK OsStackMonitoring  TRUE A stack check is performed with each task
MONITORING switch. See also chapter 3.2.2.3 for details.
StackUsageMeasure OsStackUsageMe TRUE, If selected, the stacks are filled with an indicator
ment asurement FALSE value during StartOS. This allows measuring
' the stack usage of tasks and ISRs. See also
AUTO chapter 3.2.2.5. If AUTO is selected,

StackUsageMeasurement uses the same
setting as STACKMONITORING.

ErrorinfoLevel OsOSErrorinfo STANDARD  MICROSAR OS SafeContext will report
Level standard OSEK error codes and unique error
numbers, but no additional information about
the error location.

OSlInternalChecks  OsOSinternal ADDITIONAL MICROSAR OS SafeContext will always
Checks perform all available runtime error checks.
Compiler OsOSCompiler Implementatio The compiler can be chosen. If there is only
n specific one compiler this attribute is also set by default.
ORTIDebug Support OsOSORTIDebug TRUE The OS generator always produces an ORTI.
Support
©2015, Vector Informatik GmbH Version: 9.01 103/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext V@CtOf

Attribute Name Values Description

The default value
XML is written in bold

ORTIDebugLevel OsOSORTIDebug MICROSAR OS SafeContext will always
Level _O_RTl—ZZ—Add support version 2.2 of the ORTI standard with
itional all available features.

UserConfigurationV  OsOSUserConfigu 1...65535 Version number of the OS configuration. This

ersion rationVersion numeric value is not used by the OS, but
enables the user to track changes in the
configuration and validate the configuration
version actually used in the ECUC. Therefore, it
is suggested to increment this value each time
the OS configuration is modified.

ProtectionHook OsOSProtection SELECTED MICROSAR OS SafeContext does not support
Reaction HookReaction forcible termination, thus requires this
parameter to be set to SELECTED.

See chapter 7.3.1.3 for information about the
sub-attributes and required values for
MICROSAR OS SafeContext.

Timing OsOSTiming TRUE MICROSAR OS SafeContext will always
Measurement Measurement perform Timing measurement if delivered in
Scalability class SC4.

See chapter 7.3.1.4 for information about the
sub-attributes. Chapter 3.2.4.2 provides more
detailed information about configuration of
timing measurement.

TypeHeader Include OsOSTypeHeader TRUE, If selected, the AUTOSAR type headers are
Include FALSE included in the file os_cfg.h. This is included in

the file 0s.h, which has to be included in all
source files that use API functions of
MICROSAR OS OSEK/AUTOSAR. The
AUTOSAR type headers are not necessary for
the usage of MICROSAR OS
OSEK/AUTOSAR, so it is safe to deselect this
attribute.

EnumeratedUnhandl OsOSEnumerated TRUE, Determines the handling of unassigned

edISRs UnhandledISRs interrupt sources. The default of this attribute is
FALSE FALSE.

FALSE: This is the normal handling for
unassigned interrupt sources. If no interrupt
service routine is defined in OIL for an interrupt
source the corresponding interrupt vector will
be directed to one common unhandled
exception handler. This setting must be chosen
for the final application software.

TRUE: During application development, there
may be interrupts issued by unassigned
interrupt sources. In such case it could be a big
effort to determine the interrupt source. If this
attribute is set to TRUE the interrupt vector of

each unassigned interrupt source will be
directed to an unhandled exception routine. If
an unhandled exception occurs in that case, the

©2015, Vector Informatik GmbH Version: 9.01 104/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

Attribute Name Values Description

The default value
is written in bold

interrupt source which causes this exception
can easily be determined by the variable
“osISRUnhandledException_Number®. The
corresponding interrupt source can be
distinguished by having a look into the interrupt
vector table which normally is generated to
intvect.c. This is a debug feature only and is not
permitted for the final application software
running on a MICROSAR OS SafeContext.

This feature is optional. Please refer to [5] to
find out whether a specific implementation of
MICROSAR OS supports this feature.

ConditionalGenerati /MICROSAR/Boar TRUE, Determines whether the OS code generator

ng d/BoardGeneral/B FALSE creates the files only if the relevant
oardConditionalGe configuration has been modified since the last
nerating generator run (ConditionalGenerating = TRUE).

If ConditionalGenerating = FALSE, the OS files
are always generated.

For details about this attribute, see chapter
8.1.3.

Table 7-1  OS attributes

7.3.1.1 ProtectionHookReaction / OsOSProtectionHookReaction

> MICROSAR OS SafeContext requires this attribute to be set to SELECTED with the
following subattributes:

Attribute Name Values Description
The default value
XML is written in bold
KILLTASKISR OsOSKILLTASK FALSE MICROSAR OS SafeContext does not support
ISR the return value PRO_TERMINATETASKISR.
KILLAPPL OsOSKILLAPPL FALSE MICROSAR OS SafeContext does not support
the return value PRO_TERMINATEAPPL.
KILLAPPL_ OsOSKILLAPPL_ FALSE MICROSAR OS SafeContext does not support
RESTART RESTART the return value
PRO TERMINATEAPPL RESTART.
SHUTDOWN 0s0S TRUE PRO_SHUTDOWN is the only return value
SHUTDOWN supported by MICROSAR OS SafeContext.

Table 7-2  Sub-attributes of ProtectionHookReaction = SELECTED

Caution
‘ ! }L Currently MICROSAR OS does not support killing. So only SHUTDOWN should be
selected!

©2015, Vector Informatik GmbH Version: 9.01 105/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VeCtOf

Caution
t ' }I: If the Protection hook returns a value that is not configured by means of the sub-
attributes of ProtectioHookReaction, the OS performs a Shutdown.

= Note
T]> MICROSAR OS allows to use the return values
e PRO_KILLTASKISR,
e PRO_KILLAPPL and
e PRO_KILLAPPL_RESTART
In the protection hook as synonyms for
¢ PRO_TERMINATETASKISR,
¢ PRO_TERMINATEAPPL and
e PRO_TERMINATEAPPL_RESTART
as long as no macro OS SUPPRESS PROTHOOK OLD RET VALS is defined.

7.3.1.2 TimingMeasurement / OsOSTimingMeasurement

This Attribute must be set to TRUE for a MICROSAR OS SafeContext that has been
delivered in Scalability class SC4.

Please see also 3.2.4.2 and 7.3.2.2.

> |f this attribute is set to TRUE, the subattribute GlobalConfig allows to globally override
theTask/ISR settings for Timing Protection and Timing Measurement:

Attribute Name Values Description

The default value is written in
bold

GlobalConfig OsGlobalConfig ProtectAndMeasureAll > ProtectAndMeasureAll: The OS
AsSelected provides timing measurement for all tasks
and ISRs regardless of their setting in the
attribute TIMING PROTECTION. Timing
protection however is provided only for all
tasks and ISRs that have the attribute
TIMING PROTECTION setto TRUE. In
case the subattribute OnlyMeasure is set
to TRUE, that setting is ignored with a
warning. In case the attribute
TIMING PROTECTION of atask or ISR is
set to FALSE, the OS provides no timing
protection.

OnlyMeasureAll

> AsSelected: The os provides timing
protection for a task or ISR if that is
configured, the attribute OnlyMeasure is
honored.

> OnlyMeasureAll: The OS does not
provide timing protection for any Task or
ISR. Instead, it provides timing

©2015, Vector Informatik GmbH Version: 9.01 106/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Attribute Name Values Description

The default value is written in
bold

measurement for all tasks and ISRs. In
case a task or ISR is configured to have
timing protection and has the subattribute
OnlyMeasure set to FALSE, that setting is
overridden with a warning.

Table 7-3  Sub-attributes of TimingMeasurement = TRUE

7.3.1.3 PeripheralRegion / OsOSPeripheralRegion

OIL Name XML Name Values | Description
StartAddress OsOSStartAddress - Numeric value

Specifies the start address of the
peripheral region, which shall be
configured.

EndAddress OsOSEndAddress - Numeric value

Specifies the end address of the
peripheral region, which shall be
configured.

Identifier OsOSldentifier - Area name

Must be a unique C-identifier, which can
be used in an application or BSW module
to access the peripheral region.

