vector”

MICROSAR RTE

Technical Reference

Version 4.8.0

Authors Bernd Sigle, Martin Schlodder, Sascha Sommer,
Stephanie Schaaf, Katharina Benkert, Cornelius Reuss

Status Released

Technical Reference MICROSAR RTE

Document Information

History

Bernd Sigle
Bernd Sigle
Bernd Sigle

Martin Schlodder
Martin Schlodder
Martin Schlodder
Martin Schlodder
Martin Schlodder

Bernd Sigle

Bernd Sigle
Martin Schlodder

Martin Schlodder
Bernd Sigle

Bernd Sigle

Martin Schlodder
Martin Schlodder
Bernd Sigle

Martin Schlodder
Bernd Sigle

Hannes Futter

Bernd Sigle

2005-11-14 2.0.0

2006-04-20 2.0.1

2006-07-11 2.0.2

2006-11-02
2006-11-15 2.0.4
2006-12-21 2.0.5
2007-01-17 2.0.6
2007-02-14 2.0.7

2.0.3

2007-02-19 2.0.8

2007-04-25 2.0.9

2007-04-27 2.0.10

2007-05-01 2.1.0

2007-07-27 2.1.1

2007-08-03 2.1.2
2007-11-16 2.1.3

2008-02-06 2.1.4

2008-03-11 2.1.5

2008-03-26 2.2.0

©2015, Vector Informatik GmbH

vector’

Document completely reworked and adapted to
AUTOSAR RTE

API description for Rte_IRead / Rte_|Write added,
description of used OS/COM services added

API description for Rte_Receive / Rte_Send added;
Adaptation to RTE SWS 1.0.0 Final

Separation of RTE and target package
Client/Server communication
Serialized client/server communication
Array data types

Added exclusive areas, removed description of
TargetPackages

Added transmission acknowledgement handling and
minor rework of the document

Added Rte_IStatus
Added IRV and Const/Enum
Completed documentation for Version 2.2

Added Rte_InitMemory, Rte_IWriteRef Runnable.
Added description of runnable activation offset und
updated picture of MICROSAR architecture.

Added description of template update.

Added warning regarding IWrite / IrvIWrite.
Added API descriptions of VFB trace hooks.
Updated data type info for nested types.

Updated descriptions on template merging and task
mapping.

Added description of Rte_Pim, Rte_CData,
Rte_Calprm and Rte_Result.

Added support of string data type.

Updated command line argument description.
Added NvVRAM mapping description.

Added chapter about compiler abstraction and
memory mapping.

Additional command line switches to support direct
generation on xml and dcf files.

Updated description of NV Memory Mapping and
Chapter about limitations added.

Chapter about compiler and memory abstraction
updated.

Support for AUTOSAR Release 3.0 added.

Version: 4.8.0 2/139

Technical Reference MICROSAR RTE VeCtOf

Bernd Sigle 2008-04-16 2.3.0 Added description about A2L file generation and
updated command line options and example calls to
cover also the AUTOSAR XML input files.

Bernd Sigle 2008-07-16 2.4.0 Removed limitations for multiple instantiation and
compatibility mode support.
Bernd Sigle 2008-08-13 2.5.0 Added description of indirect APIs Rte_Port, Rte_Ports

and Rte_NPorts. Added description of platform
dependent resource calculation.

Bernd Sigle 2008-10-23 2.6.0 Added description of memory protection support.

Bernd Sigle 2009-01-23 2.7.0 Added description of mode management APIs
Rte_Mode and Rte Switch and updated description of
Rte_Feedback.
Added description of Rte_Invalidate and
Rte_lInvalidate and added new Com APIs.
Added additional runnable trigger events and removed
section for runnables without trigger, which is no
longer supported.
Deviation for [rte_sws 2648] added.
Usage of new document template

Bernd Sigle 2009-03-26 2.8.0 Removed limitations for unconnected ports and for
data type generation.

Sascha Sommer 2009-08-11 2.9.0 Added description about usage of basic / extended
Bernd Sigle task

Added description of command line parameter -v
Sascha Sommer 2009-10-22 2.10.0 Added a warning for VFB trace hooks that prevent
Bernd Sigle macro optimizations

Explained that the Activation task attribute has to be
set for basic tasks

Init-Runnables no longer need to have a special suffix
Explained the new periodic trigger implementation
dialog.

Server runnables with CanBelnvokedConcurrently set

to false do not need to be mapped to tasks when the
calling clients cannot interrupt each other

Resource Usage is now listed in a HTML report

Updated version of referenced documents and of
supported AUTOSAR release.

Updated examples with new workspace file extension.
Added new defines for memory mapping.

Bernd Sigle 2010-04-09 2.11.0 Added description of user header file Rte_UserTypes.h
Updated component history and interface functions to
the OS. Added pictures of Rte Interfaces and Rte

Include Structure. Updated picture of MICROSAR
architecture. Rework of chapter structure.

Bernd Sigle 2010-05-25 2.11.1 Added description of RTE optimization mode

©2015, Vector Informatik GmbH Version: 4.8.0 3/139

Technical Reference MICROSAR RTE

Bernd Sigle

Sascha Sommer

Bernd Sigle

Bernd Sigle

Bernd Sigle

Stephanie Schaaf

Bernd Sigle

Sascha Sommer

Stephanie Schaaf

Bernd Sigle

Sascha Sommer

Bernd Sigle

Bernd Sigle

Bernd Sigle

Bernd Sigle

Stephanie Schaaf

Bernd Sigle

2010-05-26

2010-07-22

2010-09-28

2010-11-23

2011-07-25

2012-01-25

2012-05-18

2012-09-18

2012-08-28

2012-12-11

2013-03-26

2013-06-14

©2015, Vector Informatik GmbH

2.12.0

2.13.0

2.13.1

2.14.0

2.15.0

2.16.0

217.0

2.18.0

3.90.0

4.0.0

41.0

411

vector’

Added new measurement chapter, added description
of COM Rx Filter, macros for access of invalid value,
initial value, lower and upper limit, added support of
minimum start interval and second array passing
variant. Support of AUTOSAR Release 3.1 (RTE SWS
2.2.0)

Added online calibration support. Removed limitation
of missing transmission error detection

Added more detailed description of extended record
data type compatibility rule

Removed obsolete command line parameters —bo, —bc
and -bn.

Added general support of AUTOSAR Release 3.2.1
(RTE SWS 2.4.0).

Added support of never received status.
Added support of S/R update handling.

Mentioned that —g ¢ and —g i ignore service
components when —m specifies an ECU project.

Explained RTE usage with Non-Trusted BSW

Added hint for FUNC_P2CONST() problems
Explained measurement of COM signals

Enhanced command line interface (support for several

generation modes in one command line call, optional
command line parameter —m)

Split of RTE into OS Application specific files

Byte arrays no longer need to be mapped to signals
groups

Allow configuration of Schedule() calls in non-
preemptive tasks

Corrected description how the Rte IsUpdated API can
be enabled

Added general support of AUTOSAR Release 3.2.2
(RTE SWS 2.5.0).
Added support of non-queued N:1 S/R communication

AUTOSAR 4.0.3 support, DaVinci Configurator 5
support

Updated API descriptions concerning
RTE_E_UNCONNECTED return code

Added description of Rte_UserTypes.h file which is
now also generated with the template mechanism
Added support of Rte_MemSeg.a2l file

Added description of —o sub option for A2L file path
Added Multi-Core support (S/R communication)

Added support of Inter-Runnable Variables with
composite data types

Version: 4.8.0 4/139

Technical Reference MICROSAR RTE VeCtOf

Katharina Benkert 2013-10-30 4.2.0 Added support for arrays of dynamic data length

Stephanie Schaaf (Rte_Send/Rte_Receive)
Sascha Sommer Added support for parallel generation for multiple
Bernd Sigle component types

Multicore support
Added support for SchM Contract Phase Generation
Added support for Nv Block SWCs

Katharina Benkert 2014-02-06 4.3.0 Added support of VFB Trace Client Prefixes

Sascha Sommer Optimized Multicore support without IOCs

Stephanie Schaaf Memory Protection support for Multicore systems
Inter-ECU sender/receiver communication, queued
sender/receiver communication and mapped
client/server calls are no longer limited to the BSW
partition
Added support of Development Error Reporting
Added support of registering XCP Events in the XCP
module configuration

Stephanie Schaaf 2014-06-17 4.4.0 Support for unconnected client ports for synchronous

Bernd Sigle C/S communication

Inter-Ecu C/S communication using SOME/IP
Transformer

Support for PR-Ports

S/R Serialization using SOME/IP Transformer and E2E
Transformer

Support LdCom
Bernd Sigle 2014-08-13 4.41 Described decimal coding of the version defines and
the return code of SchM_GetVersioninfo
Added chapter about additional copyrights of FOSS
Bernd Sigle 2014-09-12 4.4.2 Minor format changes only
Bernd Sigle 2014-08-13 4.5.0 Support Postbuild-Selectable for variant data
mappings and variant COM signals

Support E2E Transformer for Inter-Ecu C/S
communication

Support tasks mappings where multiple runnable or
schedulable entities using different cycle times or
activation offsets are mapped to a single Basic Task.
The realization uses OS Schedule Tables

Support Rte_ DRead API
Enhanced support for PR-Ports

Support ServerArgumentimplPolicy = use
ArrayBaseType

Explicit order of ModeDeclarationGroups

©2015, Vector Informatik GmbH Version: 4.8.0 5/139

Technical Reference MICROSAR RTE VeCtOf

Bernd Sigle 2014-12-08 4.6.0 Support of PR Mode Ports
Support of PR Nv Ports

Support of bit field data types (CompuMethods with
category BITFIELD_TEXTTABLE)

Runtime optimized copying of large data
Support for SW-ADDR-METHOD on RAM blocks of
NvRAM SWCs
Bernd Sigle 2015-02-20 4.7.0 Support of background triggers
Support of data prototype mappings
Support of bit field text table mappings
Support of union data types

Support of UTF16 data type serialization in the
SOME/IP transformer

Runtime optimization in the generated RTE code by
usage of optimized interrupt locking APIs of the
MICROSAR OS

Support of further E2E profiles for data transformation
with the SOME/IP and E2E transformer

Support of OS counters with tick durations smaller
than 1us
Bernd Sigle 2015-07-26 4.8.0 Support of COM based Transformer ComXf

Support of different strategies for writing NV data in Nv
Block SWCs

Support of C/S Interfaces for Nv Block SWCs

SWC Template generation provides user sections for
documentation of runnable entities

Wide character support in paths

Improved counter selection for operating systems with
multiple OS applications

Support of optimized macro implementation for
SchM_Enter and SchM_Exit

Enhanced OS Spinlock support
Enable optimizations in QM partitions

Table 1-1 History of the document

©2015, Vector Informatik GmbH Version: 4.8.0 6/139

Technical Reference MICROSAR RTE vector'

Reference Documents

No. |Title

[1] AUTOSAR_SWS_RTE.pdf 3.2.0
[2] AUTOSAR_EXP_VFB.pdf 2.2.0
[3] AUTOSAR_SWS_COM.pdf 420
(4] AUTOSAR_SWS_OS.pdf 5.0.0
[5] AUTOSAR_SWS NVRAMManager.pdf 3.2.0
[6] AUTOSAR_SWS_ECU_StateManager.pdf 3.0.0
[7] AUTOSAR_SWS_StandardTypes.pdf 1.3.0
[8] AUTOSAR_SWS_PlatformTypes.pdf 25.0
[9] AUTOSAR_SWS_CompilerAbstraction.pdf 3.2.0
[10] AUTOSAR_SWS_MemoryMapping.pdf 1.4.0
[11] AUTOSAR_TPS_SoftwareComponentTemplate.pdf 4.2.0
[12] AUTOSAR_TPS_SystemTemplate.pdf 4.2.0
[13] AUTOSAR_TPS_ECUConfiguration.pdf 3.2.0
[14] AUTOSAR_TR_Glossary.pdf 24.0
[15] AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf 2.2.0
[16] AUTOSAR_SWS_XCP.pdf 2.0.0
[17] AUTOSAR_SWS_ DevelopmentErrorTracer.pdf 3.2.0
[18] Vector DaVinci Configurator Online help

[19] Vector DaVinci Developer Online help

[20] AUTOSAR Calibration User Guide 1.0

Table 1-2 Reference documents

Scope of the Document

This document describes the MICROSAR RTE generator. It assumes that the reader is
familiar with the AUTOSAR architecture, especially the software component (SWC) design
methodology and the AUTOSAR RTE specification. It also assumes basic knowledge of
some basic software (BSW) modules like AUTOSAR Os, Com, LdCom, NvM and EcuM.
The description of those components is not part of this documentation. The related
documents are listed in Table 1-2.

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

77139

Technical Reference MICROSAR RTE vector'

fﬁ Please note

: We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

©2015, Vector Informatik GmbH Version: 4.8.0 8/139

Technical Reference MICROSAR RTE VeCtOf

Contents
1 Component HIStOrY ... e 15
2 INtrodUCION..... ..o e 20
2.1 ArchiteCture OVEIVIEWiiii e 21
3 Functional DeSCriptioncooiiiiiiiiiii e 24
3.1 == (U] = S 24
3.1.1 D=3V E= (10 I Y 26
3.1.2 Additions/ EXIENSIONS........cccovviiiiiiiiiiiii 27
3.1.3 LimitationS.....coooe e 27
3.2 INIETALIZATION e e 28
3.3 AUTOSAR ECUS ... 28
3.4 AUTOSAR Software COmMPONENES........coieiiiiiiiiiiiiiii e 28
3.5 Runnable ENtities. 28
3.6 Triggering of Runnable Entities ..., 29
3.6.1 Time Triggered Runnablescccoco i, 29
3.6.2 Data Received Triggered Runnables............ccccooiiiiiiiiiiiinncci, 30
3.6.3 Data Reception Error Triggered Runnables................ccccvviiiiiiiiinnnns 30
3.64 Data Send Completed Triggered Runnables............ccccoeeeeiriiiinnnnnnnn. 30
3.6.5 Mode Switch Triggered Runnables..............cccccuviiiiiiiiiiiiiiiiiiiiiiiininns 30
3.6.6 Mode Switched Acknowledge Triggered Runnables......................... 30
3.6.7 Operation Invocation Triggered Runnablescccooeeeeeeieeeeeeeen. 31
3.6.8 Asynchronous Server Call Return Triggered Runnables 31
3.6.9 Init Triggered RUNN@DIESoooviiiiiiiiiiiiiiiiiiiiiee 31
3.6.10 Background Triggered Runnables............cccoooiiiiiiiiiiiiiiiiieeee 31
3.7 o] (U TN I Y == 1 32
3.7.1 OS Interrupt BIOCKINGoovviiiiiii e 32
3.7.2 All Interrupt BIOCKINGuieeei e 32
3.7.3 OS RESOUICE ..ottt e e e e e e e e e eanea s 33
3.74 Cooperative Runnable Placement............ccccoooooiiiiiiiiiiiieencen, 33
3.8 Error Handling.........oooo 34
3.8.1 Development Error Reporting.............evueeeeeiiiiiiiiiiiiiiiiiiiiiiiiiieininennenn 34
4 RTE Generation and Integration..................ooooiiii 36
4.1 SCOPE Of DEIIVEIY ... sssnnnnsnnnnnnnnes 36
4.2 RTE Generationcoooiiiiiiiii e 37
421 Command Line OPLioNScccooeeiiieeeeeeeee e 37
4.2.2 RTE Generator Command Line OptioNnS.............ueuviviieiieiiiiiiiiinininnnns 37
423 Generation Path ... 39

©2015, Vector Informatik GmbH Version: 4.8.0 9/139

Technical Reference MICROSAR RTE VeCtOf

4.3 MICROSAR RTE generation MOdEScceevvviiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeee 39

4.3.1 RTE Generation Phaseuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiinieenneninnne 39

4.3.2 RTE Contract Phase Generation.............ccccovvvieiiiiiiiiiiiinieeceeeeiinn, 41

4.3.3 Template Code Generation for Application Software Components ... 43

4.3.4 VFB Trace Hook Template Code Generation.............cccccceeeeieeennnnnnns 44

4.4 INCIUAE STTUCIUNE.....cceeee e 45

441 RTE INClude STruCtUre.........uuiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 45

4.4.2 SWC Include StruCture............oiii i 46

443 BSW Include Structure ... 47

4.5 Compiler Abstraction and Memory Mapping........cccooeuuiiieiiieeeiiciiicee e, 48
451 Memory Sections for Calibration Parameters and Per-Instance

/=Y o o oY P 50

4.5.2 Memory Sections for Software Componentscccccoevveevvviviiinnnnnn. 51

453 Compiler Abstraction Symbols for Software Components and RTE.. 52

4.6 Memory Protection SUPPOItuiiiiiii e 53

4.6.1 Partitioning Of SWCS.........uuiiiiiiiiiiiiiiiiiiiiii e 53

4.6.2 OS ApPlICAtiONS......uiiie i 53

46.3 Partitioning ArchiteCtureuuuuiiiiiiiiiiiiiiiee 54

4.6.4 Conceptual ASPECLESccovieeiiicie e 57

4.6.5 Memory Protection Integration Hintscoiiiiiiiiin e, 58

4.7 1Y/ [8]ToTo] y Y=Y U o] o oy PSSR 59

4.7.1 Partitioning of SWCS.......cooiiiiiiii e 59

4.7.2 BSW in Multicore Systemsccooieeiiiiiiiiiiiii e, 59

4.7.3 [OC USAQEceiiiiiiiiiiiiiiieeeeeeeeee ettt 60

4.8 BSW Access in Partitioned systems............cccccoeiiiiiiiiiiiii e, 60

4.8.1 Inter-ECU Communicationcccooiiiiiiiiiiiiiiie e 60

4.8.2 Client Server communicationcuuuiiiiieeeeiiieieee e 61

B API DeSCHIPLION.. ... e an 62

5.1 Data Type Definition...........coiiiiiiiice e 62

51.1 INValid ValUE.......covviiiiiiiiiiiiieiieieeeeeeeeeeeeeeee e 62

51.2 Upper and Lower Limit ... 63

51.3 INitial Value.........oovvviiiiiiiiiiiii 63

5.2 APLEOr Status ... 63

5.3 RUNNable ENtities.......cooviiii e 64

5.3.1 <RUNNableENtity> ... 64

5.4 SWC EXCIUSIVE AMBAScceeiiieeiiiei ettt e e e e e e et e e e e e e aaaenes 66

5.4.1 (G = 1 =T RN 66

54.2 L C= = 67

5.5 BSW EXCIUSIVE AMCAS ..o iieiiieeeiicie ettt e e et e e e e aeaenes 68

5.5.1 SChM BN el e 68

©2015, Vector Informatik GmbH Version: 4.8.0 10/139

Technical Reference MICROSAR RTE vector'

5.5.2 SChM _EXit. e 69
5.6 Sender-Receiver CommuniCationuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie. 70
5.6.1 Rt€_REA. ... oo 70
5.6.2 Rt€ DREAAo 71
5.6.3 REE WIEE ... e 72
5.6.4 Rte_RECEIVE ... 73
5.6.5 REE_SENd... .o 74
5.6.6 Rte_IREAM. oo 75
5.6.7 REE _IWHIE ... e 76
5.6.8 Rte IWHERES ... e 77
5.6.9 Rte_IStatUS ... 78
56.10 Rte_FeedbacK........uuiiiiiiiiiiie e 79
5.6.11 Rte_IsUpdated.........coooiiiiii e 80
5.7 Data Element Invalidationoouiiiiiii e 81
5.7.1 Rte_Invalidate........cccoo i 81
5.7.2 Rte_lInvalidate.........ccoooveiii i 82
5.8 Mode ManagemMENtooviviiiiiiiiiiiiiiieiiee e 83
5.8.1 REE _SWILCN .. ettt 83
5.8.2 L C= Y 1T/ [o Yo [TP 84
5.8.3 Enhanced Rte_MOdEooeviiiiiiiieiice e 85
5.8.4 RtE_SWICNACKuutiiiiiiiiiiiiiiiitiiiiiii e eeenenennee 86
5.9 Inter-Runnable Variables..........coovveiiiiiiii e 87
5.9.1 Rte Ir'VREAA...... e 87
5.9.2 Rt€ VWG . 88
5.9.3 Rte_Ir'VIREAA......coeeeeee e 89
594 Rt€ IVIWIIE .o e 90
5.10 Per-INStance MEeMOIY.........uuuuuuuiiiiiiiiiiiiiiiiiii e neeneneee 91
5.10.1 [C= I 0 R 91
5.11 Calibration Parametersuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeaeeeeneeeereeeenneenenene 92
5.11.1 (G I O] B | - 92
5.11.2 (= e 1 2T 93
5.12 Client-Server COmMmMUNICAtIONuuuuiuiiiiiiiiiiiiiiiiiiiiiieeee e eeeeeeeeeeeeeenene 94
5.12.1 [C= 7 | 94
5122 RUE_RESUIL......eiiiiiiiiiiiiiiiiiii e 95
5.A3 INAINECE AP e 96
5.13.1 REE P OMS ...ttt 96
STt I 20 4 (= T | o] 97
TR TR T o (= T o] o PR 98
514 RTE LifE@CYCIE APloeeeiiiiiiiiii s sasssssasnnsnnnnnne 99
5.14.1 L C= S) - o C 99
ST S (= IS (o] o JE RPN 99

©2015, Vector Informatik GmbH Version: 4.8.0 11/139

Technical Reference MICROSAR RTE VeCtOf

5.14.3 Rte_INIMEMOIY.......uiiiiiiiiiiiiiiiiii e 100

515 SChM LIfECYCIE AP ...t e 101
5.15.1 SChM NIt 101

5.15.2 SchM _Deinitccoiiiiiii e 101

5.15.3 SchM_GetVersionInfo..........couuiiiiiiiiiic e 102

516 VFB Trace HOOKS........ouuiiiiiiiiii it 103
5.16.1 Rte_[<client>]<API>Hook <cts> <ap> Start.........cccccceeeiiiininnnnnn 103

5.16.2 Rte_[<client>_]<API>Hook_<cts>_<ap>_ Return........................... 104

5.16.3 SchM_J[<client>_]<API>Hook_<Bsw>_ <ap>_Start......................... 105

5.16.4 SchM_J[<client>_]<API>Hook <Bsw> <ap> Return...................... 106

5.16.5 Rte_[<client>_]ComHook_<SignalName>_SigTX..........ccc.eevvrrrrnns 107

5.16.6 Rte_[<client>_]ComHook_<SignalName>_Siglv................ccevrrrnnns 108

5.16.7 Rte_[<client> JComHook <SignalName>_SigGrouplyv 109

5.16.8 Rte_[<client>_]ComHook_<SignalName>_SigRXcccceeees 110

5.16.9 Rte_[<client> JComHook<Event> <SignalName>.......................... 111

5.16.10 Rte_[<client>]Task Activate........ccccoooriiiiiiiiiiiiiiiii e, 112

5.16.11 Rte_[<client>_JTask_Dispatch...........ccccrrmririiiiiiiiiiciiie e 112
5.16.12 Rte_[<client> JTask _SetEvent..........ccccoiiiiiiiiiiiiiiiii e, 113

5.16.13 Rte_[<client>_JTask_ WaitEvent...........ccccciiiiiiiiiiiiii e 113

5.16.14 Rte_[<client>_JTask_WaitEventRet............ccccooviiiiiiiiiiiii e 114

5.16.15 Rte_[<client> JRunnable_<cts> <re> Start...........cccccceeeeiiiiniinnnnn, 114
5.16.16 Rte_[<client>_]JRunnable_<cts> <re> Return............ccccoeeeevvrrnnnns 115

517 RTE INterfaces t0 BSWuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeesnesesneesseeeeeannnnene 116
5171 Interface t0 COM /LDCOM........coovvviiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee 116

5.17.2 Interface to OS ... 117

517.3 Interface 10 NVIMouuiiiiiiiiiiiiiiiiiiiiiiiiiiiii e eeeeeeeeeeeeeeenees 118

517.4 INterface 10 XCP ... 118

5.17.5 Interface 10 SCHM ... 119

517.6 Interface 10 DETuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeseeeeneneenees 119

6 RTE Configuration.............c.oooiiiiiii e e 120
6.1 Configuration Variants.................uuueiiiiiiiiiiii 120
6.2 Task ConfIGUIrationccoooioei e 120
6.3 Memory Protection and Multicore Configuration..............ccccccoviiiiiiiiiinnnns 122
6.4 NV Memory Mappingcoooeiiiiiiiiieeee e 124
6.5 RTE Generator Settings.........cooooiiiiiii 125
6.6 Measurement and Calibration ... 126
6.7 Optimization Mode Configurationeeuueiiiiiiiiiiiiiiiiiis 130
6.8 VFB Tracing Configurationcooooooiiiiiie e 131
6.9 Exclusive Area Implementation ... 132
6.10 Periodic Trigger Implementation..............coooooiiii i 133

©2015, Vector Informatik GmbH Version: 4.8.0 12/139

Technical Reference MICROSAR RTE VeCtOf

6.11 Resource CalCulation............coi oo 135
7 Glossary and Abbreviations ... 136
71 (€ [0 1STT= | Y PR 136
7.2 ABDIeVIationsooooiii e, 136
8 Additional Copyrightsuuiiiiiiiiiiiiii 138
O L ONEACT 139

©2015, Vector Informatik GmbH Version: 4.8.0 13/139

Technical Reference MICROSAR RTE

lllustrations

Figure 2-1
Figure 2-2
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13
Figure 6-14
Figure 6-15

Tables

Table 1-1
Table 1-2
Table 1-1
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9
Table 7-1
Table 7-2
Table 8-1

©2015, Vector Informatik GmbH

AUTOSAR archit@CtUIe.......cooeeeiieeeeiicce e 21
Interfaces to adjacent modules of the RTEcccooooiiiiiiiiii i, 23
RTE INCIUE STrUCKUIEvviiiiiiiiieiiiiiiiieitiii i eaeeeeeeeeennes 45
SWC INClude SErUCLUIE ... 46
BSW INCIUAE STrUCUIEevviiiiiiiiiiiiiiiiiiiiiitiiiiie e 47
Trusted RTE Partitioning exampleccccoooviiiiiiiiii e 54
Non-trusted RTE Partitioning example.................euvmiiiiiiiiiiiiiiiiiiiiiiins 55
Mapping of Runnables t0 TaskScccovvieeiiiiiiiiie e, 121
Assignment of a Task to an OS Application............c.cccooviiiiiiiin e, 122
OS Application Configurationoceeviiiiiiiiiiiic e 123
Mapping of Per-Instance Memory to NV Memory Blocks 124
RTE Generator Settings..........oovvviiiiiii e 125
Measurement and Calibration Generation Parameterscccccvuvee. 126
SWC Calibration Support Parametersccccevvvviiiiiiiieeeiieceee e, 128
CalibrationBufferSize Parameter.............ccccoeiiiiiiiiiiiiii e, 129
A2L Include Structure ... 129
Optimization Mode Configuration...................eeeuiiiiiiiiiiiiiiiiens 130
VFB Tracing Configuration............cccccoiiiiiiii 131
Exclusive Area Implementation Configuration.............ccccoeeeiiiiiiiiiiniinnnnnn. 132
Periodic Trigger Implementation Configurationccccoooiiiiiiiinnnnnn. 133
[Y (=T o To) R 134
Configuration of platform settingscoooeeiiiiii 135
History of the dOCUMENTuuiiiiiiiiiii e 6
R (=14 a et N o (o o1U [4 1=T 0 | T 7
(070] 0 0] oo T aT=Y o1 0113 (o] /8 19
Supported AUTOSAR standard conform features...........cccoceeeviiiieieninnnnn.n. 26
Not supported AUTOSAR standard conform features..............cccccceeeee. 27
Features provided beyond the AUTOSAR standard.............cccccevvvivninnnnnnns 27
SEIVICE IDS ... 35
Errors reported t0 DETcoooiiiecie e 35
Content Of DEIIVEIY ... e 36
DVCfgCmd Command Line OPtioNSeuviriiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieinnenenns 37
RTE Generator Command Line OptionSccooveivvviiiiiiiiiiiieeeceeeiceee e 39
Generated Files of RTE Generation Phase...........ccccccvvviiiiiiiiiiiiiiiiiiiinnnn. 40
Generated Files of RTE Contract Phase...........ccccccoiiiiiiiiiiiiiiiiiiiiiiiiiiinns 41
Generated Files of RTE Template Code Generation..............cccceeeeeinnnnn.n. 43
Generated Files of VFB Trace Hook Code Generationcccccvvvnnne. 44
Compiler abstraction and memory mapping..............eeeeeeeeemmeemmmemmmennnnnnnnn. 49
Compiler abstraction and memory mapping for non-cacheable variables . 49
GIOSSANY ...ttt 136
ABDIreVIatioNSo e 137
Free and Open Source Software LiICENSESuuuvrrvriimmiimreiiienininennnnnns 138

Version: 4.8.0

vector’

14 /139

Technical Reference MICROSAR RTE V@CtOf

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

23

v

Complex hierarchical data types like arrays of records
» Optimization: Depending on the configuration the Rte_Read APl is
generated as macro if possible
24 » String data type (Encoding 1SO-8859-1)
SWC local calibration parameters (Rte_CData)

Optimization: Depending on the configuration the Rte_Write APl is
generated as macro if possible

Generation of unmapped client runnables enabled
Asynchronous C/S communication (Rte_Result)

Support of AUTOSAR 3.0 Revision 0001

Access to calibration element prototypes of calibration components
(Rte_Calprm)

Access to Per-Instance Memory (Rte_Pim)

SWC implementation template generation (command line option -g 1)
and Contract Phase generation (command line option -g c¢) fora
complete ECU

2.6 » Intra-ECU timeout handling for synchronous C/S communication

» Parallel access of synchronous and asynchronous server calls to an
operation of one server port

» Generation of an ASAM MCD 2MC / ASAP2 compatible A2L file
fragment for calibration parameters and Per-Instance Memory
Multiple instantiation of software components

Compatibility mode

Object code software components

Indirect APIs (Rte_Ports, Rte_NPorts and Rte_Port)

Port API Option 'EnableTakeAddress'

Platform dependent resource calculation.

