-
o
0
ﬁu
7
<
Q
=
C
)

RENESAS

AUTOSAR MCAL R4.0.3
User’s Manual

PORT Driver Component Ver.1.0.5
Embedded User’'s Manual

Target Device:
RH850\P1x

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.0.02 Apr 2015

http://www.renesas.com/
http://www.renesas.com/

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is subject to
change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest
product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different
information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third
parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license,
express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and
information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by

you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control laws
and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products
or the technology described in this document for any purpose relating to military applications or use by the military, including but
not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or
incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign
laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does
not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by
you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and
"Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated
below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may
not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas
Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the
prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by
you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which
the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of
each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data
books, etc.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti- crime
systems; safety equipment; and medical equipment not specifically designed for life support.

"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages
arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas
Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against
the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a

Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control
and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of
each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations
that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics
assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority- owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Abbreviations and Acronyms

Abbreviation / Acronym

Description

ADC

Analog to Digital Converter

ANSI American National Standards Institute
API Application Programming Interface
ARXML AutosaR eXtensible Mark-up Language
AUTOSAR AUTomotive Open System ARchitecture
BUS BUS Network

BSW Basic SoftWare

CAN Controller Area Network

DEM Diagnostic Event Manager

DET Development Error Tracer

DIO Digital Input Output

ECU Electronic Control Unit

EEPROM Electrically Erasable Programmable Read-Only Memory
GNU GNU is Not Unix

GPT General Purpose Timer

HW HardWare

ICU Input Capture Unit

id/ID Identifier

le] Input Output

ISR Interrupt Service Routine

KB Kilo Bytes

LIN Local Interconnect Network

MCAL Microcontroller Abstraction Layer
MCU MicroController Unit

MHz Mega Hertz

NA Not Applicable

(O] Operating System

PDF Parameter Definition File

PLL Phase Locked Loop

PWM Pulse Width Modulation

RAM Random Access Memory

ROM Read Only Memory

RTE Runtime Environment

SCI Serial Communication Interface

SPI Serial Peripheral Interface

SWS Software Requirements Specification
TAU Timer Array Unit

WDT Watchdog Timer

Definitions

Term

Represented by

PORT channel

Numeric identifier linked to a hardware PORT

PORT Idle State

The idle state represents the output state of the PORT channel after the

call of
PORT Output State Defines the output state for a PORT signal. It
could be: High
Low
PORT period Defines the period of the PORT signal.
PORT Polarity Defines the starting output state of each PORT channel
SI. No. Serial Number

Table of Contents

Chapter 1 INErOdUCTION ..cceeie e 11
1.1 DOCUMENT OVEIVIBW ...ttt 13
Chapter 2 Reference DOCUMENTScoovviiiiiiiiiiceceeee e 15
Chapter 3 Integration and Build Processcccooovviiiiiiiiiiiiiiineees 17
3.1. PORT Driver Component MaKefil@cccuuiiiiiii et 17
Chapter 4 FOrethoughtS ... 19
4.1. LCT T T=T - | PP PO 19
4.2. PreCONditioNS ... 19
4.3. User Mode and SUperviSor MOGE. ..o s 20
4.4, DAtA CONSISTENCY ..ttt e e e e et ettt e e e e e s aa bbbt e e e e e e s e aanbbeeeeeaeeesannbbeeeaaaaeaanns 20
4.5. DeVIALION LISt ..o s 21
Chapter 5 Architecture Detailsccccovviiiiiiiiiiiii e, 23
Chapter 6 Registers DetailS.......cc.coiviviiiiiiii e 25
Chapter 7 Interaction Between The User And PORT Driver

COMPONENT e 29
7.1. Services Provided By PORT Driver Component TO USEercoocuiiiiiieeiiiiiiiiieeee e 29

Chapter 8 PORT Driver Component Header And Source File

37T o] 101 1 e 1 o 31
Chapter 9 Generation Tool Guide.........cccviveiiiii i 33
Chapter 10 Application Programming Interfacecccoeeeevennnn.. 35
10.1. [aY oo Y (=To I Y] o =1 ST PR UUUPPPRTPR 35
10.1.1 =TT = Vo I 1Y/ o 1= SRR 35
10.1.2 (@1 [T 1Y oo 11] =T I8/ =R 35
102, TYPE DEIINITIONS .ottt e e ettt e e e e e s e st bttt e e e e e e e e nnbbeeeaaaeeaann 35
10.2.1 o] o] o1 To [l 1Y/ o 1T TP 35
10.2.2 o] A 1 a1 I8/ 1= TSRO UPTPPPPI 37
10.2.3 POrt_PINDIFECHION TYPE ..ttt ettt e e e e e e e e e e s eabeaeeaeeas 38
10.2.4 POt PINMOGETYPE ...ttt e e e e e e abb e e e e e e e e snbbeaeeaaeas 38
10.3. FUNCLION DEFINITIONS .oiiiiiiicic e 39
Chapter 11 Development And Production Errors........c.ccceeveeennnnnne. 41
11.1. PORT Driver Component DeVelOpPMENt ErTOrS......cccuviiiieeeeeiiieiieee e e e ssseiveee e e e e e s ssnnnneeeeae e e 41
11.2. PORT Driver Component ProdUCtioON EITOIScoociuiiiiiee e cictiiieee e e e s s sieee e e e e s sinrneee e e e e 42
Chapter 12 Memory Organizationcccooeevuiiieeiiii e 43

Chapter 13 P1M Specific Informationcccooevviiiiiiiii i, 45

13.1. Interaction between the User and PORT Driver COMPONENtcooeoiiiiiiiiiiiiiaeeiiiiiieeeeaeene 45
13.1.1. Translation Header File ... 45

13.1.1. Parameter Definition Fileccooiiiii e 45

13.1.2. Services Provided By PORT Driver Component to the User.........ccocccvveveveeeiiinns 46

13.2. SaMPIE APPHCALION ...ttt e e e e e ettt e e e e e e e s abbbeeeaaaeeeaan 46
13.2.1. Sample ApPlICatioN SIUCIUIEcoi i 46

13.2.2. Building Sample APPlICAION.........ccueiiiiie e 49
13.3.2.1. Configuration EXample..........ccoooiiiiiiiiii e 49

13.3.2.2. Debugging the Sample Application............ooocuiiiiiiiiiiiiiiiee e, 49

13.3. Memory and TRroUGRPUL ... e e e s e e e e e e e anns 50
13.3.1. ROM/RAM USBQE ... eiiiiitititee ettt ettt e e e e e e ai bt e e e e e e s abbbe e e e e e e e e snnbeeeeaaens 50

13.3.2. SEACK DEPLN .. 51

13.3.3. Throughput DELAIISeeiiiiiii e e e e e e 51
Chapter 14 Release DetailS.........oovvviiiiiiiiiiiiii e 53

Figure 1-1
Figure 1-2
Figure 5-1
Figure 12-1
Figure 13-1

Table 4-1
Table 4-2
Table 6-1
Table 8-1
Table 10-1
Table 11-1
Table 11-2
Table 13-1
Table 13-2
Table 13-3
Table 13-4

List of Figures

System Overview Of AUTOSAR ArChiteCturecceeeviiieiieeeiee e 11
System Overview Of The PORT Driver In AUTOSAR MCAL Layer......ccccccoeecuvvnnen.. 12
PORT DIIVEr ArChItECIUIE......eeiiiiieii ettt 23
PORT Driver Component Memory Organization.............cccuvurereeevisiivnnereeeesssssneneeeens 43
Overview of PORT Driver Sample Applicationcccccovvvviveiieeiiiiceeee e 46

List of Tables

Supervisor mode and User mode detailS..........cccvvveveieeciiiiciiiieece e 20
PORT Driver DeVIAtION LIStccuuiiiiiiiiieiiiiiie ittt 21
=T 0 1S (= D L] = 1 PSP 25
Description of the PORT Driver Component FileSccuuviiiiiiiiiiiiiieeeee e, 32
FUNCHON DEfiNItIONS ...t e s 39
DET Errors of PORT Driver COMPONENTuutiiiiiiaeeiiiiiiiie e eiiiee e e eveeeeee s 41
DEM Errors of PORT Driver COMPONENTuuiiiiiiieeiiiiiiiee et 42
PDF information fOr PLMcooii i 45
ROM/RAM Details WItNOUE DETccciiiiiieiiiiiie ittt 50
ROM/RAM Details With DETcocvviiiiiiiiie ittt 51
Throughput Details of the APIS........cooi i 51

10

Introduction

Chapter 1

Chapter 1

Figure 1-1

Introduction
The purpose of this document is to describe the information related to
PORT Driver Component for Renesas P1x microcontrollers.