ACCESSING__  0OsOSAccessingApplication - Grants access for this Peripheral Region.
APPLICATION Multiple applications can be defined for
the same Peripheral Region.

Table 7-4  Sub-attributes of PeripheralRegion

Caution
( ' }I: The application is allowed to access memory addresses in the interval of StartAddress
<= memory to be accessed <= EndAddress
The “EndAddress” value is included! All bytes of a peripheral access must fit into the
peripheral region.

7.3.2 Task
In the section Task all tasks and their attributes have to be defined.

Attribute Name Values Description

The default value
XML is written in bold

Name Short-Name - Name of the task. This name is used as an
argument to all task-related OSEK API

©2015, Vector Informatik GmbH Version: 9.01 107/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext

Attribute Name

Values

The default value
is written in bold

Description

vector’

Comment
TYPE

SCHEDULE

PRIORITY

ACTIVATION

AUTOSTART

EVENT

RESOURCE

StackSize

TIMING_PROTECTI

ON

ACCESSING_
APPLICATION

n.a.
OsTaskTYPE

OsTaskSchedule

OsTaskPriority

OsTaskActivation

OsTaskAutostart

OsTaskEventRef

OsTaskResource
Ref

OsTaskStackSize

OsTaskTiming
Protection

OsTaskAccessing
Application

©2015, Vector Informatik GmbH

BASIC,
EXTENDED,
AUTO

NON,

FULL

functions (e.g. ActivateTask). The task
function (or task body) has to be defined using
the C macro TASK() (which appends the suffix
func to the task name).

Any comment.

Type of the task: either BASIC or EXTENDED.
If set to AUTO, the type is calculated based on
the settings for events and the activation count.

Scheduling policy for this task.

The priority of the task. A higher number
represents a higher priority (according to the
OSEK specification). The priority may be set
with gaps, though the gaps will be eliminated by
the code generator. Several tasks may be set
on the same priority level.

The number of activations that are recorded in
the kernel while the task is possibly running or
delayed by higher priority tasks.

If ACTIVATION is set to a value bigger than 1,
no events can be received.

If set to TRUE, the task will be activated at
startup of the operating system. See chapter
7.3.2.1 for details about the sub-attributes.

Reference to an event that is used by this task.
This attribute can only be used for extended
tasks (the attribute TYPE might be set to
EXTENDED or AUTO). This attribute can be used
multiply if more than one EVENT has to be
assigned.

If events are used with this task, the attribute
ACTIVATION cannot be bigger than 1.

Reference to a resource that is occupied by this
task. This attribute can be used multiply if more
than one RESOURCE shall be assigned.

Task stack size in byte. This attribute is only
available if the implementation supports
configurable task stacks.

Selects timing protection for the task. See
chapter 7.3.2.2 for information about the sub-
attributes.

Defines access rights of an application for this
task. This attribute can be defined multiply, so
different applications might have access right to
the same task. This attribute can be used in

Version: 9.01

based on template version 4.3

108 /136



Technical Reference MICROSAR OS SafeContext VQCEO('

Attribute Name Values Description

The default value
is written in bold

scalability classes SC3 and SC4 only.

Table 7-5  Task attributes

7.3.2.1 AUTOSTART / OsTaskAutostart
> OIL: If attribute set to FALSE:

No sub-attributes.

> XML.: If this container is not present:
AUTOSTART switched off.
> |f attribute is set to TRUE:

Attribute Name Values Description
The default value
XML is written in bold
APPMODE OsTaskAppMode - Defines an application mode in which the task
Ref is started in automatically. This attribute might

be defined several times to start the task in
different application modes.

Table 7-6  Sub-attributes of TASK->AUTOSTART=TRUE

7.3.2.2 TIMING_PROTECTION / OsTaskTimingProtection

Please note that TIMING PROTECTION = TRUE can only be selected for a MICROSAR
OS SafeContext that has been delivered in Scalability class SC4.

> |f attribute is set to FALSE:

No sub-attributes.

> |f this attribute is not defined in XML:
Timing protection is switched off.

The value of this attribute might be overridden by the OS attribute TimingMeasurement,
as described in chapters 7.3.1.4 and 3.2.4.2

> |f attribute is set to TRUE:

Attribute Name Values Description
The default value
XML is written in bold

EXECUTION OsTaskExecution - Defines the maximum execution time for the

BUDGET Budget task

TIMEFRAME OsTaskTimeFrame - Defines the minimum time between task

activations

MAXOS OsTaskOsInterrupt - Maximum time OS interrupts are locked (by
©2015, Vector Informatik GmbH Version: 9.01 109 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext

Attribute Name

XML

Values

The default value

Description

INTERRUPT
LOCKTIME

MAXALL
INTERRUPT
LOCKTIME

LOCKINGTIME =
RESOURCELOCK

LOCKINGTIME =
RESOURCELOCK/
RESOURCE

LOCKINGTIME =
RESOURCELOCK/
RESOURCELOCK
TIME

OnlyMeasure

LockBudget

OsTaskAllInterrupt
LockBudget

OsTaskResource
Lock

Inside the
container
OsTaskResource
Lock:

OsTaskResource
LockResourceRef

Inside the
container
OsTaskResource
Lock:

OsTaskResource
LockBudget

OsOnlyMeasure

Table 7-7

7.3.2.3

is written in bold

TRUE
FALSE

Sub-attributes of TASK-> TIMING PROTECTION=TRUE

SuspendOSInterrupts)

Maximum time ALL interrupts are locked (by
SuspendAllInterrupts Or
DisableAllInterrupts)

Is intended to be a container for sub-attributes
concerning the locking time of resources

The resource for which the locking time is
specified.

Maximum time the resource is locked (by
GetResource)

If set to FALSE, timing values of this task are
measured and violations against the configured
values lead to a call of the ProtectionHook. If
set to TRUE, the timing values are still
measured but no call of the ProtectionHook
occurs.

Task attributes concerning the timing analyzer

The following attributes have to be used when working with the timing analyzer tool. They

are used as input for this tool.

Attribute Name

Values

The default value

Description

XML
ComputationTime OsTask

ComputationTime
Period OsTaskPeriod
Deadline OsTaskDeadline
PRIORITY OsTaskPriority
UseResource OsTaskUse
Occupation Resource

Occupation
UseResource OsTaskUse
Occupation=TRUE/ Resource

©2015, Vector Informatik GmbH

is written in bold

The worst case execution time (in
nanoseconds)

The minimum activation period of the task (in
nanoseconds)

The deadline of the task (in nanoseconds)
Priority of the task

If set to TRUE the occupation of resources can
be taken into consideration by the analysis tool.

Reference to the resource that is occupied.

Version: 9.01

based on template version 4.3

vector’

110/ 136



Technical Reference MICROSAR OS SafeContext

Attribute Name

XML

Values

The default value

vector”

Description

Resource

UseResource
Occupation=TRUE/
OccupationTime

Table 7-8

7.3.3 Counter

Occupation
=TRUE/OsTask
Resource
OsTaskUse
Resource
Occupation
=TRUE/OsTask
OccupationTime

is written in bold

- Maximum

resource occupation time (in

nanoseconds)

Task attributes concerning the timing analyzer

The Counter container provides the following configuration attributes.

Attribute Name

XML

Values

The default
value is written

Description

Name

Comment
MINCYCLE

MAXALLOWED
VALUE

TICKSPERBASE

TYPE

DRIVER

Short-Name

n.a.

OsCounterMinCycle

in bold

OsCounterMaxAllowedValue -

OsCounterTicksPerBase -
OsCounterType SOFTWARE,

HARDWARE
OsDriver -

©2015, Vector Informatik GmbH

Version: 9.01

Name of the counter. This name is used
for the Alarm configuration.

Any comment.

This attribute specifies the minimum
allowed number of ticks for a cyclic
alarm linked to the counter.

Maximum value, which is reachable by
the counter in counter ticks.

This attribute specifies the number of
hardware timer ticks required to reach a
counterspecific unit. E.g. if you have a
periodic tick timer, which is running with
16MHz and it is configured to trigger a
timer interrupt with 1kHz. You have
16000 ticks per base.