Memory protection (OS with scalability class SC3/SC4)

Mode management including mode switch triggered runnable entities
and mode dependent execution of runnable entities. (Rte_Switch,
Rte_Mode and Rte_Feedback for mode switch acknowledge)

Data element invalidation (Rte_Invalidate and Rte_lInvalidate)

» Data reception error triggered runnable entities for invalidated and
outdated data elements

Multiple cyclic triggers per runnable entity

» Multiple OperationinvokedEvent triggers for the same runnable entity
with compatible operations

» Extended A2L file generation for calibration parameters and Per-

\ A 4

25

vvyywvyy

vy

2.7

2.8

29
210

vV v vvvVvy VvYvyy

v

v

©2015, Vector Informatik GmbH Version: 4.8.0 15/139

Technical Reference MICROSAR RTE vector'

Component Version | New Features

211

212

213

214

2.15

2.16

217

2.18

©2015, Vector Informatik GmbH

v vVvvVvVvyvyy

vvyywyy v

vy

vVvVvvyvVvYyy

v

Instance Memory for user defined attributes (A2L-ANNOTATION)

Signal Fan-In

Unconnected provide ports
Generation of unreferenced data types
Evaluation of COM return codes

Basic task support (automatically selection)

Several optimizations (e.g. unneeded interrupt locks and Schedule()
call removed)

Enhanced error reporting with help messages (-v command line
option)

Support of acknowledgement only mode for transmission and mode
switch notification

Usage of compiler library functions (e.g. memcpy) removed
Template file update mechanism also introduced for Rte_ MemMap.h
and Rte_Compiler_Cfg.h

Unconnected require ports

Basic task support (manual selection)

Init-Runnables no longer have name restrictions

Automatic periodic trigger generation can be disabled e.g. useful for
Schedule Table support

HTML Report including resource usage

Explicit selection of task role (Application / BSW Scheduler / Non Rte)
Runnables with CanBelnvokedConcurrently set to false no longer
require a mapping, if they are not called concurrently.

Support composite data types where not all primitive members require
an invalid value

Support inclusion of user header file 'Rte_UserTypes.h'

Optimized runnable scheduling to reduce latency times

Allow implementation template generation for service components,
complex device drivers and EcuAbstraction components

Optimization mode (minimize RAM consumption / minimize execution
time)
MinimumStartinterval attribute (runnable de-bouncing)

Measurement support for S/R communication, Interrunnable variables
and mode communication. Extended A2L File generation and support
of new ASAM MCD 2MC / ASAP2 standard. Measurement with
XcpEvents

Com Filter (NewDiffersOld, Always)
Invalid value accessible from application
Support of second array passing variant

Online calibration support
Support transmission error detection

Support of extended record data type compatibility for S/R
communication with different record layout on sender and receiver side

Enhanced implicit communication support

Version: 4.8.0 16 /139

Technical Reference MICROSAR RTE vector'

Component Version | New Features

2.19 » Support of AUTOSAR 3.2 Revision 0001
» Support never received status

» Support S/R update handling (Rte_IsUpdated based on AUTOSAR
4.0)

Enhanced measurement support (Inter-Ecu S/R communication)
Selective file generation (only if file content is modified)

Support for Non-Trusted BSW

Enhanced command line interface (support for several generation
modes in one call, optional command line parameter —m)

Split of generated RTE into OS Application specific files

Byte arrays no longer need to be mapped to signal groups

Allow configuration of Schedule() calls in non-preemptive tasks
Generation of MISRA justification comments

v vyyVvyy

2.20

vV vvyyVvyy

2.21 Support of SystemSignals and SystemSignalGroups using the same

name
Support of hexadecimal coded enumeration values

Support of AUTOSAR 3.2 Revision 0002

Support S/R update handling according AUTOSAR 3.2.2
Support N:1 S/R communication

Support unconnected calibration R-Ports

Enhanced initial value handling

Support of AUTOSAR 4.0 Revision 0003

Support of pointer implementation data types

Support of ‘On Transition’ triggered runnable entities

Support of data type symbol attribute

Support of component type symbol attribute

Template generation mechanism added for Rte_UserTypes.h

2.22

3.90
4.0

41 Support of Rte_MemSeg.a2l

Enhanced command line interface (path for A2L files selectable)

4.1.1 Multi-Core support (S/R communication)

Support of Inter-Runnable Variables with composite data types

Support for arrays of dynamic data length (Rte_Send/Rte_Receive)
Support for parallel generation for multiple component types
Multi-Core support:

» C/S communication

» Mode communication without ModeDisablings and ModeTriggers
» Inter-ECU S/R communication

Support mapping of individual Operationinvoked triggers

Support of SchM Contract Phase Generation

Support of Nv Block SWCs

Support of VFB Trace Client Prefixes

Enhanced Memory Protection support

» Memory Protection support for Multi-Core systems

» Inter-ECU sender/receiver communication is no longer limited to the

4.2

VVYVYy VV VV VVVVV V VVvyYVYyVvVYVvVY

4.3

vvyVvyvyy

©2015, Vector Informatik GmbH Version: 4.8.0 17 /1139

Technical Reference MICROSAR RTE vector'

Component Version | New Features

4.4

4.5

4.6

4.7

4.8

©2015, Vector Informatik GmbH

vvvyvVvyy v vyyVvyy

v

vy

VvV VVYVYY

vVvvvVvvVvVYVY

v

vvvyyvVvyy

BSW partition
» Mapped client/server calls are no longer limited to the BSW partition
» Queued sender/receiver communication is no longer limited to the
BSW partition
Optimized Multi-Core support without IOCs
Support of Development Error Reporting
Support of registering XCP Events in the XCP module configuration
Support for unconnected client ports for synchronous C/S
communication
Inter-Ecu C/S communication using SOME/IP Transformer
Support for PR-Ports
S/R Serialization using SOME/IP Transformer and E2E Transformer
Support LdCom
Improved support for 3rd Party OS interoperability especially regarding
OS Counter handling
Support Postbuild-Selectable for variant data mappings and variant
COM signals
Support E2E Transformer for Inter-Ecu C/S communication

Support tasks mappings where multiple runnable or schedulable
entities using different cycle times or activation offsets are mapped to a
single Basic Task. The realization uses OS Schedule Tables

Support Rte_ DRead API

Enhanced support for PR-Ports

Support ServerArgumentimplPolicy = use ArrayBaseType
Support for Mode Declaration Groups with Explicit Order

Support of PR Mode Ports
Support of PR Nv Ports

Support of bit field data types (CompuMethods with category
BITFIELD_TEXTTABLE)

Runtime optimized copying of large data
Support for SW-ADDR-METHOD on RAM blocks of NvVRAM SWCs

Support of background triggers

Support of data prototype mappings

Support of bit field text table mappings

Support of union data types

Support of UTF16 data type serialization in the SOME/IP transformer

Runtime optimization in the generated RTE code by usage of
optimized interrupt locking APIs of the MICROSAR OS

Support of further E2E profiles for data transformation with the
SOME/IP and E2E transformer

Support of OS counters with tick durations smaller than 1us

Support of COM based Transformer ComXf

Support of different strategies for writing NV data in Nv Block SWCs
Support of C/S Interfaces for Nv Block SWCs

SWC Template generation provides user sections for documentation of

Version: 4.8.0 18 /139

Technical Reference MICROSAR RTE vector'

Component Version | New Features

runnable entities
» Wide character support in paths

» Improved counter selection for operating systems with multiple OS
applications

» Support of optimized macro implementation for SchM_Enter and
SchM_Exit

Enhanced OS Spinlock support
» Enable optimizations in QM partitions

v

Table 1-1 Component history

©2015, Vector Informatik GmbH Version: 4.8.0 19/139

based on template version 3.5

Technical Reference MICROSAR RTE V@CtOf

2 Introduction

The MICROSAR RTE generator supports RTE and contract phase generation.
Additionally, application template code can be generated for software components and for
VFB trace hooks.

This document describes the MICROSAR RTE generation process, the RTE configuration
with DaVinci Configurator and the RTE API.

Chapter 3 gives an introduction to the MICROSAR RTE. This brief introduction to the
AUTOSAR RTE can and will not replace an in-depth study of the overall AUTOSAR
methodology and in particular the AUTOSAR RTE specification, which provides detailed
information on the concepts of the RTE.

In addition chapter 3 describes deviations, extensions and limitations of the MICROSAR
RTE compared to the AUTOSAR standard.

The RTE generation process including the command line parameters of the MICROSAR
RTE generator is described in chapter 4. This chapter also gives hints for integration of the
generated RTE code into an ECU project. In addition it describes the memory mapping
and compiler abstraction related to the RTE and finally, chapter 4.6 describes the memory
protection support of the RTE including hints for integration with the OS.

The RTE API description in chapter 5 covers the API functionality implemented in the
MICROSAR RTE.

The description of the RTE configuration in chapter 6 covers the task mapping, memory
mapping and the code generation settings in DaVinci Configurator. A more detailed
description of the configuration tool including the configuration of AUTOSAR software
components and compositions and their integration in an ECU project can be found in the
online help of the DaVinci Configurator [18].

Supported AUTOSAR Release*: 4
Supported Configuration Variants: pre-compile
Vendor ID: RTE_VENDOR_ID 30 decimal
(= Vector-Informatik,
according to HIS)
Module ID: RTE_MODULE_ID 2 decimal
AR Version: RTE_AR_RELEASE_MAJOR_VERSION AUTOSAR Release
RTE_AR_RELEASE_MINOR_VERSION version
RTE_AR_RELEASE_REVISION_VERSION decimal coded
SW Version: RTE_SW_MAJOR_VERSION MICROSAR RTE
RTE_SW_MINOR_VERSION version
RTE_SW_PATCH_VERSION decimal coded

* For the precise AUTOSAR Release 4.x please see the release specific documentation.

©2015, Vector Informatik GmbH Version: 4.8.0 20/139

Technical Reference MICROSAR RTE vector'

2.1 Architecture Overview

The RTE is the realization of the interfaces of the AUTOSAR Virtual Function Bus (VFB)
for a particular ECU. The RTE provides both standardized communication interfaces for
AUTOSAR software components realized by generated RTE APIs and it also provides a
runtime environment for the component code — the runnable entities. The RTE triggers the
execution of runnable entities and provides the infrastructure services that enable
communication between AUTOSAR SWCs. It is acting as a broker for accessing basic
software modules including the OS and communication services.

The following figure shows where the MICROSAR RTE is located in the AUTOSAR
architecture.

E2E Protection T

SCHM RTE
SYS [10 |
0s BSWM DCM EA CoM LDCOM IPDUM NM PDUR DIOHWAB: CAL (CPL)
COMM DEM FEE COMXF SOMEIPXF EZ2EXF SECOC IOHWAB! CRC
CSM (CRY) FIM MEMIF SENT E2E
DET J1939DCM NVM CAN LIN ETH
EE:: J1939TP LINXCP* FRXCP ETHXCP DNS
J1939NM LINTP FRTP UDPNM EXI
I:;'JGIF J1939RM LINNM FRARTP SD HTTP
AMD CANXCP LINSM FRNM DOIP SCC
WDGM
DBG CANTP LINIF FRSM SOAD LS
DLT CANNM FRTSYN TCPIP XML Security
RTM: CANSM FRIF ETHSM s
CANTSYN ETHTSYN
CANIF ETHIF AVTP
SRP
pTP
XCP
EXT
ADCDRV EEPDRV FLSTST TICDRV: PORTDRV SPIDRV CANTRCV LINTRCV
CANDRV ETHDRV FRDRV LINDRV PWMDRV WDGDRV DRVEXT? SBC!
CORTST ETHSWTDRV GPTDRV MCUDRV RAMTST ETHTRCV
DIODRV FLSDRV ICUDRV OCUDRY SHEDRV* FRTRCV
Vector Standard Software 3rd Party Software ! Available extensions for AUTOSAR

2 Includes EXTADC, EEPEXT, FLSEXT, ETHSWTEXT and WDGEXT
? Functionality represented in ETHTSYN and STBM

Figure 2-1 AUTOSAR architecture

RTE functionality overview:

» Execution of runnable entities of SWCs on different trigger conditions

» Communication mechanisms between SWCs (Sender/Receiver and Client/Server)
» Mode Management
>

Inter-Runnable communication and exclusive area handling

©2015, Vector Informatik GmbH Version: 4.8.0 21/139

based on template version 3.5

Technical Reference MICROSAR RTE VeCtOf

Per-Instance Memory and calibration parameter handling
Multiple instantiation of SWCs
OS task body and COM / LDCOM callback generation

Automatic configuration of parts of the OS, NvM and COM / LDCOM dependent of the
needs of the RTE

vV v v Vv

» Assignment of SWCs to different memory partitions/cores

SchM functionality overview:
» Execution of cyclic triggered schedulable entities (BSW main functions)
» Exclusive area handling for BSW modules

» OS task body generation

©2015, Vector Informatik GmbH Version: 4.8.0 22 /139

Technical Reference MICROSAR RTE vector'

composite structure Component /

Interfaces to SWCs and BSW Moduls

«EmbeddedInterface»
RTE::S/R (explicit)

Rte_Write_<p>_<o>([IN Rte_Instance <instance>]IN <data>)() :Std_ReturnType
Rte_Read_<p>_<o>([IN Rte_Instance <instance>,] OUT <data>)() :Std_ReturnType
Rte_Send_<p>_<o>([IN Rte_Instance <instance>,] IN <data> [,IN uint16 <length>])() :Std_ReturnType
Rte_Receive_<p>_<o>([IN Rte_Instance <instance>,] OUT <data> [,OUT uint16 <length>])() :Std_ReturnType
Rte_Feedback_<p>_<o>([IN Rte_Instance <instance>])() :Std_RetumnType
Rte_Invalidate_<p>_<o>([IN Rte_Instance <instance>])() :Std_ReturnType
Rte_IsUpdated_<p>_<o>([IN Rte_Instance <instance>])() :boolean

«Embedded|nterface»

RTE::Mode Handling
Rte_Switch_<p>_<o>([IN Rte_Instance <instance>]IN <mode>)() :Std_RetunType
Rte_Mode_<p>_<o>([IN Rte_lInstance <instance>])() :Std_RetumType
Rte_Mode_<p>_<o>([IN Rte_lInstance <instance>] OUT previous, OUT next)() :<currentmode>
Rte_SwitchAck_<p>_<o>([IN Rte_Instance <instance>])() :<currentmode>

oo+

s

«EmbeddedInterface»
RIE::C/S
+ Rte_Call_<p>_<o>([IN Rte_Instance <instance>]<data_1> ... <data_n>)() :Std_ReturnType
+ Rte_Result_<p>_<o>([IN Rte_lnstance <instance>,] <data_1> ... <data_n>)() :Std_RetumType

«Embeddedinterface»
RTE::S/R (implicit)
+ Rte_IWrite_<re>_<p>_<0>([IN Rte_Instance <instance>]IN <data>)() :void
+ Rte_IWriteRef_<re>_<p>_<o>([IN Rte_Instance <instance>])() :<retumn ref>
+ Rte_IRead_<re>_<p>_<o>([IN Rte_Instance <instance>])() :<return>
+
+

=

«EmbeddedInterface»

Rte_IStatus_<re>_<p>_<o>([IN Rte_Instance <instance>])() :Std_ReturnType RTE::Indirect API

Rte_lInvalidate_<re>_<p>_<o>([IN Rte_Instance <instance>])()
«EmbeddedInterface»

I
I
RTE::Inter-Runnable Variable |
+ Rte_InWrite_<v([IN Rte_lnstance <instance>,]IN <data>)) :void :
+ Rte_IrvRead_<v>([IN Rte_Instance <instance>])() :<return>
+ Rte_livIWrite_<re>_<v([IN Rte_Instance <instance>]IN <data>)(:void

1

+_Rte_IrviRead_<re>_<v>([IN Rte_Instance <instance>])() :<return> |
I

AN

I

I

+ Rte_Port_<p>([IN Rte_Instance <instance>])() :Rte_PortHandle_<i>_<R/P>
+ Rte_Ports_<pi>_<R/P>(IN Rte_Instance <instance>])() :Rte_PortHandle_<i>_<R/P>
+ Rte_NPorts <pi>_<R/P>([IN Rte_Instance <instance>])() :uint8

Ay

SRR

«provide optionally»

«Embeddedinterface»

«provide optionally» RTE::Calibration Parameter

+ Rte_CData_<c>([IN Rte_Instance <instance>])() :<parameter>
+ Rte_Prm_<p>_<c>([IN Rte_Instance <instance>])() :<parameter>

Ay

_______________________4'>

<

I
«provide optionall

«EmbeddedInterface» I
RTE::Exclusive Area

|
! '
«provide gptionally»
| |
1 1

e

«EmbeddedInterface»
RTE::Per-Instance Memory.

1
vide optionally»

+ Rte_Enter_<ea>([IN Rte_lnstance <instance>])(:void “p 1

+ Rte_Exit_<ea>([IN Rte_Instance <instance>])() :void

I
I Rte_Pim_<p>([IN Rte_Instance <instance>])() :<pim>

[

«EmbeddedInterface»

I
«provide optionally»
SchM:! ive Area !

«Embeddedinterface»

RTE::Error Handling

+ Rte_HasOverlayedEror(Std_ReturnType) :boolean
Rte_ApplicationError(Std_ReturnType) :Std_RetumType

+ Rte_lsInfrastructureEror(Std_ReturnType) :boolean

Ay

B

+ SchM_Enter_<ea>([IN Rte_Instance <instance>])() :void
+ SchM_Exit_<ea>([IN Rte_Instance <instance>])() :void

«provide optionally»
1 1

i

«provide optionally» «provide optionally»

—————ftT -

|
I
'
i
I
|
I
|
I
|
I
I
|
I
|
I
I
|
T
|
I
I
I
|

S

I

I

I

I

I

| |
: «provide vlap(ionally»
T

I

I

I

I

|

I

I
' «provide olplionally»
«use optionally» \
I

v

«use optionally»

1
1 «use optionally»
1

\:/ Interfacesto Os Interfacesto Com

v

«EmbeddedInterface»
Provided Interfaces::

Memory Initialization
+ Rte_InitMemory() :void

«EmbeddedInterface»
Used Inter| 0]

ActivateTaskTaskType) :StatusType
CancelAlarm(AlarmType) :StatusType
ChainTaskTaskType) :StatusType
ClearEvent(EventMaskType) :StatusType
DisableAllInterrupts() :void

EnableAllInterrupts() :void

GetEvent(TaskType, EventMaskType*) :StatusType
GetResource(ResourceType) :StatusType
GetTaskD(TaskType*) :StatusType
locRead_<iocid>(OUT <data>)() :Std_ReturnType
locReadGroup_<iocid>(OUT <data0>,..., OUT <data_n>)() :Std_RetumType
locReceive_<iocid>(OUT <data>)() :Std_ReturnType
locSend_<iocid>[_<sid>](IN <data>)() :Std_ReturnType

«EmbeddedInterface»

RTE::COM Callback
Rte_COMCbk_<SignalName>() :void
Rte_COMCbKRXTOut_<SignalName>() :void
Rte_COMCbKTAck_<SignalName>() :void
Rte_COMCbKTXTOut_<SignalName>() :void
Rte_COMCbKTErr_<SignalName>() :void
Rte_COMCbKinv_<SignalName>() :void

o E o+

«

|
T
1
1
1
1
1
1
1
1
1
1
1
1
1
: rovide optionally»
v

I
I
|
I
n;
I
I
I
I
|
I
|
I
I
|
I
|
I
I
|
I
|
I
I
I

«EmbeddedInterface»
Used Inter|

:Com

Interfaces to Xcp \:/

R E R hhh F R R E ok FE b+

locWrite_<iocid>[_<sid>](IN <data>)() :Std_ReturnType
locWriteGroup_<iocid>[_<sid>](IN <data0>,..., IN <data_n>)() :Std_ReturnType
ReleaseResource(ResourceType) :StatusType

ResumeOSinterrupts() :void

Schedule() :StatusType

SetEvent(TaskType, EventMaskType) :StatusType

SetRelAlarm(AlarmType, TickType, TickType) :StatusType
SuspendOSinterrupts() :void

TerminateTask() :StatusType

WaitEvent(EventMaskType) :StatusType

Com_SendDynSignal(Com_SignalldType, const void*, uint16) :uint8
Com_SendSignal(Com_SignalldType, const void*) :uint8
Com_UpdateShadowSignal(Com_SignalldType, const void*) :void
Com_ i S pldType) :uint8
Com_ReceiveDynSignal(Com_SignalldType, void*, uint16*) :uint8
Com_ReceiveSignal(Com_SignalldType, void*) :uint8
Com_ReceiveShadowSignal(Com_SignalldType, void*) :uint8
Com_| i i om_Si | 1pldType) :uint8
Com_InvalidateSignal(Com_SignalldType) :uint8
Com_InvalidateSignalGroup(Com_SignalGroupldType) :uint8

roup(Com

I

v

Interfaces to EcuM

v

«EmbeddedInterface»

«Embeddedinterface»

RTE:Lifecycle chM::Lifecycle

+ Rte_Start() :Std_ReturnType +
+ Rte_Stop() :Std_RetumType +
+ SchM_GetVersioninfo(Std_VersioninfoType*) :void

SchM_Deinit() :void

SchM_Init([IN SchM_ConfigType ConfigPtr])() :void

«EmbeddedInterface»
Used Inter

+ Xcp_Event(uint8) :void

e

v

Interfaces to NvM

«Embed
RTE:N

dedInterface»
M Callback

+ Rte_SetMirror__<d

+ Rte_GetMiror__<d>(void*) :Std_ReturnType

>(const void*) :Std_ReturnType

Figure 2-2

Interfaces to adjacent modules of the RTE

©2015, Vector Informatik GmbH

Version: 4.8.0

based on template version 3.5

23/139

Technical Reference MICROSAR RTE V@CtOf

3 Functional Description

3.1 Features

The features listed in the following tables cover the complete functionality specified for the
RTE.

The AUTOSAR standard functionality is specified in [1], the corresponding features are
listed in the tables

» Table 3-1 Supported AUTOSAR standard conform features
» Table 3-2 Not supported AUTOSAR standard conform features

Vector Informatik provides further RTE functionality beyond the AUTOSAR standard. The
corresponding features are listed in the table

» Table 3-3 Features provided beyond the AUTOSAR standard
The following features specified in [1] are supported:

Explicit S/R communication (last-is-best) [API: Rte_Read, Rte_Write]
Explicit S/R communication (queued polling) [API: Rte_Receive, Rte_Send]
Variable length arrays

Explicit S/R communication (queued blocking) [API: Rte_Receive]
Implicit S/R communication [APl:Rte_IRead, Rte_[Write, Rte_|WriteRef]
Timeout handling (DataReceiveErrorEvent) [API: Rte_|Status]

Data element invalidation [API: Rte_Invalidate, Rte_lInvalidate]
Intra-Ecu S/R communication

Inter-Ecu S/R communication

1:N S/R communication (including network signal Fan-Out)

N:1 S/R communication (non-queued, pure network signal Fan-In or pure Intra-Ecu)
C/S communication (synchronous, direct calls) [API: Rte_Call]

C/S communication (synchronous, scheduled calls) [API: Rte_Call]

C/S communication (asynchronous calls) [API: Rte_Call]

C/S communication (asynchronous) [API: Rte_Result]

Intra-Ecu C/S communication

Inter-Ecu C/S communication using SOME/IP Transformer

N:1 C/S communication

Explicit exclusive areas [API: Rte_Enter, Rte_Exit]

Implicit exclusive areas

Explicit Inter-Runnable Variables [API: Rte_IrvRead, Rte_IrvWrite]
Implicit Inter-Runnable Variables [API: Rte_lirvRead, Rte_lIrvWrite]

©2015, Vector Informatik GmbH Version: 4.8.0 24 /139

Technical Reference MICROSAR RTE vector'

Supported AUTOSAR Standard Conform Features ‘

Transmission ack. status (polling and blocking) [API: Rte_Feedback]

Runnable category 1a, 1b und 2

RTE Lifecycle-API [API: Rte_Start, Rte_Stop]

Nv Block Software Components

Runnable to task mapping

Data element to signal mapping

Task body generation

VFB-Tracing

Multiple trace clients

ECU-C import / export

Automatic OS configuration according the needs of the RTE (basic and extended task support)
Automatic COM / LDCOM configuration according the needs of the RTE
Primitive data types

Composite data types

Data reception triggered runnables entities (DataReceivedEvent)

Cyclic triggered runnable entities (TimingEvent)

Data transmission triggered runnable entities (DataSendCompletionEvent)
Data reception error triggered runnables entities (DataReceiveErrorEvent)
Mode switch acknowledge triggered runnable entities (ModeSwitchedAckEvent)
Mode switch triggered runnable entities (ModeSwitchEvent)

Background triggered runnable and scheduleable entities (BackgroundEvent)
Contract phase header generation

Port access to services (Port defined argument values)

Port access to ECU-Abstraction

Compatibility mode

Per-Instance Memory [API: Rte_Pim]

Multiple instantiation on ECU-level

Indirect API [API: Rte_Port, Rte_NPorts, Rte Ports]

SWC internal calibration parameters [API: Rte _CData]

Shared calibration parameters (CalprmComponentType) [API: Rte_Prm]

Mode machine handling [API: Rte_Mode/Rte_Switch]

Mode switch ack. status (polling and blocking) [API: Rte_SwitchAck]

Multi-Core support (S/R communication, C/S communication, Mode communication (partially))
Memory protection

Unconnected ports

COM-Filter (NewDiffersOld, Always)

Measurement (S/R-Communication, Mode-Communication, Inter-Runnable Variables)
Runnable de-bouncing (Minimum Start Interval)

©2015, Vector Informatik GmbH Version: 4.8.0 25/139

Technical Reference MICROSAR RTE vector'

Supported AUTOSAR Standard Conform Features

Online calibration support

Never received status

S/R update handling [API: Rte_IsUpdated]

Contract Phase Header generation for BSW-Scheduler

PR-Ports

Optimized S/R communication [API: Rte_DRead]

Variant Handling support (Postbuild selectable for variant data mappings and COM signals)
Data prototype mapping

Bit field texttable mapping

Table 3-1 Supported AUTOSAR standard conform features

3.1.1 Deviations
The following features specified in [1] are not supported:

Not Supported AUTOSAR Standard Conform Features
COM-Filter (only partially supported)

Measurement (Client-Server arguments)

external Trigger (via port) [API: Rte_Trigger]

Inter-Runnable Trigger (SWC internal) [API: Rte_IrTrigger]

Tx-Ack for implicit communication [API: Rte_IFeedback]
BSW-Scheduler Mode Handling [APIl: SchM_Mode, SchM_Switch, SchM_SwitchAck]
external Trigger between BSW modules [API: SchM_Trigger]
BSW-Scheduler Trigger [APIl: SchM_ActMainFunction]
BSW-Scheduler Calibration Parameter Access [APIl: SchM_CData]
Post Build Variant Sets

Debugging and Logging Support

Variant Handling support (Pre-Compile variability, Postbuild variability for Connectors and
ComponentPrototypes)

Multi-Core support (Mode communication with ModeSwitchTriggers or ModeDisablings,
Rte_ComSendSignalProxylmmediate, RtelocInteractionReturnValue=RTE_COM)

Restarting of partitions

Re-scaling of ports / Data conversion
Pre-Build data set generation phase
Post-Build data set generation phase
Initialization of PerinstanceMemories
Asynchronous Mode Handling

MC data support

Generated BSWMD

Range checks

©2015, Vector Informatik GmbH Version: 4.8.0 2617139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

Not Supported AUTOSAR Standard Conform Features

RTE memory section initialisation strategies
External configuration switch strictConfigurationCheck

Table 3-2 Not supported AUTOSAR standard conform features

3.1.2 Additions/ Extensions
The following features are provided beyond the AUTOSAR standard:

Features Provided Beyond The AUTOSAR Standard

Rte_InitMemory API function. See Chapter 5.14.3 for details.