This document shall be used as reference by the users of PORT Driver
Component for P1M Device. The information specific to P1LM Device
channel mapping, ISR handler, compiler, linker, assembler, integration
and build process for application along with the memory consumption and
throughput information are provided.

The users of PORT Driver Component shall use this document as
reference. This document describes the common features of PORT Driver

Component.

This document is intended for the developers of ECU software using
Application Programming Interfaces provided by AUTOSAR. The PORT Driver
Component provides the following services:

* PORT Driver Component initialization

* De-initialization

» Reading the internal state of PORT Output signal

* Setting the PORT Output to Idle state

» Disabling/Enabling the PORT signal edge notification

» Synchronous start between the TAU units

The following diagram shows the system overview of the AUTOSAR

Architecture. The PORT Diriver initializes all the channels that are required
for producing PORT outputs.

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

PORT Driver

Microcontroller

System Overview Of AUTOSAR Architecture

The PORT Driver Component comprises of two sections that is,
embedded software and the configuration tool to achieve scalability and
configurability. The PORT Driver Component Code Generation Tool is a
command line tool that accepts ECU configuration description files as
input and generates C Source and C Header files. The configuration
description is an ARXML file that contains information about the

11

Chapter 1 Introduction

configuration for PORT channels. The tool generates Port_Cfg.h and
Port_PBcfg.c files.

The Figure in the following page depicts the PORT Driver as part of layered
AUTOSAR MCAL Layer:

Microcontroller Drivers Memory Drivers Communication Drivers 1/O Drivers
Y — —— —— N)) —
o |52
211313 ®
s 3|2 h} ul
o) 2 k<) 2 | |m T || 0 2
T Q o] o x j— n m 2 zZ > bl
— 2 c 9 ||| |g|l3 3 Z 2 5 T e
o 2|8 8 || = 18] o < Qo Sllelle
O] o 7 0 @ =1 c = o Y
=1 Q@ = — — > = [®] = < 2 o S o) By
e = S 3 b ol = o ||a s = o 0 -
@ = @ Jal 4l o = S [T e < 3 ollo o
= z = - 12| ||lo <) 2 22218
g 3|22 . h 2l 212152
=) g g = ol
— 117 | b Jr U (BN | S — L (N) B)
< Mi m
® 3 icro- T - I °
2|l g S o >) 5 0SS 2 I} > 2
Z Sow s 2 %) = > o s 3 J
3 3 EN 2 Controller| £ 4 3 o oFg = c s 2 3
~ o =
[

Figure 1-2 System Overview Of The PORT Driver In AUTOSAR MCAL Layer

12

Introduction

Chapter 1

1.1

Document Overview

The document has been segmented for easy reference. The table below
provides user with an overview of the contents of each section:

Section

Contents

Section 1 (Introduction)

This section provides an introduction and overview of PORT Driver
Component.

Section 2 (Reference Documents)

This section lists the documents referred for developing this document.

Section 3 (Integration And Build
Process)

This section explains the folder structure for PORT Driver Component
along with a sample application.

Section 4 (Forethoughts)

This section provides brief information about the PORT Driver
Component, the preconditions that should be known to the user before it
is used, data consistency details and deviation list.

Section 5 (Architecture Details)

This section describes the layered architectural details of the PORT
Driver Component.

Section 6 (Register Details)

This section describes the register details of PORT Driver Component.

Section 7 (Interaction Between
The User And PORT Driver
Component)

This section describes interaction of the PORT Driver Component with
the upper layers.

Section 8 (PORT Driver
Component Header And Source
File Description)

This section provides information about the PORT Driver Component
source files is mentioned. This section also contains the brief note on the
tool generated output file.

Section 9 (Generation Tool Guide)

This section provides information on the PORT Driver Component Code
Generation Tool.

Section 10 (Application
Programming Interface)

This section mentions all the APIs provided by the PORT Driver
Component.

Section 11 (Development And
Production Errors)

This section lists the DET and DEM errors.

Section 12 (Memory
Organization)

This section provides the typical memory organization, which must be
met for proper functioning of component.

Section 13 (P1M Specific
Information)

This section describes the P1M specific information like channel
mapping, the details of the P1M Sample Application and it’s folder
structure and the information about RAM/ROM usage, stack depth
and throughput details.

Section 14 (Release Details)

This section provides release details with version name and base
version.

13

Chapter 1 Introduction

14

Reference Documents Chapter 2
Chapter 2 Reference Documents
Sl. No. Title Version
1. AUTOSAR_SWS_PortDriver.pdf 3.2.0
2. AUTOSAR BUGZILLA (http://www.autosar.org/bugzilla) -
Note: AUTOSAR BUGZILLA is a database, which contains concerns raised
against information present in AUTOSAR Specifications.
3. r01uh0436€j0070_rh850p1x.pdf 0.70
4. AUTOSAR_SWS_CompilerAbstraction.pdf 220
5. AUTOSAR_SWS_MemoryMapping.pdf 1.2.1
6. AUTOSAR_SWS_PlatformTypes.pdf 25.0
7. AUTOSAR_BSW_Makefilelnterface.pdf 0.3

15

http://www.autosar.org/bugzilla

Chapter 2

Reference Documents

16

Integration And Build Process Chapter 3

Chapter 3

Remark

3.1.

3.1.1.

Remark

Note:

Integration and Build Process

In this section the folder structure of the PORT Driver Component is
explained. Description of the Makefiles along with samples is provided in this
section.

The details about the C Source and C Header files that are generated by the
PORT Driver Generation Tool are mentioned in the
“AUTOSAR_PORT_Tool UserManual.pdf”.

PORT Driver Component Makefile

The Makefile provided with the PORT Driver Component consists of the GNU
Make compatible script to build the PORT Driver Component in case of any
change in the configuration. This can be used in the upper level Makefile (of
the application) to link and build the final application executable.

Folder Structure
The files are organized in the following folders:

Trailing slash ‘\" at the end indicates a folder

X1X\common_platform\modules\port\src
\Port.c
\Port_ Ram.c
\Port_Version.c

X1X\common_platform\modules\port\include
\Port.h
\Port_PBTypes.h
\Port_Ram.h
\Port_Version.h
\Port_Debug.h
\Port_Types.h

X1X\P1x\modules\port\sample_application\<SubVariant>\make\<Compiler>
\App_PORT_P1M_Sample.mak

X1X\P1x\modules\port\sample_application\<SubVariant>\obj\sComplier>
X1X\common_platform\modules\port\generator\Port_X1x.exe

X1X\P1x\common_family\generator
\Sample_Application_P1x.trxml
\P1x_translation.h

X1X\P1x\modules\port\user_manual
(User manuals will be available in this folder)

X1X\P1x\modules\port\generator
\R403_PORT_P1x_BSWMDT.arxml

1. <Complier> can be ghs.
2. <AUTOSAR_version> should be 4.0.3.
3. <SubVariant> can be P1M.

