

XCP Protocol Layer

Technical Reference

Version 1.19.00

Version: 1.19.00

Status: released

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

2 / 105

1 History

Date Version Remarks

2005-01-17 1.00.00 ESCAN00009143: Initial draft
Warning Text added

2005-06-22 1.01.00 FAQ extended: ESCAN00012356, ESCAN00012314
ESCAN00012617: Add service to retrieve XCP state

2005-12-20 1.02.00 ESCAN00013883: Revise Resume Mode

2006-03-09 1.03.00 ESCAN00015608: Support command TRANSPORT_LAYER_CMD
ESCAN00015609: Support XCP on FlexRay Transport Layer

2006-04-24 1.04.00 ESCAN00015913: Correct filenames
Data page banking support of application callback template added

2006-05-08 1.05.00 ESCAN00016263: Describe support of reflected CRC16 CCITT
ESCAN00016159: Add demo disclaimer to XCP Basic

2006-05-29 1.06.00 ESCAN00016226: Support XCP on LIN Transport Layer

2006-07-20 1.07.00 ESCAN00012636: Add configuration with GENy
ESCAN00016956: Support AUTOSAR CRC module

2006-10-26 1.08.00 ESCAN00018115: DPRAM Support only available in XCP Basic
ESCAN00017948: Add paging support
ESCAN00017221: Documentation of reentrant capability of all
functions

2007-01-18 1.09.00 ESCAN00018809: Support data paging on Star12X / Cosmic

2007-05-07 1.10.00 Description of new features added

2007-09-14 1.11.00 Segment freeze mode now supported

2008-07-23 1.12.00 ESCAN00028586: Support of Program_Start callback

ESCAN00017955: Support MIN_ST_PGM

ESCAN00017952: Open Interface for command processing

2008-09-10 1.13.00 Additional pending return value of call backs added

MIN_ST configuration added

2008-12-01 1.14.00 ESCAN00018157: SERV_RESET is not supported

ESCAN00032344: Update of XCP Basic Limitations

2009-05-14 1.15.00 ESCAN00033909: New features implemented: Prog Write Protection,
Timestamps, Calibration activation

2009-07-30 1.15.01 Fixed some editorial errors

2009-11-17 1.15.02 ESCAN00037907: XCP Memory in far RAM

2009-12-17 1.16.00 Support of a2l export

2012-02-20 1.16.01 ESCAN00055216: DAQ Lists can be extended after
START_STOP_SYNCH

2012-08-13 1.17.00 ESCAN00060779: Support for address doubling in XCP for DSP
micros

2013-06-18 1.17.01 ESCAN00068051: Provide an API to detect XCP state and usage

2013-12-10 1.18.00 ESCAN00072503 Support custom CRC Cbk

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

3 / 105

ESCAN00072505 Support Generic GET_ID

2015-03-26 1.19.00 ESCAN00082098 Time Check for DAQ lists

ESCAN00081839 Wrong prototype description for
ApplXcpCheckReadAccess

Please note
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Note for XCP Basic
Please note, that the demo and example programs only show special aspects of the
software. With regard to the fact that these programs are meant for demonstration
purposes only, Vector Informatik’s liability shall be expressly excluded in cases of
ordinary negligence, to the extent admissible by law or statute.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