Init-Runnables. See Chapter 3.6.9 for details.

VFB Trace Hooks for SchM APIs. See Chapter 5.16.3 and 5.16.4 for details.
Measurement support for mode communication. See Chapter 6.6 for details.
Measurement with XCP Events. See Chapter 6.6 for details.

S/R Serialization using SOME/IP Transformer and E2E Transformer (AR4.2.1)
C/S Serialization using SOME/IP Transformer and E2E Transformer (AR4.2.1)
LdCom Support (AR4.2.1)

ComXf Support (AR4.2.1)

Table 3-3 Features provided beyond the AUTOSAR standard

3.1.3 Limitations
There are no known limitations.

©2015, Vector Informatik GmbH Version: 4.8.0 271139

based on template version 3.5

Technical Reference MICROSAR RTE VeCtOf

3.2 Initialization

The RTE is initialized by calling Rte Start. Initialization is done by the ECU State
Manager (EcuM).

The Basis Software Scheduler (SchM) is initialized by calling SchM Init. Initialization is
done by the ECU State Manager (EcuM).

3.3 AUTOSAR ECUs

Besides the basic software modules each AUTOSAR ECU has a single instance of the
RTE to manage the application software of the ECU. The application software is
modularized and assigned to one or more AUTOSAR software components (SWC).

3.4 AUTOSAR Software Components

AUTOSAR software components (SWC) are described by their ports for communication
with other SWCs and their internal behavior in form of runnable entities realizing the
smallest schedulable code fragments in an ECU.

The following communication paradigms are supported for port communication:
» Sender-Receiver (S/R): queued and last-is-best, implicit and explicit

» Client-Server (C/S): synchronous and asynchronous

» Mode communication

» Calibration parameter communication

S/R and C/S communication may occur Intra-ECU or between different ECUs (Inter-ECU).
Mode communication and calibration parameters can only be accessed ECU internally.

In addition to Inter-SWC communication over ports, the description of the internal behavior
of SWCs contains also means for Intra-SWC communication and synchronization of
runnable entities.

» Inter-Runnable Variables
» Per-Instance Memory

» Exclusive Areas

» Calibration Parameters

The description of the internal behavior of SWCs finally contains all information needed for
the handling of runnable entities, especially the events upon which they are triggered.

35 Runnable Entities

All application code is organized into runnable entities, which are triggered by the RTE
depending on certain conditions. They are mapped to OS tasks and may access the
communication and data consistency mechanisms provided by the SWC they belong to.

©2015, Vector Informatik GmbH Version: 4.8.0 28 /139

Technical Reference MICROSAR RTE VeCtOf

The trigger conditions for runnable entities are described below, together with the
signature of the runnable entities that results from these trigger conditions. A detailed
description of the signature of runnable entities may be found in section 5.3 Runnable
Entities.

3.6 Triggering of Runnable Entities

AUTOSAR has introduced the concept of RTEEvents to trigger the execution of runnable
entities. The following RTEEvents are supported by the MICROSAR RTE:

TimingEvent

DataReceivedEvent
DataReceiveErrorEvent
DataSendCompletedEvent
OperationinvokedEvent
AsynchronousServerCallReturnsEvent
ModeSwitchEvent
ModeSwitchedAckEvent

InitEvent

vV Vv v vV v v v v Vv

BackgroundEvent

The RTEEvents can lead to two different kinds of triggering:
» Activation of runnable entity

» Wakeup of waitpoint

Activation of runnable entity starts a runnable entity at its entry point while
wakeup of waitpoint resumes runnable processing at a waitpoint. The second is not
possible for all RTEEvents and needs an RTE API to setup this waitpoint inside the
runnable entity code.

Depending on the existence of a waitpoint, runnable entities are categorized into category
1 or category 2 runnables. A runnable becomes a category 2 runnable if at least one
waitpoint exists.

3.6.1 Time Triggered Runnables

AUTOSAR defines the TimingEvent for periodic triggering of runnable entities. The
TimingEvent can only trigger a runnable entity at its entry point. Consequently there
exists no API to set up a waitpoint for a TimingEvent. The signature of a time triggered
runnable is:

void <RunnableName> ([IN Rte Instance instance])

©2015, Vector Informatik GmbH Version: 4.8.0 29/139

Technical Reference MICROSAR RTE VeCtOf

3.6.2 Data Received Triggered Runnables

AUTOSAR defines the DataReceivedEvent to trigger a runnable entity on data
reception (queued or last-is-best) or to continue reception of queued data in a blocking
Rte Receive call. Both intra ECU and inter ECU communication is supported. Data
reception triggered runnables have the following signature:

void <RunnableName> ([IN Rte Instance instance])

3.6.3 Data Reception Error Triggered Runnables

AUTOSAR defines the DataReceiveErrorEvent to trigger a runnable entity on data
reception error. A reception error could be a timeout (aliveTimeout) or an invalidated
data element. The DataReceiveErrorEvent can only trigger a runnable entity at its
entry point. Consequently there exists no APl to set up a waitpoint for a
DataReceiveErrorEvent. The signature of a data reception error triggered runnable is:

void <RunnableName> ([IN Rte Instance instance])

3.6.4 Data Send Completed Triggered Runnables

AUTOSAR defines the DataSendCompletedEvent to signal a successful or an
erroneous transmission of explicit S/R communication. The DataSendCompletedEvent
can either trigger the execution of a runnable entity or continue a runnable, which waits at
a waitpoint for the transmission status or the mode switch in a blocking Rte Feedback
call. Both intra ECU and inter ECU communication is supported. Data send completed
triggered runnables have the following signature:

void <RunnableName> ([IN Rte Instance instance])

3.6.5 Mode Switch Triggered Runnables

AUTOSAR defines the ModeSwitchEvent to trigger a runnable entity on either entering
or exiting of a specific mode of a mode declaration group. The ModeSwitchEvent can
only trigger a runnable entity at its entry point. Consequently there exists no API to set up
a waitpoint for a ModeSwitchEvent. The signature of a mode switch triggered runnable
is:

void <RunnableName> ([IN Rte Instance instance])

3.6.6 Mode Switched Acknowledge Triggered Runnables

AUTOSAR defines the ModesSwitchedAckEvent to signal a successful mode transition.
The ModeSwitchedAckEvent can either trigger the execution of a runnable entity or
continue a runnable, which waits at a waitpoint for the mode transition status. Only intra
ECU communication is supported. Runnables triggered by a mode switch acknowledge
have the following signature:

void <RunnableName> ([IN Rte Instance instance])

©2015, Vector Informatik GmbH Version: 4.8.0 30/139

http://dict.leo.org/ende?lp=ende&p=/gQPU.&search=erroneous

Technical Reference MICROSAR RTE VeCtOf

3.6.7 Operation Invocation Triggered Runnables

The OperationInvokedEvent is defined by AUTOSAR to always trigger the execution
of a runnable entity. The signature of server runnables depends on the parameters defined
at the C/S port. Its general appearance is as follows:

{void|std ReturnType} <Runnable>([IN Rte Instance inst] {,paramlist}¥*)

The return value depends on application errors being assigned to the operation that the
runnable represents. The parameter list contains input in/foutput and output parameters.
Input parameters for primitive data type are passed by value. Input parameters for
composite data types and all in/foutput and output parameters independent whether they
are primitive or composite types are passed by reference. The string data type is handled
like a composite type.

3.6.8 Asynchronous Server Call Return Triggered Runnables

The AsynchronousServerCallReturnsEvent signals the end of an asynchronous
server execution and triggers either a runnable entity to collect the result by using
Rte Result or resumes the waitpoint of a blocking Rte Result call.

The runnables have the following signature:
{void|Std ReturnType} <Runnable>([IN Rte Instance inst] {,paramlist}¥*)

3.6.9 Init Triggered Runnables
Initialization runnables are called once during startup and have the following signature:

void <RunnableName> ([IN Rte Instance instance])

3.6.10 Background Triggered Runnables

Background triggered runnables have to be mapped to tasks with lowest priority. The
runnables are called by the RTE in an endless loop — in the background — when no other
runnable runs. The signature of a background triggered runnable is:

void <RunnableName> ([IN Rte Instance instance])

©2015, Vector Informatik GmbH Version: 4.8.0 31/139

Technical Reference MICROSAR RTE VeCtOf

3.7 Exclusive Areas

An exclusive area (EA) can be used to protect either only a part of runnable code (explicit
EA access) or the complete runnable code (implicit EA access). AUTOSAR specifies four
implementation methods which are configured during ECU configuration of the RTE. See
also Chapter 6.9.

» OS Interrupt Blocking

» All Interrupt Blocking

» OS Resource

» Cooperative Runnable Placement

All of them have to ensure that the current runnable is not preempted while executing the
code inside the exclusive area.

The MICROSAR RTE analyzes the accesses to the different RTE exclusive areas and
eliminates redundant ones if that is possible e.g. if runnable entities accessing the same
EA they cannot preempt each other and can therefore be dropped.

Info
For SchM exclusive areas the automatic optimization is currently not supported.
Optimization must be done manually by setting the implementation method to NONE.

3.7.1 OS Interrupt Blocking

When an exclusive area uses the implementation method 0S_INTERRUPT BLOCKING, it
is protected by caling the OS APIs SuspendOSInterrupts() and
ResumeOSInterrupts (). The OS does not allow the invocation of event and resource
handling functions while interrupts are suspended. This precludes calls to any RTE API
that is based upon an explicity modeled waitpoint (blocking Rte Receive,
Rte Feedback, Rte SwitchAck or Rte Result API) as well as synchronous server
calls (which sometimes use waitpoints that are not explicitly modeled or other rescheduling
points). Additionally, all APIs that might trigger a runnable entity on the same ECU or
cause a blocking queue access to be released are forbidden, as well as exclusive areas
implemented as OS Resource.

3.7.2 All Interrupt Blocking

When an exclusive area uses the implementation method ALL INTERRUPT BLOCKING, it
is protected by caling the OS APIs SuspendAllInterrupts() and
ResumeAllInterrupts (). The OS does not allow the invocation of event and resource
handling functions while interrupts are suspended. This precludes calls to any RTE API
that is based upon an explicily modeled waitpoint (blocking Rte Receive,
Rte Feedback, Rte SwitchAck or Rte Result API) as well as synchronous server
calls (which sometimes use waitpoints that are not explicitly modeled or other rescheduling
points). Additionally, all APIs that might trigger a runnable entity on the same ECU or
cause a blocking queue access to be released are forbidden, as well as exclusive areas
implemented as OS Resource.

©2015, Vector Informatik GmbH Version: 4.8.0 32/139

Technical Reference MICROSAR RTE VeCtOf

3.7.3 OS Resource

An exclusive area using implementation method OS RESOURCE is protected by OS
resources entered and released via GetResource () / ReleaseResource () calls, which
raise the task priority so that no other task using the same resource may run. The OS does
not allow the invocation of WaitEvent () while an OS resource is occupied. This again
precludes calls to any RTE API that is based upon an explicitly modeled waitpoint and
synchronous server calls.

3.7.4 Cooperative Runnable Placement

For exclusive areas with implementation method COOPERATIVE RUNNABLE PLACEMENT,
the RTE generator only applies a check whether any of the tasks accessing the exclusive
area are able to preempt any other task of that group. This again precludes calls to any
RTE API that is based upon an explicitly modeled waitpoint and synchronous server calls.

©2015, Vector Informatik GmbH Version: 4.8.0 33/139

Technical Reference MICROSAR RTE vector'

3.8 Error Handling

3.8.1 Development Error Reporting

By default, development errors are reported to the DET using the service
Det ReportError () as specified in [17], if development error reporting is enabled in the
RteGeneration parameters (i.e. by setting the parameters DevErrorDetect and / or
DevErrorDetectUninit) .

If another module is used for development error reporting, the function prototype for
reporting the error can be configured by the integrator, but must have the same signature
as the service Det ReportError (). The reported RTE ID is 2.

The reported service IDs identify the services which are described in chapter 5. The
following table presents the service IDs and the related services:

0x00 SchM_Init

0x01 SchM_Deinit

0x03 SchM_Enter

0x04 SchM_Exit

0x13 Rte_Send

0x14 Rte_Write

0x15 Rte_Switch

0x16 Rte_Invalidate

0x17 Rte_Feedback

0x18 Rte_SwitchAck

0x19 Rte_Read

O0x1A Rte_DRead

0x1B Rte Receive

0x1C Rte_Call

0x1D Rte Result

Ox1F Rte_CData

0x20 Rte_Prm

0x28 Rte_IrvRead

0x29 Rte_IrvWrite

0x2A Rte_Enter

0x2B Rte Exit

0x2C Rte_Mode

0x30 Rte_IsUpdated

0x70 Rte_Start

0x71 Rte_Stop

0x90 Rte_ COMCbkTAck_<sn>

0x91 Rte_ COMCbKTErr_<sn>

0x92 Rte_ COMCDbkInv_<sn>
©2015, Vector Informatik GmbH Version: 4.8.0 347139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

Service ID Service

0x93 Rte_ COMCbkRxTOut_<sn>
0x94 Rte_ COMCbkTxTOut_<sn>
0x95 Rte_ COMCbk_<sg>

0x96 Rte_ COMCbkTAck_<sg>
0x97 Rte_ COMCbKTErr_<sg>
0x98 Rte_ COMCbklInv_<sg>
0x99 Rte_ COMCbkRxTOut_<sg>
0x9A Rte_ COMCbkTxTOut_<sg>
Ox9F Rte_ COMCbk_<sn>

0xFO Rte_Task

OxF1 Rte_IncDisableFlags

OxF2 Rte_DecDisableFlags

Table 3-4 Service IDs

The errors reported to DET are described in the following table:

Error Code Description

RTE_E_DET_ILLEGAL_NESTED_EX The same exclusive area was called nested or exclusive

CLUSIVE_AREA areas were not exited in the reverse order they were
entered

RTE_E_DET_UNINIT Rte/SchM is not initialized

RTE_E_DET_MODEARGUMENT Rte_Switch was called with an invalid mode parameter

RTE_E_DET_TRIGGERDISABLECOU Counter of mode disabling triggers is in an invalid state
NTER

RTE_E_DET_TRANSITIONSTATE Mode machine is in an invalid state

RTE_E_DET_MULTICORE_STARTUP Initialization of the master core before all slave cores
were initialized

RTE_E_DET_ILLEGAL_SIGNAL_ID RTE callback was called for a signal that is not active in
the current variant.

Table 3-5 Errors reported to DET

The error RTE_E_DET_UNINIT will only be reported if the parameter
DevErrorDetectUninit is enabled. The reporting of all other errors can be enabled by
setting the parameter DevErrorDetect.

©2015, Vector Informatik GmbH Version: 4.8.0 35/139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

4 RTE Generation and Integration

This chapter gives necessary information about the content of the delivery, the RTE
generation process including a description about the different RTE generation modes and
finally information how to integrate the MICROSAR RTE into an application environment of
an ECU.

4.1 Scope of Delivery

The delivery of the RTE contains no static RTE code files. The RTE module is completely
generated by the MICROSAR RTE Generator. After the installation, the delivery has the
following content:

Files ________ Descripton

DVCfgRteGen.exe Command line MICROSAR RTE generator
(including several DLLs and XML files)

MicrosarRteGen.exe MICROSAR RTE File generator

Rte.jar DaVinci Configurator 5 adaptation modules
Settings_Rte.xml

Rte_Bswmd.arxml BSWMD file for MICROSAR RTE
TechnicalReference Asr_Rte.pdf This documentation

ReleaseNotes MICROSAR_RTE.htm Release Notes

Table 4-1 Content of Delivery

?] Info

e, The RTE Configuration Tool DaVinci Developer is not part of MICROSAR RTE / BSW
installation package. It has to be installed separately.

©2015, Vector Informatik GmbH Version: 4.8.0 36/139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

4.2 RTE Generation

The MICROSAR RTE generator can be called either from the command line application
DVCfgCmd.exe or directly from within the DaVinci Configurator.

4.2.1 Command Line Options

N I

--project <file> -p <file> Specifies the absolute path to the DPA project file.
--generate -9 Generate the given project specified in <file>.
--moduleToGenerate -m <module> = Specifies the module definition references, which

should be generated by the -g switch. Separate
multiple modules by a',".

E.g. /MICROSAR/Rte, /MICROSAR/Nm

--genArg="<module>: <params>" Passes the specified parameters <params> to the
generator of the specified module <module>. For
details of the possible parameters of the RTE module
see Table 4-3.

-~help -h Displays the general help information of
DVCfgCmd.exe

Table 4-2 DVCfgCmd Command Line Options

4.2.2 RTE Generator Command Line Options

Option ________ Description

-m <obj> Selects the DaVinci model object, where <obj> is either
<ECUProjectName> or <ComponentTypeName>.
Note: If -g 1 or —g c are selected, which accepts both,
<ComponentTypeName> or <ECUProjectName> and the

configuration contains such objects with the same name, the
component type object takes preference over the ECU project.

When the workspace contains only a single ECUProject or a single
ComponentType, the -m parameter can be omitted.

With the -m parameter also multiple component types can be selected,
delimited with semicolons.

-g [rlclilh] Selects generation of the RTE with the following sub options:

r Selects RTE generation for the ECU project specified via option -
m <ECUProjectName>. This is the default option. Therefore —g is
equalto -g r.

©2015, Vector Informatik GmbH Version: 4.8.0 3717139

based on template version 3.5

Technical Reference MICROSAR RTE VeCtOf

c Selects RTE contract phase header generation for a single
component type or BSW module if -m
<ComponentTypeName/BswModuleName> or for multiple
component types and BSW modules if -m
<ComponentTypelName/BswModulelName>;
<ComponentType2Name/BswModule2Name> or for all non-
service component types and BSW modules of an ECU project if
-m <ECUProjectName>.

i Selects implementation template generation for a single
component type if -m <ComponentTypeName> or for multiple
component types if —m
<ComponentTypelName>; <ComponentType2Name> or for all
non- service component types of an ECU project if -m
<ECUProjectName>.

The optional -f <file> parameter specifies the file name to use
for the implementation template file. If the —-f <file> parameter
is not given, or —-m contains an ECU project name, the filename
defaults to <ComponentTypeName>.c

Already existing implementation files are updated and a backup is
created.

h Selects VFB trace hook template generation for the ECU project
specified via option -m <ECUProjectName>.
The optional -£ <file> parameter specifies the file name to use
for the VFB trace hook template file. If the -f <file> parameter
is not given, the filename defaults to
VEFBTraceHook <ECUProjectName>.c

Already existing implementation files are updated and a backup is
created.

This parameter can be used more than one time to generate several
modes in one step.

-o <path> Output path for the generated files.

-0 r=<path> If more than one generation mode is active, a special path can be
-0 c=<path> specified for each generation mode by assigning the path to the

-0 i=<path> character that is used as sub option for the —g parameter.

-0 h=<path> Furthermore the path for the application header files in the RTE

-0 s=<path> generation mode can be selected via option —o s=<path>. By default

they are generated into the subdirectory “Components”.

The path for A2L files can be specified with the option —o a=<path>.
These files are generated into the RTE directory by default.

Note: The <path> configured with —o parameter overwrites the path
which is specified in the dpa project file.

-0 a=<path>

-f <file> Optional parameter to specify the output file name for options -g i
and -g h.

Note: For option —g i the output file name can only be specified if -m
specifies a component type. The output file name cannot be specified

©2015, Vector Informatik GmbH Version: 4.8.0 38/139

Technical Reference MICROSAR RTE V@CtOf

when —m specifies multiple component types.

-v Enables verbose mode which includes help information for error,
warning and info messages.
-h Displays the general help information.

Table 4-3 RTE Generator Command Line Options

4.2.3 Generation Path

The RTE output files are generated into the path which is either specified within the dpa
project file or which is specified in the —o command line option. If several generation
modes are activated in parallel, for each phase a special path can be specified with the -o
command line option.

In RTE generation phase (command line option —g or —g r), the component type specific
application header files are generated into the subdirectory Components. This
subdirectory can be changed in the RTE generation phase with the option -o
“s=<path>". In addition the directory for the A2L files, which are generated into the RTE
directory by default, can be specified with the option —o “a=<path>".

4.3 MICROSAR RTE generation modes

The sections give an overview of the files generated by the MICROSAR RTE generator in
the different RTE generation modes and some examples how the command line call looks
like.

4.3.1 RTE Generation Phase
The following files are generated by the RTE generation: (Option —g or -g r)

Rte_<ComponentType>.h Application header file, which has to be included into the SWC
code. This header file is the only file to be included in the
component code. It is generated to the Components subdirectory
by default.

Rte_<ComponentType>_Type.h Application type header file. This header file contains SWC specific
type definitions. It is generated to the Components subdirectory
by default.

SchM_<BswModule>.h Module interlink header file, which has to be included into the BSW
module code.

SchM_<BswModule>_Type.h Module interlink types header file. This header file contains BSW
module specific type definitions.

<ComponentType>_MemMap.h Template contains SWC specific part of the memory mapping. It is
generated to the Components subdirectory by default.

Rte.c Generated RTE

Rte_<OsApplication>.c OsApplication specific part of the generated RTE (only generated
when OsApplications are configured)

Rte_PBCfg.c The RTE post build data set configuration file contains the data

structures for the postbuild RTE initialization.
Rte.h RTE internal declarations

©2015, Vector Informatik GmbH Version: 4.8.0 39/139

Technical Reference MICROSAR RTE

Rte_Main.h
Rte_Cfg.h
Rte_Cbk.h
Rte_Hook.h
Rte_Type.h

Rte_DataHandleType.h

Rte_PBCfg.h

Rte_UserTypes.h

Rte_MemMap.h
Rte_Compiler_Cfg.h
usrostyp.h

Rte.oil
Rte_Needs.ecuc.arxml

Rte.a2l

Rte_MemSeg.a2l

Rte rules.mak,
Rte defs.mak,
Rte_check.mak,
Rte_cfg.mak

Rte.html

Table 4-4

Example:

Header file for RTE lifecycle API
Configuration file for the RTE

Contains prototypes for COM callbacks
Contains relevant information for VFB tracing

Contains the application defined data type definitions and RTE
internal data types

The RTE data handle types header file contains the data handle
type declarations required for the component data structures.

The RTE post build data set configuration header contains the
declarations for the data structures that are used for the postbuild
RTE initialization.

Template which is generated if either user defined data types are
required for Per-Instance memory or if a data type is used by the
RTE but generation is skipped with the typeEmitter attribute.

Template contains RTE specific part of the memory mapping
Template contains RTE specific part of the compiler abstraction

Template which is only generated if memory protection support is
enabled. In that case this file is included by the MICROSAR OS.

OS configuration for the RTE

Contains the RTE requirements on BSW module configuration for
Os, Com and NvM.

A2L file containing CHARACTERISTIC and MEASUREMENT
objects for the generated RTE

A2L file containing MEMORY_SEGMENT objects for the
generated RTE

Make files according to the AUTOSAR make environment proposal
are generated into the mak subdirectory.

Contains information about RAM / CONST consumption of the
generated RTE as well as a listing of all triggers and their OS
events and alarms.

Generated Files of RTE Generation Phase

DVCfgCmd -p "InteriorLight.dpa" -m /MICROSAR/Rte -g

©2015, Vector Informatik GmbH

Version: 4.8.0

vector’

40/139

Technical Reference MICROSAR RTE V@CtOf

4.3.2 RTE Contract Phase Generation
The following files are generated by the RTE contract phase generation: (Option —g c¢)

Rte_<ComponentType>.h Application header file, which must be included into the SWC
code. This header file is the only file to be included in the
component code.

Rte_<ComponentType>_Type.h Application type header file. This header file contains SWC specific
type definitions.

<ComponentType>_MemMap.h Template contains SWC specific part of the memory mapping.

Rte.h RTE internal declarations

Rte_Type.h Contains the application defined data type definitions and RTE
internal data types

Rte_DataHandleType.h The RTE data handle types header file contains the data handle
type declarations required for the component data structures.

Rte_UserTypes.h Template which is generated if either user defined data types are

required for Per-Instance memory or if a data type is used by the
RTE but generation is skipped with the typeEmitter attribute.

Rte_MemMap.h Template contains RTE specific part of the memory mapping

Rte_Compiler_Cfg.h Template contains RTE specific part of the compiler abstraction

SchM_<BswModule>.h Module interlink header file, which has to be included into the BSW
module code.

SchM_<BswModule>_Type.h Module interlink types header file. This header file contains BSW
module specific type definitions.

Table 4-5 Generated Files of RTE Contract Phase

Example:

DVCfgCmd -p "InteriorLight.dpa"
-m /MICROSAR/Rte
-g
-—-genArg="Rte: -g ¢ —m SenderComponent”

The generated header files are located in a component type specific subdirectory. The
application header file must be included in each source file of a SWC implementation,
where the RTE API for that specific SWC type is used.

The application header file created in the RTE contract phase can be used to compile
object code components, which can be linked to an RTE generated in the RTE generation
phase. The application header files are generated in RTE compatibility mode.

Caution

&& During the RTE generation phase an optimized header file is generated. This optimized
header file should be used when compiling the source code SWCs during the ECU
build process.

©2015, Vector Informatik GmbH Version: 4.8.0 41/139

Technical Reference MICROSAR RTE VeCtOf

The usage of object code SWCs, which are compiled with the application header files
of the contract phase, require an “Implementation Code Type” for SWCs set to “object
code” in order to tell the RTE generator in the RTE generation phase NOT to create
optimized RTE API accesses but compatible ones.

©2015, Vector Informatik GmbH Version: 4.8.0 42 /139

Technical Reference MICROSAR RTE vector'

4.3.3 Template Code Generation for Application Software Components
The following file is generated by the implementation template generation: (Option -g i)

File _ Descripton

<FileName>.c An implementation template is generated if the —g i option is
selected. The —-f option specifies the name of the generated c file.
If no name is selected the default name <ComponentTypeName>. c
is used.

Table 4-6 Generated Files of RTE Template Code Generation

Example:

DVCfgCmd -p "InteriorLight.dpa"
-m /MICROSAR/Rte
—-g
-—-genArg="Rte: -g 1 -m SenderComponent -f Componentl.c”

The generated template files contain all empty bodies of the runnable entities for the
selected component type. It also contains the include directive for the application header
file. In addition, the available RTE API calls are included in comments.

f Caution

(: :‘;; When the destination file of the SWC template code generation is already available,
code that is placed within the user code sections marked by “DO NOT CHANGE”-

comments is transferred unchanged to the updated template file.

Additionally, a numbered backup of the original file is made before the new file is

written.

The preservation of runnable code is done by checking for the runnable symbol. This

implies that after a change of the name of a runnable the runnable implementation is

preserved, while a change of the symbol results in a new empty function for the

runnable.

Code that was removed during an update is kept in the “removed code” section at the

bottom of the implementation file and in the numbered backups.

The template update is particularly useful when e.g. access to some interfaces has

been added or removed from a runnable, because then the information of available

APls is updated by the generation process without destroying the implementation.

©2015, Vector Informatik GmbH Version: 4.8.0 43/139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

4.3.4 VFB Trace Hook Template Code Generation
The following file is generated by the VFB trace hook template generation: (Option -g h)

File __ Descripton

<FileName>.c An implementation template of the VFB trace hooks is generated if
the —g h option is selected. The —f option specifies the name of
the generated c file. If no name is selected the default name
VEBTraceHook < ECUProjectName >.c is used.

