

MICROSAR RTE

Technical Reference

Version 4.8.0

Authors Bernd Sigle, Martin Schlodder, Sascha Sommer,
Stephanie Schaaf, Katharina Benkert, Cornelius Reuss

Status Released

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

2 / 139

Document Information

History

Author Date Version Remarks

Bernd Sigle 2005-11-14 2.0.0 Document completely reworked and adapted to
AUTOSAR RTE

Bernd Sigle 2006-04-20 2.0.1 API description for Rte_IRead / Rte_IWrite added,
description of used OS/COM services added

Bernd Sigle 2006-07-11 2.0.2 API description for Rte_Receive / Rte_Send added;
Adaptation to RTE SWS 1.0.0 Final

Martin Schlodder 2006-11-02 2.0.3 Separation of RTE and target package

Martin Schlodder 2006-11-15 2.0.4 Client/Server communication

Martin Schlodder 2006-12-21 2.0.5 Serialized client/server communication

Martin Schlodder 2007-01-17 2.0.6 Array data types

Martin Schlodder 2007-02-14 2.0.7 Added exclusive areas, removed description of
TargetPackages

Bernd Sigle 2007-02-19 2.0.8 Added transmission acknowledgement handling and
minor rework of the document

Bernd Sigle 2007-04-25 2.0.9 Added Rte_IStatus

Martin Schlodder 2007-04-27 2.0.10 Added IRV and Const/Enum

Martin Schlodder
Bernd Sigle

2007-05-01 2.1.0 Completed documentation for Version 2.2

Bernd Sigle 2007-07-27 2.1.1 Added Rte_InitMemory, Rte_IWriteRef Runnable.
Added description of runnable activation offset und
updated picture of MICROSAR architecture.

Martin Schlodder 2007-08-03 2.1.2 Added description of template update.

Martin Schlodder
Bernd Sigle

2007-11-16 2.1.3 Added warning regarding IWrite / IrvIWrite.
Added API descriptions of VFB trace hooks.
Updated data type info for nested types.

Martin Schlodder
Bernd Sigle

2008-02-06 2.1.4 Updated descriptions on template merging and task
mapping.
Added description of Rte_Pim, Rte_CData,
Rte_Calprm and Rte_Result.
Added support of string data type.
Updated command line argument description.
Added NvRAM mapping description.
Added chapter about compiler abstraction and
memory mapping.

Hannes Futter 2008-03-11 2.1.5 Additional command line switches to support direct
generation on xml and dcf files.

Bernd Sigle 2008-03-26 2.2.0 Updated description of NV Memory Mapping and
Chapter about limitations added.
Chapter about compiler and memory abstraction
updated.
Support for AUTOSAR Release 3.0 added.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

3 / 139

Bernd Sigle 2008-04-16 2.3.0 Added description about A2L file generation and
updated command line options and example calls to
cover also the AUTOSAR XML input files.

Bernd Sigle 2008-07-16 2.4.0 Removed limitations for multiple instantiation and
compatibility mode support.

Bernd Sigle 2008-08-13 2.5.0 Added description of indirect APIs Rte_Port, Rte_Ports
and Rte_NPorts. Added description of platform
dependent resource calculation.

Bernd Sigle 2008-10-23 2.6.0 Added description of memory protection support.

Bernd Sigle 2009-01-23 2.7.0 Added description of mode management APIs
Rte_Mode and Rte_Switch and updated description of
Rte_Feedback.
Added description of Rte_Invalidate and
Rte_IInvalidate and added new Com APIs.
Added additional runnable trigger events and removed
section for runnables without trigger, which is no
longer supported.
Deviation for [rte_sws_2648] added.
Usage of new document template

Bernd Sigle 2009-03-26 2.8.0 Removed limitations for unconnected ports and for
data type generation.

Sascha Sommer
Bernd Sigle

2009-08-11 2.9.0 Added description about usage of basic / extended
task

Added description of command line parameter -v

Sascha Sommer

Bernd Sigle

2009-10-22 2.10.0 Added a warning for VFB trace hooks that prevent
macro optimizations

Explained that the Activation task attribute has to be
set for basic tasks

Init-Runnables no longer need to have a special suffix

Explained the new periodic trigger implementation
dialog.

Server runnables with CanBeInvokedConcurrently set
to false do not need to be mapped to tasks when the
calling clients cannot interrupt each other

Resource Usage is now listed in a HTML report

Updated version of referenced documents and of
supported AUTOSAR release.

Updated examples with new workspace file extension.

Added new defines for memory mapping.

Bernd Sigle 2010-04-09 2.11.0 Added description of user header file Rte_UserTypes.h
Updated component history and interface functions to
the OS. Added pictures of Rte Interfaces and Rte
Include Structure. Updated picture of MICROSAR
architecture. Rework of chapter structure.

Bernd Sigle 2010-05-25 2.11.1 Added description of RTE optimization mode

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

4 / 139

Bernd Sigle

Sascha Sommer

2010-05-26 2.12.0 Added new measurement chapter, added description
of COM Rx Filter, macros for access of invalid value,
initial value, lower and upper limit, added support of
minimum start interval and second array passing
variant. Support of AUTOSAR Release 3.1 (RTE SWS
2.2.0)

Bernd Sigle

2010-07-22 2.13.0 Added online calibration support. Removed limitation
of missing transmission error detection

Bernd Sigle

2010-09-28 2.13.1 Added more detailed description of extended record
data type compatibility rule

Bernd Sigle

2010-11-23 2.14.0 Removed obsolete command line parameters –bo, –bc
and –bn.

Stephanie Schaaf
Bernd Sigle
Sascha Sommer

2011-07-25 2.15.0 Added general support of AUTOSAR Release 3.2.1
(RTE SWS 2.4.0).

Added support of never received status.

Added support of S/R update handling.

Mentioned that –g c and –g i ignore service
components when –m specifies an ECU project.

Explained RTE usage with Non-Trusted BSW

Added hint for FUNC_P2CONST() problems

Explained measurement of COM signals

Stephanie Schaaf
Bernd Sigle
Sascha Sommer

2012-01-25 2.16.0 Enhanced command line interface (support for several
generation modes in one command line call, optional
command line parameter –m)

Split of RTE into OS Application specific files

Byte arrays no longer need to be mapped to signals
groups

Allow configuration of Schedule() calls in non-
preemptive tasks

Bernd Sigle 2012-05-18 2.17.0 Corrected description how the Rte_IsUpdated API can
be enabled

Bernd Sigle 2012-09-18 2.18.0 Added general support of AUTOSAR Release 3.2.2
(RTE SWS 2.5.0).

Added support of non-queued N:1 S/R communication

Bernd Sigle 2012-08-28 3.90.0 AUTOSAR 4.0.3 support, DaVinci Configurator 5
support

Bernd Sigle 2012-12-11 4.0.0 Updated API descriptions concerning
RTE_E_UNCONNECTED return code

Added description of Rte_UserTypes.h file which is
now also generated with the template mechanism

Stephanie Schaaf 2013-03-26 4.1.0 Added support of Rte_MemSeg.a2l file

Added description of –o sub option for A2L file path

Bernd Sigle 2013-06-14 4.1.1 Added Multi-Core support (S/R communication)

Added support of Inter-Runnable Variables with
composite data types

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

5 / 139

Katharina Benkert

Stephanie Schaaf

Sascha Sommer

Bernd Sigle

2013-10-30 4.2.0 Added support for arrays of dynamic data length
(Rte_Send/Rte_Receive)

Added support for parallel generation for multiple
component types

Multicore support

Added support for SchM Contract Phase Generation

Added support for Nv Block SWCs

Katharina Benkert

Sascha Sommer

Stephanie Schaaf

2014-02-06 4.3.0 Added support of VFB Trace Client Prefixes

Optimized Multicore support without IOCs

Memory Protection support for Multicore systems

Inter-ECU sender/receiver communication, queued
sender/receiver communication and mapped
client/server calls are no longer limited to the BSW
partition

Added support of Development Error Reporting

Added support of registering XCP Events in the XCP
module configuration

Stephanie Schaaf

Bernd Sigle

2014-06-17 4.4.0 Support for unconnected client ports for synchronous
C/S communication

Inter-Ecu C/S communication using SOME/IP
Transformer

Support for PR-Ports

S/R Serialization using SOME/IP Transformer and E2E
Transformer

Support LdCom

Bernd Sigle 2014-08-13 4.4.1 Described decimal coding of the version defines and
the return code of SchM_GetVersionInfo

Added chapter about additional copyrights of FOSS

Bernd Sigle 2014-09-12 4.4.2 Minor format changes only

Bernd Sigle 2014-08-13 4.5.0 Support Postbuild-Selectable for variant data
mappings and variant COM signals

Support E2E Transformer for Inter-Ecu C/S
communication

Support tasks mappings where multiple runnable or
schedulable entities using different cycle times or
activation offsets are mapped to a single Basic Task.
The realization uses OS Schedule Tables

Support Rte_DRead API

Enhanced support for PR-Ports

Support ServerArgumentImplPolicy = use
ArrayBaseType

Explicit order of ModeDeclarationGroups

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

6 / 139

Bernd Sigle 2014-12-08 4.6.0 Support of PR Mode Ports

Support of PR Nv Ports

Support of bit field data types (CompuMethods with
category BITFIELD_TEXTTABLE)

Runtime optimized copying of large data

Support for SW-ADDR-METHOD on RAM blocks of
NvRAM SWCs

Bernd Sigle 2015-02-20 4.7.0 Support of background triggers

Support of data prototype mappings

Support of bit field text table mappings

Support of union data types

Support of UTF16 data type serialization in the
SOME/IP transformer

Runtime optimization in the generated RTE code by
usage of optimized interrupt locking APIs of the
MICROSAR OS

Support of further E2E profiles for data transformation
with the SOME/IP and E2E transformer

Support of OS counters with tick durations smaller
than 1µs

Bernd Sigle 2015-07-26 4.8.0 Support of COM based Transformer ComXf

Support of different strategies for writing NV data in Nv
Block SWCs

Support of C/S Interfaces for Nv Block SWCs

SWC Template generation provides user sections for
documentation of runnable entities

Wide character support in paths

Improved counter selection for operating systems with
multiple OS applications

Support of optimized macro implementation for
SchM_Enter and SchM_Exit

Enhanced OS Spinlock support

Enable optimizations in QM partitions

Table 1-1 History of the document

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

7 / 139

Reference Documents

No. Title Version

[1] AUTOSAR_SWS_RTE.pdf 3.2.0

[2] AUTOSAR_EXP_VFB.pdf 2.2.0

[3] AUTOSAR_SWS_COM.pdf 4.2.0

[4] AUTOSAR_SWS_OS.pdf 5.0.0

[5] AUTOSAR_SWS_NVRAMManager.pdf 3.2.0

[6] AUTOSAR_SWS_ECU_StateManager.pdf 3.0.0

[7] AUTOSAR_SWS_StandardTypes.pdf 1.3.0

[8] AUTOSAR_SWS_PlatformTypes.pdf 2.5.0

[9] AUTOSAR_SWS_CompilerAbstraction.pdf 3.2.0

[10] AUTOSAR_SWS_MemoryMapping.pdf 1.4.0

[11] AUTOSAR_TPS_SoftwareComponentTemplate.pdf 4.2.0

[12] AUTOSAR_TPS_SystemTemplate.pdf 4.2.0

[13] AUTOSAR_TPS_ECUConfiguration.pdf 3.2.0

[14] AUTOSAR_TR_Glossary.pdf 2.4.0

[15] AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf 2.2.0

[16] AUTOSAR_SWS_XCP.pdf 2.0.0

[17] AUTOSAR_SWS_ DevelopmentErrorTracer.pdf 3.2.0

[18] Vector DaVinci Configurator Online help

[19] Vector DaVinci Developer Online help

[20] AUTOSAR Calibration User Guide 1.0

Table 1-2 Reference documents

Scope of the Document

This document describes the MICROSAR RTE generator. It assumes that the reader is
familiar with the AUTOSAR architecture, especially the software component (SWC) design
methodology and the AUTOSAR RTE specification. It also assumes basic knowledge of
some basic software (BSW) modules like AUTOSAR Os, Com, LdCom, NvM and EcuM.
The description of those components is not part of this documentation. The related
documents are listed in Table 1-2.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

8 / 139

Please note
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

9 / 139

Contents

1 Component History .. 15

2 Introduction... 20

2.1 Architecture Overview .. 21

3 Functional Description ... 24

3.1 Features .. 24

3.1.1 Deviations .. 26

3.1.2 Additions/ Extensions ... 27

3.1.3 Limitations .. 27

3.2 Initialization .. 28

3.3 AUTOSAR ECUs ... 28

3.4 AUTOSAR Software Components.. 28

3.5 Runnable Entities ... 28

3.6 Triggering of Runnable Entities .. 29

3.6.1 Time Triggered Runnables ... 29

3.6.2 Data Received Triggered Runnables .. 30

3.6.3 Data Reception Error Triggered Runnables 30

3.6.4 Data Send Completed Triggered Runnables 30

3.6.5 Mode Switch Triggered Runnables ... 30

3.6.6 Mode Switched Acknowledge Triggered Runnables 30

3.6.7 Operation Invocation Triggered Runnables 31

3.6.8 Asynchronous Server Call Return Triggered Runnables 31

3.6.9 Init Triggered Runnables .. 31

3.6.10 Background Triggered Runnables .. 31

3.7 Exclusive Areas ... 32

3.7.1 OS Interrupt Blocking ... 32

3.7.2 All Interrupt Blocking .. 32

3.7.3 OS Resource ... 33

3.7.4 Cooperative Runnable Placement .. 33

3.8 Error Handling .. 34

3.8.1 Development Error Reporting ... 34

4 RTE Generation and Integration .. 36

4.1 Scope of Delivery ... 36

4.2 RTE Generation ... 37

4.2.1 Command Line Options ... 37

4.2.2 RTE Generator Command Line Options ... 37

4.2.3 Generation Path ... 39

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

10 / 139

4.3 MICROSAR RTE generation modes .. 39

4.3.1 RTE Generation Phase .. 39

4.3.2 RTE Contract Phase Generation .. 41

4.3.3 Template Code Generation for Application Software Components ... 43

4.3.4 VFB Trace Hook Template Code Generation 44

4.4 Include Structure .. 45

4.4.1 RTE Include Structure .. 45

4.4.2 SWC Include Structure ... 46

4.4.3 BSW Include Structure ... 47

4.5 Compiler Abstraction and Memory Mapping ... 48

4.5.1 Memory Sections for Calibration Parameters and Per-Instance
Memory .. 50

4.5.2 Memory Sections for Software Components 51

4.5.3 Compiler Abstraction Symbols for Software Components and RTE .. 52

4.6 Memory Protection Support ... 53

4.6.1 Partitioning of SWCs .. 53

4.6.2 OS Applications .. 53

4.6.3 Partitioning Architecture ... 54

4.6.4 Conceptual Aspects ... 57

4.6.5 Memory Protection Integration Hints .. 58

4.7 Multicore support ... 59

4.7.1 Partitioning of SWCs .. 59

4.7.2 BSW in Multicore Systems ... 59

4.7.3 IOC Usage ... 60

4.8 BSW Access in Partitioned systems ... 60

4.8.1 Inter-ECU Communication ... 60

4.8.2 Client Server communication ... 61

5 API Description ... 62

5.1 Data Type Definition ... 62

5.1.1 Invalid Value ... 62

5.1.2 Upper and Lower Limit ... 63

5.1.3 Initial Value... 63

5.2 API Error Status ... 63

5.3 Runnable Entities ... 64

5.3.1 <RunnableEntity> .. 64

5.4 SWC Exclusive Areas .. 66

5.4.1 Rte_Enter ... 66

5.4.2 Rte_Exit ... 67

5.5 BSW Exclusive Areas .. 68

5.5.1 SchM_Enter ... 68

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

11 / 139

5.5.2 SchM_Exit .. 69

5.6 Sender-Receiver Communication .. 70

5.6.1 Rte_Read ... 70

5.6.2 Rte_DRead .. 71

5.6.3 Rte_Write ... 72

5.6.4 Rte_Receive .. 73

5.6.5 Rte_Send ... 74

5.6.6 Rte_IRead .. 75

5.6.7 Rte_IWrite .. 76

5.6.8 Rte_IWriteRef .. 77

5.6.9 Rte_IStatus .. 78

5.6.10 Rte_Feedback .. 79

5.6.11 Rte_IsUpdated ... 80

5.7 Data Element Invalidation .. 81

5.7.1 Rte_Invalidate .. 81

5.7.2 Rte_IInvalidate ... 82

5.8 Mode Management .. 83

5.8.1 Rte_Switch ... 83

5.8.2 Rte_Mode .. 84

5.8.3 Enhanced Rte_Mode ... 85

5.8.4 Rte_SwitchAck ... 86

5.9 Inter-Runnable Variables .. 87

5.9.1 Rte_IrvRead ... 87

5.9.2 Rte_IrvWrite ... 88

5.9.3 Rte_IrvIRead .. 89

5.9.4 Rte_IrvIWrite .. 90

5.10 Per-Instance Memory ... 91

5.10.1 Rte_Pim ... 91

5.11 Calibration Parameters .. 92

5.11.1 Rte_CData ... 92

5.11.2 Rte_Prm ... 93

5.12 Client-Server Communication .. 94

5.12.1 Rte_Call ... 94

5.12.2 Rte_Result ... 95

5.13 Indirect API .. 96

5.13.1 Rte_Ports ... 96

5.13.2 Rte_NPorts .. 97

5.13.3 Rte_Port ... 98

5.14 RTE Lifecycle API .. 99

5.14.1 Rte_Start .. 99

5.14.2 Rte_Stop .. 99

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

12 / 139

5.14.3 Rte_InitMemory .. 100

5.15 SchM Lifecycle API .. 101

5.15.1 SchM_Init ... 101

5.15.2 SchM_Deinit .. 101

5.15.3 SchM_GetVersionInfo .. 102

5.16 VFB Trace Hooks ... 103

5.16.1 Rte_[<client>_]<API>Hook_<cts>_<ap>_Start 103

5.16.2 Rte_[<client>_]<API>Hook_<cts>_<ap>_Return 104

5.16.3 SchM_[<client>_]<API>Hook_<Bsw>_<ap>_Start 105

5.16.4 SchM_[<client>_]<API>Hook_<Bsw>_<ap>_Return 106

5.16.5 Rte_[<client>_]ComHook_<SignalName>_SigTx 107

5.16.6 Rte_[<client>_]ComHook_<SignalName>_SigIv 108

5.16.7 Rte_[<client>_]ComHook_<SignalName>_SigGroupIv 109

5.16.8 Rte_[<client>_]ComHook_<SignalName>_SigRx 110

5.16.9 Rte_[<client>_]ComHook<Event>_<SignalName> 111

5.16.10 Rte_[<client>_]Task_Activate ... 112

5.16.11 Rte_[<client>_]Task_Dispatch .. 112

5.16.12 Rte_[<client>_]Task_SetEvent ... 113

5.16.13 Rte_[<client>_]Task_WaitEvent .. 113

5.16.14 Rte_[<client>_]Task_WaitEventRet .. 114

5.16.15 Rte_[<client>_]Runnable_<cts>_<re>_Start 114

5.16.16 Rte_[<client>_]Runnable_<cts>_<re>_Return 115

5.17 RTE Interfaces to BSW .. 116

5.17.1 Interface to COM / LDCOM .. 116

5.17.2 Interface to OS ... 117

5.17.3 Interface to NVM .. 118

5.17.4 Interface to XCP ... 118

5.17.5 Interface to SCHM ... 119

5.17.6 Interface to DET ... 119

6 RTE Configuration .. 120

6.1 Configuration Variants .. 120

6.2 Task Configuration ... 120

6.3 Memory Protection and Multicore Configuration ... 122

6.4 NV Memory Mapping ... 124

6.5 RTE Generator Settings ... 125

6.6 Measurement and Calibration .. 126

6.7 Optimization Mode Configuration ... 130

6.8 VFB Tracing Configuration ... 131

6.9 Exclusive Area Implementation .. 132

6.10 Periodic Trigger Implementation ... 133

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

13 / 139

6.11 Resource Calculation ... 135

7 Glossary and Abbreviations .. 136

7.1 Glossary .. 136

7.2 Abbreviations ... 136

8 Additional Copyrights .. 138

9 Contact .. 139

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

14 / 139

Illustrations

Figure 2-1 AUTOSAR architecture ... 21
Figure 2-2 Interfaces to adjacent modules of the RTE ... 23
Figure 4-1 RTE Include Structure .. 45
Figure 4-2 SWC Include Structure ... 46
Figure 4-3 BSW Include Structure ... 47
Figure 4-4 Trusted RTE Partitioning example .. 54
Figure 4-5 Non-trusted RTE Partitioning example .. 55
Figure 6-1 Mapping of Runnables to Tasks .. 121
Figure 6-2 Assignment of a Task to an OS Application ... 122
Figure 6-3 OS Application Configuration .. 123
Figure 6-4 Mapping of Per-Instance Memory to NV Memory Blocks 124
Figure 6-5 RTE Generator Settings.. 125
Figure 6-6 Measurement and Calibration Generation Parameters 126
Figure 6-7 SWC Calibration Support Parameters .. 128
Figure 6-8 CalibrationBufferSize Parameter ... 129
Figure 6-9 A2L Include Structure ... 129
Figure 6-10 Optimization Mode Configuration .. 130
Figure 6-11 VFB Tracing Configuration .. 131
Figure 6-12 Exclusive Area Implementation Configuration ... 132
Figure 6-13 Periodic Trigger Implementation Configuration 133
Figure 6-14 HTML Report .. 134
Figure 6-15 Configuration of platform settings ... 135

Tables

Table 1-1 History of the document .. 6
Table 1-2 Reference documents ... 7
Table 1-1 Component history.. 19
Table 3-1 Supported AUTOSAR standard conform features 26
Table 3-2 Not supported AUTOSAR standard conform features 27
Table 3-3 Features provided beyond the AUTOSAR standard 27
Table 3-4 Service IDs ... 35
Table 3-5 Errors reported to DET ... 35
Table 4-1 Content of Delivery ... 36
Table 4-2 DVCfgCmd Command Line Options ... 37
Table 4-3 RTE Generator Command Line Options ... 39
Table 4-4 Generated Files of RTE Generation Phase ... 40
Table 4-5 Generated Files of RTE Contract Phase ... 41
Table 4-6 Generated Files of RTE Template Code Generation 43
Table 4-7 Generated Files of VFB Trace Hook Code Generation 44
Table 4-8 Compiler abstraction and memory mapping .. 49
Table 4-9 Compiler abstraction and memory mapping for non-cacheable variables . 49
Table 7-1 Glossary ... 136
Table 7-2 Abbreviations .. 137
Table 8-1 Free and Open Source Software Licenses ... 138

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

15 / 139

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

Component Version New Features

2.3  Complex hierarchical data types like arrays of records

 Optimization: Depending on the configuration the Rte_Read API is
generated as macro if possible

2.4  String data type (Encoding ISO-8859-1)

 SWC local calibration parameters (Rte_CData)

 Optimization: Depending on the configuration the Rte_Write API is
generated as macro if possible

 Generation of unmapped client runnables enabled

 Asynchronous C/S communication (Rte_Result)

2.5  Support of AUTOSAR 3.0 Revision 0001

 Access to calibration element prototypes of calibration components
(Rte_Calprm)

 Access to Per-Instance Memory (Rte_Pim)

 SWC implementation template generation (command line option -g i)

and Contract Phase generation (command line option -g c) for a

complete ECU

2.6  Intra-ECU timeout handling for synchronous C/S communication

 Parallel access of synchronous and asynchronous server calls to an
operation of one server port

 Generation of an ASAM MCD 2MC / ASAP2 compatible A2L file
fragment for calibration parameters and Per-Instance Memory

2.7  Multiple instantiation of software components

 Compatibility mode

 Object code software components

2.8  Indirect APIs (Rte_Ports, Rte_NPorts and Rte_Port)

 Port API Option 'EnableTakeAddress'

 Platform dependent resource calculation.