Defines the type of the counter.
Possible settings are SOFTWARE or
HARDWARE. SOFTWARE means the
counter is incremented by means of the
system service IncrementCounter,
which has to be called by the
application. HARDWARE means the
counter is incremented by MICROSAR
OS internally.

This Container contains the information
who will drive the counter. This
configuration is only valid if the counter
has OsCounterType set to HARDWARE.
Sub-Attributes are hardware dependent
(see [5]).

1117136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

Attribute Name Values Description

XML The default
value is written
in bold

TIMECONSTANT OsTimeConstant - This Container allows the user to define
constants, to be used e.g. to compare
physical time values with timer tick

values.
TIMECONSTANT/ OsConstName - The name, to be used by the application
CONSTNAME to get OsTimeValue in counter units.
TIMECONSTANT/ OsTimeValue - This attribute contains the value of the
VALUE constant in seconds.
SECONDSPERTICK 0OsSecondsPerTick - This attribute contains the time of one
counter tick in seconds.
ACCESSING _ OsCounter Accessing - Defines access rights of an application
APPLICATION Application for this counter. This attribute can be

used multiply, so different applications
might have access rights to this counter.
This attribute can only be used in
scalability classes SC3 and SC4.

Table 7-9  Attributes of COUNTER

OsSecondsPerTick

A
—
ﬁ Tick

—
Counter Units (Software) —

I -

Driver Units (Hardware) — t ; } F

SN

OsSecondsPerTick/OsCounterTicksPerBase

Figure 7-2  Relation between Physical Units, Counter Units and Driver Units

= '] Note
) > If the OS supports High-Resolution, there is no periodic counter tick. The OS programs
the driver to interrupt on demand (e.g. next Alarm, next Expiry Point, etc.). Therefore,
the counter has the same resolution as the driver (OsCounterTicksPerBase is 1).

7.3.4 Alarm
The action of an alarm has to be defined statically.

©2015, Vector Informatik GmbH Version: 9.01 112 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VeCtOf

Attribute Name Values Description

The default value is
XML written in bold

Name Short-Name - Name of the alarm. This name is used as an
argument to all alarm related OSEK API
functions (e.g. SetRelAlarm).

Comment n.a. -- Any comment
COUNTER OsAlarmCounter Reference to the counter that drives the
Ref alarm.
ACTION OsAlarmAction > OlIL: See chapter 7.3.4.1 for more information.
SETEVENT,
ACTIVATETASK,
INCREMENTCOU
NTER
> XML:

Choice container:

OsAlarmActivateT
ask,
OsAlarmincrement
Counter,
OsAlarmSetEvent
AUTOSTART OsAlarmAutostart TRUE > OIL: If set to TRUE, the alarm will be
FALSE activated at startup of the system.
> XML: If attribute is present, the alarm will
be activated at startup of the system.
See chapter 7.3.4.2 for more information
about the sub-attributes and chapter 3.2.1.3
for more information about static alarms.
ACCESSING_ OsAlarmAccessin Defines access rights of an application for
APPLICATION gApplication this alarm. This attribute can be used

multiply, so different applications might have
access rights to this alarm. This attribute can
be used in scalability classes SC3 and SC4
only.

Table 7-10 Attributes of ALARM

7.3.4.1 ACTION / OsAlarmAction
> Attribute / ChoiceContainer is set to ACTIVATETASK / OsAlarmActivateTask:

©2015, Vector Informatik GmbH Version: 9.01 113/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Attribute Name Values Description
The default value
XML is written in bold
TASK OsAlarmActivate - Task to be activated
TaskRef

Table 7-11  Sub-attributes of ACTION = ACTIVATETASK

> Attribute / ChoiceContainer is set to SETEVENT / OsAlarmSetEvent:

Attribute Name Values Description
The default value
XML is written in bold
TASK OsAlarmSetEvent - Task to which the event should be sent
TaskRef
EVENT OsAlarmSetEvent Event to be sent to the specified task
Ref

Table 7-12  Sub-attributes of ACTION = SETEVENT

> Attribute / ChoiceContainer is set to INCREMENTCOUNTER /
OsAlarmIncrementCounter:

Attribute Name Values Description
The default value
XML is written in bold
COUNTER OsAlarmincrement - Name of the counter to be incremented
CounterRef

Table 7-13  Sub-attributes of ACTION = ALARMCALLBACK

7.3.4.2 AUTOSTART / OsAlarmAutostart

> OIL: This attribute can be either TRUE or FALSE. Depending on the value, there may be
different sub-attributes.

> XML.: This attribute can be present in the configuration or it can be omitted. In case this
container is present, it has sub-attributes, which are described below.

> If AUTOSTART is set to TRUE (OIL) or if the container is present (XML):

Attribute Name Values Description
The default value
XML is written in bold
ALARMTIME OsAlarmAlarmTim - The relative or absolute tick value when the
e alarm expires for the first time. Note that for an

alarm which is RELATIVE the value should be
bigger than 0.

©2015, Vector Informatik GmbH Version: 9.01 114/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

Attribute Name Values

Description

The default value
is written in bold

XML

TYPE OsAlarmAutostar  ABSOLUTE  The value corresponds to a call of the API-
tType RELATIVE Functions SetRelAlarm or SetAbsAlarm
CYCLETIME OsAlarmCycleTim This atttibute defines the cycle time of a cyclic
e alarm in counter units. A zero value indicates
that the alarm is not cyclic.
APPMODE OsAlarmAppMode Reference to the application modes for which
Ref the AUTOSTART shall be performed.

Table 7-14 Sub-attributes of AUTOSTART = TRUE

7.3.5 Resource
Resources have to be defined with the following attributes:

Attribute Name Values

Description

The default value
is written in bold

XML

Name Short-Name - Name of the resource. This name is used as an
argument to all resource related OSEK API
functions (e.g. GetResource).

Comment n.a. -- Any comment

RESOURCE OsResource STANDARD, This attribute can take the following values:

PROPERTY Property LINKED .
> STANDARD: A normal resource that is not

linked to another resource and is not an
internal resource.
> LINKED: Aresource that is linked to another
resource with the property STANDARD or
LINKED.
Internal resources are not supported by
MICROSAR OS SafeContext.
ACCESSING_ OsResource Defines access rights of an application for this
APPLICATION Accessing resource. This attribute can be used multiply, so
Application different applications might have access rights
to this resource. This attribute can only be used
in scalability classes SC3 and SC4.

RESOURCE OsResourceLinked > OIL: If the resource property is set to

PROPERTY ResourceRef LINKED, the LINKEDRESOURCE attribute

—LINKED / LINKED holds a reference to a resource.

RESOURCE > XML: This attribute holds a reference to a

resource.
©2015, Vector Informatik GmbH Version: 9.01 115/136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext Vector[
Table 7-15 Attributes of RESOURCE

7.3.6 Event

Events in the OSEK operating system are always implemented as bits in bit-fields. The
user could use bit-masks like ‘0x0001’, but to achieve portability between different OSEK
implementations, the user should use event names, which are mapped to defined bits by
the code generator.

Attribute Name Values Description

The default value
XML is written in bold

Name Short-Name - Name of the event. This name is used as an
argument to all event related OSEK-API-
functions (e.g. SetEvent).

Comment n.a. -- Any comment
MASK OsEventMask - > OIL: Eventmask or AUTO

> XML: If EventMasks shall be defined
automatically this attribute shall be omitted

Table 7-16  Sub-attributes of EVENT

e Caution

! If the user selects AUTO for the mask, the code generator will search for free bits in the
bit mask of the receiving task. It is important to specify each task that receives an
event, otherwise the code generator will generate wrong bit-masks.