17

Chapter 3

Integration And Build Process

18

Forethoughts Chapter 4
Chapter 4 Forethoughts
4.1. General

Following information will aid the user to use the PORT Driver Component

software efficiently:

* The PORT Driver Component does not enable or disable the ECU or
Microcontroller power supply. The upper layer should handle this
operation.

e Start-up code is not implemented by the PORT Driver Component.

e PORT Driver Component does not implement any callback
notification functions.

e PORT Driver Component does not implement any scheduled functions.

e The PORT Driver Component is restricted to Post Build only.

* The authorization of the user for calling the software triggering of a
hardware reset is not checked in the PORT Driver Component. This will
be the responsibility of the upper layer.

* The PORT Driver Component supports setting of Analog and Digital
Noise Elimination. To figure out the different port filter arrangements the
device User Manual should be taken as reference. If no configuration of a
certain port filter is done within this Port Module, the device specific
default settings will take effect on this filter.

* The value of unused pins in Port registers is undefined.

* All development errors will be reported to DET by using the
API Det_ReportError provided by DET.

» All production errors will be reported to DEM by using the
API Dem_ReportErrorStatus provided by DEM.

» The PORT Driver does not have the API support to read the status of
Port pins or Port registers. Hence PORT Driver will not support ‘Read
back’ feature.

* The file Interrupt_VectorTable.c provided is just a Demo and not all
interrupts will be mapped in this file. So the user has to update the
Interrupt_VectorTable.c as per his configuration.

4.2. Preconditions

Following preconditions have to be adhered by the user, for proper
functioning of the PORT Driver Component:

The Port_PBcfg.c and Port_Cfg.h files generated by the PORT Driver
Component Code Generation Tool must be compiled and linked along with
PORT Driver Component source files.

The application has to be rebuilt, if there is any change in the Port_Cfg.h
file generated by the PORT Driver Component Generation Tool.

File Port_PBcfg.c generated for single configuration set or multiple
configuration sets using PORT Driver Component Code Generation Tool
should be compiled and linked independently.

Symbolic names for all Port Pins are generated in Port_Cfg.h file which
can be used as parameters for passing to PORT Driver Component APIs.
The PORT Driver Component needs to be initialized for all Port Pins
before doing any operation on Port Pins. The Port_Init () API shall also be
called after a reset in order to reconfigure the Port Pins of the
microcontroller. If PORT Driver Component is not initialized properly, the
behavior of Port Pins may be undetermined.

The user should ensure that PORT Driver Component API requests are
invoked with correct input arguments.

The other modules depending on PORT Driver Component should ensure
that the PORT Driver Component initialization is successful before doing

19

Chapter 4

Forethoughts

20

any operation on Port Pins.

» Input parameters are validated only when the static configuration
parameter PORT_DEV_ERROR_DETECT is enabled. Application should
ensure that the right parameters are passed while invoking the APIs when
PORT_DEV_ERROR_DETECT is disabled.

e Values for production code Event Id’s should be assigned externally by the
configuration of the DEM.

* A mismatch in the version numbers of header and the source files will
result in a compilation error. User should ensure that the correct versions
of the header and the source files are used.

* The PORT Driver Component APIs, except Port_GetVersioninfo API,
which are intended to operate on Port Pins shall be called only after PORT
Driver Component is initialized by invoking Port_Init() API. Otherwise Port
Pin functions will exhibit undefined behavior.

« All Port Pins and their functions should be configured by the Port
configuration tool. It is the User/Integrator responsibility to ensure that the
same Port/Port Pin is not being accessed/configured in parallel by different
entities in the same system.

4.3. User Mode and Supervisor Mode
The below table specifies the APIs which can run in user mode, supervisor
mode or both modes:
Table 4-1 Supervisor mode and User mode details

SI.No| API Name User Mode Supervisor mode |Known limitation in
User mode

1 |Port_Init X X -

2 |Port_SetPinDirection X X -

3 |Port_RefreshPortDirection X X -

4 |Port_SetPinMode X X -

5 |Port_SetToDioMode X X -

6 |Port_SetToAlternateMode X X -

4.4,

Data Consistency

To support the re-entrance and interrupt services, the AUTOSAR PORT
component will ensure the data consistency while accessing its own RAM
storage or hardware registers. The PORT component will use
SchM_Enter_Port_<Exclusive Area> and SchM_EXxit_Port_<Exclusive Area>
functions. The SchM_Enter_Port_<Exclusive Area> function is called before
the data needs to be protected and SchM_EXxit_Port_<Exclusive
Area>function is called after the data is accessed.

The following exclusive areas along with scheduler services are used to
provide data integrity for shared resources:

» SET_PIN_MODE_PROTECTION

The functions SchM_Enter_Port_<Exclusive Area> and
SchM_Exit_Port_<Exclusive Area> can be disabled by disabling the
configuration parameter ‘PortCriticalSectionProtection’.

Forethoughts

Chapter 4

45. Deviation List

Table 4-2 PORT Driver Deviation List

Sl. No.

Description

AUTOSAR
Bugzilla

The Port Pin specific containers (PortPin0, PortPinl, PortPin2 and so on ...) are
added as sub containers of PortGroup<n> containers, having the parameters
‘PortPinDirection’, ‘PortPinDirectionChangeable’, ‘PortPinLevelValue’ and
‘PortPinInitialMode’ are added. AUTOSAR specified container ‘PortPin’ and all
its parameters are considered as unused.

PortPinMode configuration parameter is not used for implementation as all
possible modes of a pin can be used in the Port_SetPinMode function.

The Port_GetVersioninfo API is implemented as macro without DET error
PORT_E_PARAM_POINTER

[ecuc_sws_2108] requirement is not applicable to port module since
implementation of PORT module is vendor specific.

Digital Noise Filter to calculate time delay for following scenarios is not
implemented in PORT driver.

a. When digital filter output signal is input for alternative function

b. When an event output signal of the digital filter is used as an interrupt

21

Chapter 4

Forethoughts

22

Architecture Details

Chapter 5

Chapter 5

Architecture Details

The PORT Driver Component accesses the microcontroller Port Pins that are
located in the On-Chip hardware. The basic architecture of the PORT Driver
Component is illustrated below:

Initialization

Direction Refreshing Direction Switching

Runtime Mode Change

Figure 5-1 PORT Driver Architecture

The PORT Driver Component consists of the following sub modules based on
the functionality:

* Port Initialization.

e Port Direction Refreshing.

« Port Pin Direction Switching.
e Port Pin Mode Change.

Port Initialization

This sub module provides the Port initialization functionality by providing the
Port_Init() API. This API should be invoked before the usage of any other APIs
of PORT Driver Component. Port Initialization includes initializing Port Pin
mode, Port Pin direction, Port Pin Level value, Port Pin driven value (Normal /
Open Drain), Activation of internal pull-ups and Port Filter configuration.

Port Direction Refreshing

This sub module provides the Port Direction Refreshing functionality by
providing the Port_RefreshPortDirection() API. In this functionality the PORT
Driver Component refreshes the direction of all configured Port Pins except
those Port Pins that are configured as ‘Port Pin Direction Changeable during
runtime’.

In this functionality only Direction of Port Pins is refreshed.