4 / 105

Contents

1 History ... 2

2 Overview ... 10

2.1 Abbreviations and Items used in this paper .. 10

2.2 Naming Conventions .. 12

3 Functional Description ... 13

3.1 Overview of the Functional Scope .. 13

3.2 Communication Mode Info ... 13

3.3 Block Transfer Communication Model (XCP Professional only) 13

3.4 Slave Device Identification ... 13

3.4.1 XCP Station Identifier ... 13

3.4.2 XCP Generic Identification ... 14

3.5 Seed & Key .. 14

3.6 Checksum Calculation ... 16

3.6.1 Custom CRC calculation .. 16

3.7 Memory Protection (XCP Professional only) .. 16

3.8 Event Codes .. 16

3.9 Service Request Messages (XCP Professional only) 17

3.10 User Defined Command ... 17

3.11 Transport Layer Command .. 18

3.12 Synchronous Data Transfer ... 18

3.12.1 Synchronous Data Acquisition (DAQ) ... 18

3.12.2 DAQ Timestamp ... 18

3.12.3 Power-Up Data Transfer (XCP Professional only) 19

3.12.4 Data Stimulation (STIM) (XCP Professional only)............................. 19

3.12.5 Bypassing (XCP Professional only) .. 19

3.12.6 Data Acquisition Plug & Play Mechanisms 19

3.12.7 Event Channel Plug & Play Mechanism ... 20

3.12.8 Runtime Supervision of DAQ Measurement 20

3.13 The Online Data Calibration Model .. 20

3.13.1 Page Switching .. 20

3.13.2 Page Switching Plug & Play Mechanism .. 21

3.13.3 Calibration Data Page Copying .. 21

3.13.4 Freeze Mode Handling ... 21

3.14 Flash Programming (XCP Professional only) ... 21

3.14.1 Flash Programming by the ECU’s Application 22

3.14.2 Flash Programming with a Flash Kernel ... 22

3.14.3 Flash Programming Write Protection .. 23

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

5 / 105

3.15 EEPROM Access (XCP Professional only) ... 23

3.16 Parameter Check ... 24

3.17 Performance Optimizations .. 24

3.18 Interrupt Locks ... 24

3.19 Accessing internal data .. 24

3.20 En- / Disabling the XCP module ... 25

3.21 Support for address doubling in XCP for DSP micros 25

4 Integration into the Application ... 27

4.1 Files of XCP Professional .. 27

4.2 Files of XCP Basic ... 27

4.3 Version changes .. 28

4.4 Integration of XCP into the Application ... 28

4.4.1 Integration of XCP on CAN (XCP Professional only) 28

4.4.2 Integration with a Proprietary XCP Transport Layer 29

4.4.3 Motorola HC12 with CAN Transport Layer 31

5 Feature List ... 32

6 Description of the API .. 34

6.1 Version of the Source Code ... 34

6.2 XCP Services called by the Application .. 35

6.2.1 XcpInit: Initialization of the XCP Protocol Layer 35

6.2.2 XcpEvent: Handling of a data acquisition event channel 35

6.2.3 XcpStimEventStatus: Check data stimulation events 36

6.2.4 XcpBackground: Background calculation of checksum 37

6.2.5 XcpSendEvent: Transmission of event codes................................... 37

6.2.6 XcpPutchar: Put a char into a service request packet 38

6.2.7 XcpPrint: Transmission of a service request packet 38

6.2.8 XcpDisconnect: Disconnect from XCP master 39

6.2.9 XcpSendCrm: Transmit response or error packet 39

6.2.10 XcpGetXcpDataPointer: Request internal data pointer 40

6.2.11 XcpControl: En- / Disable the XCP module 41

6.2.12 XcpGetVersionInfo: Request module version information 41

6.3 XCP Protocol Layer Functions, called by the XCP Transport Layer 42

6.3.1 XcpCommand: Evaluation of XCP packets and command
interpreter .. 42

6.3.2 XcpSendCallBack: Confirmation of the successful transmission of
a XCP packet ... 43

6.3.3 XcpGetState: Get connection state of XCP 43

6.4 XCP Transport Layer Services called by the XCP Protocol Layer 44

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

6 / 105

6.4.1 ApplXcpSend: Request for the transmission of a DTO or CTO
message .. 44

6.4.2 ApplXcpInit: Perform XCP Transport Layer initialization 45

6.4.3 ApplXcpBackground: XCP Transport Layer background operations . 45

6.4.4 ApplXcpInterruptEnable: Enable interrupts 46

6.4.5 ApplXcpInterruptDisable: Disable interrupts 46

6.4.6 ApplXcpTLService: Transport Layer specific commands 47

6.5 Application Services called by the XCP Protocol Layer 47

6.5.1 ApplXcpGetPointer: Pointer conversion ... 48

6.5.2 ApplXcpGetIdData: Get Identification ... 48

6.5.3 ApplXcpGetSeed: Generate a seed ... 49

6.5.4 ApplXcpUnlock: Valid key and unlock resource 50

6.5.5 ApplXcpCheckReadEEPROM: Check read access from EEPROM . 50

6.5.6 ApplXcpCheckWriteEEPROM: Check write access to the
EEPROM ... 51

6.5.7 ApplXcpCheckWriteAccess: Check address for valid write access ... 52

6.5.8 ApplXcpCheckReadAccess: Check address for valid read access ... 52

6.5.9 ApplXcpCheckDAQAccess: Check address for valid read or write
access.. 53

6.5.10 ApplXcpCheckProgramAccess: Check address for valid write
access.. 53

6.5.11 ApplXcpUserService: User defined command 54

6.5.12 ApplXcpOpenCmdIf: XCP command extension interface 55

6.5.13 ApplXcpSendStall: Resolve a transmit stall condition 55

6.5.14 ApplXcpSendFlush: Flush transmit buffer .. 56

6.5.15 ApplXcpDisableNormalOperation: Disable normal operation of the
ECU ... 56

6.5.16 ApplXcpStartBootLoader: Start of boot loader 57

6.5.17 ApplXcpReset: Perform ECU reset .. 57

6.5.18 ApplXcpProgramStart: Prepare flash programming 58

6.5.19 ApplXcpFlashClear: Clear flash memory .. 58

6.5.20 ApplXcpFlashProgram: Program flash memory 59

6.5.21 ApplXcpDaqResume: Resume automatic data transfer 60

6.5.22 ApplXcpDaqResumeStore: Store DAQ lists for resume mode 60

6.5.23 ApplXcpDaqResumeClear: Clear stored DAQ lists 61

6.5.24 ApplXcpCalResumeStore: Store Calibration data for resume mode . 61

6.5.25 ApplXcpGetTimestamp: Returns the current timestamp 62

6.5.26 ApplXcpRtsStart: Start Trigger for DAQ runtime supervision 62

6.5.27 ApplXcpRtsSnapshot: Trigger for DAQ runtime supervision 63

6.5.28 ApplXcpGetCalPage: Get calibration page 64

6.5.29 ApplXcpSetCalPage: Set calibration page 64

6.5.30 ApplXcpCopyCalPage: Copying of calibration data pages 65

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

7 / 105

6.5.31 ApplXcpSetFreezeMode: Setting the freeze mode of a segment...... 66

6.5.32 ApplXcpGetFreezeMode: Reading the freeze mode of a segment ... 66

6.5.33 ApplXcpReadChecksumValue: Read a single byte from memory
for checksum creation .. 67

6.5.34 ApplXcpRead: Read a single byte from memory 67

6.5.35 ApplXcpWrite: Write a single byte to RAM .. 68

6.5.36 ApplXcpCalculateChecksum: Custom checksum calculation 68

6.6 XCP Protocol Layer Functions that can be overwritten 69

6.6.1 XcpMemCpy: Copying of a memory range 69

6.6.2 XcpMemSet: Initialization of a memory range 70

6.6.3 XcpMemClr: Clear a memory range ... 70

6.6.4 XcpSendDto: Transmission of a data transfer object 71

6.7 AUTOSAR CRC Module Services called by the XCP Protocol Layer (XCP
Professional Only) .. 71

7 Configuration of the XCP Protocol Layer .. 73

7.1 Configuration with GENy (XCP Professional only) ... 73

7.1.1 Component Configuration .. 73

7.2 Configuration without Generation Tool ... 84

7.2.1 Compiler Switches ... 84

7.2.2 Configuration of Constant Definitions ... 87

7.2.3 Definition of Memory Qualifiers .. 89

7.2.4 Configuration of the CPU Type ... 89

7.2.5 Configuration of Slave Device Identification 90

7.2.6 Configuration of the Event Channel Plug & Play Mechanism 91

7.2.7 Configuration of the DAQ Time Stamped Mode 93

7.2.8 Configuration of the Flash Programming Plug & Play Mechanism 94

7.2.9 Configuration of the Page Switching Plug & Play Mechanism 94

8 Resource Requirements... 96

9 Limitations .. 97

9.1 General Limitations .. 97

9.2 Limitations of XCP Basic .. 98

9.3 Limitations Regarding Platforms, Compilers and Memory Models 99

10 FAQ .. 100

10.1 Connection to MCS Not Possible ... 100

10.2 Invalid Time Stamp Unit ... 100

10.3 Support of small and medium memory model .. 100

10.4 Small memory model on ST10 / XC16X / C16X with Tasking Compiler 101

10.5 Data Page Banking on Star12X / Metrowerks .. 101

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

8 / 105

10.6 Memory model banked on Star12X / Cosmic ... 102

10.7 Can XCP memory be placed in far RAM? .. 102

10.8 Reflected CRC16 CCITT Checksum Calculation Algorithm 102

11 Bibliography .. 104

12 Contact .. 105

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

9 / 105

Illustrations

Figure 4-1 Integration of XCP on CAN into the application ... 28
Figure 4-2 Integration of XCP with a proprietary XCP Transport Layer 29
Figure 7-1 Component configuration – General settings .. 74
Figure 7-2 Component configuration – Synchronous Data Acquisition 76
Figure 7-3 Component configuration – Standard Commands 79
Figure 7-4 Component configuration – Checksum ... 80
Figure 7-5 Component configuration – Page Switching ... 81
Figure 7-6 Component configuration – Programming ... 82

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

10 / 105

2 Overview

This document describes the features, API, configuration and integration of the XCP
Protocol Layer. Both XCP versions: XCP Professional and XCP Basic are covered by this
document. Chapters that are only relevant for XCP Professional are marked.

This document does not cover the XCP Transport Layers for CAN, FlexRay and LIN, which
are available at Vector Informatik.
Please refer to [IV] for further information about XCP on CAN and the integration of XCP
on CAN with the Vector CANbedded software components. Further information about XCP
on FlexRay Transport Layer and XCP on LIN Transport Layer can be found in its
documentation.

Please also refer to “The Universal Measurement and Calibration Protocol Family”
specification by ASAM e.V.

The XCP Protocol Layer is a hardware independent protocol that can be ported to almost
any hardware. Due to there are numerous combinations of micro controllers, compilers
and memory models it cannot be guaranteed that it will run properly on any of the above
mentioned combinations.

Please note that in this document the term Application is not used strictly for the user
software but also for any higher software layer, like e.g. a Communication Control Layer.
Therefore, Application refers to any of the software components using XCP.

The API of the functions is described in a separate chapter at the end of this document.
Referred functions are always shown in the single channel mode.

Info
The source code of the XCP Protocol Layer, configuration examples and
documentation are available on the Internet at www.vector-informatik.de in a
functional restricted form.

2.1 Abbreviations and Items used in this paper

Abbreviations Complete expression

A2L File Extension for an ASAM 2MC Language File

AML ASAM 2 Meta Language

API Application Programming Interface

ASAM Association for Standardization of Automation and Measuring Systems

BYP BYPassing

CAN Controller Area Network

CAL CALibration

CANape Calibration and Measurement Data Acquisition for Electronic Control
Systems

http://www.vector-informatik.de/

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

11 / 105

CMD Command

CTO Command Transfer Object

DAQ Synchronous Data Acquistion

DLC Data Length Code (Number of data bytes of a CAN message)

DLL Data link layer

DTO Data Transfer Object

ECU Electronic Control Unit

ERR Error Packet

EV Event packet

ID Identifier (of a CAN message)

Identifier Identifies a CAN message

ISR Interrupt Service Routine

MCS Master Calibration System

Message One or more signals are assigned to each message.