2.9  Memory protection (OS with scalability class SC3/SC4)

2.10  Mode management including mode switch triggered runnable entities
and mode dependent execution of runnable entities. (Rte_Switch,
Rte_Mode and Rte_Feedback for mode switch acknowledge)

 Data element invalidation (Rte_Invalidate and Rte_IInvalidate)

 Data reception error triggered runnable entities for invalidated and
outdated data elements

 Multiple cyclic triggers per runnable entity

 Multiple OperationInvokedEvent triggers for the same runnable entity
with compatible operations

 Extended A2L file generation for calibration parameters and Per-

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

16 / 139

Component Version New Features

Instance Memory for user defined attributes (A2L-ANNOTATION)

2.11  Signal Fan-In

 Unconnected provide ports

 Generation of unreferenced data types

 Evaluation of COM return codes

2.12  Basic task support (automatically selection)

 Several optimizations (e.g. unneeded interrupt locks and Schedule()
call removed)

 Enhanced error reporting with help messages (-v command line
option)

 Support of acknowledgement only mode for transmission and mode
switch notification

 Usage of compiler library functions (e.g. memcpy) removed

 Template file update mechanism also introduced for Rte_MemMap.h
and Rte_Compiler_Cfg.h

2.13  Unconnected require ports

 Basic task support (manual selection)

 Init-Runnables no longer have name restrictions

 Automatic periodic trigger generation can be disabled e.g. useful for
Schedule Table support

 HTML Report including resource usage

 Explicit selection of task role (Application / BSW Scheduler / Non Rte)

 Runnables with CanBeInvokedConcurrently set to false no longer
require a mapping, if they are not called concurrently.

2.14  Support composite data types where not all primitive members require
an invalid value

 Support inclusion of user header file 'Rte_UserTypes.h'

2.15  Optimized runnable scheduling to reduce latency times

 Allow implementation template generation for service components,
complex device drivers and EcuAbstraction components

 Optimization mode (minimize RAM consumption / minimize execution
time)

2.16  MinimumStartInterval attribute (runnable de-bouncing)

 Measurement support for S/R communication, Interrunnable variables
and mode communication. Extended A2L File generation and support
of new ASAM MCD 2MC / ASAP2 standard. Measurement with
XcpEvents

 Com Filter (NewDiffersOld, Always)

 Invalid value accessible from application

 Support of second array passing variant

2.17  Online calibration support

 Support transmission error detection

 Support of extended record data type compatibility for S/R
communication with different record layout on sender and receiver side

2.18  Enhanced implicit communication support

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

17 / 139

Component Version New Features

2.19  Support of AUTOSAR 3.2 Revision 0001

 Support never received status

 Support S/R update handling (Rte_IsUpdated based on AUTOSAR
4.0)

 Enhanced measurement support (Inter-Ecu S/R communication)

 Selective file generation (only if file content is modified)

 Support for Non-Trusted BSW

2.20  Enhanced command line interface (support for several generation

modes in one call, optional command line parameter –m)

 Split of generated RTE into OS Application specific files

 Byte arrays no longer need to be mapped to signal groups

 Allow configuration of Schedule() calls in non-preemptive tasks

 Generation of MISRA justification comments

2.21  Support of SystemSignals and SystemSignalGroups using the same
name

 Support of hexadecimal coded enumeration values

2.22  Support of AUTOSAR 3.2 Revision 0002

 Support S/R update handling according AUTOSAR 3.2.2

 Support N:1 S/R communication

 Support unconnected calibration R-Ports

 Enhanced initial value handling

3.90  Support of AUTOSAR 4.0 Revision 0003

4.0  Support of pointer implementation data types

 Support of ‘On Transition’ triggered runnable entities

 Support of data type symbol attribute

 Support of component type symbol attribute

 Template generation mechanism added for Rte_UserTypes.h

4.1  Support of Rte_MemSeg.a2l

 Enhanced command line interface (path for A2L files selectable)

4.1.1  Multi-Core support (S/R communication)

 Support of Inter-Runnable Variables with composite data types

4.2  Support for arrays of dynamic data length (Rte_Send/Rte_Receive)

 Support for parallel generation for multiple component types

 Multi-Core support:

 C/S communication

 Mode communication without ModeDisablings and ModeTriggers

 Inter-ECU S/R communication

 Support mapping of individual OperationInvoked triggers

 Support of SchM Contract Phase Generation

 Support of Nv Block SWCs

4.3  Support of VFB Trace Client Prefixes

 Enhanced Memory Protection support

 Memory Protection support for Multi-Core systems

 Inter-ECU sender/receiver communication is no longer limited to the

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

18 / 139

Component Version New Features

BSW partition

 Mapped client/server calls are no longer limited to the BSW partition

 Queued sender/receiver communication is no longer limited to the
BSW partition

 Optimized Multi-Core support without IOCs

 Support of Development Error Reporting

 Support of registering XCP Events in the XCP module configuration

4.4  Support for unconnected client ports for synchronous C/S
communication

 Inter-Ecu C/S communication using SOME/IP Transformer

 Support for PR-Ports

 S/R Serialization using SOME/IP Transformer and E2E Transformer

 Support LdCom

 Improved support for 3rd Party OS interoperability especially regarding
OS Counter handling

4.5  Support Postbuild-Selectable for variant data mappings and variant
COM signals

 Support E2E Transformer for Inter-Ecu C/S communication

 Support tasks mappings where multiple runnable or schedulable
entities using different cycle times or activation offsets are mapped to a
single Basic Task. The realization uses OS Schedule Tables

 Support Rte_DRead API

 Enhanced support for PR-Ports

 Support ServerArgumentImplPolicy = use ArrayBaseType

 Support for Mode Declaration Groups with Explicit Order

4.6  Support of PR Mode Ports

 Support of PR Nv Ports

 Support of bit field data types (CompuMethods with category
BITFIELD_TEXTTABLE)

 Runtime optimized copying of large data

 Support for SW-ADDR-METHOD on RAM blocks of NvRAM SWCs

4.7  Support of background triggers

 Support of data prototype mappings

 Support of bit field text table mappings

 Support of union data types

 Support of UTF16 data type serialization in the SOME/IP transformer

 Runtime optimization in the generated RTE code by usage of
optimized interrupt locking APIs of the MICROSAR OS

 Support of further E2E profiles for data transformation with the
SOME/IP and E2E transformer

 Support of OS counters with tick durations smaller than 1µs

4.8  Support of COM based Transformer ComXf

 Support of different strategies for writing NV data in Nv Block SWCs

 Support of C/S Interfaces for Nv Block SWCs

 SWC Template generation provides user sections for documentation of

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

19 / 139

Component Version New Features

runnable entities

 Wide character support in paths

 Improved counter selection for operating systems with multiple OS
applications

 Support of optimized macro implementation for SchM_Enter and
SchM_Exit

 Enhanced OS Spinlock support

 Enable optimizations in QM partitions

Table 1-1 Component history

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

20 / 139

2 Introduction

The MICROSAR RTE generator supports RTE and contract phase generation.
Additionally, application template code can be generated for software components and for
VFB trace hooks.

This document describes the MICROSAR RTE generation process, the RTE configuration
with DaVinci Configurator and the RTE API.

Chapter 3 gives an introduction to the MICROSAR RTE. This brief introduction to the
AUTOSAR RTE can and will not replace an in-depth study of the overall AUTOSAR
methodology and in particular the AUTOSAR RTE specification, which provides detailed
information on the concepts of the RTE.

In addition chapter 3 describes deviations, extensions and limitations of the MICROSAR
RTE compared to the AUTOSAR standard.

The RTE generation process including the command line parameters of the MICROSAR
RTE generator is described in chapter 4. This chapter also gives hints for integration of the
generated RTE code into an ECU project. In addition it describes the memory mapping
and compiler abstraction related to the RTE and finally, chapter 4.6 describes the memory
protection support of the RTE including hints for integration with the OS.

The RTE API description in chapter 5 covers the API functionality implemented in the
MICROSAR RTE.

The description of the RTE configuration in chapter 6 covers the task mapping, memory
mapping and the code generation settings in DaVinci Configurator. A more detailed
description of the configuration tool including the configuration of AUTOSAR software
components and compositions and their integration in an ECU project can be found in the
online help of the DaVinci Configurator [18].

Supported AUTOSAR Release*: 4

Supported Configuration Variants: pre-compile

Vendor ID: RTE_VENDOR_ID 30 decimal

(= Vector-Informatik,
according to HIS)

Module ID: RTE_MODULE_ID 2 decimal

AR Version: RTE_AR_RELEASE_MAJOR_VERSION
RTE_AR_RELEASE_MINOR_VERSION
RTE_AR_RELEASE_REVISION_VERSION

AUTOSAR Release
version
decimal coded

SW Version: RTE_SW_MAJOR_VERSION
RTE_SW_MINOR_VERSION
RTE_SW_PATCH_VERSION

MICROSAR RTE
version
decimal coded

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

21 / 139

2.1 Architecture Overview

The RTE is the realization of the interfaces of the AUTOSAR Virtual Function Bus (VFB)
for a particular ECU. The RTE provides both standardized communication interfaces for
AUTOSAR software components realized by generated RTE APIs and it also provides a
runtime environment for the component code – the runnable entities. The RTE triggers the
execution of runnable entities and provides the infrastructure services that enable
communication between AUTOSAR SWCs. It is acting as a broker for accessing basic
software modules including the OS and communication services.

The following figure shows where the MICROSAR RTE is located in the AUTOSAR
architecture.

Figure 2-1 AUTOSAR architecture

RTE functionality overview:

 Execution of runnable entities of SWCs on different trigger conditions

 Communication mechanisms between SWCs (Sender/Receiver and Client/Server)

 Mode Management

 Inter-Runnable communication and exclusive area handling

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

22 / 139

 Per-Instance Memory and calibration parameter handling

 Multiple instantiation of SWCs

 OS task body and COM / LDCOM callback generation

 Automatic configuration of parts of the OS, NvM and COM / LDCOM dependent of the
needs of the RTE

 Assignment of SWCs to different memory partitions/cores

SchM functionality overview:

 Execution of cyclic triggered schedulable entities (BSW main functions)

 Exclusive area handling for BSW modules

 OS task body generation

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

23 / 139

Figure 2-2 Interfaces to adjacent modules of the RTE

 composite structure Component

Interfaces to SWCs and BSW Moduls

Interfaces to Os

Interfaces to EcuM

Interfaces to Com

Module

RTE

«EmbeddedInterface»

RTE::S/R (explicit)

+ Rte_Write_<p>_<o>([IN Rte_Instance <instance>,] IN <data>)() :Std_ReturnType

+ Rte_Read_<p>_<o>([IN Rte_Instance <instance>,] OUT <data>)() :Std_ReturnType

+ Rte_Send_<p>_<o>([IN Rte_Instance <instance>,] IN <data> [,IN uint16 <length>])() :Std_ReturnType

+ Rte_Receive_<p>_<o>([IN Rte_Instance <instance>,] OUT <data> [,OUT uint16 <length>])() :Std_ReturnType

+ Rte_Feedback_<p>_<o>([IN Rte_Instance <instance>])() :Std_ReturnType

+ Rte_Invalidate_<p>_<o>([IN Rte_Instance <instance>])() :Std_ReturnType

+ Rte_IsUpdated_<p>_<o>([IN Rte_Instance <instance>])() :boolean

«EmbeddedInterface»

RTE::Lifecycle

+ Rte_Start() :Std_ReturnType

+ Rte_Stop() :Std_ReturnType

«EmbeddedInterface»

RTE::COM Callback

+ Rte_COMCbk_<SignalName>() :void

+ Rte_COMCbkRxTOut_<SignalName>() :void

+ Rte_COMCbkTAck_<SignalName>() :void

+ Rte_COMCbkTxTOut_<SignalName>() :void

+ Rte_COMCbkTErr_<SignalName>() :void

+ Rte_COMCbkInv_<SignalName>() :void

«EmbeddedInterface»

Used Interfaces::Com

+ Com_SendDynSignal(Com_SignalIdType, const void*, uint16) :uint8

+ Com_SendSignal(Com_SignalIdType, const void*) :uint8

+ Com_UpdateShadowSignal(Com_SignalIdType, const void*) :void

+ Com_SendSignalGroup(Com_SignalGroupIdType) :uint8

+ Com_ReceiveDynSignal(Com_SignalIdType, void*, uint16*) :uint8

+ Com_ReceiveSignal(Com_SignalIdType, void*) :uint8

+ Com_ReceiveShadowSignal(Com_SignalIdType, void*) :uint8

+ Com_ReceiveSignalGroup(Com_SignalGroupIdType) :uint8

+ Com_InvalidateSignal(Com_SignalIdType) :uint8

+ Com_InvalidateSignalGroup(Com_SignalGroupIdType) :uint8

«EmbeddedInterface»

Used Interfaces::Os

+ ActivateTask(TaskType) :StatusType

+ CancelAlarm(AlarmType) :StatusType

+ ChainTask(TaskType) :StatusType

+ ClearEvent(EventMaskType) :StatusType

+ DisableAllInterrupts() :void

+ EnableAllInterrupts() :void

+ GetEvent(TaskType, EventMaskType*) :StatusType

+ GetResource(ResourceType) :StatusType

+ GetTaskID(TaskType*) :StatusType

+ IocRead_<iocid>(OUT <data>)() :Std_ReturnType

+ IocReadGroup_<iocid>(OUT <data0>,..., OUT <data_n>)() :Std_ReturnType

+ IocReceive_<iocid>(OUT <data>)() :Std_ReturnType

+ IocSend_<iocid>[_<sid>](IN <data>)() :Std_ReturnType

+ IocWrite_<iocid>[_<sid>](IN <data>)() :Std_ReturnType

+ IocWriteGroup_<iocid>[_<sid>](IN <data0>,..., IN <data_n>)() :Std_ReturnType

+ ReleaseResource(ResourceType) :StatusType

+ ResumeOSInterrupts() :void

+ Schedule() :StatusType

+ SetEvent(TaskType, EventMaskType) :StatusType

+ SetRelAlarm(AlarmType, TickType, TickType) :StatusType

+ SuspendOSInterrupts() :void

+ TerminateTask() :StatusType

+ WaitEvent(EventMaskType) :StatusType

«EmbeddedInterface»

RTE::Error Handling

+ Rte_HasOverlayedError(Std_ReturnType) :boolean

+ Rte_ApplicationError(Std_ReturnType) :Std_ReturnType

+ Rte_IsInfrastructureError(Std_ReturnType) :boolean

«EmbeddedInterface»

SchM::Lifecycle

+ SchM_Init([IN SchM_ConfigType ConfigPtr])() :void

+ SchM_Deinit() :void

+ SchM_GetVersionInfo(Std_VersionInfoType*) :void

«EmbeddedInterface»

RTE::S/R (implicit)

+ Rte_IWrite_<re>_<p>_<o>([IN Rte_Instance <instance>,] IN <data>)() :void

+ Rte_IWriteRef_<re>_<p>_<o>([IN Rte_Instance <instance>])() :<return ref>

+ Rte_IRead_<re>_<p>_<o>([IN Rte_Instance <instance>])() :<return>

+ Rte_IStatus_<re>_<p>_<o>([IN Rte_Instance <instance>])() :Std_ReturnType

+ Rte_IInvalidate_<re>_<p>_<o>([IN Rte_Instance <instance>])()

«EmbeddedInterface»

RTE::Inter-Runnable Variable

+ Rte_IrvWrite_<v([IN Rte_Instance <instance>,] IN <data>)() :void

+ Rte_IrvRead_<v>([IN Rte_Instance <instance>])() :<return>

+ Rte_IrvIWrite_<re>_<v([IN Rte_Instance <instance>,] IN <data>)() :void

+ Rte_IrvIRead_<re>_<v>([IN Rte_Instance <instance>])() :<return>

«EmbeddedInterface»

Used Interfaces::Xcp

+ Xcp_Event(uint8) :void

Interfaces to Xcp

«EmbeddedInterface»

SchM::Exclusiv e Area

+ SchM_Enter_<ea>([IN Rte_Instance <instance>])() :void

+ SchM_Exit_<ea>([IN Rte_Instance <instance>])() :void

«EmbeddedInterface»

RTE::Exclusiv e Area

+ Rte_Enter_<ea>([IN Rte_Instance <instance>])() :void

+ Rte_Exit_<ea>([IN Rte_Instance <instance>])() :void

«EmbeddedInterface»

RTE::Mode Handling

+ Rte_Switch_<p>_<o>([IN Rte_Instance <instance>,] IN <mode>)() :Std_ReturnType

+ Rte_Mode_<p>_<o>([IN Rte_Instance <instance>])() :Std_ReturnType

+ Rte_Mode_<p>_<o>([IN Rte_Instance <instance>,] OUT previous, OUT next)() :<currentmode>

+ Rte_SwitchAck_<p>_<o>([IN Rte_Instance <instance>])() :<currentmode>

«EmbeddedInterface»

RTE::C/S

+ Rte_Call_<p>_<o>([IN Rte_Instance <instance>,] <data_1> ... <data_n>)() :Std_ReturnType

+ Rte_Result_<p>_<o>([IN Rte_Instance <instance>,] <data_1> ... <data_n>)() :Std_ReturnType

«EmbeddedInterface»

RTE::Indirect API

+ Rte_Port_<p>([IN Rte_Instance <instance>])() :Rte_PortHandle_<i>_<R/P>

+ Rte_Ports_<pi>_<R/P>([IN Rte_Instance <instance>])() :Rte_PortHandle_<i>_<R/P>

+ Rte_NPorts_<pi>_<R/P>([IN Rte_Instance <instance>])() :uint8

«EmbeddedInterface»

RTE::Calibration Parameter

+ Rte_CData_<c>([IN Rte_Instance <instance>])() :<parameter>

+ Rte_Prm_<p>_<c>([IN Rte_Instance <instance>])() :<parameter>

«EmbeddedInterface»

RTE::Per-Instance Memory

+ Rte_Pim_<p>([IN Rte_Instance <instance>])() :<pim>

«EmbeddedInterface»

Prov ided Interfaces::

Memory Initialization

+ Rte_InitMemory() :void

«EmbeddedInterface»

RTE::Nv M Callback

+ Rte_GetMirror__<d>(void*) :Std_ReturnType

+ Rte_SetMirror__<d>(const void*) :Std_ReturnType

 Interfaces to NvM

«provide optionally»

«provide optionally»

«use optionally»

«provide optionally»

«provide optionally»

«provide optionally»

«provide optionally»

«use optionally»

«use optionally»

«provide optionally»

«provide optionally»«provide optionally»

«provide optionally»

«provide optionally»
«provide optionally»

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

24 / 139

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
RTE.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

 Table 3-1 Supported AUTOSAR standard conform features

 Table 3-2 Not supported AUTOSAR standard conform features

Vector Informatik provides further RTE functionality beyond the AUTOSAR standard. The
corresponding features are listed in the table

 Table 3-3 Features provided beyond the AUTOSAR standard

The following features specified in [1] are supported:

Supported AUTOSAR Standard Conform Features

Explicit S/R communication (last-is-best) [API: Rte_Read, Rte_Write]

Explicit S/R communication (queued polling) [API: Rte_Receive, Rte_Send]

Variable length arrays

Explicit S/R communication (queued blocking) [API: Rte_Receive]

Implicit S/R communication [API:Rte_IRead, Rte_IWrite, Rte_IWriteRef]

Timeout handling (DataReceiveErrorEvent) [API: Rte_IStatus]

Data element invalidation [API: Rte_Invalidate, Rte_IInvalidate]

Intra-Ecu S/R communication

Inter-Ecu S/R communication

1:N S/R communication (including network signal Fan-Out)

N:1 S/R communication (non-queued, pure network signal Fan-In or pure Intra-Ecu)

C/S communication (synchronous, direct calls) [API: Rte_Call]

C/S communication (synchronous, scheduled calls) [API: Rte_Call]

C/S communication (asynchronous calls) [API: Rte_Call]

C/S communication (asynchronous) [API: Rte_Result]

Intra-Ecu C/S communication

Inter-Ecu C/S communication using SOME/IP Transformer

N:1 C/S communication

Explicit exclusive areas [API: Rte_Enter, Rte_Exit]

Implicit exclusive areas

Explicit Inter-Runnable Variables [API: Rte_IrvRead, Rte_IrvWrite]

Implicit Inter-Runnable Variables [API: Rte_IIrvRead, Rte_IIrvWrite]

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

25 / 139

Supported AUTOSAR Standard Conform Features

Transmission ack. status (polling and blocking) [API: Rte_Feedback]

Runnable category 1a, 1b und 2

RTE Lifecycle-API [API: Rte_Start, Rte_Stop]

Nv Block Software Components

Runnable to task mapping

Data element to signal mapping

Task body generation

VFB-Tracing

Multiple trace clients

ECU-C import / export

Automatic OS configuration according the needs of the RTE (basic and extended task support)

Automatic COM / LDCOM configuration according the needs of the RTE

Primitive data types

Composite data types

Data reception triggered runnables entities (DataReceivedEvent)

Cyclic triggered runnable entities (TimingEvent)

Data transmission triggered runnable entities (DataSendCompletionEvent)

Data reception error triggered runnables entities (DataReceiveErrorEvent)

Mode switch acknowledge triggered runnable entities (ModeSwitchedAckEvent)

Mode switch triggered runnable entities (ModeSwitchEvent)

Background triggered runnable and scheduleable entities (BackgroundEvent)

Contract phase header generation

Port access to services (Port defined argument values)

Port access to ECU-Abstraction

Compatibility mode

Per-Instance Memory [API: Rte_Pim]

Multiple instantiation on ECU-level

Indirect API [API: Rte_Port, Rte_NPorts, Rte_Ports]

SWC internal calibration parameters [API: Rte_CData]

Shared calibration parameters (CalprmComponentType) [API: Rte_Prm]

Mode machine handling [API: Rte_Mode/Rte_Switch]

Mode switch ack. status (polling and blocking) [API: Rte_SwitchAck]

Multi-Core support (S/R communication, C/S communication, Mode communication (partially))

Memory protection

Unconnected ports

COM-Filter (NewDiffersOld, Always)

Measurement (S/R-Communication, Mode-Communication, Inter-Runnable Variables)

Runnable de-bouncing (Minimum Start Interval)

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

26 / 139

Supported AUTOSAR Standard Conform Features

Online calibration support

Never received status

S/R update handling [API: Rte_IsUpdated]

Contract Phase Header generation for BSW-Scheduler

PR-Ports

Optimized S/R communication [API: Rte_DRead]

Variant Handling support (Postbuild selectable for variant data mappings and COM signals)

Data prototype mapping

Bit field texttable mapping

Table 3-1 Supported AUTOSAR standard conform features

3.1.1 Deviations

The following features specified in [1] are not supported:

Not Supported AUTOSAR Standard Conform Features

COM-Filter (only partially supported)

Measurement (Client-Server arguments)

external Trigger (via port) [API: Rte_Trigger]

Inter-Runnable Trigger (SWC internal) [API: Rte_IrTrigger]

Tx-Ack for implicit communication [API: Rte_IFeedback]

BSW-Scheduler Mode Handling [API: SchM_Mode, SchM_Switch, SchM_SwitchAck]

external Trigger between BSW modules [API: SchM_Trigger]

BSW-Scheduler Trigger [API: SchM_ActMainFunction]

BSW-Scheduler Calibration Parameter Access [API: SchM_CData]

Post Build Variant Sets

Debugging and Logging Support

Variant Handling support (Pre-Compile variability, Postbuild variability for Connectors and
ComponentPrototypes)

Multi-Core support (Mode communication with ModeSwitchTriggers or ModeDisablings,
Rte_ComSendSignalProxyImmediate, RteIocInteractionReturnValue=RTE_COM)

Restarting of partitions

Re-scaling of ports / Data conversion

Pre-Build data set generation phase

Post-Build data set generation phase

Initialization of PerInstanceMemories

Asynchronous Mode Handling

MC data support

Generated BSWMD

Range checks

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

27 / 139

Not Supported AUTOSAR Standard Conform Features

RTE memory section initialisation strategies

External configuration switch strictConfigurationCheck

Table 3-2 Not supported AUTOSAR standard conform features

3.1.2 Additions/ Extensions

The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

Rte_InitMemory API function. See Chapter 5.14.3 for details.