Port Pin Direction Switching

This sub module provides the Port Direction switching functionality at run time
by providing the Port_SetPinDirection() API. In this functionality the PORT
driver Component allows the user to change the direction of Port Pins during
runtime.

Port Pin Mode changing

This sub module provides the Port Mode change functionality at run time by

providing the Port_SetPinMode() API. In this functionality the PORT driver
Component allows the user to change the mode of Port Pins during runtime.

This sub module provides the Port Mode change functionality at run time by
23

Chapter 5

Architecture Details

24

providing the Port_SetToDioMode() API. In this functionality the PORT
driver Component allows the user to change the mode of Port Pin to DIO
mode during runtime.

This sub module provides the Port Mode change functionality at run time by
providing the Port_SetToAlternateMode() API. In this functionality the PORT
driver Component allows the user to change the mode of Port Pin to alternate
mode during runtime.

Registers Details

Chapter 6

Chapter 6

Registers Details

This section describes the register details of PORT Driver Component.

Table 6-1 Register Details
Register
API Name '271%322 Registers Config Parameter Macro/Variable

bits

Port_Init)

Port_SetPinDirection 32 bit PSRn PortPinLevelValue usChangeableConfi

gVv

32 bit PMSRn - u.sOrMask
16 bit PFCEn - usOrMask
16 bit PFCn - usOrMask
16 bit PFCAEN - usOrMask
32 bit PMCSRn - usOrMask
16 bit PINVnN PortOutputLevellnversi usPortinversionVal

Port_RefreshPortDirect - - > - -

ion

Port_SetPinMode 32 bit PSRN PortPinLevelValue usInitModeRegVal
32 bit PMSRn - usOrMask
16 bit PFCEN - usOrMask
16 bit PFCn - usOrMask
16 bit PFCAEN - usOrMask
32 bit PMCSRn - usOrMask
16 bit PIPCn - usOrMask

Port_SearchMode - - - -

ChangeablePin

Port_InitConfig 32 bit PSRN PortPinLevelValue uslnitModeRegVal
16 bit PISn PortinputSelection uslnitModeRegVal
16 bit PIBCn PortinputBufferControl uslnitModeRegVal
16 bit PIPCn PortlpControl usInitModeRegVal
16 bit PUn PullUpOption uslnitModeRegVal
16 bit PDn PullDownOption uslInitModeRegVal
16 bit PBDCn PortBiDirectionControl uslnitModeRegVal
32 hit PODCn PortOpenDrainControl uslnitModeRegVal
32 bit PDSCn PortDriveStrengthCont uslnitModeRegVal
16 bit PFCEn PortPinInitialMode usinitModeRegVal
16 bit PFCn PortPinInitialMode uslnitModeRegVal
16 bit PFCAEN PortPinInitialMode usinitModeRegVal
16 bit PINVN EﬁrtO“tp”tLe"e””"erSi usnitModeRegVal
16 bit PODCEnN Eg;tzaor]r)s?gr?rainControl uslnitModeRegVal

25

Chapter 6

Registers Details

26

Register
Access . . .
APl Name 8/16/32 Registers Config Parameter Macro/Variable
bits
16 bit PUCCH PortUnlimitedCurrentC| -\ iiModeRegVal
ontrol
32 bit PMSRn PortPinDirection uslnitModeRegVal
32 bit PMCSRn PortPinInitialMode uslnitModeRegVal
8 bit PPROTSNn - PORT_ONE
. PORT_WRITE_ER
32 hit PPCMDn - RO R CLEAR VAL
32 bit PWSN i PORT_IOHOLD_S
ET
32 bit JPSRn PortPinLevelValue usInitModeRegVal
8 hit JPISn PortinputSelection usInitModeRegVal
8 bit JPIBCn PortinputBufferControl uslnitModeRegVal
16 bit JPIPCn PortlpControl usInitModeRegVal
8 bit JPUn PullUpOption uslnitModeRegVal
8 hit JPDn PullDownOption usInitModeRegVal
8 bit JPBDCn PortBiDirectionControl usInitModeRegVal
32 hit JPODCn PortOpenDrainControl uslnitModeRegVal
32 hit JPDSCn i)(lthDrlveStrengthCont uslnitModeRegVal
8 bit JPFCEnN PortPinInitialMode uslnitModeRegVal
8 hit JPFCn PortPinInitialMode usInitModeRegVal
32 bit JPMCSRnN PortPinInitialMode usInitModeRegVal
32 bit JPMSRn PortPinDirection uslnitModeRegVal
32 hit JPPROTS - PORT_ONE
. PortOpenDrainControl .
16 bit JPODCERN Expansion uslnitModeRegVal
16 bit JPUCCn PortUnlimitedCurrentC usinitModeRegVal
ontrol
Port_RefreshPortintern i
D 32 bit PMSRN _ ulMaskAndConfigV
a alue
32 bit IJPMSRN) ulMaskAndConfigV
alue
Port_GetVersioninfo)) _ Port_GetVersioninf
0
Port_SetToDioMode 32 bit PMCSRn - usOrMask
Port_SetToAlternateMo .
de 32 bit PMCSRn - usOrMask
Port_SetToDioOrAltMo
de))))
Port_SearchDirChange
ablePin . - -)
Port_FilterConfig PortSameLevelSamples ucDNFACTL
PortDigitalFilterEnable
8 bit DNFANCTL

PortSamplingClockFre
Quency

Registers Details Chapter 6
Register
Access . . .
APIl Name 8/16/32 Registers Config Parameter Macro/Variable
bits
PortAnalogFilterBypass
8 bit FCLANCTL | pPortEdgeOrLevelControl UcFCLACTL
16 bit DNFANEN Porltr?p'g'tta":"terE”ab'e usDNFAEN
32 bit DNFcksnc | PortClockSource UIDNFCKS
PortDigitalFilterEnablel
8 bit DNFPO2NED nput ucDNFEDC
Cm PortEdgeDetectControl

27

Chapter 6

Registers Details

28

Interaction Between The User And PORT Driver Component Chapter 7

Chapter 7 Interaction Between The User And PORT
Driver Component

The details of the services supported by the PORT Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

7.1. Services Provided By PORT Driver Component To
User

The PORT Driver provides following functionalities to the upper layers:
To initialize the PORT channels through channel configuration.

To De-initialize the PORT channels.

To set the PORT channel output to its configured idle state.

To read the output state of a PORT channel.

To read the version information of the PORT module.

To support the diagnostic functionality for PORT channel.

29

Chapter 7 Interaction Between The User And PORT Driver Component

30

PORT Driver Component Header And Source File Description Chapter 8

Chapter 8

PORT Driver Component Header And
Source File Description

This section explains the PORT Driver Component’s C Source and C Header
files. These files have to be included in the project application while
integrating with other modules.

The C header file generated by PORT Driver Generation Tool:
» Port_Cfg.h

The C source file generated by PORT Driver Generation Tool:
e Port_PBcfg.c

The PORT Driver Component C header files:
Port.h

Port_ PBTypes.h

Port Ram.h

Port_Version.h

Port_Debug.h

Port_Types.h

The PORT Driver Component source files:
* Port.c

 Port_Ram.c

e Port_Version.c

The port specific C header files:
e Compiler.h

e Compiler_Cfg.h

e MemMap.h

e Platform_Types.h

31

Chapter 8

PORT Driver Component Header And Source File Description

32

The description of the PORT Driver Component files is provided in the table below:

Table 8-1 Description of the PORT Driver Component Files

File

Details

Port_Cfg.h

This file contains various PORT Driver Pre-compile time parameters, macro
definitions for the ISRs, channel notifications used by PORT Driver, PORT channel
handles.