7.3.7 ISR
Attribute Name Values Description
A s witten n bold
Name Short-Name - Name of the interrupt service routine.
Comment n.a. - Any comment
CATEGORY OslsrCategory - > OIL: Number of category for the interrupt

service routine (1-2)

> XML: this attribute can be CATEGORY 1 or

CATEGORY 2
RESOURCE OslsrResourceRef - Resource management for ISRs is not
supported by MICROSAR OS SafeContext.
TIMING _ OslsrTiming - Selects timing protection for the ISR. See
PROTECTION Protection chapter 7.3.7.2 for information about the sub-
attributes.
EnableNesting OslsrEnable - If set to TRUE the OS will call the user ISR in a
Nesting way that interrupts will be enabled again during
user ISR. Thus, it is possible that the user ISR
can be interrupted by other ISRs.
©2015, Vector Informatik GmbH Version: 9.01 116 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Attribute Name Values Description
The default value
XML is written in bold
UseSpecialFunction OslsrUseSpecial - Normally the attribute Name /Short-Name
Name FunctionName defines the C-Name of the ISR. Since this

name must be unique, it would not be possible
to map different interrupt Sources to a single
ISR. This can be done by this attribute.

If this attribute is set to TRUE, it is possible to
define the function name of the ISR in a
separate sub-attribute. These names do not
have to be unique.

ACCESSING _ OslsrAccessing - Defines access rights of an application for this

APPLICATION Application ISR. This attribute can be used multiply, so
different applications might have access rights
to this alarm.

Table 7-17 Attributes of ISR

7.3.7.1 UseSpecialFunctionName / OslsrUseSpecialFunctionName

If this attribute is set to TRUE a function name can be specified which is taken as ISR
name instead of the Name (OIL) / Short-Name (XML) attribute.

This can be used to map several interrupt sources to one ISR routine.

Attribute Name Values Description

XML The default
value is written
in bold

FunctionName OslsrFunctionName - Name of the ISR routine.

Table 7-18 Sub-attributes of UseSpecialFunctionname / OslsrUseSpecialFunctionName

A Example
£> Given two Interrupts MyISR1 and MyISR2. Both shall trigger the same ISR routine.
Activate SpecialFuntionName for MylSR2, and set FunctionName to “MyISR1”. Now,
MyISR2 is mapped onto the MyISR1 routine, which is implemented as usual:

ISR (MyISR1)
{

©2015, Vector Informatik GmbH Version: 9.01 117/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VeCtOf

- Note
I ]> The ISR () macro MUST be used for the definition of category 2 ISR handlers. If this

is not possible, a wrapper using this macro can be used to call the respective ISR
handler:

ISR (MyISR1l) /* “MyISR1” is the configured */
{ /* FunctionName in OIL or XML */
MyISRHandlerFunction(); /* “MyISRHandlerFunction” is */

} /* the name of the actual ISR */
/* handler provided by the */
/* application */

7.3.7.2 TIMING_PROTECTION / OslIsrTimingProtection

> OIL: This attribute has to be set to TRUE to switch on timing protection. The sub-
attributes are only visible if TTIMING PROTECTION is TRUE.

> XML: This attribute has to be present to switch on timing protection.

Please note that timing protection can only be switched on for a MICROSAR OS
SafeContext that has been delivered in Scalability class SC4.

Attribute Name Values Description
The default value
XML is written in bold
EXECUTIONTIME  OslsrExecution - The parameter contains the maximum allowed
Budget execution time of the interrupt.

> OIL: the times are given in nanoseconds.
> XML: the times are given in seconds.

TIMEFRAME OslsrTimeFrame - This parameter contains the minimum inter-
arrival time between successive interrupts

> OIL: the times are given in nanoseconds.
> XML: the times are given in seconds.

MAXOSINTERRUP  OslsrOsInterrupt - This parameter contains the maximum time for
TLOCKTIME LockBudget which the ISR is allowed to lock all Category 2
interrupts (via SuspendOSInterrupts()).

> OIL: the times are given in nanoseconds.
> XML: the times are given in seconds.

MAXALLINTERRUP  OslsrAllinterrupt - This parameter contains the maximum time for

TLOCKTIME LockBudget which the ISR is allowed to lock all interrupts
(via SuspendAllInterrupts() or
DisableAllInterrupts())

©2015, Vector Informatik GmbH Version: 9.01 118 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Attribute Name Values Description

The default value
is written in bold

> OIL: the times are given in nanoseconds.
> XML: the times are given in seconds.

LOCKINGTIME OslsrResource - > OIL: This is a (empty) list of all lock times, in
Lock nanoseconds

> XML: This container holds resource lock
times, in seconds.

Resource lock times are the maximum times an
ISR is allowed to hold a resource.

OnlyMeasure OsOnlyMeasure TRUE If set to FALSE, timing values of this ISR are
FALSE measured and violations against the configured

values lead to a call of the ProtectionHook. If
set to TRUE, the timing values are still
measured but no call of the ProtectionHook
occurs. The value of this attribute might be
overridden by the OS attribute
TimingMeasurement, as described in
chapters 7.3.1.4 and 3.2.4.2.

Table 7-19  Sub-attributes of TIMING_PROTECTION / OslsrTimingProtection

7.3.7.2.1 LOCKINGTIME / OslsrResourceLock

Attribute Name Values Description
The default value
XML is written in bold

LOCKINGTIME= OslsrResource - The parameter contains the maximum allowed
RESOURCELOCK/ LockBudget time an ISR is allowed to hold a resource
RESOURCELOCK . . . .
TIME > OIL: the times are given in nanoseconds.

> XML: the times are given in seconds.
LOCKINGTIME= OslsrResource Holds the reference to this resource
RESOURCELOCK/ LockResourceRef
RESOURCE

Table 7-20 Sub-attributes of LOCKINGTIME / OslsrResourcelLock

7.3.7.3 ISR Attributes concerning the Timing Analyzer

Attribute Name Values Description
The default value
XML is written in bold
ComputationTime OslsrComputation - The worst case execution time (in
Time nanoseconds)
Period OslsrPeriod The minimum activation period of the ISR (in
nanoseconds)
©2015, Vector Informatik GmbH Version: 9.01 1197136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

Attribute Name Values

Description

The default value
XML is written in bold

Deadline OslsrDeadline The deadline of the ISR (in nanoseconds)
AnalysisPriority OslsrAnalysis The AnalysisPriority corresponds to the
Priority Task attribute PRIORITY / osTaskPriority.

The AnalysisPriority is an extension of
the priority values from tasks to ISRs, so all ISR
priorities must have higher values as all task
priorities to get correct analysis results. (Some
OS Implementations use an attribute similar to
priority for the hardware interrupt level.
Therefore to the timing analysis an own
attribute was introduced).

UseResource OslsrUseResource If set to TRUE the occupation of resources can

Occupation Occupation be taken into consideration by the analysis tool.

UseResource OslsrUseResource Reference to the resource that is occupied.

Occupation= Occupation=TRUE

TRUE/Resource /OslsrResource

UseResource OslsrUseResource Maximum resource occupation time (in

Occupation= TRUE/ Occupation=TRUE nanoseconds)

OccupationTime /OslsrOccupation

Time

Table 7-21 ISR attributes concerning the timing analyzer

7.3.8 COM
The section COM is not used by MICROSAR OS.

7.3.9 NM
The section NM is not used with the current MICROSAR OS implementation.

7.3.10 APPMODE / OsAppMode
Application modes have to be defined with the following attributes:

Attribute Name Values

Description

The default value
XML is written in bold

Name Short-Name - Name of the application mode. This name is
used as an argument to all related OSEK-API-
functions and for the definition of the
AUTOSTART functionality of tasks and alarms.

Comment n.a. -- Any comment

©2015, Vector Informatik GmbH Version: 9.01 120/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

Attribute Name Values Description

The default value
XML is written in bold

n.a. OsAppModeld Internal ID of an Appmode. The value of this
attribute is ignored by MICROSAR OS.

Table 7-22  Attributes of Appmode / OsAppMode

7.3.11 Application / OsApplication
The object APPLICATION is meant for the usage with scalability classes SC3 and SC4.

Attribute Name Values Description
The default value
XML is written in bold
Name Short-Name -- Freely selectable name, not used by the code
generator.
Comment n.a. -- Any comment.
n.a. OsApplication FALSE MICROSAR OS SafeContext does not support
Hooks any application specific Hook routines.
STARTUPHOOK OsAppStartup FALSE MICROSAR OS SafeContext does not support
Hook any application specific Hook routines.

(XML: is contained in OsApplicationHooks)

ERRORHOOK OsAppErrorHook  FALSE MICROSAR OS SafeContext does not support
any application specific Hook routines.