ODT Object Descriptor Table

OEM Original equipment manufacturer (vehicle manufacturer)

PAG PAGing

PID Packet Identifier

PGM Programming

RAM Random Access Memory

RES Command Response Packet

ROM Read Only Memory

SERV Service Request Packet

STIM Stimulation

TCP/IP Transfer Control Protocol / Internet Protocol

UDP/IP Unified Data Protocol / Internet Protocol

USB Universal Serial Bus

XCP Universal Measurement and Calibration Protocol

VI Vector Informatik GmbH

Also refer to ‘AN-AND-1-108 Glossary of CAN Protocol Terminology.pdf’, which can be
found in the download area of http://www.vector-informatik.de.

http://www.vector-group.net/support/appnotes/AN-AND-1-108_glossary_of_can_protocol_terminology.pdf
http://www.vector-informatik.de/

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

12 / 105

2.2 Naming Conventions

The names of the access functions provided by the XCP Protocol Layer always start with a

prefix that includes the characters Xcp. The characters Xcp are surrounded by an

abbreviation which refers to the service or to the layer which requests a XCP service. The
designation of the main services is listed below:

Naming conventions

Xcp… It is mandatory to use all functions beginning with Xcp…
These services are called by either the data link layer or the application.
They are e.g. used for the initialization of the XCP Protocol Layer and for the
cyclic background task.

ApplXcp... The functions, starting with ApplXcp… are functions that are provided

either by any XCP Transport Layer or the application and are called by the
XCP Protocol Layer.

These services are user callback functions that are application specific and have
to be implemented depending on the application.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

13 / 105

3 Functional Description

3.1 Overview of the Functional Scope

The Universal Measurement and Calibration Protocol (XCP) is standardized by the
European ASAM working committee for standardization of interfaces used in calibration
and measurement data acquisition. XCP is a higher level protocol used for communication
between a measurement and calibration system (MCS, i.e. CANape) and an electronic
control unit (ECU).

3.2 Communication Mode Info

In order to gather information about the XCP Slave device, e.g. the implementation version
number of the XCP Protocol Layer and supported communications models, the

communication mode info can be enabled by the switch XCP_ENABLE_COMM_MODE_INFO.

3.3 Block Transfer Communication Model (XCP Professional only)

In the standard communication model, each request packet is responded by a single
response packet or an error packet. To speed up memory uploads, downloads and flash
programming the XCP commands UPLOAD, DOWNLOAD and PROGRAM support a
block transfer mode similar to ISO/DIS 15765-2.

In the Master Block Transfer Mode can the master transmit subsequent (up to the
maximum block size MAX_BS) request packets to the slave without getting any response
in between. The slave responds after transmission of the last request packet of the block.

In Slave Block Transfer Mode can the slave respond subsequent (there is no limitation) to
a request without any more requests in between.

Refer to chapter 7.2.1 for configuration details.

3.4 Slave Device Identification

3.4.1 XCP Station Identifier

The XCP station identifier is an ASCII string that identifies the ECU’s software program
version.

The MCS can interpret this identifier as file name for the ECU database. The ECU
developer should change the XCP station identifier with each program change. This will
prevent database mix-ups and grant the correct access of measurement and calibration
objects from the MCS to the ECU. Another benefit of the usage of the XCP station
identifier is the automatic assignment of the correct ECU database at program start of the
MCS via the plug & play mechanism. The plug & play mechanism prevents the user from
selecting the wrong ECU database.

Refer to chapter 7.2.5.1 (Identification by ASAM-MC2 Filename without Path and
Extension) for configuration details.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

14 / 105

3.4.2 XCP Generic Identification

The XCP provides a generic mechanism for identification by the GET_ID command. For
this purpose a call-back exist which can be implemented by the user to provide the
requested information. The following function

vuint32 ApplXcpGetIdData(MTABYTEPTR *pData, vuint8 id) (6.5.2)

has to set a pointer to the identification information based on the requested id and return
the length of this information.
Refer to chapter 7.2.5.2 for an example implementation.

3.5 Seed & Key

The seed and key feature allows individual access protection for calibration, flash
programming, synchronous data acquisition and data stimulation. The MCS requests a
seed (a few data bytes) from the ECU and calculates a key based on a proprietary
algorithm and sends it back to the ECU.

The seed & key functionality can be enabled with the switch XCP_ENABLE_SEED_KEY and

disabled XCP_DISABLE_SEED_KEY in order to save ROM. Also refer to chapter 7.2.1.

The application callback function

vuint8 ApplXcpGetSeed(MEMORY_ROM vuint8 resourceMask, BYTEPTR

seed) (6.5.3)

return a seed that is transferred to the MCS. The callback function

vuint8 ApplXcpUnlock(MEMORY_ROM vuint8 *key, MEMORY_ROM vuint8

length) (6.5.4)

has to verify a received key and if appropriate return the resource that shall be unlocked.

Annotation for the usage of CANape

The calculation of the key is done in a DLL named SEEDKEY1.DLL, which is developed by
the ECU manufacturer and which must be located in the EXEC directory of CANape.
CANape can access the ECU only if the ECU accepts the key. If the key is not valid, the
ECU is locked.

Example Implementation for SEEDKEY1.DLL

The function call of ASAP1A_XCP_ComputeKeyFromSeed() is standardized by the ASAM
committee.

Example

FILE SEEDKEY1.H

#ifndef _SEEDKEY_H_

#define _SEEDKEY_H_

#ifndef DllImport

#define DllImport __declspec(dllimport)

#endif

#ifndef DllExport

#define DllExport __declspec(dllexport)

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

15 / 105

#endif

#ifdef SEEDKEYAPI_IMPL

#define SEEDKEYAPI DllExport __cdecl

#else

#define SEEDKEYAPI DllImport __cdecl

#endif

#ifdef __cplusplus

extern "C" {

#endif

BOOL SEEDKEYAPI ASAP1A_XCP_ComputeKeyFromSeed(BYTE *seed,
 unsigned short sizeSeed,

 BYTE *key,

 unsigned short maxSizeKey,

 unsigned short *sizeKey

);

#ifdef __cplusplus

}

#endif

#endif

FILE SEEDKEY1.C

#include <windows.h>

#define SEEDKEYAPI_IMPL

#include "SeedKey1.h"

extern "C" {

BOOL SEEDKEYAPI ASAP1A_XCP_ComputeKeyFromSeed(BYTE *seed,

 unsigned short sizeSeed,

 BYTE *key,

 unsigned short maxSizeKey,

 unsigned short *sizeKey

)

{ // in that example sizeSeed == 4 is expected only

 if(sizeSeed != 4) return FALSE;

 if(maxSizeKey < 4) return FALSE;

 ((unsigned long)key) *= 3;

 ((unsigned long)key) &= 0x55555555;

 ((unsigned long)key) *= 5;

 *sizeKey = 4;

 return TRUE;

 }

}

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

16 / 105

3.6 Checksum Calculation

The XCP Protocol Layer supports calculation of a checksum over a specific memory
range. The XCP Protocol Layer supports all XCP ADD algorithms and the CRC16CCITT
checksum calculation algorithm.

XCP Professional allows the usage of the AUTOSAR CRC Module [VII]. If the AUTOSAR
CRC Module is used also the XCP CRC32 algorithm can be used.

Also refer to 7.2.2.1 ‘Table of Checksum Calculation Methods’.

If checksum calculation is enabled the background task

vuint8 XcpBackground(void) (6.2.4)

has to be called cyclically.

3.6.1 Custom CRC calculation

The Protocol Layer also allows the calculation of the CRC by the application. For this the
call-back:

vuint8 ApplXcpCalculateChecksum(ROMBYTEPTR pMemArea, BYTEPTR

pRes, vuint32 length)

is called. This call-back can either calculate the checksum synchronously and return

XCP_CMD_OK or it can trigger the calculation and return XCP_CMD_PENDING for asynchronous
calculation of the checksum. In every case the response frame has to be assembled.