Port_PBcfg.c

This file contains the post-build configuration data. The structures related to PORT
initialization, PORT Timer channel configuration and the timer related structures are
also provided in this file.

Port.h

This file provides extern declarations for all the PORT Driver Component APIs. This
file provides service Ids of APIs, DET Error codes and type definitions for Port
initialization structure. This header file shall be included in other modules to use the
features of PORT Driver Component.

Port_PBTypes.h

This file contains the data structures related to Port initialization, Port Refresh,
Direction changeable Pins at run time and Mode Changeable at run time.

Port_Types.h

This file provides data structure and type definitions for initialization of MCU Driver.

Port_Debug.h

This file is used for version check.

Port_Ram.h

This file contains the extern declarations for the global variables defined in
Port_Ram.c file.

Port_Version.h

This file contains the macros of AUTOSAR version numbers of all modules that are
interfaced to PORT Driver.

Port.c

This file contains the implementation of all APIs.

Port_Ram.c

This file contains the global variables used by PORT Driver Component.

Port_Version.c

This file contains the code for checking version of all modules that are interfaced to
PORT Driver.

Compiler.h

Provides compiler specific (non-ANSI) keywords. All mappings of keywords, which
are not standardized, and/or compiler specific are placed and organized in this
compiler specific header.

Compiler_Cfg.h

This file contains the memory and pointer classes.

MemMap.h

This file allows to map variables, constants and code of modules to individual
memory sections. Memory mapping can be modified as per ECU specific needs.

Platform_Types.h

This file provides provision for defining platform and compiler dependent types.

Generation Tool Guide

Chapter 9

Chapter 9

Generation Tool Guide

For more information on the PORT Driver Component Generation Tool,
please refer “AUTOSAR_PORT_Tool_UserManual.pdf”.

33

Chapter 9

Generation Tool Guide

34

Application Programming Interface Chapter 10

Chapter 10 Application Programming Interface

This section explains the Data types and APIs provided by the PORT Driver
Component to the Upper layers.

10.1. Imported Types

This section explains the Data types imported by the PORT Driver
Component and lists its dependency on other modules.

10.1.1 Standard Types

In this section all types included from the Std_Types.h are listed:
Std_VersioninfoType

10.1.2 Other Module Types

In this chapter all types included from the Dem_types.h are listed:
Dem_EventldType

10.2. Type Definitions

This section explains the type definitions of PORT Driver Component
according to AUTOSAR Specification.

10.2.1 Port_ConfigType

Name:

Port_ConfigType

Type:

struct

Element:

Type Name Explanation

uint32 ulStartOfDbToc Database start
value.

Port_Regs pPortNumRegs Pointer to the
address of
Numeric port
registers
configuration.

Port_FuncCtrIRegs pPortNumFuncCtriIRegs Pointer to the
address of the
Numeric function
control registers
configuration.

Port_ PMSRRegs pPortNumPMSRRegs Pointer to the
address of the
Numeric PMSR
registers
configuration.

Port_Regs pPortAlphaRegs Pointer to the
address of the
Alphabetic port
registers
configuration.

35

Chapter 10

Application Programming Interface

Name:

Port_ConfigType

Type:

struct

Port_FuncCtrIRegs

pPortAlphaFuncCtrlIRegs

Pointer to the
address of
Alphabetic
function control
registers
configuration.

Port_ PMSRRegs

pPortAlphaPMSRRegs

Pointer to the
address of the
Alphabetic
PMSR registers
configuration.

Port_Regs

pPortJRegs

Pointer to the
address of JTAG
port registers
configuration

Port_FuncCtrIRegs

pPortJFuncCtriIRegs

Pointer to the
address of JTAG
function control
registers
configuration

Port_ PMSRRegs

pPortJPMSRRegs

Pointer to the
address of JTAG
PMSR registers
configuration.

Port_PinsDirChangeable

pPinDirChangeable

Pointer to the
address of
runtime direction
changeable pins
structure.

Port_PinModeChangeableGroups

pPinModeChangeableGrou
ps

Pointer to the
address of
runtime mode
changeable pin
group details
structure.

Port_PinDioAltChangeableDetails

pPinDioAltModeDetails

Pointer to the
address of run
time mode
changeable pins
structure.

Port_PinModeChangeableDetails

pPinModeChangeableDetai
Is

Pointer to the
address of run
time mode
changeable pins
structure.

Port_DNFARegs

pPortDNFARegs

Pointer to the
DNFA registers
structure.

Port_FCLARegs

pPortFCLARegs

Pointer to the
FCLA registers
structure.

Port_EDCRegs

pPortEDCRegs

Pointer to the
EDC registers
structure

36

Application Programming Interface Chapter 10
Name: Port_ConfigType
Type: struct
Port_DNFCKSRegs pPortDNFCKSRegs Pointer to the
DNFCKS
registers
structure
uint8 ucNoOfPinsDirChangeable | Total number of
Pins configured
for Direction
Changeable at
run time
uint8 ucNoOfPinsModeChangea | Total number of
ble Pins configured
for mode
Changeable at
run time
uint8 ucNoOfPinsDioAltModeCha | Total number of
ngeable Pins configured
for mode
Changeable at
run time
uint8 ucNoOfDNFARegs The total number
of DNFA noise
elimination
registers
uint8 ucNoOfEDCRegs The total number
of EDC registers
uint8 ucNoOfFCLARegs The total number
of FCLA noise
elimination
registers
uint8 ucNoOfNumRestoredRegs | The total number
of Numeric
Restored
registers
uint8 ucNoOfAlphaRestoredRegs | The total number
of Alphabetic
Restored
registers
uint8 ucNoOfAnalogRestoredRe | The total number
gs of Analog
Restored
registers
This is the type of the external data structure containing the initialization data for the
Description: PORT Driver Component.
ption: The user shall use the symbolic names defined in the PORT Driver Configuration Tool.
The configuration of each Port Pin is Microcontroller specific.
10.2.2 Port_PinType
Name: Port_PinType
Type: uint1l6
Range: 0 to 65535
S The user shall use the symbolic names defined in the PORT Driver Configuration Tool.
Description: ' . L o
The configuration of each Port Pin is Microcontroller specific.

37

Chapter 10 Application Programming Interface
10.2.3 Port_PinDirection Type
Name: Port_PinDirectionlType
Type: Enumeration
Range: PORT_PIN_OUT Output Direction
PORT_PIN_IN Input Direction
Description: These are the possible directions; a port pin can have for both input and output.
10.2.4 Port_PinModeType
Name: Port_PinModeType
Type: uint8
REMEE: PIPC=0
0 PORT_DIO_OUT (Port_PinModeType)0x00
1 PORT_DIO_IN (Port_PinModeType)0x01
2 APP_ALT1_OUT (Port_PinModeType)0x02
3 APP_ALT1_IN (Port_PinModeType)0x03
4 APP_ALT2_OUT (Port_PinModeType)0x04
5 APP_ALT2_IN (Port_PinModeType)0x05
6 APP_ALT3 _OUT (Port_PinModeType)0x06
7 APP_ALT3_IN (Port_PinModeType)0x07
8 APP_ALT4 OUT (Port_PinModeType)0x08
9 APP_ALT4_IN (Port_PinModeType)0x09
A APP_ALT5_OUT (Port_PinModeType)Ox0A
B APP_ALT5_IN (Port_PinModeType)0x0B
C APP_ALT6_OUT (Port_PinModeType)0Ox0C
D APP_ALT6_IN (Port_PinModeType)Ox0D
E APP_ALT7_OUT (Port_PinModeType)Ox0E
F APP_ALT7_IN (Port_PinModeType)Ox0F
RENIEES PIPC=1
0 [APP_ALT1_OUT_SET_PIPC |(Port_PinModeType)0x82
1 APP_ALT1_IN_SET_PIPC |(Port_PinModeType)0x83
2 APP_ALT2_OUT_SET_PIPC |(Port_PinModeType)0x84
3 APP_ALT2_IN_SET_PIPC (Port_PinModeType)0x85
4 APP_ALT3_OUT_SET_PIPC [(Port_PinModeType)0x86
5 APP_ALT3_IN_SET_PIPC (Port_PinModeType)0x87
6 APP_ALT4 OUT_SET_PIPC |(Port_PinModeType)0x88
7 APP_ALT4 IN_SET_PIPC (Port_PinModeType)0x89
8 APP_ALT5_OUT_SET_PIPC |(Port_PinModeType)OXx8A
9 APP_ALT5_IN_SET PIPC |(Port_PinModeType)0x8B
A APP_ALT6_OUT_SET_PIPC |(Port_PinModeType)0x8C
B APP_ALT6_IN_SET PIPC |(Port_PinModeType)0x8D
c APP_ALT7_OUT _SET_PIPC |[(Port_PinModeType)Ox8E