(XML: is contained in OsApplicationHooks)

SHUTDOWNHOOK OsAppShutdown FALSE MICROSAR OS SafeContext does not support
Hook any application specific Hook routines.

(XML: is contained in OsApplicationHooks)

TRUSTED OsTrusted TRUE, > OIL: Defines whether the application is
trusted or not. See chapter 7.3.11.1 for

FALSE information about the sub-attributes.
> XML: This is only a boolean which marks the
Application as trusted application
HAS_RESTART n.a. FALSE > OIL: MICROSAR OS SafeContext does not
TASK support terminating or restarting an
application.
TASK OsAppTaskRef - Reference to all tasks belonging to this
application.
ISR OsApplsrRef - Reference to all ISRs belonging to this
application.
ALARM OsAppAlarmRef - Reference to all alarms belonging to this
application.
SCHEDULETABLE  OsAppSchedule - Reference to all schedule tables belonging to
TableRef this application.
©2015, Vector Informatik GmbH Version: 9.01 1217136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

Attribute Name Values Description

The default value
XML is written in bold

COUNTER OsAppCounterRef - Reference to all counters belonging to this
application.
n.a. OsApplication - Container that is used to define trusted
TrustedFunction functions.

NonTrusted_Functio OsApplicationNon List of non-trusted functions provided by this
n Trusted_Function application (only for non-trusted applications).

Table 7-23  Attributes of Application / OsApplication

7.3.11.1 Trusted Functions
> OQIL: trusted functions are defined as sub-attributes of ' TRUSTED=TRUE".

> XML: there are containers for trusted functions.

The preconditions for editing the sub-attributes in the next table are
TRUSTED=TRUE/TRUSTED FUNCTION=TRUE for OIL and the existence of (at least one)
OsApplicationTrustedFunction container.

Attribute Name Values Description

The default value
XML is written in bold

TRUSTED _ OsTrustedFunction - List of trusted functions provided by this
FUNCTION Name application.

=TRUE/TRUSTED

FUNCTION

=TRUE/NAME

TRUSTED _ OsApplication - Parameter (arguments) of trusted function.
FUNCTION Params Empty string means void. Used for stub
=TRUE/TRUSTED generation only. See attribute GenerateStub.
FUNCTION

=TRUE/Params

TRUSTED_ OsApplication - Return value data type of trusted function.
FUNCTION ReturnType Empty string means void. Used for stub
=TRUE/TRUSTED generation only. See attribute GenerateStub.
FUNCTION

=TRUE/ReturnType

TRUSTED_ OsApplication - If set to TRUE, stub functions are generated for
FUNCTION GenerateStub all trusted functions of this application.
=TRUE/Generate

Stub

Table 7-24  Sub-attributes for trusted functions

©2015, Vector Informatik GmbH Version: 9.01 122/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VeCtOf

7.3.12 Scheduletable
Schedule tables have to be defined with the following attributes.

Attribute Name Values Description
The default value
XML is written in bold
Name Short-Name - Name of the SCHEDULETABLE. This name is
used as an argument to all related OSEK API
functions.
Comment n.a. - Any comment
COUNTER OsScheduleTable - Defines the counter used as time basis for this
CounterRef schedule table.
REPEATING OsScheduleTable - If selected, the schedule table is performed
Repeating periodically after it is started. If deselected, the
schedule table is performed once per activation.
DURATION OsScheduleTable - Defines the length of the schedule table in ticks,
Duration based on the underlying counter. This is the

time from the first expiry point to the end of the
schedule table or in the case of a periodic
schedule table, between two subsequent first
expiry points. The length is defined in units of
ticks of the underlaying counter.

AUTOSTART OsScheduleTable - > OIL: If set to TRUE, the schedule table is
Autostart activated at startup of the operating system.

> XML: If attribute is present, the schedule
table is activated at startup of the operating
system.

See chapter 7.3.13.1 for more information
about the sub-attributes.

LOCAL_TO_ OsScheduleTable - Defines, whether the schedule table shall be
GLOBAL_TIME_SY Sync synchronized to a global time source. This
NCHRONIZATION attribute is only supported in scalability class
SCA4. Sub-attributes are described in chapter
7.3.13.6.
EXPIRY_POINT OsScheduleTable - Defines an expiry point for this schedule table
ExpiryPoint
ACCESSING_ OsSchThl - Defines access rights of an application for this
APPLICATION Accessing schedule table. This attribute can be used
Application multiply, so different applications might have

access rights to this schedule table.

Table 7-25 Attributes of SCHEDULETABLE

7.3.12.1 AUTOSTART / OsScheduleTableAutostart

> OIL: If this attribute is set to TRUE sub-attributes are visible and the schedule table is
auto started.

> XML: If this container is present in the configuration the schedule table is auto started

©2015, Vector Informatik GmbH Version: 9.01 123/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext

Attribute Name

vector’

Description

APPMODE

TYPE

TYPE=ABSOLUT/
ABSVALUE

TYPE=RELATIVE/
RELOFFSET

Values
The default value
XML is written in bold
OsScheduleTable -
AppModeRef
OsScheduleTable ABSOLUTE
AutostartType RELATIVE
SYNCHRON
OsScheduleTable -
StartValue
OsScheduleTableS -
tartValue

Table 7-26  Sub-attributes for auto start of a schedule table

Defines an application mode in which the
schedule table is started automatically. This
attribute might be defined several times to start
the schedule table in several application
modes.

Defines the method how the schedule table is
autostarted.

Absolute autostart tick value when the schedule
table starts. Only used if the
OsScheduleTableAutostartType is
ABSOLUTE.

Relative offset in ticks when the schedule table
starts. Only used if the
OsScheduleTableAutostartType is
RELATIVE.

7.3.12.2 EXPIRY_POINT / OsScheduleTableExpiryPoint

An expiry point consists of a sequence of actions which are performed on a given tick time
of the schedule table. There are the following sub-attributes. Some of them also have sub-

attributes.

Attribute Name

Values

The default value

Description

ACTION

OFFSET

ACTION=ADJUST

ACTION
=ACTIVATETASK

is written in bold

n.a. > OIL:
ACTIVATETA
SK
SETEVENT
ADJUST

OsScheduleTbl -

ExpPointOffset

OsScheduleThl -

AdjustableExp

Point

OsScheduleTable -

TaskActivation

©2015, Vector Informatik GmbH

> OIL: a list of actions

Defines the time at which the defined actions
occur in ticks based on the underlying counter.
The time is absolute to the start of the schedule
table and is given in ticks of the underlying
counter.

> XML: containers for holding the sub-
attributes in case of expiry point action
ADJUST

> XML: containers for holding the sub-
attributes in case of expiry point action

Version: 9.01 124/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Attribute Name Values Description
The default value
XML is written in bold
ACTIVATESTASK
ACTION OsScheduleTable - > XML: containers for holding the sub-
=SETEVENT EventSetting attributes in case of expiry point action
SETEVENT

Table 7-27 Sub-attributes of expiry points

7.3.12.3 Expiry point action ADJUST
> OIL: the following attributes are visible if the expiry point action is ADJUST

> XML: the following attributes are located in the container
OsScheduleTblAdjustableExpPoint

Those attributes are only relevant in SC2 or SC4 if synchronization mechanisms are used.

Attribute Name Values Description
The default value
XML is written in bold
MAXLENGTHEN OsScheduleTable The maximum positive adjustment that can be
MaxLengthen made to the expiry point offset to achieve
synchronizationin ticks based on the underlying
counter.
MAXSHORTEN OsScheduleTable - The maximum negative adjustment that can be
MaxShorten made to the expiry point offset to achieve
synchronization in ticks based on the underlying
counter.

Table 7-28 Sub-attributes of expiry point action ADJUST

7.3.12.4 Expiry point action ACTIVATETASK

Attribute Name Values Description
The default value
XML is written in bold
TASK OsScheduleTable Reference to the task to be activated.
ActivateTaskRef
Cyclic OsScheduleTable TRUE, > OIL: If set to TRUE, this action is repeatedly
Cyclic FALSE added to the schedule table.
> XML: This is a choice container. If set to
TRUE the action will be repeatedly added to
the schedule table.
The cycle time is located in a sub-attribute. See
chapter 3.2.6.3 for more details.
Cyclic=TRUE/Cycle 0OsScheduleTable If the action is declared as cyclic, this attribute
Time CycleTime holds the cycle time in counter ticks.