Init-Runnables. See Chapter 3.6.9 for details.

VFB Trace Hooks for SchM APIs. See Chapter 5.16.3 and 5.16.4 for details.

Measurement support for mode communication. See Chapter 6.6 for details.

Measurement with XCP Events. See Chapter 6.6 for details.

S/R Serialization using SOME/IP Transformer and E2E Transformer (AR4.2.1)

C/S Serialization using SOME/IP Transformer and E2E Transformer (AR4.2.1)

LdCom Support (AR4.2.1)

ComXf Support (AR4.2.1)

Table 3-3 Features provided beyond the AUTOSAR standard

3.1.3 Limitations

There are no known limitations.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

28 / 139

3.2 Initialization

The RTE is initialized by calling Rte_Start. Initialization is done by the ECU State

Manager (EcuM).

The Basis Software Scheduler (SchM) is initialized by calling SchM_Init. Initialization is

done by the ECU State Manager (EcuM).

3.3 AUTOSAR ECUs

Besides the basic software modules each AUTOSAR ECU has a single instance of the
RTE to manage the application software of the ECU. The application software is
modularized and assigned to one or more AUTOSAR software components (SWC).

3.4 AUTOSAR Software Components

AUTOSAR software components (SWC) are described by their ports for communication
with other SWCs and their internal behavior in form of runnable entities realizing the
smallest schedulable code fragments in an ECU.

The following communication paradigms are supported for port communication:

 Sender-Receiver (S/R): queued and last-is-best, implicit and explicit

 Client-Server (C/S): synchronous and asynchronous

 Mode communication

 Calibration parameter communication

S/R and C/S communication may occur Intra-ECU or between different ECUs (Inter-ECU).
Mode communication and calibration parameters can only be accessed ECU internally.

In addition to Inter-SWC communication over ports, the description of the internal behavior
of SWCs contains also means for Intra-SWC communication and synchronization of
runnable entities.

 Inter-Runnable Variables

 Per-Instance Memory

 Exclusive Areas

 Calibration Parameters

The description of the internal behavior of SWCs finally contains all information needed for
the handling of runnable entities, especially the events upon which they are triggered.

3.5 Runnable Entities

All application code is organized into runnable entities, which are triggered by the RTE
depending on certain conditions. They are mapped to OS tasks and may access the
communication and data consistency mechanisms provided by the SWC they belong to.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

29 / 139

The trigger conditions for runnable entities are described below, together with the
signature of the runnable entities that results from these trigger conditions. A detailed
description of the signature of runnable entities may be found in section 5.3 Runnable
Entities.

3.6 Triggering of Runnable Entities

AUTOSAR has introduced the concept of RTEEvents to trigger the execution of runnable
entities. The following RTEEvents are supported by the MICROSAR RTE:

 TimingEvent

 DataReceivedEvent

 DataReceiveErrorEvent

 DataSendCompletedEvent

 OperationInvokedEvent

 AsynchronousServerCallReturnsEvent

 ModeSwitchEvent

 ModeSwitchedAckEvent

 InitEvent

 BackgroundEvent

The RTEEvents can lead to two different kinds of triggering:

 Activation of runnable entity

 Wakeup of waitpoint

Activation of runnable entity starts a runnable entity at its entry point while

wakeup of waitpoint resumes runnable processing at a waitpoint. The second is not

possible for all RTEEvents and needs an RTE API to setup this waitpoint inside the
runnable entity code.

Depending on the existence of a waitpoint, runnable entities are categorized into category
1 or category 2 runnables. A runnable becomes a category 2 runnable if at least one
waitpoint exists.

3.6.1 Time Triggered Runnables

AUTOSAR defines the TimingEvent for periodic triggering of runnable entities. The

TimingEvent can only trigger a runnable entity at its entry point. Consequently there

exists no API to set up a waitpoint for a TimingEvent. The signature of a time triggered

runnable is:

void <RunnableName>([IN Rte_Instance instance])

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

30 / 139

3.6.2 Data Received Triggered Runnables

AUTOSAR defines the DataReceivedEvent to trigger a runnable entity on data

reception (queued or last-is-best) or to continue reception of queued data in a blocking

Rte_Receive call. Both intra ECU and inter ECU communication is supported. Data

reception triggered runnables have the following signature:

void <RunnableName>([IN Rte_Instance instance])

3.6.3 Data Reception Error Triggered Runnables

AUTOSAR defines the DataReceiveErrorEvent to trigger a runnable entity on data

reception error. A reception error could be a timeout (aliveTimeout) or an invalidated

data element. The DataReceiveErrorEvent can only trigger a runnable entity at its

entry point. Consequently there exists no API to set up a waitpoint for a

DataReceiveErrorEvent. The signature of a data reception error triggered runnable is:

void <RunnableName>([IN Rte_Instance instance])

3.6.4 Data Send Completed Triggered Runnables

AUTOSAR defines the DataSendCompletedEvent to signal a successful or an

erroneous transmission of explicit S/R communication. The DataSendCompletedEvent

can either trigger the execution of a runnable entity or continue a runnable, which waits at

a waitpoint for the transmission status or the mode switch in a blocking Rte_Feedback

call. Both intra ECU and inter ECU communication is supported. Data send completed
triggered runnables have the following signature:

void <RunnableName>([IN Rte_Instance instance])

3.6.5 Mode Switch Triggered Runnables

AUTOSAR defines the ModeSwitchEvent to trigger a runnable entity on either entering

or exiting of a specific mode of a mode declaration group. The ModeSwitchEvent can

only trigger a runnable entity at its entry point. Consequently there exists no API to set up

a waitpoint for a ModeSwitchEvent. The signature of a mode switch triggered runnable

is:

void <RunnableName>([IN Rte_Instance instance])

3.6.6 Mode Switched Acknowledge Triggered Runnables

AUTOSAR defines the ModeSwitchedAckEvent to signal a successful mode transition.

The ModeSwitchedAckEvent can either trigger the execution of a runnable entity or

continue a runnable, which waits at a waitpoint for the mode transition status. Only intra
ECU communication is supported. Runnables triggered by a mode switch acknowledge
have the following signature:

void <RunnableName>([IN Rte_Instance instance])

http://dict.leo.org/ende?lp=ende&p=/gQPU.&search=erroneous

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

31 / 139

3.6.7 Operation Invocation Triggered Runnables

The OperationInvokedEvent is defined by AUTOSAR to always trigger the execution

of a runnable entity. The signature of server runnables depends on the parameters defined
at the C/S port. Its general appearance is as follows:

{void|Std_ReturnType} <Runnable>([IN Rte_Instance inst] {,paramlist}*)

The return value depends on application errors being assigned to the operation that the
runnable represents. The parameter list contains input in/output and output parameters.
Input parameters for primitive data type are passed by value. Input parameters for
composite data types and all in/output and output parameters independent whether they
are primitive or composite types are passed by reference. The string data type is handled
like a composite type.

3.6.8 Asynchronous Server Call Return Triggered Runnables

The AsynchronousServerCallReturnsEvent signals the end of an asynchronous

server execution and triggers either a runnable entity to collect the result by using

Rte_Result or resumes the waitpoint of a blocking Rte_Result call.

The runnables have the following signature:

{void|Std_ReturnType} <Runnable>([IN Rte_Instance inst] {,paramlist}*)

3.6.9 Init Triggered Runnables

Initialization runnables are called once during startup and have the following signature:

void <RunnableName>([IN Rte_Instance instance])

3.6.10 Background Triggered Runnables

Background triggered runnables have to be mapped to tasks with lowest priority. The
runnables are called by the RTE in an endless loop – in the background – when no other
runnable runs. The signature of a background triggered runnable is:

void <RunnableName>([IN Rte_Instance instance])

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

32 / 139

3.7 Exclusive Areas

An exclusive area (EA) can be used to protect either only a part of runnable code (explicit
EA access) or the complete runnable code (implicit EA access). AUTOSAR specifies four
implementation methods which are configured during ECU configuration of the RTE. See
also Chapter 6.9.

 OS Interrupt Blocking

 All Interrupt Blocking

 OS Resource

 Cooperative Runnable Placement

All of them have to ensure that the current runnable is not preempted while executing the
code inside the exclusive area.

The MICROSAR RTE analyzes the accesses to the different RTE exclusive areas and
eliminates redundant ones if that is possible e.g. if runnable entities accessing the same
EA they cannot preempt each other and can therefore be dropped.

Info
For SchM exclusive areas the automatic optimization is currently not supported.

Optimization must be done manually by setting the implementation method to NONE.

3.7.1 OS Interrupt Blocking

When an exclusive area uses the implementation method OS_INTERRUPT_BLOCKING, it

is protected by calling the OS APIs SuspendOSInterrupts() and

ResumeOSInterrupts(). The OS does not allow the invocation of event and resource

handling functions while interrupts are suspended. This precludes calls to any RTE API

that is based upon an explicitly modeled waitpoint (blocking Rte_Receive,

Rte_Feedback, Rte_SwitchAck or Rte_Result API) as well as synchronous server

calls (which sometimes use waitpoints that are not explicitly modeled or other rescheduling
points). Additionally, all APIs that might trigger a runnable entity on the same ECU or
cause a blocking queue access to be released are forbidden, as well as exclusive areas
implemented as OS Resource.

3.7.2 All Interrupt Blocking

When an exclusive area uses the implementation method ALL_INTERRUPT_BLOCKING, it

is protected by calling the OS APIs SuspendAllInterrupts() and

ResumeAllInterrupts(). The OS does not allow the invocation of event and resource

handling functions while interrupts are suspended. This precludes calls to any RTE API

that is based upon an explicitly modeled waitpoint (blocking Rte_Receive,

Rte_Feedback, Rte_SwitchAck or Rte_Result API) as well as synchronous server

calls (which sometimes use waitpoints that are not explicitly modeled or other rescheduling
points). Additionally, all APIs that might trigger a runnable entity on the same ECU or
cause a blocking queue access to be released are forbidden, as well as exclusive areas
implemented as OS Resource.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

33 / 139

3.7.3 OS Resource

An exclusive area using implementation method OS_RESOURCE is protected by OS

resources entered and released via GetResource() / ReleaseResource()calls, which

raise the task priority so that no other task using the same resource may run. The OS does

not allow the invocation of WaitEvent() while an OS resource is occupied. This again

precludes calls to any RTE API that is based upon an explicitly modeled waitpoint and
synchronous server calls.

3.7.4 Cooperative Runnable Placement

For exclusive areas with implementation method COOPERATIVE_RUNNABLE_PLACEMENT,

the RTE generator only applies a check whether any of the tasks accessing the exclusive
area are able to preempt any other task of that group. This again precludes calls to any
RTE API that is based upon an explicitly modeled waitpoint and synchronous server calls.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

34 / 139

3.8 Error Handling

3.8.1 Development Error Reporting

By default, development errors are reported to the DET using the service

Det_ReportError() as specified in [17], if development error reporting is enabled in the

RteGeneration parameters (i.e. by setting the parameters DevErrorDetect and / or
DevErrorDetectUninit).

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature

as the service Det_ReportError(). The reported RTE ID is 2.

The reported service IDs identify the services which are described in chapter 5. The
following table presents the service IDs and the related services:

Service ID Service

0x00 SchM_Init

0x01 SchM_Deinit

0x03 SchM_Enter

0x04 SchM_Exit

0x13 Rte_Send

0x14 Rte_Write

0x15 Rte_Switch

0x16 Rte_Invalidate

0x17 Rte_Feedback

0x18 Rte_SwitchAck

0x19 Rte_Read

0x1A Rte_DRead

0x1B Rte_Receive

0x1C Rte_Call

0x1D Rte_Result

0x1F Rte_CData

0x20 Rte_Prm

0x28 Rte_IrvRead

0x29 Rte_IrvWrite

0x2A Rte_Enter

0x2B Rte_Exit

0x2C Rte_Mode

0x30 Rte_IsUpdated

0x70 Rte_Start

0x71 Rte_Stop

0x90 Rte_COMCbkTAck_<sn>

0x91 Rte_COMCbkTErr_<sn>

0x92 Rte_COMCbkInv_<sn>

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

35 / 139

Service ID Service

0x93 Rte_COMCbkRxTOut_<sn>

0x94 Rte_COMCbkTxTOut_<sn>

0x95 Rte_COMCbk_<sg>

0x96 Rte_COMCbkTAck_<sg>

0x97 Rte_COMCbkTErr_<sg>

0x98 Rte_COMCbkInv_<sg>

0x99 Rte_COMCbkRxTOut_<sg>

0x9A Rte_COMCbkTxTOut_<sg>

0x9F Rte_COMCbk_<sn>

0xF0 Rte_Task

0xF1 Rte_IncDisableFlags

0xF2 Rte_DecDisableFlags

Table 3-4 Service IDs

The errors reported to DET are described in the following table:

Error Code Description

RTE_E_DET_ILLEGAL_NESTED_EX
CLUSIVE_AREA

The same exclusive area was called nested or exclusive
areas were not exited in the reverse order they were
entered

RTE_E_DET_UNINIT Rte/SchM is not initialized

RTE_E_DET_MODEARGUMENT Rte_Switch was called with an invalid mode parameter

RTE_E_DET_TRIGGERDISABLECOU
NTER

Counter of mode disabling triggers is in an invalid state

RTE_E_DET_TRANSITIONSTATE Mode machine is in an invalid state

RTE_E_DET_MULTICORE_STARTUP Initialization of the master core before all slave cores
were initialized

RTE_E_DET_ILLEGAL_SIGNAL_ID RTE callback was called for a signal that is not active in
the current variant.

Table 3-5 Errors reported to DET

The error RTE_E_DET_UNINIT will only be reported if the parameter

DevErrorDetectUninit is enabled. The reporting of all other errors can be enabled by

setting the parameter DevErrorDetect.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

36 / 139

4 RTE Generation and Integration

This chapter gives necessary information about the content of the delivery, the RTE
generation process including a description about the different RTE generation modes and
finally information how to integrate the MICROSAR RTE into an application environment of
an ECU.

4.1 Scope of Delivery

The delivery of the RTE contains no static RTE code files. The RTE module is completely
generated by the MICROSAR RTE Generator. After the installation, the delivery has the
following content:

Files Description

DVCfgRteGen.exe
(including several DLLs and XML files)

Command line MICROSAR RTE generator

MicrosarRteGen.exe MICROSAR RTE File generator

Rte.jar

Settings_Rte.xml

DaVinci Configurator 5 adaptation modules

Rte_Bswmd.arxml BSWMD file for MICROSAR RTE

TechnicalReference_Asr_Rte.pdf This documentation

ReleaseNotes_MICROSAR_RTE.htm Release Notes

Table 4-1 Content of Delivery

Info
The RTE Configuration Tool DaVinci Developer is not part of MICROSAR RTE / BSW
installation package. It has to be installed separately.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

37 / 139

4.2 RTE Generation

The MICROSAR RTE generator can be called either from the command line application

DVCfgCmd.exe or directly from within the DaVinci Configurator.

4.2.1 Command Line Options

Option Description

--project <file> –p <file> Specifies the absolute path to the DPA project file.

--generate -g Generate the given project specified in <file>.

--moduleToGenerate -m <module> Specifies the module definition references, which

should be generated by the -g switch. Separate

multiple modules by a ','.

E.g. /MICROSAR/Rte, /MICROSAR/Nm

--genArg=”<module>: <params>” Passes the specified parameters <params> to the

generator of the specified module <module>. For

details of the possible parameters of the RTE module
see Table 4-3.

--help -h Displays the general help information of
DVCfgCmd.exe

Table 4-2 DVCfgCmd Command Line Options

4.2.2 RTE Generator Command Line Options

Option Description

–m <obj> Selects the DaVinci model object, where <obj> is either

<ECUProjectName> or <ComponentTypeName>.

Note: If –g i or –g c are selected, which accepts both,

<ComponentTypeName> or <ECUProjectName> and the

configuration contains such objects with the same name, the
component type object takes preference over the ECU project.

When the workspace contains only a single ECUProject or a single

ComponentType, the -m parameter can be omitted.

With the –m parameter also multiple component types can be selected,

delimited with semicolons.

–g [r|c|i|h] Selects generation of the RTE with the following sub options:

r Selects RTE generation for the ECU project specified via option -

m <ECUProjectName>. This is the default option. Therefore –g is

equal to –g r.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

38 / 139

c Selects RTE contract phase header generation for a single

component type or BSW module if -m

<ComponentTypeName/BswModuleName> or for multiple

component types and BSW modules if –m
<ComponentType1Name/BswModule1Name>;

<ComponentType2Name/BswModule2Name> or for all non-

service component types and BSW modules of an ECU project if

-m <ECUProjectName>.

i Selects implementation template generation for a single

component type if -m <ComponentTypeName> or for multiple

component types if –m

<ComponentType1Name>;<ComponentType2Name> or for all

non- service component types of an ECU project if -m

<ECUProjectName>.

The optional –f <file> parameter specifies the file name to use

for the implementation template file. If the –f <file> parameter

is not given, or –m contains an ECU project name, the filename

defaults to <ComponentTypeName>.c.

Already existing implementation files are updated and a backup is
created.

h Selects VFB trace hook template generation for the ECU project

specified via option -m <ECUProjectName>.

The optional –f <file> parameter specifies the file name to use

for the VFB trace hook template file. If the –f <file> parameter

is not given, the filename defaults to

VFBTraceHook_<ECUProjectName>.c.

Already existing implementation files are updated and a backup is
created.

 This parameter can be used more than one time to generate several
modes in one step.

–o <path>

-o r=<path>

-o c=<path>

-o i=<path>

-o h=<path>

-o s=<path>

-o a=<path>

Output path for the generated files.

If more than one generation mode is active, a special path can be
specified for each generation mode by assigning the path to the

character that is used as sub option for the –g parameter.

Furthermore the path for the application header files in the RTE
generation mode can be selected via option –o s=<path>. By default
they are generated into the subdirectory “Components”.

The path for A2L files can be specified with the option –o a=<path>.
These files are generated into the RTE directory by default.

Note: The <path> configured with -o parameter overwrites the path

which is specified in the dpa project file.

–f <file> Optional parameter to specify the output file name for options –g i

and –g h.

Note: For option –g i the output file name can only be specified if –m

specifies a component type. The output file name cannot be specified

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

39 / 139

when –m specifies multiple component types.

-v Enables verbose mode which includes help information for error,
warning and info messages.

–h Displays the general help information.

Table 4-3 RTE Generator Command Line Options

4.2.3 Generation Path

The RTE output files are generated into the path which is either specified within the dpa

project file or which is specified in the –o command line option. If several generation

modes are activated in parallel, for each phase a special path can be specified with the –o

command line option.

In RTE generation phase (command line option –g or –g r), the component type specific

application header files are generated into the subdirectory Components. This

subdirectory can be changed in the RTE generation phase with the option –o

“s=<path>”. In addition the directory for the A2L files, which are generated into the RTE

directory by default, can be specified with the option –o “a=<path>”.

4.3 MICROSAR RTE generation modes

The sections give an overview of the files generated by the MICROSAR RTE generator in
the different RTE generation modes and some examples how the command line call looks
like.

4.3.1 RTE Generation Phase

The following files are generated by the RTE generation: (Option –g or –g r)

File Description

Rte_<ComponentType>.h Application header file, which has to be included into the SWC
code. This header file is the only file to be included in the

component code. It is generated to the Components subdirectory

by default.

Rte_<ComponentType>_Type.h Application type header file. This header file contains SWC specific

type definitions. It is generated to the Components subdirectory

by default.

SchM_<BswModule>.h Module interlink header file, which has to be included into the BSW
module code.

SchM_<BswModule>_Type.h Module interlink types header file. This header file contains BSW
module specific type definitions.

<ComponentType>_MemMap.h Template contains SWC specific part of the memory mapping. It is

generated to the Components subdirectory by default.

Rte.c Generated RTE

Rte_<OsApplication>.c

OsApplication specific part of the generated RTE (only generated
when OsApplications are configured)

Rte_PBCfg.c The RTE post build data set configuration file contains the data
structures for the postbuild RTE initialization.

Rte.h RTE internal declarations

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

40 / 139

Rte_Main.h Header file for RTE lifecycle API

Rte_Cfg.h Configuration file for the RTE

Rte_Cbk.h Contains prototypes for COM callbacks

Rte_Hook.h Contains relevant information for VFB tracing

Rte_Type.h Contains the application defined data type definitions and RTE
internal data types

Rte_DataHandleType.h

The RTE data handle types header file contains the data handle
type declarations required for the component data structures.

Rte_PBCfg.h The RTE post build data set configuration header contains the
declarations for the data structures that are used for the postbuild
RTE initialization.

Rte_UserTypes.h Template which is generated if either user defined data types are
required for Per-Instance memory or if a data type is used by the

RTE but generation is skipped with the typeEmitter attribute.

Rte_MemMap.h Template contains RTE specific part of the memory mapping

Rte_Compiler_Cfg.h Template contains RTE specific part of the compiler abstraction

usrostyp.h Template which is only generated if memory protection support is
enabled. In that case this file is included by the MICROSAR OS.

Rte.oil OS configuration for the RTE

Rte_Needs.ecuc.arxml Contains the RTE requirements on BSW module configuration for
Os, Com and NvM.

Rte.a2l

A2L file containing CHARACTERISTIC and MEASUREMENT
objects for the generated RTE

Rte_MemSeg.a2l A2L file containing MEMORY_SEGMENT objects for the
generated RTE

Rte_rules.mak,
Rte_defs.mak,
Rte_check.mak,
Rte_cfg.mak

Make files according to the AUTOSAR make environment proposal

are generated into the mak subdirectory.