Table 4-7 Generated Files of VFB Trace Hook Code Generation

Example:

DVCfgCmd -p "InteriorLight.dpa"
-m /MICROSAR/Rte
-g
-—-genArg="Rte: -g h —-f VFBTraceHook myEcu.c”

ﬁh Caution

: When the destination file of the VFB trace hook template generation is already
available, code that is placed within the user code sections marked by “DO NOT

CHANGE” comments is transferred unchanged to the updated template file.

Additionally, a numbered backup of the original file is made before the new file is

written.

The preservation of trace hook code is done by checking for the trace hook name.

When the name of a hook changes, e.g. because the name of a data element

changed, then the code of the previous trace hook is removed.

Code that was removed during an update is kept in the “removed code” section at the

bottom of the implementation file and in the numbered backups.

The template update is particularly useful when some trace hooks have been added or

removed due to changed interfaces or OS usage.

©2015, Vector Informatik GmbH Version: 4.8.0 447139

based on template version 3.5

Technical Reference MICROSAR RTE

Include Structure
RTE Include Structure

4.4
44.1

vector’

class RTE Include Structure /
Legend
D Generated RTE C File L
D Generated RTE Header Files
D Header Files of other Modules - Rte_Cbkh Xcp.h SchM_<Bsw>.h
«include»
N 7 Z N
/ A \ 7 P 7 , | «inc\uge»
/N / 0, 1 S A
: e
«include» N // : \\ // - / ‘I
| «include» / | \ «include» 7 \ = Osh
/ «include» «include» e , «includen _ ——~ "
N N | /\ - / - N
N 1 /N y ="
Rte_<Swe>.h //\ | / \/\ 4 s~ _ «include» |I loc.h f
T~ - e - I E
~~___ - ' :
r «include»’ 7/‘ ~ ~ “«include» 1
Y ! / I\ I
\ / |
/ «include» , |
«include» \ / i
/// / 1 SchM_<Bsw>_Type.h I
‘ / / I ~o «include»
«include» / ! N II
Rte_<Swc>_Type.h : 4 v N RS - |
<Swc>_MemMap.h | / RN N ~ I
/ i]
) «Incluge» N \\\((ipclude>> :
I \ ~
; / / ‘7<\| \ «includey 7\\\ :
| / / / /7 [«include»
: , | «include» < |
: «include» // | P \\\
| «include» K N
| I
! ! e ——— ST T T Rte_Hookh
1 JL R «include»
| «iliu:lude»
I
«include» : - \ | /7 |
} - /
| | - \ | , |
| | - \ 1 , |
: B 1' - \\ cinclude «include» «i,,d"ude,,
«include»	\	//
-	v .	
Prae	SRV ///	
S Rte_Mainhf-————————————————= Rte_Cfg.h
Rte_MemMap.h <ncluden «include» «include» B
-
_- N
- T N
_ —«include» | \\
4 includ «include»
«include» <
«include» | AN
U
7/
V2 N Det.h
Std_Types.h|
/ N\
/ N
’ "
«include» «include»
/ \
/ N\
_ | compiler Cfgh <& === —— Compiler.h Platform_Typesh
-7 «include»
Rte_Compiler_Cfg.h «include»
Figure 4-1 RTE Include Structure
Version: 4.8.0 457139

©2015, Vector Informatik GmbH

based on template version 3.5

Technical Reference MICROSAR RTE

4.4.2

SWC Include Structure

vector’

The following figure shows the include structure of a SWC with respect to the RTE
dependency. All other header files which might be included by the SWC are not shown.

class Swc Include Structure/

Legend

D User SWC Implementation File(s)

I:l Generated RTE Header Files k

|:| Header Files of other Modules <Swes.c
I1.*
|
|
|
'

«incllude»

«include» «incllude»
-~
- |
-
- |
- I
-~
e
-~
-
<Syc>_MemMap.h Rtd_<Swe>_Tyge.h
-~
~
\\
~ ~
| ! ~.
| | «include» _
| ~< N
| : <
: «include» Rte_DataHandleType.h
«include» : =
I -
| -
| | -
| \ -
: _ “«include»
~
N A
Rte_Type.h
Rte_MemMapth -Typ
N / \
N s N
~ «include» «include»
«inCInge» / \
AN / \
N y4
AN k k
MemMap.h Rteh |-—————————— Rte_UserTypes.h
«include»

Figure 4-2

SWC Include Structure

©2015, Vector Informatik GmbH Version: 4.8.0

46 /139

Technical Reference MICROSAR RTE

443 BSW Include Structure

vector’

The following figure shows the include structure of a BSW module with respect to the
SchM dependency. All other header files which might be included by the BSW module are

not shown.

class Bsw Include Structure/

Legend

[] Bsw Module File(s)
|:| Generated RTE Header Files
|:| Header Files of other Modules

s

7
«include»
~

/
Ve
«include»
/
/
/
/
/
AN
Os.h

-

<Bsw>.c

I l“*
|
|

«incI ude»
|
|
|

JchM_<Bsw>(h

4 N
\
\
\

N
«include»
N\

Ve

SchM_<Bsw>_Type.h

«include»

AN

————————— Rte_Type.h

Figure 4-3 BSW Include Structure

©2015, Vector Informatik GmbH

Version: 4.8.0

4717139

Technical Reference MICROSAR RTE vector'

4.5 Compiler Abstraction and Memory Mapping

The objects (e.g. variables, functions, constants) are declared by compiler independent
definitions — the compiler abstraction definitions. Each compiler abstraction definition is
assigned to a memory section.

The following two tables contain the memory section names and the compiler abstraction
definitions defined for the RTE and illustrate their assignment among each other.

Compiler Abstraction
Definitions

RTE_<SWC>_APPL_VAR

RTE_<SWC>_APPL_DATA

<Swc>_VAR_ZERO_INIT

RTE_APPL_VAR

RTE_VAR_INIT
RTE_VAR_<Pim>

RTE_<SWC>_APPL_CODE

RTE_APPL_DATA

<Swc>_VAR_INIT
RTE_CONST
RTE_CONST_<Cal>

RTE_APPL_CODE

Memory Mapping
Sections

RTE_VAR_NOINIT
<Swc> VAR_NOINIT

RTE_<NvRamBlock>

RTE_VAR_<Cal>
<Swc> CONST

RTE_CODE
<Swc> CODE

B RTE_VAR _ZERO_INIT

RTE_START SEC_VAR ZERO_INIT_8BIT
RTE_STOP_SEC_VAR_ZERO_INIT_8BIT

RTE_START_SEC_VAR_ZERO_INIT_UNSPECIFIED
RTE_STOP_SEC_VAR_ZERO_INIT_UNSPECIFIED

RTE_START_SEC_VAR <OsAppl> ZERO_INIT_UNSPECIFIED®
RTE_STOP_SEC_VAR_<OsAppl> ZERO_INIT_UNSPECIFIED'

<Swc>_START_SEC_VAR_ZERO_INIT_UNSPECIFIED -
<Swc>_STOP_SEC_VAR_ZERO_INIT_UNSPECIFIED

RTE_START_SEC_VAR_INIT_UNSPECIFIED -
RTE_STOP_SEC_VAR_INIT_UNSPECIFIED

RTE_START_SEC_VAR_<OsAppl>_INIT_UNSPECIFIED' -
RTE_STOP_SEC_VAR_<OsAppl>_INIT_UNSPECIFIED'

<Swc>_START_SEC_VAR_INIT_UNSPECIFIED -
<Swc>_STOP_SEC_VAR_INIT_UNSPECIFIED

RTE_START_SEC_VAR_NOINIT_UNSPECIFIED -
RTE_STOP_SEC_VAR_NOINIT_UNSPECIFIED

RTE_START_SEC_VAR_<OsAppl>_NOINIT_UNSPECIFIED' -
RTE_STOP_SEC_VAR_<OsAppl> NOINIT_UNSPECIFIED'

<Swc> START_SEC_VAR_NOINIT_UNSPECIFIED .
<Swc>_STOP_SEC_VAR_NOINIT_UNSPECIFIED

RTE_START_SEC_VAR_<Pim> UNSPECIFIED -
RTE_STOP_SEC_VAR_<Pim>_UNSPECIFIED

RTE_START_SEC_<NvRamBlock> -
RTE_STOP_SEC_<NvRamBlock>

RTE_START_SEC_VAR_<Cal> UNSPECIFIED -
RTE_STOP_SEC_VAR_<Cal> UNSPECIFIED

RTE_START_SEC_CONST_UNSPECIFIED -
RTE_STOP_SEC_CONST_UNSPECIFIED

<Swc>_START_SEC_CONST_UNSPECIFIED -
<Swc>_STOP_SEC_CONST_UNSPECIFIED

! This memory mapping sections are only used if memory protection support is enabled

©2015, Vector Informatik GmbH Version: 4.8.0 48/139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

RTE_START_SEC_CONST_<Cal> UNSPECIFIED -
RTE_STOP_SEC_CONST <Cal> UNSPECIFIED

RTE_START_SEC_CODE -
RTE_STOP_SEC_CODE

<Swc>_START_SEC_CODE -
<Swc>_STOP_SEC_CODE

RTE_START_SEC_APPL_CODE -
RTE_STOP_SEC_APPL_CODE

Table 4-8 Compiler abstraction and memory mapping

Compiler Abstraction
Definitions

Memory Mapping
Sections

RTE_VAR_NOINIT_NOCACHE

B RTE_VAR_ZERO_INIT_NOCACHE
RTE_VAR_INIT_NOCACHE

RTE_START_SEC_VAR_NOCACHE_ZERO_INIT_8BIT
RTE_STOP_SEC_VAR_NOCACHE_ZERO_ INIT_8BIT

RTE_START_SEC_VAR_NOCACHE_ZERO_INIT_UNSPECIFIED
RTE_STOP_SEC_VAR_NOCACHE_ZERO_INIT_UNSPECIFIED

RTE_START _SEC_VAR_<OsAppl> NOCACHE_ZERO_INIT_UNSPECIFIED -
RTE_STOP_SEC_VAR_<OsAppl> NOCACHE_ZERO_INIT_UNSPECIFIED

RTE_START_SEC_VAR_NOCACHE_INIT_UNSPECIFIED -
RTE_STOP_SEC_VAR_NOCACHE_INIT_UNSPECIFIED

RTE_START_SEC_VAR_<OsAppl> NOCACHE_INIT_UNSPECIFIED -
RTE_STOP_SEC_VAR_<OsAppl> NOCACHE_INIT_UNSPECIFIED

RTE_START_SEC_VAR_NOCACHE_NOINIT_UNSPECIFIED m
RTE_STOP_SEC_VAR_NOCACHE_NOINIT_UNSPECIFIED

RTE_START_SEC_VAR_<OsAppl>_ NOCACHE_NOINIT_UNSPECIFIED -
RTE_STOP_SEC_VAR_<OsAppl> NOCACHE_NOINIT_UNSPECIFIED

Table 4-9 Compiler abstraction and memory mapping for non-cacheable variables

The memory mapping sections and compiler abstraction defines specified in Table 4-9 are
only used for variables which are shared between different cores on multicore systems.
These variables must be linked into non-cacheable memory.

The RTE specific parts of Compiler Cfg.h and MemMap.h depend on the configuration
of the RTE. Therefore the MICROSAR RTE generates templates for the following files:

» Rte_Compiler_Cfg.h
» Rte_MemMap.h

They can be included into the common files and should be adjusted by the integrator like
the common files too.

©2015, Vector Informatik GmbH Version: 4.8.0 49/139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

45.1 Memory Sections for Calibration Parameters and Per-Instance Memory

The variable part of the memory abstraction defines for calibration parameters <cal> and
Per-Instance Memory <Pim> depends on the configuration. The following table shows the
attributes, which have to be defined in DaVinci Developer in order to assign a calibration
parameter or a Per-Instance Memory to one of the configured groups. The groups
represented by the enumeration values of the attributes can be configured in the attribute
definition dialog in DaVinci Developer without any naming restrictions. Only the name of
the attribute itself is predefined as described in the table below.

Object Type Attribute Name Attribute Type

Calibration Parameter PAR_GROUP_CAL Enumeration
Calibration Element Prototype PAR_GROUP_EL Enumeration
Per-Instance Memory PAR_GROUP_PIM Enumeration
NvBlockDataPrototype PAR_GROUP_NVRAM Enumeration

Details of configuration and usage of User-defined attributes can be found in the DaVinci
Online Help [19].

Example for Calibration Parameters:

If the attribute PAR GROUP_CAL contains e.g. the enumeration values CalGroupA and
CalGroupB and calibration parameters are assigned to those groups, the RTE generator
will create the following memory mapping defines:

RTE START SEC CONST CalGroupA UNSPECIFIED
RTE STOP SEC_CONST CalGroupA UNSPECIFIED
RTE START SEC CONST CalGroupB UNSPECIFIED
RTE STOP SEC_CONST CalGroupB UNSPECIFIED

In addition the following memory mapping defines are generated, if the calibration method
Initialized RAM is enabled (see also Chapter 6.6):

RTE_START SEC VAR CalGroupA UNSPECIFIED
RTE_STOP_SEC_ VAR CalGroupA UNSPECIFIED
RTE_START SEC VAR CalGroupB UNSPECIFIED
RTE_STOP_SEC_VAR CalGroupB UNSPECIFIED

©2015, Vector Informatik GmbH Version: 4.8.0 50/139

Technical Reference MICROSAR RTE VeCtOf

Example for Per-Instance Memory:

If the attribute PAR GROUP_ PIM contains e.g. the enumeration values PimGroupA and
PimGroupB and Per-Instance Memory is assigned to those group, the RTE generator will
create the following memory mapping defines:

RTE START SEC VAR PimGroupA UNSPECIFIED
RTE _STOP_SEC VAR PimGroupA UNSPECIFIED
RTE_START SEC VAR PimGroupB UNSPECIFIED
RTE _STOP_SEC VAR PimGroupB UNSPECIFIED

4.5.2 Memory Sections for Software Components

The MICROSAR RTE generator generates specific memory mapping defines for each
SWC type which allows to locate SWC specific code, constants and variables in different
memory segments.

The variable part <swc> is the camel case software component type name. The RTE
implementation template code generator (command line option —g i) uses the SWC
specific sections to locate the runnable entities in the appropriate memory section.

The SWC type specific parts of MemMap .h depend on the configuration. The MICROSAR
RTE generator creates a template for each SWC according the following naming rule:

» <Swc> MemMap.h

©2015, Vector Informatik GmbH Version: 4.8.0 51/139

Technical Reference MICROSAR RTE VeCtOf

45.3 Compiler Abstraction Symbols for Software Components and RTE
The RTE generator uses SWC specific defines for the compiler abstraction.

The following define is used in RTE generated SW-C implementation templates in the
runnable entity function definitions.

<Swc> CODE

In addition, the following compiler abstraction defines are available for the SWC developer.
They can be used to declare SWC specific function code, constants and variables.

<Swc> CODE

<Swc> CONST
<Swc> VAR NOINIT
<Swc> VAR INIT
<Swc> VAR ZERO_ INIT

If the user code contains variable definitions, which are passed to the RTE API by
reference in order to be modified by the RTE (e.g. buffers for reading data elements) the
RTE uses the following define to specify the distance to the buffer.

RTE APPL VAR (RTE specific)

If the user code contains variable or constant definitions, which are passed to the RTE API
as pure input parameter (e.g. buffers for sending data elements) the RTE uses the
following define to specify the distance to the variable or constant.

RTE <SWC> APPL DATA (SWC specific)
RTE APPL DATA (RTE specific)

All these SWC and RTE specific defines for the compiler abstraction might be adapted by
the integrator. The configured distances have to fit with the distances of the buffers and the
code of the application.

fﬁ Caution

: The template files <Swc> MemMap.h, Rte MemMap.h and Rte Compiler Cfg.h
have to be adapted by the integrator depending on the used compiler and hardware
platform especially if memory protection is enabled.
When the files are already available during RTE generation, the code that is placed
within the user code sections marked by “DO NOT CHANGE”-comments is transferred
unchanged to the updated template files. The behavior is the same as for template
generation of other files like SWC template generation.

©2015, Vector Informatik GmbH Version: 4.8.0 52/139

Technical Reference MICROSAR RTE V@CtOf

4.6 Memory Protection Support

The MICROSAR RTE supports memory protection as an extension to the AUTOSAR RTE
specification. Therefore the memory protection support of the Operating System provides
the base functionality. The support is currently limited to the Vector MICROSAR OS
because the RTE requires read access to the data from all partitions what is not required
by AUTOSAR. Moreover when trusted functions are used, the RTE uses wrapper functions
that are only generated by MICROSAR OS.

4.6.1 Partitioning of SWCs

The partitioning of SWCs to memory areas can be done DaVinci CFG. The partitioning is
based on assignment of tasks to OS applications, which is part of the OS configuration
process.

There exists the restriction that all Runnable Entities of a single SWC have to be assigned
to the same OS application. This restriction and the assignment of tasks to OS
applications indirectly assign SWCs to OS applications. This is the basis for grouping
SWCs to different memory partitions. Additional information about memory protection
configuration can be found in Chapter 6.3.

4.6.2 OS Applications

The operating system supports different scalability classes (SC). Only in SC3 and SC4 the
memory protection mechanism is available. Therefore the configuration of the required
scalability class is the first step to enable memory partitioning. The second step is the
assignment of SWCs to partitions (OS applications) which is done by assigning tasks to
OS applications as described above.

The OS supports two types of OS applications:
» Non-Trusted
» Trusted

Non-Trusted OS applications run with enabled memory protection, trusted OS applications
with disabled memory protection.

Both types are supported by the MICROSAR RTE and can be selected in the OS
application configuration dialog or directly in the OS configuration tool.

Caution
é}‘ If no assignment of tasks to OS applications exist memory protection is disabled.

©2015, Vector Informatik GmbH Version: 4.8.0 53/139

Technical Reference MICROSAR RTE vector'

4.6.3 Partitioning Architecture

When memory protection is used, one or more SWCs can be assigned to an OS
application but it is not allowed to split up a SWC between two or more OS applications.
That means that all runnables of a SWC have to be assigned to tasks, which belong to the
same OS application. It is the responsibility of the RTE to transfer the data of S/R and the
arguments of C/S port interfaces over the protection boundaries.

f Caution
: Client-Server invocations implemented as direct function calls should be used inside
one OS application only.

The MICROSAR RTE itself and the BSW can either run in a trusted OS application or in a
non-trusted OS application. Both architectures are described below.

46.3.1 Trusted RTE and BSW

trusted application trusted application Non-trusted

application

MICROSAR RTE

trusted/non-trusted
application

ECU-Hardware

Figure 4-4 Trusted RTE Partitioning example

This architecture overview assumes that the RTE and the BSW modules that are used by
the RTE run in one or more trusted OS applications. Application software components
(SWC) above the RTE can either be trusted or non-trusted. When this architecture is used,

©2015, Vector Informatik GmbH Version: 4.8.0 547139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

the RTE uses trusted functions so that non-trusted SWCs can access the BSW and SWCs
in other OS applications. In this architecture, Rte Start () has to be called from a
trusted task and the Com module needs to run in trusted context, too. The RTE will use the
same OS application as the BSW Scheduler tasks.

An architecture where the BSW modules and the RTE are assigned to a non-trusted OS
application is described in the next chapter.

46.3.2 Non-Trusted RTE and BSW

non-trusted trusted application Non-trusted

application application

MICROSAR RTE

trusted/non-trusted
application

ECU-Hardware

Figure 4-5 Non-trusted RTE Partitioning example

This architecture overview assumes that the BSW modules below the RTE, as well as the
RTE itself run in a single non-trusted OS application. The SWCs above the RTE can either
be assigned to the same non-trusted OS application as the BSW or they can be assigned
to one or more other non-trusted or trusted OS applications. Every OS application has its
own buffers which are only written by runnables that run in the same OS application. The
RTE does not use trusted functions in this architecture. Therefore it is possible to create a
system where all SWCs and the BSW are assigned to non-trusted OS applications and all
runnables/tasks always run with enabled memory protection.

©2015, Vector Informatik GmbH Version: 4.8.0 557139

based on template version 3.5

Technical Reference MICROSAR RTE VeCtOf

The non-trusted RTE architecture is automatically chosen when the RTE configuration
fulfills the following criterions:

» The tasks that contain the BSW modules are known by the RTE. This can be achieved
by configuring them as BSW Scheduler tasks (See chapter 6.2).

» All BSW Scheduler tasks are assigned to the same non-trusted OS application (further
referred to as BSW OS Application). It is assumed that this is also the OS application
that initializes the RTE by calling Rte_Start. The application tasks can either be
assigned to the BSW OS Application or to other non-trusted or trusted OS
applications.

All SWCs with mode provide ports are assigned to the BSW OS Application.

All SWCs that contain runnables with mode disabling dependencies or mode triggers
are assigned to the BSW OS Application.

» There are no direct client/server calls across OS applications

No special limitations apply to SWCs that are assigned to the same OS application as the
BSW. Moreover, the following RTE features can also be used by SWCs in other OS
applications:

» direct or buffered inter-runnable variables
per-instance memories
SWC local calibration parameters

access to calibration software components

vV v v Vv

queued and nonqueued intra-ECU sender/receiver communication (when there is only
a single sender partition)

inter-ECU sender/receiver communication (see also chapter 4.8.1)
direct client/server calls to runnables within the same OS application

mapped client/server calls to runnables in the same and different OS applications (see
also chapter 4.8.2)

reading modes with the Rte_Mode API

explicit and implicit exclusive areas

©2015, Vector Informatik GmbH Version: 4.8.0 56 /139

Technical Reference MICROSAR RTE V@CtOf

4.6.4 Conceptual Aspects

For intra OS application communication no additional RTE interaction is required. Special
memory protection handling is required only if communication between different OS
applications exists. In that case, the RTE has to provide means to transfer data over the
protection boundaries. The only possibility is the usage of trusted function calls inside the
generated RTE code. Those trusted function calls are expensive concerning code usage
and runtime. Therefore the usage of trusted function calls should be minimized if possible.

The MICROSAR RTE generator uses trusted function calls only if necessary. In some
cases the usage of trusted function calls can be avoided by assigning the RTE buffers to
the appropriate OS application. The Vector MICROSAR OS only provides write access
protection but doesn’t support read access protection. This behavior is the basis to avoid
trusted function calls, because the writing OS application can be seen as the owner of the
memory buffer. Only a simple assignment of the buffer to the appropriate OS application is
necessary. This also makes it possible to completely avoid trusted function calls when the
“‘Non-trusted RTE" architecture (chapter 4.6.3.2) is chosen.

Only if the memory assignment cannot be used, the RTE needs trusted functions to cross
the protection boundaries.

For that purpose, the RTE generator uses the OS application of the BSW Scheduler tasks
as its own OS application, which always needs to be trusted. The trusted functions called
by the RTE are assigned to that trusted OS application. In addition to the communication
between SWCs of different OS applications, there also exists communication between the
COM BSW module and the RTE. Especially the notifications of the COM are done in an
undefined call context. The MICROSAR RTE assumes that the calls of the COM callbacks
are done from the OS application that contains the BSW Scheduler tasks.

©2015, Vector Informatik GmbH Version: 4.8.0 57 /139

Technical Reference MICROSAR RTE V@CtOf

4.6.5 Memory Protection Integration Hints

4.6.5.1 Enabling of Memory Protection support

Please make sure that memory protection is enabled by assigning tasks to OS
applications and by selecting scalability class SC3 or SC4 in the OS configuration.

4.6.5.2 Memory mapping in Linker Command File

If memory protection is enabled, the RTE generator creates additional OS application
specific memory sections for variables: In addition, the user has to split up his Per-
Instance Memory (PIM) sections to the different OS applications. These additional memory
sections have to be mapped in the linker command file to the appropriate memory
segments. See OS and compiler / linker manual for details.

The individual memory sections are listed in chapter 4.5.

The standard RTE memory section defines need to be mapped to the same segments as
the BSW.

OS Application specific parts of the RTE implementation are generated to separate
Rte <OsApplicationName>.c files.

4.6.5.3 OS Configuration extension

In addition to the RTE extensions in the OS configuration which are done automatically by
the RTE generator, the following steps have to be done by the Integrator.

All OS objects, used by BSW modules e.g. ISRs, BSW-Tasks, OS resources, alarms etc.
have to be assigned to an OS application. COM callbacks have to run in the same OS
application as the RTE/BSW Scheduler tasks. Dependent on the implementation of the
COM Stack, the tasks or ISRs, which call the COM callbacks must therefore be assigned
to the right OS application.

In the OS configuration of an SC3 or SC4 OS, the tasks must explicitly allow access by
other OS applications. Due to possible calls of ActivateTask or SetEvent inside RTE
implemented COM callbacks, the accessing BSW OS applications for all application tasks,
which are affected by these calls need to be configured. This is automatically done when
the RTE configuration contains all BSW Scheduler tasks. Otherwise, the configuration
needs to be extended by the integrator.

If the RTE configuration contains not all BSW Scheduler tasks, also the OS application
that sets up the tasks and alarms by calling Rte_Start needs to be configured for the
task and alarm objects in the OS configuration.

This configuration extension has to be done in the OS configuration tool.

©2015, Vector Informatik GmbH Version: 4.8.0 58 /139

Technical Reference MICROSAR RTE VeCtOf

4.7 Multicore support

Similar to the mapping of SWCs to partitions with different memory access rights, the
MICROSAR RTE also supports the mapping of SWCs to partitions on different cores for
parallel execution.

4.7.1 Partitioning of SWCs

The mapping of SWCs to cores happens with the help of OS Applications like in the
memory protection use case. The user has to assign runnables to tasks and tasks to OS
Applications in order to map SWCs to partitions. The OS Applications can then be
assigned to one of the cores of the ECU. SWCs can only be assigned to a single OS
Application. This means that all runnables of a SWC need to be mapped to tasks within
the same OS Application.

When two SWCs on different cores communicate with each other, the RTE will
automatically apply data consistency mechanisms.

4.7.2 BSW in Multicore Systems

The MICROSAR RTE assumes that all BSW modules with direct RTE interaction (e.g.
COM and NVM) are located in a single BSW OS Application on a single BSW core. The
only exceptions are BSW modules like OS and ECUM that need to be available on all
cores. For AUTOSAR4, the BSW OS Application is the OS Application that contains the
tasks with the schedulable entities. The RTE assumes that all COM and NVM callbacks
are called from this BSW OS Application.

All RTE Lifecycle APIls (Rte Start(), Rte Stop(), Rte_InitMemory(),
SchM Init(), SchM Deinit ())have to be called on all cores.

Cyclic triggered runnables will start to run as soon as Rte Start () is called on the BSW
core.

It is recommended to use only a single BSW OS Application per core. The RTE will then
configure the access rights so that Rte Start () can be called from the core specific
BSW OS application.

f": Caution

* The RTE will start the scheduling of cyclic triggered runnable entities as soon as
Rte Start () is called on the BSW Core. Therefore, Rte Start () onthe BSW core
should only be invoked when the Rte Start () calls on all other cores finished
execution. This is checked with a DET check.

©2015, Vector Informatik GmbH Version: 4.8.0 59/139

Technical Reference MICROSAR RTE V@CtOf

4.7.3 10C Usage

In multicore systems, the OS provides Inter OS-Application Communicator (IOC) Obijects
for the communication between the individual cores. However, on many systems the
memory of the different cores can also be accessed without IOCs. This is the case when
the RTE variables that are used for communication are mapped to non-cacheable RAM
and when they can either be accessed atomically or when the accesses are protected with
a spinlock. Moreover in case of memory protection, this is only possible when a variable is
only written by a single partition and when the variable can be read by the other partitions.

The MICROSAR RTE Generator tries to avoid I0Cs so that it can use the same variables
for intra and inter partition communication. Moreover spinlocks are only used for variables
that cannot be accessed atomically.

If the RTE variables cannot be mapped to globally readable, shared, non-cacheable RAM
the usage of I0OCs can be enforced with the EnforceIoc parameter in the
RteGeneration parameters.

f Caution
é& RTE variables that are mapped to NOCACHE memory sections need to be mapped to
non-cacheable RAM. See also chapter 4.5.

4.8 BSW Access in Partitioned systems

When the SWCs are assigned to different OS Applications, only the SWCs that are
assigned to the BSW OS Application can access the BSW directly. SWCs that are
assigned to other cores or partitions do not always have the required access rights. The
same is true for runnable entities that are directly called by the BSW through client/server
interfaces. The RTE can transparently provide proxy code for such BSW accesses but the
user needs to map the SendSignal proxy and the server runnables to tasks in which they
can be executed.

481 Inter-ECU Communication

IOCs or additional global RTE variables are automatically inserted by the RTE generator
when data needs to be sent from a partition without BSW to another ECU. This is required
because the COM APIs cannot be called directly in this case.