38

Application Programming Interface

Chapter 10

D APP_ALT7_IN_SET_PIPC (Port_PinModeType)Ox8F

Description:

These are the possible modes; a port pin can have for both input and
output.

10.3. Function Definitions

Table 10-1 Function Definitions

SI.No API's API’s specific

Port_Init -

Port_SetPInDirection -

Port_RefreshPortDirection -

Port_SetPinMode -

Port_GetVersioninfo -

Port_SetToDioMode -

Port_SetToAlternateMode -

Port_SetPinDefaultDirection -

Ol o| N[l | W] DN|F

Port_SetPinDefaultMode -

39

Chapter 10

Application Programming Interface

40

Development And Production Errors

Chapter 11

Chapter 11

Development And Production Errors

In this section the development and production errors that are reported by the
PORT Driver Component are tabulated. The development errors will be
reported only when the pre compiler option PORT_DEV_ERROR_DETECT is
enabled in the configuration.

11.1. PORT Driver Component Development Errors

The following table contains the DET errors that are reported by PORT Driver
Component. These errors are reported to Development Error Tracer Module
when the PORT Driver Component APIs are invoked with wrong input
parameters or without initialization of the driver.
Table 11-1 DET Errors of PORT Driver Component

SI. No. 1

Error Code PORT_E_PARAM_CONFIG

Related API(s) Port_Init

Source of Error APl is invoked with NULL Pointer

SI. No. 2

Error Code PORT_E_INVALID_DATABASE

Related API(s) Port_Init

Source of Error

Invalid database is found

Sl. No.

3

Error Code

PORT_E_UNINIT

Related API(s)

Port_RefreshPortDirection, Port_SetPinDirection, Port_SetPinMode,
Port_SetToDioMode, Port_SetToAlternateMode

Source of Error

APIs are invoked without the initialization of the PORT Driver Component.

Sl. No.

4

Error Code

PORT_E_PARAM_PIN

Related API(s)

Port_SetPinMode, Port_SetPinDirection, Port_SetToDioMode,
Port_SetToAlternateMode

Source of Error

API is invoked with invalid Pin

Sl. No.

5

Error Code

PORT_E_PARAM_INVALID_MODE

Related API(s)

Port_SetPinMode

Source of Error

APl is invoked with invalid mode

Sl. No.

6

Error Code

PORT_E_DIRECTION_UNCHANGEABLE

Related API(s)

Port_SetPinDirection

Source of Error

API is invoked with Pin which is not configured as ‘Direction Changeable during run
time’.

Sl. No.

7

Error Code

PORT_E_MODE_UNCHANGEABLE

Related API(s)

Port_SetPinMode, Port_SetToDioMode, Port_SetToAlternateMode

Source of Error

API is invoked with Pin which is not configured as ‘Mode Changeable during run time’.

41

Development And Production Errors

Chapter 11
11.2. PORT Driver Component Production Errors
The following table contains the DEM errors that are reported by PORT
software component.
Table 11-2 DEM Errors of PORT Driver Component
Sl. No. 1
Error Code PORT_E_WRITE_TIMEOUT_FAILURE

Related API(s)

Port_Init ,Port_SetPinDirection

Source of Error

When writing to a write-protected register fails.

42

Memory Organization Chapter 12

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be met
for proper functioning of PORT Driver Component software.

. PORT Driver Component -
RAM Section
ROM Section Library / Object Files

_______________ e N

! 1
! 1
1 g . . 1
1 |Port Driver code related to API's are placed in (Sl_obal fRAy of unspecific size required for Port)
: this memory. river functioning. :
! X1 X
! Segment Name: Y1,
! PCe)gRT PUBLIC_CODE_ROM Segment Name: 1
: - - - l NOINIT_RAM_UNSPECIFIED ¢ !
! 1
! 1
! 1
\ ! L 1
! [Port Driver code related to Internal Functions Global 1-bit RAM to be initialized by start-up T 1
\ are placed in this memory code. :
\ X2 Segment Name: Y2,
: Segment Name: RAM_1BIT .
. PORT_PRIVATE_CODE_ROM * :
1

! :
' 1
1

The const section in the file Port_PBcfg.c is T
placed in this memory.

Segment Name: X3
PORT_CFG_DBTOC_UNSPECIFIED

The const section in the file Port_PBcfg.c is
placed in this memory.

X4
Segment Name:
PORT_CFG_DATA_UNSPECIFIED l
Figure 12-1 PORT Driver Component Memory Organization

43

Chapter 12

Memory Organization

44

ROM Section (X1, X2, X3 and X4).

PORT_PUBLIC_CODE_ROM (X1): API(s) of PORT Driver Component,
which can be located in code memory.

PORT_PRIVATE_CODE_ROM (X2): Internal functions of PORT Driver
Component code that can be located in code memory.

PORT_CFG_DBTOC_UNSPECIFIED (X3): This section consists of PORT
Driver Component database table of contents generated by the PORT Driver
Component Generation Tool. This can be located in code memory.

PORT_CFG_DATA_UNSPECIFIED (X4): This section consists of PORT
Driver Component constant configuration structures. This can be located in
code memory.

RAM Section (Y1 and Y2).

NOINIT_RAM_UNSPECIFIED (Y1): This section consists of the global RAM
variables that are used internally by PORT Driver Component. This can be
located in data memory.

RAM_1BIT (Y2): This section consists of the global RAM variables of 1-bit
size that are used internally by PORT Driver Component. This can be located
in data memory.

P1M Specific Information

Chapter 13

Chapter 13 P1M Specific Information

P1M supports following devices:

R7F701304
R7F701305
R7F701310
R7F701311
R7F701312
R7F701313
R7F701314
R7F701315
R7F701318
R7F701319
R7F701320
R7F701321
R7F701322
R7F701323

13.1. Interaction between the User and PORT Driver
Component

The details of the services supported by the PORT Driver Component to the
upper layers users and the mapping of the channels to the hardware units is

provided in the following sections:

13.1.1. Translation Header File

The translation header file supports following devices:

R7F701304
R7F701305
R7F701310
R7F701311
R7F701312
R7F701313
R7F701314
R7F701315
R7F701318
R7F701319
R7F701320
R7F701321
R7F701322
R7F701323
13.1.1. Parameter Definition File

Parameter definition files support information for P1M

Table 13-1 PDF information for P1M

PDF Files Devices Supported
R403_PORT_P1M_04 05 701304, 701305
R403_PORT_P1M_10_11_14 15 701310, 701311, 701314, 701315

45

Chapter 13 P1M Specific Information

R403_PORT_P1M_12_13 701312, 701313
R403_PORT_P1M_18 19 22 23 701318, 701319, 701322, 701323
R403_PORT_P1M_20_21 701320, 701321

13.1.2. Services Provided By PORT Driver Component to the User

The PORT Driver Component provides the following functionalities to the
upper layers or users:

e Toinitialize the Port and set according Port filter functions.
e To refresh the direction of Port.

e To switch the Port pin direction at run time.

e To change the mode of a Port pin at run time.

e Toread the PORT Driver Component version information.