Rte.html Contains information about RAM / CONST consumption of the
generated RTE as well as a listing of all triggers and their OS
events and alarms.

Table 4-4 Generated Files of RTE Generation Phase

Example:

DVCfgCmd -p "InteriorLight.dpa" –m /MICROSAR/Rte –g

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

41 / 139

4.3.2 RTE Contract Phase Generation

The following files are generated by the RTE contract phase generation: (Option –g c)

File Description

Rte_<ComponentType>.h Application header file, which must be included into the SWC
code. This header file is the only file to be included in the
component code.

Rte_<ComponentType>_Type.h Application type header file. This header file contains SWC specific
type definitions.

<ComponentType>_MemMap.h Template contains SWC specific part of the memory mapping.

Rte.h RTE internal declarations

Rte_Type.h Contains the application defined data type definitions and RTE
internal data types

Rte_DataHandleType.h The RTE data handle types header file contains the data handle
type declarations required for the component data structures.

Rte_UserTypes.h Template which is generated if either user defined data types are
required for Per-Instance memory or if a data type is used by the

RTE but generation is skipped with the typeEmitter attribute.

Rte_MemMap.h Template contains RTE specific part of the memory mapping

Rte_Compiler_Cfg.h Template contains RTE specific part of the compiler abstraction

SchM_<BswModule>.h Module interlink header file, which has to be included into the BSW
module code.

SchM_<BswModule>_Type.h Module interlink types header file. This header file contains BSW
module specific type definitions.

Table 4-5 Generated Files of RTE Contract Phase

Example:

DVCfgCmd -p "InteriorLight.dpa"

 -m /MICROSAR/Rte

 –g

 --genArg=”Rte: -g c –m SenderComponent”

The generated header files are located in a component type specific subdirectory. The
application header file must be included in each source file of a SWC implementation,
where the RTE API for that specific SWC type is used.

The application header file created in the RTE contract phase can be used to compile
object code components, which can be linked to an RTE generated in the RTE generation
phase. The application header files are generated in RTE compatibility mode.

Caution
During the RTE generation phase an optimized header file is generated. This optimized
header file should be used when compiling the source code SWCs during the ECU
build process.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

42 / 139

The usage of object code SWCs, which are compiled with the application header files
of the contract phase, require an “Implementation Code Type” for SWCs set to “object
code” in order to tell the RTE generator in the RTE generation phase NOT to create
optimized RTE API accesses but compatible ones.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

43 / 139

4.3.3 Template Code Generation for Application Software Components

The following file is generated by the implementation template generation: (Option –g i)

File Description

<FileName>.c An implementation template is generated if the –g i option is

selected. The –f option specifies the name of the generated c file.

If no name is selected the default name <ComponentTypeName>.c

is used.

Table 4-6 Generated Files of RTE Template Code Generation

Example:

DVCfgCmd -p "InteriorLight.dpa"

 –m /MICROSAR/Rte

 –g

 --genArg=”Rte: -g i –m SenderComponent -f Component1.c”

The generated template files contain all empty bodies of the runnable entities for the
selected component type. It also contains the include directive for the application header
file. In addition, the available RTE API calls are included in comments.

Caution
When the destination file of the SWC template code generation is already available,
code that is placed within the user code sections marked by “DO NOT CHANGE”-
comments is transferred unchanged to the updated template file.

Additionally, a numbered backup of the original file is made before the new file is
written.

The preservation of runnable code is done by checking for the runnable symbol. This
implies that after a change of the name of a runnable the runnable implementation is
preserved, while a change of the symbol results in a new empty function for the
runnable.

Code that was removed during an update is kept in the “removed code” section at the
bottom of the implementation file and in the numbered backups.

The template update is particularly useful when e.g. access to some interfaces has
been added or removed from a runnable, because then the information of available
APIs is updated by the generation process without destroying the implementation.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

44 / 139

4.3.4 VFB Trace Hook Template Code Generation

The following file is generated by the VFB trace hook template generation: (Option –g h)

File Description

<FileName>.c An implementation template of the VFB trace hooks is generated if

the –g h option is selected. The –f option specifies the name of

the generated c file. If no name is selected the default name

VFBTraceHook_< ECUProjectName >.c is used.

Table 4-7 Generated Files of VFB Trace Hook Code Generation

Example:

DVCfgCmd -p "InteriorLight.dpa"

 –m /MICROSAR/Rte

 –g

 --genArg=”Rte: -g h –f VFBTraceHook_myEcu.c”

Caution
When the destination file of the VFB trace hook template generation is already
available, code that is placed within the user code sections marked by “DO NOT
CHANGE” comments is transferred unchanged to the updated template file.

Additionally, a numbered backup of the original file is made before the new file is
written.

The preservation of trace hook code is done by checking for the trace hook name.
When the name of a hook changes, e.g. because the name of a data element
changed, then the code of the previous trace hook is removed.

Code that was removed during an update is kept in the “removed code” section at the
bottom of the implementation file and in the numbered backups.

The template update is particularly useful when some trace hooks have been added or
removed due to changed interfaces or OS usage.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

45 / 139

4.4 Include Structure

4.4.1 RTE Include Structure

Figure 4-1 RTE Include Structure

 class RTE Include Structure

Com.h Rte_Cbk.h

Rte.c

Rte_<Swc>.h

Rte_Type.h

Rte_<Swc>_Type.h

Os.h

Rte_Hook.h

Rte_Cfg.hRte.h

Std_Types.h

Platform_Types.hCompiler.hCompiler_Cfg.h

Rte_Main.h

Rte_UserTypes.h

Rte_Compiler_Cfg.h

MemMap.h

<Swc>_MemMap.h

Rte_MemMap.h

Generated RTE C File

Generated RTE Header Files

Header Files of other Modules

Legend

Rte_DataHandleType.h

SchM_<Bsw>.h

SchM_<Bsw>_Type.h

Xcp.h

Det.h

Ioc.h

Rte_PBCfg.h

«include»

«include»

«include»«include»

«include»

«include»
«include»

«include»

«include»

«include»

«include»

«include»

«include»«include»
«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include» «include»

«include»
«include»

«include»

«include»

«include»

«include»

«include»
«include»

«include»

«include»

«include»

«include»

«include»

«include»

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

46 / 139

4.4.2 SWC Include Structure

The following figure shows the include structure of a SWC with respect to the RTE
dependency. All other header files which might be included by the SWC are not shown.

Figure 4-2 SWC Include Structure

 class Swc Include Structure

<Swc>.c

Rte_<Swc>.h

Rte_<Swc>_Type.h

Com.h

Rte_Type.h

Rte.h Rte_UserTypes.hMemMap.h

<Swc>_MemMap.h

Rte_MemMap.h

User SWC Implementation File(s)

Generated RTE Header Files

Header Files of other Modules

Legend

Rte_DataHandleType.h

1..*

«include»

«include»«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

47 / 139

4.4.3 BSW Include Structure

The following figure shows the include structure of a BSW module with respect to the
SchM dependency. All other header files which might be included by the BSW module are
not shown.

Figure 4-3 BSW Include Structure

 class Bsw Include Structure

BSW Module File(s)

Generated RTE Header Files

Header Files of other Modules

Legend

<Bsw>.c

SchM_<Bsw>.h

SchM_<Bsw>_Type.hOs.h

Rte.h Rte_Type.h

Rte_PBCfg.h

1..*

«include»

«include»
«include»

«include»

«include»

«include»

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

48 / 139

4.5 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions – the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following two tables contain the memory section names and the compiler abstraction
definitions defined for the RTE and illustrate their assignment among each other.

Compiler Abstraction

Definitions

Memory Mapping

Sections
R

T
E

_
V

A
R

_
Z

E
R

O
_
IN

IT

<
S

w
c
>

_
V

A
R

_
Z

E
R

O
_
IN

IT

R
T

E
_
V

A
R

_
IN

IT

<
S

w
c
>

_
V

A
R

_
IN

IT

R
T

E
_
V

A
R

_
N

O
IN

IT

<
S

w
c
>

_
V

A
R

_
N

O
IN

IT

R
T

E
_
V

A
R

_
<

P
im

>

R
T

E
_
<

N
v
R

a
m

B
lo

c
k
>

R
T

E
_
V

A
R

_
<

C
a
l>

R
T

E
_
C

O
N

S
T

<
S

w
c
>

_
C

O
N

S
T

R
T

E
_
C

O
N

S
T

_
<

C
a
l>

R
T

E
_
C

O
D

E

<
S

w
c
>

_
C

O
D

E

R
T

E
_
A

P
P

L
_
C

O
D

E

R
T

E
_
<

S
W

C
>

_
A

P
P

L
_
C

O
D

E

R
T

E
_
<

S
W

C
>

_
A

P
P

L
_
V

A
R

R
T

E
_
<

S
W

C
>

_
A

P
P

L
_
D

A
T
A

R
T

E
_
A

P
P

L
_
V

A
R

R
T

E
_
A

P
P

L
_
D

A
T
A

RTE_START_SEC_VAR_ZERO_INIT_8BIT
RTE_STOP_SEC_VAR_ZERO_INIT_8BIT



RTE_START_SEC_VAR_ZERO_INIT_UNSPECIFIED
RTE_STOP_SEC_VAR_ZERO_INIT_UNSPECIFIED



RTE_START_SEC_VAR_<OsAppl>_ZERO_INIT_UNSPECIFIED
1

RTE_STOP_SEC_VAR_<OsAppl>_ZERO_INIT_UNSPECIFIED
1



<Swc>_START_SEC_VAR_ZERO_INIT_UNSPECIFIED
<Swc>_STOP_SEC_VAR_ZERO_INIT_UNSPECIFIED

 

RTE_START_SEC_VAR_INIT_UNSPECIFIED
RTE_STOP_SEC_VAR_INIT_UNSPECIFIED

 

RTE_START_SEC_VAR_<OsAppl>_INIT_UNSPECIFIED
1

RTE_STOP_SEC_VAR_<OsAppl>_INIT_UNSPECIFIED
1

 

<Swc>_START_SEC_VAR_INIT_UNSPECIFIED
<Swc>_STOP_SEC_VAR_INIT_UNSPECIFIED

 

RTE_START_SEC_VAR_NOINIT_UNSPECIFIED
RTE_STOP_SEC_VAR_NOINIT_UNSPECIFIED

 

RTE_START_SEC_VAR_<OsAppl>_NOINIT_UNSPECIFIED
1

RTE_STOP_SEC_VAR_<OsAppl>_NOINIT_UNSPECIFIED
1

 

<Swc>_START_SEC_VAR_NOINIT_UNSPECIFIED
<Swc>_STOP_SEC_VAR_NOINIT_UNSPECIFIED

 

RTE_START_SEC_VAR_<Pim>_UNSPECIFIED
RTE_STOP_SEC_VAR_<Pim>_UNSPECIFIED

 

RTE_START_SEC_<NvRamBlock>
RTE_STOP_SEC_<NvRamBlock>

 

RTE_START_SEC_VAR_<Cal>_UNSPECIFIED
RTE_STOP_SEC_VAR_<Cal>_UNSPECIFIED

 

RTE_START_SEC_CONST_UNSPECIFIED
RTE_STOP_SEC_CONST_UNSPECIFIED

 

<Swc>_START_SEC_CONST_UNSPECIFIED
<Swc>_STOP_SEC_CONST_UNSPECIFIED

 

1
 This memory mapping sections are only used if memory protection support is enabled

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

49 / 139

RTE_START_SEC_CONST_<Cal>_UNSPECIFIED
RTE_STOP_SEC_CONST_<Cal>_UNSPECIFIED

 

RTE_START_SEC_CODE
RTE_STOP_SEC_CODE

 

<Swc>_START_SEC_CODE
<Swc>_STOP_SEC_CODE

 

RTE_START_SEC_APPL_CODE
RTE_STOP_SEC_APPL_CODE

 

Table 4-8 Compiler abstraction and memory mapping

Compiler Abstraction

Definitions

Memory Mapping

Sections

R
T

E
_
V

A
R

_
Z

E
R

O
_
IN

IT
_
N

O
C

A
C

H
E

R
T

E
_
V

A
R

_
IN

IT
_
N

O
C

A
C

H
E

R
T

E
_
V

A
R

_
N

O
IN

IT
_
N

O
C

A
C

H
E

RTE_START_SEC_VAR_NOCACHE_ZERO_INIT_8BIT
RTE_STOP_SEC_VAR_NOCACHE_ZERO_INIT_8BIT



RTE_START_SEC_VAR_NOCACHE_ZERO_INIT_UNSPECIFIED
RTE_STOP_SEC_VAR_NOCACHE_ZERO_INIT_UNSPECIFIED



RTE_START_SEC_VAR_<OsAppl>_NOCACHE_ZERO_INIT_UNSPECIFIED
RTE_STOP_SEC_VAR_<OsAppl>_NOCACHE_ZERO_INIT_UNSPECIFIED



RTE_START_SEC_VAR_NOCACHE_INIT_UNSPECIFIED
RTE_STOP_SEC_VAR_NOCACHE_INIT_UNSPECIFIED

 

RTE_START_SEC_VAR_<OsAppl>_NOCACHE_INIT_UNSPECIFIED
RTE_STOP_SEC_VAR_<OsAppl>_NOCACHE_INIT_UNSPECIFIED

 

RTE_START_SEC_VAR_NOCACHE_NOINIT_UNSPECIFIED
RTE_STOP_SEC_VAR_NOCACHE_NOINIT_UNSPECIFIED

 

RTE_START_SEC_VAR_<OsAppl>_NOCACHE_NOINIT_UNSPECIFIED
RTE_STOP_SEC_VAR_<OsAppl>_NOCACHE_NOINIT_UNSPECIFIED

 

Table 4-9 Compiler abstraction and memory mapping for non-cacheable variables

The memory mapping sections and compiler abstraction defines specified in Table 4-9 are
only used for variables which are shared between different cores on multicore systems.
These variables must be linked into non-cacheable memory.

The RTE specific parts of Compiler_Cfg.h and MemMap.h depend on the configuration

of the RTE. Therefore the MICROSAR RTE generates templates for the following files:

 Rte_Compiler_Cfg.h

 Rte_MemMap.h

They can be included into the common files and should be adjusted by the integrator like
the common files too.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

50 / 139

4.5.1 Memory Sections for Calibration Parameters and Per-Instance Memory

The variable part of the memory abstraction defines for calibration parameters <Cal> and

Per-Instance Memory <Pim> depends on the configuration. The following table shows the

attributes, which have to be defined in DaVinci Developer in order to assign a calibration
parameter or a Per-Instance Memory to one of the configured groups. The groups
represented by the enumeration values of the attributes can be configured in the attribute
definition dialog in DaVinci Developer without any naming restrictions. Only the name of
the attribute itself is predefined as described in the table below.

Object Type Attribute Name Attribute Type

Calibration Parameter PAR_GROUP_CAL Enumeration

Calibration Element Prototype PAR_GROUP_EL Enumeration

Per-Instance Memory PAR_GROUP_PIM Enumeration

NvBlockDataPrototype PAR_GROUP_NVRAM Enumeration

Details of configuration and usage of User-defined attributes can be found in the DaVinci
Online Help [19].

Example for Calibration Parameters:

If the attribute PAR_GROUP_CAL contains e.g. the enumeration values CalGroupA and

CalGroupB and calibration parameters are assigned to those groups, the RTE generator

will create the following memory mapping defines:

RTE_START_SEC_CONST_CalGroupA_UNSPECIFIED

RTE_STOP_SEC_CONST_CalGroupA_UNSPECIFIED

RTE_START_SEC_CONST_CalGroupB_UNSPECIFIED

RTE_STOP_SEC_CONST_CalGroupB_UNSPECIFIED

In addition the following memory mapping defines are generated, if the calibration method
Initialized RAM is enabled (see also Chapter 6.6):

RTE_START_SEC_VAR_CalGroupA_UNSPECIFIED

RTE_STOP_SEC_VAR_CalGroupA_UNSPECIFIED

RTE_START_SEC_VAR_CalGroupB_UNSPECIFIED

RTE_STOP_SEC_VAR_CalGroupB_UNSPECIFIED

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

51 / 139

Example for Per-Instance Memory:

If the attribute PAR_GROUP_PIM contains e.g. the enumeration values PimGroupA and

PimGroupB and Per-Instance Memory is assigned to those group, the RTE generator will

create the following memory mapping defines:

RTE_START_SEC_VAR_PimGroupA_UNSPECIFIED

RTE_STOP_SEC_VAR_PimGroupA_UNSPECIFIED

RTE_START_SEC_VAR_PimGroupB_UNSPECIFIED

RTE_STOP_SEC_VAR_PimGroupB_UNSPECIFIED

4.5.2 Memory Sections for Software Components

The MICROSAR RTE generator generates specific memory mapping defines for each
SWC type which allows to locate SWC specific code, constants and variables in different
memory segments.

The variable part <Swc> is the camel case software component type name. The RTE

implementation template code generator (command line option –g i) uses the SWC

specific sections to locate the runnable entities in the appropriate memory section.

The SWC type specific parts of MemMap.h depend on the configuration. The MICROSAR

RTE generator creates a template for each SWC according the following naming rule:

 <Swc>_MemMap.h

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

52 / 139

4.5.3 Compiler Abstraction Symbols for Software Components and RTE

The RTE generator uses SWC specific defines for the compiler abstraction.

The following define is used in RTE generated SW-C implementation templates in the
runnable entity function definitions.

<Swc>_CODE

In addition, the following compiler abstraction defines are available for the SWC developer.
They can be used to declare SWC specific function code, constants and variables.

<Swc>_CODE

<Swc>_CONST

<Swc>_VAR_NOINIT

<Swc>_VAR_INIT

<Swc>_VAR_ZERO_INIT

If the user code contains variable definitions, which are passed to the RTE API by
reference in order to be modified by the RTE (e.g. buffers for reading data elements) the
RTE uses the following define to specify the distance to the buffer.

RTE_APPL_VAR (RTE specific)

If the user code contains variable or constant definitions, which are passed to the RTE API
as pure input parameter (e.g. buffers for sending data elements) the RTE uses the
following define to specify the distance to the variable or constant.

RTE_<SWC>_APPL_DATA (SWC specific)

RTE_APPL_DATA (RTE specific)

All these SWC and RTE specific defines for the compiler abstraction might be adapted by
the integrator. The configured distances have to fit with the distances of the buffers and the
code of the application.

Caution

The template files <Swc>_MemMap.h, Rte_MemMap.h and Rte_Compiler_Cfg.h

have to be adapted by the integrator depending on the used compiler and hardware
platform especially if memory protection is enabled.

When the files are already available during RTE generation, the code that is placed
within the user code sections marked by “DO NOT CHANGE”-comments is transferred
unchanged to the updated template files. The behavior is the same as for template
generation of other files like SWC template generation.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

53 / 139

4.6 Memory Protection Support

The MICROSAR RTE supports memory protection as an extension to the AUTOSAR RTE
specification. Therefore the memory protection support of the Operating System provides
the base functionality. The support is currently limited to the Vector MICROSAR OS
because the RTE requires read access to the data from all partitions what is not required
by AUTOSAR. Moreover when trusted functions are used, the RTE uses wrapper functions
that are only generated by MICROSAR OS.

4.6.1 Partitioning of SWCs

The partitioning of SWCs to memory areas can be done DaVinci CFG. The partitioning is
based on assignment of tasks to OS applications, which is part of the OS configuration
process.

There exists the restriction that all Runnable Entities of a single SWC have to be assigned
to the same OS application. This restriction and the assignment of tasks to OS
applications indirectly assign SWCs to OS applications. This is the basis for grouping
SWCs to different memory partitions. Additional information about memory protection
configuration can be found in Chapter 6.3.

4.6.2 OS Applications

The operating system supports different scalability classes (SC). Only in SC3 and SC4 the
memory protection mechanism is available. Therefore the configuration of the required
scalability class is the first step to enable memory partitioning. The second step is the
assignment of SWCs to partitions (OS applications) which is done by assigning tasks to
OS applications as described above.

The OS supports two types of OS applications:

 Non-Trusted

 Trusted

Non-Trusted OS applications run with enabled memory protection, trusted OS applications
with disabled memory protection.

Both types are supported by the MICROSAR RTE and can be selected in the OS
application configuration dialog or directly in the OS configuration tool.

Caution
If no assignment of tasks to OS applications exist memory protection is disabled.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

54 / 139

4.6.3 Partitioning Architecture

When memory protection is used, one or more SWCs can be assigned to an OS
application but it is not allowed to split up a SWC between two or more OS applications.
That means that all runnables of a SWC have to be assigned to tasks, which belong to the
same OS application. It is the responsibility of the RTE to transfer the data of S/R and the
arguments of C/S port interfaces over the protection boundaries.

Caution
Client-Server invocations implemented as direct function calls should be used inside
one OS application only.

The MICROSAR RTE itself and the BSW can either run in a trusted OS application or in a
non-trusted OS application. Both architectures are described below.

4.6.3.1 Trusted RTE and BSW

Figure 4-4 Trusted RTE Partitioning example

This architecture overview assumes that the RTE and the BSW modules that are used by
the RTE run in one or more trusted OS applications. Application software components
(SWC) above the RTE can either be trusted or non-trusted. When this architecture is used,

trusted/non-trusted
application

Non-trusted

application

trusted applicationtrusted application

ECU-Hardware

Operating
System

Software
Component

Software
Component

Software
Component

Software
Component

..............

AUTOSAR
Software

Communication
Complex

Device Driver

Basic Software

MICROSAR RTE

Service
Component

Ecu Abstraction

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

55 / 139

the RTE uses trusted functions so that non-trusted SWCs can access the BSW and SWCs

in other OS applications. In this architecture, Rte_Start() has to be called from a

trusted task and the Com module needs to run in trusted context, too. The RTE will use the
same OS application as the BSW Scheduler tasks.

An architecture where the BSW modules and the RTE are assigned to a non-trusted OS
application is described in the next chapter.

4.6.3.2 Non-Trusted RTE and BSW

Figure 4-5 Non-trusted RTE Partitioning example

This architecture overview assumes that the BSW modules below the RTE, as well as the
RTE itself run in a single non-trusted OS application. The SWCs above the RTE can either
be assigned to the same non-trusted OS application as the BSW or they can be assigned
to one or more other non-trusted or trusted OS applications. Every OS application has its
own buffers which are only written by runnables that run in the same OS application. The
RTE does not use trusted functions in this architecture. Therefore it is possible to create a
system where all SWCs and the BSW are assigned to non-trusted OS applications and all
runnables/tasks always run with enabled memory protection.

trusted/non-trusted
application

Non-trusted

application

trusted applicationnon-trusted

application

ECU-Hardware

Operating
System

Software
Component

Software
Component

Software
Component

Software
Component

..............

AUTOSAR
Software

Communication
Complex

Device Driver

Basic Software

MICROSAR RTE

Service
Component

Ecu Abstraction

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

56 / 139

The non-trusted RTE architecture is automatically chosen when the RTE configuration
fulfills the following criterions:

 The tasks that contain the BSW modules are known by the RTE. This can be achieved
by configuring them as BSW Scheduler tasks (See chapter 6.2).

 All BSW Scheduler tasks are assigned to the same non-trusted OS application (further
referred to as BSW OS Application). It is assumed that this is also the OS application
that initializes the RTE by calling Rte_Start. The application tasks can either be
assigned to the BSW OS Application or to other non-trusted or trusted OS
applications.