Instead, the RTE provides a schedulable entity Rte ComSendSignalProxyPeriodic,
which periodically calls the COM APIs when a partition without BSW transmitted data.

The schedulable entity Rte ComSendSignalProxyPeriodic should be mapped to the
same task as Com MainFunctionTx with a lower position in task so that it can update
the signals before they are transmitted by COM. Rte ComSendSignalProxyPeriodic
will be scheduled with the same cycle time as Com MainFunctionTx. For this, the RTE
generator reads the period from the COM configuration.

For the reception of signals no special handling is required. The RTE will automatically
forward the received data to the appropriate partition in the COM notifications.

©2015, Vector Informatik GmbH Version: 4.8.0 60/ 139

Technical Reference MICROSAR RTE V@CtOf

4.8.2 Client Server communication
Also client server calls between SWCs in different partitions are possible.

In order to execute the server runnable in another partition, the server runnable needs to
be mapped to a task. The RTE will then make the server arguments available in the
partition of the server runnable, execute the server runnable in the context of its task and
return the results to the calling partition.

Direct client server calls to servers on other cores are not possible because this would
enforce that the server is executed in the context of the client core. This would lead to data
consistency problems for RTE APIs that only provide buffer pointers like Rte Pim (). The
RTE cannot use |IOCs for these APIs because the actual buffer update is done by the
application code.

You can instruct the RTE to generate a context switch. You can decide this over the task
mapping of a function trigger.

If you consider RTE calls which originate from the same partition as the server runnable, a
context switch into the task of the server runnable may not be required. Here, doing a task
switch would mean an additional overhead which can be avoided.

Therefore it is also possible to configure an additional server port prototype for clients
which are local to the server partition. The triggers from both server ports can then trigger
the same server runnable. However, only the trigger from the port that is connected
to foreign partitions needs to be mapped onto a task. As a consequence, the RTE can
implement calls from partition local clients as efficient direct function calls.

Please take into account, that this is only allowed when the server runnable is not invoked
concurrently or marked as “can be invoked concurrently”. In addition, you can use
Exclusive Areas to protect the runnable against concurrent access problems.

©2015, Vector Informatik GmbH Version: 4.8.0 61/139

Technical Reference MICROSAR RTE VeCtOf

5 API Description

The RTE API functions used inside the runnable entities are accessible by including the
SWC application header file Rte <ComponentType>.h.

Info

The following API descriptions contain the direction qualifier IN, OUT and INOUT. They
are intended as direction information only and shall not be used inside the application
code.

For an interfaces overview please see Figure 2-2.

5.1 Data Type Definition

The MICROSAR RTE has special handling for the implementation data types, which are
defined in Std Types.h and Platform Types.h (see [7] and [8] for details). The RTE
generator assumes that these data types are available and therefore skips the generation
of type definitions.

In addition implementation data types where the typeEmitter attribute is set to a value
different to RTE or where the value is not empty the RTE generator also skips generation
of the type definition. In this case the user has to adopt the generated template file
Rte UserTypes.h which should contain the type definitions for the skipt implementation
data types because the RTE itself needs the type definition.

All other primitive or composite application and implementation data types are generated
by the RTE generator. This includes the data types which are assigned to a SWC by a
definition of an IncludedDataTypeSet.

Floating point data types with double precision may not be used for data elements with
external connectivity, because the MICROSAR COM layer lacks support for 64 bit data
types.

5.1.1 Invalid Value

The MICROSAR RTE provides access to the invalid value of a primitive data type. It can
be accessed with the following macro:

InvalidvValue <DataType>

Caution
f Because the macro does not contain the Rte prefix, care must be taken not to define
. data types conflicting with any other symbols defined by the RTE or the application
code.

©2015, Vector Informatik GmbH Version: 4.8.0 62 /139

Technical Reference MICROSAR RTE VeCtOf

5.1.2 Upper and Lower Limit

The range of the primitive application data types is specified by an upper and a lower limit.
These limits are accessible from the application by using the following macro if the limits
are specified:

<DataType> LowerLimit

<DataType> UpperLimit

Caution
f Because the macro does not contain the Rte prefix, care must be taken not to define
. data types conflicting with any other symbols defined by the RTE or the application
code.

5.1.3 Initial Value

Like the limits also the initial value of an un-queued data element of an S/R port prototype
is accessible from the application:

Rte InitValue <PortPrototype> <DataElementPrototype>

Caution

&D The initial value of an Inter-Ecu S/R communication might be changed by the post-build
capabilities of the communication stack. Please note that the macro of the RTE still
provides the original initial value defined at pre-compile time. Please don’t use the
macro if the initial value will be changed in the communication stack at post-build time.

5.2 API Error Status

Most of the RTE APIs provide an error status in the API return code. For easier evaluation
the MICROSAR RTE provides the following status access macros:

Rte IsInfrastructureError (status)
Rte HasOverlayedError (status)

Rte ApplicationError (status)

The macros can be used inside the runnable entities for evaluation of the RTE API return
code. The boolean return code of the Rte_lsInfrastructure and Rte_HasOverlayedError
macros indicate if either the immediate infrastructure error flag (bit 7) or the overlay error
flag (bit 6) is set.

The Rte_ApplicationError macro returns the application errors without overlayed errors.

©2015, Vector Informatik GmbH Version: 4.8.0 63 /139

Technical Reference MICROSAR RTE vector'

5.3 Runnable Entities

Runnable entities are configured in DaVinci and must be implemented by the user. DaVinci
features the generation of a template file containing the empty bodies of all runnable
entities that are configured for a specific component type.

5.3.1 <RunnableEntity>

Prototype

void <RunnableEntity> ([IN Rte Instance instance])

{Std ReturnType|void} <ServerRunnable> ([IN Rte Instance instance] {,
IN type [*]inputparam}* {, OUT type *outputparam}*)

Parameter

Instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

[*linputparam, *outputparam Parameters are only present for server runnables, i.e. runnable
entities triggered by an OperationinvokedEvent. Input (IN) parameters
are passed by value (primitive types) or reference (composite and
string types), output (OUT) parameters are always passed by
reference.

Return code

RTE_E_OK Server runnables return RTE_E_OK for successful operation
execution if an application error is referenced by the operation
prototype. Application errors are defined at the client/server port
interface.

RTE_E_<interf>_<error> Server runnables may return an application error (in the range of 1 to
63) if the operation execution was not successful. Application errors
are defined at the client/server port interface and are referenced by
the operation prototype.

If configured in DaVinci.

Functional Description
The user function <RunnableEntity> () is the specific implementation of a runnable entity of a
software component and has to be provided by the user. It is called from the MICROSAR RTE.

The first prototype form with no return value and only the optional instance parameter is valid for the
following trigger conditions:

» TimingEvent: Triggered on expiration of a configured timer.

» DataReceivedEvent: Triggered on reception of a data element.

» DataReceiveErrorEvent: Triggered on reception error of a data element.

» DataSendCompletionEvent: Triggered on successful transmission of a data element.

» ModeSwitchEvent: Triggered on entering or exiting of a mode of a mode declaration group.

» ModeSwitchedAckEvent: Triggered on completion of a mode switch of a mode declaration
group.

» AsynchronousServerCallReturnsEvent: Triggered on finishing of an asynchronous server

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

64 /139

Technical Reference MICROSAR RTE vector'

call. The Rte Result () API shall be used to get the out parameters of the server call.

The first prototype form is also valid for initialization runnables (Init-Runnables):
» Triggered on startup of the RTE.

The second prototype form is valid for server runnables:

» OperationinvokedEvent: Triggered on invocation of the operation in a C/S port interface
(server runnable). A return value is only present if application errors are referenced by the
implemented operation. The parameter list is directly derived from the configured operation
prototype with the addition of the optional instance parameter.

The configuration of the trigger conditions can be done in the runnable entities tab of the component type
configuration.

Call Context

The call context of server runnables depends on the task mapping. Server runnables mapped to a task
are executed in the context of this task, unmapped server runnables are executed in the context of the
task that invoked the operation. All other runnables are invoked by the RTE in the context of the task the
runnables are mapped to.

f'} Caution

: The relative priority of the assigned OS tasks is responsible for the call sequence
of Init-Runnables. The RTE ensures that the Init-Runnable is called before any
other runnable mapped to the same task, but does not enforce that all Init-
Runnables have been executed before any other runnable is called. To make sure
that all Init-Runnables are executed before any other runnable is called, all Init-
Runnables should be mapped to the task with the highest priority.

| Caution
: Init runnables are a Vector extension to the AUTOSAR standard and may not be
supported by other RTE generators.

©2015, Vector Informatik GmbH Version: 4.8.0 65/ 139

based on template version 3.5

Technical Reference MICROSAR RTE

5.4 SWC Exclusive Areas
5.4.1 Rte_Enter

Prototype

void Rte Enter <ExclusiveArea> ([IN Rte Instance instance])

Parameter

Instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

This API exists when at least one runnable has configured explicit access
(canEnterExclusiveArea) to an exclusive area of a component.

Functional Description

The function Rte Enter <ea> () implements explicit access to the exclusive area. The exclusive
area is defined in the context of a component type and may be accessed by all runnables of that
component, either implicitly or explicitly via this API.

This function is the counterpart of Rte Exit <ea>().Each callto Rte Enter <ea>() mustbe
matched by a call to Rte Exit <ea> () in the same runnable entity. One exclusive area must not
be entered more than once at a time, but different exclusive areas may be nested, as long as they
are left in reverse order of entering them.

For restrictions on using exclusive areas with different implementations, see section 3.6.10.
Call Context

This function can be used inside runnable entities.

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

66 /139

Technical Reference MICROSAR RTE

5.4.2 Rte_Exit

Prototype

void Rte Exit <ExclusiveArea> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

This API exists when at least one runnable has configured explicit access
(canEnterExclusiveArea) to an exclusive area of a component.

Functional Description

The function Rte Exit <ea>() implements releasing of an explicit entered exclusive area. The
exclusive area is defined in the context of a component type and may be accessed by all runnables
of that component, either implicitly or explicitly via this API.

This function is the counterpart of Rte Enter <ea>().Each callto Rte Enter <ea>() must
be matched by a call to Rte Exit <ea> () in the same runnable entity. One exclusive area must
not be entered more than once at a time, but different exclusive areas may be nested, as long as
they are left in reverse order of entering them.

For restrictions on using exclusive areas with different implementations, see section 3.6.10.
Call Context

This function can be used inside runnable entities.

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

67 /139

Technical Reference MICROSAR RTE VQCEO('

55 BSW Exclusive Areas
5.5.1 SchM_Enter

Prototype
void SchM Enter <Bsw> <ExclusiveArea> (void)

Parameter

Return code

Existence

This API exists when at least one schedulable entity has configured access
(canEnterExclusiveArea) to an exclusive area in the internal behavior of the BSW module
description.

Functional Description

The function SchM Enter <bsw> <ea> () implements access to the exclusive area. The
exclusive area is defined in the context of a BSW module and may be accessed by all schedulable
entities of that module via this API.

This function is the counterpart of SchM Exit <bsw> <ea> (). Each call to

SchM Enter <bsw> <ea> () mustbe matched by a call to SchM Exit <bsw> <ea> () inthe
same schedulable entity. One exclusive area must not be entered more than once at a time, but
different exclusive areas may be nested, as long as they are left in reverse order of entering them.

For restrictions on using exclusive areas with different implementation methods, see section 3.6.10.
Call Context

This function can be used inside a schedulable entity in Task or Interrupt context.

©2015, Vector Informatik GmbH Version: 4.8.0 68 /139

based on template version 3.5

Technical Reference MICROSAR RTE VQCEO('

5.5.2 SchM_Exit

Prototype
void SchM Exit <Bsw> <ExclusiveArea> (void)

Parameter

Return code

Existence

This API exists when at least one schedulable entity has configured access
(canEnterExclusiveArea) to an exclusive area in the internal behavior of the BSW module
description.

Functional Description

The function SchM Exit <bsw> <ea> () implements releasing of the exclusive area. The
exclusive area is defined in the context of a BSW module and may be accessed by all schedulable
entities of that module via this API.

This function is the counterpart of SchM Enter <bsw> <ea> (). Each call to

SchM Enter <bsw> <ea> () must be matched by a call to SchM Exit <bsw> <ea>() inthe
same schedulable entity. One exclusive area must not be entered more than once at a time, but
different exclusive areas may be nested, as long as they are left in reverse order of entering them.

For restrictions on using exclusive areas with different implementation methods, see section 3.6.10.
Call Context

This function can be used inside a schedulable entity in Task or Interrupt context.

©2015, Vector Informatik GmbH Version: 4.8.0 69/139

based on template version 3.5

Technical Reference MICROSAR RTE

5.6 Sender-Receiver Communication

5.6.1 Rte Read

Prototype

Std ReturnType Rte Read <p> <d> ([IN Rte Instance instance,] OUT <DataType> *data)

Parameter

instance

*data

Return code

Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation
attribute.

The output <data> is passed by reference. The <DataType> is
the type, specified at the data element prototype in the SWC
description.

RTE_E_OK
RTE_E_UNCONNECTED
RTE_E_INVALID
RTE_E_MAX_AGE_EXCEEDED

RTE_E_NEVER_RECEIVED
RTE_E_SOFT_TRANSFORMER_ERROR

RTE_E_HARD_TRANSFORMER_ERROR

Data read successfully.
Indicates that the receiver port is not connected.
An invalidated signal has been received by the RTE.

Indicates a timeout, detected by the COM module in case of
inter ECU communication, if an aliveTimeout is specified.

No data received since system start.

An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

An error during transformation occurred which produces invalid
data as output.

This API exists, if the runnable entity of a SWC has configured direct (explicit) access in the role
dataReceivePointByArgument for the data element in the DaVinci configuration and the referenced data
element prototype is configured without queued communication (isQueued=false).

Functional Description

The function Rte Read <p> <d> () supplies the current value of the data element. This API can be used
for explicit read of S/R data with i sQueued=false. After startup Rte Read provides the initial value.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH

Version: 4.8.0 70/139

based on template version 3.5

vector”

Technical Reference MICROSAR RTE VQCEO('

5.6.2 Rte DRead

Prototype

<DataType> Rte DRead <p> <d> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation
attribute.

Return code

<DataType> The return value contains the current value of the data element.
The <DataType> is the (primitive) type, specified at the data
element prototype in the SWC description.

This API exists, if the runnable entity of a SWC has configured direct (explicit) access in the role
dataReceivePointByValue for the data element in the DaVinci configuration and the referenced data
element prototype is configured without queued communication (isQueued=false).

Functional Description

The function Rte DRead <p> <d> () supplies the current value of the data element. This API can be used
for explicit read of S/R data with i sQueued=false. After startup or if the receiver port is unconnected,
Rte DRead provides the initial value. The API is only available for primitive data types.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0 717139

based on template version 3.5

Technical Reference MICROSAR RTE VQCEO('

5.6.3 Rte_Write

Prototype

Std_ReturnType Rte Write <p> <d> ([IN Rte Instance instance,] IN <DataType> data)
Std ReturnType Rte Write <p> <d> ([IN Rte Instance instance,] IN <DataType> *data)

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation
attribute.

data The input data <data> for primitive data types without string
types is passed by value. The <DataType> is the type, specified
at the data element prototype in the SWC description.

*data The input data <data> for string types and composite data types
is passed by reference. The <DataType> is the type, specified
at the data element prototype in the SWC description.

Return code

RTE_E_OK Data passed to communication services successfully.
RTE_E_COM_STOPPED An infrastructure communication error was detected by the RTE.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

This API exists, if the runnable entity of a SWC has configured direct (explicit) access to the data element in
the DaVinci configuration and the referenced data element prototype is configured without queued
communication (isQueued=false).

Functional Description

The function Rte Write <p> <d>() can be used for explicit transmission of S/R data with
isQueued=false.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0 721139

based on template version 3.5

Technical Reference MICROSAR RTE VQCEO('

5.6.4 Rte_Receive

Prototype
Std ReturnType Rte Receive <p> <d> ([IN Rte Instance instance,] OUT <DataType> *data, [OUT uintlo6
*length])

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation

attribute.

*data The output <data> is passed by reference. The <DataType> is
the type, specified at the data element prototype in the SWC
description.

*length In case of an array with variable number of elements, the

dynamic length <length> is returned.

Return code

RTE_E_OK Data read successfully.

RTE_E_UNCONNECTED Indicates that the receiver port is not connected.

RTE_E_NO_DATA A non-blocking call returned no data due to an empty receive
queue. No other error occurred.

RTE_E_TIMEOUT Returned by a blocking call after the timeout has expired. No

data returned and no other error occurred. The argument buffer
is not changed.

RTE_E_LOST_DATA Indicates that some incoming data has been lost due to an
overflow of the receive queue. This is not an error of the data
returned in the out parameter.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

This API exists, if the runnable entity of a SWC has configured polling or waiting access to the data element
in the DaVinci configuration and the referenced data element prototype is configured with queued
communication (isQueued=true).

Functional Description

The function Rte Receive <p> <d> () supplies the oldest value stored in the reception queue of the data
element. This API can be used for explicit read of S/R data with i sQueued=true.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0 73171139

based on template version 3.5

Technical Reference MICROSAR RTE VQCEO('

5.6.5 Rte_Send

Prototype

Std_ReturnType Rte Send <p> <d> ([IN Rte Instance instance,] IN <DataType> data)

Std ReturnType Rte Send <p> <d> ([IN Rte Instance instance,] IN <DataType> *data, [IN uintlé6
length])

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation
attribute.

data The input data <data> for primitive data types without string
types is passed by value. The <DataType> is the type, specified
at the data element prototype in the SWC description.

*data The input data <data> for string types and composite data types
is passed by reference. The <DataType> is the type, specified
at the data element prototype in the SWC description.

length In case of an array with variable number of elements, the input
data <length> specifies the dynamic array length.

Return code

RTE_E_OK Data passed to communication services successfully.
RTE_E_COM_STOPPED An infrastructure communication error was detected by the RTE.
RTE_E_LIMIT The submitted data has been discarded because the receiver

queue is full. Relevant only to intra ECU communication.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

This API exists, if the runnable entity of a SWC has configured access to the data element in the DaVinci
configuration and the referenced data element prototype is configured with queued communication
(isQueued=true).

Functional Description

The function Rte Send <p> <d>() can be used for explicit transmission of S/R data with
isQueued=true.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0 741139

based on template version 3.5

Technical Reference MICROSAR RTE

5.6.6 Rte_ IRead

Prototype

<DataType> Rte IRead <r> <p> <d> ([IN Rte Instance instance])

<DataType> *Rte IRead <r> <p> <d> ([IN Rte Instance instance])

Parameter

Instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<DataType> The return value contains the buffered data for primitive data types.
<DataType> is the type, specified at the data element prototype in the
SWC description

<DataType> * The return value contains a reference to the buffered data for string

types and composite data types. <DataType> is the type, specified at
the data element prototype in the SWC description

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration.

Functional Description

The function Rte IRead <r> <p> <d>() supplies the value of the data element, stored in a
buffer before starting of the runnable entity. This API can be used for buffered (implicit) read of S/R
data with isQueued=false. After startup Rte IRead provides the initial value.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

757139

Technical Reference MICROSAR RTE

5.6.7 Rte_IWrite

Prototype

void Rte IWrite <r> <p> <d> ([IN Rte Instance instance,] IN <DataType> data)

void Rte IWrite <r> <p> <d> ([IN Rte Instance instance,] IN <DataType> *data)

Parameter
instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

data The input data <data> for primitive data types without string types is
passed by value. The <DataType> is the type, specified at the data
element prototype in the SWC description.

*data The input data <data> for string types and composite data types is
passed by reference. The <DataType> is the type, specified at the
data element prototype in the SWC description.

Return code

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration.

Functional Description

The function Rte IWrite <r> <p> <d>() can be used for buffered transmission of S/R data
with i sQueued=false. Note, that the actual transmission is performed and therefore visible for
other runnable entities after the runnable entity has been terminated.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

fﬁ Caution

: When implicit write access to a data element has been configured for a runnable, the
runnable has to update the data element at least once during its execution time using

the Rte IwWrite API or writing to the location returned by the Rte IWriteRef AP

Otherwise, the content of the data element is undefined upon return from the runnable.

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

76 /139

Technical Reference MICROSAR RTE

5.6.8 Rte_ IWriteRef

Prototype
<DataType> *Rte IWriteRef <r> <p> <d> ([IN Rte Instance instance])

Parameter

Instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<DataType> * The return value contains a reference to the buffered data.
<DataType> is the type, specified at the data element prototype in the
SWC description

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration.

Functional Description

The function Rte IWriteRef <r> <p> <d>() can be used for buffered transmission of S/R
data with i sQueued=false. Note, that the actual transmission is performed and therefore visible
for other runnable entities after the runnable entity has been terminated.

The returned reference can be used by the runnable entity to directly update the corresponding
data elements. This is especially useful for data elements of composite types.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

Caution
&D When implicit write access to a data element has been configured for a runnable, the
runnable has to update the data element at least once during its execution time using
the Rte IWrite API or writing to the location returned by the Rte IWriteRef APL
Otherwise, the content of the data element is undefined upon return from the runnable.

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

771139

Technical Reference MICROSAR RTE VQCEO('

5.6.9 Rte_ [Status

Prototype

Std ReturnType Rte IStatus <r> <p> <d> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

RTE_E_OK Data read successfully.
RTE_E_UNCONNECTED Indicates that the receiver port is not connected.
RTE_E_INVALID An invalidated signal has been received by the RTE.

RTE_E_MAX_AGE_EXCEEDED Indicates a timeout, detected by the COM module in case of inter ECU
communication, if an aliveTimeout is specified.

RTE_E_NEVER_RECEIVED No data received since system start.

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration and if either

> data element outdated notification (a1iveTimeout > 0)or
» data element invalidation is activated for this data element or
» the attribute handleNeverReceived is configured.

Functional Description

The function Rte IStatus <r> <p> <d>() returns the status of the data element which can be read
with Rte IRead.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC). Usage in
other runnables of the same SWC is forbidden!

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

7817139

Technical Reference MICROSAR RTE

5.6.10 Rte Feedback

Prototype
Std ReturnType Rte Feedback <p> <d> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

RTE_E_NO_DATA No data transmitted, when the feedback APl was attempted (non-
blocking call only).

RTE_E_UNCONNECTED Indicates that the sender port is not connected.

RTE_E_TIMEOUT A timeout notification was received from COM before any error
notification (Inter-ECU only).

RTE_E_COM_STOPPED The last transmission was rejected when either Rte_Send / Rte_ Write
API was called and the COM was stopped or an error notification from
COM was received before any timeout notification (Inter-ECU only).

RTE_E_TRANSMIT_ACK A “transmission acknowledgement” has been received.

This API exists, if the runnable entity of a SWC has configured explicit access to the data element
in the DaVinci configuration of a runnable entity and in addition the transmission acknowledgement
is enabled at the communication specification. Furthermore, polling or waiting acknowledgment
mode has to be specified for the same data element. If a timeout is specified, timeout monitoring
for waiting acknowledgment access is enabled.

Functional Description

The function Rte Feedback <p> <d>() can be used to read the transmission status for explicit
S/R communication. It indicated the status of data, transmitted by Rte Write () and
Rte Send() calls. Depending on the configuration, the API can be either blocking or non-blocking.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

79/139

Technical Reference MICROSAR RTE VQCEO('

5.6.11 Rte_IsUpdated

Prototype

boolean Rte IsUpdated <p> <d> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code
TRUE Data element has been updated since last read.

FALSE Data element has not been updated since last read.

This API exists, if the runnable entity of a SWC has configured explicit access to the data element
in the DaVinci configuration of a runnable entity and in addition the EnableUpdate attribute is
enabled at the communication specification.

Functional Description

The function Rte IsUpdated <p> <d> () returns if the data element has been updated since
the last read or not.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0 80/139

based on template version 3.5

Technical Reference MICROSAR RTE VQCEO('

5.7 Data Element Invalidation
5.7.1 Rte_Invalidate

Prototype
Std ReturnType Rte Invalidate <p> <d> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation
attribute.

Return code

RTE_E_OK No error occurred.

RTE_E_COM_STOPPED The RTE could not perform the operation because the COM
service is currently not available (inter ECU communication
only).

This API exists, if the runnable entity of a SWC has configured explicit and non-queued access to the data
element in the DaVinci configuration of a runnable entity and in addition the data element invalidation is
enabled at the communication specification (CanInvalidate=true).

Functional Description

The function Rte Invalidate <p> <d>() can be used to set the transmission data invalid for explicit
non-queued S/R communication.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0 817139

based on template version 3.5

Technical Reference MICROSAR RTE

5.7.2 Rte_llnvalidate

Prototype

void Rte IInvalidate <r> <p> <d> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

This API exists, if the runnable entity of a SWC has configured buffered (implicit) access to the data
element in the DaVinci configuration of a runnable entity and in addition the data element
invalidation is enabled at the communication specification (CanInvalidate=true).

Functional Description

The function Rte IInvalidate <r> <p> <d>() can be used to set the transmission data
invalid for implicit (buffered) S/R communication.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

82/139

Technical Reference MICROSAR RTE

5.8 Mode Management
5.8.1 Rte_Switch

Prototype

Std ReturnType Rte Switch <p> <m> ([IN Rte Instance instance,]
IN Rte ModeType <ModeDeclarationGroup> mode)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

mode The next mode. Itis of type Rte ModeType <m>, where <m> is the
name of the mode declaration group.

Return code

RTE_E_OK Mode switch trigger passed to the RTE successfully.
RTE_E_LIMIT The submitted mode switch has been discarded because the mode
queue is full.

This API exists, if the runnable entity of a SWC has configured access to the mode declaration
group prototype in the DaVinci configuration.

Functional Description

The function Rte Switch <p> <m>() can be used to trigger a mode switch of the specified
mode declaration group prototype.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

83/139

Technical Reference MICROSAR RTE VQCEO('

5.8.2 Rte_Mode

Prototype

Rte ModeType <ModeDeclarationGroup> Rte Mode <p> <m> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

RTE_TRANSITION_<mg> This return code is returned if the mode machine is in a mode
transition.

RTE_MODE_<mg> <m> This value is returned if the mode machine is not in a transition.
<m> indicates the currently active mode.

This API exists, if the runnable entity of a SWC has configured access to the mode declaration
group prototype in the DaVinci configuration and the enhanced Mode API is not active.

Functional Description

The function Rte Mode <p> <m> () provides the current mode of a mode declaration group
prototype.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0 847139

based on template version 3.5

Technical Reference MICROSAR RTE

5.8.3 Enhanced Rte_Mode

Prototype

Rte ModeType <ModeDeclarationGroup> Rte Mode <p> <m> ([IN Rte Instance instance],
OUT Rte ModeType <ModeDeclarationGroup> previousMode,
OUT Rte ModeType <ModeDeclarationGroup> nextMode)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

previousMode The previous mode is returned if the mode machine is in a transition.
nextMode The next mode is returned if the mode machine is in a transition.

Return code

RTE_TRANSITION_<mg> This return code is returned if the mode machine is in a mode
transition.

RTE_MODE_<mg>_<m> This value is returned if the mode machine is not in a transition.
<m> indicates the currently active mode.

This API exists, if the runnable entity of a SWC has configured access to the mode declaration
group prototype in the DaVinci configuration and the enhanced Mode APl is active.

Functional Description

The function Rte Mode <p> <m> () provides the current mode of a mode declaration group
prototype. In addition it provodes the previous mode and the next mode if the mode machine is in
transition.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

85/139

Technical Reference MICROSAR RTE

5.8.4 Rte_ SwitchAck

Prototype

Std ReturnType Rte SwitchAck <p> <m> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

RTE_E_NO_DATA No mode switch triggered, when the switch ack APl was attempted
(non-blocking call only).

RTE_E_TIMEOUT No mode switch processed within the specified timeout time, when the
switch ack API was attempted (blocking call only).

RTE_E_TRANSMIT_ACK The mode switch acknowledgement has been received.
RTE_E_UNCONNECTED Indicates that the mode provide port is not connected.

This API exists, if the runnable entity of a SWC has configured access to the mode declaration
group prototype in the DaVinci configuration of a runnable entity and in addition the mode switch
acknowledgement is enabled at the mode switch communication specification. Furthermore, polling
or waiting acknowledgment mode has to be specified for the same mode declaration group
prototype. If a timeout is specified, timeout monitoring for waiting acknowledgment access is
enabled.