13.2. Sample Application
13.2.1. Sample Application Structure

The Sample Application is provided as reference to the user to understand
the method in which the PORT APIs can be invoked from the application.

Generic
AUTOSAR TYPES COMPILER RH850 TYPES
Devices
P1xPORT STUB STUB STUB
Sample DET DEM SchMm
application

Figure 13-1 Overview of PORT Driver Sample Application

The Sample Application of the P1M is available in the path
X1X\P1x\modules\port\sample_application

The Sample Application consists of the following folder structure:

46

P1M Specific Information Chapter 13

X1X\P1x\modules\port\definition\<AUTOSAR_version>\<SubVariant>\
R403_PORT_P1M_04_05.arxml
R403_PORT_P1M_10_11_14_15.arxml
R403_PORT_P1M_12_13.arxml
R403_PORT_P1M_18_19_22_23.arxml
R403_PORT_P1M_20_21.arxml

X1X\P1x\modules\port\sample_application\<SubVariant>\
<AUTOSAR_version>\
\src\Port_PBcfg.c
\include\Port_Cfg.h

\config\App_PORT_P1M_701304_Sample.arxml|
\config\App_PORT_P1M_701304_Sample.html
\config\App_PORT_P1M_701304_Sample.one

\config\App_PORT_P1M_701305_Sample.arxml
\config\App_PORT_P1M_701305_Sample.html
\config\App_PORT_P1M_701305_Sample.one

\config\App_PORT_P1M_701310_Sample.arxml
\config\App_PORT_P1M_701310_Sample.html
\config\App_PORT_P1M_701310_Sample.one

\config\App_PORT_P1M_701311 Sample.arxml
\config\App_PORT_P1M_701311_ Sample.html
\config\App_PORT_P1M_701311 Sample.one

\config\App_PORT_P1M_701312_Sample.arxml
\config\App_PORT_P1M_701312_Sample.html
\config\App_PORT_P1M 701312 _Sample.one

\config\App_PORT_P1M_ 701313 Sample.arxml
\config\App_PORT_P1M_ 701313 Sample.html
\config\App_PORT_P1M_ 701313 Sample.one

\config\App_PORT_P1M_701314_Sample.arxml
\config\App_PORT_P1M_701314_Sample.html
\config\App_PORT_P1M 701314 Sample.one

\config\App_PORT_P1M_701315_ Sample.arxml
\config\App_PORT_P1M_701315_Sample.html
\config\App_PORT_P1M_701315 Sample.one

\config\App_PORT_P1M_701318_ Sample.arxml
\config\App_PORT_P1M_701318 Sample.html
\config\App_PORT_P1M_701318 Sample.one

\config\App_PORT_P1M_701319_ Sample.arxml
\config\App_PORT_P1M_701319_ Sample.html
\config\App_PORT_P1M_701319_ Sample.one

\config\App_PORT_P1M_701320_Sample.arxml
\config\App_PORT_P1M_701320_Sample.html
\config\App_PORT_P1M_701320_Sample.one

\config\App_PORT_P1M_701321 Sample.arxml
\config\App_PORT_P1M_701321 Sample.html
\config\App_PORT_P1M_701321_Sample.one

47

Chapter 13

P1M Specific Information

48

\config\App_PORT_P1M_701322_Sample.arxml
\config\App_PORT_P1M_701322_Sample.html
\config\App_PORT_P1M_701322_Sample.one

\config\App_PORT_P1M_701323_Sample.arxml
\config\App_PORT_P1M_701323_Sample.html
\config\App_PORT_P1M_ 701323 Sample.one

In the Sample Application all the PORT APIs are invoked in the following
sequence:

Port_GetVersioninfo: The APl Port_GetVersioninfo is invoked to get the
version of the PORT Driver module with a variable of Std_VersionIinfoType
after the call of this API the past parameter will get updated with the PORT
Driver version details.

Port_RefreshPortDirection: The API refreshes the direction of all ports to
the configured direction. It excludes those port pins from refreshing that
are configured as ‘pin direction changeable during runtime’ by invoking
internal API Port_RefreshPortinternal().

Port_SetPinMode: This service sets the Port Pin mode during runtime.

Port_SetToDioMode: This function used to set the mode of a port pin to
DIO mode during runtime.

Port_SearchModeChangeablePin: This function searches the given PIN Id
in the existing list of PIN IDs which are mode changeable in run time
through Binary Search algorithm.

Port_Init: The API Port_Init is invoked with a valid database address for the
proper initialization of the PORT Driver, all the PORT Driver control
registers and RAM variables will get initialized after this API is called.

The API Port_GetOutputState is invoked to get the channel output state
and provides the service to read the internal state of a PORT output signal
of a channel.

Port_InitConfig: This function initializes all ports and port pins with the
configuration set pointed by ConfigPtr.

Port_FilterConfig: This Function used to initialize all the registers of filter
configuration.

Port_SearchDirChangeablePin: This function searches the given PIN Id in
the existing list of PIN Id’s which are direction changeable in run time
through Binary Search algorithm.

Port_RefreshPortinternal: The API refreshes the direction of all ports to the
configured direction. It excludes those port pins from refreshing that are
configured as ‘pin direction changeable during runtime.

P1M Specific Information Chapter 13

13.2.2.

13.3.2.1.

13.3.2.2.

Remark

Building Sample Application

Configuration Example

This section contains the typical configuration which is used for measuring
RAM/ROM consumption, stack depth and throughput details.

Configuration Details: App_PORT_P1M_701310_Sample.html

Debugging the Sample Application

GNU Make utility version 3.81 or above must be installed and available in the
path as defined by the environment user variable “GNUMAKE” to complete
the build process using the delivered sample files.

Open a Command window and change the current working directory to “make”
directory present as mentioned in below path:

“X1X\P1x\common_family\make\<Compiler>"
Now execute the batch file SampleApp.bat with following parameters:
SampleApp.bat Port 4.0.3 <Device_name>

* After this, the tool output files will be generated with the configuration
as mentioned in App_PORT_P1M_701310_Sample.html file available
in the path:

“X1X\P1x\modules\port\sample_application\<SubVariant>\<AUTOSAR_ve
rsion>\config\App_PORT_P1M_701310_Sample.html”

e After this, all the object files, map file and the executable file
App_PORT_P1M_Sample.out will be available in the output folder:
(“X1X\P1x\modules\port\sample_application\<SubVariant>
\obj\<Compiler>")

e The executable can be loaded into the debugger and the sample application
can be executed.

» The initialization function initializes all ports and port pins with the
configuration set pointed by ConfigPtr by invoking internal API
Port_InitConfig(). This function should be called first in order to initialize the
port for use otherwise no operation can occur on the MCU ports and port
pins. This function is also called after reset, in order to reconfigure the ports
and port pins of the MCU.

* Port Set Pin Mode: This API will change the pin mode to the requested
mode.

* Port_SetToDioMode: This API will set the mode of a pin to DIO mode.

« Port_SetToAlternateMode: This API will set the mode of a port pin to
Alternate mode.

e Port SetPinDirection: This API will change the direction of the pin to the
requested direction.

