

AUTOSAR MCAL R4.0.3

User’s Manual

SPI Driver Component Ver.1.0.6
Embedded User’s Manual

Target Device:
RH850/P1x

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

www.renesas.com Rev.0.02 Apr 2015

http://www.renesas.com/
http://www.renesas.com/

2

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to

change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest
product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different
information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third
parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license,
express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and
information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws
and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products
or the technology described in this document for any purpose relating to military applications or use by the military, including but
not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or
incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign
laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does
not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by
you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and
"Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated
below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may
not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas
Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the
prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by
you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which
the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of
each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data
books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti- crime

systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or

systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages
arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas
Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against
the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control
and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of
each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations
that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics
assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority- owned

subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

3

4

Abbreviations and Acronyms

Abbreviation / Acronym Description

ANSI American National Standards Institute

API Application Programming Interface

ARXML/arxml AutosaR eXtensible Mark-up Language

ASIC Application Specific Integration Circuit

AUTOSAR AUTomotive Open System Architecture

BSW Basic SoftWare

CPU Central Processing Unit

CS Chip Select

CSIH/CSIG Enhanced Queued Clocked Serial Interface.

DEM/Dem Diagnostic Event Manager

DET/Det Development Error Tracer

DMA Direct Memory Access

EB External Buffer

ECU Electronic Control Unit

EDL Extended Data Length

EEPROM Electrically Erasable Programmable Read-Only Memory

FIFO First In First Out

GNU GNU’s Not Unix

GPT General Purpose Timer

HW HardWare

IB Internal Buffer

Id Identifier

I/O Input/Output

ISR Interrupt Service Routine

KB Kilo byte

MCAL Microcontroller Abstraction Layer

MHz Mega Hertz

MCU Microcontroller unit

NA Not Applicable

PLL Phase Locked Loop

RAM Random Access Memory

ROM Read Only Memory

RTE Run Time Environment

SPI Serial Peripheral Interface

µs Micro Seconds

5

Definitions

Term Represented by
Sl. No. Serial Number

6

Table Of Contents

Chapter 1 Introduction ... 11

1.1. Document Overview .. 13

Chapter 2 Reference Documents .. 15

Chapter 3 Integration And Build Process ... 17

3.1. SPI Driver Component Makefile ... 17

Chapter 4 Forethoughts ... 19

4.1. General.. 19

4.2. Preconditions ... 24

4.3. User Mode and Supervisor Mode ... 25

4.4. Memory modes .. 26

4.5. Data Consistency ... 26

4.6. Deviation List ... 26

Chapter 5 Architecture Details .. 29

Chapter 6 Registers Details ... 33

Chapter 7 Interaction Between The User And SPI Driver Component
 .. 37

7.1. Services Provided By SPI Driver Component To The User... 37

Chapter 8 SPI Driver Component Header And Source File
Description .. 39

Chapter 9 Generation Tool Guide .. 43

Chapter 10 Application Programming Interface 45

10.1. Imported Types .. 45

10.1.1. Standard Types .. 45

10.1.2. Other Module Types ... 45

10.2. Type Definitions ... 45

10.2.1. Spi_ConfigType ... 45

10.2.2. Spi_StatusType .. 45

10.2.3. Spi_JobResultType... 46

10.2.4. Spi_SeqResultType .. 46

10.2.5. Spi_DataType ... 46

10.2.6. Spi_NumberOfDataType .. 46

10.2.7. Spi_ChannelType ... 47

10.2.8. Spi_JobType ... 47

10.2.9. Spi_SequenceType .. 47

7

10.2.10. Spi_HWUnitType .. 47

10.2.11. Spi_AsyncModeType .. 47

10.3. Function Definitions .. 48

Chapter 11 Development And Production Errors 49

11.1. SPI Driver Component Development Errors ... 49

11.2. SPI Driver Component Production Errors... 50

Chapter 12 Memory Organization ... 51

Chapter 13 P1M Specific Information ... 53

13.1. Interaction Between The User And SPI Driver Component ... 53

13.1.1. Translation Header File .. 53

13.1.2. Parameter Definition File .. 53

13.1.3. ISR Function ... 54

13.2. Sample Application ... 55

13.3.1. Sample Application Structure ... 56

13.3.2. Building Sample Application ... 57

13.3.2.1. Configuration Example ... 57

13.3.2.2. Debugging The Sample Application ... 57

13.3. Memory And Throughput .. 59

13.4.1. ROM/RAM Usage ... 59

13.4.2. Stack Depth .. 60

13.4.3. Throughput Details ... 60

Chapter 14 Release Details .. 61

8

List Of Figures

Figure 1-1 System Overview Of AUTOSAR Architecture ... 11
Figure 1-2 System Overview Of The SPI Driver In AUTOSAR MCAL Layer 12
Figure 4-1 Chip select behavior when SpiCSInactiveAfterlastdata is False and

SpiCsIdleEnforcement is True ... 21
Figure 4-2 Chip select behavior when SpiCSInactiveAfterlastdata is True and

SpiCsIdleEnforcement is True ... 21
Figure 4-3 Chip select behavior when SpiCSInactiveAfterlastdata is True and

SpiCsIdleEnforcement is False .. 21
Figure 4-4 Chip select behavior when SpiCSInactiveAfterlastdata is False and

SpiCsIdleEnforcement is False .. 22
Figure 5-1 SPI Driver Architecture .. 29
Figure 5-2 Component Overview Of SPI Driver Component .. 30
Figure 12-1 SPI Driver Component Driver Organization ... 51
Figure 13-1 Overview Of SPI Driver Sample Application .. 56

List Of Tables

Table 4-1 Table for Chip Select behavior .. 20
Table 4-2 List of parameters in Channel container that are linked to the registers. 23
Table 4-3 List of parameters in Job container that are linked to the registers. 23
Table 4-4 List of parameters in External Device container that are linked to the registers. .. 24
Table 4-5 User Mode and Supervisory Mode ... 25
Table 4-6 HW unit and Memory Mode Selection ... 26
Table 4-7 SPI Driver Deviation List ... 26
Table 6-1 Register Details .. 33
Table 8-1 Description Of The SPI Driver Component Files ... 40
Table 10-1 The APIs provided by the SPI Driver Component .. 48
Table 11-1 DET Errors Of SPI Driver Component .. 49
Table 11-2 DEM Errors Of SPI Driver Component .. 50
Table 13-1 PDF information for P1M ... 53
Table 13-2 Interrupt Handler .. 54
Table 13-7 ROM/RAM Details without DET .. 59
Table 13-8 ROM/RAM Details with DET .. 59
Table 13-9 Throughput Details Of The APIs .. 60

9

10

Introduction Chapter 1

Chapter 1 Introduction

The purpose of this document is to describe the information related to SPI
Driver Component for Renesas P1x microcontrollers.

This document shall be used as reference by the users of SPI Driver
Component. The system overview of complete AUTOSAR architecture is
shown in the below Figure:

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

SPI Driver

Microcontroller

Figure 1-1 System Overview Of AUTOSAR Architecture

The SPI Driver is part of the Microcontroller Abstraction Layer (MCAL), the
lowest layer of Basic Software in the AUTOSAR environment.

11

Chapter 1 Introduction

P
O

R
T

D

IO

A

D
C

P
W

M

IC

U

FlexR
ay

C

A
N

LIN

SPI H
andler

internal E
EP

R
O

M

internal Flash

external Flash

R
A

M

C
ore

M
C

U

W
atchdog

G
P

T

LIN

E
xt.

P
ow

er

 The Figure in the following page depicts the SPI Driver as part of layered
AUTOSAR MCAL Layer:

M icrocont roller Drivers Me mo r y Drivers Communication Drivers I/O Drivers

Micro -
Controller

Figure 1-2 System Overview Of The SPI Driver In AUTOSAR MCAL Layer

The SPI Driver Component comprises Embedded software and the

Configuration Tool to achieve scalability and configurability.

The SPI Driver component code Generation Tool is a command line tool that accepts ECU
configuration description files as input and generates source and header files. The
configuration description is an ARXML file that contains information about the configuration for
SPI Driver. The tool generates the Spi_PBcfg.c, Spi_Lcfg.c, Spi_Cfg.h and Spi_Cbk.h.

The SPI driver provides services for reading from and writing to devices connected
through SPI buses. It provides access to SPI communication to several users (For
example, EEPROM, I/O ASICs). It also provides the required mechanism to configure the
on-chip SPI peripheral.

12

Introduction Chapter 1

1.1. Document Overview

The document has been segmented for easy reference. The table below
provides user with an overview of the contents of each section:

Section Contents
Section 1 (Introduction) This section provides an introduction and overview of SPI Driver

Component.
Section 2 (Reference Documents) This section lists the documents referred for developing this document.
Section 3 (Integration And Build
Process)

This section explains the folder structure, Makefile structure for SPI
Driver Component. This section also explains about the Makefile
descriptions, Integration of SPI Driver Component with other
components, building the SPI Driver Component along with a sample
application.

Section 4 (Forethoughts) This section provides brief information about the SPI Driver Component,
the preconditions that should be known to the user before it is used,
memory modes, data consistency details, deviation list and Support For
Different Interrupt Categories.

Section 5 (Architecture Details) This section describes the layered architectural details of the SPI Driver
Component.

Section 6 (Register Details) This section describes the register details of SPI Driver Component.
Section 7 (Interaction Between
User And SPI Driver Component)

This section describes interaction of the SPI Driver Component with the
upper layers.

Section 8 (SPI Driver Component
Header And Source File
Description)

This section provides information about the SPI Driver Component
source files is mentioned. This section also contains the brief note on the
tool generated output file.

Section 9 (Generation Tool Guide) This section provides information on the SPI Driver Component Code
Generation Tool.

Section 10 (Application
Programming Interface)

This section explains all the APIs provided by the SPI Driver Component.

Section 11 (Development And
Production Errors)

This section lists the DET and DEM errors.

Section 12 (Memory
Organization)

This section provides the typical memory organization, which must be
met for proper functioning of component.

Section 13(P1M
Specific information)

This section provides P1M specific information also the information
about linker compiler and sample application.

Section 14 (Release Details) This section provides release details with version name and base
version.

13

Chapter 1 Introduction

14

Reference Documents Chapter 2

Chapter 2 Reference Documents

Sl. No. Title Version
1. Autosar R4.0

AUTOSAR_SWS_SPIHandlerDriver.pdf
3.2.0

2. AUTOSAR BUGZILLA (http://www.autosar.org/bugzilla)
Note: AUTOSAR BUGZILLA is a database, which contains concerns raised
against information present in AUTOSAR Specifications.