3.7 Memory Protection (XCP Professional only)

If XCP_ENABLE_WRITE_PROTECTION is defined write access of specific RAM areas can

be checked with the function

vuint8 ApplXcpCheckWriteAccess(MTABYTEPTR addr, vuint8 size)(6.5.7)

It should only be used, if write protection of memory areas is required.

If XCP_ENABLE_READ_PROTECTION is defined read access of specific RAM areas can be

checked with the function

vuint8 ApplXcpCheckReadAccess(MTABYTEPTR addr, vuint32 size)(6.5.8)

It should only be used, if read protection of memory areas is required.

While the first two functions are used during polling, the following function is used for
DAQ/STIM access:

vuint8 ApplXcpCheckDAQAccess(DAQBYTEPTR addr, vuint8 size)(6.5.9)

These functions can be used to protect memory areas that are not allowed to be
accessed, e.g. memory mapped registers or the xcp memory itself.

3.8 Event Codes

The slave device may report events to the master device by sending asynchronous event
packets (EV), which contain event codes, to the master device. The transmission is not
guaranteed due to these event packets are not acknowledged.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

17 / 105

The transmission of event codes is enabled with XCP_ENABLE_SEND_EVENT. The

transmission is done by the service

void XcpSendEvent(vuint8 evc, MEMORY_ROM BYTEPTR c, vuint8 len

) (6.2.5)

The event codes can be found in the following table.

Event Code Description

EV_RESUME_MODE 0x00 The slave indicates that it is starting in RESUME mode.

EV_CLEAR_DAQ 0x01 The slave indicates that the DAQ configuration in non-
volatile memory has been cleared.

EV_STORE_DAQ 0x02 The slave indicates that the DAQ configuration has been
stored into non-volatile memory.

EV_STORE_CAL 0x03 The slave indicates that the calibration data has been
stored.

EV_CMD_PENDING 0x05 The slave requests the master to restart the time-out
detection.

EV_DAQ_OVERLOAD 0x06 The slave indicates an overload situation when
transferring DAQ lists.

EV_SESSION_TERMINATED 0x07 The slave indicates to the master that it autonomously
decided to disconnect the current XCP session.

EV_USER 0xFE User-defined event.

EV_TRANSPORT 0xFF Transport layer specific event.

3.9 Service Request Messages (XCP Professional only)

The slave device may request some action to be performed by the master device. This is
done by the transmission of a Service Request Packet (SERV) that contains the service
request code. The transmission of service request packets is asynchronous and not
guaranteed due to these packets are not being acknowledged.

The service request messages can be sent by the following functions

void ApplXcpUserService (MEMORY_ROM vuint8 c) (6.2.6)

void ApplXcpPrint (MEMORY_ROM vuint8 *str) (6.2.7)

Refer to 7.2.1 for the configuration of the service request message.

3.10 User Defined Command

The XCP Protocol allows having a user defined command with an application specific
functionality. The user defined command is enabled by setting

XCP_ENABLE_USER_COMMAND and upon reception of the user command the following

callback function is called by the XCP command processor:

vuint8 ApplXcpUserService (MEMORY_ROM BYTEPTR pCmd) (6.5.11)

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

18 / 105

3.11 Transport Layer Command

The transport layer commands are received by the XCP Protocol Layer and processed by
the XCP Transport Layer. The XCP Protocol Layer transmits the XCP response packets
(RES) or XCP error packets (ERR).

The transport layer command is enabled by setting XCP_ENABLE_TL_COMMAND.

Upon reception of any transport layer command the following callback function is called by
the XCP command processor:

vuint8 ApplXcpTLService (MEMORY_ROM BYTEPTR pCmd) (6.4.6)

3.12 Synchronous Data Transfer

3.12.1 Synchronous Data Acquisition (DAQ)

The synchronous data transfer can be enabled with the compiler switch

XCP_ENABLE_DAQ. In this mode, the MCS configures tables of memory addresses in the

XCP Protocol Layer. These tables contain pointers to measurement objects, which have
been configured previously for the measurement in the MCS. Each configured table is
assigned to an event channel.

The function XcpEvent(x) has to be called cyclically for each event channel with the

corresponding event channel number as parameter. The application has to ensure that

XcpEvent is called with the correct cycle time, which is defined in the MCS. Note that the

event channel numbers have to start at 0 and have to be continuous.

The ECU automatically transmits the current value of the measurement objects via

messages to the MCS, when the function XcpEvent is executed in the ECU’s code with

the corresponding event channel number. This means that the data can be transmitted at
any particular point of the ECU code when the data values are valid.

The data acquisition mode can be used in multiple configurations that are described within
the next chapters.

Annotation for the usage of CANape

It is recommended to enable both data acquisition plug & play mechanisms to detect the
DAQ settings.

3.12.2 DAQ Timestamp

There are two methods to generate timestamps for data acquisition signals.

1. By the MCS tool on reception of the message

2. By the ECU (XCP slave)

The time precision of the MCS tool is adequate for the most applications; however, some
applications like the monitoring of the OSEK operating system require higher precision
timestamps. In such cases, ECU generated timestamps are recommended.

For the configuration of the DAQ time stamped mode refer to chapter 7.2.7 (Configuration
of the DAQ Time Stamped Mode).

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

19 / 105

3.12.3 Power-Up Data Transfer (XCP Professional only)

Power-up data transfer (also called resume mode) allows automatic data transfer (DAQ,
STIM) of the slave directly after power-up. Automotive applications would e.g. be
measurements during cold start.

The slave and the master have to store all the necessary communication parameters for
the automatic data transfer after power-up. Therefore the following functions have to be
implemented in the slave.

vuint8 ApplXcpDaqResume (tXcpDaq * daq) (6.5.21)

void ApplXcpDaqResumeStore (MEMORY_ROM tXcpDaq * daq) (6.5.22)

void ApplXcpDaqResumeClear (void) (6.5.23)

vuint8 ApplXcpCalResumeStore (void) (6.5.24)

To use the resume mode the compiler switches XCP_ENBALE_DAQ and

XCP_ENABLE_RESUME_MODE have to be defined.

Annotation for the usage of CANape

Start the resume mode with the menu command Measurement|Start and push the button
“Measure offline” on the dialog box.

3.12.4 Data Stimulation (STIM) (XCP Professional only)

Synchronous Data Stimulation is the inverse mode of Synchronous Data Acquisition.

The STIM processor buffers incoming data stimulation packets. When an event occurs

(XcpEvent is called), which triggers a DAQ list in data stimulation mode, the buffered data

is transferred to the slave device’s memory.

To use data stimulation the compiler switches XCP_ENBALE_DAQ and XCP_ENABLE_STIM

have to be defined.

3.12.5 Bypassing (XCP Professional only)

Bypassing can be realized by making use of Synchronous Data Acquisition (DAQ) and
Synchronous Data Stimulation (STIM) simultaneously.

State-of-the-art Bypassing also requires the administration of the bypassed functions. This
administration has to be performed in a MCS like e.g. CANape.

Also the slave should perform plausibility checks on the data it receives through data
stimulation. The borders and actions of these checks are set by standard calibration
methods. No special XCP commands are needed for this.

3.12.6 Data Acquisition Plug & Play Mechanisms

The XCP Protocol Layer comprises two plug & play mechanisms for data acquisition:

> general information on the DAQ processor

(enabled with XCP_ENABLE_DAQ_PROCESSOR_INFO)

> general information on DAQ processing resolution

(enabled with XCP_ENABLE_DAQ_RESOLUTION_INFO)

The general information on the DAQ processor contains:

> general properties of DAQ lists

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

20 / 105

> total number of available DAQ lists and event channels

The general information on the DAQ processing resolution contains:

> granularity and maximum size of ODT entries for both directions

> information on the time stamp mode

3.12.7 Event Channel Plug & Play Mechanism

The XCP Protocol Layer supports a plug & play mechanism that allows the MCS to
automatically detect the available event channels in the slave.