Functional Description

The function Rte SwitchAck <p> <m> () can be used to read the mode switch status of a
specific mode declaration group prototype. It indicated the status of a mode switch, triggered by an
Rte Switch call. Depending on the configuration, the API can be either blocking or non-blocking.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

86 /139

Technical Reference MICROSAR RTE

5.9 Inter-Runnable Variables
5.9.1 Rte_IrvRead

Prototype
<DataType> Rte IrvRead <r> <v> ([IN Rte Instance instance])
void Rte IrvRead <r> <v> ([IN Rte Instance instance,] OUT <DataType> *data)

Parameter

Instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

*data The output <data> is passed by reference for composite data types.
The <DataType> is the type of the Inter-Runnable Variable specified in
the SWC description.

Return code

<DataType> The return value contains the current content of the Inter-Runnable
Variable of primitive data types. The <DataType> is the type of the
Inter-Runnable Variable specified in the SWC description.

This API exists, if the runnable entity of a SWC has configured direct (explicit) read access to the
Inter-Runnable Variable in the SWC configuration.

Functional Description

The function Rte IrvRead <r> <v>() supplies the current value of the Inter-Runnable Variable.
This API is used to read direct (explicit) Inter-Runnable Variables. After startup Rte IrvRead
provides the configured initial value.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

87 /139

Technical Reference MICROSAR RTE

5.9.2 Rte_IrvWrite

Prototype

void Rte IrviWrite <r> <v> ([IN Rte Instance instance,] IN <DataType> data)

void Rte IrviWrite <r> <v> ([IN Rte Instance instance,] IN <DataType> *data)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

data The input data <data> is passed by value for primitive data types. The
<DataType> is the type of the Inter-Runnable Variable specified in the
SWC description.

*data

The input data <data> for composite data types is passed by
reference. The <DataType> is the type of the Inter-Runnable Variable
specified in the SWC description.

Return code

This API exists, if the runnable entity of a SWC has configured direct (explicit) write access to the
Inter-Runnable Variable in the SWC configuration.

Functional Description

The function Rte IrvIWrite <r> <v>() can be used for updating direct (explicit) access Inter-
Runnable Variables. The update is performed immediately.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

88 /139

Technical Reference MICROSAR RTE

5.9.3 Rte_lIrviRead

Prototype
<DataType> Rte IrvIRead <r> <v> ([IN Rte Instance instance])
<DataType> *Rte IrvIRead <r> <v> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<DataType> The return value contains the buffered content of the Inter-Runnable
Variable for primitive data types. The <DataType> is the type of the
Inter-Runnable Variable specified in the SWC description.

<DataType> * The return value contains a reference to the buffered content of the
Inter-Runnable Variable for composite data types. The <DataType> is
the type of the Inter-Runnable Variable specified in the SWC
description.

This API exists, if the runnable entity of a SWC has configured buffered (implicit) read access to the
Inter-Runnable Variable in the SWC configuration.

Functional Description

The function Rte IrvIRead <r> <v> () supplies the value of the Inter-Runnable Variable,
stored in a buffer before the runnable entity is started. This APl is used to read the buffered
(implicit) Inter-Runnable Variable. After startup Rte IrvIRead provides the configured initial
value.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

89/139

Technical Reference MICROSAR RTE

5.9.4 Rte_IrviWrite

Prototype

void Rte IrvIWrite <r> <v> ([IN Rte Instance instance,] IN <DataType> data)

void Rte IrvIWrite <r> <v> ([IN Rte Instance instance,] IN <DataType> *data)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

data The input data <data> is passed by value for primitive data types. The
<DataType> is the type of the Inter-Runnable Variable specified in the
SWC description.

*data The input data <data> is passed by reference for composite data

types. The <DataType> is the type of the Inter-Runnable Variable
specified in the SWC description.

Return code

This API exists, if the runnable entity of a SWC has configured buffered (implicit) write access to
the Inter-Runnable Variable in the SWC configuration.

Functional Description

The function Rte IrvIWrite <r> <v>() can be used for updating buffered (implicit) Inter-
Runnable Variables. Note, that the actual update is performed and therefore visible for other
runnable entities after the runnable entity has been terminated.

Call Context

This function can be used inside the runnable <r> of an AUTOSAR software component (SWC).
Usage in other runnables of the same SWC is forbidden!

| Caution
. When buffered (implicit) write access to an Inter-Runnable Variable has been

runnable.

configured for a runnable, the runnable has to update the Inter-Runnable variable at
least once during its execution time using the Rte IrvIWrite API. Otherwise, the
content of the Inter-Runnable Variable may become undefined upon return from the

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

90/139

Technical Reference MICROSAR RTE vector'

5.10 Per-Instance Memory
5.10.1 Rte_Pim

Prototype
<C-type> *Rte Pim <n> ([IN Rte Instance instance])

<DataType> *Rte Pim <n> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<C-Type> * If the configured data type of the Per-Instance Memory is specified by
any C type string, a reference to the PIM of the C-type is returned.

<DataType> * If the configured DataType of the Per-Instance Memory is an
AUTOSAR DataType, a reference to the PIM of this AUTOSAR type is
returned. If the data type is known and completely described, the RTE
generator knows the size of the PIM variable and is able to generate
the PIM variables in a specific optimized order.

This API exists for each specified Per-Instance Memory specified for an AUTOSAR application
SWC.

Functional Description

The function Rte_Pim <n> () can be used to access Per-Instance Memory. Note: If several
runnable entities have concurrent access to the same Per-Instance Memory, the user has to
protect the accesses by using implicit or explicit exclusive areas.

Call Context

This function can be used inside all runnable entities of the AUTOSAR software component (SWC)
specifying the Per-Instance Memory.

Caution
&D When the Per—Instance Memory uses no AUTOSAR data type and is also not based
on a standard data type like e.g. uint8 the RTE generator cannot create the type
definition for this type.
In this case the user has to provide a user header file Rte UserTypes.h which
should contain the type definitions for the Per-Instance Memory allowing the RTE
generator to allocate the Per-Instance memory.

©2015, Vector Informatik GmbH Version: 4.8.0 917139

based on template version 3.5

Technical Reference MICROSAR RTE

5.11 Calibration Parameters
5.11.1 Rte_CData

Prototype
<DataType> Rte CData <cp> ([IN Rte Instance instance])

<DataType> *Rte CData <cp> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<DataType> For primitive data types the return value contains the content of the
calibration parameter. The return value is of type <DataType>, which
is the type of the calibration element prototype.

<DataType> * For composite data types and string types the return value contains
the reference to the calibration parameter. The return value is of type
<DataType>, which is the type of the calibration element prototype.

This API exists for each calibration element prototype specified for an AUTOSAR application SWC.

Functional Description

The function Rte CData <cp> () can be used to access SWC local calibration parameters.
Depending on the configuration the Rte_CData API returns a SWC type specific (shared) or SWC
instance specific (perInstance) calibration parameter.

Call Context

This function can be used inside all runnable entities of the AUTOSAR software component (SWC)
specifying the calibration parameters.

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

92/139

Technical Reference MICROSAR RTE

5.11.2 Rte Prm

Prototype
<DataType> Rte Prm <p> <cp> ([IN Rte Instance instance])
<DataType> *Rte Prm <p> <cp> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

<DataType> For primitive data types the return value contains the content of the
calibration parameter. The return value is of type <DataType>, which
is the type of the calibration element prototype.

<DataType> * For composite data types and string types the return value contains
the reference to the calibration parameter. The return value is of type
<DataType>, which is the type of the calibration element prototype.

This API exists for each calibration element prototype specified for a calibration software
component.

Functional Description

The function Rte Prm <p> <cp>() can be used to access the instance specific calibration
element prototypes of a calibration component.

Call Context

This function can be used inside all runnable entities of the AUTOSAR software component (SWC)
specifying access to calibration element prototypes of calibration components via calibration ports.

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

93/139

Technical Reference MICROSAR RTE vector'

5.12 Client-Server Communication
5.12.1 Rte_Call

Prototype

Std ReturnType Rte Call <p> <o> ([IN Rte Instance instance,] {IN type
[*]inputparam, }* {OUT type *outputparam, }* {INOUT type *inoutputparam, }*)

Parameter

instance Instance handle, used to distinguish between the different
instances in case of multiple instantiation.

Note: This is an optional parameter depending on the
configuration of supportsMultipleInstantiation

attribute.
[*]linputparam, *outputparam, The number and type of parameters is determined by the
*inoutputparam, operation prototype. Input (IN) parameters are passed by value

(primitive types) or reference (composite and string types),
output (OUT) and input-output (INOUT) parameters are always
passed by reference.

Return code

RTE_E_OK Operation executed successfully.

RTE_E_UNCONNECTED Indicates that the client port is not connected.

RTE_E_LIMIT The operation is invoked while a previous invocation has not yet
terminated. Relevant only for asynchronous calls.

RTE_E_COM_STOPPED An infrastructure communication error was detected by the RTE.

Relevant only to external communication.

RTE_E_TIMEOUT Returned by a synchronous call after the timeout has expired
and no other error occurred. The arguments are not changed.

RTE_E_<interf>_<error> Server runnables may return an application error if the operation
execution was not successful. Application errors are defined at
the client/server port interface and are references by the
operation prototype.

RTE_E_SOFT_TRANSFORMER_ERROR An error during transformation occurred which shall be notified
to the SWC but still produces valid data as output.

RTE_E_HARD_TRANSFORMER_ERROR An error during transformation occurred which produces invalid
data as output.

This API exists, if the runnable entity of a SWC has configured access to the operation prototype in the
DaVinci configuration.

Functional Description

The function Rte _Call <p> <o> () invokes the server operation <o> with the specified parameters. If
Rte Call returns with an error, the INOUT and OUT parameters are unchanged.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0 94 /139

based on template version 3.5

Technical Reference MICROSAR RTE

5.12.2 Rte_ Result

Prototype

Std ReturnType Rte Result <p> <o> ([IN Rte Instance instance,]
{OUT type *outputparam, }*)

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

*outputparam The number and type of parameters is determined by the operation
prototype. The output (OUT) parameters are always passed by
reference.

Return code

RTE_E_OK Operation executed successfully.
RTE_E_UNCONNECTED | Indicates that the client port is not connected.
RTE_E_NO_DATA The result of the asynchronous operation invocation is not available.

Relevant only for non-blocking call.

RTE_E_COM_STOPPED | An infrastructure communication error was detected by the RTE.
Relevant only to external communication.

RTE_E_TIMEOUT The result of the asynchronous operation invocation is not available in
the specified time. Relevant only for blocking call.

RTE_E_<interf>_<error> | Server runnables may return an application error if the operation
execution was not successful. Application errors are defined at the
client/server port interface and are references by the operation
prototype.

This API exists, if the runnable entity of a SWC has configured polling or waiting access to an
asynchronous invoked operation of a C/S port interface.

Functional Description

The function Rte Result <p> <o>() provides the result of asynchronous C/S calls. In case of
a polling call, the API returns the OUT parameters if the result is already available while for
asynchronous calls the API waits until the server runnable has finished the execution or a timeout
occurs.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector’

95/139

Technical Reference MICROSAR RTE

5.13 Indirect API
5.13.1 Rte_ Ports

Prototype

Rte PortHandle <i> <R/P> Rte_Ports_<i>_<P/R> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

Rte_PortHandle_<i>_<R/P> | The API returns a pointer to the first port data structure of the port
data structure array.

This API exists, if the indirect API is configured at the Component Type.

Functional Description

The function Rte Ports <i> <R/P> returns an array containing the port data structures of all
require ports indicated by the API extension <R> or provide ports indicated by <P> of the port
interface specified by <i> in order to allow indirect access of the port APIs via the port handle (e.g.
iteration over all ports of the same interface).

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

96 /139

Technical Reference MICROSAR RTE VQCEO('

5.13.2 Rte_NPorts

Prototype

uint8 Rte_NPorts_<i>_<P/R> ([IN Rte Instance instance])

Parameter

instance

Instance handle, used to distinguish between the different instances in
case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

uint8

The API returns the size of the port data structure array provided by
Rte Ports.

This API exists, if the indirect API is configured at the component type.

Functional Description

The function Rte NPorts <i> <R/P> returns the number of array entries (port data structures)
of all require ports indicated by the API extension <R> or provide ports indicated by <P> of the port

interface specified by <i>.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH

Version: 4.8.0 97 /139

based on template version 3.5

Technical Reference MICROSAR RTE

5.13.3 Rte_Port

Prototype

Rte PortHandle <i> <R/P> Rte_Port <p> ([IN Rte Instance instance])

Parameter

instance Instance handle, used to distinguish between the different instances in

case of multiple instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

Rte_PortHandle_<i>_<R/P> | The API returns a pointer to a port data structure.
Existence

This API exists, if the indirect API is configured at the component type.

Functional Description

The function Rte Port <p> returns the port data structure of the port specified by <p>. It allows
indirect API access via the port handle.

Call Context

This function can be used inside a runnable entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

98 /139

Technical Reference MICROSAR RTE VQCEO('

5.14 RTE Lifecycle API
The lifecycle API functions are declared in the RTE lifecycle header file Rte Main.h
5.14.1 Rte_Start

Prototype

Std ReturnType Rte Start (void)

Parameter

Return code
RTE_E_OK
RTE_E_LIMIT
Functional Description

RTE initialized successfully.

An internal limit has been exceeded.

The RTE lifecycle API function Rte Start allocates and initializes system resources and
communication resources used by the RTE.

Call Context

This function has to be called by the ECU state manager after basic software modules have been
initialized especially OS and COM. It has to be called on every core that is used by the RTE. The
call on the core that contains the BSW will start the triggering of all cyclic runnables. Therefore
Rte_Start on the other cores has to be executed first.

5.14.2 Rte_Stop

Std ReturnType Rte Stop (void)

Prototype

Parameter

Return code
RTE_E_OK
RTE_E_LIMIT
Functional Description

RTE initialized successfully.

A resource could not be released.

The RTE lifecycle API function Rte Stop releases system resources and communication
resources used by the RTE and shutdowns the RTE. After Rte Stop is called no runnable entity
must be processed.

Call Context

This function has to be called by the ECU state manager on every core that is used by the RTE.
The call on the core that contains the BSW will stop the triggering of the cyclic runnables.

©2015, Vector Informatik GmbH Version: 4.8.0 99/139

based on template version 3.5

Technical Reference MICROSAR RTE VQCEO('

5.14.3 Rte_InitMemory

Prototype

void Rte InitMemory (void)

Parameter

Return code

Functional Description

The API function Rte_InitMemory is a MICROSAR RTE specific extension and should be used
to initialize RTE internal state variables if the compiler does not support initialized variables.

Call Context

This function has to be called before the ECU state manager calls the initialization functions of
other BSW modules especially the AUTOSAR COM module. It has to be called on all cores that
are used by the RTE.

Caution
&D Rte_InitMemory API is a Vector extension to the AUTOSAR standard and may not be
supported by other RTE generators.

©2015, Vector Informatik GmbH Version: 4.8.0 100/ 139

based on template version 3.5

Technical Reference MICROSAR RTE VQCEO('

5.15 SchM Lifecycle API
The lifecycle API functions are declared in the RTE lifecycle header file Rte Main.h
5.15.1 SchM_Init

void SchM Init ([IN SchM ConfigType ConfigPtr])

Prototype

Parameter
ConfigPtr

Pointer to the Rte_Config_<VariantName> data structure that shall be
used for the RTE initialization of the active variant in case of a
postbuild selectable configuration. The parameter is omitted in case
the project contains no postbuild selectable variance.

Return code

Functional Description

This function initializes the BSW Scheduler and resets the timers for all cyclic triggered schedulable
entities (main functions). Note that all main functions calls are activated upon return from this
function.

Call Context

This function has to be called by the ECU state manager from task context. The OS has to be
initialized before as well as those BSW modules for which the SchM provides triggering of
schedulable entities (main functions). The API has to be called on all cores that are used by the
RTE.

5.15.2 SchM_Deinit

Prototype

void SchM Deinit (void)

Parameter

Return code

Functional Description

This function finalizes the BSW Scheduler and stops the timer which triggers the main functions.
Call Context

This function has to be called by the ECU state manager from task context. It has to be called on
all cores that are used by the RTE.

©2015, Vector Informatik GmbH Version: 4.8.0 101/139

based on template version 3.5

Technical Reference MICROSAR RTE

5.15.3 SchM_GetVersioninfo

void SchM GetVersionInfo (Std VersionInfoType *versioninfo)

Prototype

Parameter

versioninfo Pointer to where to store the version information of this module.

Return code

Existence

This API exists if RteSchMVersionInfoApi is enabled.

Functional Description

SchM GetVersionInfo () returns version information, vendor ID and AUTOSAR module ID of
the component.

The versions are decimal-coded.
Call Context

The function can be called on interrupt and task level.

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

102 /139

Technical Reference MICROSAR RTE

5.16 VFB Trace Hooks

vector’

The RTE’s “VFB tracing” mechanism allows to trace interactions of the AUTOSAR
software components with the VFB. The choice of events resides with the user and can
range from none to all. The “VFB tracing” functionality is designed to support multiple
clients for each event. If one or multiple clients are specified for an event, the trace
function without client prefix will be generated followed by the trace functions with client

prefixes in alphabetically ascending order.
5.16.1 Rte_[<client>_]<API>Hook_<cts> <ap>_Start

Prototype

void Rte [<client>]<API>Hook <cts> <ap> Start ([IN const Rte CDS <cts>* inst,]
params)

Rte_ CDS_<cts>* inst The instance specific pointer of type Rte_ CDS_<cts> is used to
distinguish between the different instances in case of multiple
instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

params The parameters are the same as the parameters of the <API>. See
the corresponding API description for details.

Return code

This VFB trace hook exists if the global and the hook specific configuration switches are enabled.

Functional Description

This VFB trace hook is called inside the RTE APIs directly after invocation of the API. The user has
to provide this hook function if it is enabled in the configuration. The placeholder <API> represents
one of the following APlIs:

Enter, Exit, Write, Read, Send, Receive, Invalidate, SwitchAck, Switch, Call, Result, IrvWrite,
IrvRead

The <AccessPoint> is defined as follows:
» Enter, Exit: <ExclusiveArea>

» Write, Read, Send, Receive, Feedback, Invalidate:
<PortPrototype>_<DataElementPrototype>

» Switch, SwitchAck: <PortPrototype> <ModeDeclarationGroupPrototype>
> Call, Result: <PortPrototype>_<OperationPrototype>
» IrvWrite, IrvRead: <InterRunnableVariable>

Call Context

This function is called inside the RTE API. The call context is the context of the API itself. Since
APIs can only be called in runnable context, the context of the trace hooks is also the runnable
entity of an AUTOSAR software component (SWC).

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

103 /139

Technical Reference MICROSAR RTE vector'

5.16.2 Rte [<client>]<API>Hook <cts> <ap> Return

Prototype

void Rte [<client>]<API>Hook <cts> <ap> Return ([IN const Rte CDS <cts> *inst,]
params)

Rte_CDS_<cts>* inst The instance specific pointer of type Rte_CDS_<cts> is used to
distinguish between the different instances in case of multiple
instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

params The parameters are the same as the parameters of the API. See the
corresponding API description for details.

Return code

Existence

This VFB trace hook exists if the global and the hook specific configuration switches are enabled.

Functional Description

This VFB trace hook is called inside the RTE APlIs directly before leaving the API. The user has to
provide this hook function if it is enabled in the configuration. The placeholder <API> represents
one of the following APlIs:

Enter, Exit, Write, Read, Send, Receive, Invalidate, Feedback, Switch, SwitchAck, Call, Result,
IrvWrite, IrvRead

The <AccessPoint> is defined as follows:

» Enter, Exit: <ExclusiveArea>

» Write, Read, Send, Receive, Feedback, Invalidate:
<PortPrototype>_<DataElementPrototype>

» Switch, SwitchAck: <PortPrototype>_<ModeDeclarationGroupPrototype>

» Call, Result: <PortPrototype>_<OperationPrototype>

> IrvWrite, IrvRead: <InterRunnableVariable>

Call Context

This function is called inside the RTE API. The call context is the context of the API itself. Since
APIs can only be called in runnable context, the context of the trace hooks is also the runnable
entity of an AUTOSAR software component (SWC).

Caution
&D The RTE generator tries to prevent overhead by sometimes implementing the Rte_Call
API as macro that does a direct runnable invocation. If VFB trace hooks are enabled
for such an Rte_Call API or for the called server runnable, these optimizations are no
longer possible.

Also macro optimizations for Rte_Read, Rte_DRead, Rte_Write, Rte_IrvRead and
Rte_IrvWrite APIs are disabled when VFB tracing for that APIs is enabled.

©2015, Vector Informatik GmbH Version: 4.8.0 104 /139

based on template version 3.5

Technical Reference MICROSAR RTE VQCEO('

| Caution
: The RTE does not call VFB trace hooks for the following APIs because they are
intended to be implemented as macros.

» Implicit S/R APIs: Rte_IWrite, Rte_IWriteRef, Rte_IRead, Rte [Status,
Rte_lInvalidate

» Implicit Inter-Runnable Variables: Rte_IrvIWrite, Rte_IrvIRead

» Per-instance Memory and calibration parameter APIs: Rte_Pim, Rte_CData,
Rte_Prm

» Indirect APIs: Rte_Ports, Rte_Port, Rte_NPorts
» RTE Life-Cycle APIs: Rte_Start, Rte_Stop

5.16.3 SchM_[<client>_]<API>Hook <Bsw> <ap>_Start

Prototype

void SchM [<client>]<API>Hook <bsw> <ap> Start (params)

Parameter

params The parameters are the same as the parameters of the <API>. See
the corresponding API description for details.

Return code

Existence

This VFB trace hook exists if the global and the hook specific configuration switches are enabled.
Functional Description

This VFB trace hook is called inside the RTE APIs directly after invocation of the API. The user has
to provide this hook function if it is enabled in the configuration. The placeholder <API> represents
one of the following APls:

Enter, Exit
The <AccessPoint> is defined as follows:
» Enter, Exit: <ExclusiveArea>

Call Context

This function is called inside the RTE API. The call context is the context of the API itself. Since
APIs can be called from a BSW function, the context of the trace hooks depends on the context of
the BSW function.

Caution
&D The SchM Hook APIs are a Vector extension to the AUTOSAR standard and may not
be supported by other RTE generators.

©2015, Vector Informatik GmbH Version: 4.8.0 105/ 139

based on template version 3.5

Technical Reference MICROSAR RTE VQCEO('

5.16.4 SchM_[<client>_]<API>Hook_ <Bsw> <ap>_ Return

Prototype
void SchM [<client>]<API>Hook <bsw> <ap> Return (params)

Parameter

params The parameters are the same as the parameters of the <API>. See
the corresponding API description for details.

Return code

Existence

This VFB trace hook exists if the global and the hook specific configuration switches are enabled.
Functional Description

This VFB trace hook is called inside the RTE APlIs directly before leaving the API. The user has to
provide this hook function if it is enabled in the configuration. The placeholder <API> represents
one of the following APlIs:

Enter, Exit

The <AccessPoint> is defined as follows:
» Enter, Exit: <ExclusiveArea>

Call Context

This function is called inside the RTE API. The call context is the context of the API itself. Since
APIs can be called from a BSW function, the context of the trace hooks depends on the context of
the BSW function.

Caution
&D The SchM Hook APIs are a Vector extension to the AUTOSAR standard and may not
be supported by other RTE generators.

©2015, Vector Informatik GmbH Version: 4.8.0 106 / 139

based on template version 3.5

Technical Reference MICROSAR RTE

5.16.5 Rte [<client>_ JComHook_<SignalName>_SigTx

void Rte [<client>]ComHook <SignalName> SigTx (<DataType> *data)

Prototype

Parameter

Pointer to data to be transmitted via the COM API.

Note: <DataType> is the application specific data type of Rte Send,
Rte Writeor Rte IWrite.

<DataType>* data

Return code

Existence

This VFB trace hook exists, if at least one data element prototype of a port prototype has to be
transmitted over a network (Inter-Ecu) and the global and the hook specific configuration switches
are enabled.

Functional Description

This hook is called just before the RTE invokes Com_SendSignal or
Com_UpdateShadowSignal.

Call Context

This function is called inside the RTE APIs Rte_Send and Rte_Write. The call context is the
context of the APl itself. Since APIs can only be called in runnable context, the context of the trace
hooks is also the runnable entity of an AUTOSAR software component.

If buffered communication (Rte IWrite)is used, the call context is the task of the mapped
runnable.

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

107 /139

Technical Reference MICROSAR RTE VQCEO('

5.16.6 Rte [<client> JComHook_<SignalName>_Siglv

Prototype

void Rte [<client>]ComHook <SignalName> SigIv (void)

Parameter

Return code

Existence

This VFB trace hook exists, if at least one data element prototype of a port prototype has to be
transmitted over a network (Inter-Ecu) and the global and the hook specific configuration switches
are enabled. In addition the canInvalidate attribute at the UnqueuedSenderComSpec of the
data element prototype must be enabled.

Functional Description
This hook is called just before the RTE invokes Com InvalidateSignal.
Call Context

This function is called inside the RTE APIs Rte_Invalidate. The call context is the context of the
API itself. Since APIs can only be called in runnable context, the context of the trace hooks is also
the runnable entity of an AUTOSAR software component.

If buffered communication (Rte_IInvalidate)is used, the call context is the task of the mapped
runnable.

©2015, Vector Informatik GmbH Version: 4.8.0 108 /139

based on template version 3.5

Technical Reference MICROSAR RTE VQCEO('

5.16.7 Rte_[<client>_JComHook_<SignalName>_SigGrouplv

Prototype

void Rte [<client>]ComHook <SignalGroupName> SigGroupIv (void)

Parameter

Return code

Existence

This VFB trace hook exists, if at least one data element prototype of a port prototype is composite
and has to be transmitted over a network (Inter-Ecu) and the global and the hook specific
configuration switches are enabled. In addition the canInvalidate attribute at the
UnqueuedSenderComSpec of the data element prototype must be enabled.

Functional Description
This hook is called just before the RTE invokes Com InvalidateSignalGroup.
Call Context

This function is called inside the RTE APIs Rte_Invalidate. The call context is the context of the
API itself. Since APIs can only be called in runnable context, the context of the trace hooks is also
the runnable entity of an AUTOSAR software component.

If buffered communication (Rte_IInvalidate)is used, the call context is the task of the mapped
runnable.

©2015, Vector Informatik GmbH Version: 4.8.0 109 /139

based on template version 3.5

Technical Reference MICROSAR RTE

5.16.8 Rte [<client> JComHook_<SignalName>_SigRx

void Rte [<client>]ComHook <SignalName> SigRx (<DataType> *data)

Prototype

Parameter

Pointer to the data received via the COM API.

Note: <DataType> is the application specific data type of
Rte Receive, Rte Read, Rte DRead Or Rte IRead.

<DataType>* data

Return code

Existence

This VFB trace hook exists, if at least one data element prototype of a port prototype has to be
received from a network and the global and hook specific configuration switches are enabled.

Functional Description

This VFB Trace Hook is called after the RTE invokes Com ReceiveSignal or
Com_ReceiveShadowSignal.

Call Context

This function is called inside the RTE APl Rte_Read or Rte DRead. The call context is the
context of the API itself. Since this API can only be called in runnable context, the context of the
trace hooks is also the runnable entity of an AUTOSAR software component.

If buffered communication (Rte IRead) is used, the call context is the task of the mapped
runnable.

If queued communication is configured (Rte Receive), the call of the Com API is called inside the
COM callback after reception. In this case, the context of the trace hook is the context of the COM
callback.

Note: This could be the task context or the interrupt context!

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

110/139

Technical Reference MICROSAR RTE VQCEO('

5.16.9 Rte_[<client>_JComHook<Event>_<SignalName>

Prototype

void Rte [<client>]ComHook<Event> <SignalName> (void)

Parameter

Return code

Existence

This VFB trace hook is called inside the <Event> specific COM callback, directly after the
invocation by COM and if the global and the hook specific configuration switches are enabled.

Functional Description

This trace hook indicates the start of a COM callback. <Event> depends on the type of the
callback.

» empty string: Rte_ COMCbk_<SignalName>

> TxTOut Rte_ COMCbkTxTOut_<SignalName>
» RxTOut Rte_ COMCbkRxTOut_<SignalName>
> TAck Rte_ COMCbkTAck_<SignalName>

> TErr Rte_ COMCbKTErr_<SignalName>

> Inv Rte_ COMCDbkInv_<SignalName>

Call Context

This function is called inside the context of the COM callback.
Note: This could be the task context or the interrupt context!