-

3. r01uh0436ej0070_rh850p1x.pdf 0.70

4. Autosar R4.0
AUTOSAR_SWS_CompilerAbstraction.pdf

3.2.0

5. Autosar R4.0
AUTOSAR_SWS_MemoryMapping.pdf

1.4.0

6. Autosar R4.0
AUTOSAR_SWS_PlatformTypes.pdf

2.5.0

7. Autosar R4.0
AUTOSAR_BSW_MakefileInterface.pdf

0.3

15

http://www.autosar.org/bugzilla

Chapter 2 Reference Documents

16

Integration And Build Process Chapter 3

Chapter 3 Integration And Build Process

In this section the folder structure of the SPI Driver Component is explained.
Description of the Makefiles along with samples is provided in this section.

Remark The details about the C Source and Header files that are generated by the
SPI Driver Generation Tool are mentioned in the
“AUTOSAR_SPI_Tool_UserManual.pdf”.

3.1. SPI Driver Component Makefile

The Makefile provided with the SPI Driver Component consists of the GNU
Make compatible script to build the SPI Driver Component in case of any
change in the configuration. This can be used in the upper level Makefile (of
the application) to link and build the final application executable.

3.1.1. Folder Structure

The files are organized in the following folders:

Remark Trailing slash ‘\’ at the end indicates a folder

X1X\common_platform\modules\spi\src\ Spi_Driver.c

\ Spi.c

\ Spi_Scheduler.c

\Spi_Irq.c

\Spi_Ram.c

\Spi_Version.c

X1X\common_platform\modules\spi\include\Spi_Driver.h

\Spi.h

\Spi_Scheduler.h

\Spi_Irq.h

\Spi_LTTypes.h

\Spi_PBTypes.h

\Spi_Ram.h

\Spi_Version.h

\Spi_Types.h

X1X\P1x\modules\spi\Sample_application\<SubVariant>\make\<Compiler>

\App_SPI_P1M_Sample.mak

17

Chapter 3 Integration And Build Process

X1X\P1x\modules\spi\Sample_application\<SubVariant>\obj\ <compiler>

X1X\common_platform\modules\spi\generator\Spi_X1x.exe

X1X\P1x\common_family\generator

\Sample_Application_P1x.trxml
\P1x_translation.h

X1X\P1x\modules\spi\generator

\R403_SPI_P1x_BSWMDT.arxml

X1X\P1x\modules\spi\user_manual

(User manuals will be available in this folder)

Notes:
1. <Compiler> can be ghs.

2. <SubVariant> can be P1M.

3. <AUTOSAR_version> can be 4.0.3.

18

 Forethoughts Chapter 4

Chapter 4 Forethoughts

4.1. General

Following information will aid the user to use the SPI Driver Component
software efficiently:

• SPI Driver component does not take care of setting the registers which
configure clock, prescaler and PLL.

• SPI Driver component handles only the Master mode.

• SPI Driver component supports full-duplex mode.

• The chip select is implemented using the microcontroller pins and it is
configurable.

• The required initialization of the port pins configured for chip select has to
be performed by the Port Driver Component.

• The microcontroller pins used for chip select is directly accessed by the
SPI Driver component without using the APIs of DIO module.

• Maximum number of channels and sequences configurable is 256 and job
is 65536.

• The scope is restricted to post-build with multiple configuration sets.

• The identifiers for channels, jobs and sequences entered by the user

should start from 0 and should be continuous.

• The width of the transmitted data unit is configurable and the valid values
are 8 bits to 32 bits.

• The number of channels, jobs and sequences should be same across
multiple configuration sets.

• The channels, jobs and sequences cannot be deleted or added at post-
build time.

• The SPI hardware unit cannot be deleted or added at post–build time. But,
the reassignment of the SPI hardware units to different jobs is possible at
post-build time.

• The DMA unit cannot be deleted or added at post–build time. But, the
reassignment of DMA units to the SPI hardware units is possible at post-
build time.

• When the level of scalable functionality is configured as 2, then two SPI
buses using separate hardware units are required. In this case, the SPI
bus dedicated for synchronous transmission is configurable.

• When the level of scalable functionality is configured as 2, two modes of
asynchronous communication using polling or interrupt mechanism are
possible. These modes are selectable during execution time.

• When the level of scalable functionality is configured as 1 or 2, If interrupt
mechanism is selected during execution time, the transmission and
reception will be performed using the on-chip DMA unit only if the DMA
mode is enabled through the configuration.

• The LEVEL 2 SPI Handler is specified for microcontrollers that have to
provide at least two SPI busses using separated hardware units. Otherwise,
using this level of functionality makes no sense.

19

 Chapter 4 Forethoughts

• When Level Delivered is 0 and 2, the memory mode configured for jobs
linked for the synchronous sequence shall be always Direct Access Mode
only.

• If user configures 32 bit IB and EB channels and additionally configures
DMA in direct access mode there will be a generator error message.

• When the SPI driver is configured in Level 2 (SpiLevelDelivered) and the
DMA is also configured (SpiDmaMode), then the asynchronous mode
needs to be set for interrupt mode using the API Spi_SetAsyncMode.

• The SPI DMA type is specified by the parameter SPI_DMA_TYPE_USED.

Note: The DMA will work whenever the DMA access for the LOCAL RAM,
which is having PE guard protection is enabled (this can be done by
configuring the PE guard registers.)

• Direct Access mode can be effectively used in case of sequence having
channels and buffers of significantly different properties.

• Double Buffer mode can be effectively used in case of sequence having
more number of jobs, channels and buffers with same hardware properties
for continuous transmission of data. For double buffer mode only usage of
internal buffers is allowed. FIFO mode can be effectively used at the time of
transmit/receive of large amount of data. FIFO mode can also be used in
case of sequence having lesser number of jobs and having more channels
and buffers.

• In case size of buffers is more than the hardware buffer size i.e. 128 words,
an interrupt will occur after every 128 words are transmitted where the
hardware buffer will be loaded with the remaining buffers to be transmitted.

• In a particular configurations where CSIH HW units are configured, Spi_Init
function must be called before Port_Init function.

• Only if "SpiCsInactive" parameter is set to "true", the PWR bit in CSI
hardware will be cleared for that hardware unit, so setting "false" value can
lead to unnecessary power consumption.

• When “SpiCsIdleEnforcement” is set to true for the jobs configured for CSIH
Hw units, the value configured for "SpiCsInactive" will not have any impact
in actual Chip Select behavior".

• The parameter "SpiCsIdleEnforcement" influences the behavior of idle level
of the chip select during data transfer and after the transmission of a job.

• When the parameter 'SpiCsIdleEnforcement' is configured as false, the
corresponding chip select is deactivated before every channel transmission
and stays active after transmission until another job with different CS is
transmitted.

• When the parameter 'SpiCsIdleEnforcement' is configured as true, the chip
select is deactivated after job transmission. An idle phase of CS is inserted
between transmissions of two data buffers. The duration of idle state of the
chip select between the channels transmissions will be less than duration of
idle state of the chip select between single data of each channel.

• In CSIG,CS is active during the whole job transmission independently of
data and is set to inactive state after job is finished.

Table 4-1 Table for Chip Select behavior

Figure SpiCSInactiveAfterlastdata SpiCsIdleEnforcement
4-1 FALSE TRUE
4-2 TRUE TRUE
4-3 TRUE FALSE
4-4 FALSE FALSE

20

 Forethoughts Chapter 4

Note: In the below figures, the signal represented in Yellow is the clock signal
and the Blue signal is the chip select signal.

Figure 4-1 Chip select behavior when SpiCSInactiveAfterlastdata is False and

SpiCsIdleEnforcement is True

Note: If ‘SpiCsIdleEnforcement’ is TRUE, Chip select will get deactivated after
transmission is over, even if ‘SpiCSInactiveAfterlastdata’ is configured as
FALSE.

Figure 4-2 Chip select behavior when SpiCSInactiveAfterlastdata is True and

SpiCsIdleEnforcement is True

Figure 4-3 Chip select behavior when SpiCSInactiveAfterlastdata is True and

SpiCsIdleEnforcement is False
Note:

21

 Chapter 4 Forethoughts

1. The expected CS behavior may not be observed at high baud rates in case
of Asynchronous transmission using Direct Access Mode, due to general
limitation of the serial controllers.

2. CS state can be held for Asynchronous transmission by using buffer modes
like FIFO.

Figure 4-4 Chip select behavior when SpiCSInactiveAfterlastdata is False and

SpiCsIdleEnforcement is False

This information is valid only for DIRECT ACCES MODE.

• For availability of Data Consistency Check on the port pins, please refer
respective microcontroller user manual.

• Sequences assigned to a hardware channel (CSIHx) which is configured to
work with transmit only memory mode can be an interruptible or non-
interruptible sequence (specified by the parameter
SpiInterruptibleSequence). However, even if the sequence is non-
interruptible, it can still be interrupted by CPU-controlled high priority
communication functionality. I.e. the parameter SpiInterruptibleSequence
is valid only for software interruption.

• Each of the high priority sequences shall refer to a unique chip select line.
 These lines shall not be referred by any of the low priority sequences too.

• In order to support DEEPSTOP functionality without resetting the
microcontroller, the re initialization of the Driver using Spi_Init API is
supported. To achieve this functionality the
'SPI_E_ALREADY_INITIALIZED' Det error check is to be suppressed
using ‘SpiAlreadyInitDetCheck’ parameter when DET is enabled. When
DET is disabled there is no impact of “SpiAlreadyInitDetCheck” parameter.

• In a Hardware channel which has sequences working with transmit only
mode and is of high priority, if there is a request for transmission of high
priority sequence, then it will interrupt an ongoing sequence with transmit
only mode if the sequence is non-interruptible.

• When the sequence is getting transmitted with transmit only mode, if there
is a request for high priority sequence, the ongoing sequence will be
interrupted after the ongoing job is finished and memory mode will switch
from transmit only mode to direct access mode automatically for high
priority sequence transmission and after its completion, the interrupted
sequence will resume transmission in transmit only mode.

• MCTL1, MCTL2 and CSIHnMRWP0 registers are allowed to be accessed
when there is an ongoing communication only when PWR is set.

22

 Forethoughts Chapter 4

• Manual transmission is possible only in Direct Access and FIFO modes.
However user has to implement his own ISRs for SPI. In case he wants to
use Renesas SPI driver transmission in parallel, he has to call Renesas SPI
ISRs functions from his custom ISRs (e.g. use different interrupt category
mode).

• The file Interrupt_VectorTable.c provided is just a Demo and not all
interrupts will be mapped in this file. So the user has to update the
Interrupt_VectorTable.c as per his configuration.

• The notifications should be called from user’s complex driver ISRs

• High values for parameter ‘SpiCsHoldTiming’should not be used with

Synchronous Transmit function but if it is used, user should make sure
that next consecutive SPI action happens after CS hold time expired.