Please refer to chapter 7.2.6 (Configuration of the Event Channel Plug & Play Mechanism)
for details about the configuration of this plug & play mechanism.

Annotation for the usage of CANape

If the plug & play mechanism is not built-in, you must open the dialog XCP Device Setup
with the menu command Tools|Driver parameters. Go to the Event tab. Make one entry for

each event channel. An event channel is an XcpEvent(x) function call in ECU source

code.

3.12.8 Runtime Supervision of DAQ Measurement

To prevent OS timeouts caused by huge runtime of the XcpEvent function due to extensive
DAQ lists it is possible to enable a Runtime Supervision feature. If this feature is enabled
the following application call-backs are called during DAQ assembly:

void ApplXcpRtsStart (void) (6.5.26)

vuint8 ApplXcpRtsSnapshot (void) (6.5.27)

The first function is called to catch the initial timer value at measurement start. The second
function is called for each ODT during DAQ assembly to check whether a timer threshold
is exceeded. Depending on the return value of this function the current operation is either
continued or aborted. In case it is aborted a DAQ overrun is memorized to be sent to the
XCP Master with the next valid ODT.

The given examples, located in xcp_appl.c, are based on a 16bit timer and must be
adapted by the user.

3.13 The Online Data Calibration Model

3.13.1 Page Switching

The MCS can switch between a flash page and a RAM page. The XCP command
SET_CAL_PAGE is used to activate the required page. The page switching is enabled with

the XCP_ENABLE_CALIBRATION_PAGE definition.

The following application callback functions have to be implemented:

vuint8 ApplXcpGetCalPage (vuint8 segment, vuint8 mode) (6.5.28)

vuint8 ApplXcpSetCalPage (vuint8 segment, vuint8 page, vuint8

mode) (6.5.29)

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

21 / 105

Annotation for the usage of CANape

Open the dialog XCP Device Setup with the menu command Tools|Driver Configuration.
Go to the tab “FLASH”. Activate page switching. Enter a flash selector value e.g. 1 and a
Ram selector e.g. 0.

3.13.2 Page Switching Plug & Play Mechanism

The MCS can be automatically configured if the page switching plug & play mechanism is
used. This mechanism comprises

> general information about the paging processor

Also refer to chapter 7.2.9 (Configuration of the Page Switching Plug & Play Mechanism)
and to the XCP Specification [II].

The page switching plug & play mechanism is enabled with the switch

XCP_ENBALE_PAGE_INFO.

3.13.3 Calibration Data Page Copying

Calibration data page copying is performed by the XCP command COPY_CAL_PAGE. To

enable this feature the compiler switch XCP_ENABLE_PAGE_COPY has to be set.

For calibration data page copying the following application callback function has to be
provided by the application:

vuint8 ApplXcpCopyCalPage(vuint8 srcSeg, vuint8 srcPage,

vuint8 destSeg, vuint8 destPage) (6.5.30)

3.13.4 Freeze Mode Handling

Freeze mode handling is performed by the XCP commands SET_SEGMENT_MODE and
GET_SEGMENT_MODE. To enable this feature the compiler switch

XCP_ENABLE_PAGE_FREEZE has to be set.

For freeze mode handling the following application callback functions have to be provided
by the application:

void ApplXcpSetFreezeMode(vuint8 segment, vuint8 mode) (6.5.31)

vuint8 ApplXcpGetFreezeMode(vuint8 segment) (6.5.32)

3.14 Flash Programming (XCP Professional only)

There are two methods available for the programming of flash memory.

> Flash programming by the ECU’s application

> Flash programming with a flash kernel

Depending on the hardware it might not be possible to reprogram an internal flash sector,
while a program is running from another sector. In this case the usage of a special flash
kernel is necessary.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

22 / 105

3.14.1 Flash Programming by the ECU’s Application

If the internal flash has to be reprogrammed and the microcontroller allows to
simultaneously reprogram and execute code from the flash the programming can be
performed with the ECU’s application that contains the XCP. This method is also used for
the programming of external flash.

The flash programming is done with the following XCP commands PROGRAM_START,
PROGRAM_RESET, PROGRAM_CLEAR, PROGRAM, PROGRAM_NEXT,
PROGRAM_MAX, PROGRAM_RESET, PROGRAM_FORMAT1, PROGRAM_VERIFY2.

The flash prepare, flash program and the clear routines are platform dependant and
therefore have to be implemented by the application.

vuint8 ApplXcpProgramStart(void) (6.5.18)

vuint8 ApplXcpFlashClear(MTABYTEPTR a, vuint32 size) (6.5.19)

vuint8 ApplXcpFlashProgram(MEMORY_ROM BYTEPTR data,

MTABYTEPTR a, vuint8 size) (6.5.20)

The flash programming is enabled with the switch XCP_ENABLE_PROGRAM.

Annotation for the usage of CANape

Open the dialog XCP Device Setup with the menu command Tools|Driver Configuration.
Go to the tab “FLASH” and select the entry “Direct” in the flash kernel drop down list.

3.14.1.1 Flash Programming Plug & Play Mechanism

The MCS (like e.g. CANape) can get information about the Flash and the Flash
programming process from the ECU. The following information is provided by the ECU:

> number of sectors, start address or length of each sector

> the program sequence number, clear sequence number and programming method

> additional information about compression, encryption

Also refer to chapter 7.2.8 (Configuration of the Flash Programming Plug & Play
Mechanism) and to the XCP Specification [II].

The flash programming plug & play mechanism is enabled with the switch

XCP_ENABLE_PROGRAM_INFO.

3.14.2 Flash Programming with a Flash Kernel

A flash kernel has to be used for the flash programming if it is not possible to
simultaneously reprogram and execute code from the flash. Even though the
reprogrammed sector and the sector the code is executed from are different sectors.

The application callback function

vuint8 ApplXcpDisableNormalOperation(MTABYTEPTR a, vuint16

size) (6.5.15)

is called prior to the flash kernel download in the RAM. Within this function the normal
operation of the ECU has to be stopped and the flash kernel download can be prepared.

1
 Command not supported

2
 Command not supported

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

23 / 105

Due to the flash kernel is downloaded in the RAM typically data gets lost and no more
normal operation of the ECU is possible.

The flash programming with a flash kernel is enabled with the switch

XCP_ENABLE_BOOTLOADER_DOWNLOAD.

Annotation for the usage of CANape

The flash kernel is loaded by CANape Graph into the microcontroller’s RAM via XCP
whenever the flash memory has to be reprogrammed. The flash kernel contains the
necessary flash routines, its own CAN-Driver and XCP Protocol implementation to
communicate via the CAN interface with CANape Graph.

Every flash kernel must be customized to the microcontroller and the flash type being
used. CANape already includes some flash kernels for several microcontrollers. There is
also an application note available by Vector Informatik GmbH that describes the
development of a proprietary flash kernel.

Open the dialog XCP Device Setup with the menu command Tools|Driver Configuration.
Go to the tab “FLASH”, and select in the ‘flash kernel’ drop down list, the corresponding fkl
file for the microcontroller being used.

3.14.3 Flash Programming Write Protection

If XCP_ENABLE_PROGRAMMING_WRITE_PROTECTION is defined write access of specific

FLASH areas can be checked with the function

vuint8 ApplXcpCheckProgramAccess(MTABYTEPTR addr, vuint8 size)(6.5.10)

It should only be used, if write protection of flash areas is required.

3.15 EEPROM Access (XCP Professional only)

For uploading data from the ECU to a MCS the XCP commands SHORT_UPLOAD and

UPLOAD are used. The switch XCP_ENABLE_READ_EEPROM allows EEPROM access for

these commands.