Table 7-29  Sub-attributes of expiry point action ACTIVATETASK

©2015, Vector Informatik GmbH Version: 9.01 125/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

7.3.12.5 Expiry point action SETEVENT

Attribute Name Values Description
The default value
XML is written in bold
TASK OsScheduleTable - Task to which the event should be sent
SetEventTaskRef
EVENT OsScheduleTable - Event to be sent to the specified task
SetEventRef
Cyclic OsScheduleTable TRUE, > OIL: If set to TRUE, this action is repeatedly
Cyclic FALSE added to the schedule table.
> XML: This is a choice container. If set to
TRUE the action will be repeatedly added to
the schedule table.
The cycle time is located in a sub-attribute. See
chapter 3.2.6.3 for more details.
Cyclic=TRUE/Cycle OsScheduleTable - If the action is declared as cyclic, this attribute
Time CycleTime holds the cycle time in counter ticks.

Table 7-30 Sub-attributes of expiry point action SETEVENT

7.3.12.6 LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION / OsScheduleTableSync

> OIL: If set to TRUE, the synchronization of this schedule table is switched on and the
sub-attributes will be visible.

> XML: If this attribute is present in the configuration the synchronization is used for this
schedule table.

This is only relevant in SCA4.

Attribute Name Values Description

XML The default value
is written in bold

SYNC_STRATEGY OsScheduleTbl EXPLICIT Defines the synchronization strategy of this

SyncStrategy IMPLICIT schedule table.

NONE

> EXPLICIT: The schedule table is driven by
an OS counter, but processing needs to be
synchronized with a different counter, which
is not an OS counter object.

> IMPLICIT: The counter driving the schedule
table is the counter with which
synchronisation is required

> NONE: no synchronization is applied at all

SYNC_STRATEGY OsScheduleThl - Defines the synchronization tolerance (in ticks)
=EXPLICIT/PRECIS ExplicitPrecision for this schedule table.

ION If the absolute value of the deviation between

the schedule table counter and the
synchronization counter is smaller than this

©2015, Vector Informatik GmbH Version: 9.01 126/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext VQCEO('

Attribute Name

Values Description

The default value
is written in bold

value schedule table state is set to
SCHEDULETABLE RUN-
NING_AND SYNCHRONOUS

Table 7-31  Sub-attributes SCHEDULETABLE-> LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION = TRUE

©2015, Vector Informatik GmbH

Version: 9.01 12717136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext Vector

8 System Generation

This chapter describes the generation of the executable program. The definition of the OIL
/ XML file was described in the chapter 7 Configuration. The general steps programming
an application using the OSEK operating systems are illustrated in chapter 7.1
Configuration and generation process.

The dependencies on include files are described in chapter 5.2 Include Structure.

8.1 Code Generator

The code generator GENxxxx . EXE is delivered with the MICROSAR OS package (xxxx is
replaced by the hardware platform name). The code generator is implemented as a 32-bit
Windows console application and can be started from the OIL Configurator or directly from
the command line.

The code generator has different command-line options. When started without any
parameters, a list of all parameters is printed:

GENxxxx.EXE, Version: 6.00, Vector Informatik GmbH, 2012

Usage: GENxxxx.EXE [options] <Filename>

-s : print symboltable

-r <Filename> : write errors into file

-g : generate code

-d <Pathname> : path to write generated code

-m : prints list of known implementations

-1 <Pathname>: include path for implementation files

-x : include path equals to generator exe path

-f <Filename>: read options and filename from command file

-y : perform a syntax check on OIL file

8.1.1 Generated Files
The code generator generates several files as described in chapter 5.1.2 Dynamic Files.

The files always have the same name. They are written to the generation path specified in
the OIL Configurator or with the command line option -d.

The '.c' modules have to be compiled and linked to the application.

8.1.2 Automatic Documentation

Automatic documentation of the generation process is provided by two list files, which are
generated by the code generator. A basic list file is generated in text format. The more
detailed list file is generated in HTML format and can be used to publish a system design
in the internet or an intranet. Both files have the same name as the OIL file, i.e.:

> <OILFileName>.lst (basic listfile in text format)
> <OILFileName>.htm (extended list file in HTML format)

The files are located in the directory of the OIL file.

©2015, Vector Informatik GmbH Version: 9.01 1287136



Technical Reference MICROSAR OS SafeContext Vector

8.1.3 Conditional Generation

If MICROSAR OS is configured using an OIL file, the OS object provides the attribute
ConditionalGenerating. If AUTOSAR ECUC files are used for configuration, the parameter
for conditional generation is not located in the OS configuration but in the BSWMD file of
the Board, as other modules also use this parameter.

If conditional generation is selected, the generated files are overridden only if the OS
configuration has changed since the last generator run. This allows using the file
modification date of the generated files to decide which modules need recompilation after
configuration changes. Compile times of a complete AUTOSAR stack may be dramatically
reduced with this setting in the development cycle.

Setting ConditionalGenerating = FALSE forces the MICROSAR OS code generator to
generate the files newly on each run. This is the recommended setting for the final,
productive build.

8.1.4 Generated files backup

To avoid a mixed set of generated files from various runs of the generator, already existing
files are either deleted or renamed before the new generation starts.

Before previously generated files are overwritten in a new run of a generator, the complete
file set is renamed to files with the original name plus a “.bak” suffix (backup file set). This
file set contains the last valid generated file set even if a consecutive generator run fails for
any reason.

8.2 Application Template Generator
The application template generator is not available in current versions of MICROSAR OS.

8.3 Compiler

The supported compiler package has to be installed, and the search path of the compiler,
assembler and linker has to be set. If special options are required, they are described in
the hardware specific manual.

8.3.1 Include Paths

The operating system is delivered with include files in the subdirectory
root\HwPlatform\include (0SCAN style) or root\BSW\0s (MICROSAR style).

©2015, Vector Informatik GmbH Version: 9.01 129/136



Technical Reference MICROSAR OS SafeContext Vector

9 AUTOSAR Standard Compliance

9.1 Deviations
Currently no known deviations

9.2 Limitations

9.2.1 API Function OS_GetVersioninfo
The function

void OS_GetVersionInfo(Std VersionInfoType *version info)

is not supported by MICROSAR OS. The version information can be collected by the
following #defines:

Vendor ID OS_VENDOR _ID
Module ID OS_MODULE_ID
Major version number OS_SW MAJOR VERSION
Minor version number OS_SW MINOR VERSION
Patch version number OS_SW PATCH VERSION

9.2.2 Forcible Termination

MICROSAR OS does currently not support forcible termination. The only possible reaction
on a protection error is to shutdown the system.

9.2.3 AUTOSAR Debug support

MICROSAR OS does not provide any variables and type definitions for AUTOSAR
Debugging (See requirements OS549-551 in [1]). The suggested way to gather information
about the internals of the OS is to use the ORTI feature supported by MICROSAR OS.

9.2.4 Port Interface

The Port interface described by requirements OS560, OS561 in [1] is not supported by
MICROSAR OS.

9.2.5 NULL Pointer Checks

Null pointer checks described by requirements OS566 is [1] are not implemented in
MICROSAR OS.

9.2.6 SafeContext specific limitations

In order to achieve a safe execution environment and fulfill the requirement for reduced
complexity of 1ISO26262, the following OSEK/AUTOSAR OS features are not implemented
in MICROSAR OS SafeContext.

> Pre- and PostTaskHook as well as ISRHooks are only supported as a debug feature
and not released for use in safety environments.

©2015, Vector Informatik GmbH Version: 9.01 130/ 136



Technical Reference MICROSAR OS SafeContext Vector

> Application specific hook routines are not supported.

> Forcible termination of Tasks, ISRs or OS-Applications is neither supported through the
service TerminateApplication, nor as a reaction to a protection violation.

> All checks of the OS must be turned on any time (StackMonitoring, OSInternalChecks).
> ORTI Debug information is always recorded and cannot be turned off.
> Internal resources are not supported.