©2015, Vector Informatik GmbH Version: 4.8.0 1117139

based on template version 3.5

Technical Reference MICROSAR RTE VQCEO('

5.16.10 Rte_[<client>_JTask_Activate

Prototype
void Rte [<client>]Task Activate (TaskType task)

Parameter

The same parameter is also used to call the OS APl ActivateTask

Return code

Existence

This VFB trace hook is called by the RTE immediately before the invocation of the OS API
ActivateTask and if the global and the hook specific configuration switches are enabled.

Functional Description
This trace hook indicates the call of ActivateTask of the OS.
Call Context

This function is called inside Rte Start and in the context RTE API functions which trigger the
execution of a runnable entity where the runnable is mapped to a basic task. For API functions, the
call context is the runnable context.

5.16.11 Rte_[<client>]Task_Dispatch

Prototype

void Rte [<client>]Task Dispatch (TaskType task)

Parameter

The parameter indicates the task to which was started (dispatched) by
the OS

Return code

Existence

This VFB trace hook exists for each configured RTE task and is called directly after the start if the
global and the hook specific configuration switches are enabled.

Functional Description
This trace hook indicates the call activation of a task by the OS.
Call Context

The call context is the task.

©2015, Vector Informatik GmbH Version: 4.8.0 112/139

based on template version 3.5

Technical Reference MICROSAR RTE VQCEO('

5.16.12 Rte_[<client>_]Task_SetEvent

Prototype
void Rte [<client>]Task SetEvent (TaskType task, EventMaskType event)
Parameter

The same parameter is also used to call the OS API SsetEvent

The same parameter is also used to call the OS API SetEvent

Return code

Existence

This VFB trace hook is called by the RTE immediately before the invocation of the OS API
SetEvent and if the global and the hook specific configuration switches are enabled.

Functional Description
This trace hook indicates the call of SetEvent.
Call Context

This function is called inside RTE API functions and in COM callbacks. For API functions, the call
context is the runnable context.

Note: For COM callbacks the context could be the task context or the interrupt context!

5.16.13 Rte_[<client>_]Task_WaitEvent

Prototype
void Rte [<client>]Task WaitEvent (TaskType task, EventMaskType event)
Parameter

The same parameter is also used to call the OS APl WaitEvent

The same parameter is also used to call the OS APl WwaitEvent

Return code

Existence

This VFB trace hook is called by the RTE immediately before the invocation of the OS API
WaitEvent and if the global and the hook specific configuration switches are enabled.

Functional Description
This trace hook indicates the call of WaitEvent.
Call Context

This function is called inside RTE API functions and in generated task bodies.

©2015, Vector Informatik GmbH Version: 4.8.0 113 /139

based on template version 3.5

Technical Reference MICROSAR RTE VQCEO('

5.16.14 Rte_[<client> JTask_WaitEventRet

Prototype

void Rte [<client>]Task WaitEventRet (TaskType task, EventMaskType event)

Parameter

The same parameter is also used to call the OS APl waitEvent

The same parameter is also used to call the OS APl WaitEvent

Return code

Existence

This VFB trace hook is called by the RTE immediately after returning from the OS API WaitEvent
and if the global and the hook specific configuration switches are enabled.

Functional Description

This trace hook indicates leaving the call of waitEvent.
Call Context

This function is called inside RTE API functions and in generated task bodies.

5.16.15 Rte_[<client>_JRunnable_<cts> <re> Start

void Rte [<client>]Runnable <cts> <re> Start ([IN const Rte CDS <cts> *inst])

Prototype

Parameter
Rte_ CDS_<cts>* inst

The instance specific pointer of type Rte_ CDS_<cts> is used to
distinguish between the different instances in case of multiple
instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

Existence

This VFB trace hook is called for all mapped runnable entities if the global and the hook specific
configuration switches are enabled.

Functional Description

This trace hook indicates invocation of the runnable entity. It is called just before the call of the
runnable entity and allows for example measurement of the execution time of a runnable together
with the counterpart Rte [<client> JRunnable <cts> <re> Return.

Call Context

This function is called inside RTE generated task bodies.

©2015, Vector Informatik GmbH Version: 4.8.0 114 /139

based on template version 3.5

Technical Reference MICROSAR RTE

5.16.16 Rte_[<client>_JRunnable_<cts> <re> Return

void Rte [<client>]Runnable <cts> <re> Return ([IN const Rte CDS <cts> *inst])

Prototype

Parameter
Rte_ CDS_<cts>* inst

The instance specific pointer of type Rte_CDS_<cts> is used to
distinguish between the different instances in case of multiple
instantiation.

Note: This is an optional parameter depending on the configuration of
supportsMultipleInstantiation attribute.

Return code

Existence

This VFB trace hook is called for all mapped runnable entities if the global and the hook specific
configuration switches are enabled.

Functional Description

This trace hook indicates invocation of the runnable entity. It is called just after the call of the
runnable entity and allows for example measurement of the execution time of a runnable together
with the counterpart Rte [<client> JRunnable <cts> <re> Start.

Call Context

This function is called inside RTE generated task bodies.

©2015, Vector Informatik GmbH Version: 4.8.0

based on template version 3.5

vector”

115/139

Technical Reference MICROSAR RTE vector'

5.17 RTE Interfaces to BSW
The RTE has standardized Interfaces to the following basic software modules

» COM/LDCOM

» NVM

» DET

» OS

» XCP

» SCHM

The actual used API’s of these BSW modules depend on the configuration of the RTE.

5.17.1 Interface to COM/LDCOM

Used COM API
Com_SendSignal
Com_SendDynSignal
Com_SendSignalGroup
Com_UpdateShadowSignal
Com_ReceiveSignal

Com_ReceiveDynSignal
Com_ReceiveSignalGroup
Com_ReceiveShadowSignal
Com_InvalidateSignal
Com_InvalidateSignalGroup

Used LDCOM API
LdCom_IfTransmit

The RTE generator provides COM / LDCOM callback functions for signal notifications. The
generated callbacks, which are called inside the COM layer, have to be configured in the
COM / LDCOM configuration accordingly. The necessary callbacks are defined in the
Rte Cbk.h header file.

Caution
&D The RTE generator assumes that the context of COM / LDCOM callbacks is either a
task context or an interrupt context of category 2.
It is explicitly NOT allowed that the call context of a COM / LDCOM callback is an
interrupt of category 1.

In order to access the COM / LDCOM API the generated RTE includes the
Com.h/LdCom.h header file if necessary.

During export of the ECU configuration description the necessary COM / LDCOM
callbacks are exported into the COM / LDCOM section of the ECU configuration
description.

©2015, Vector Informatik GmbH Version: 4.8.0 116 /139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

5.17.2 Interface to OS

In general, the RTE may use all available OS API functions to provide the RTE
functionality to the software components. The following table contains a list of used OS
APIs of the current RTE implementation.

Used OS API
SetRelAlarm
CancelAlarm
StartScheduleTableRel
NextScheduleTable
StopScheduleTable
SetEvent

GetEvent
ClearEvent
WaitEvent
GetTaskID
GetCorelD
ActivateTask
Schedule
TerminateTask
ChainTask
GetResource
ReleaseResource
GetSpinlock
ReleaseSpinlock
DisableAllinterrupts
EnableAllinterrupts
SuspendAllinterrupts
ResumeAllinterrupts
SuspendOSinterrupts
ResumeOSinterrupts
CallTrustedFunction (MICROSAR OS specific)
locWrite

locRead
locWriteGroup
locReadGroup
locSend

locReceive

In order to access the OS API the generated RTE includes the 0s . h header file.

©2015, Vector Informatik GmbH Version: 4.8.0 117/139

based on template version 3.5

Technical Reference MICROSAR RTE V@CtOf

The OS configuration needed by the RTE is stored in the file Rte Needs.ecuc.arxml
which is created during the RTE Generation Phase.

For legacy systems the OS configuration is also stored in Rte.oil. This file is an
incomplete OIL file and contains only the RTE relevant configuration. It should be included
in an OIL file used for the OS configuration of the whole ECU.

f ‘: Caution
: The generated files Rte Needs.ecuc.arxml and Rte.oil file must not be
changed!

5.17.3 Interface to NVM

The RTE generator provides NvM callback functions for synchronous copying of the mirror
buffers to and from the NvM. The generated callbacks, which are called inside the
NvM MainFunction, have to be configured in the NvM configuration accordingly. The
necessary callbacks are defined in the Rte Cbk.h header file.

Caution
&& The RTE generator assumes that the call context of NvM callbacks is the task which
calls the NvM MainFunction.

During export of the ECU configuration description the necessary NVM callbacks are
exported into the NVM section of the ECU configuration description.

5.17.4 Interface to XCP

In addition to the usage of the Com and the OS module as described by AUTOSAR, the
MICROSAR RTE generator optionally can also take advantage of the MICROSAR XCP
module.

This makes it possible to configure the RTE to trigger XCP Events when certain
measurement points are reached.

This for example also allows the measurement of buffers for implicit sender/receiver
communication when a runnable entity is terminated.

Measurement is described in detail in chapter 6.6 Measurement and Calibration.

When measurement with XCP Events is enabled, the RTE therefore includes the header
Xcp.h and calls the Xcp_Event API to trigger the events.

Xcp_Event

©2015, Vector Informatik GmbH Version: 4.8.0 118 /139

Technical Reference MICROSAR RTE vector'

5.17.5 Interface to SCHM

In multicore and memory protection systems, the schedulable entity
Rte ComSendSignalProxyPeriodic is provided by the RTE and is used to access the
COM from OS Applications without BSW. This schedulable entity needs to be called
periodically by the SCHM.

See chapter 4.8.1 for details.

Provided Schedulable Entity
Rte_ComSendSignalProxyPeriodic

5.17.6 Interface to DET

The RTE generator reports development errors to the DET, if development error detection
is enabled.

See chapter 3.8.1 for details.

Used DET API
Det_ReportError

©2015, Vector Informatik GmbH Version: 4.8.0 119/139

based on template version 3.5

Technical Reference MICROSAR RTE VeCtOf

6 RTE Configuration

The RTE specific configuration in DaVinci Configurator encompasses the following parts:
assignment of runnables to OS tasks

assignment of OS tasks to OS applications (memory protection/multicore support)
assignment of Per-Instance Memory to NV memory blocks

selection of the exclusive area implementation method

configuration of the periodic triggers

configuration of measurement and calibration

selection of the optimization mode

selection of required VFB tracing callback functions

configuration of the built-in call to the RTE generator

vV vV v vV VvV v v v Vv Vv

platform dependent resource calculation

6.1 Configuration Variants
The RTE supports the configuration variants
» VARIANT-PRE-COMPILE

» VARIANT-POST-BUILD-SELECTABLE

The configuration classes of the RTE parameters depend on the supported configuration
variants. For their definitions please see the Rte bswmd.arxml file.

6.2 Task Configuration

Runnable Entities triggered by any kind of RTE Event e.g. TimingEvent have to be
mapped to tasks. Only server runnables (triggered by an OperationInvokedEvent) that
either have their CanBeInvokedConcurrently flag enabled or that are called from
tasks that cannot interrupt each other do not need to be mapped. For optimization
purposes they can be called directly and are then executed in the context of the calling
runnable (client).

The task configuration within DaVinci Configurator also contains some attributes which are
part of the OS configuration. The parameters are required to control RTE generation.

©2015, Vector Informatik GmbH Version: 4.8.0 120/ 139

Technical Reference MICROSAR RTE vector'

The creation of tasks is done in OS Configuration Editor in the in the DaVinci Configurator.
The Task Mapping Assistant has to be used to assign the triggered functions (runnables
and schedulable entities) to the tasks.

42 paVinci Configurator Pro.MD.WF.RTE [PRERELEASE] - InteriorLight.dpa =10l x|
File Edit Mavigate View Project Help

JJL}H‘-!) p|%@|ﬁ@|f¢@.g§.|?remmp&laj

: Configuration Editors 7 =4 E;DS Configuration &3 I =0
[& <Fiter> - =1 ES all » * Tasks b * SensorTask P /4 Mapped Functions |§
BT T o IO\ <Filter > ¥ Use the Task Mapping Assistant to map runnable entities or schedulable entities.
2 riggered Function unction Trigger wner ctivation Offset [s osition
Memory ¥ ER=I] B Ti d Functi Function T 0 Activation Offset [5] Posits
Runtime System & ;--I:'l 05 Applications o Periodical 0.02 s Component 4 Door Left
- Tasks "
E Runtime System General - TaskTestsuiteInit SA_Door_Left_Init On Init Component SA Door Left |0 2
. ; _Daor_Ri i - Component SA Door Right
E ECU Software Components 5P SensorTask SA_Door_Right Periodical 0.02 s Component SA Door Right |0 1
: i SA_Door_Right_Init On Init Component 5A Door Right (0 3
@ 085 Configuration i £i Mapped Functions Lotioug
- Interrupt Service Routines
Timing Protection @ Events
-
Eul" Component Connection Assistant & Ba Alarms
#-%4" Counters
} Data Mapping Assistant [B Schedule Tables
B8 Memory Mapping Assistant -8 Resources
§)§' Task Mapping Assistant
G’j Basic Editor 4 | _’I
“f Properties £3 = O || Ag validation &2 1 =] 0||t|)|lt| [ﬁ i G;g'; =0
SensorTask_0_Timer0 (/MICROSAR/Rte/RteSwComp efRteEventToT: pping) 0 markers in 0 categories
. jin] Message
Description Maps a RunnableEntity onto one OsTask based on the activating RTEEvent. | jo I

Status
Definition

Figure 6-1 Mapping of Runnables to Tasks

The MICROSAR RTE supports the generation of both BASIC and EXTENDED tasks. The

Task Type can either be selected or the selection is done automatically if AUTO is
configured.

While extended tasks are used for tasks that need to wait for different RTE trigger
conditions, basic tasks are used when all runnables of a task are triggered by one or more
identical triggers.

A typical example for this might be several cyclic triggered runnables that share the same
activation offset and cycle time.

Moreover another requirement for basic task usage is that the mapped runnables do not
use APIs that requires a waitpoint, like a blocking Rte Feedback ().

In addition to the Task Type the number of possible task activations can be configured in
the same dialog.

| Caution
(. Lﬁ When RTE events that trigger a runnable are fired multiple times before the actual
runnable invocation happens and when the runnable is mapped to an extended task,
the runnable is invoked only once.

However, if the runnable is mapped to a basic task, the same circumstances will cause
multiple task activations and runnable invocations. Therefore, for basic tasks, the task
attribute Activation in the OS configuration has to be set to the maximum number of

©2015, Vector Informatik GmbH Version: 4.8.0 121/139

Technical Reference MICROSAR RTE vector'

queued task activations. If Activation is too small, additional task activations may result

in runtime OS errors. To avoid the runtime error the number of possible Task Activation
should be increased.

6.3 Memory Protection and Multicore Configuration

For memory protection or multicore support the tasks have to be assigned to OS
applications. The following figures show the configuration of OS applications and the

assignment of OS tasks. For multicore support also the Core ID has to configured for the
OS application.

&4 DaVinci Configurator Pro.MD.WF.RTE [PRERELEASE] - MemoryProtectionTest.dpa

M=1kd
File Edit Mavigate View Project Help

J_] leg|-q ﬁ|‘§%@|_§?@|k§@v$v|ﬁec‘:mﬁle :
+Ccnﬁguraﬁcn Editors ¥ =08 E;OSCmﬁgwaﬁon 5:5]

[@ <Fitter > - [E] E= an v [osapplications » £ osappl2 |§
Communication ¥ <Filter >
IQ <Filter = Name: | osapol2
Memory ¥ n .
= ﬁ All Restart Task: | -1 | -

Runtime System S =1 os Applications

[osapplt Hook Routines
Runtime System General 1 l0sAppiz

5 Trusted [*~
I8 Ecu Software Components [OsAppl3
[o5 confiquration B~ Tasks =l Tasks

4 Interrupt Service Routines
E Timing Protection 5@ Events o
En]u Component Connection Assistant e p Alarms i
B Counters 5

} Data Mapping Assistant [& schedule Tables
b8 Memory Mapping Assistant [-55] Resources ISRs

Eﬁl Task Mapping Assistant Alarms

Schedule Tables

Counters

Resources
EE Basic Editor
5P Properties 53 = O || dg validation &2 l EOlltput‘ @R E O
0s App Task Ref

0 markers in 0 categories
references which OsTasks belong to the OsApplication

Description
Status
Definition

D [Message [

Figure 6-2 Assignment of a Task to an OS Application

Caution
&D Make sure that the operating system is configured with scalability class SC3 or SC4.

©2015, Vector Informatik GmbH Version: 4.8.0 122 /139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

i Configurator Pro.MD.WF.RTE [PRERELEASE] - MemoryProtectionTest.dpa = | Ellll

File Edit Mavigate View Project Help

IDEA 90 | %S| FBE|f - = -|[Pecomi -]

+Con®uranon Editors ¥ =0 W =5

| @, <Filter > ~ || |E E= an» [osApplications » [osappl2 [@
Communication ¥ =
IQ <Filter> Name: IOsAppIZ
Memory ¥ o
= E: Al Restart Task: = [,,,]l -
Runtime System % =~ 05 Applications . 7
L1 osappll Hook Routines
Runtime System General [} r']-"
S Trusted [¥+
Tﬁ ECU Software Components [osAppl3
@ 05 Configuration B2 Tasks Tasks
L Lonnguration
- Interrupt Service Routines
E Timing Protection 5@ Events ISRs
Eur: Component Connection Assistant E 6‘1 Alarms Alarms
[-¥4* Counters

F Data Mapping Assistant [B Schedule Tables Schedule Tables

B 1% Memory Mapping Assistant (5 Resources Counters

B#e| Task Mapping Assstant Resources

[Basic Editor

[*f Properties 2 = O || Ag validation 52 I = 0u'|:p|ll:| % i <===§ =0
0OsAppl2 ({MICROSAR/PPC_551x/0s/0sApplication) 0 markers in 0 categories
. An AUTOSAR 05 must be capable of supporting a collection of OS objects (tasks, interrupts, D | Message I
Description 3ims, hooks etc.) that form a cohesive functional unit. This collection of objects is termed an
Status 05-Application,
Definition All objects which belang to the same OS-Application have access to each other. Access means
to allow to use these objects within API services.
Access by other applications can be granted separately.

Figure 6-3 OS Application Configuration

©2015, Vector Informatik GmbH Version: 4.8.0 123 /139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

6.4 NV Memory Mapping

Each instance of a Per-Instance Memory, which has configured Needs memory mapping
can be mapped to an NV memory block of the NvM.

The Per-Instance Memory (PIM) is used as mirror buffer for the NV memory block. During
startup, the EcuM calls NvM Readall, which initializes the configured PIM with the value

of the assigned NV memory block. During shutdown, NvM WriteAll stores the current
value of the PIM buffer in the corresponding NV memory block.

The RTE configurator provides support for manual mapping of already existing NV

memory blocks or automatically generation of NV memory blocks and mapping for all
PIMs.

The RTE has no direct Interface to the NvM in the source code. There exists only an

Interface on configuration level. The RTE configurator has to configure the following parts
of the NvM configuration.

» Address of PIM representing the RAM mirror of the NV memory block.
» Optionally the address of calibration parameter for default values.

» Optionally the size of the PIM in bytes if available during configuration time.

The following figure shows the Memory Mapping in DaVinci Configurator where
assignment of Per-Instance Memory to NV memory blocks can be configured.

%2 DaVinci Configurator Pro.MD.WF.RTE [PRERELEASE] - Pim_Test.dpa

=lo x|
Fle Edit Navigate View Project Help
JJ L_’;H|¢) p“%@|fﬁ@“¢@.$.‘mmmmej
4§ Configuration Editors = = O ||[3 pasicEditor 23 IEECU Software Components ‘ =0
[@ <Fiter> ~ || |[E] € © cp_companent1_CT_Component1 ECU_Compasiton » @) RteMvRamAlocations ») MAP_Rte_CP_Componenti_PerInstanceMemory_SInt16 [@a -
Communication A e ~ Short Name: [MAP_Rte_CP_Component1_PerInstancel
Hemory v Pos I e — ¢ [Ree_cP_Component1 Perinstancebemar L. | ~
. Py S i
LI SET= B EEREB Moduleinsta Nym Riam Block Location Symbol: [Rte_cP_Component1_PerlnstanceMemor
swModuleInstances
[Runtime System General g RieImplitCommunications Nvm Rom Block Location Symbol: [Rte_cP_component1_CalibrationParame
I ECu software Components B-gP RielnitializationBehaviors Sw Nv Ram Mapping Ref: [Sweliv_PerinstanceMemory_Sint1s (1R
[} o5 Confiquration B RteOsInteractions
) @ RitePostBuidvariantConfigurations
Timing Protection -6 RteSwCompenentinstances
¥ Component Connection Assitant B CP_Companent1_CT_Componentl ECU_Composition
omponent Lonnecton AsssiEnt &P RteEventToTaskMappings
}5 Dats Mapping Assistant - @ RteBxclusiveArealmplementations
B8 Memory Mapping Assistant & RteExtemalTriggerConfis
}& Task Mapping Assistant - &P RtelnternalTriggerConfigs
Tasclianning Assistant B¢ RrteNvRamalocations
MAP_Rte_CP_Component1_PerInstanceMemory_SInt16
MAP_Rte_CP_Component_PerInstanceMemory_UInt15
MAP_Rte_CP_Component_PerInstanceMmemory_Arayd
MAP_Rte_CP_Component1_Pim_CString_UInt32_Def
MAP_Rte_CP_Component1_Pim_Record
“@ MAP_Rte_CP_Componenti_Pim_RecordNested
B @ CP_Companent2_CT_Component2_ECU_Compasitian
B8 NvM_NvM_ECU_Composition
&P RteEventToTaskMappings
&P RteExdusiveArealmplementations
- §P RteExternalTriggerConfigs
- §P RtelnternalTriggerConfigs
“.gP RteNvRamallocations
-5 RieSwComponentTypes
- @ RieBsweeneral
- @ RteGeneration
- @ VectorCommonData L
[Basic Editor =
P properties 52 = O || 4g validation &3 } =2 0|ltp|lt| @& =0
Rte Nvm Block Ref 0 markers in O categories
o Reference to the used NvM block for storage of the NVRAMMapping information. 1D [Message I
Description
Status
Definition

Figure 6-4 Mapping of Per-Instance Memory to NV Memory Blocks

©2015, Vector Informatik GmbH Version: 4.8.0 124 /139

Technical Reference MICROSAR RTE vector'

6.5 RTE Generator Settings

The following figure shows how the MICROSAR RTE Generator has to be enabled for
code generation within the DaVinci Configurator.

£ paVinci Configurator Pro.MD.WF.RTE [PRERELEASE] - MemoryProtectionTest.dpa

=101 x|
File Edit MNavigate View Project Help
J|_1 lﬁlﬂ|"1 p|‘§%@|§f€|f@@v3v||ﬁec:’mule :
< Configuration Editors ~ = O || “F Project Settings Editor 28] =0
IO\ <Filter > hd ’E E= overview » 5@ Code Generation ¥ |§
Communication ¥ IQ <Filter = - Root Target Folder: [${GenDatzFolder) =~
Memory ¥ = Overview Press <CTRL+5SPACE> for suggestions.
Runtime System ¥ .J% Code Generation Generation Sequence
- g Custom Workflow
* Modules Runtime System
¥ Project Settings ¥
L [F15% Rte: Rie
Generation
Run the code generation:
1. Save the projectif it is modified {only required if external generation steps are active).
lﬂSave
2. Validate the project.
¥ on-demand validation
3. Start the code generation process.
[Basic Editor Generate
[Properties &2 = O || A validation 2 l EOutput| % i <fg> =0
0 markers in 0 categories
Properties are not available. D | Message |
Figure 6-5 RTE Generator Settings
©2015, Vector Informatik GmbH Version: 4.8.0 1257139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

6.6 Measurement and Calibration

The MICROSAR RTE generator supports the generation of an ASAM MCD-2MC
compatible description of the generated RTE that can be used for measurement and
calibration purposes. When measurement or calibration is enabled the RTE generator
generates a file Rte.a21 that contains measurement objects for sender/receiver ports,
per-instance memories and inter-runnable variables. Calibration parameters are
represented as characteristic objects.

£ DaVindi Configurator Pro.MD.WF.RTE [PRERELEASE] - InteriorLight.dpa 1ol x|
File Edit MNawvigate View Project Help

JJ_’;H|.:;| (‘!|‘§%@|ﬁ‘-E.'_,'j|ﬁ$<;:|ve‘>v||PreCcmpile:

5 : - Configuration Edimrsl ¥~ =0 E:.'j Basic Editor [ﬂ Runtime System General &2 l =0

E € B2 r1E » ¥ Measurement and Calibration |§

B
&
fi
L]

Communication

<Filter> ¥ | A2L Version: |16.0 =*~

Memory Activate Measurement r*v

05
EE RTE Suppart:
4‘9- Measurement and Calibration 5 =~
“ffoa VFB Tracing i INone j *
Monge

¥

Runtime System

[£3] runtime System General

E‘é ECU Software Components

[E 05 configuration :
Double Pointered
[E&] Timing Protection Initilized RAM

Eur: Component Connection Assistant
} Data Mapping Assistant
E@ Memaory Mapping Assistant

E&‘ Task Mapping Assistant

[2 Basic Editor

7 Properties &2 = O || A validation 32 l = Ouu:ut| % i C:?; =0
Rte Calibration Support 0 markers in 0 categaries

S|))
D — The RTE generator shall have the option to switch off support 1D I Message I
escription o iibration for generated RTE code. This option shall
Status influence complete RTE code at once.

Definition

Figure 6-6 Measurement and Calibration Generation Parameters

The switch A2L Version controls the ASAM MCD-2MC standard to which the Rte.a21 file
is compliant. Version 1.6.0 is recommended as it supports a symbol link attribute that can
be used by the measurement and calibration tools to automatically obtain the address of a
characteristic or measurement object in the compiled and linked RTE code.

What measurements and characteristics are listed in the Rte.a21 file depends on the
measurement and calibration settings of the individual port interfaces, per-instance
memories, inter-runnable variables and calibration parameters and if the variable can be
measured in general. For example, measurement is not possible for queued
communication as described in the RTE specification. When “Calibration Access” is set to
“‘NotAccessible”, an object will not be listed in the Rte.a21 file.

©2015, Vector Informatik GmbH Version: 4.8.0 126 /139

Technical Reference MICROSAR RTE V@CtOf

Within the Rte.a21 file, the measurement objects are grouped by SWCs. When inter-
ECU sender/receiver communication shall be measured, the groups will also contain links
to measurement objects with the name of the COM signal handle. These measurement
objects have to be provided by the COM.

Furthermore, the generated Rte.a21 is only a partial A2L file. It is meant to be included in
the MODULE block of a skeleton A2L file with the ASAM MCD-2MC /include command.

This makes it possible to specify additional measurement objects, for example from the
COM, and IF_DATA blocks directly in the surrounding A2L file.

In order to also allow the measurement of implicit buffers for inter-ECU communication, the
MICROSAR RTE generator supports measurement with the help of XCP Events. This is
controlled by the flag “Use XCPEvents”. When XCP Events are enabled, the RTE
generator triggers an XCP Event that measures the implicit buffer after a runnable with
implicit inter-ECU communication is terminated and before the data is sent. “Use
XCPEvents” also enables the generation of one XCP Event at the end of every task that
can be used to trigger the measurement of other objects.

The RTE generator automatically adds the XCP Events to the configuration of the XCP
module. The Event IDs are then automatically calculated by the XCP module.

The definitions for the Events are generated by the XCP module into the file
XCP events.a2l. This file can be included in the DAQ section of the IF_DATA XCP
section in the skeleton A2L file.

The MICROSAR RTE supports three different online calibration methods, which can be
selected globally for the whole ECU. They differ in their kind how the APIs Rte CData and
Rte Prm access the calibration parameter. By default the online calibration is switched off.
The following configuration values can be selected:

» None

» Single Pointered
» Double Pointered
» Initialized RAM

In addition to the ECU global selection of the method the online calibration have to be
activated for each component individually by setting the Calibration Support switch.