Before reading from an address it is checked within the following callback function whether
EEPROM or RAM is accessed:

vuint8 ApplXcpCheckReadEEPROM

(MTABYTEPTR addr, vuint8 size, BYTEPTR data) (6.5.5)

The EEPROM access is directly performed within this function.

For downloading data from the MCS to the ECU the XCP commands
SHORT_DOWNLOAD, DOWNLOAD, DOWNLOAD_NEXT and DOWNLOAD_MAX can be

used. The switch XCP_ENABLE_WRITE_EEPROM allows the EEPROM access for these

commands.

Also before writing to an address within the following callback function it is checked
whether EEPROM or RAM is accessed

vuint8 ApplXcpCheckWriteEEPROM

(MTABYTEPTR addr, vuint8 size, MEMORY_ROM BYTEPTR data

) (6.5.6)

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

24 / 105

3.16 Parameter Check

As long as the XCP Protocol Layer is not thoroughly tested together with the XCP
Transport Layer and the application, the parameter check should be enabled. This is done

by setting the compiler switch XCP_ENABLE_PARAMETER_CHECK.

The parameter check should be removed in order to save code space.

3.17 Performance Optimizations

The XCP Protocol Layer is a platform comprehensive higher software layer and therefore
platform specific optimizations are not implemented. However it is possible to apply
platform specific optimizations.

The memory following memory access functions can be overwritten by either macros or
functions:

void XcpMemCpy(DAQBYTEPTR dest,

MEMORY_ROM DAQBYTEPTR src, vuint16 n) (6.6.1)

void XcpMemSet(BYTEPTR p, vuint16 n, vuint8 b) (6.6.2)

static void XcpMemClr(BYTEPTR p, vuint16 n) (6.6.3)

It is recommended to use DMA access as far as possible for faster execution of these
services.

The transmission of data transfer objects (DTO) could also be optimized e.g. by using
DMA. Therefore the following function has to be overwritten

void XcpSendDto(const xcpDto_t *dto) (6.6.4)

The above listed functions can be overwritten by defining a macro with the functions name
that is included in the XCP Protocol Layer component.

3.18 Interrupt Locks

The functions XcpEvent, XcpSendCallBack, XcpBackground and XcpCommand are

not reentrant. If one of these functions may interrupt one of the others, the functions or

macros ApplXcpInterruptEnable (6.4.4) and ApplXcpInterruptDisable (6.4.5)

have to be defined to protect critical sections in the code from being interrupted. The XCP
Protocol Layer will not nest the sections with disabled interrupts. The time periods are as

short as possible, but note that ApplXcpSend is called with disabled interrupts!

3.19 Accessing internal data

The function

void XcpGetXcpDataPointer (RAM tXcpData ** pXcpData) (6.2.10)

provides access to the internal data structure of the XCP module. By means of this
function the internal data can be preset to a certain value. This can be used to process a
measurement further that has been started in application mode but is finished in boot
mode.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

25 / 105

As the whole data can be accessed, it must be handled with care.

3.20 En- / Disabling the XCP module

The function

void XcpControl (vuint8 command) (6.2.11)

can be used to en- or disable the XCP module during run time. Thus the XCP functionality
can be controlled by the application. The parameter “command” is either

kXcpControl_Disable to disable the Xcp or kXcpControl_Enable to enable it again.

Note

Please note that when XcpControl is called all APIs are disabled but the

state of the XCP remains. Thus a running DAQ list is continued after the XCP is
enabled again. If you want to prevent this, don’t use XcpControl to enable the

XCP again but use the Xcp_Init and <BusXcp>_Init functions to initialize the
XCP.

3.21 Support for address doubling in XCP for DSP micros

In order to support DSP µC that do not support Byte access the XCP provides a
mechanism called “address doubling”. If this feature is used all addresses received from
the tool must be doubled in order to access the physical address. CANape does this
automatically if a coff file for TMS320 is used as map file. If other tools are used this must
be done manually in the a2l file. This also means that the addresses for user callbacks are
doubled and must be divided by 2 to access the physical address. With an even virtual
address the high byte of the physical address is accessed. With an odd virtual address the
low byte of the physical address is accessed.

The affected APIs are:

- ApplXcpFlashClear (6.5.19)

- ApplXcpFlashProgram (6.5.20)

- ApplXcpCheckReadAccess (6.5.8)

- ApplXcpCheckProgramAccess (6.5.10)

- ApplXcpDisableNormalOperation (6.5.15)

- ApplXcpCheckWriteAccess (6.5.7)

- ApplXcpCheckReadEEPROM (6.5.5)

- ApplXcpCheckWriteEEPROM (6.5.6)

- ApplXcpCheckDAQAccess (6.5.9)

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

26 / 105

APIs which are not affected:

- ApplXcpReadChecksumValue (6.5.33)

- ApplXcpGetSeed (6.5.3)

- ApplXcpUnlock (6.5.4)

- ApplXcpGetIdData (6.5.2)

- ApplXcpUserService (6.5.11)

- ApplXcpOpenCmdIf (6.5.12)

- ApplXcpWrite (6.5.35)

- ApplXcpRead (6.5.34)

The following features/switches are not supported if “address doubling is used”:

- XCP_ENABLE_CALIBRATION_MEM_ACCESS_BY_APPL

- XCP_ENABLE_MODIFY_BITS

Also character arrays can not be measured as there is no way for XCP to know that it is
reading a character array.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

27 / 105

4 Integration into the Application

This chapter describes the steps for the integration of the XCP Protocol Layer into an
application environment of an ECU.

4.1 Files of XCP Professional

The XCP Protocol Layer consists of the following files.

Files of the XCP Protocol Layer

XcpProf.c XCP Professional source code.
This file must not be changed by the user!

XcpProf.h API of XCP Professional.
This file must not be changed by the user!

_xcp_appl.c Template that contains the application callback functions of the XCP
Protocol Layer. It is just an example and has to be customized.

v_def.h General Vector definitions of memory qualifiers and types.
This file must not be changed by the application!

Additionally the following files are generated by the generation tool GENy. If no generation
tool or if CANgen is used the XPC Protocol Layer has to be customized manually. In this
case the following files will be available as template.

Files generated by GENy

xcp_cfg.h XCP Protocol Layer configuration file.

xcp_par.c Parameter definition for the XCP Protocol Layer.

xcp_par.h External declarations for the parameters.

v_cfg.h General Vector configuration file for platform specifics.

v_inc.h General header for including the Vector CANbedded stacks headers.

Note that all files of XCP Professional must not be changed manually!

4.2 Files of XCP Basic

The XCP Protocol Layer consists of the following files:

Files of the XCP Protocol Layer

XcpBasic.c XCP Basic source code.
This file must not be changed by the application!

XcpBasic.h API of XCP Basic.
This file must not be changed by the application!

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

28 / 105

xcp_cfg.h Configuration file template for the XCP Protocol Layer.
It is just an example and has to be customized.

xcp_par.c Template with parameter definitions for the XCP Protocol Layer.
It is just an example and has to be customized

xcp_par.h Template with external declarations for the parameters.
It is just an example and has to be customized

4.3 Version changes

Changes and the release versions of the XCP Protocol Layer are listed at the beginning of
the header and source code.

4.4 Integration of XCP into the Application

4.4.1 Integration of XCP on CAN (XCP Professional only)

The Vector CANbedded stack includes optionally XCP on CAN, which comprises the XCP
Protocol Layer in conjunction with the XCP on CAN Transport Layer and the CAN-Driver.
Note that the CAN-Driver, which is distributed as a separate product, is only partly part of
XCP on CAN.

The following figure shows the interface between XCP on CAN and the application:

XCP on CAN

XCP

Protocol Layer

(XcpProf.c)

XCP on CAN

Interface Layer

(xcp_can.c)

XcpCommand

Application

ApplXcpSend

XcpSendCallback

XcpEvent

XcpInit

XcpBackground

ApplXcp..