> StartupHook, ErrorHook, ShutdownHook and ProtectionHook cannot be turned off in the
configuration.

Further restrictions may be found in [5] and/or [9].

On the other hand, there are additional features and measures implemented in
MICROSAR OS SafeContext to increase safety:

> StartOS is protected against calls from non-trusted code to avoid unintended reboot.

> An APl is provided to allow protected access to peripherals (either by peripheral
protection subsystem if provided by the hardware, or by memory protection, see [5] for
details). However, trusted applications are always granted full access to all peripherals.

> A global Shared Memory Area allows quick exchange of non-critical data between OS-
Applications.

> Non-trusted functions allow a safe execution of non-trusted code triggered by trusted
code.

> A user configuration version can be freely assigned and read via an API
(osGetConfigBlockVersion), allowing verification that the correct configuration is used
during runtime.

©2015, Vector Informatik GmbH Version: 9.01 131/136



Technical Reference MICROSAR OS SafeContext V@Ctor

10 Debugging Support

10.1 Kernel aware Debugging

All implementations of MICROSAR OS support kernel-aware debugging according to the
ORTI specification. On some platforms, proprietary solutions are available.

Refer to the hardware specific documentation [4] for details.

10.2 Version and Variant Coding

The version and the variant are coded into the generated binary or HEX file. The user has
the possibility to read version and variant using an emulator, or if the electronic control unit
is accessible via the CCP protocol via the CAN bus.

The generator writes version and variant information into a structure, defined in osek.h.

typedef struct
{

osuint8 ucMagicNumberl; /* magic number: */
osuint8 ucMagicNumber?2; /* defined as uint8 for independency of */
osuint8 ucMagicNumber3; /* byte order */

osuint8 ucMagicNumber4;

osuint8 ucSysVersionMaj; /* version of operating system, Major */
osuint8 ucSysVersionMin; /* version of operating system, Minor */
osuint8 ucGenVersionMaj; /* version of code generator */
osuint8 ucGenVersionMin; /* version of code generator */
osuint8 ucSysVariantl; /* general variant coding 1 */
osuint8 ucSysVariant2; /* general variant coding 2 */
osuint8 ucOrtivVariant; /* ORTI version and variant */

/* implementation specific variant coding */

} osVersionVariantCodingType;

The structure contains the version of the operating system (major and minor version
number), the version of the code generator used (major and minor version number),
information about the OS configuration bit-encoded into 8-bit values (ucSysVariantX)
and information about usage of the OSEK runtime interface (ORTI):

The magic number is defined as OXAFFEDEAD and may be used for an identification of
the version in hex or binary files.

Bits Meaning Possible Values ‘

0.1 Conformance Class 3: ECC2

2 Status Level 1: EXTENDED STATUS

3.4 Scheduling policy 2: mixed preemptive

5 Stack Check 1: enabled

©2015, Vector Informatik GmbH Version: 9.01 132 /136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext vector

Bits Meaning Possible Values
6 Error information level 0 STANDARD
7 OS internal checks 1 Additional

Table 10-1 Bit-definitions of the variant coding, ucSysVariantl

Bits Meaning Possible Values

0.1 Scalability Class 2:SC3 3:SC4

2 Usage of Schedule tables 0: no schedule tables in system

1: schedule tables are used

3 Usage of high resolution 0: no high resolution tables in system
schedule tables 1: high resolution schedule tables are used

4 Schedule table 0: synchronization is not used
synchronization 1: synchronization is used

5 Timing protection 0: timing protection is used

1: timing protection is switched off

Table 10-2  Bit-definitions of the variant coding, osSysVariant2

Bits Meaning Possible Values

0..6 ORTI version 0x22: ORTI 2.2 used

7 ORTI additional information 1: The full set of ORTI information is provided by the
oS

Table 10-3  Bit definitions of the variant coding, osOrtiVariant

The data for the structure is located in the constant oskVersionVariant and specified in the
OS module osek.c.

The structure also contains implementation specific variant coding which is described in
the separate documentation [4].

©2015, Vector Informatik GmbH Version: 9.01 133/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext V@Ctor

11 Glossary and Abbreviations

11.1 Abbreviations

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

CCP CAN Calibration Protocol

COM Communication (= module COM in AUTOSAR/MICROSAR)

CPU Central Processing Unit

ECU Electronic Control Unit

EPROM Erasable Programmable Read Only Memory

EEPROM Electrically Erasable Programmable Read Only Memory

HIS Hersteller Initiative Software

IRQ Interrupt ReQuest

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

NM Network Management (= module NM in AUTOSAR/MICROSAR)

NMI Non Maskable Interrupt

OIL OSEK Implementation Language

ORTI OSEK RunTime Debugging Interface

(OF] Operating System

OSEK Abbreviation of the German term "Offene Systeme und deren

Schnittstellen fur die Elektronik im Kraftfahrzeug" - Open Systems and
the Corresponding Interfaces for Automotive Electronics

RAM Random Access Memory

ROM Read-Only Memory

SC1, SC2, SC3, SC4 Scalability Class 1, -2, -3, -4

SEooC Safety Element out of Context; a safety related element, which is not
developed for a specific item

SRS Software Requirement Specification

SWC Software Component

SWS Software Specification

WCET Worst Case Execution Time

XML Extensible Markup Language

Table 11-1 Abbreviations

©2015, Vector Informatik GmbH Version: 9.01

based on template version 4.3

134 /136



Technical Reference MICROSAR OS SafeContext VeCtOf

11.2 Terms

Terms Description

Forcible Termination  Forcible termination means that a task, an ISR or even a whole OS
application is terminated before it has reached its end. This may be
caused by a call of the API function TerminateApplication or by returning
certain values in the protection hook.

Killing The term ‘killing’ is used as a synonym for forcible termination within this
document.

Process The term ‘process’ is used within this document as a short form of ‘task or
ISR'.

Thread The term ‘thread’ is used as a synonym of the term ‘process’ within this
document.

Table 11-2 Terms

©2015, Vector Informatik GmbH Version: 9.01 135/ 136

based on template version 4.3



Technical Reference MICROSAR OS SafeContext Vector

12 Contact

Visit our website for more information on

News

Products
Demo software
Support
Training data

VvV V V V V V

Addresses

www.vector.com

For support requests you may write to osek-support@vector.com

©2015, Vector Informatik GmbH Version: 9.01 136 /136


http://www.vector.com/
mailto:osek-support@vector.com

	MICROSAR OS SafeContext
	Technical Reference
	Version 9.01
	Document Information
	History
	Scope of the Document
	Illustrations
	Tables
	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.2 Main Functions
	3.2.1 Timer and Alarms
	3.2.1.1 Time Base
	3.2.1.1.1 Counter Macros
	3.2.1.1.2 Temporal Range of Alarms

	3.2.1.2 Timer Interrupt Routine
	3.2.1.2.1 Counter API
	1.1.1.1.1.1 Initialization
	1.1.1.1.1.2 Read Counter
	1.1.1.1.1.3 Increment Counter



	3.2.2 Stack Handling
	3.2.2.1 Task Stack
	3.2.2.2 Interrupt Stack
	3.2.2.3 Stack Monitoring
	3.2.2.4 Stack Usage

	3.2.3 Interrupt Handling
	3.2.3.1 Interrupt Categories
	3.2.3.1.1 Category 1:
	1.1.1.1.1.4 Exceptions and SC2, SC3, SC4

	3.2.3.1.2 Category 2:

	3.2.3.2 Usage of the Interrupt API before StartOS

	3.2.4  Timing Protection
	3.2.4.1 Reaction on Protection Failure
	3.2.4.2 Timing Measurement
	3.2.4.2.1 Timing measurement configuration for a specific task/ISR
	3.2.4.2.2 Global configuration of timing measurement

	3.2.4.3 Hook functions

	3.2.5 Memory Protection
	3.2.6 Schedule Tables
	3.2.6.1 Synchronization
	3.2.6.1.1 Starting a synchronizable Schedule Table
	3.2.6.1.2 Autostart
	3.2.6.1.3 Suspending a Schedule Table and keeping its Synchronization
	3.2.6.1.4 Providing a Global Time
	3.2.6.1.5 Exact Synchronization
	3.2.6.1.6 Limits of the Synchronization Algorithm
	3.2.6.1.7 Details about using NextScheduleTable
	3.2.6.1.8 Concurrent Actions