©2015, Vector Informatik GmbH Version: 4.8.0 127 /139

Technical Reference MICROSAR RTE

vector’

&4 paVinci Configurator Pro.MD.WF.RTE [PRERELEASE] - InteriorLight.dpa =]]
Fle Edit MNavigate View Project Help

JJ.}H|‘)(‘|%@|§E.'",-'_!|9¢|<:jva‘>v||PreCompile:

-?-Conﬁguraﬁon Editors ~ = O ||[H Ecu Software Components EX] =0

=l Application Components
5A_Door_Right

: E--g SA_Doar_Left
EFApplication Connectors
6-'“ Service Connectors

f£4 Task Mapping

Runtime System General
EE ECU Software Compaonents
@ 05 Configuration

Timing Protection

T Exclusive Area ! ation
i} Data Mapping

@ Memory Mapping

E@ Memory Mapping Assistant @ Service Components

Euln Component Connection Assistant

B Data Mapping Assistant i

Io‘ <Filter> h E [ES\ S @ Application Components } E SA_Door_Left P
‘Communication ¥ IO% Fiters

Memory ¥ BRI Mame:
Runtime System S -3 ecu ‘Composition

Eng

Connected Components

* ECU Composition
There are 0 unconnected port prototypes.

See here for an overview of the component’s adjacent assembly connectors,

Connected Service Components

* ComM Doorlnit

. X There are 0 unconnected service port prototypes.
E&i Task Mapping Assistant i . i
See here for an overview of the component's adjacent service connectors.

Mapped Tasks

* SensorTask

See here for an overview of the compaonent's task mappings.

Mapped Communication Channels

None of the companent's data elements are mapped to any communication channels.

See here for an overview of the component's data mappings.

[Basic Editor

7 properties 5% = 8 || A validation &2 l = 0utp||t| % % 4:5 =0
Rte Calibration Support Enabled 0 markers in 0 categories
— Enables calibration support for the specified ID | Message |
Description ParameterSwComponentType or AtomicSwComponentType.
Status
Definition

Figure 6-7 SWC Calibration Support Parameters

For each component with activated Calibration Support memory segments are generated
into the file Rte MemSeg.a21l. This file can be included in the MOD_PAR section in the
skeleton A2L file. This makes it possible to specify additional memory segments in the
surrounding A2L file.

If the method Initialized RAM is selected, segments for the Flash data section and the
RAM data section of each calibration parameter are generated. The Flash sections are
mapped to the corresponding RAM sections.

If the Single Pointered or Double Pointered method is enabled, only memory segments for
the Flash data sections are listed in the Rte MemSeg.a2l. In addition a segment for a
RAM buffer is generated, when the Single Pointered method is used and a
CalibrationBuffersSize is set. This parameter specifies the size of the RAM buffer in
byte. If it is set to 0, no RAM buffer will be created.

©2015, Vector Informatik GmbH Version: 4.8.0 128 /139

Technical Reference MICROSAR RTE vector'

434 Davinci Configurator Pro.MD.WF.RTE [PRERELEASE] - TestECLLdpa

o x|
File Edit WNavigate View Project Help

JUSd|2c|#s | aBESAKE-= -

- Configuration Edtars| = O ||[7 Basic Edtar 23\ =0
T |2« ore @ Restenerstion 8-
[& <Fiker> hl [= [RecGenertion =
L= 3 B com [vist =l -
Runtime System % ; Zcu(S T*e
3 euntime svsten General {5, ige e Callratizn Support: [poteLE pomvTERED R
[Ecu scftwars Components L@ Code Wendor Id: &3 Er
&) 05 Confiquration h g ReeTmplickConmurications P e
Fo® dd Component Connection Dev Error Detect: [miad L
b add Data Mapning Generation Mode: [comeartenrry_mone ="~
4 Tc Interaction Retur Yalue: [re_toc =1~
b2 40d Task Mappion Measurement Support [mid
Optimization Mods: [rercry - -
ool Chain Sigrificant Characters: N dec| >
Walue Range Check Enabled: *~
fh Trace Enabled: P~
= Rep Evert Support: [miad
T Basic Editor &
= 0| valcetion 23 | B output | ®B& G -0
messages in 0 categaries

ibration, if D | Message

Configuration Phase: [PreCompie]

Figure 6-8 CalibrationBufferSize Parameter

The following figure shows a possible include structure of an A2L file. In addition to the

fragment A2L files that are generated by the RTE generator other parts (e.g. generated by
the BSW) can be included in the skeleton A2L file.

RTE Configuration

(DaVinci
Configurator) Rte_MemSeg.a2l

Rte.a2l

XCP_events.a2l

Additional.a2!

Figure 6-9 A2L Include Structure

For more details about the creation of a complete A2L file see [20].

©2015, Vector Informatik GmbH Version: 4.8.0 129 /139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

6.7 Optimization Mode Configuration

A general requirement to the RTE generator is production of optimized RTE code. If
possible the MICROSAR RTE Generator optimizes in different optimization directions at
the same time. Nevertheless, sometimes it isn’t possible to do that. In that case the default
optimization direction is “Minimum RAM Consumption”. The user can change this behavior
by manually selection of the optimization mode.

» Minimum RAM Consumption (MEMORY)

» Minimum Execution Time (RUNTIME)

The following figure shows the Optimization Mode Configuration in DaVinci Configurator.

#54 paVinci Configurator Pro.MD.WF.RTE [PRERELEASE] - InteriorLight.dpa - |EI|5|
File Edit Mavigate Wiew Project Help
NG H |90 %S| FBE|# @ - -|[Precomie]
+ Configuration Editors ~ = O ||[C3] Runtime System General &3 l =0
|@, <Fiter> || B « BEreE > @
i icati ¥ -
ommunication i Icla =riiter> v Minimize RAM Consumption -
Memo ¥ #*
-+ M ‘% 05 Code Vendor Id: |30 -
Runtime System R 5853 pre DevE Detect: [*~
2] Runtime System & | A~ Measurement and Calibration e brrar Detect: .
rUnbome System bensral H - L
R b VFB Tracing Dev Error Detect Uninit: [*=
ECL Softw, C ts . *
I ECU Software Components Generation Made: [compaTtenITY_MODE =t~
(¥ o5 configuration Inc Interaction Return IRTE oo j*'
Timing Protection Value: o =
Tool Chain Significant -..,-I -
Eulu Component Connection Assistant Characters:
Value Range Check [T*w
§od Data Mapping Assistant Enabled: .
. [[#w
E[E] Memory Mapping Assistant Vfb Trace Enabled:
EEI Task Mapping Assistant
Vib Trace Client Prefix
b Use '+ to add parameters
o
[Basic Editor *
ZF Properties 3 | =8 Generation Result = O || Ag validation 532 l =) Duu:ut| % % <:==;'> =0
Rte Optimization Mode 0 markers in 0 categories
— Switch between the two available optimization modes of ID I Message I
Description .. o1 generator.
Status
Definition
Figure 6-10 Optimization Mode Configuration
©2015, Vector Informatik GmbH Version: 4.8.0 130/139

based on template version 3.5

Technical Reference MICROSAR RTE

6.8 VFB Tracing Configuration

vector’

The VFB Tracing feature of the MICROSAR RTE may be enabled in the DaVinci
Configrator as shown in the following picture.

&2 DaVinci Configurator Pro.MD.WF.RTE [PRERELEASE] - InteriorLight.dpa

File Edit Mavigate WView Project Help

JJﬁH|-¢] (!|°@‘E@|ﬁiE:,}'_‘!|ﬁ<‘;-|<::|v|§>v|lpre(:ompile:

IO% <Filter =

1

b : - Configuration Edimrsl ¥ =0 E:E Basic Editor [Runtime System General &2]

E € 52 p1E » bfn vFB Tracing

‘Communication IO\ <Filter=

w | Use the Import VFEB Trace Functions Assistant to import trace functions.

Memory 'lﬁ 05

=-53 r1E

»ood o«

Runtime System

] i ! H -
Runtime System General ~— [|}] @ i fa VFB Tracing
[[S ECU Software Components
[os Configuration

Tirning Protection

Eu]ﬂ Component Connection Assistant
¥ Data Mapping Assistant
E@ Memory Mapping Assistant

Eﬂ Task Mapping Assistant

[Basic Editor

:ﬂ- Measurement and Calibration

Enable VFE Tracing: U s

VFB Trace Functions

g5 || Rte_ComHook_DoorLeft_Open_SigTx

i
5

ull

7 Properties &2 =0

Rte Vfb Trace Function

The RTE generator shall enable VFB tracing for a given hook
function when there is a #define in the RTE configuration
Status header file for the hook function name and tracing is globally

— enabled.
Definition

Description

A validation 53 l 2 Ouu:iut|

0 markers in 0 categories

jin] | Message

Figure 6-11 VFB Tracing Configuration

You may open an already generated Rte Hook.h header file from within this dialog. This
header file contains the complete list of all available trace hook functions, which can be
activated independently. You can select and copy the names and insert these names into
the trace function list of this dialog manually or you can import a complete list from a file. If
you want to enable all trace functions you can import the trace functions from an already
generated Rte Hook.h. The VFB Trace Client Prefix defines an additional prefix for all

VFB trace functions to be generated. With this approach it is for example possible to

enable additionally trace functions for debugging (Dbg) and diagnostic log and trace (Dlt)

at the same time.

T] Info

configuration changes.

All enabled trace functions have to be provided by the user. Section 4.3.4 describes
how a template for VFB trace hooks can be generated initially or updated after

©2015, Vector Informatik GmbH

Version: 4.8.0

131/139

Technical Reference MICROSAR RTE vector'

6.9 Exclusive Area Implementation

The implementation method for exclusive areas can be set in the DaVinci Configurator as
shown in the following picture.

-aVinci Configurator Pro.MD.WF.RTE [PRERELEASE] - MemoryProtectionTest.dpa

(ol x]
Fle Edit Mavigate Wew Project Help
IDEH 920 | %8| FEE| & e = - |[Pecomi [
+ Configuration Editors ~ = O||[[H Ecu Software Components 51 1 =0
IQ <Filter> h E [E= Application Components » (52| CP_Component3_OsAppl2 » ive Area ! ion |§
Communication ¥ IO' Filter > -
Memory El[ﬁ All Exdusive Area Implementation 0S5 Resource e
Runtime System A E ECU Compeosition EA_CanEnter 05_RESOURCE Rte_Res_CP_Componentl_OsAppll EA_CanEnter
; £ Application Components EA_Runsin ALL_INTERRUPT_BLOCKING
y | . _
Runtime Svstem General CP_MI2_Component2_OsAppl1
[[E ECU Software Components CP_MI1_Component2_OsAppll
[os Confiquration -4 CP_Component4_OsAppl3
j = @ CP_Component3_OsAppl2
Timing Protection &" Application Connectors
Enf’ Component Connection Assistant ©F Service Connectors
-f4 Task Mapping
}5) Data Mapping Assistant = Exclusive Area "
F%| Memory Mapping Assistant i+ Data Mapping
Eﬂl Task Mapping Assistant & Memory Mapping
CP_Componentl_OsAppl1
CP_CalComponentl_OsAppll
" 5 Service Components
EE Basic Editor
7 Properties 1 = 8 ||/ig validation Silaoutmlt| %ﬁ%zﬁ
0 markers in 0 categories
Properties are not available. D | Message |
Figure 6-12 Exclusive Area Implementation Configuration
©2015, Vector Informatik GmbH Version: 4.8.0 132/139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

6.10 Periodic Trigger Implementation

The runnable activation offset and the trigger implementation for cyclic runnable entities
may be set in the ECU project editor as shown in the following picture.

#:2 paVinci Configurator Pro.MD.WF.RTE [PRERELEASE] - NonTrustedBSW.dpa

=3l x|
Ele Edit Mavigate View Project Help
OB |92 p|‘§%@|f|}}|f@@v$v”ﬁe&:mwe -
¢ : - Configuration Edlmrs] = =0 @ 05 Configuration [m Basic Editor % l =0
IQ\ <Filter > i [E] € © coasiB2_ct0AsiB2_ECU_Composition g RteEventToTaskMappings ») Appl_Task_AsiB2_0_Timerd |6 Q -
.o ¥
‘Communication > |o\ <Filter> - Shart Mame: IAppl_Task_AszBZ_D_'I’lmErD
. .
ST S0 - -8 Com | Activation Offset: | a -
.) -lde
Funtine Sicten Genere e Zcuc e Triager Trmentatan) [EAEEG—G—GG—GGG—]~
5 5
[Ecu Software Components - Ree Event Ref: | TMT_RunnablencoAsiB2 L.J|™
@ 05 Configuration []--g RteBswModuleInstances Immediate Restart: T*~
Timing Protection P RtelmplictCommunications
sl 1iming Fratection (@ RtelnitializationBehaviors Mapped To Task Ref: |Appl_Task_Asw|BZ L.1|™
Enla Component Connection Assistant []--@ RteCsInteractions Os Schedule Point: ICONDI'I'IONAL j -
) Data Mapping Assistant ﬁ RtePostBuildvariantConfigurations . X 2 -
E Elﬁ RteSwComponentlnstances = Position In Task: I
E@ El- @ coAsIE2_ctDAsiB2_ECU_Composition Used Os Alarm Ref: |Rte_AI_TE_cDAszBZ_RunnahlenansiIBZ [.1|™
BAi Task Mapping Assistant E‘ﬂ RteEventToTaskMappings Used Os Event Ref: | L]~
i Appl_Task_AsilB2_0_TimerD oy
& RiteExdusiveArealmplementations Used O Sch Thi Expiry Point Ref: I L]~
: & RteExternalTriggerConfigs Virtually Mapped To Task Ref: "';I L.1|™
nternalTriggerConfigs
i @ RtelnternalTriggerConfi
F»j Basic Editor & RteNvRamAllocations j
5 Properties 53 = 0O || A validation &2 l = Dutput| % ﬁ <===:'> =0

Rte Cyclic Trigger Implementation
A

0 markers in 0 categories

. If set to "Auto’ the RTE generator automatically creates the necessary 05 D | Message |
Description jam, to realize the cydic trigger with the configured activation offset.
Status If set to 'Mone' the trigger is not implemented by the RTE generator, Ithas to
= be implemented by the user either by configuring an appropriate OS alarm ar
Definition an 05 schedule table,

The OS5 task and optional the 05 event for that trigger can be found in the
generated RTE repaort,

Figure 6-13 Periodic Trigger Implementation Configuration

f Caution
. Currently it is not supported to define an activation offset and a trigger implementation

per trigger. The settings can only be made for the complete runnable with potential
several cyclic triggers.

The activation offset specifies at what time relative to the start of the RTE the runnable /
main function is triggered for the first time.

Trigger implementation can either be set to Auto or None. When it is set to the default
setting Auto, the RTE generator will automatically generate and set OS alarms that will
then trigger the runnables / main functions. When trigger implementation is set to None,
the RTE generator only creates the tasks and events for triggering the runnables / main
functions. It is then the responsibility of the user to periodically activate the basic task to

which a runnable / main function is mapped or to send an event when the runnable / main
function is mapped to an extended task.

©2015, Vector Informatik GmbH Version: 4.8.0 133/139

Technical Reference MICROSAR RTE V@CtOf

This feature can also be used to trigger cyclic runnable entities / main functions with a
schedule table. This allows the synchronization with FlexRay.

To ease the creation of such a schedule table, the generated report Rte.html contains a
trigger listing. The listing contains the triggered runnables / main functions, their tasks and
the used events and alarms.

5 Task List

Task | Type Schedule [Priority
Tl Extended | NOM 1

T2 Basic MICIH 2
Back

6 Trigger List

Trigger Runnable Task [OS Event 0S Alarm

TimingEvent Cvyclic 2ms | Runnablel T1 Rte Ev_Runl ¢ Runnablel

TimingEvent Cyclic 2ms | Runnable2 T2 n/fa

TimingEvent Cyclic Sms | RunnableCyclic [T1 Rte_Ev_Run_c RunnableCyclic [Bte &l TE ¢ RunnahleCyclic
TimingEvent Cyclic 5ms | Runnables T1 Rte Ev Runl ¢ Runnahle3

Figure 6-14 HTML Report

If the OS alarm column for a trigger is empty, the runnable / main function needs to be
triggered manually. In the example above, this is the case for all runnables except for
RunnableCyclic.

The row for Runnable2 does not contain an event because this runnable is mapped to a
basic task.

To manually implement the cyclic triggers, one could for example create a repeating
schedule table in the OS configuration with duration 10 that uses a counter with a tick time
of one millisecond. An expiry point at offset 0 would then need to contain SETEVENT
actions for the runnables Runnable1 and Runnable3 and an ACTIVATETASK action for
Runnable2.

Moreover further expiry points with the offsets 2, 4, 6, 8 are needed to activate Runnable1
and Runnable2 and another expiry point with offset 5 is needed to activate Runnable3.

Caution

&& When the trigger implementation is set to none, the settings for the cycle time and the
activation offset are no longer taken into account by the RTE. It is then the
responsibility of the user to periodically trigger the runnables / main functions at the
configured times. Moreover the user also has to make sure that this triggering does not
happen before the RTE is completely started.

©2015, Vector Informatik GmbH Version: 4.8.0 134 /139

Technical Reference MICROSAR RTE

6.11 Resource Calculation
The RTE generator generates the file Rte.html containing the RAM and CONST usage of

the generated RTE. The RTE generator makes the following assumptions.

vector’

» Size of a pointer: 2 bytes. The default value of the RTE generator can be changed with
the parameter Size Of RAM Pointer in the EcuC module.

» Size of the OS dependent data type TaskType: 1 byte

Size of the OS dependent data type EventMaskType: 1 byte

Padding bytes in structures and arrays are considered according to the configured
parameters Struct Alignment and Struct In Array Alignment inthe EcuC
module for NvM blocks.

» Size of aboolean data type: 1 byte (defined in PlatformTypes.h)

The pointer size and the alignment parameters can be found in the container
EcuC/EcucGeneral in the Basic Editor of DaVinci Configurator.
42 paVinci Configurator Pro.MD.WF.RTE - MemoryProtectedEcu.dpa =lolxl
File Edit MNavigate WView Project Help
B=A |2 | FBEEA|He - -
Configu.. | = B ||[5 Basic Editor 23] = 8
T« b Euc © EcucGeneral |§ v -
A e |O% M | EcucGeneral -
C ation ¥ b com Array Allgnment: | igriait = -
Runtime System ¥ =] %" EcuC
& EcucGeneral Atomic Bit Access In Bitfield: -
R s -
@ vectorCommonData Bit Field Data Type: Jner ="~
z ::E Bit Order: [ms8_to_ts8 =~
h Byte Order: [B16_EnD1AN =~
CPU Type: |eruesit =] -
r-
Dummy Function: *~
Dummy Statement: [*~
Size Of Enum: ISlze 16Bit j -
Size OF Int: |size 1681t =]~
l Eize Gf RAM Pointer i ; |size 168t =]~
Size OF ROM Painter: |size 1681t =~
Struct Alignment: IAubD j*v
[Basic Editor Struct In Array Alignment: |alignagit -
fg Validation &2 <‘:==»=> = g
0 messages in 0 categories
D Message
| PreCompile |

©2015, Vector Informatik GmbH

Figure 6-15 Configuration of platform settings

Version: 4.8.0

135/ 139

Technical Reference MICROSAR RTE vector'

7 Glossary and Abbreviations

7.1 Glossary

Term Description

DaVinci DEV DaVinci Developer: The SWC Configuration Editor.
DaVinci CFG DaVinci Configurator: The BSW and RTE Configuration Editor.

Table 7-1 Glossary

The AUTOSAR Glossary [14] also describes a lot of important terms, which are used in
this document.

7.2 Abbreviations

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

Com Communication Layer

ComXf Com based Transformer

C/S Client-Server

E2E End-to-End Communication Protection

E2EXf End-to-End Transformer

EA Exclusive Area

ECU Electronic Control Unit

EcuM ECU State Manager

FOSS Free and Open Source Software

HIS Hersteller Initiative Software

I0C Inter OS-Application Communicator

ISR Interrupt Service Routine

MICROSAR Microcontroller Open System Architecture (Vector's AUTOSAR solution)
NvM Non-volatile Memory Manager

PIM Per-Instance Memory

OIL OSEK Implementation Language

OSEK Open Systems and their corresponding Interfaces for Electronics in

Automotive

RE Runnable Entity

SE Schedulable Entity

RTE Runtime Environment

SchM Schedule Manager
©2015, Vector Informatik GmbH Version: 4.8.0 136/139

based on template version 3.5

Technical Reference MICROSAR RTE

SOME/IP
SomelpXf
S/R

SWC
SWS
VFB

Table 7-2 Abbreviations

©2015, Vector Informatik GmbH

Scalable service-oriented middleware over IP

SOME/IP Transformer
Sender-Receiver
Software Component
Software Specification
Virtual Functional Bus

Version: 4.8.0

vector’

137 /139

Technical Reference MICROSAR RTE vector'

8 Additional Copyrights

The MICROSAR RTE Generator contains Free and Open Source Software (FOSS). The
following table lists the files which contain this software, the kind and version of the FOSS,
the license under which this FOSS is distributed and a reference to a license file which
contains the original text of the license terms and conditions. The referenced license files
can be found in the directory of the RTE Generator.

File FOSS License License Reference
MicrosarRteGen.exe Perl 5.20.2 Artistic License License_Artistic.txt
Newtonsoft.Json.dll Json.NET 6.0.4 MIT License License_JamesNewton-King.txt
Rte.jar flexjson 2.1 Apache License V2.0 License_Apache-2.0.txt

Table 8-1 Free and Open Source Software Licenses

©2015, Vector Informatik GmbH Version: 4.8.0 138 /139

based on template version 3.5

Technical Reference MICROSAR RTE vector'

9 Contact

Visit our website for more information on

News

Products
Demo software
Support

Training data

vV v v v v Vv

Addresses

www.vector.com

©2015, Vector Informatik GmbH Version: 4.8.0 139/139

http://www.vector.com/

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 Features
	3.1.1 Deviations
	3.1.2 Additions/ Extensions
	3.1.3 Limitations

	3.2 Initialization
	3.3 AUTOSAR ECUs
	3.4 AUTOSAR Software Components
	3.5 Runnable Entities
	3.6 Triggering of Runnable Entities
	3.6.1 Time Triggered Runnables
	3.6.2 Data Received Triggered Runnables
	3.6.3 Data Reception Error Triggered Runnables
	3.6.4 Data Send Completed Triggered Runnables
	3.6.5 Mode Switch Triggered Runnables
	3.6.6 Mode Switched Acknowledge Triggered Runnables
	3.6.7 Operation Invocation Triggered Runnables
	3.6.8 Asynchronous Server Call Return Triggered Runnables
	3.6.9 Init Triggered Runnables
	3.6.10 Background Triggered Runnables

	3.7 Exclusive Areas
	3.7.1 OS Interrupt Blocking
	3.7.2 All Interrupt Blocking
	3.7.3 OS Resource
	3.7.4 Cooperative Runnable Placement

	3.8 Error Handling
	3.8.1 Development Error Reporting

	4 RTE Generation and Integration
	4.1 Scope of Delivery
	4.2 RTE Generation
	4.2.1 Command Line Options
	4.2.2 RTE Generator Command Line Options
	4.2.3 Generation Path

	4.3 MICROSAR RTE generation modes
	4.3.1 RTE Generation Phase
	4.3.2 RTE Contract Phase Generation
	4.3.3 Template Code Generation for Application Software Components
	4.3.4 VFB Trace Hook Template Code Generation

	4.4 Include Structure
	4.4.1 RTE Include Structure
	4.4.2 SWC Include Structure
	4.4.3 BSW Include Structure

	4.5 Compiler Abstraction and Memory Mapping
	4.5.1 Memory Sections for Calibration Parameters and Per-Instance Memory
	4.5.2 Memory Sections for Software Components
	4.5.3 Compiler Abstraction Symbols for Software Components and RTE

	4.6 Memory Protection Support
	4.6.1 Partitioning of SWCs
	4.6.2 OS Applications
	4.6.3 Partitioning Architecture
	4.6.3.1 Trusted RTE and BSW
	4.6.3.2 Non-Trusted RTE and BSW

	4.6.4 Conceptual Aspects
	4.6.5 Memory Protection Integration Hints
	4.6.5.1 Enabling of Memory Protection support
	4.6.5.2 Memory mapping in Linker Command File
	4.6.5.3 OS Configuration extension

	4.7 Multicore support
	4.7.1 Partitioning of SWCs
	4.7.2 BSW in Multicore Systems
	4.7.3 IOC Usage

	4.8 BSW Access in Partitioned systems
	4.8.1 Inter-ECU Communication
	4.8.2 Client Server communication

	5 API Description
	5.1 Data Type Definition
	5.1.1 Invalid Value
	5.1.2 Upper and Lower Limit
	5.1.3 Initial Value

	5.2 API Error Status
	5.3 Runnable Entities
	5.3.1 <RunnableEntity>

	5.4 SWC Exclusive Areas
	5.4.1 Rte_Enter
	5.4.2 Rte_Exit

	5.5 BSW Exclusive Areas
	5.5.1 SchM_Enter
	5.5.2 SchM_Exit

	5.6 Sender-Receiver Communication
	5.6.1 Rte_Read
	5.6.2 Rte_DRead
	5.6.3 Rte_Write
	5.6.4 Rte_Receive
	5.6.5 Rte_Send
	5.6.6 Rte_IRead
	5.6.7 Rte_IWrite
	5.6.8 Rte_IWriteRef
	5.6.9 Rte_IStatus
	5.6.10 Rte_Feedback
	5.6.11 Rte_IsUpdated

	5.7 Data Element Invalidation
	5.7.1 Rte_Invalidate
	5.7.2 Rte_IInvalidate

	5.8 Mode Management
	5.8.1 Rte_Switch
	5.8.2 Rte_Mode
	5.8.3 Enhanced Rte_Mode
	5.8.4 Rte_SwitchAck

	5.9 Inter-Runnable Variables
	5.9.1 Rte_IrvRead
	5.9.2 Rte_IrvWrite
	5.9.3 Rte_IrvIRead
	5.9.4 Rte_IrvIWrite

	5.10 Per-Instance Memory
	5.10.1 Rte_Pim

	5.11 Calibration Parameters
	5.11.1 Rte_CData
	5.11.2 Rte_Prm

	5.12 Client-Server Communication
	5.12.1 Rte_Call
	5.12.2 Rte_Result

	5.13 Indirect API
	5.13.1 Rte_Ports
	5.13.2 Rte_NPorts
	5.13.3 Rte_Port

	5.14 RTE Lifecycle API
	5.14.1 Rte_Start
	5.14.2 Rte_Stop
	5.14.3 Rte_InitMemory

	5.15 SchM Lifecycle API
	5.15.1 SchM_Init
	5.15.2 SchM_Deinit
	5.15.3 SchM_GetVersionInfo

	5.16 VFB Trace Hooks
	5.16.1 Rte_[<client>_]<API>Hook_<cts>_<ap>_Start
	5.16.2 Rte_[<client>_]<API>Hook_<cts>_<ap>_Return
	5.16.3 SchM_[<client>_]<API>Hook_<Bsw>_<ap>_Start
	5.16.4 SchM_[<client>_]<API>Hook_<Bsw>_<ap>_Return
	5.16.5 Rte_[<client>_]ComHook_<SignalName>_SigTx
	5.16.6 Rte_[<client>_]ComHook_<SignalName>_SigIv
	5.16.7 Rte_[<client>_]ComHook_<SignalName>_SigGroupIv
	5.16.8 Rte_[<client>_]ComHook_<SignalName>_SigRx
	5.16.9 Rte_[<client>_]ComHook<Event>_<SignalName>
	5.16.10 Rte_[<client>_]Task_Activate
	5.16.11 Rte_[<client>_]Task_Dispatch
	5.16.12 Rte_[<client>_]Task_SetEvent
	5.16.13 Rte_[<client>_]Task_WaitEvent
	5.16.14 Rte_[<client>_]Task_WaitEventRet
	5.16.15 Rte_[<client>_]Runnable_<cts>_<re>_Start
	5.16.16 Rte_[<client>_]Runnable_<cts>_<re>_Return

	5.17 RTE Interfaces to BSW
	5.17.1 Interface to COM / LDCOM
	5.17.2 Interface to OS
	5.17.3 Interface to NVM
	5.17.4 Interface to XCP
	5.17.5 Interface to SCHM
	5.17.6 Interface to DET

	6 RTE Configuration
	6.1 Configuration Variants
	6.2 Task Configuration
	6.3 Memory Protection and Multicore Configuration
	6.4 NV Memory Mapping
	6.5 RTE Generator Settings
	6.6 Measurement and Calibration
	6.7 Optimization Mode Configuration
	6.8 VFB Tracing Configuration
	6.9 Exclusive Area Implementation
	6.10 Periodic Trigger Implementation
	6.11 Resource Calculation

	7 Glossary and Abbreviations
	7.1 Glossary
	7.2 Abbreviations

	8 Additional Copyrights
	9 Contact