CAN Driver

(can_drv.c)

Figure 4-1 Integration of XCP on CAN into the application

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

29 / 105

Practical Procedure

The integration of XCP on CAN can be done by following these steps:

1. Configure XCP on CAN in the generation tool GENy and generate.

2. Include the include header file v_inc.h into all modules that access the

XCP on CAN services or provide services that XCP on CAN uses.

3. Add all source files and generated source files in the make file and link it
together with the data link layer and the application.

4. Initialize the data link layer after each reset during start-up before
initializing XCP on CAN (interrupts have to be disabled until the complete

initialization procedure is done) by calling XcpInit.

5. If required call the background function XcpBackground cyclically.

6. Integrate the desired XCP on CAN services into your application. Call

especially the function XcpEvent(channel) cyclic with the appropriate

cycle time and channel number.

The XCP on CAN sources must not be changed for the integration into the
application.

4.4.2 Integration with a Proprietary XCP Transport Layer

The XCP Protocol Layer needs a XCP Transport Layer to transmit and receive XCP
protocol messages on the communication link (CAN, FlexRay, Ethernet, SxI, …) that is
used. The free Vector XCP Protocol Layer implementation does not include the XCP
Transport Layer, which typically is strongly ECU dependant. However the Vector XCP on
CAN software components already includes the XCP Transport Layer for CAN.

The following figure shows the interface between the transport layer and the protocol layer.

XCP

Protocol Layer

(XcpBasic.c)

XCP Transport Layer

XcpCommand

Application - XCPTransport Layer interface

Application

ApplXcpSend

XcpSendCallback

XcpEvent

XcpInit

XcpBackground

ApplXcp..

Figure 4-2 Integration of XCP with a proprietary XCP Transport Layer

The transport layer driver has to notify the protocol layer after reception of a XCP protocol

message by calling the protocol layer function XcpCommand().

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

30 / 105

The protocol layer will use the function ApplXcpSend() of the transport layer to transmit

a command response message or a data acquisition message.

After the message has been transmitted successfully, the transport layer has to call the

function XcpSendCallBack() of the protocol layer to indicate this.

The functions XcpInit(), XcpEvent() and XcpBackground() are called from the

ECU’s application program.

The function ApplXcpGetPointer() is used by the protocol layer to convert a 32 Bit

address with an address extension to a valid pointer.

Depending on the optional features that can be enabled upon demand further application
callback functions are necessary. All application functions are indicated in Figure 4-2 by

their prefix ApplXcp….

Example

The following C pseudo code example shows the required software handshake between
the protocol layer and the transport layer. The example uses a simple transport layer
definition where the length of the protocol message is transmitted in the first byte of the
protocol packet:

/* Initialization */

XcpInit();

/* Main Loop */

for (;;) {

 /* Packet received */

 if (Message received) {

 XcpCommand(&ReceiveBuffer[1]);

 }

 /* Transmit Message Buffer available */

 if (Message transmitted) {

 XcpSendCallBack();

 }

 /* Background Processing */

 XcpBackground();

}

/* Transmit Function */

void ApplXcpSend(vuint8 len, MEMORY_ROM BYTEPTR msg) {

 TransmitBuffer[0] = len; /* This is transport layer

specific */

 memcpy(&TransmitBuffer[1],msg,len);

 Transmit(TransmitBuffer);

}

/* Pointer Conversion */

MTABYTEPTR ApplXcpGetPointer(vuint8 addr_ext, vuint32 addr) {

 Return (BYTE*)addr;

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

31 / 105

}

4.4.3 Motorola HC12 with CAN Transport Layer

See the application note “AN-IMC-1-007_Integration_of_the_Vector_XCP_Driver
with_a_free_CAN_Driver_v1.0.0_EN.pdf” which explains in detail how to integrate the
Vector basic XCP driver into an HC12 microcontroller with an existing CAN driver.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

32 / 105

5 Feature List

This general feature list describes the overall feature set of the XCP Protocol Layer. Not all
of these features are available in XCP Basic. Please also refer to 9.2 “Limitations of XCP
Basic”.

Description of the XCP functionality Version Functions

Initialization

Initialization Prof, Basic XcpInit

ApplXcpInit

Task

Background task Prof, Basic ApplXcpBackground

XcpBackground

XCP Command Processor

Command Processor Prof, Basic XcpCommand

Transmission and Confirmation of XCP Packets Prof, Basic ApplXcpSend

XcpSendCallBack

Transmission of Response packets Prof, Basic XcpSendCrm

Transmission of XCP Packets Prof, Basic ApplXcpSendStall

ApplXcpSendFlush

XCP Commands

Get Identification Prof, Basic ApplXcpGetIdData

Seed & Key Prof, Basic ApplXcpGetSeed

ApplXcpUnlock

Short Download Prof -

Modify Bits Prof -

Write DAQ Multiple Prof ApplXcpCheckDAQAccess

Transport Layer Command Prof -

Open Command Interface Prof -

User command Prof, Basic ApplXcpUserService

Data Acquisition (DAQ)

Synchronous Data Acquisition and Stimulation Prof, Basic XcpEvent

ApplXcpCheckDAQAccess

DAQ Timestamp Prof, Basic ApplXcpGetTimestamp

Resume Mode Prof ApplXcpDaqResume

ApplXcpDaqResumeStore

ApplXcpDaqResumeClear

ApplXcpCalResumeStore

Online Data Calibration

Calibration page switching Prof, Basic ApplXcpGetCalPage

ApplXcpSetCalPage

Copy calibration page Prof, Basic ApplXcpCopyCalPage

Freeze Mode Prof, Basic ApplXcpSetFreezeMode

ApplXcpGetFreezeMode

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

33 / 105

Boot loader Download

Disable normal operation of ECU Prof ApplXcpDisableNormalOpera

tion

Start of the boot loader Prof ApplXcpStartBootLoader

Flash Programming

Reset of ECU Prof ApplXcpReset

Clear flash memory Prof ApplXcpFlashClear

Prepare flash programming Prof ApplXcpProgramStart

Program flash memory Prof ApplXcpFlashProgram

Special Features

Interrupt Control Prof, Basic ApplXcpInterruptEnable

ApplXcpInterruptDisable

Event Codes Prof XcpSendEvent

Service Request Packets Prof XcpPutchar

XcpPrint

Disconnect XCP Prof, Basic ApplXcpDisconnect

Pointer conversion Prof, Basic ApplXcpGetPointer

EEPROM access Prof ApplXcpCheckReadEEPROM

ApplXcpCheckWriteEEPROM

Write protection Prof ApplXcpCheckWriteAccess

Read protection Prof ApplXcpCheckReadAccess

Overwriteable macros Prof, Basic XcpMemCpy

XcpMemSet

XcpMemClr

XcpSendDto

En- / Disabling XCP module Prof XcpControl

Access to internal data Prof XcpGetXcpDataPointer

En-/Disable Calibration Prof -

Programming Write Protection Prof ApplXcpCheckProgramAccess

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

34 / 105

6 Description of the API

The XCP Protocol Layer application programming interface consists of services, which are
realized by function calls. These services are called wherever they are required. They
transfer information to- or take over information from the XCP Protocol Layer. This
information is stored in the XCP Protocol Layer until it is not required anymore,
respectively until it is changed by other operations.

Examples for calling the services of the XCP Protocol Layer can be found in the
description of the services.