	3.2.6.2 High-Resolution Schedule Tables
	3.2.6.2.1 Setup

	3.2.6.3 Cyclical Expiry Point Actions

	3.2.7 Trusted Functions
	3.2.7.1 Generated Stub Functions


	3.3 Error Handling
	3.3.1 Error Messages
	3.3.2 OSEK / AUTOSAR OS Error Numbers
	3.3.3 MICROSAR OS Error Numbers
	3.3.3.1 Error Numbers of Group Task Management / (1)
	3.3.3.2 Error Numbers of Group Interrupt Handling / (2)
	3.3.3.3 Error Numbers of Group Resource Management / (3)
	3.3.3.4 Error Numbers of Group Event Control / (4)
	3.3.3.5 Error Numbers of Group Alarm Management / (5)
	3.3.3.6 Error Numbers of Group Operating System Execution Control / (6)
	3.3.3.7 Error Numbers of Schedule Table Control / (7)
	3.3.3.8 Error Numbers of Group Counter API / (8)
	3.3.3.9 Error Numbers of Group Timing Protection and Timing Measurement / (9)
	3.3.3.10 Platform specific error codes (A)
	3.3.3.11 Error Numbers of Group Application API (B)
	3.3.3.12 Error Numbers of Group Semaphores (C)
	3.3.3.13 Error Numbers of Group MultiCore related functions (D)
	3.3.3.14 Error Numbers of Group (Non-)TrustedFunctions (E)
	3.3.3.15 Error Numbers of Group IOC (F)

	3.3.4 Reactions on Error Situations


	4 Installation
	4.1 Installation Requirements
	4.2 Installation Disk
	4.3 OIL Configurator
	4.3.1 INI Files of the OIL Tool
	4.3.2 OIL Implementation Files
	4.3.3 Code Generator

	4.4 OSEK Operating System
	4.4.1 Installation Paths

	4.5 XML Configurations
	4.5.1 Parameter Definition Files


	5 Integration
	5.1 Scope of Delivery
	5.1.1 Static Files
	5.1.2 Dynamic Files
	5.1.2.1 Code Generator GENxxxx
	5.1.2.1.1 Generated file libconf

	5.1.2.2 Application Template Generator GENTMPL


	5.2 Include Structure

	6 API Description
	6.1 Standard API - Overview
	6.2 API Functions defined by Vector - Overview
	6.3 Timing Measurement API
	6.3.1 GetTaskMaxExecutionTime
	6.3.2 GetISRMaxExecutionTime
	6.3.3 GetTaskMaxBlockingTime
	6.3.4 GetISRMaxBlockingTime
	6.3.5 GetTaskMinInterArrivalTime
	6.3.6 GetISRMinInterArrivalTime

	6.4 Implementation specific Behavior
	6.4.1 Interrupt Handling
	6.4.1.1 EnableAllInterrupts
	6.4.1.2 DisableAllInterrupts
	6.4.1.3 ResumeAllInterrupts
	6.4.1.4 SuspendAllInterrupts
	6.4.1.5 ResumeOSInterrupts
	6.4.1.6 SuspendOSInterrupts

	6.4.2 Resource Management
	6.4.2.1 GetResource
	6.4.2.2 ReleaseResource

	6.4.3 Execution Control
	6.4.3.1 StartOS
	6.4.3.2 ShutdownOS


	6.5 Hook Routines
	6.5.1 Standard Hooks
	6.5.1.1 StartupHook
	6.5.1.2 PreTaskHook
	6.5.1.3 PostTaskHook
	6.5.1.4 ErrorHook
	6.5.1.5 ShutdownHook
	6.5.1.6 ProtectionHook

	6.5.2 ISR Hooks
	6.5.2.1 UserPreISRHook
	6.5.2.2 UserPostISRHook

	6.5.3 Alarm Hook
	6.5.3.1 PreAlarmHook (currently not supported)

	6.5.4 MICROSAR OS Timing Hooks
	6.5.4.1 Hooks for arrival
	6.5.4.1.1 OS_VTH_ACTIVATION
	6.5.4.1.2 OS_VTH_SETEVENT
	6.5.4.1.3 OS_VTH_TRANSFER_SEMA

	6.5.4.2 Hook for context switch
	6.5.4.2.1 OS_VTH_SCHEDULE

	6.5.4.3 Hooks for locking
	6.5.4.3.1 OS_VTH_GOT_RES
	6.5.4.3.2 OS_VTH_REL_RES
	6.5.4.3.3 OS_VTH_REQ_SPINLOCK
	6.5.4.3.4 OS_VTH_GOT_SPINLOCK
	6.5.4.3.5 OS_VTH_REL_SPINLOCK
	6.5.4.3.6 OS_VTH_TOOK_SEMA
	6.5.4.3.7 OS_VTH_REL_SEMA
	6.5.4.3.8 OS_VTH_DISABLEDINT
	6.5.4.3.9 OS_VTH_ENABLEDINT



	6.6 Non-Trusted Functions
	6.6.1 Functionality
	6.6.2 API

	6.7 MPU Access Checking API
	6.8 Peripheral Regions
	6.8.1 Reading functions
	6.8.2 Writing functions
	6.8.3 Modifying functions


	7 Configuration
	7.1 Configuration and generation process
	7.1.1 XML Configuration
	7.1.2 OIL Configurator

	7.2 Configuration Variants
	7.3 Configuration of the XML / OIL Attributes
	7.3.1 OS
	7.3.1.1 ProtectionHookReaction / OsOSProtectionHookReaction
	7.3.1.2 TimingMeasurement / OsOSTimingMeasurement
	7.3.1.3 PeripheralRegion / OsOSPeripheralRegion

	7.3.2 Task
	7.3.2.1 AUTOSTART / OsTaskAutostart
	7.3.2.2 TIMING_PROTECTION / OsTaskTimingProtection
	7.3.2.3 Task attributes concerning the timing analyzer

	7.3.3 Counter
	7.3.4 Alarm
	7.3.4.1 ACTION / OsAlarmAction
	7.3.4.2 AUTOSTART / OsAlarmAutostart

	7.3.5 Resource
	7.3.6 Event
	7.3.7 ISR
	7.3.7.1 UseSpecialFunctionName / OsIsrUseSpecialFunctionName
	7.3.7.2 TIMING_PROTECTION / OsIsrTimingProtection
	7.3.7.2.1 LOCKINGTIME / OsIsrResourceLock

	7.3.7.3 ISR Attributes concerning the Timing Analyzer

	7.3.8 COM
	7.3.9 NM
	7.3.10 APPMODE / OsAppMode
	7.3.11 Application / OsApplication
	7.3.11.1 Trusted Functions

	7.3.12 Scheduletable
	7.3.12.1 AUTOSTART / OsScheduleTableAutostart
	7.3.12.2 EXPIRY_POINT / OsScheduleTableExpiryPoint
	7.3.12.3 Expiry point action ADJUST
	7.3.12.4 Expiry point action ACTIVATETASK
	7.3.12.5 Expiry point action SETEVENT
	7.3.12.6 LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION / OsScheduleTableSync



	8 System Generation
	8.1 Code Generator
	8.1.1 Generated Files
	8.1.2 Automatic Documentation
	8.1.3 Conditional Generation
	8.1.4 Generated files backup

	8.2 Application Template Generator
	8.3 Compiler
	8.3.1 Include Paths


	9 AUTOSAR Standard Compliance
	9.1 Deviations
	9.2 Limitations
	9.2.1 API Function OS_GetVersionInfo
	9.2.2 Forcible Termination
	9.2.3 AUTOSAR Debug support
	9.2.4 Port Interface
	9.2.5 NULL Pointer Checks
	9.2.6 SafeContext specific limitations


	10 Debugging Support
	10.1 Kernel aware Debugging
	10.2 Version and Variant Coding

	11 Glossary and Abbreviations
	11.1 Abbreviations
	11.2 Terms

	12 Contact