* Port RefreshPortDirection: This API will refresh all the port pins to the
configured value except the pins that are configured as pin direction

49

Chapter 13 P1M Specific Information

changeable during runtime.

Note: The <Device_name> indicates the device to be compiled, which can be
701304 or 701305 or 701310 or 701311 or 701312 or 701313 or 701314
or 701315 or 701318 or 701319 or 701320 or 701321 or 701322 or
701323.

Remark Executable files with *.out’ extension can be downloaded into the target
hardware with the help of Green Hills debugger.

e If any configuration changes (only post-build) are made to the ECU
Configuration Description files

“X1X\P1x\modules\port\sample_application\<SubVariant>
\<AUTOSAR_version>\config\App_PORT_P1M_701310_Sample.arxml”

e The database alone can be generated by using the following commands.
make —f App_PORT_P1M_Sample.mak generate_port_config
make —f App_PORT_P1M_Sample.mak App_PORT_P1M_Sample.s37

e After this, a flash able Motorola S-Record file
App_PORT_P1M_Sample.s37 is available in the output folder.

13.3. Memory and Throughput

13.3.1. ROM/RAM Usage

The details of memory usage for the typical configuration, with DET disabled
as provided in Section 13.3.2.1 Configuration Example are provided in this

section.
Table 13-2 ROM/RAM Details without DET
Sl. No. | ROM/RAM | Segment Name Size in bytes for | Size in bytes for
701312 701310

1 ROM PORT_PUBLIC_CODE_ROM - 1278
PORT_PRIVATE_CODE_ROM - 2142
PORT_CFG_DATA_UNSPECIFIED - 548
PORT_CFG_DBTOC_UNSPECIFIED - 48

2 RAM RAM_1BIT - 0
NOINIT_RAM_UNSPECIFIED - 4

The details of memory usage for the typical configuration, with DET enabled
and all other configurations as provided in 13.3.2.1 Configuration Example
are provided in this section.

50

P1M Specific Information

Chapter 13

Table 13-3 ROM/RAM Details with DET
Sl. No. | ROM/RAM | Segment Name Size in bytes Size in bytes
for 701312 for 701310
1 ROM PORT_PUBLIC_CODE_ROM - 1828
PORT_PRIVATE_CODE_ROM - 2166
PORT_CFG_DATA_UNSPECIFIED - 532
PORT_CFG_DBTOC_UNSPECIFIED - 48
2 RAM RAM_1BIT - 1
NOINIT_RAM_UNSPECIFIED - 4
13.3.2. Stack Depth
The worst-case stack depth for PORT Driver Component for the typical
configuration provided in Section 13.3.2.1 is 92 bytes.
13.3.3. Throughput Details
The throughput details of the APIs for the configuration mentioned in the
Section 13.3.2.1 Configuration Example will be provided in the next release.
The clock frequency used to measure the throughput is 80 MHz for all APIs.
Table 13-4 Throughput Details of the APIs
SI. No. | APIName Throughput in Throughput in | Remarks
microseconds microseconds
for 701310 for 701312
1 Port_lInit 45.9 - -
2 Port_RefreshPortDirection 2.52 - -
3 Port_SetPindirection 3.24 - -
4 Port_GetVersionInfo 0.45 - -
5 Port_SetPinMode 3.69 - -
6 Port_SetToDioMode 1.98 - -
7 Port_SetToAlternateMode 1.62 - -
8 Port_SetPinDefaultDirection 1.8 - -
9 Port_SetPinDefaultMode 3.15 - -

51

Chapter 13 P1M Specific Information

52

Release Details

Chapter 14

Chapter 14 Release Details
PORT Driver Software

Version: 1.5.0

53

Chapter 14

Release Details

54

Revision History

SI.No. | Description Version Date
1. Initial Version 1.0.0 9-Oct-2013
2. Following changes are made: 1.0.1 21-Nov-2013
1. Sample application is regenerated for the change in parameter
definition file.
2. Section 10.2.4 is updated for Port_PinModeType.
3. Following changes are made: 1.0.2 31-Jan-2014
1. Chapter 2 is updated for referenced documents version.
2. Section 13.1.1 is updated for adding the device names.
3. Section 13.2 is updated for compiler, assembler and linker
details.
4. Section 13.3 is updated to add parameter definition file and
sample application configuration files for all P1M devices.
5. Chapter 14 is updated for PORT driver component version
information.
4, Following changes are made: 1.0.3 03-Sep-2014
1. Chapter 2 is updated for referenced documents version.
2. Section 13.1.1 is updated for adding the device names.
3. Section 13.2 is updated for compiler, assembler and linker
details.
4. Section 13.3 is updated to add parameter definition file and
sample application configuration files for all P1M devices.
5. Chapter 14 is updated for PORT driver component version
information.
6. Deuviation list is updated to add PORT_E_PARAM_POINTER
error foe Port_GetVersiolnfo APl and AUTOSAR requirement.
7. Memory and Throughput details are updated.
8. Section 10.2.1 is updated to add new structure element.
5. Following changes are made: 1.04 05-Sep-2014
1. Section 13.4.3 updated for Throughput details.
2. Page alignment is updated.
3. Table of contents updated.
6. Following changes are made: 1.05 29-Apr-2015

1. Section 1.1 Document Overview is updated.

2. Chapter 2 Reference documents are updated for version
change.

Chapter 4 is updated for information regarding Interrupt vector
table.

Chapter 6 Port_SetPinMode is updated.

Section 10.2.4 Port_PinModeType is updated.

Section 13.1.1 is updated for adding new devices.

Section 13.2 Compiler, Linker and Assembler section is
removed.

Section 13.2 is updated for parameter definition file and sample
application configuration files of all P1M devices.

9. Section 13.3 Memory and Throughput details are updated.

w

Nook

©

55

AUTOSAR MCAL R4.0.3 User's Manual
PORT Driver Component Ver.1.0.5
Embedded User’'s Manual

Publication Date: Rev.0.02, April 29, 2015

Published by: Renesas Electronics Corporation

LENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany

Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632

Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2015 Renesas Electronics Corporation. All rights reserved.
Colophon 1.0

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3

User’'s Manual

RENESAS

Renesas Electronics Corporation

	Chapter 1 Introduction
	1.1. Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration and Build Process
	3.1. PORT Driver Component Makefile

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. User Mode and Supervisor Mode
	4.4. Data Consistency
	4.5. Deviation List

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction Between The User And PORT Driver Component
	7.1. Services Provided By PORT Driver Component To User

	Chapter 8 PORT Driver Component Header And Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1. Imported Types
	10.1.1 Standard Types
	10.1.2 Other Module Types

	10.2. Type Definitions
	10.2.1 Port_ConfigType
	10.2.2 Port_PinType
	10.2.3 Port_PinDirection Type
	10.2.4 Port_PinModeType

	10.3. Function Definitions

	Chapter 11 Development And Production Errors
	11.1. PORT Driver Component Development Errors
	11.2. PORT Driver Component Production Errors

	Chapter 12 Memory Organization
	Chapter 13 P1M Specific Information
	13.1. Interaction between the User and PORT Driver Component
	13.1.1. Translation Header File
	13.1.1. Parameter Definition File
	13.1.2. Services Provided By PORT Driver Component to the User

	13.2. Sample Application
	13.2.1. Sample Application Structure
	13.2.2. Building Sample Application
	13.3.2.1. Configuration Example
	13.3.2.2. Debugging the Sample Application

	13.3. Memory and Throughput
	13.3.1. ROM/RAM Usage
	13.3.2. Stack Depth
	13.3.3. Throughput Details

	Chapter 14 Release Details