 All SWCs with mode provide ports are assigned to the BSW OS Application.

 All SWCs that contain runnables with mode disabling dependencies or mode triggers
are assigned to the BSW OS Application.

 There are no direct client/server calls across OS applications

No special limitations apply to SWCs that are assigned to the same OS application as the
BSW. Moreover, the following RTE features can also be used by SWCs in other OS
applications:

 direct or buffered inter-runnable variables

 per-instance memories

 SWC local calibration parameters

 access to calibration software components

 queued and nonqueued intra-ECU sender/receiver communication (when there is only
a single sender partition)

 inter-ECU sender/receiver communication (see also chapter 4.8.1)

 direct client/server calls to runnables within the same OS application

 mapped client/server calls to runnables in the same and different OS applications (see
also chapter 4.8.2)

 reading modes with the Rte_Mode API

 explicit and implicit exclusive areas

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

57 / 139

4.6.4 Conceptual Aspects

For intra OS application communication no additional RTE interaction is required. Special
memory protection handling is required only if communication between different OS
applications exists. In that case, the RTE has to provide means to transfer data over the
protection boundaries. The only possibility is the usage of trusted function calls inside the
generated RTE code. Those trusted function calls are expensive concerning code usage
and runtime. Therefore the usage of trusted function calls should be minimized if possible.

The MICROSAR RTE generator uses trusted function calls only if necessary. In some
cases the usage of trusted function calls can be avoided by assigning the RTE buffers to
the appropriate OS application. The Vector MICROSAR OS only provides write access
protection but doesn’t support read access protection. This behavior is the basis to avoid
trusted function calls, because the writing OS application can be seen as the owner of the
memory buffer. Only a simple assignment of the buffer to the appropriate OS application is
necessary. This also makes it possible to completely avoid trusted function calls when the
“Non-trusted RTE“ architecture (chapter 4.6.3.2) is chosen.

Only if the memory assignment cannot be used, the RTE needs trusted functions to cross
the protection boundaries.

For that purpose, the RTE generator uses the OS application of the BSW Scheduler tasks
as its own OS application, which always needs to be trusted. The trusted functions called
by the RTE are assigned to that trusted OS application. In addition to the communication
between SWCs of different OS applications, there also exists communication between the
COM BSW module and the RTE. Especially the notifications of the COM are done in an
undefined call context. The MICROSAR RTE assumes that the calls of the COM callbacks
are done from the OS application that contains the BSW Scheduler tasks.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

58 / 139

4.6.5 Memory Protection Integration Hints

4.6.5.1 Enabling of Memory Protection support

Please make sure that memory protection is enabled by assigning tasks to OS
applications and by selecting scalability class SC3 or SC4 in the OS configuration.

4.6.5.2 Memory mapping in Linker Command File

If memory protection is enabled, the RTE generator creates additional OS application
specific memory sections for variables: In addition, the user has to split up his Per-
Instance Memory (PIM) sections to the different OS applications. These additional memory
sections have to be mapped in the linker command file to the appropriate memory
segments. See OS and compiler / linker manual for details.

The individual memory sections are listed in chapter 4.5.

The standard RTE memory section defines need to be mapped to the same segments as
the BSW.

OS Application specific parts of the RTE implementation are generated to separate

Rte_<OsApplicationName>.c files.

4.6.5.3 OS Configuration extension

In addition to the RTE extensions in the OS configuration which are done automatically by
the RTE generator, the following steps have to be done by the Integrator.

All OS objects, used by BSW modules e.g. ISRs, BSW-Tasks, OS resources, alarms etc.
have to be assigned to an OS application. COM callbacks have to run in the same OS
application as the RTE/BSW Scheduler tasks. Dependent on the implementation of the
COM Stack, the tasks or ISRs, which call the COM callbacks must therefore be assigned
to the right OS application.

In the OS configuration of an SC3 or SC4 OS, the tasks must explicitly allow access by

other OS applications. Due to possible calls of ActivateTask or SetEvent inside RTE

implemented COM callbacks, the accessing BSW OS applications for all application tasks,
which are affected by these calls need to be configured. This is automatically done when
the RTE configuration contains all BSW Scheduler tasks. Otherwise, the configuration
needs to be extended by the integrator.

If the RTE configuration contains not all BSW Scheduler tasks, also the OS application

that sets up the tasks and alarms by calling Rte_Start needs to be configured for the

task and alarm objects in the OS configuration.

This configuration extension has to be done in the OS configuration tool.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

59 / 139

4.7 Multicore support

Similar to the mapping of SWCs to partitions with different memory access rights, the
MICROSAR RTE also supports the mapping of SWCs to partitions on different cores for
parallel execution.

4.7.1 Partitioning of SWCs

The mapping of SWCs to cores happens with the help of OS Applications like in the
memory protection use case. The user has to assign runnables to tasks and tasks to OS
Applications in order to map SWCs to partitions. The OS Applications can then be
assigned to one of the cores of the ECU. SWCs can only be assigned to a single OS
Application. This means that all runnables of a SWC need to be mapped to tasks within
the same OS Application.

When two SWCs on different cores communicate with each other, the RTE will
automatically apply data consistency mechanisms.

4.7.2 BSW in Multicore Systems

The MICROSAR RTE assumes that all BSW modules with direct RTE interaction (e.g.
COM and NVM) are located in a single BSW OS Application on a single BSW core. The
only exceptions are BSW modules like OS and ECUM that need to be available on all
cores. For AUTOSAR4, the BSW OS Application is the OS Application that contains the
tasks with the schedulable entities. The RTE assumes that all COM and NVM callbacks
are called from this BSW OS Application.

All RTE Lifecycle APIs (Rte_Start(), Rte_Stop(), Rte_InitMemory(),

SchM_Init(), SchM_Deinit()) have to be called on all cores.

Cyclic triggered runnables will start to run as soon as Rte_Start() is called on the BSW

core.

It is recommended to use only a single BSW OS Application per core. The RTE will then

configure the access rights so that Rte_Start() can be called from the core specific

BSW OS application.

Caution
The RTE will start the scheduling of cyclic triggered runnable entities as soon as

Rte_Start() is called on the BSW Core. Therefore, Rte_Start() on the BSW core

should only be invoked when the Rte_Start() calls on all other cores finished

execution. This is checked with a DET check.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

60 / 139

4.7.3 IOC Usage

In multicore systems, the OS provides Inter OS-Application Communicator (IOC) Objects
for the communication between the individual cores. However, on many systems the
memory of the different cores can also be accessed without IOCs. This is the case when
the RTE variables that are used for communication are mapped to non-cacheable RAM
and when they can either be accessed atomically or when the accesses are protected with
a spinlock. Moreover in case of memory protection, this is only possible when a variable is
only written by a single partition and when the variable can be read by the other partitions.

The MICROSAR RTE Generator tries to avoid IOCs so that it can use the same variables
for intra and inter partition communication. Moreover spinlocks are only used for variables
that cannot be accessed atomically.

If the RTE variables cannot be mapped to globally readable, shared, non-cacheable RAM

the usage of IOCs can be enforced with the EnforceIoc parameter in the

RteGeneration parameters.

Caution

RTE variables that are mapped to NOCACHE memory sections need to be mapped to

non-cacheable RAM. See also chapter 4.5.

4.8 BSW Access in Partitioned systems

When the SWCs are assigned to different OS Applications, only the SWCs that are
assigned to the BSW OS Application can access the BSW directly. SWCs that are
assigned to other cores or partitions do not always have the required access rights. The
same is true for runnable entities that are directly called by the BSW through client/server
interfaces. The RTE can transparently provide proxy code for such BSW accesses but the
user needs to map the SendSignal proxy and the server runnables to tasks in which they
can be executed.

4.8.1 Inter-ECU Communication

IOCs or additional global RTE variables are automatically inserted by the RTE generator
when data needs to be sent from a partition without BSW to another ECU. This is required
because the COM APIs cannot be called directly in this case.

Instead, the RTE provides a schedulable entitiy Rte_ComSendSignalProxyPeriodic,

which periodically calls the COM APIs when a partition without BSW transmitted data.

The schedulable entity Rte_ComSendSignalProxyPeriodic should be mapped to the

same task as Com_MainFunctionTx with a lower position in task so that it can update

the signals before they are transmitted by COM. Rte_ComSendSignalProxyPeriodic

will be scheduled with the same cycle time as Com_MainFunctionTx. For this, the RTE

generator reads the period from the COM configuration.

For the reception of signals no special handling is required. The RTE will automatically
forward the received data to the appropriate partition in the COM notifications.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

61 / 139

4.8.2 Client Server communication

Also client server calls between SWCs in different partitions are possible.

In order to execute the server runnable in another partition, the server runnable needs to
be mapped to a task. The RTE will then make the server arguments available in the
partition of the server runnable, execute the server runnable in the context of its task and
return the results to the calling partition.

Direct client server calls to servers on other cores are not possible because this would
enforce that the server is executed in the context of the client core. This would lead to data

consistency problems for RTE APIs that only provide buffer pointers like Rte_Pim(). The

RTE cannot use IOCs for these APIs because the actual buffer update is done by the
application code.

You can instruct the RTE to generate a context switch. You can decide this over the task
mapping of a function trigger.

If you consider RTE calls which originate from the same partition as the server runnable, a
context switch into the task of the server runnable may not be required. Here, doing a task
switch would mean an additional overhead which can be avoided.

Therefore it is also possible to configure an additional server port prototype for clients
which are local to the server partition. The triggers from both server ports can then trigger
the same server runnable. However, only the trigger from the port that is connected
to foreign partitions needs to be mapped onto a task. As a consequence, the RTE can
implement calls from partition local clients as efficient direct function calls.

Please take into account, that this is only allowed when the server runnable is not invoked
concurrently or marked as “can be invoked concurrently”. In addition, you can use
Exclusive Areas to protect the runnable against concurrent access problems.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

62 / 139

5 API Description

The RTE API functions used inside the runnable entities are accessible by including the

SWC application header file Rte_<ComponentType>.h.

Info
The following API descriptions contain the direction qualifier IN, OUT and INOUT. They
are intended as direction information only and shall not be used inside the application
code.

For an interfaces overview please see Figure 2-2.

5.1 Data Type Definition

The MICROSAR RTE has special handling for the implementation data types, which are

defined in Std_Types.h and Platform_Types.h (see [7] and [8] for details). The RTE

generator assumes that these data types are available and therefore skips the generation
of type definitions.

In addition implementation data types where the typeEmitter attribute is set to a value

different to RTE or where the value is not empty the RTE generator also skips generation

of the type definition. In this case the user has to adopt the generated template file

Rte_UserTypes.h which should contain the type definitions for the skipt implementation

data types because the RTE itself needs the type definition.

All other primitive or composite application and implementation data types are generated
by the RTE generator. This includes the data types which are assigned to a SWC by a

definition of an IncludedDataTypeSet.

Floating point data types with double precision may not be used for data elements with
external connectivity, because the MICROSAR COM layer lacks support for 64 bit data
types.

5.1.1 Invalid Value

The MICROSAR RTE provides access to the invalid value of a primitive data type. It can
be accessed with the following macro:

InvalidValue_<DataType>

Caution

Because the macro does not contain the Rte_ prefix, care must be taken not to define

data types conflicting with any other symbols defined by the RTE or the application
code.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

63 / 139

5.1.2 Upper and Lower Limit

The range of the primitive application data types is specified by an upper and a lower limit.
These limits are accessible from the application by using the following macro if the limits
are specified:

<DataType>_LowerLimit

<DataType>_UpperLimit

Caution

Because the macro does not contain the Rte_ prefix, care must be taken not to define

data types conflicting with any other symbols defined by the RTE or the application
code.

5.1.3 Initial Value

Like the limits also the initial value of an un-queued data element of an S/R port prototype
is accessible from the application:

Rte_InitValue_<PortPrototype>_<DataElementPrototype>

Caution
The initial value of an Inter-Ecu S/R communication might be changed by the post-build
capabilities of the communication stack. Please note that the macro of the RTE still
provides the original initial value defined at pre-compile time. Please don’t use the
macro if the initial value will be changed in the communication stack at post-build time.

5.2 API Error Status

Most of the RTE APIs provide an error status in the API return code. For easier evaluation
the MICROSAR RTE provides the following status access macros:

Rte_IsInfrastructureError(status)

Rte_HasOverlayedError(status)

Rte_ApplicationError(status)

The macros can be used inside the runnable entities for evaluation of the RTE API return
code. The boolean return code of the Rte_IsInfrastructure and Rte_HasOverlayedError
macros indicate if either the immediate infrastructure error flag (bit 7) or the overlay error
flag (bit 6) is set.

The Rte_ApplicationError macro returns the application errors without overlayed errors.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

64 / 139

5.3 Runnable Entities

Runnable entities are configured in DaVinci and must be implemented by the user. DaVinci
features the generation of a template file containing the empty bodies of all runnable
entities that are configured for a specific component type.

5.3.1 <RunnableEntity>

Prototype

void <RunnableEntity> ([IN Rte_Instance instance])

{Std_ReturnType|void} <ServerRunnable> ([IN Rte_Instance instance] {,

IN type [*]inputparam}* {, OUT type *outputparam}*)

Parameter

Instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

[*]inputparam, *outputparam Parameters are only present for server runnables, i.e. runnable
entities triggered by an OperationInvokedEvent. Input (IN) parameters
are passed by value (primitive types) or reference (composite and
string types), output (OUT) parameters are always passed by
reference.

Return code

RTE_E_OK Server runnables return RTE_E_OK for successful operation
execution if an application error is referenced by the operation
prototype. Application errors are defined at the client/server port
interface.

RTE_E_<interf>_<error> Server runnables may return an application error (in the range of 1 to
63) if the operation execution was not successful. Application errors
are defined at the client/server port interface and are referenced by
the operation prototype.

Existence

If configured in DaVinci.

Functional Description

The user function <RunnableEntity>() is the specific implementation of a runnable entity of a

software component and has to be provided by the user. It is called from the MICROSAR RTE.

The first prototype form with no return value and only the optional instance parameter is valid for the
following trigger conditions:

 TimingEvent: Triggered on expiration of a configured timer.

 DataReceivedEvent: Triggered on reception of a data element.

 DataReceiveErrorEvent: Triggered on reception error of a data element.

 DataSendCompletionEvent: Triggered on successful transmission of a data element.

 ModeSwitchEvent: Triggered on entering or exiting of a mode of a mode declaration group.

 ModeSwitchedAckEvent: Triggered on completion of a mode switch of a mode declaration
group.

 AsynchronousServerCallReturnsEvent: Triggered on finishing of an asynchronous server

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

65 / 139

call. The Rte_Result() API shall be used to get the out parameters of the server call.

The first prototype form is also valid for initialization runnables (Init-Runnables):

 Triggered on startup of the RTE.

The second prototype form is valid for server runnables:

 OperationInvokedEvent: Triggered on invocation of the operation in a C/S port interface
(server runnable). A return value is only present if application errors are referenced by the
implemented operation. The parameter list is directly derived from the configured operation
prototype with the addition of the optional instance parameter.

The configuration of the trigger conditions can be done in the runnable entities tab of the component type
configuration.

Call Context

The call context of server runnables depends on the task mapping. Server runnables mapped to a task
are executed in the context of this task, unmapped server runnables are executed in the context of the
task that invoked the operation. All other runnables are invoked by the RTE in the context of the task the
runnables are mapped to.

Caution
The relative priority of the assigned OS tasks is responsible for the call sequence
of Init-Runnables. The RTE ensures that the Init-Runnable is called before any
other runnable mapped to the same task, but does not enforce that all Init-
Runnables have been executed before any other runnable is called. To make sure
that all Init-Runnables are executed before any other runnable is called, all Init-
Runnables should be mapped to the task with the highest priority.

Caution
Init runnables are a Vector extension to the AUTOSAR standard and may not be
supported by other RTE generators.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

66 / 139

5.4 SWC Exclusive Areas

5.4.1 Rte_Enter

Prototype

void Rte_Enter_<ExclusiveArea> ([IN Rte_Instance instance])

Parameter

Instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

Return code

-

Existence

This API exists when at least one runnable has configured explicit access
(canEnterExclusiveArea) to an exclusive area of a component.

Functional Description

The function Rte_Enter_<ea>() implements explicit access to the exclusive area. The exclusive

area is defined in the context of a component type and may be accessed by all runnables of that
component, either implicitly or explicitly via this API.

This function is the counterpart of Rte_Exit_<ea>(). Each call to Rte_Enter_<ea>() must be

matched by a call to Rte_Exit_<ea>() in the same runnable entity. One exclusive area must not

be entered more than once at a time, but different exclusive areas may be nested, as long as they
are left in reverse order of entering them.

For restrictions on using exclusive areas with different implementations, see section 3.6.10.

Call Context

This function can be used inside runnable entities.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

67 / 139

5.4.2 Rte_Exit

Prototype

void Rte_Exit_<ExclusiveArea> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

-

Existence

This API exists when at least one runnable has configured explicit access
(canEnterExclusiveArea) to an exclusive area of a component.

Functional Description

The function Rte_Exit_<ea>() implements releasing of an explicit entered exclusive area. The

exclusive area is defined in the context of a component type and may be accessed by all runnables
of that component, either implicitly or explicitly via this API.

This function is the counterpart of Rte_Enter_<ea>(). Each call to Rte_Enter_<ea>() must

be matched by a call to Rte_Exit_<ea>() in the same runnable entity. One exclusive area must

not be entered more than once at a time, but different exclusive areas may be nested, as long as
they are left in reverse order of entering them.

For restrictions on using exclusive areas with different implementations, see section 3.6.10.

Call Context

This function can be used inside runnable entities.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

68 / 139

5.5 BSW Exclusive Areas

5.5.1 SchM_Enter

Prototype

void SchM_Enter_<Bsw>_<ExclusiveArea> (void)

Parameter

-

Return code

-

Existence

This API exists when at least one schedulable entity has configured access

(canEnterExclusiveArea) to an exclusive area in the internal behavior of the BSW module

description.

Functional Description

The function SchM_Enter_<bsw>_<ea>() implements access to the exclusive area. The

exclusive area is defined in the context of a BSW module and may be accessed by all schedulable
entities of that module via this API.

This function is the counterpart of SchM_Exit_<bsw>_<ea>(). Each call to

SchM_Enter_<bsw>_<ea>() must be matched by a call to SchM_Exit_<bsw>_<ea>() in the

same schedulable entity. One exclusive area must not be entered more than once at a time, but
different exclusive areas may be nested, as long as they are left in reverse order of entering them.

For restrictions on using exclusive areas with different implementation methods, see section 3.6.10.

Call Context

This function can be used inside a schedulable entity in Task or Interrupt context.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

69 / 139

5.5.2 SchM_Exit

Prototype

void SchM_Exit_<Bsw>_<ExclusiveArea> (void)

Parameter

-

Return code

-

Existence

This API exists when at least one schedulable entity has configured access

(canEnterExclusiveArea) to an exclusive area in the internal behavior of the BSW module

description.

Functional Description

The function SchM_Exit_<bsw>_<ea>() implements releasing of the exclusive area. The

exclusive area is defined in the context of a BSW module and may be accessed by all schedulable
entities of that module via this API.

This function is the counterpart of SchM_Enter_<bsw>_<ea>(). Each call to

SchM_Enter_<bsw>_<ea>() must be matched by a call to SchM_Exit_<bsw>_<ea>() in the

same schedulable entity. One exclusive area must not be entered more than once at a time, but
different exclusive areas may be nested, as long as they are left in reverse order of entering them.

For restrictions on using exclusive areas with different implementation methods, see section 3.6.10.

Call Context

This function can be used inside a schedulable entity in Task or Interrupt context.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

70 / 139

5.6 Sender-Receiver Communication

5.6.1 Rte_Read

Prototype

Std_ReturnType Rte_Read_<p>_<d> ([IN Rte_Instance instance,] OUT <DataType> *data)

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the

configuration of supportsMultipleInstantiation

attribute.

*data The output <data> is passed by reference. The <DataType> is
the type, specified at the data element prototype in the SWC
description.

Return code

RTE_E_OK Data read successfully.

RTE_E_UNCONNECTED Indicates that the receiver port is not connected.

RTE_E_INVALID An invalidated signal has been received by the RTE.

RTE_E_MAX_AGE_EXCEEDED Indicates a timeout, detected by the COM module in case of

inter ECU communication, if an aliveTimeout is specified.

RTE_E_NEVER_RECEIVED No data received since system start.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

Existence

This API exists, if the runnable entity of a SWC has configured direct (explicit) access in the role

dataReceivePointByArgument for the data element in the DaVinci configuration and the referenced data

element prototype is configured without queued communication (isQueued=false).

Functional Description

The function Rte_Read_<p>_<d>() supplies the current value of the data element. This API can be used

for explicit read of S/R data with isQueued=false. After startup Rte_Read provides the initial value.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

71 / 139

5.6.2 Rte_DRead

Prototype

<DataType> Rte_DRead_<p>_<d> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the

configuration of supportsMultipleInstantiation

attribute.

Return code

<DataType> The return value contains the current value of the data element.
The <DataType> is the (primitive) type, specified at the data
element prototype in the SWC description.

Existence

This API exists, if the runnable entity of a SWC has configured direct (explicit) access in the role

dataReceivePointByValue for the data element in the DaVinci configuration and the referenced data

element prototype is configured without queued communication (isQueued=false).

Functional Description

The function Rte_DRead_<p>_<d>() supplies the current value of the data element. This API can be used

for explicit read of S/R data with isQueued=false. After startup or if the receiver port is unconnected,

Rte_DRead provides the initial value. The API is only available for primitive data types.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

72 / 139

5.6.3 Rte_Write

Prototype

Std_ReturnType Rte_Write_<p>_<d> ([IN Rte_Instance instance,] IN <DataType> data)

Std_ReturnType Rte_Write_<p>_<d> ([IN Rte_Instance instance,] IN <DataType> *data)

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the

configuration of supportsMultipleInstantiation

attribute.

data The input data <data> for primitive data types without string
types is passed by value. The <DataType> is the type, specified
at the data element prototype in the SWC description.

*data The input data <data> for string types and composite data types
is passed by reference. The <DataType> is the type, specified
at the data element prototype in the SWC description.

Return code

RTE_E_OK Data passed to communication services successfully.

RTE_E_COM_STOPPED An infrastructure communication error was detected by the RTE.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

Existence

This API exists, if the runnable entity of a SWC has configured direct (explicit) access to the data element in
the DaVinci configuration and the referenced data element prototype is configured without queued

communication (isQueued=false).

Functional Description

The function Rte_Write_<p>_<d>() can be used for explicit transmission of S/R data with

isQueued=false.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

73 / 139

5.6.4 Rte_Receive

Prototype

Std_ReturnType Rte_Receive_<p>_<d> ([IN Rte_Instance instance,] OUT <DataType> *data, [OUT uint16

*length])

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the

configuration of supportsMultipleInstantiation

attribute.

*data The output <data> is passed by reference. The <DataType> is
the type, specified at the data element prototype in the SWC
description.

*length In case of an array with variable number of elements, the
dynamic length <length> is returned.

Return code

RTE_E_OK Data read successfully.

RTE_E_UNCONNECTED Indicates that the receiver port is not connected.

RTE_E_NO_DATA A non-blocking call returned no data due to an empty receive
queue. No other error occurred.