• The parameter SpiTimeOut generates a scalar value that decides the
number of times a loop will be executed while polling. If exceeded the loop
breaks reporting a production error.

This information is valid only for Static Configuration

• The parameter SpiPersistentHWConfiguration decides whether Hardware
configuration is static or dynamic. This is applicable for both CSIG and
CSIH and both Synchronous and Asynchronous communication and all
memory modes.

• If SpiPersistentHWConfiguration is “True”, then HW configuration is static
(configuration is performed in the function Spi_Init ()function and not during
each transmission.

• Static Configuration, allows the user to manually start transmission without
invoking SPI module APIs after Spi driver was initialized.

• In Static configuration, all parameters in channel/job/external devices
containers linked to a hardware unit should be same. Refer Table 4-2, 4-3
and 4-4 for the list of parameters

Table 4-2 List of parameters in Channel container that are linked
to the registers.

Parameter in
channel container

Registers linked
CSIH-CSIG

SpiDataWidth CSIHnCFGx.CSIHnDLSx CSIHnCFGx0.CSIHnDLS[3:
0]

SpiTransferStart CSIHnCFGx.CSIHnDIRx CSIHnCFGx0.CSIHnDLS[3:
0]

Table 4-3 List of parameters in Job container that are linked
to the registers.

Parameter in job
container

Registers linked
CSIH-CSIG

SpiPortPinSelect CSIHnTXOW.CSIHnCSx
CSIHnCTL1.CSIHnCSx

-

23

 Chapter 4 Forethoughts

Table 4-4 List of parameters in External Device container
that are linked to the registers.

Parameter in
channel container

Registers linked
CSIH CSIG

SpiCsPolarity CSIHnCTL1.CSIHnCSx -

SpiCsInactive CSIHnCTL1.CSIHnCSRI -

SpiCsIdleEnforcem
ent

CSIHnCFGx.CSIHnIDLx -

SpiCsIdleTiming CSIHnCFGx.CSIHnIDx[2:0
]

-

SpiCsHoldTiming CSIHnCFGx.CSIHnHDx[3:
0]

-

SpiCsInterDataDel
ay

CSIHnCFGx.CSIHnINx[3:0
]

-

SpiCsSetupTime CSIHnCFGx.CSIHnSPx[3:
0]

-

SpiDataShiftEdge CSIHnCFGx.CSIHnDAPx CSIGnCFG0.CSIGnDAP

SpiShiftClockIdleL
evel

CSIHnCTL1.CSIHnCKR CSIGnCTL1.CSIGnCKR

SpiBaudrateConfig
uration

CSIHnBRSy.CSIH0BRS[1
1:0]

CSIGnCTL2.CSIGnBRS

SpiBaudrateRegist
erSelect

CSIHnCFGx.CSIHnBRSS
x[11:0]

-

SpiInputClockSele
ct

CSIHnCTL2.CSIHnPRS[2:
0]

CSIGnCTL2.CSIGnPRS[2:0
]

SpiInterruptDelayM
ode

CSIHnCTL1.CSIHnSIT CSIGnCTL1.CSIGnSLIT

SpiParitySelection CSIHnCFGx.CSIHnPSx[1:
0]

CSIGnCFG0.CSIGnPS[1:0]

SpiFifoTimeOut CSIHnMCTL0.CSIHnTO[4:
0]

-

SpiBroadcastingPri
ority

CSIHnCFGx.CSIHnRCBx -

4.2. Preconditions

Following preconditions have to be adhered by the user, for proper
functioning of the SPI Driver Component:

• The Spi_Lcfg.c, Spi_PBcfg.c, Spi_Cbk.h and Spi_Cfg.h files generated by
the SPI Driver Component Code Generation Tool must be compiled and
linked along with SPI Driver Component source files.

• The application has to be rebuilt, if there is any change in the Spi_Lcfg.c,
Spi_PBcfg.c, Spi_Cbk.h and Spi_Cfg.h files generated by the SPI Driver
Component Generation Tool.

• File Spi_PBcfg.c generated for single configuration set or multiple
configuration sets using SPI Driver Component Generation Tool can be
compiled and linked independently.

24

 Forethoughts Chapter 4

• The authorization of the user for calling the software triggering of a
hardware reset is not checked in the SPI Driver. This is the responsibility of
the upper layer.

• The SPI Driver Component needs to be initialized before accepting any
request. The API Spi_Init should be invoked to initialize SPI Driver
Component.

• The user should ensure that SPI Driver Component API requests are
invoked in the correct and expected sequence and with correct input
arguments.

• Input parameters are validated only when the static configuration
parameter SPI_DEV_ERROR_DETECT is enabled. Application should
ensure that the right parameters are passed while invoking the APIs when
SPI_DEV_ERROR_DETECT is disabled.

• A mismatch in the version numbers of header and the source files results
in compilation error. User should ensure that the correct versions of the
header and the source files are used.

• The ISR functions and the corresponding handler addresses are provided
in Table ISR Handler Addresses. User should ensure that Interrupt Vector
table configuration is done as per the information provided in the table.

• Within the callback notification functions only following APIs are allowed.

Spi_ReadIB Spi_WriteIB

Spi_SetupEB

Spi_GetJobResult

Spi_GetSequenceResult

Spi_GetHWUnitStatus

Spi_Cancel

All other SPI Handler/Driver API calls are not allowed.

4.3. User Mode and Supervisor Mode

The below table specifies the APIs which can run in user mode, supervisor
mode or both modes:

Table 4-5 User Mode and Supervisory Mode

Sl.
No.

API name

Interrupt mode Polling mode

user
mode

supervi
sor
mode

user
mode

superviso
r mode

1. Spi_Init - x - x

2. Spi_DeInit - x - x

3. Spi_WriteIB x x x x

4. Spi_AsyncTransmit x x x

5. Spi_ReadIB x x x x

6. Spi_SetupEB x x x x

7. Spi_GetStatus x x x x

25

 Chapter 4 Forethoughts

Sl.
No.

API name Interrupt mode Polling mode

8. Spi_GetJobResult x x x x

9. Spi_GetSequenceResult x x x x

10. Spi_GetVersionInfo x x x x

11. Spi_SyncTransmit x x x x

12. Spi_Cancel - x - x

13. Spi_SetAsyncMode x x - x

14. Spi_MainFunction_Handling - x - x

15. Spi_GetHWUnitStatus x x x x

4.4. Memory modes

The SPI Driver will use different memory modes depending on the HW units
selected. If the HW unit configured is CSIG then only direct access mode has
to be configured. If the HW unit configured is CSIH then any of the following
four modes can be configured.

Table 4-6 HW unit and Memory Mode Selection

HW unit Memory mode
CSIG0 Direct Access Mode
CSIH(0-3) Direct Access Mode

FIFO Mode
Dual Buffer mode
Transmit Only Mode

4.5. Data Consistency

To support the re-entrance and interrupt services, the AUTOSAR SPI
component will ensure the data consistency while accessing its own RAM
storage or hardware registers. The SPI component will use
SchM_Enter_Spi_<Exclusive Area> and SchM_Exit_Spi_<Exclusive Area>
functions. The SchM_Enter_Spi_<Exclusive Area> function is called before
the data needs to be protected and SchM_Exit_Spi_<Exclusive Area>
function is called after the data is accessed.

The following exclusive area along with scheduler services is used to provide
data integrity for shared resources:

• CHIP_SELECT_PROTECTION

• RAM_DATA_PROTECTION

The functions SchM_Enter_Spi_<Exclusive Area> and
SchM_Exit_Spi_<Exclusive Area> can be disabled by disabling the
configuration parameter 'Spi_CriticalSectionProtection'. The flowchart will
indicate the flow with the pre-compile option 'Spi_CriticalSectionProtection'
enabled.

4.6. Deviation List

Table 4-7 SPI Driver Deviation List

Sl. No. Description AUTOSAR Bugzilla

26

 Forethoughts Chapter 4

Sl. No. Description AUTOSAR Bugzilla

1. The parameter
"SpiHwUnitSynchronous" is moved
to SpiJob container from
SpiChannel container.

48763

2. The total number of SPI Hardware
Units is published as
“SPI_MAX_HW_UNIT”.

24328

3. The parameter “SPI_BAUDRATE”
is not used since the value
configured for this parameter
cannot be mapped directly to the
register value. Hence, a parameter
”SpiBaudrateSelection” is used to
select input frequency source.

-

4. The parameter 'SpiTimeClk2Cs' is
not used since the value of this
parameter is configured as count
value. Hence, the parameter
'SpiClk2CsCount' is provided to
configure the wait loop count to add
delay between clock and chip
select.

-

5. Type of the parameter SpiHwUnit is
ENUMERATION-PARAM-DEF with
a list of all possible hardware units.

-

6. The inclusion or deletion of the
hardware units will not be possible
in the post-build time. But the
reassignment of configured HW
unit for different jobs is possible.

-

7. Type of the parameter SpiCs is
ENUMERATION-PARAM-DEF with
a list of all possible port lines.

-

8. If the parameter "DataBufferPtr"
passed through the API
“Spi_ReadIB” is null pointer, then
the error
SPI_E_PARAM_POINTER will be
reported to DET.

-

9. The channel parameters
“SpiChannelType”, “SpiIbNBuffers”
and “SpiEbMaxLength” are pre-
compile time parameters.

-

10. A queue will be implemented and
maintained if there are more than
one sequence is requested for
transmission. The length of the
queue will be number of configured
jobs minus 1.

-

11. If a sequence is requested for
transmission while already one
uninterruptible sequence is on-
going, the requested sequence will
be put on queue.

-

27

 Chapter 4 Forethoughts

Sl. No. Description AUTOSAR Bugzilla

12. The upper and lower multiplicity of
the parameter ‘SpiCsIdentifier’ is ‘1’
i.e. mandatory and the default
value is NULL. The upper and
lower multiplicity of the parameter
‘SpiEnableCS’ is ‘1’ i.e. mandatory
and the default value is false.

-

13. The parameters SpiMaxChannel,
SpiMaxJob and SpiMaxSequence
in SpiDriverConfiguration is made
as mandatory in the Parameter
Definition File of SPI Driver
Component.

-

14. Notification related functions and
parameters configuration class
are changed from Link time to
Post Build, vice versa Spi_
Lcfg.c and Spi_Pbcfg.c files
structures are updated.

-

15. The API Spi_GetVersionInfo is
implemented as macro without
DET error
SPI_E_PARAM_POINTER.

-

28

Architecture Details Chapter 5

Chapter 5 Architecture Details

To minimize the effort and to optimize the reuse of developed software on
different platforms, the SPI driver is split as High Level Driver and Low Level
Driver. The SPI Driver architecture is shown in the following figure:

Figure 5-1 SPI Driver Architecture

The High Level Driver exports the AUTOSAR API towards upper modules
and it will be designed to allow the compilation for different platforms without
or only slight modifications, i.e. that no reference to specific microcontroller
features or registers will appear in the High Level Driver. All these references
are moved inside a µC specific Low Level Driver. The Low Level Driver
interface extends the High Level Driver types and methods in order to adapt it
to the specific target microcontroller.

SPI Driver component:

The SPI Driver provides services for reading and writing to devices connected
via SPI busses. It provides access to SPI communication to several users like
EEPROM, Watchdog, I/O ASICs. It also provides the required mechanism to
configure the on chip SPI peripheral.

The SPI Driver component is divided into the following sub modules based on
the functionality required:

• Initialization and De-initialization

• Buffer Management

• Communication

• Status information

SPI User

SPI High-level Driver
 (Microcontroller Independent)

SPI Low Level Driver

 MICROCONTROLLER

CSIH
CSIG

29

Chapter 5 Architecture Details

 us

Ve
rs

io
n

SP
I

Dr
iv

e
r

• Module version information

The basic architecture of the SPI Driver component is illustrated in the
following Figure:

AP PL I C AT IO N L A Y ER

SP I H ig h Le v e l Dr ive r

Setting of
HW

register
Disabling

the
interrupts

De -

initialization
of SPI HW

units

Transmit and

receive the jobs
 and channels

Sequen
ce and

job
notifica

tion

Return the
status of

module, job,
sequence

SP I L ow Le v e l Dr ive r

Figure 5-2 Component Overview Of SPI Driver Component

SPI Driver Initialization and De-Initialization module

This module initializes and de-Initializes the SPI driver. It provides the
Spi_Init() and Spi_DeInit() APIs. The Spi_Init() API should be invoked before
the usage of any other APIs of Watchdog Driver Module.Spi-Init should be
called prior to Port_Init. De-initialization function puts all microcontroller SPI
peripherals in the same state such as Power On Reset.

Buffer Management

This module provides the services for reading and writing the internal buffers
and setting up the external buffer. The type of buffer for each channel is
configurable as either internal or external

The APIs related to this module are Spi_WriteIB(), Spi_ReadIB() and
Spi_SetupEB().

Communication

This module provides the services for the transmission of data on the SPI bus
both synchronously and asynchronously, cancelling the ongoing transmission
and setting the asynchronous transfer mode.

The synchronous mode is based on polling mechanism. But for the
asynchronous mode, the possible mechanisms are Polling and Interrupt
mode. One of these modes is selectable during execution by one of the
services provided by this sub-module.

The APIs related to this module are Spi_SyncTransmit(),
Spi_AsyncTransmit(), Spi_SetAsyncMode() and Spi_Cancel().

30

 Architecture Details Chapter 5

 Status Information

This module provides the services for getting the status of the SPI Driver and
hardware unit. It also provides the services for getting the result of the
specified job and specified sequence.

The APIs related to this module are Spi_GetStatus(),
Spi_GetHWUnitStatus(), Spi_GetJobResult() and Spi_GetSequenceResult().

Module Version Information

This module provides APIs for reading module Id, vendor Id and vendor
specific version numbers.

The API related to this module is Spi_GetVersionInfo().

31

Chapter 5 Architecture Details

32

 Registers Details Chapter 6

Chapter 6 Registers Details

This section describes the register details of SPI Driver Component.

Table 6-1 Register Details

API Name

Registers Config

Parameter

Macro/Variable

Spi_Init CSIGnCTL0 SpiMemoryModeSelection

SPI_ZERO

CSIHnCTL0 SPI_ZERO

 DCSTCn - SPI_DMA_STR_CLEAR

DCENn - SPI_DMA_DCEN_DISABLE

DSAn SpiDma LpDmaConfig->ulTxRxRegAddress

DTCTn SpiTxDmaChannel/
SpiRxDmaChannel

SPI_DMA_8BIT_TX_SETTINGS
SPI_DMA_16BIT_TX_SETTINGS
SPI_DMA_32BIT_TX_SETTINGS
SPI_DMA_8BIT_RX_SETTINGS
SPI_DMA_16BIT_RX_SETTINGS
SPI_DMA_32BIT_RX_SETTINGS

DDAn SpiDma LpDmaConfig->ulTxRxRegAddress

DTSn SpiTxDmaChannel/
SpiRxDmaChannel

SPI_DMA_DISABLE

DTFRn SpiTxDmaChannel/
SpiRxDmaChannel

LpDmaConfig->usDmaDtfrRegValue

CSIGnCTL1 SpiCsInactiveAfterLastData,
SpiDataWidth

LunDataAccess1.ulRegData

CSIHnCTL1 LunDataAccess1.ulRegData

CSIHTIJC - LpIntCntlAddress
ICCSIGnIR SpiHwUnitSelection

and
SpiMemoryModeSelection

Spi_GstHWUnitInfo[LddHWUnit].usR
xImrMask

ICCSIGnIC Spi_GstHWUnitInfo[LddHWUnit].pTxI
mrAddress

ICCSIGnIRE Spi_GstHWUnitInfo[LddHWUnit].pErr
orImrAddress

ICCSIHnIR Spi_GstHWUnitInfo[LddHWUnit].usR
xImrMask

ICCSIHnIC Spi_GstHWUnitInfo[LddHWUnit].pTxI
mrAddress

ICCSIHnIJC LpHWUnitInfo->usTxCancelImrMask

ICCSIHnIRE Spi_GstHWUnitInfo[LddHWUnit].pErr
orImrAddress

CSIHnTX0W - LunDataAccess1.ulRegData

SELCSIHDMA - SPI_SELCSIHDMA_REG_VAL

Spi_DeInit CSIGnCTL0 SpiMemoryModeSelection

SPI_ZERO

CSIHnCTL0 SPI_ZERO

DCENn - SPI_DMA_DCEN_DISABLE

DTFRRQCn - SPI_DMA_DRQ_CLEAR

DCSTCn - SPI_DMA_STR_CLEAR

Spi_WriteIB CSIHnMRWP0 - ulRegData

CSIHnTX0W - ulRegData

Spi_AsyncTransmit CSIHnMCTL0 - LpJobConfig->usMCtl0Value

33

 Chapter 6 Registers Details

API Name

Registers Config

Parameter

Macro/Variable

CSIGnCFG0 - LpJobConfig->ulConfigRegValue

CSIGnCTL0 SpiMemoryModeSelection SPI_RESET_PWR
SPI_SET_DIRECT_ACCESS
SPI_SET_MEMORY_ACCESS

CSIHnCTL0 SPI_RESET_PWR
SPI_SET_DIRECT_ACCESS
SPI_SET_MEMORY_ACCESS

CSIGnSTCR0 - SPI_CLR_STS_FLAGS

CSIHnSTCR0 - SPI_CLR_STS_FLAGS

CSIGnCTL1 SpiCsInactiveAfterLastData,
SpiDataWidth

LunDataAccess1.ulRegData
LpJobConfig->ulMainCtl1Value
SPI_SET_SLIT

CSIHnCTL1 LunDataAccess1.ulRegData
LpJobConfig->ulMainCtl1Value
SPI_SET_SLIT

DCSTCn - SPI_DMA_STR_CLEAR

DCENn - SPI_DMA_DCEN_DISABLE

DTCTn - SPI_DMA_FIXED_TX_SETTINGS
SPI_DMA_INV_TX_SETTINGS
LddNoOfBuffers
SPI_DMA_STR_REQ
SPI_DMA_ONCE
SPI_DMA_FIXED_RX_SETTINGS
SPI_DMA_INV_RX_SETTINGS
SPI_DMA_ONCE

DSAn - (uint32)LpTxData

DTFRn - (uint32)SPI_ZERO
(uint32)(LpDmaConfig->
usDmaDtfrRegValue

DCSTSn - SPI_DMA_STR

DTCn - SPI_ONE

DTFRRQCn - SPI_DMA_DRQ_CLEAR

DCENn - SPI_DMA_DCEN_ENABLE

DDAn - (uint32)(&Spi_GddDmaRxData)

DTFRn - SPI_ZERO

CSIGnCTL2 SpiBaudrateRegisterSelect LpJobConfig->usCtl2Value

CSIHnCTL2 SpiFifoTimeOut LpJobConfig->usCtl2Value

CSIHnCFG SpiCsIdleTiming,
SpiCsHoldTiming,
SpiCsInterDataDelay,
SpiCsSetupTime,
SpiCsIdleEnforcement

LunDataAccess1.ulRegData

CSIGnCFG0 LunDataAccess1.ulRegData

CSIHnCFG0 LunDataAccess1.ulRegData

CSIHnMCTL1 - SPI_ZERO

CSIHnMCTL2 - LunDataAccess1.ulRegData

CSIHTX0W - LunDataAccess1.ulRegData

CSIHnCFG SpiCsIdleTiming,
SpiCsHoldTiming,
SpiCsInterDataDelay,
SpiCsSetupTime,
SpiCsIdleEnforcement

LunDataAccess1.ulRegData

34

 Registers Details Chapter 6

API Name

Registers Config

Parameter

Macro/Variable

CSIGnTX0W - LunDataAccess1.ulRegData

CSIHnBRS[0] SpiBaudrateConfiguration LpCsihOsBaseAddr->usCSIHBRS[0]

CSIHnBRS[1] - LpCsihOsBaseAddr->usCSIHBRS[1]

CSIHnBRS[2] - LpCsihOsBaseAddr->usCSIHBRS[2]

CSIHnBRS[3] - LpCsihOsBaseAddr->usCSIHBRS[3]

Spi_ReadIB CSIHnRX0W - LunDataAccess2.ulRegData

CSIHnRX0H - LunDataAccess2.usRegData5[1]

CSIHnMRWP0 - LunDataAccess1.ulRegData

CSIHRX0H - LunDataAccess2.usRegData5[0]