RTE_E_TIMEOUT Returned by a blocking call after the timeout has expired. No
data returned and no other error occurred. The argument buffer
is not changed.

RTE_E_LOST_DATA Indicates that some incoming data has been lost due to an
overflow of the receive queue. This is not an error of the data
returned in the out parameter.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

Existence

This API exists, if the runnable entity of a SWC has configured polling or waiting access to the data element
in the DaVinci configuration and the referenced data element prototype is configured with queued

communication (isQueued=true).

Functional Description

The function Rte_Receive_<p>_<d>() supplies the oldest value stored in the reception queue of the data

element. This API can be used for explicit read of S/R data with isQueued=true.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

74 / 139

5.6.5 Rte_Send

Prototype

Std_ReturnType Rte_Send_<p>_<d> ([IN Rte_Instance instance,] IN <DataType> data)

Std_ReturnType Rte_Send_<p>_<d> ([IN Rte_Instance instance,] IN <DataType> *data, [IN uint16

length])

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the

configuration of supportsMultipleInstantiation

attribute.

data The input data <data> for primitive data types without string
types is passed by value. The <DataType> is the type, specified
at the data element prototype in the SWC description.

*data The input data <data> for string types and composite data types
is passed by reference. The <DataType> is the type, specified
at the data element prototype in the SWC description.

length In case of an array with variable number of elements, the input
data <length> specifies the dynamic array length.

Return code

RTE_E_OK Data passed to communication services successfully.

RTE_E_COM_STOPPED An infrastructure communication error was detected by the RTE.

RTE_E_LIMIT The submitted data has been discarded because the receiver
queue is full. Relevant only to intra ECU communication.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

Existence

This API exists, if the runnable entity of a SWC has configured access to the data element in the DaVinci
configuration and the referenced data element prototype is configured with queued communication

(isQueued=true).

Functional Description

The function Rte_Send_<p>_<d>() can be used for explicit transmission of S/R data with

isQueued=true.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

75 / 139

5.6.6 Rte_IRead

Prototype

<DataType> Rte_IRead_<r>_<p>_<d> ([IN Rte_Instance instance])

<DataType> *Rte_IRead_<r>_<p>_<d> ([IN Rte_Instance instance])

Parameter

Instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<DataType> The return value contains the buffered data for primitive data types.
<DataType> is the type, specified at the data element prototype in the
SWC description

<DataType> * The return value contains a reference to the buffered data for string
types and composite data types. <DataType> is the type, specified at
the data element prototype in the SWC description

Existence

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration.

Functional Description

The function Rte_IRead_<r>_<p>_<d>() supplies the value of the data element, stored in a

buffer before starting of the runnable entity. This API can be used for buffered (implicit) read of S/R

data with isQueued=false. After startup Rte_IRead provides the initial value.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

76 / 139

5.6.7 Rte_IWrite

Prototype

void Rte_IWrite_<r>_<p>_<d> ([IN Rte_Instance instance,] IN <DataType> data)

void Rte_IWrite_<r>_<p>_<d> ([IN Rte_Instance instance,] IN <DataType> *data)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

data The input data <data> for primitive data types without string types is
passed by value. The <DataType> is the type, specified at the data
element prototype in the SWC description.

*data The input data <data> for string types and composite data types is
passed by reference. The <DataType> is the type, specified at the
data element prototype in the SWC description.

Return code

-

Existence

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration.

Functional Description

The function Rte_IWrite_<r>_<p>_<d>() can be used for buffered transmission of S/R data

with isQueued=false. Note, that the actual transmission is performed and therefore visible for

other runnable entities after the runnable entity has been terminated.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

Caution
When implicit write access to a data element has been configured for a runnable, the
runnable has to update the data element at least once during its execution time using

the Rte_IWrite API or writing to the location returned by the Rte_IWriteRef API.

Otherwise, the content of the data element is undefined upon return from the runnable.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

77 / 139

5.6.8 Rte_IWriteRef

Prototype

<DataType> *Rte_IWriteRef_<r>_<p>_<d> ([IN Rte_Instance instance])

Parameter

Instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

Return code

<DataType> * The return value contains a reference to the buffered data.
<DataType> is the type, specified at the data element prototype in the
SWC description

Existence

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration.

Functional Description

The function Rte_IWriteRef_<r>_<p>_<d>() can be used for buffered transmission of S/R

data with isQueued=false. Note, that the actual transmission is performed and therefore visible

for other runnable entities after the runnable entity has been terminated.

The returned reference can be used by the runnable entity to directly update the corresponding
data elements. This is especially useful for data elements of composite types.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

Caution
When implicit write access to a data element has been configured for a runnable, the
runnable has to update the data element at least once during its execution time using

the Rte_IWrite API or writing to the location returned by the Rte_IWriteRef API.

Otherwise, the content of the data element is undefined upon return from the runnable.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

78 / 139

5.6.9 Rte_IStatus

Prototype

Std_ReturnType Rte_IStatus_<r>_<p>_<d> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

Return code

RTE_E_OK Data read successfully.

RTE_E_UNCONNECTED Indicates that the receiver port is not connected.

RTE_E_INVALID An invalidated signal has been received by the RTE.

RTE_E_MAX_AGE_EXCEEDED Indicates a timeout, detected by the COM module in case of inter ECU
communication, if an aliveTimeout is specified.

RTE_E_NEVER_RECEIVED No data received since system start.

Existence

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration and if either

 data element outdated notification (aliveTimeout > 0) or

 data element invalidation is activated for this data element or

 the attribute handleNeverReceived is configured.

Functional Description

The function Rte_IStatus_<r>_<p>_<d>() returns the status of the data element which can be read

with Rte_IRead.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC). Usage in
other runnables of the same SWC is forbidden!

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

79 / 139

5.6.10 Rte_Feedback

Prototype

Std_ReturnType Rte_Feedback_<p>_<d> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

Return code

RTE_E_NO_DATA No data transmitted, when the feedback API was attempted (non-
blocking call only).

RTE_E_UNCONNECTED Indicates that the sender port is not connected.

RTE_E_TIMEOUT A timeout notification was received from COM before any error
notification (Inter-ECU only).

RTE_E_COM_STOPPED The last transmission was rejected when either Rte_Send / Rte_Write
API was called and the COM was stopped or an error notification from
COM was received before any timeout notification (Inter-ECU only).

RTE_E_TRANSMIT_ACK A “transmission acknowledgement” has been received.

Existence

This API exists, if the runnable entity of a SWC has configured explicit access to the data element
in the DaVinci configuration of a runnable entity and in addition the transmission acknowledgement
is enabled at the communication specification. Furthermore, polling or waiting acknowledgment
mode has to be specified for the same data element. If a timeout is specified, timeout monitoring
for waiting acknowledgment access is enabled.

Functional Description

The function Rte_Feedback_<p>_<d>() can be used to read the transmission status for explicit

S/R communication. It indicated the status of data, transmitted by Rte_Write() and

Rte_Send() calls. Depending on the configuration, the API can be either blocking or non-blocking.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

80 / 139

5.6.11 Rte_IsUpdated

Prototype

boolean Rte_IsUpdated_<p>_<d> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

Return code

TRUE Data element has been updated since last read.

FALSE Data element has not been updated since last read.

Existence

This API exists, if the runnable entity of a SWC has configured explicit access to the data element

in the DaVinci configuration of a runnable entity and in addition the EnableUpdate attribute is

enabled at the communication specification.

Functional Description

The function Rte_IsUpdated_<p>_<d>() returns if the data element has been updated since

the last read or not.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

81 / 139

5.7 Data Element Invalidation

5.7.1 Rte_Invalidate

Prototype

Std_ReturnType Rte_Invalidate_<p>_<d> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the

configuration of supportsMultipleInstantiation

attribute.

Return code

RTE_E_OK No error occurred.

RTE_E_COM_STOPPED The RTE could not perform the operation because the COM
service is currently not available (inter ECU communication
only).

Existence

This API exists, if the runnable entity of a SWC has configured explicit and non-queued access to the data
element in the DaVinci configuration of a runnable entity and in addition the data element invalidation is

enabled at the communication specification (CanInvalidate=true).

Functional Description

The function Rte_Invalidate_<p>_<d>() can be used to set the transmission data invalid for explicit

non-queued S/R communication.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

82 / 139

5.7.2 Rte_IInvalidate

Prototype

void Rte_IInvalidate_<r>_<p>_<d> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

Return code

-

Existence

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration of a runnable entity and in addition the data element
invalidation is enabled at the communication specification (CanInvalidate=true).

Functional Description

The function Rte_IInvalidate_<r>_<p>_<d>() can be used to set the transmission data

invalid for implicit (buffered) S/R communication.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

83 / 139

5.8 Mode Management

5.8.1 Rte_Switch

Prototype

Std_ReturnType Rte_Switch_<p>_<m> ([IN Rte_Instance instance,]

IN Rte_ModeType_<ModeDeclarationGroup> mode)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

mode The next mode. It is of type Rte_ModeType_<m>, where <m> is the

name of the mode declaration group.

Return code

RTE_E_OK Mode switch trigger passed to the RTE successfully.

RTE_E_LIMIT The submitted mode switch has been discarded because the mode
queue is full.

Existence

This API exists, if the runnable entity of a SWC has configured access to the mode declaration
group prototype in the DaVinci configuration.

Functional Description

The function Rte_Switch_<p>_<m>() can be used to trigger a mode switch of the specified

mode declaration group prototype.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

84 / 139

5.8.2 Rte_Mode

Prototype

Rte_ModeType_<ModeDeclarationGroup> Rte_Mode_<p>_<m> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

RTE_TRANSITION_<mg> This return code is returned if the mode machine is in a mode
transition.

RTE_MODE_<mg>_<m> This value is returned if the mode machine is not in a transition.
<m> indicates the currently active mode.

Existence

This API exists, if the runnable entity of a SWC has configured access to the mode declaration
group prototype in the DaVinci configuration and the enhanced Mode API is not active.

Functional Description

The function Rte_Mode_<p>_<m>() provides the current mode of a mode declaration group

prototype.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

85 / 139

5.8.3 Enhanced Rte_Mode

Prototype

Rte_ModeType_<ModeDeclarationGroup> Rte_Mode_<p>_<m> ([IN Rte_Instance instance],

OUT Rte_ModeType_<ModeDeclarationGroup> previousMode,

OUT Rte_ModeType_<ModeDeclarationGroup> nextMode)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

previousMode The previous mode is returned if the mode machine is in a transition.

nextMode The next mode is returned if the mode machine is in a transition.

Return code

RTE_TRANSITION_<mg> This return code is returned if the mode machine is in a mode
transition.

RTE_MODE_<mg>_<m> This value is returned if the mode machine is not in a transition.
<m> indicates the currently active mode.

Existence

This API exists, if the runnable entity of a SWC has configured access to the mode declaration
group prototype in the DaVinci configuration and the enhanced Mode API is active.

Functional Description

The function Rte_Mode_<p>_<m>() provides the current mode of a mode declaration group

prototype. In addition it provodes the previous mode and the next mode if the mode machine is in
transition.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

86 / 139

5.8.4 Rte_SwitchAck

Prototype

Std_ReturnType Rte_SwitchAck_<p>_<m> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

Return code

RTE_E_NO_DATA No mode switch triggered, when the switch ack API was attempted
(non-blocking call only).

RTE_E_TIMEOUT No mode switch processed within the specified timeout time, when the
switch ack API was attempted (blocking call only).

RTE_E_TRANSMIT_ACK The mode switch acknowledgement has been received.

RTE_E_UNCONNECTED Indicates that the mode provide port is not connected.

Existence

This API exists, if the runnable entity of a SWC has configured access to the mode declaration
group prototype in the DaVinci configuration of a runnable entity and in addition the mode switch
acknowledgement is enabled at the mode switch communication specification. Furthermore, polling
or waiting acknowledgment mode has to be specified for the same mode declaration group
prototype. If a timeout is specified, timeout monitoring for waiting acknowledgment access is
enabled.

Functional Description

The function Rte_SwitchAck_<p>_<m>() can be used to read the mode switch status of a

specific mode declaration group prototype. It indicated the status of a mode switch, triggered by an

Rte_Switch call. Depending on the configuration, the API can be either blocking or non-blocking.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

87 / 139

5.9 Inter-Runnable Variables

5.9.1 Rte_IrvRead

Prototype

<DataType> Rte_IrvRead_<r>_<v> ([IN Rte_Instance instance])

void Rte_IrvRead_<r>_<v> ([IN Rte_Instance instance,] OUT <DataType> *data)

Parameter

Instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

*data The output <data> is passed by reference for composite data types.
The <DataType> is the type of the Inter-Runnable Variable specified in
the SWC description.

Return code

<DataType> The return value contains the current content of the Inter-Runnable
Variable of primitive data types. The <DataType> is the type of the
Inter-Runnable Variable specified in the SWC description.

Existence

This API exists, if the runnable entity of a SWC has configured direct (explicit) read access to the
Inter-Runnable Variable in the SWC configuration.

Functional Description

The function Rte_IrvRead_<r>_<v>() supplies the current value of the Inter-Runnable Variable.

This API is used to read direct (explicit) Inter-Runnable Variables. After startup Rte_IrvRead

provides the configured initial value.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

88 / 139

5.9.2 Rte_IrvWrite

Prototype

void Rte_IrvWrite_<r>_<v> ([IN Rte_Instance instance,] IN <DataType> data)

void Rte_IrvWrite_<r>_<v> ([IN Rte_Instance instance,] IN <DataType> *data)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

data The input data <data> is passed by value for primitive data types. The
<DataType> is the type of the Inter-Runnable Variable specified in the
SWC description.

*data The input data <data> for composite data types is passed by
reference. The <DataType> is the type of the Inter-Runnable Variable
specified in the SWC description.

Return code

-

Existence

This API exists, if the runnable entity of a SWC has configured direct (explicit) write access to the
Inter-Runnable Variable in the SWC configuration.

Functional Description

The function Rte_IrvIWrite_<r>_<v>() can be used for updating direct (explicit) access Inter-

Runnable Variables. The update is performed immediately.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

89 / 139

5.9.3 Rte_IrvIRead

Prototype

<DataType> Rte_IrvIRead_<r>_<v> ([IN Rte_Instance instance])

<DataType> *Rte_IrvIRead_<r>_<v> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<DataType> The return value contains the buffered content of the Inter-Runnable
Variable for primitive data types. The <DataType> is the type of the
Inter-Runnable Variable specified in the SWC description.

<DataType> * The return value contains a reference to the buffered content of the
Inter-Runnable Variable for composite data types. The <DataType> is
the type of the Inter-Runnable Variable specified in the SWC
description.

Existence

This API exists, if the runnable entity of a SWC has configured buffered (implicit) read access to the
Inter-Runnable Variable in the SWC configuration.

Functional Description

The function Rte_IrvIRead_<r>_<v>() supplies the value of the Inter-Runnable Variable,

stored in a buffer before the runnable entity is started. This API is used to read the buffered

(implicit) Inter-Runnable Variable. After startup Rte_IrvIRead provides the configured initial

value.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

90 / 139

5.9.4 Rte_IrvIWrite

Prototype

void Rte_IrvIWrite_<r>_<v> ([IN Rte_Instance instance,] IN <DataType> data)

void Rte_IrvIWrite_<r>_<v> ([IN Rte_Instance instance,] IN <DataType> *data)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

data The input data <data> is passed by value for primitive data types. The
<DataType> is the type of the Inter-Runnable Variable specified in the
SWC description.

*data The input data <data> is passed by reference for composite data
types. The <DataType> is the type of the Inter-Runnable Variable
specified in the SWC description.

Return code

-

Existence

This API exists, if the runnable entity of a SWC has configured buffered (implicit) write access to
the Inter-Runnable Variable in the SWC configuration.

Functional Description

The function Rte_IrvIWrite_<r>_<v>() can be used for updating buffered (implicit) Inter-

Runnable Variables. Note, that the actual update is performed and therefore visible for other
runnable entities after the runnable entity has been terminated.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

Caution
When buffered (implicit) write access to an Inter-Runnable Variable has been
configured for a runnable, the runnable has to update the Inter-Runnable variable at

least once during its execution time using the Rte_IrvIWrite API. Otherwise, the

content of the Inter-Runnable Variable may become undefined upon return from the
runnable.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

91 / 139

5.10 Per-Instance Memory

5.10.1 Rte_Pim

Prototype

<C-type> *Rte_Pim_<n> ([IN Rte_Instance instance])

<DataType> *Rte_Pim_<n> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

Return code

<C-Type> * If the configured data type of the Per-Instance Memory is specified by
any C type string, a reference to the PIM of the C-type is returned.

<DataType> * If the configured DataType of the Per-Instance Memory is an
AUTOSAR DataType, a reference to the PIM of this AUTOSAR type is
returned. If the data type is known and completely described, the RTE
generator knows the size of the PIM variable and is able to generate
the PIM variables in a specific optimized order.

Existence

This API exists for each specified Per-Instance Memory specified for an AUTOSAR application
SWC.

Functional Description

The function Rte_Pim_<n>() can be used to access Per-Instance Memory. Note: If several

runnable entities have concurrent access to the same Per-Instance Memory, the user has to
protect the accesses by using implicit or explicit exclusive areas.

Call Context

This function can be used inside all runnable entities of the AUTOSAR software component (SWC)
specifying the Per-Instance Memory.

Caution
When the Per–Instance Memory uses no AUTOSAR data type and is also not based

on a standard data type like e.g. uint8 the RTE generator cannot create the type

definition for this type.

In this case the user has to provide a user header file Rte_UserTypes.h which

should contain the type definitions for the Per-Instance Memory allowing the RTE
generator to allocate the Per-Instance memory.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

92 / 139

5.11 Calibration Parameters

5.11.1 Rte_CData

Prototype

<DataType> Rte_CData_<cp> ([IN Rte_Instance instance])

<DataType> *Rte_CData_<cp> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

Return code

<DataType> For primitive data types the return value contains the content of the
calibration parameter. The return value is of type <DataType>, which
is the type of the calibration element prototype.

<DataType> * For composite data types and string types the return value contains
the reference to the calibration parameter. The return value is of type
<DataType>, which is the type of the calibration element prototype.

Existence

This API exists for each calibration element prototype specified for an AUTOSAR application SWC.

Functional Description

The function Rte_CData_<cp>() can be used to access SWC local calibration parameters.

Depending on the configuration the Rte_CData API returns a SWC type specific (shared) or SWC

instance specific (perInstance) calibration parameter.

Call Context

This function can be used inside all runnable entities of the AUTOSAR software component (SWC)
specifying the calibration parameters.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

93 / 139

5.11.2 Rte_Prm

Prototype

<DataType> Rte_Prm_<p>_<cp> ([IN Rte_Instance instance])

<DataType> *Rte_Prm_<p>_<cp> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<DataType> For primitive data types the return value contains the content of the
calibration parameter. The return value is of type <DataType>, which
is the type of the calibration element prototype.

<DataType> * For composite data types and string types the return value contains
the reference to the calibration parameter. The return value is of type
<DataType>, which is the type of the calibration element prototype.

Existence

This API exists for each calibration element prototype specified for a calibration software
component.

Functional Description

The function Rte_Prm_<p>_<cp>() can be used to access the instance specific calibration

element prototypes of a calibration component.

Call Context

This function can be used inside all runnable entities of the AUTOSAR software component (SWC)
specifying access to calibration element prototypes of calibration components via calibration ports.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

94 / 139

5.12 Client-Server Communication

5.12.1 Rte_Call

Prototype

Std_ReturnType Rte_Call_<p>_<o> ([IN Rte_Instance instance,] {IN type

[*]inputparam,}* {OUT type *outputparam,}* {INOUT type *inoutputparam,}*)

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the

configuration of supportsMultipleInstantiation

attribute.

[*]inputparam, *outputparam,
*inoutputparam,

The number and type of parameters is determined by the
operation prototype. Input (IN) parameters are passed by value
(primitive types) or reference (composite and string types),
output (OUT) and input-output (INOUT) parameters are always
passed by reference.

Return code

RTE_E_OK Operation executed successfully.

RTE_E_UNCONNECTED Indicates that the client port is not connected.

RTE_E_LIMIT The operation is invoked while a previous invocation has not yet
terminated. Relevant only for asynchronous calls.

RTE_E_COM_STOPPED An infrastructure communication error was detected by the RTE.
Relevant only to external communication.

RTE_E_TIMEOUT Returned by a synchronous call after the timeout has expired
and no other error occurred. The arguments are not changed.

RTE_E_<interf>_<error> Server runnables may return an application error if the operation
execution was not successful. Application errors are defined at
the client/server port interface and are references by the
operation prototype.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

Existence

This API exists, if the runnable entity of a SWC has configured access to the operation prototype in the
DaVinci configuration.

Functional Description

The function Rte_Call_<p>_<o>() invokes the server operation <o> with the specified parameters. If

Rte_Call returns with an error, the INOUT and OUT parameters are unchanged.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

95 / 139

5.12.2 Rte_Result

Prototype

Std_ReturnType Rte_Result_<p>_<o> ([IN Rte_Instance instance,]

{OUT type *outputparam,}*)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

*outputparam The number and type of parameters is determined by the operation
prototype. The output (OUT) parameters are always passed by
reference.

Return code

RTE_E_OK Operation executed successfully.

RTE_E_UNCONNECTED Indicates that the client port is not connected.

RTE_E_NO_DATA The result of the asynchronous operation invocation is not available.
Relevant only for non-blocking call.

RTE_E_COM_STOPPED An infrastructure communication error was detected by the RTE.
Relevant only to external communication.

RTE_E_TIMEOUT The result of the asynchronous operation invocation is not available in
the specified time. Relevant only for blocking call.

RTE_E_<interf>_<error> Server runnables may return an application error if the operation
execution was not successful. Application errors are defined at the
client/server port interface and are references by the operation
prototype.

Existence

This API exists, if the runnable entity of a SWC has configured polling or waiting access to an
asynchronous invoked operation of a C/S port interface.

Functional Description

The function Rte_Result_<p>_<o>() provides the result of asynchronous C/S calls. In case of

a polling call, the API returns the OUT parameters if the result is already available while for
asynchronous calls the API waits until the server runnable has finished the execution or a timeout
occurs.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

96 / 139

5.13 Indirect API

5.13.1 Rte_Ports

Prototype

Rte_PortHandle_<i>_<R/P> Rte_Ports_<i>_<P/R> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

Return code

Rte_PortHandle_<i>_<R/P> The API returns a pointer to the first port data structure of the port
data structure array.

Existence

This API exists, if the indirect API is configured at the Component Type.

Functional Description

The function Rte_Ports_<i>_<R/P> returns an array containing the port data structures of all

require ports indicated by the API extension <R> or provide ports indicated by <P> of the port
interface specified by <i> in order to allow indirect access of the port APIs via the port handle (e.g.
iteration over all ports of the same interface).

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

97 / 139

5.13.2 Rte_NPorts

Prototype

uint8 Rte_NPorts_<i>_<P/R> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

Return code

uint8 The API returns the size of the port data structure array provided by

Rte_Ports.

Existence

This API exists, if the indirect API is configured at the component type.

Functional Description

The function Rte_NPorts_<i>_<R/P> returns the number of array entries (port data structures)

of all require ports indicated by the API extension <R> or provide ports indicated by <P> of the port
interface specified by <i>.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

98 / 139

5.13.3 Rte_Port

Prototype

Rte_PortHandle_<i>_<R/P> Rte_Port_<p> ([IN Rte_Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

Rte_PortHandle_<i>_<R/P> The API returns a pointer to a port data structure.