Spi_SetupEB - - -
Spi_GetStatus - - -

Spi_GetJobResult - - -

Spi_GetSequenceRes
ult

- - -

Spi_SyncTransmit CSIHnMCTL0 - -

CSIGnCTL0 - LpJobConfig->usMCtl0Value

CSIHnCTL0 - SPI_RESET_PWR

CSIGnCTL0 - SPI_RESET_PWR
CSIHnCTL0 - SPI_SET_DIRECT_ACCESS

CSIGnCTL0 - SPI_SET_DIRECT_ACCESS

CSIHnCTL0 - SPI_SET_PWR

CSIGnTX0W - SPI_SET_PWR

CSIHnRX0H - LunDataAccess3.ulRegData

CSIHnRX0H - LunDataAccess3.ulRegData

CSIGnCFG0 - Spi_GusDataAccess

CSIGnCFG0 - LddData

CSIGnCFG0 - LpJobConfig->ulConfigRegValue

CSIGnCTL0 - LunDataAccess1.ulRegData

CSIHnCTL0 - SPI_ZERO

CSIGnCFG0 - LddData

CSIGnCFG0 - LpJobConfig->ulConfigRegValue

CSIGnCTL0 - LunDataAccess1.ulRegData

CSIHnCTL0 - SPI_ZERO

CSIGnSTR0 - SPI_ZERO

CSIHnSTR0 - SPI_HW_BUSY

CSIGnSTR0 - SPI_HW_BUSY

CSIHnSTR0 - SPI_ZERO

CSIGnSTCR0 - SPI_ZERO

CSIHnSTCR0 - SPI_CLR_STS_FLAGS

CSIGnCTL1 - SPI_CLR_STS_FLAGS

CSIHnCTL1 SpiCsInactiveAfterLastData,
SpiDataWidth

LunDataAccess1.ulRegData

CSIGnCTL2 SpiBaudrateRegisterSelect LunDataAccess1.ulRegData

CSIHnCTL2 SpiFifoTimeOut LpJobConfig->usCtl2Value

35

 Chapter 6 Registers Details

API Name

Registers Config

Parameter

Macro/Variable

CSIHnTX0W - LpJobConfig->usCtl2Value

CSIHnTX0W - LunDataAccess3.ulRegData

CSIHnCFG SpiCsIdleTiming,
SpiCsHoldTiming,
SpiCsInterDataDelay,
SpiCsSetupTime,
SpiCsIdleEnforcement

LunDataAccess1.ulRegData

CSIHnCFG LpJobConfig->ulConfigRegValue

CSIGnTX0W - LunDataAccess1.ulRegData

CSIGnRX0 - Spi_GusDataAccess

CSIGnRX0 - LddData

CSIGnRX0 - LunDataAccess2.usRegData5[1]

CSIGnRX0 - LunDataAccess2.usRegData5[0]

CSIHnBRS[0] SpiBaudrateConfiguration LpCsihOsBaseAddr->usCSIHBRS[0]

CSIHnBRS[1] LpCsihOsBaseAddr->usCSIHBRS[1]

CSIHnBRS[2] LpCsihOsBaseAddr->usCSIHBRS[2]

CSIHnBRS[3] LpCsihOsBaseAddr->usCSIHBRS[3]

Spi_GetHWUnitStatus CSIGnSTR0 - SPI_CSIG_CSIH_BUSY

CSIHnSTR0 - SPI_CSIG_CSIH_BUSY

Spi_Cancel CSIGnCTL0 - SPI_ZERO

CSIHnCTL0 - SPI_ZERO

CSIGnCTL0 - SPI_SET_JOBE

CSIHnCTL0 - SPI_SET_JOBE

CSIHTIJC - LpHWUnitInfo->ucTxCancelImrMask

Spi_SetAsyncMode - - -

Spi_MainFunction_Ha
ndling

CSIGnCTL0 - SPI_SET_PWR

CSIHnCTL0 - SPI_SET_PWR

CSIGTIR - SPI_CLR_INT_REQ

CSIGTIC - SPI_CLR_INT_REQ

Spi_GetVersionInfo - - -

36

 Interaction Between The User And SPI Driver Component Chapter 7

Chapter 7 Interaction Between The User And SPI
Driver Component

The details of the services supported by the SPI Driver Component to

the upper layers users and the mapping of the channels to the hardware
units is provided in the following sections:

7.1. Services Provided By SPI Driver Component To The

User

The SPI Driver Component provides the following functions to upper layer: -

• To provide the required mechanism to configure the on-chip SPI peripheral.

• To initialize and de-initialize the SPI driver.

• To read and write to devices connected through SPI buses.

• To provide the transmission of data on the SPI bus both synchronously and
asynchronously.

• To cancel an ongoing transmission.

• To set the asynchronous transfer mode.

• To get the status of the SPI Driver and hardware unit.

• To get the result of the specified job and specified sequence.

• To provide access to SPI communication to several users(for example,
EEPROM, I/O ASICs).

• To read the SPI Driver Component version information.

37

 Chapter 7 Interaction Between The User And SPI Driver Component

38

SPI Driver Component Header And Source File Description Chapter 8

Chapter 8 SPI Driver Component Header And
Source File Description

This section explains the SPI Driver Component’s source and header

files. These files have to be included in the project application while
integrating with other modules.

The C header file generated by SPI Driver Generation Tool:

• Spi_Cfg.h

• Spi_Cbk.h

The C source file generated by SPI Driver Generation Tool:

• Spi_PBcfg.c

• Spi_Lcfg.c

The SPI Driver Component C header files:

• Spi_Driver.h

• Spi_PBTypes.h

• Spi_LTTypes.h

• Spi_Ram.h

• Spi.h

• Spi_Irq.h

• Spi_Scheduler.h

• Spi_Version.h

• Spi_Types.h

The SPI Driver Component C source files:

• Spi_Driver.c

• Spi.c

• Spi_Irq.c

• Spi_Ram.c

• Spi_Scheduler.c

• Spi_Version.c

The SPI Driver specific header files:

• Compiler.h

• Compiler_Cfg.h

• MemMap.h

• Platform_Types.h

• rh850_Types.h

39

Chapter 8 SPI Driver Component Header And Source File Description

The description of the SPI Driver Component files is provided in the table
below:

Table 8-1 Description Of The SPI Driver Component Files

File Details
Spi_Cfg.h This file is generated by the SPI Driver Component Code Generation Tool for various

SPI Driver component pre-compile time parameters. This file contains macro
definitions for the configuration elements and exclusive areas for data protection. The
macros and the parameters generated will vary with respect to the configuration in
the input XML file.

Spi_Cbk.h

This file is generated by the SPI Driver Component Code Generation Tool for
provision of function prototype Declarations for SPI callback Notification Functions.

Spi_PBcfg.c This file contains post-build configuration data. The structures related to channel
configuration, job configuration and sequence configuration are provided in this file.
Data structures will vary with respect to parameters configured.

Spi_Lcfg.c This file contains provision of SPI Link time Parameters. The structures related to
hardware registers are provided in this file. Data structures will vary with respect to
parameters configured.

Spi_Driver.h This file contains the Function Prototypes that are defined in Spi_Driver.c file.
Spi_PBTypes.h This file contains the data structure definitions of the channel configuration, job

configuration and sequence configuration
Spi_LTTypes.h This file contains the data structure definitions of CSIG and CSIH hardware registers,

Interrupt control registers, DMA hardware registers, Hardware unit information, DMA
unit information, storing current status of SPI communication, channel for the link
time parameters, function pointer for Callback notification function for Jobs,
processing sequence, storing external buffer attributes, Scheduler and DMA
Address.

Spi_Ram.h This file contains the extern declarations for the global variables that are defined in
Spi_Ram.c file and the version information of the file.

Spi.h This file provides extern declarations for all the SPI Driver Component APIs. This file
provides service Ids of APIs, DET Error codes and type definitions for SPI Driver
initialization structure. This header file shall be included in other modules to use the
features of SPI Driver Component.

Spi_Irq.h This file contains the function prototypes that are defined in Spi_Irq.c file.
Spi_Scheduler.h This file contains the function prototypes that are defined in Spi_Scheduler.c file.
Spi_Types.h This file contains the common macro definitions and the data types required internally

by the SPI software component.
Spi_Version.h This file contains the definitions of AUTOSAR version numbers of all modules that

are interfaced to SPI Driver.
Spi_Driver.c This file contains the SPI Low Level Driver code.
Spi.c This file contains the implementation of all APIs.
Spi_Irq.c This file contains the ISR functions for SPI Driver Component.
Spi_Ram.c This file contains the global variables used by SPI Driver Component.
Spi_Scheduler.c This file contains the SPI Scheduler code. This contains function to schedule the

sequences according to the priority of the jobs.
Spi_Version.c This file contains the code for checking version of all modules that are interfaced to

SPI Driver.
Compiler.h This file Provides compiler specific (non-ANSI) keywords. All mappings of keywords,

which are not standardized, and/or compiler specific are placed and organized in this
compiler specific header.

Compiler_Cfg.h This file contains the memory and pointer classes.

40

SPI Driver Component Header And Source File Description Chapter 8

File Details
MemMap.h This file allows to map variables, constants and code of modules to individual

memory sections. Memory mapping can be modified as per ECU specific needs.

Platform_Types.h This file provides provision for defining platform and compiler dependent types.
rh850_Types.h

 This file provides macros to perform supervisor mode (SV) write enabled Register
 ICxxx and IMR register writing using OR/AND/Direct operation

41

Chapter 8 SPI Driver Component Header And Source File Description

42

 Generation Tool Guide Chapter 9

Chapter 9 Generation Tool Guide

For information on the SPI Driver Component Code Generation Tool,
please refer “AUTOSAR_SPI_Tool_UserManual.pdf” document.

43

 Chapter 9 Generation Tool Guide

44

Application Programming Interface Chapter 10

Chapter 10 Application Programming Interface

This section explains the Data types and APIs provided by the SPI Driver
Component to the Upper layers.

10.1. Imported Types

This section explains the Data types imported by the SPI Driver Component and

lists its dependency on other modules.

10.1.1. Standard Types

In this section all types included from the Std_Types.h are listed:

• Std_ReturnType

• Std_VersionInfoType

10.1.2. Other Module Types

In this chapter all types included from the Dem_types.h are listed:

• Dem_EventIdType

• Dem_EventStatusType

10.2. Type Definitions

This section explains the type definitions of SPI Driver Component
according to AUTOSAR Specification.

 Spi_ConfigType 10.2.1.

Name: Spi_ConfigType
Type: Structure

Range: Implementation Specific The contents of the initialization data

structure are SPI specific

Description: This type of the external data structure shall contain the initialization data for the SPI

driver/Handler

 Spi_StatusType 10.2.2.

Name: Spi_StatusType
Type: Enumeration

Range:

SPI_UNINIT The SPI Handler/Driver is not initialized or not
usable

SPI_IDLE The SPI Handler/Driver is not currently
transmitting any job

SPI_BUSY The SPI Handler/Driver is performing a SPI
job(transmit)

Description: This type defines a range of specific status for SPI Handler/driver

45

Chapter 10 Application Programming Interface

 Spi_JobResultType 10.2.3.

Name: Spi_JobResultType
Type: Enumeration

Range:

SPI_JOB_OK The last transmission of the job has been
finished successfully

SPI_JOB_PENDING The SPI Handler/Driver is performing a SPI
Job. The meaning of this status is equal to
SPI_BUSY

SPI_JOB_FAILED The last transmission of the job has failed
Description: This type defines a range of specific jobs status for SPI Handler/driver

 Spi_SeqResultType 10.2.4.