Existence

This API exists, if the indirect API is configured at the component type.

Functional Description

The function Rte_Port_<p> returns the port data structure of the port specified by <p>. It allows

indirect API access via the port handle.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

99 / 139

5.14 RTE Lifecycle API

The lifecycle API functions are declared in the RTE lifecycle header file Rte_Main.h

5.14.1 Rte_Start

Prototype

Std_ReturnType Rte_Start (void)

Parameter

-

Return code

RTE_E_OK RTE initialized successfully.

RTE_E_LIMIT An internal limit has been exceeded.

Functional Description

The RTE lifecycle API function Rte_Start allocates and initializes system resources and

communication resources used by the RTE.

Call Context

This function has to be called by the ECU state manager after basic software modules have been
initialized especially OS and COM. It has to be called on every core that is used by the RTE. The
call on the core that contains the BSW will start the triggering of all cyclic runnables. Therefore
Rte_Start on the other cores has to be executed first.

5.14.2 Rte_Stop

Prototype

Std_ReturnType Rte_Stop (void)

Parameter

-

Return code

RTE_E_OK RTE initialized successfully.

RTE_E_LIMIT A resource could not be released.

Functional Description

The RTE lifecycle API function Rte_Stop releases system resources and communication

resources used by the RTE and shutdowns the RTE. After Rte_Stop is called no runnable entity

must be processed.

Call Context

This function has to be called by the ECU state manager on every core that is used by the RTE.
The call on the core that contains the BSW will stop the triggering of the cyclic runnables.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

100 / 139

5.14.3 Rte_InitMemory

Prototype

void Rte_InitMemory (void)

Parameter

-

Return code

-

Functional Description

The API function Rte_InitMemory is a MICROSAR RTE specific extension and should be used

to initialize RTE internal state variables if the compiler does not support initialized variables.

Call Context

This function has to be called before the ECU state manager calls the initialization functions of
other BSW modules especially the AUTOSAR COM module. It has to be called on all cores that
are used by the RTE.

Caution
Rte_InitMemory API is a Vector extension to the AUTOSAR standard and may not be
supported by other RTE generators.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

101 / 139

5.15 SchM Lifecycle API

The lifecycle API functions are declared in the RTE lifecycle header file Rte_Main.h

5.15.1 SchM_Init

Prototype

void SchM_Init ([IN SchM_ConfigType ConfigPtr])

Parameter

ConfigPtr Pointer to the Rte_Config_<VariantName> data structure that shall be
used for the RTE initialization of the active variant in case of a
postbuild selectable configuration. The parameter is omitted in case
the project contains no postbuild selectable variance.

Return code

-

Functional Description

This function initializes the BSW Scheduler and resets the timers for all cyclic triggered schedulable
entities (main functions). Note that all main functions calls are activated upon return from this
function.

Call Context

This function has to be called by the ECU state manager from task context. The OS has to be
initialized before as well as those BSW modules for which the SchM provides triggering of
schedulable entities (main functions). The API has to be called on all cores that are used by the
RTE.

5.15.2 SchM_Deinit

Prototype

void SchM_Deinit (void)

Parameter

-

Return code

-

Functional Description

This function finalizes the BSW Scheduler and stops the timer which triggers the main functions.

Call Context

This function has to be called by the ECU state manager from task context. It has to be called on
all cores that are used by the RTE.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

102 / 139

5.15.3 SchM_GetVersionInfo

Prototype

void SchM_GetVersionInfo (Std_VersionInfoType *versioninfo)

Parameter

versioninfo Pointer to where to store the version information of this module.

Return code

-

Existence

This API exists if RteSchMVersionInfoApi is enabled.

Functional Description

SchM_GetVersionInfo() returns version information, vendor ID and AUTOSAR module ID of

the component.

The versions are decimal-coded.

Call Context

The function can be called on interrupt and task level.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

103 / 139

5.16 VFB Trace Hooks

The RTE’s “VFB tracing” mechanism allows to trace interactions of the AUTOSAR
software components with the VFB. The choice of events resides with the user and can
range from none to all. The “VFB tracing” functionality is designed to support multiple
clients for each event. If one or multiple clients are specified for an event, the trace
function without client prefix will be generated followed by the trace functions with client
prefixes in alphabetically ascending order.

5.16.1 Rte_[<client>_]<API>Hook_<cts>_<ap>_Start

Prototype

void Rte_[<client>_]<API>Hook_<cts>_<ap>_Start ([IN const Rte_CDS_<cts>* inst,]

params)

Parameter

Rte_CDS_<cts>* inst The instance specific pointer of type Rte_CDS_<cts> is used to
distinguish between the different instances in case of multiple
instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

params The parameters are the same as the parameters of the <API>. See
the corresponding API description for details.

Return code

-

Existence

This VFB trace hook exists if the global and the hook specific configuration switches are enabled.

Functional Description

This VFB trace hook is called inside the RTE APIs directly after invocation of the API. The user has
to provide this hook function if it is enabled in the configuration. The placeholder <API> represents
one of the following APIs:

Enter, Exit, Write, Read, Send, Receive, Invalidate, SwitchAck, Switch, Call, Result, IrvWrite,
IrvRead

The <AccessPoint> is defined as follows:

 Enter, Exit: <ExclusiveArea>

 Write, Read, Send, Receive, Feedback, Invalidate:
<PortPrototype>_<DataElementPrototype>

 Switch, SwitchAck: <PortPrototype>_<ModeDeclarationGroupPrototype>

 Call, Result: <PortPrototype>_<OperationPrototype>

 IrvWrite, IrvRead: <InterRunnableVariable>

Call Context

This function is called inside the RTE API. The call context is the context of the API itself. Since
APIs can only be called in runnable context, the context of the trace hooks is also the runnable
entity of an AUTOSAR software component (SWC).

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

104 / 139

5.16.2 Rte_[<client>_]<API>Hook_<cts>_<ap>_Return

Prototype

void Rte_[<client>_]<API>Hook_<cts>_<ap>_Return ([IN const Rte_CDS_<cts> *inst,]

params)

Parameter

Rte_CDS_<cts>* inst The instance specific pointer of type Rte_CDS_<cts> is used to
distinguish between the different instances in case of multiple
instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

params The parameters are the same as the parameters of the API. See the
corresponding API description for details.

Return code

-

Existence

This VFB trace hook exists if the global and the hook specific configuration switches are enabled.

Functional Description

This VFB trace hook is called inside the RTE APIs directly before leaving the API. The user has to
provide this hook function if it is enabled in the configuration. The placeholder <API> represents
one of the following APIs:

Enter, Exit, Write, Read, Send, Receive, Invalidate, Feedback, Switch, SwitchAck, Call, Result,
IrvWrite, IrvRead

 The <AccessPoint> is defined as follows:

 Enter, Exit: <ExclusiveArea>

 Write, Read, Send, Receive, Feedback, Invalidate:
<PortPrototype>_<DataElementPrototype>

 Switch, SwitchAck: <PortPrototype>_<ModeDeclarationGroupPrototype>

 Call, Result: <PortPrototype>_<OperationPrototype>

 IrvWrite, IrvRead: <InterRunnableVariable>

Call Context

This function is called inside the RTE API. The call context is the context of the API itself. Since
APIs can only be called in runnable context, the context of the trace hooks is also the runnable
entity of an AUTOSAR software component (SWC).

Caution
The RTE generator tries to prevent overhead by sometimes implementing the Rte_Call
API as macro that does a direct runnable invocation. If VFB trace hooks are enabled
for such an Rte_Call API or for the called server runnable, these optimizations are no
longer possible.

Also macro optimizations for Rte_Read, Rte_DRead, Rte_Write, Rte_IrvRead and
Rte_IrvWrite APIs are disabled when VFB tracing for that APIs is enabled.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

105 / 139

Caution
The RTE does not call VFB trace hooks for the following APIs because they are
intended to be implemented as macros.

 Implicit S/R APIs: Rte_IWrite, Rte_IWriteRef, Rte_IRead, Rte_IStatus,
Rte_IInvalidate

 Implicit Inter-Runnable Variables: Rte_IrvIWrite, Rte_IrvIRead

 Per-instance Memory and calibration parameter APIs: Rte_Pim, Rte_CData,
Rte_Prm

 Indirect APIs: Rte_Ports, Rte_Port, Rte_NPorts

 RTE Life-Cycle APIs: Rte_Start, Rte_Stop

5.16.3 SchM_[<client>_]<API>Hook_<Bsw>_<ap>_Start

Prototype

void SchM_[<client>_]<API>Hook_<bsw>_<ap>_Start (params)

Parameter

params The parameters are the same as the parameters of the <API>. See
the corresponding API description for details.

Return code

-

Existence

This VFB trace hook exists if the global and the hook specific configuration switches are enabled.

Functional Description

This VFB trace hook is called inside the RTE APIs directly after invocation of the API. The user has
to provide this hook function if it is enabled in the configuration. The placeholder <API> represents
one of the following APIs:

Enter, Exit

The <AccessPoint> is defined as follows:

 Enter, Exit: <ExclusiveArea>

Call Context

This function is called inside the RTE API. The call context is the context of the API itself. Since
APIs can be called from a BSW function, the context of the trace hooks depends on the context of
the BSW function.

Caution
The SchM Hook APIs are a Vector extension to the AUTOSAR standard and may not
be supported by other RTE generators.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

106 / 139

5.16.4 SchM_[<client>_]<API>Hook_<Bsw>_<ap>_Return

Prototype

void SchM_[<client>_]<API>Hook_<bsw>_<ap>_Return (params)

Parameter

params The parameters are the same as the parameters of the <API>. See
the corresponding API description for details.

Return code

-

Existence

This VFB trace hook exists if the global and the hook specific configuration switches are enabled.

Functional Description

This VFB trace hook is called inside the RTE APIs directly before leaving the API. The user has to
provide this hook function if it is enabled in the configuration. The placeholder <API> represents
one of the following APIs:

Enter, Exit

The <AccessPoint> is defined as follows:

 Enter, Exit: <ExclusiveArea>

Call Context

This function is called inside the RTE API. The call context is the context of the API itself. Since
APIs can be called from a BSW function, the context of the trace hooks depends on the context of
the BSW function.

Caution
The SchM Hook APIs are a Vector extension to the AUTOSAR standard and may not
be supported by other RTE generators.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

107 / 139

5.16.5 Rte_[<client>_]ComHook_<SignalName>_SigTx

Prototype

void Rte_[<client>_]ComHook_<SignalName>_SigTx (<DataType> *data)

Parameter

<DataType>* data Pointer to data to be transmitted via the COM API.

Note: <DataType> is the application specific data type of Rte_Send,

Rte_Write or Rte_IWrite.

Return code

-

Existence

This VFB trace hook exists, if at least one data element prototype of a port prototype has to be
transmitted over a network (Inter-Ecu) and the global and the hook specific configuration switches
are enabled.

Functional Description

This hook is called just before the RTE invokes Com_SendSignal or

Com_UpdateShadowSignal.

Call Context

This function is called inside the RTE APIs Rte_Send and Rte_Write. The call context is the

context of the API itself. Since APIs can only be called in runnable context, the context of the trace
hooks is also the runnable entity of an AUTOSAR software component.

If buffered communication (Rte_IWrite) is used, the call context is the task of the mapped

runnable.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

108 / 139

5.16.6 Rte_[<client>_]ComHook_<SignalName>_SigIv

Prototype

void Rte_[<client>_]ComHook_<SignalName>_SigIv (void)

Parameter

-

Return code

-

Existence

This VFB trace hook exists, if at least one data element prototype of a port prototype has to be
transmitted over a network (Inter-Ecu) and the global and the hook specific configuration switches

are enabled. In addition the canInvalidate attribute at the UnqueuedSenderComSpec of the

data element prototype must be enabled.

Functional Description

This hook is called just before the RTE invokes Com_InvalidateSignal.

Call Context

This function is called inside the RTE APIs Rte_Invalidate. The call context is the context of the

API itself. Since APIs can only be called in runnable context, the context of the trace hooks is also
the runnable entity of an AUTOSAR software component.

If buffered communication (Rte_IInvalidate) is used, the call context is the task of the mapped

runnable.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

109 / 139

5.16.7 Rte_[<client>_]ComHook_<SignalName>_SigGroupIv

Prototype

void Rte_[<client>_]ComHook_<SignalGroupName>_SigGroupIv (void)

Parameter

-

Return code

-

Existence

This VFB trace hook exists, if at least one data element prototype of a port prototype is composite
and has to be transmitted over a network (Inter-Ecu) and the global and the hook specific

configuration switches are enabled. In addition the canInvalidate attribute at the

UnqueuedSenderComSpec of the data element prototype must be enabled.

Functional Description

This hook is called just before the RTE invokes Com_InvalidateSignalGroup.

Call Context

This function is called inside the RTE APIs Rte_Invalidate. The call context is the context of the

API itself. Since APIs can only be called in runnable context, the context of the trace hooks is also
the runnable entity of an AUTOSAR software component.

If buffered communication (Rte_IInvalidate) is used, the call context is the task of the mapped

runnable.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

110 / 139

5.16.8 Rte_[<client>_]ComHook_<SignalName>_SigRx

Prototype

void Rte_[<client>_]ComHook_<SignalName>_SigRx (<DataType> *data)

Parameter

<DataType>* data Pointer to the data received via the COM API.

Note: <DataType> is the application specific data type of
Rte_Receive, Rte_Read, Rte_DRead or Rte_IRead.

Return code

-

Existence

This VFB trace hook exists, if at least one data element prototype of a port prototype has to be
received from a network and the global and hook specific configuration switches are enabled.

Functional Description

This VFB Trace Hook is called after the RTE invokes Com_ReceiveSignal or

Com_ReceiveShadowSignal.

Call Context

This function is called inside the RTE API Rte_Read or Rte_DRead. The call context is the

context of the API itself. Since this API can only be called in runnable context, the context of the
trace hooks is also the runnable entity of an AUTOSAR software component.

If buffered communication (Rte_IRead) is used, the call context is the task of the mapped

runnable.

If queued communication is configured (Rte_Receive), the call of the Com API is called inside the

COM callback after reception. In this case, the context of the trace hook is the context of the COM
callback.

Note: This could be the task context or the interrupt context!

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

111 / 139

5.16.9 Rte_[<client>_]ComHook<Event>_<SignalName>

Prototype

void Rte_[<client>_]ComHook<Event>_<SignalName> (void)

Parameter

-

Return code

-

Existence

This VFB trace hook is called inside the <Event> specific COM callback, directly after the
invocation by COM and if the global and the hook specific configuration switches are enabled.

Functional Description

This trace hook indicates the start of a COM callback. <Event> depends on the type of the
callback.

 empty string: Rte_COMCbk_<SignalName>

 TxTOut Rte_COMCbkTxTOut_<SignalName>

 RxTOut Rte_COMCbkRxTOut_<SignalName>

 TAck Rte_COMCbkTAck_<SignalName>

 TErr Rte_COMCbkTErr_<SignalName>

 Inv Rte_COMCbkInv_<SignalName>

Call Context

This function is called inside the context of the COM callback.

Note: This could be the task context or the interrupt context!

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

112 / 139

5.16.10 Rte_[<client>_]Task_Activate

Prototype

void Rte_[<client>_]Task_Activate (TaskType task)

Parameter

task The same parameter is also used to call the OS API ActivateTask

Return code

-

Existence

This VFB trace hook is called by the RTE immediately before the invocation of the OS API
ActivateTask and if the global and the hook specific configuration switches are enabled.

Functional Description

This trace hook indicates the call of ActivateTask of the OS.

Call Context

This function is called inside Rte_Start and in the context RTE API functions which trigger the

execution of a runnable entity where the runnable is mapped to a basic task. For API functions, the
call context is the runnable context.

5.16.11 Rte_[<client>_]Task_Dispatch

Prototype

void Rte_[<client>_]Task_Dispatch (TaskType task)

Parameter

task The parameter indicates the task to which was started (dispatched) by
the OS

Return code

-

Existence

This VFB trace hook exists for each configured RTE task and is called directly after the start if the
global and the hook specific configuration switches are enabled.

Functional Description

This trace hook indicates the call activation of a task by the OS.

Call Context

The call context is the task.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

113 / 139

5.16.12 Rte_[<client>_]Task_SetEvent

Prototype

void Rte_[<client>_]Task_SetEvent (TaskType task, EventMaskType event)

Parameter

task The same parameter is also used to call the OS API SetEvent

event The same parameter is also used to call the OS API SetEvent

Return code

-

Existence

This VFB trace hook is called by the RTE immediately before the invocation of the OS API
SetEvent and if the global and the hook specific configuration switches are enabled.

Functional Description

This trace hook indicates the call of SetEvent.

Call Context

This function is called inside RTE API functions and in COM callbacks. For API functions, the call
context is the runnable context.

Note: For COM callbacks the context could be the task context or the interrupt context!

5.16.13 Rte_[<client>_]Task_WaitEvent

Prototype

void Rte_[<client>_]Task_WaitEvent (TaskType task, EventMaskType event)

Parameter

task The same parameter is also used to call the OS API WaitEvent

event The same parameter is also used to call the OS API WaitEvent

Return code

-

Existence

This VFB trace hook is called by the RTE immediately before the invocation of the OS API
WaitEvent and if the global and the hook specific configuration switches are enabled.

Functional Description

This trace hook indicates the call of WaitEvent.

Call Context

This function is called inside RTE API functions and in generated task bodies.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

114 / 139

5.16.14 Rte_[<client>_]Task_WaitEventRet

Prototype

void Rte_[<client>_]Task_WaitEventRet (TaskType task, EventMaskType event)

Parameter

task The same parameter is also used to call the OS API WaitEvent

event The same parameter is also used to call the OS API WaitEvent

Return code

-

Existence

This VFB trace hook is called by the RTE immediately after returning from the OS API WaitEvent

and if the global and the hook specific configuration switches are enabled.

Functional Description

This trace hook indicates leaving the call of WaitEvent.

Call Context

This function is called inside RTE API functions and in generated task bodies.

5.16.15 Rte_[<client>_]Runnable_<cts>_<re>_Start

Prototype

void Rte_[<client>_]Runnable_<cts>_<re>_Start ([IN const Rte_CDS_<cts> *inst])

Parameter

Rte_CDS_<cts>* inst The instance specific pointer of type Rte_CDS_<cts> is used to
distinguish between the different instances in case of multiple
instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

Return code

-

Existence

This VFB trace hook is called for all mapped runnable entities if the global and the hook specific
configuration switches are enabled.

Functional Description

This trace hook indicates invocation of the runnable entity. It is called just before the call of the
runnable entity and allows for example measurement of the execution time of a runnable together
with the counterpart Rte_[<client>_]Runnable_<cts>_<re>_Return.

Call Context

This function is called inside RTE generated task bodies.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

115 / 139

5.16.16 Rte_[<client>_]Runnable_<cts>_<re>_Return

Prototype

void Rte_[<client>_]Runnable_<cts>_<re>_Return ([IN const Rte_CDS_<cts> *inst])

Parameter

Rte_CDS_<cts>* inst The instance specific pointer of type Rte_CDS_<cts> is used to
distinguish between the different instances in case of multiple
instantiation.

Note: This is an optional parameter depending on the configuration of

supportsMultipleInstantiation attribute.

Return code

-

Existence

This VFB trace hook is called for all mapped runnable entities if the global and the hook specific
configuration switches are enabled.

Functional Description

This trace hook indicates invocation of the runnable entity. It is called just after the call of the
runnable entity and allows for example measurement of the execution time of a runnable together

with the counterpart Rte_[<client>_]Runnable_<cts>_<re>_Start.

Call Context

This function is called inside RTE generated task bodies.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

116 / 139

5.17 RTE Interfaces to BSW

The RTE has standardized Interfaces to the following basic software modules

 COM / LDCOM

 NVM

 DET

 OS

 XCP

 SCHM

The actual used API’s of these BSW modules depend on the configuration of the RTE.

5.17.1 Interface to COM / LDCOM

Used COM API

Com_SendSignal

Com_SendDynSignal

Com_SendSignalGroup

Com_UpdateShadowSignal

Com_ReceiveSignal

Com_ReceiveDynSignal

Com_ReceiveSignalGroup

Com_ReceiveShadowSignal

Com_InvalidateSignal

Com_InvalidateSignalGroup

Used LDCOM API

LdCom_IfTransmit

The RTE generator provides COM / LDCOM callback functions for signal notifications. The
generated callbacks, which are called inside the COM layer, have to be configured in the
COM / LDCOM configuration accordingly. The necessary callbacks are defined in the

Rte_Cbk.h header file.

Caution
The RTE generator assumes that the context of COM / LDCOM callbacks is either a
task context or an interrupt context of category 2.
It is explicitly NOT allowed that the call context of a COM / LDCOM callback is an
interrupt of category 1.

In order to access the COM / LDCOM API the generated RTE includes the

Com.h/LdCom.h header file if necessary.

During export of the ECU configuration description the necessary COM / LDCOM
callbacks are exported into the COM / LDCOM section of the ECU configuration
description.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

117 / 139

5.17.2 Interface to OS

In general, the RTE may use all available OS API functions to provide the RTE
functionality to the software components. The following table contains a list of used OS
APIs of the current RTE implementation.

Used OS API

SetRelAlarm

CancelAlarm

StartScheduleTableRel

NextScheduleTable

StopScheduleTable

SetEvent

GetEvent

ClearEvent

WaitEvent

GetTaskID

GetCoreID

ActivateTask

Schedule

TerminateTask

ChainTask

GetResource

ReleaseResource

GetSpinlock

ReleaseSpinlock

DisableAllInterrupts

EnableAllInterrupts

SuspendAllInterrupts

ResumeAllInterrupts

SuspendOSInterrupts

ResumeOSInterrupts

CallTrustedFunction (MICROSAR OS specific)

IocWrite

IocRead

IocWriteGroup

IocReadGroup

IocSend

IocReceive

In order to access the OS API the generated RTE includes the Os.h header file.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

118 / 139

The OS configuration needed by the RTE is stored in the file Rte_Needs.ecuc.arxml

which is created during the RTE Generation Phase.

For legacy systems the OS configuration is also stored in Rte.oil. This file is an

incomplete OIL file and contains only the RTE relevant configuration. It should be included
in an OIL file used for the OS configuration of the whole ECU.

Caution

The generated files Rte_Needs.ecuc.arxml and Rte.oil file must not be

changed!

5.17.3 Interface to NVM

The RTE generator provides NvM callback functions for synchronous copying of the mirror
buffers to and from the NvM. The generated callbacks, which are called inside the

NvM_MainFunction, have to be configured in the NvM configuration accordingly. The

necessary callbacks are defined in the Rte_Cbk.h header file.

Caution
The RTE generator assumes that the call context of NvM callbacks is the task which

calls the NvM_MainFunction.

During export of the ECU configuration description the necessary NVM callbacks are
exported into the NVM section of the ECU configuration description.

5.17.4 Interface to XCP

In addition to the usage of the Com and the OS module as described by AUTOSAR, the
MICROSAR RTE generator optionally can also take advantage of the MICROSAR XCP
module.

This makes it possible to configure the RTE to trigger XCP Events when certain
measurement points are reached.

This for example also allows the measurement of buffers for implicit sender/receiver
communication when a runnable entity is terminated.

Measurement is described in detail in chapter 6.6 Measurement and Calibration.

When measurement with XCP Events is enabled, the RTE therefore includes the header

Xcp.h and calls the Xcp_Event API to trigger the events.

Used Xcp API

Xcp_Event

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

119 / 139

5.17.5 Interface to SCHM

In multicore and memory protection systems, the schedulable entity

Rte_ComSendSignalProxyPeriodic is provided by the RTE and is used to access the

COM from OS Applications without BSW. This schedulable entity needs to be called
periodically by the SCHM.

See chapter 4.8.1 for details.

Provided Schedulable Entity

Rte_ComSendSignalProxyPeriodic

5.17.6 Interface to DET

The RTE generator reports development errors to the DET, if development error detection
is enabled.

See chapter 3.8.1 for details.

Used DET API

Det_ReportError

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

120 / 139

6 RTE Configuration

The RTE specific configuration in DaVinci Configurator encompasses the following parts:

 assignment of runnables to OS tasks

 assignment of OS tasks to OS applications (memory protection/multicore support)

 assignment of Per-Instance Memory to NV memory blocks

 selection of the exclusive area implementation method

 configuration of the periodic triggers

 configuration of measurement and calibration

 selection of the optimization mode

 selection of required VFB tracing callback functions

 configuration of the built-in call to the RTE generator

 platform dependent resource calculation

6.1 Configuration Variants

The RTE supports the configuration variants

 VARIANT-PRE-COMPILE

 VARIANT-POST-BUILD-SELECTABLE

The configuration classes of the RTE parameters depend on the supported configuration

variants. For their definitions please see the Rte_bswmd.arxml file.

6.2 Task Configuration

Runnable Entities triggered by any kind of RTE Event e.g. TimingEvent have to be

mapped to tasks. Only server runnables (triggered by an OperationInvokedEvent) that

either have their CanBeInvokedConcurrently flag enabled or that are called from

tasks that cannot interrupt each other do not need to be mapped. For optimization
purposes they can be called directly and are then executed in the context of the calling
runnable (client).

The task configuration within DaVinci Configurator also contains some attributes which are
part of the OS configuration. The parameters are required to control RTE generation.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

121 / 139

The creation of tasks is done in OS Configuration Editor in the in the DaVinci Configurator.
The Task Mapping Assistant has to be used to assign the triggered functions (runnables
and schedulable entities) to the tasks.

Figure 6-1 Mapping of Runnables to Tasks

The MICROSAR RTE supports the generation of both BASIC and EXTENDED tasks. The

Task Type can either be selected or the selection is done automatically if AUTO is

configured.

While extended tasks are used for tasks that need to wait for different RTE trigger
conditions, basic tasks are used when all runnables of a task are triggered by one or more
identical triggers.

A typical example for this might be several cyclic triggered runnables that share the same
activation offset and cycle time.

Moreover another requirement for basic task usage is that the mapped runnables do not

use APIs that requires a waitpoint, like a blocking Rte_Feedback().

In addition to the Task Type the number of possible task activations can be configured in
the same dialog.

Caution
When RTE events that trigger a runnable are fired multiple times before the actual
runnable invocation happens and when the runnable is mapped to an extended task,
the runnable is invoked only once.

However, if the runnable is mapped to a basic task, the same circumstances will cause
multiple task activations and runnable invocations. Therefore, for basic tasks, the task
attribute Activation in the OS configuration has to be set to the maximum number of

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

122 / 139

queued task activations. If Activation is too small, additional task activations may result
in runtime OS errors. To avoid the runtime error the number of possible Task Activation
should be increased.

6.3 Memory Protection and Multicore Configuration

For memory protection or multicore support the tasks have to be assigned to OS
applications. The following figures show the configuration of OS applications and the
assignment of OS tasks. For multicore support also the Core ID has to configured for the
OS application.

Figure 6-2 Assignment of a Task to an OS Application

Caution
Make sure that the operating system is configured with scalability class SC3 or SC4.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

123 / 139

Figure 6-3 OS Application Configuration

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

124 / 139

6.4 NV Memory Mapping

Each instance of a Per-Instance Memory, which has configured Needs memory mapping
can be mapped to an NV memory block of the NvM.

The Per-Instance Memory (PIM) is used as mirror buffer for the NV memory block. During

startup, the EcuM calls NvM_ReadAll, which initializes the configured PIM with the value

of the assigned NV memory block. During shutdown, NvM_WriteAll stores the current

value of the PIM buffer in the corresponding NV memory block.

The RTE configurator provides support for manual mapping of already existing NV
memory blocks or automatically generation of NV memory blocks and mapping for all
PIMs.

The RTE has no direct Interface to the NvM in the source code. There exists only an
Interface on configuration level. The RTE configurator has to configure the following parts
of the NvM configuration.

 Address of PIM representing the RAM mirror of the NV memory block.

 Optionally the address of calibration parameter for default values.

 Optionally the size of the PIM in bytes if available during configuration time.

The following figure shows the Memory Mapping in DaVinci Configurator where
assignment of Per-Instance Memory to NV memory blocks can be configured.

Figure 6-4 Mapping of Per-Instance Memory to NV Memory Blocks

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

125 / 139

6.5 RTE Generator Settings

The following figure shows how the MICROSAR RTE Generator has to be enabled for
code generation within the DaVinci Configurator.

Figure 6-5 RTE Generator Settings

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

126 / 139

6.6 Measurement and Calibration

The MICROSAR RTE generator supports the generation of an ASAM MCD-2MC
compatible description of the generated RTE that can be used for measurement and
calibration purposes. When measurement or calibration is enabled the RTE generator

generates a file Rte.a2l that contains measurement objects for sender/receiver ports,

per-instance memories and inter-runnable variables. Calibration parameters are
represented as characteristic objects.

Figure 6-6 Measurement and Calibration Generation Parameters

The switch A2L Version controls the ASAM MCD-2MC standard to which the Rte.a2l file

is compliant. Version 1.6.0 is recommended as it supports a symbol link attribute that can
be used by the measurement and calibration tools to automatically obtain the address of a
characteristic or measurement object in the compiled and linked RTE code.

What measurements and characteristics are listed in the Rte.a2l file depends on the

measurement and calibration settings of the individual port interfaces, per-instance
memories, inter-runnable variables and calibration parameters and if the variable can be
measured in general. For example, measurement is not possible for queued
communication as described in the RTE specification. When “Calibration Access” is set to

“NotAccessible”, an object will not be listed in the Rte.a2l file.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

127 / 139

Within the Rte.a2l file, the measurement objects are grouped by SWCs. When inter-

ECU sender/receiver communication shall be measured, the groups will also contain links
to measurement objects with the name of the COM signal handle. These measurement
objects have to be provided by the COM.

Furthermore, the generated Rte.a2l is only a partial A2L file. It is meant to be included in

the MODULE block of a skeleton A2L file with the ASAM MCD-2MC /include command.

This makes it possible to specify additional measurement objects, for example from the
COM, and IF_DATA blocks directly in the surrounding A2L file.

In order to also allow the measurement of implicit buffers for inter-ECU communication, the
MICROSAR RTE generator supports measurement with the help of XCP Events. This is
controlled by the flag “Use XCPEvents”. When XCP Events are enabled, the RTE
generator triggers an XCP Event that measures the implicit buffer after a runnable with
implicit inter-ECU communication is terminated and before the data is sent. “Use
XCPEvents” also enables the generation of one XCP Event at the end of every task that
can be used to trigger the measurement of other objects.

The RTE generator automatically adds the XCP Events to the configuration of the XCP
module. The Event IDs are then automatically calculated by the XCP module.

The definitions for the Events are generated by the XCP module into the file

XCP_events.a2l. This file can be included in the DAQ section of the IF_DATA XCP

section in the skeleton A2L file.

The MICROSAR RTE supports three different online calibration methods, which can be

selected globally for the whole ECU. They differ in their kind how the APIs Rte_CData and

Rte_Prm access the calibration parameter. By default the online calibration is switched off.

The following configuration values can be selected:

 None

 Single Pointered

 Double Pointered

 Initialized RAM

In addition to the ECU global selection of the method the online calibration have to be
activated for each component individually by setting the Calibration Support switch.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

128 / 139

Figure 6-7 SWC Calibration Support Parameters

For each component with activated Calibration Support memory segments are generated

into the file Rte_MemSeg.a2l. This file can be included in the MOD_PAR section in the

skeleton A2L file. This makes it possible to specify additional memory segments in the
surrounding A2L file.

If the method Initialized RAM is selected, segments for the Flash data section and the
RAM data section of each calibration parameter are generated. The Flash sections are
mapped to the corresponding RAM sections.

If the Single Pointered or Double Pointered method is enabled, only memory segments for

the Flash data sections are listed in the Rte_MemSeg.a2l. In addition a segment for a

RAM buffer is generated, when the Single Pointered method is used and a

CalibrationBufferSize is set. This parameter specifies the size of the RAM buffer in

byte. If it is set to 0, no RAM buffer will be created.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

129 / 139

Figure 6-8 CalibrationBufferSize Parameter

The following figure shows a possible include structure of an A2L file. In addition to the
fragment A2L files that are generated by the RTE generator other parts (e.g. generated by
the BSW) can be included in the skeleton A2L file.

Figure 6-9 A2L Include Structure

For more details about the creation of a complete A2L file see [20].

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

130 / 139

6.7 Optimization Mode Configuration

A general requirement to the RTE generator is production of optimized RTE code. If
possible the MICROSAR RTE Generator optimizes in different optimization directions at
the same time. Nevertheless, sometimes it isn’t possible to do that. In that case the default
optimization direction is “Minimum RAM Consumption”. The user can change this behavior
by manually selection of the optimization mode.

 Minimum RAM Consumption (MEMORY)

 Minimum Execution Time (RUNTIME)

The following figure shows the Optimization Mode Configuration in DaVinci Configurator.

Figure 6-10 Optimization Mode Configuration

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

131 / 139

6.8 VFB Tracing Configuration

The VFB Tracing feature of the MICROSAR RTE may be enabled in the DaVinci
Configrator as shown in the following picture.

Figure 6-11 VFB Tracing Configuration

You may open an already generated Rte_Hook.h header file from within this dialog. This

header file contains the complete list of all available trace hook functions, which can be
activated independently. You can select and copy the names and insert these names into
the trace function list of this dialog manually or you can import a complete list from a file. If
you want to enable all trace functions you can import the trace functions from an already

generated Rte_Hook.h. The VFB Trace Client Prefix defines an additional prefix for all

VFB trace functions to be generated. With this approach it is for example possible to
enable additionally trace functions for debugging (Dbg) and diagnostic log and trace (Dlt)
at the same time.

Info
All enabled trace functions have to be provided by the user. Section 4.3.4 describes
how a template for VFB trace hooks can be generated initially or updated after
configuration changes.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

132 / 139

6.9 Exclusive Area Implementation

The implementation method for exclusive areas can be set in the DaVinci Configurator as
shown in the following picture.

Figure 6-12 Exclusive Area Implementation Configuration

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

133 / 139

6.10 Periodic Trigger Implementation

The runnable activation offset and the trigger implementation for cyclic runnable entities
may be set in the ECU project editor as shown in the following picture.

Figure 6-13 Periodic Trigger Implementation Configuration

Caution
Currently it is not supported to define an activation offset and a trigger implementation
per trigger. The settings can only be made for the complete runnable with potential
several cyclic triggers.

The activation offset specifies at what time relative to the start of the RTE the runnable /
main function is triggered for the first time.

Trigger implementation can either be set to Auto or None. When it is set to the default

setting Auto, the RTE generator will automatically generate and set OS alarms that will

then trigger the runnables / main functions. When trigger implementation is set to None,

the RTE generator only creates the tasks and events for triggering the runnables / main
functions. It is then the responsibility of the user to periodically activate the basic task to
which a runnable / main function is mapped or to send an event when the runnable / main
function is mapped to an extended task.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

134 / 139

This feature can also be used to trigger cyclic runnable entities / main functions with a
schedule table. This allows the synchronization with FlexRay.

To ease the creation of such a schedule table, the generated report Rte.html contains a

trigger listing. The listing contains the triggered runnables / main functions, their tasks and
the used events and alarms.

Figure 6-14 HTML Report

If the OS alarm column for a trigger is empty, the runnable / main function needs to be
triggered manually. In the example above, this is the case for all runnables except for
RunnableCyclic.

The row for Runnable2 does not contain an event because this runnable is mapped to a
basic task.

To manually implement the cyclic triggers, one could for example create a repeating
schedule table in the OS configuration with duration 10 that uses a counter with a tick time

of one millisecond. An expiry point at offset 0 would then need to contain SETEVENT

actions for the runnables Runnable1 and Runnable3 and an ACTIVATETASK action for

Runnable2.

Moreover further expiry points with the offsets 2, 4, 6, 8 are needed to activate Runnable1
and Runnable2 and another expiry point with offset 5 is needed to activate Runnable3.

Caution
When the trigger implementation is set to none, the settings for the cycle time and the
activation offset are no longer taken into account by the RTE. It is then the
responsibility of the user to periodically trigger the runnables / main functions at the
configured times. Moreover the user also has to make sure that this triggering does not
happen before the RTE is completely started.

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

135 / 139

6.11 Resource Calculation

The RTE generator generates the file Rte.html containing the RAM and CONST usage of
the generated RTE. The RTE generator makes the following assumptions.

 Size of a pointer: 2 bytes. The default value of the RTE generator can be changed with

the parameter Size Of RAM Pointer in the EcuC module.

 Size of the OS dependent data type TaskType: 1 byte

 Size of the OS dependent data type EventMaskType: 1 byte

 Padding bytes in structures and arrays are considered according to the configured

parameters Struct Alignment and Struct In Array Alignment in the EcuC

module for NvM blocks.

 Size of a boolean data type: 1 byte (defined in PlatformTypes.h)

The pointer size and the alignment parameters can be found in the container
EcuC/EcucGeneral in the Basic Editor of DaVinci Configurator.

Figure 6-15 Configuration of platform settings

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

136 / 139

7 Glossary and Abbreviations

7.1 Glossary

Term Description

DaVinci DEV DaVinci Developer: The SWC Configuration Editor.

DaVinci CFG DaVinci Configurator: The BSW and RTE Configuration Editor.

Table 7-1 Glossary

The AUTOSAR Glossary [14] also describes a lot of important terms, which are used in
this document.

7.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

Com Communication Layer

ComXf Com based Transformer

C/S Client-Server

E2E End-to-End Communication Protection

E2EXf End-to-End Transformer

EA Exclusive Area

ECU Electronic Control Unit

EcuM ECU State Manager

FOSS Free and Open Source Software

HIS Hersteller Initiative Software

IOC Inter OS-Application Communicator

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (Vector’s AUTOSAR solution)

NvM Non-volatile Memory Manager

PIM Per-Instance Memory

OIL OSEK Implementation Language

OSEK Open Systems and their corresponding Interfaces for Electronics in
Automotive

RE Runnable Entity

SE Schedulable Entity

RTE Runtime Environment

SchM Schedule Manager

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

137 / 139

SOME/IP Scalable service-oriented middleware over IP

SomeIpXf SOME/IP Transformer

S/R Sender-Receiver

SWC Software Component

SWS Software Specification

VFB Virtual Functional Bus

Table 7-2 Abbreviations

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

138 / 139

8 Additional Copyrights

The MICROSAR RTE Generator contains Free and Open Source Software (FOSS). The
following table lists the files which contain this software, the kind and version of the FOSS,
the license under which this FOSS is distributed and a reference to a license file which
contains the original text of the license terms and conditions. The referenced license files
can be found in the directory of the RTE Generator.

File FOSS License License Reference

MicrosarRteGen.exe Perl 5.20.2 Artistic License License_Artistic.txt

Newtonsoft.Json.dll Json.NET 6.0.4 MIT License License_JamesNewton-King.txt

Rte.jar flexjson 2.1 Apache License V2.0 License_Apache-2.0.txt

Table 8-1 Free and Open Source Software Licenses

Technical Reference MICROSAR RTE

2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

139 / 139

9 Contact

Visit our website for more information on

 News

 Products

 Demo software

 Support

 Training data

 Addresses

www.vector.com

http://www.vector.com/

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.1.1 Deviations
	3.1.2 Additions/ Extensions
	3.1.3 Limitations

	3.2 Initialization
	3.3 AUTOSAR ECUs
	3.4 AUTOSAR Software Components
	3.5 Runnable Entities
	3.6 Triggering of Runnable Entities
	3.6.1 Time Triggered Runnables
	3.6.2 Data Received Triggered Runnables
	3.6.3 Data Reception Error Triggered Runnables
	3.6.4 Data Send Completed Triggered Runnables
	3.6.5 Mode Switch Triggered Runnables
	3.6.6 Mode Switched Acknowledge Triggered Runnables
	3.6.7 Operation Invocation Triggered Runnables
	3.6.8 Asynchronous Server Call Return Triggered Runnables
	3.6.9 Init Triggered Runnables
	3.6.10 Background Triggered Runnables

	3.7 Exclusive Areas
	3.7.1 OS Interrupt Blocking
	3.7.2 All Interrupt Blocking
	3.7.3 OS Resource
	3.7.4 Cooperative Runnable Placement

	3.8 Error Handling
	3.8.1 Development Error Reporting

	4 RTE Generation and Integration
	4.1 Scope of Delivery
	4.2 RTE Generation
	4.2.1 Command Line Options
	4.2.2 RTE Generator Command Line Options
	4.2.3 Generation Path

	4.3 MICROSAR RTE generation modes
	4.3.1 RTE Generation Phase
	4.3.2 RTE Contract Phase Generation
	4.3.3 Template Code Generation for Application Software Components
	4.3.4 VFB Trace Hook Template Code Generation

	4.4 Include Structure
	4.4.1 RTE Include Structure
	4.4.2 SWC Include Structure
	4.4.3 BSW Include Structure

	4.5 Compiler Abstraction and Memory Mapping
	4.5.1 Memory Sections for Calibration Parameters and Per-Instance Memory
	4.5.2 Memory Sections for Software Components
	4.5.3 Compiler Abstraction Symbols for Software Components and RTE

	4.6 Memory Protection Support
	4.6.1 Partitioning of SWCs
	4.6.2 OS Applications
	4.6.3 Partitioning Architecture
	4.6.3.1 Trusted RTE and BSW
	4.6.3.2 Non-Trusted RTE and BSW

	4.6.4 Conceptual Aspects
	4.6.5 Memory Protection Integration Hints
	4.6.5.1 Enabling of Memory Protection support
	4.6.5.2 Memory mapping in Linker Command File
	4.6.5.3 OS Configuration extension

	4.7 Multicore support
	4.7.1 Partitioning of SWCs
	4.7.2 BSW in Multicore Systems
	4.7.3 IOC Usage

	4.8 BSW Access in Partitioned systems
	4.8.1 Inter-ECU Communication
	4.8.2 Client Server communication

	5 API Description
	5.1 Data Type Definition
	5.1.1 Invalid Value
	5.1.2 Upper and Lower Limit
	5.1.3 Initial Value

	5.2 API Error Status
	5.3 Runnable Entities
	5.3.1 <RunnableEntity>

	5.4 SWC Exclusive Areas
	5.4.1 Rte_Enter
	5.4.2 Rte_Exit

	5.5 BSW Exclusive Areas
	5.5.1 SchM_Enter
	5.5.2 SchM_Exit

	5.6 Sender-Receiver Communication
	5.6.1 Rte_Read
	5.6.2 Rte_DRead
	5.6.3 Rte_Write
	5.6.4 Rte_Receive
	5.6.5 Rte_Send
	5.6.6 Rte_IRead
	5.6.7 Rte_IWrite
	5.6.8 Rte_IWriteRef
	5.6.9 Rte_IStatus
	5.6.10 Rte_Feedback
	5.6.11 Rte_IsUpdated

	5.7 Data Element Invalidation
	5.7.1 Rte_Invalidate
	5.7.2 Rte_IInvalidate

	5.8 Mode Management
	5.8.1 Rte_Switch
	5.8.2 Rte_Mode
	5.8.3 Enhanced Rte_Mode
	5.8.4 Rte_SwitchAck

	5.9 Inter-Runnable Variables
	5.9.1 Rte_IrvRead
	5.9.2 Rte_IrvWrite
	5.9.3 Rte_IrvIRead
	5.9.4 Rte_IrvIWrite

	5.10 Per-Instance Memory
	5.10.1 Rte_Pim

	5.11 Calibration Parameters
	5.11.1 Rte_CData
	5.11.2 Rte_Prm

	5.12 Client-Server Communication
	5.12.1 Rte_Call
	5.12.2 Rte_Result

	5.13 Indirect API
	5.13.1 Rte_Ports
	5.13.2 Rte_NPorts
	5.13.3 Rte_Port

	5.14 RTE Lifecycle API
	5.14.1 Rte_Start
	5.14.2 Rte_Stop
	5.14.3 Rte_InitMemory

	5.15 SchM Lifecycle API
	5.15.1 SchM_Init
	5.15.2 SchM_Deinit
	5.15.3 SchM_GetVersionInfo

	5.16 VFB Trace Hooks
	5.16.1 Rte_[<client>_]<API>Hook_<cts>_<ap>_Start
	5.16.2 Rte_[<client>_]<API>Hook_<cts>_<ap>_Return
	5.16.3 SchM_[<client>_]<API>Hook_<Bsw>_<ap>_Start
	5.16.4 SchM_[<client>_]<API>Hook_<Bsw>_<ap>_Return
	5.16.5 Rte_[<client>_]ComHook_<SignalName>_SigTx
	5.16.6 Rte_[<client>_]ComHook_<SignalName>_SigIv
	5.16.7 Rte_[<client>_]ComHook_<SignalName>_SigGroupIv
	5.16.8 Rte_[<client>_]ComHook_<SignalName>_SigRx
	5.16.9 Rte_[<client>_]ComHook<Event>_<SignalName>
	5.16.10 Rte_[<client>_]Task_Activate
	5.16.11 Rte_[<client>_]Task_Dispatch
	5.16.12 Rte_[<client>_]Task_SetEvent
	5.16.13 Rte_[<client>_]Task_WaitEvent
	5.16.14 Rte_[<client>_]Task_WaitEventRet
	5.16.15 Rte_[<client>_]Runnable_<cts>_<re>_Start
	5.16.16 Rte_[<client>_]Runnable_<cts>_<re>_Return

	5.17 RTE Interfaces to BSW
	5.17.1 Interface to COM / LDCOM
	5.17.2 Interface to OS
	5.17.3 Interface to NVM
	5.17.4 Interface to XCP
	5.17.5 Interface to SCHM
	5.17.6 Interface to DET

	6 RTE Configuration
	6.1 Configuration Variants
	6.2 Task Configuration
	6.3 Memory Protection and Multicore Configuration
	6.4 NV Memory Mapping
	6.5 RTE Generator Settings
	6.6 Measurement and Calibration
	6.7 Optimization Mode Configuration
	6.8 VFB Tracing Configuration
	6.9 Exclusive Area Implementation
	6.10 Periodic Trigger Implementation
	6.11 Resource Calculation

	7 Glossary and Abbreviations
	7.1 Glossary
	7.2 Abbreviations

	8 Additional Copyrights
	9 Contact