Name: Spi_SeqResultType
Type: Enumeration

Range:

SPI_SEQ_OK The last transmission of the Sequence has
been finished successfully

SPI_SEQ_PENDING The SPI Handler/Driver is performing a SPI
Sequence The meaning of this status is equal
to SPI_BUSY

SPI_SEQ_FAILED The last transmission of the Sequence has
failed

SPI_SEQ_CANCELLED The last transmission of the Sequence has
been cancelled by user.

Description: This type defines a range of specific sequences status for SPI Handler/driver

 Spi_DataType 10.2.5.

Name: Spi_DataType
Type: uint8,uint16,uint32

Range:

0 to 255, 0 to 65535,
0 to 4294967296.

This is implementation specific but not all values
may be valid within the type This type shall be
chosen in order to have the most efficient
implementation on a specific microcontroller
platform

Description: Type of application data buffer elements

 Spi_NumberOfDataType 10.2.6.

Name: Spi_NumberOfDataType
Type: uint16
Range: 0 to 65535

Description: Type for defining the number of data elements of the type Spi_DataType to send and/or

receive by channel

46

Application Programming Interface Chapter 10

 Spi_ChannelType 10.2.7.

Name: Spi_ChannelType
Type: uint8
Range: 0 to 255
Description: Specifies the identification(Id) for a channel

 Spi_JobType 10.2.8.

Name: Spi_JobType
Type: uint16
Range: 0 to 65535
Description: Specifies the identification(Id) for a Job

 Spi_SequenceType 10.2.9.

Name: Spi_SequenceType
Type: uint8
Range: 0 to 255
Description: Specifies the identification(Id) for a sequence of Jobs

 Spi_HWUnitType 10.2.10.

Name: Spi_HWUnitType
Type: uint8
Range: 0 to 255
Description: Specifies the identification(Id) for a SPI Hardware microcontroller peripheral(unit)

 Spi_AsyncModeType 10.2.11.

Name: Spi_AsyncModeType
Type: Enumeration

Range:

SPI_POLLING_MODE The asynchronous mechanism is ensured by
polling, so interrupts related to SPI busses
handled asynchronously are disabled

SPI_INTERRUPT_MODE Streaming access mode

Description: Specifies the asynchronous mechanism mode for SPI busses handled asynchronously

in LEVEL2.

47

Chapter 10 Application Programming Interface

10.3. Function Definitions
Table 10-1 The APIs provided by the SPI Driver Component

SI. No API’s

API’s specific

1. Spi_Init -

2. Spi_DeInit -

3. Spi_WriteIB -

4. Spi_AsyncTransmit -

5. Spi_ReadIB -

6. Spi_SetupEB -

7. Spi_GetStatus -

8. Spi_GetJobResult -

9. Spi_GetSequenceResult -

10. Spi_GetVersionInfo -

11. Spi_SyncTransmit -

12. Spi_Cancel -

13. Spi_SetAsyncMode -

14. Spi_MainFuncnction_Handling -

15. Spi_GetHWUnitStatus -

48

Development And Production Errors Chapter 11

Chapter 11 Development And Production Errors

In this section the development errors that are reported by the SPI Driver Component
are tabulated. The development errors will be reported only when the pre compiler option
SpiDevErrorDetect is enabled in the configuration. The production code errors are not
supported by SPI Driver Component.

11.1. SPI Driver Component Development Errors

The following table contains the DET errors that are reported by SPI Driver

Component. These errors are reported to Development Error Tracer Module when the SPI
Driver Component APIs are invoked with wrong input parameters or without initialization of
the driver.

Table 11-1 DET Errors Of SPI Driver Component

Sl. No. 1
Error Code SPI_E_PARAM_CHANNEL
Related API(s) Spi_WriteIB, SpiReadIB and Spi_SetupEB
Source of Error When the API service is invoked with invalid channel Id and if incorrect type of channel

(IB or EB) is used with services.
Sl. No. 2
Error Code SPI_E_PARAM_JOB
Related API(s) Spi_GetJobResult
Source of Error When the API service is invoked with invalid job Id.
Sl. No. 3
Error Code SPI_E_PARAM_SEQ
Related API(s) Spi_AsyncTransmit, Spi_GetSequenceResult, Spi_SyncTransmit and Spi_Cancel
Source of Error When the API service is invoked with invalid sequence Id.
Sl. No. 4
Error Code SPI_E_PARAM_LENGTH
Related API(s) Spi_SetupEB
Source of Error When the API service is invoked with length greater than the configured length.
Sl. No. 5
Error Code SPI_E_PARAM_UNIT
Related API(s) Spi_GetHWUnitStatus
Source of Error When the API service is invoked with invalid hardware unit Id.
Sl. No. 6
Error Code SPI_E_SEQ_PENDING
Related API(s) Spi_AsyncTransmit
Source of Error When the API service is invoked in a wrong sequence.
Sl. No. 7
Error Code SPI_E_SEQ_IN_PROCESS
Related API(s) Spi_SyncTransmit
Source of Error When the API service is invoked at wrong time.
Sl. No. 8
Error Code SPI_E_ALREADY_INITIALIZED
Related API(s) Spi_Init
Source of Error When the API Spi_Init is invoked when the SPI driver is already initialized.

49

Chapter 11 Development And Production Errors

Sl. No. 9
Error Code SPI_E_INVALID_DATABASE
Related API(s) Spi_Init
Source of Error When the API service is invoked with invalid pointer.
Sl. No. 10
Error Code SPI_E_UNINIT
Related API(s) Spi_Init, Spi_DeInit, Spi_AsyncTransmit, Spi_Cancel, Spi_GetHWUnitStatus,

Spi_GetJobResult, Spi_GetSequenceResult, Spi_WriteIB, Spi_ReadIB, Spi_SetupEB,
Spi_SyncTransmit and Spi_SetAsyncMode

Source of Error When the APIs are invoked without the initialization of SPI Driver Component.
Sl. No. 11

Error Code SPI_E_PARAM_POINTER

Related API(s) Spi_ReadIB

Source of Error When the API service is invoked with null pointer.
 Note: This error code (SPI_E_PARAM_POINTER) is applicable for Autosar R4.0
only.

Sl. No. 12

Error Code SPI_E_PARAM_CONFIG

Related API(s) Spi_Init

Source of Error When the API invoked with null config pointer.

11.2. SPI Driver Component Production Errors

In this section the DEM errors identified in the SPI Driver Component are listed. SPI Driver
Component reports these errors to DEM by invoking Dem_ReportErrorStatus API. This API is
invoked, when the processing of the given API request fails.

Table 11-2 DEM Errors Of SPI Driver Component

Sl. No. 1
Error Code SPI_E_HARDWARE_ERROR
Related API(s) Spi_SyncTransmit and Spi_AsyncTransmit
Source of Error When an overrun occurs when the next reception starts without performing a CPU

read of the value of the receive buffer, upon completion of the receive operation.
Sl. No. 2
Error Code SPI_E_DATA_TX_TIMEOUT_FAILURE

Related API(s) Spi_SyncTransmit

Source of Error When Hardware data transmit timeout error is detected, This error will be reported to
DEM

50

Memory Organization Chapter 12

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be
met for proper functioning of SPI Driver Component software.

Figure 12-1 SPI Driver Component Driver Organization

ROM Section SPI Driver Component
Library Object es

RAM ect

X1

X2

Y1

Y2

Y3

Tool Generated Files

X4

X5

X6

Y4

SPI Driver code related to APIs are
placed in this memory.
Segment Name:
SPI_PUBLIC_CODE_ROM

SPI Driver code related to internal
functions are placed in this memory
Segment Name:

SPI_PRIVATE_CODE_ROM

Global RAM of unspecific size
required for SPI Driver functioning.

Segment Name:
NOINIT_RAM_UNSPECIFIED

Global 1- bit RAM initialized by
start-Up code.

Segment Name:
RAM_UNSPECIFIED

Global 1-bit RAM to be initialized
by SPI Driver
Segment Name:
NOINIT_RAM_1BIT

The const section (for SPI configuration
structure of Type “Spi_ConfigType”) in
the file Spi_PBcfg.c is placed in this
memory.
Segment Name:
SPI_CFG_DBTOC_UNSPECIFIED

The const section (other than SP I
Configuration structure) in the file
Spi_PBcfg.c is placed in this memory.

Segment name:
SPI_CFG_DATA_UNSPECIFIED

The const section in the file Spi_Lcfg.c,
is placed in this memory.

Segment Name:
CONST_ROM_UNSPECIFIED

Global 8- bit R AM initialized by SPI D
river.

Segment Name:
NOIN IT _ RA M _8 BIT

SPI Driver code related to ISR functions
are placed in this memory
Segment Name:

SPI_FAST_CODE_ROM

X3

Global 16 -bit RAM initialized by SPI
Driver.

Segment Name:
NOINIT_RAM_16 BIT

Global RAM of unspecific size required
for SPI Driver functioning. The
Generation tool allocates this RAM.

Segment Name:
SPI_CFG_RAM_UNSPECIFIED

Y5

51

 Chapter 12 Memory Organization

ROM Section (X1, X2, X3,X4,X5 and X6):
SPI_PUBLIC_CODE_ROM (X1): API(s) of SPI Driver Component, which can
be located in code memory.

SPI_PRIVATE_CODE_ROM (X2): Internal functions of SPI Driver
Component code that can be located in code memory.

 SPI_FAST_CODE_ROM(X3): SPI Driver code related to ISR
functions are placed in this memory Segment Name

SPI_CFG_DBTOC_UNSPECIFIED (X4): This section consists of SPI Driver
Component database table of contents generated by the SPI Driver
Component Generation Tool. This can be located in code memory.

SPI_CFG_DATA_UNSPECIFIED (X5): This section consists of SPI
Driver Component constant configuration structures. This can be located
in code memory.

CONST_ROM_UNSPECIFIED (X6): This section consists of SPI Driver
Component constant structures used for function pointers in SPI Driver
Component. This can be located in code memory.

RAM Section (Y1, Y2, Y3, Y4, Y5 and Y6):

NOINIT_RAM_UNSPECIFIED (Y1): This section consists of the global RAM
variables that are used internally by SPI Driver Component. This can be
located in data memory.

RAM_UNSPECIFIED (Y2): This section consists of the global RAM variables
of 1-bit size that are initialized by start-up code and used internally by SPI
Driver Component. This can be located in data memory.

RAM_1BIT (Y3): This section consists of the global RAM variables of 1-bit size
that are initialized by start-up code and used internally by SPI Driver
Component. The specific sections of respective software components will be
merged into this RAM section accordingly.

NOINIT_RAM_8BIT (Y4): This section consists of the global RAM variables of
8-bit size that are used internally by SPI Driver Component. This can be
located in data memory.

NOINIT_RAM_16BIT (Y5): This section consists of the global RAM variables
of 16-bit size that are used internally by SPI Driver Component. This can be
located in data memory.

SPI_CFG_RAM_UNSPECIFIED (Y6): This section consists of the global
RAM variables that are generated by SPI Driver Component Generation Tool.
This can be located in data memory.
Remark

• X1, X2, Y1, Y2 and Y3 pertain to only SPI Driver Component and do not include memory

occupied by Spi_PBcfg.c or Spi_Lcfg.c file generated by SPI Driver Component Generation Tool.

User must ensure that none of the memory areas overlap with each other. Even ‘debug’ information
should not overlap.

52

P1M Specific Information Chapter 13

Chapter 13 P1M Specific Information

P1M supports following devices:

• R7F701304
• R7F701305
• R7F701310
• R7F701311
• R7F701312
• R7F701313
• R7F701314
• R7F701315
• R7F701318
• R7F701319
• R7F701320
• R7F701321
• R7F701322
• R7F701323

13.1. Interaction Between The User And SPI Driver

Component

The details of the services supported by the SPI Driver Component to the
upper layers users and the mapping of the channels to the hardware units is
provided in the following sections:

13.1.1. Translation Header File

The translation header file supports following devices:

• R7F701304
• R7F701305
• R7F701310
• R7F701311
• R7F701312
• R7F701313
• R7F701314
• R7F701315
• R7F701318
• R7F701319
• R7F701320
• R7F701321
• R7F701322
• R7F701323

13.1.2. Parameter Definition File

Parameter definition files support information for P1M

Table 13-1 PDF information for P1M

PDF Files Devices Supported

R403_SPI_P1M_04_05_12_13_20_21.
arxml

701304,701305,701312,701313,701320,70
1321

53

Chapter 13 P1M Specific Information

R403_SPI_P1M_10_11_14_15_18_19
_22_23.arxml

701310,701311,701314,701315,701318,701
319,701322,701323

13.1.3. ISR Function

The table below provides the list of handler addresses corresponding to the
hardware unit ISR(s) in SPI Driver Component. The user should configure the
ISR functions mentioned below.

Table 13-2 Interrupt Handler

Interrupt Source Name of the ISR Function
INTCSIG0IRE SPI_CSIG0_TIRE_ISR

SPI_CSIG0_TIRE_CAT2_ISR
INTCSIG0IR SPI_CSIG0_TIR_ISR

SPI_CSIG0_TIR_CAT2_ISR
INTCSIG0IC SPI_CSIG0_TIC_ISR

SPI_CSIG0_TIC_CAT2_ISR
INTCSIH0IRE SPI_CSIH0_TIRE_ISR

SPI_CSIH0_TIRE_CAT2_ISR
INTCSIH0IR SPI_CSIH0_TIR_ISR

SPI_CSIH0_TIR_CAT2_ISR
INTCSIH0IC SPI_CSIH0_TIC_ISR

SPI_CSIH0_TIC_CAT2_ISR
INTCSIH0IJC SPI_CSIH0_TIJC_ISR

SPI_CSIH0_TIJC_CAT2_ISR
INTCSIH1IRE SPI_CSIH1_TIRE_ISR

SPI_CSIH1_TIRE_CAT2_ISR
INTCSIH1IR SPI_CSIH1_TIR_ISR

SPI_CSIH1_TIR_CAT2_ISR
INTCSIH1IC SPI_CSIH1_TIC_ISR

SPI_CSIH1_TIC_CAT2_ISR
INTCSIH1IJC SPI_CSIH1_TIJC_ISR

SPI_CSIH1_TIJC_CAT2_ISR
INTCSIH2IRE SPI_CSIH2_TIRE_ISR

SPI_CSIH2_TIRE_CAT2_ISR
INTCSIH2IR SPI_CSIH2_TIR_ISR

SPI_CSIH2_TIR_CAT2_ISR
INTCSIH2IC SPI_CSIH2_TIC_ISR

SPI_CSIH2_TIC_CAT2_ISR
INTCSIH2IJC SPI_CSIH2_TIJC_ISR

SPI_CSIH2_TIJC_CAT2_ISR
INTCSIH3IRE SPI_CSIH3_TIRE_ISR

SPI_CSIH3_TIRE_CAT2_ISR
INTCSIH3IR SPI_CSIH3_TIR_ISR

54

P1M Specific Information Chapter 13

Interrupt Source Name of the ISR Function
SPI_CSIH3_TIR_CAT2_ISR

INTCSIH3IC SPI_CSIH3_TIC_ISR
SPI_CSIH3_TIC_CAT2_ISR

INTCSIH3IJC SPI_CSIH3_TIJC_ISR
SPI_CSIH3_TIJC_CAT2_ISR

Interrupt Source Name of the ISR Function
INTDMA[0-7]

SPI_DMA00_ISR

SPI_DMA00_CAT2_ISR

SPI_DMA01_ISR

SPI_DMA01_CAT2_ISR

SPI_DMA02_ISR

SPI_DMA02_CAT2_ISR

SPI_DMA03_ISR

SPI_DMA03_CAT2_ISR

SPI_DMA04_ISR

SPI_DMA04_CAT2_ISR

SPI_DMA05_ISR

SPI_DMA05_CAT2_ISR

SPI_DMA06_ISR

SPI_DMA06_CAT2_ISR

SPI_DMA07_ISR

SPI_DMA07_CAT2_ISR

13.2. Sample Application
The Sample Application is provided as reference to the user to understand the
method in which the SPI APIs can be invoked from the application.

RH850 Types

Common SPI
sample

application

P1x
Sample

application

STUB
DEM

ST

STUB Os

STUB
SchM

STUB
MCU

Generic

AUTOSAR

55

Chapter 13 P1M Specific Information

Figure 13-1 Overview Of SPI Driver Sample Application

13.3.1. Sample Application Structure

The Sample Application of the P1M is available in the path

The Sample Application consists of the following folder structure

X1X\P1x\modules\spi\definition\<AUTOSAR_version>\

 <SubVariant>\R403_SPI_P1M_04_05_12_13_20_21.arxml
 \R403_SPI_P1M_10_11_14_15_18_19_22_23.arxml

X1X\P1x\modules\spi\sample_application\<SubVariant>\<AUTOSAR_version>

 \src\Spi_Lcfg.c

\src\Spi_PBcfg.c

\inc\Spi_Cfg.h

\inc\Spi_Cbk.h

/config/App_SPI_P1M_701304_Sample.one
/config/App_SPI_P1M_701304_Sample.arxml
/config/App_SPI_P1M_701304_Sample.html

/config/App_SPI_P1M_701305_Sample.one
/config/App_SPI_P1M_701305_Sample.arxml
/config/App_SPI_P1M_701305_Sample.html

 /config/App_SPI_P1M_701310_Sample.one

/config/App_SPI_P1M_701310_Sample.arxml
/config/App_SPI_P1M_701310_Sample.html

/config/App_SPI_P1M_701311_Sample.one
/config/App_SPI_P1M_701311_Sample.arxml
/config/App_SPI_P1M_701311_Sample.html

/config/App_SPI_P1M_701312_Sample.one
/config/App_SPI_P1M_701312_Sample.arxml
/config/App_SPI_P1M_701312_Sample.html

/config/App_SPI_P1M_701313_Sample.one
/config/App_SPI_P1M_701313_Sample.arxml
/config/App_SPI_P1M_701313_Sample.html

/config/App_SPI_P1M_701314_Sample.one
/config/App_SPI_P1M_701314_Sample.arxml
/config/App_SPI_P1M_701314_Sample.html

/config/App_SPI_P1M_701315_Sample.one
/config/App_SPI_P1M_701315_Sample.arxml
/config/App_SPI_P1M_701315_Sample.html

/config/App_SPI_P1M_701318_Sample.one
/config/App_SPI_P1M_701318_Sample.arxml
/config/App_SPI_P1M_701318_Sample.html

/config/App_SPI_P1M_701319_Sample.one
/config/App_SPI_P1M_701319_Sample.arxml
/config/App_SPI_P1M_701319_Sample.html

56

P1M Specific Information Chapter 13

/config/App_SPI_P1M_701320_Sample.one
/config/App_SPI_P1M_701320_Sample.arxml
/config/App_SPI_P1M_701320_Sample.html

/config/App_SPI_P1M_701321_Sample.one
/config/App_SPI_P1M_701321_Sample.arxml
/config/App_SPI_P1M_701321_Sample.html

/config/App_SPI_P1M_701322_Sample.one
/config/App_SPI_P1M_701322_Sample.arxml
/config/App_SPI_P1M_701322_Sample.html

/config/App_SPI_P1M_701323_Sample.one
/config/App_SPI_P1M_701323_Sample.arxml
/config/App_SPI_P1M_701323_Sample.html

In the Sample Application all the SPI APIs are invoked in the following
sequence:

• The API Spi_Init is invoked with a valid database address for the proper
initialization of the SPI Driver, all the SPI Driver control registers and RAM
variables will get initialized after this API is called.

• The API Spi_GetVersionInfo is invoked to get the version of the SPI Driver
module with a variable of Std_VersionInfoType, after the call of this API the
passing parameter will get updated with the SPI Driver version details.

• The API Spi_GetHWUnitStatus will return the status of the specified SPI
Hardware microcontroller peripheral.

• The API Spi_SyncTransmit will transmit data on the SPI bus
synchronously.

• This module will take the passing parameter and set the SPI Driver status
to SPI_BUSY. Also it sets the sequence result to SPI_SEQ_PENDING and
first job result to SPI_JOB_PENDING and performs the transmission.

• The API Spi_SetAsyncMode will set the asynchronous mechanism mode
for SPI busses handled asynchronously.

• The API Spi_MainFunction_Driving is used for Asynchronous transmission
of the sequences in polling mode. This service is should be invoked in a
scheduler loop if the asynchronous transmission mode is selected as

 SPI_POLLING_MODE.

• The API Spi_Cancel will cancel the specified on-going sequence
transmission without canceling any Job transmission and the SPI Driver
will set the sequence result to SPI_SEQ_CANCELLED.

• The API Spi_DeInit is invoked for de-initialization of the all the controls
registers and RAM variables.

13.3.2. Building Sample Application

13.3.2.1. Configuration Example

This section contains the typical configuration which is used for measuring

RAM/ROM consumption, stack depth and throughput details

Configuration Details: App_SPI_P1M_701310_Sample.html

13.3.2.2. Debugging The Sample Application

57

Chapter 13 P1M Specific Information

Remark GNU Make utility version 3.81 or above must be installed and available in the

path as defined by the environment user variable “GNUMAKE” to complete the

build process using the delivered sample files.

• Open a Command window and change the current working directory to
”make” directory present as mentioned in below path:

 “X1X\P1x\common_family\make\<Compiler>”

• Now execute the batch file SampleApp.bat with following parameters

SampleApp.bat Spi 4.0.3 <Device_name>.

• After this, the tool output files will be generated with the configuration as
mentioned in App_SPI_P1M_701310_Sample.html file available in the
path:

“X1X\P1x\modules\spi\sample_application\<SubVariant>\<AUTOSAR_ver
sion>\config\App_SPI_P1M_<Device_Name>_Sample.html”

• After this, all the object files, map file and the executable file

App_Spi_P1M_Sample.out will be available in the output folder:
(“X1X\P1x\modules\spi\sample_application\<SubVariant>
\obj\<Compiler>”)

• The executable can be loaded into the debugger and the sample application
can be executed.

Remark Executable files with ‘*.out’ extension can be downloaded into the target

hardware with the help of Green Hills debugger.

• If any configuration changes (only post-build) are made to the ECU
Configuration Description files

“X1X\P1x\modules\spi\sample_application\<SubVariant>
\<AUTOSAR_version>\config\App_SPI_P1M_<Device_Name>_Sample.arx
ml”

• The database alone can be generated by using the following commands.

make –f App_SPI_P1M_Sample.mak generate_spi_config

make –f App_SPI_P1M_Sample.mak App_SPI_P1M_Sample.s37

After this, a flash able Motorola S-Record file App_SPI_P1M_Sample.s37 is

available in the output folder.

Note: The <Device_name> indicates the device to be compiled, which can
be 701304 or 701305 or 701310 or 701314 or 701315 or 701318 or 701319
or 701320 or 701321 or 701322 or 701323

58

P1M Specific Information Chapter 13

13.3. Memory And Throughput

13.4.1. ROM/RAM Usage

The details of memory usage for the typical configuration, with DET
disabled as provided in Section 13.3.2.1 Configuration Example are provided
in this section.

Table 13-7 ROM/RAM Details without DET

Sl. No. ROM/RAM Segment Name Size in bytes for
701310

1. ROM SPI_PUBLIC_CODE_ROM

SPI_PRIVATE_CODE_ROM

CONST_ROM_UNSPECIFIED

SPI_CFG_DBTOC_UNSPECIFIED

SPI_CFG_DATA_UNSPECIFIED

SPI_FAST_CODE_ROM

1412

4264

100

48

164

 992

2. RAM RAM_UNSPECIFIED

NOINIT_RAM_1BIT

NOINIT_RAM_8BIT

NOINIT_RAM_16BIT

NOINIT_RAM_UNSPECIFIED

SPI_CFG_RAM_UNSPECIFIED

4

5

5

10

90

0

The details of memory usage for the typical configuration, with DET

enabled and all other configurations as provided in13.3.2.1Configuration
Example are provided in this section.

Table 13-8 ROM/RAM Details with DET

Sl. No. ROM/RAM Segment Name Size in bytes for
701310

1. ROM SPI_PUBLIC_CODE_ROM

SPI_PRIVATE_CODE_ROM

CONST_ROM_UNSPECIFIED

SPI_CFG_DBTOC_UNSPECIFIED

SPI_CFG_DATA_UNSPECIFIED

SPI_FAST_CODE_ROM

2432

4264

100

48

164

992

59

Chapter 13 P1M Specific Information

2. RAM RAM_UNSPECIFIED

NOINIT_RAM_1BIT

NOINIT_RAM_8BIT

NOINIT_RAM_16BIT

NOINIT_RAM_UNSPECIFIED

SPI_CFG_RAM_UNSPECIFIED

4

5

5

10

90

0

13.4.2. Stack Depth

The worst-case stack depth for Driver Component is 216 bytes for the
typical configuration provided in Section 13.3.2.1Configuration Example.

13.4.3. Throughput Details

The throughput details of the APIs for the configuration mentioned in
the Section13.3.2.1 Configuration Example. The clock frequency used to
measure the throughput is 160 MHz for all APIs.

Table 13-9 Throughput Details Of The APIs

Sl. No.

API Name Throughput in

microseconds
for 701310

Remarks

1. Spi_Init 3.690

-
2. Spi_DeInit 1.710

-

3. Spi_WriteIB 0.810

-
4. Spi_AsyncTransmit 8.820

-

5. Spi_ReadIB 0.720

-
6. Spi_SetupEB 0.270

-

7. Spi_GetStatus 0.180 -
8. Spi_GetJobResult 0.360 -
9. Spi_GetSequenceResult 0.360 -
10. Spi_GetVersionInfo 0.360

-

11. Spi_SyncTransmit 0.360

-
12. Spi_GetHWUnitStatus 0.180 -
13. Spi_Cancel 0.810 -
14. Spi_SetAsyncMode 0.360 SPI_INTERRUPT

_ MODE
15. Spi_SetAsyncMode 0.360 SPI_POLLING_

MODE
16. Spi_MainFunction_Handling 1.170 -

60

 Release Details Chapter 14

Chapter 14 Release Details

SPI Driver Software

Version: 1.6.0

61

Chapter 14 Release Details

62

Revision History

Sl.No. Description Version Date
1. Initial Version 1.0.0 25-Oct-2013
2. Following changes are made.

1. Chapter 2 is updated for referenced documents version.
2. Section 13.1.1 is updated for adding the device names.
3. Section 13.2 is updated for assembler and linker details.
4. Section 13.3 is updated for naming convention change of

parameter definition files.
5. Chapter 14 is updated for SPI driver component version

information.

1.0.1 28-Jan-2014

3. Following changes are made.

1. In section 13.4.3,Throughput Details are updated.
2. In Section 13.4.1,ROM/RAM Usage are updated.
3. In Section13.3.1,Sample Application Structure API details are

updated.
4. In chapter 5, Architecture Details Spi API are updated.
5. In chapter 14, Release Details Spi software version is updated.

 1.0.2

02-May-2014

4. Following changes are made.

1.Unwanted Device names are removed.
2.In page no 47, header is updated.

1.0.3 12-May-2014

5. Following changes are made.

1. Chapter 4 is updated for CS logs and note is added
regarding general limitation of the serial controllers.
2. Note is added regarding the usage of the parameter
‘SpiCsHoldTiming’ for synchronous transmission.
3. Name of Table 4-4 and 4-5 is updated.
4. Table 4-3, Table 4-4 and Table 4-5 are updated for
Static configuration.
5. Section 4.1, description of parameter ‘SpiTimeOut’ is updated.
6. In Section 4.1 Note is added regarding extended data size
supported by FIFO.
7. Sections 13.4, ROM/RAM and Throughput Details are
updated.
8. Section 4.6 Deviation list is updated.
9. Section 13.2.1, 13.2.2 and 13.2.3 are updated for compiler, linker
and assembler details.
10. Chapter 14, Release Details are updated.
11. Section 11.2 is updated to delete error code
‘SPI_E_SELF_TEST_FAILURE’ for Self-Test and
SPI_E_READBACK_FAILURE for readback.
12. Chapter 12 Memory Organization is updated to correct section
name SPI_START_SEC_CODE_FAST to
SPI_FAST_CODE_ROM.
13. Section 13 is updated for device names and to add Parameter
Definition files section.
14. Chapter 8 is update to include rh850_types.h file
15. In chapter 4 note is added regarding the DMA access for local RAM
area.

1.0.4 27-Oct-2014

63

6. Following changes are made.

1. Section 4.1 is updated to correct the notes and spell checks.
2. Revision history points are corrected

1.0.5 19-Nov-2014

7. Following changes are made:

1.Updated Chapter 2 ‘Reference Documents’ to correct the name and
version of device manual.
2.Information regarding Interrupt vector table has been provided in
section 4.1 ‘General’.
3.In Chapter 13, ’P1M Specific Information’ P1M 4.0.3 supported
devices are updated.
4.Table 13-1 PDF information updated for P1M 4.0.3 supported devices.
5.Section 13.1.1 has been updated to include the translation header file
for all P1M 4.0.3 supporting devices.
6.Updated section 13.3.1 ‘Sample Application Structure’ to add all the
supported devices for P1M 4.0.3.
7.Updated section 13.3.2 ‘Building the Sample Application’ to add
configuration details for the device 701310.
8.Updated section 13.4 ‘Memory and Throughput’ for the device
R7F701310.
9.Updated chapter 14 ‘Release Details’ to correct the SPI driver version.
10.Removed section ‘Compiler, Linker and Assembler’ from chapter 13.
11.Updated table 6.1 in Chapter 6 ‘Registers Details’.

1.0.6 29-April-2015

64

AUTOSAR MCAL R4.0.3 User's Manual
SPI Driver Component Ver.1.0.6
Embedded User’s Manual

Publication Date: Rev.0.02, April 29, 2015

Published by: Renesas Electronics Corporation

SALES OFFICES http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China

Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632

Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2015 Renesas Electronics Corporation. All rights reserved.
 Colophon 1.0

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3

User’s Manual

	Chapter 1 Introduction
	1.1. Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration And Build Process
	3.1. SPI Driver Component Makefile

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. User Mode and Supervisor Mode
	4.4. Memory modes
	4.5. Data Consistency
	4.6. Deviation List

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction Between The User And SPI Driver Component
	7.1. Services Provided By SPI Driver Component To The User

	Chapter 8 SPI Driver Component Header And Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1. Imported Types
	10.1.1. Standard Types
	10.1.2. Other Module Types

	10.2. Type Definitions
	10.2.1. Spi_ConfigType
	10.2.2. Spi_StatusType
	10.2.3. Spi_JobResultType
	10.2.4. Spi_SeqResultType
	10.2.5. Spi_DataType
	10.2.6. Spi_NumberOfDataType
	10.2.7. Spi_ChannelType
	10.2.8. Spi_JobType
	10.2.9. Spi_SequenceType
	10.2.10. Spi_HWUnitType
	10.2.11. Spi_AsyncModeType

	10.3. Function Definitions

	Chapter 11 Development And Production Errors
	11.1. SPI Driver Component Development Errors
	11.2. SPI Driver Component Production Errors

	Chapter 12 Memory Organization
	Chapter 13 P1M Specific Information
	13.1. Interaction Between The User And SPI Driver Component
	13.1.1. Translation Header File
	13.1.2. Parameter Definition File
	13.1.3. ISR Function

	13.2. Sample Application
	13.3.1. Sample Application Structure
	13.3.2. Building Sample Application
	13.3.2.1. Configuration Example
	13.3.2.2. Debugging The Sample Application

	13.3. Memory And Throughput
	13.4.1. ROM/RAM Usage
	13.4.2. Stack Depth
	13.4.3. Throughput Details

	Chapter 14 Release Details