6.1 Version of the Source Code

The source code version of the XCP Protocol Layer is provided by three BCD coded
constants:

 V_MEMROM0 MEMORY_ROM vuint8 kCp_XcpMainVersion =

(vuint8)(CP_XCP_VERSION >> 8);

 V_MEMROM0 MEMORY_ROM vuint8 kCp_XcpSubVersion =

(vuint8)(CP_XCP_ VERSION);

 V_MEMROM0 MEMORY_ROM vuint8 kCp_XcpReleaseVersion =

(vuint8)(CP_XCP_RELEASE_VERSION);

Example
Version 1.00.00 is registered as:

kCp_XcpMainVersion = 0x01;

kCp_XcpSubVersion = 0x00;

kCp_XcpReleaseVersion = 0x00;

These constants are declared as external and can be read by the application at any time.

Alternatively the Version can be obtained with the GetVersionInfo API if enabled:

void XcpGetVersionInfo (Std_VersionInfoType *XcpVerInfoPtr) (6.2.12)

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

35 / 105

6.2 XCP Services called by the Application

The following XCP services that are called by the application are all not reentrant. If they
are called within interrupt context at least the CAN-Interrupts have to be disabled.

6.2.1 XcpInit: Initialization of the XCP Protocol Layer

XcpInit

Prototype

Single Channel

Single Receive Channel void XcpInit (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

This service initializes the XCP Protocol Layer and its internal variables. It must be called from the
application program before any other XCP function is called.

Particularities and Limitations

> Call context: Task and interrupt level

> This service function has to be called after the initialization of XCP Transport Layer.

> The global interrupts have to be disabled while this service function is executed. This function
should be called during initialization of the ECU before the interrupts have been enabled
before.

6.2.2 XcpEvent: Handling of a data acquisition event channel

XcpEvent

Prototype

Single Channel

Single Receive Channel vuint8 XcpEvent (vuint8 event)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

event Number of event channels to process

The event channel numbers have to start at 0 and have to be
continuous. The range is: 0..x

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

36 / 105

Return code

vuint8 XCP_EVENT_NO : Inactive (DAQ not running, Event not configured)

XCP_EVENT_DAQ : DAQ active */

XCP_EVENT_DAQ_OVERRUN : DAQ queue overflow

XCP_EVENT_STIM : STIM active

XCP_EVENT_STIM_OVERRUN : STIM data not available

Functional Description

Calling XcpEvent with a particular event channel number triggers the sampling and transmission
of all DAQ lists that are assigned to this event channel.

The event channels are defined by the ECU developer in the application program. An MCS (e.g.
CANape) must know about the meaning of the event channel numbers. These are usually
described in the tool configuration files or in the interface specific part of the ASAM MC2 (ASAP2)
database.

Example:

A motor control unit may have a 10ms, a 100ms and a crank synchronous event channel. In this
case, the three XcpEvent calls have to be placed at the appropriate locations in the ECU’s
program:

xcpEvent (0); /* 10ms cycle */
xcpEvent (1); /* 100ms cycle */
xcpEvent (2); /* Crank synchronous cycle */

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> Data acquisition has to be enabled: XCP_ENABLE_DAQ has to be defined

> Call context: Task and interrupt level (not reentrant)

6.2.3 XcpStimEventStatus: Check data stimulation events

XcpStimEventStatus

Prototype

Single Channel

Single Receive Channel vuint8 XcpStimEventStatus (vuint8 event, vuint8 action)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

event Event channel number

action STIM_CHECK_ODT_BUFFER : check ODT buffer

STIM_RESET_ODT_BUFFER : reset ODT buffer

Return code

vuint8 0 : stimulation data not available

1 : new stimulation data is available

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

37 / 105

Functional Description

Check if data stimulation (STIM) event can perform or delete the buffers.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> Data acquisition has to be enabled: XCP_ENABLE_STIM has to be defined

> Call context: Task and interrupt level (not reentrant)

6.2.4 XcpBackground: Background calculation of checksum

XcpBackground

Prototype

Single Channel

Single Receive Channel vuint8 XcpBackground (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

vuint8 0 : background calculation finished

1 : background calculation is still in progress

Functional Description

If the XCP command for the calculation of the memory checksum has to be used for large memory
areas, it might not be appropriate to block the processor for a long period of time. Therefore, the

checksum calculation is divided into smaller sections that are handled in XcpBackground.

Therefore XcpBackground should be called periodically whenever the ECU’s CPU is idle.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly

> Call context: Task level

6.2.5 XcpSendEvent: Transmission of event codes

XcpSendEvent

Prototype

Single Channel

Single Receive Channel void XcpSendEvent (vuint8 evc,
MEMORY_ROM BYTEPTR c,
vuint8 len)

Multi Channel

Indexed not supported

Code replicated not supported

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

38 / 105

Parameter

evc event code

c pointer to event data

len event data length

Return code

- -

Functional Description

Transmission of event codes via event packets (EV).

Please refer to chapter 3.8 Event Codes.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> Data acquisition has to be enabled: XCP_ENABLE_SEND_EVENT has to be defined

> Call context: Task and interrupt level

6.2.6 XcpPutchar: Put a char into a service request packet

XcpPutchar

Prototype

Single Channel

Single Receive Channel void XcpPutchar (MEMORY_ROM vuint8 c)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

c character that is put in a service request packet

Return code

- -

Functional Description

Put a char into a service request packet (SERV).

The service request packet is transmitted if either the maximum packet length is reached (the
service request message packet is full) or the character 0x00 is out in the service request packet.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> The switch XCP_ENABLE_SERV_TEXT_PUTCHAR has to be defined

> Call context: Task and interrupt level (not reentrant)

6.2.7 XcpPrint: Transmission of a service request packet

XcpPrint

Prototype

Single Channel

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

39 / 105

Single Receive Channel void XcpPrint (MEMORY_ROM vuint8 *str)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

str pointer to a string that is terminated by 0x00

Return code

- -

Functional Description

Transmission of a service request packet (SERV).

The string str is sent via service request packets. The string has to be terminated by 0x00.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> The switch XCP_ENABLE_SERV_TEXT_PRINT has to be defined

> Call context: Task and interrupt level (not reentrant)

6.2.8 XcpDisconnect: Disconnect from XCP master

XcpDisconnect

Prototype

Single Channel

Single Receive Channel void XcpDisconnect (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

If the XCP slave is connected to a XCP master a call of this function discontinues the connection
(transition to disconnected state). If the XCP slave is not connected this function performs no
action.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> Call context: Task and interrupt level (not reentrant)

6.2.9 XcpSendCrm: Transmit response or error packet

XcpSendCrm

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

40 / 105

Prototype

Single Channel

Single Receive Channel void XcpSendCrm (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

Transmission of a command response packet (RES), or error packet (ERR) if no other packet is
pending.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly, XCP is in connected state and a
command packet (CMD) has been received.

> Call context: Task and interrupt level (not reentrant)

6.2.10 XcpGetXcpDataPointer: Request internal data pointer

XcpGetXcpDataPointer

Prototype

Single Channel

Single Receive Channel void XcpGetXcpDataPointer (RAM tXcpData ** pXcpData)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

pXcpData pointer to store the pointer to the module internal data

Return code

- -

Functional Description

With this function the pointer to the module internal data can be received. With this pointer the
internal variable can be set to a certain configuration (e.g. after entering a boot mode where no
connection shall be established again). As this pointer allows the access to all internal data it must
be handled with care.

Particularities and Limitations

> The switch XCP_ENABLE_GET_XCP_DATA_POINTER has to be defined

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

41 / 105

6.2.11 XcpControl: En- / Disable the XCP module

XcpControl

Prototype

Single Channel

Single Receive Channel void XcpControl (vuint8 command)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

command parameter to either en- or disable the module

kXcpControl_Disable: disable the module

kXcpControl_Enable: enable the module

Return code

- -

Functional Description

With this function the whole module can be en- or disabled. After initialization the module is
enabled. A call with parameter kXcpControl_Enable does not lead to any changed behavior. After
call with parameter kXcpControl_Disable each function either called by the application or by the
transport layer is directly left without any handling.

Thus this function can be used to disable the XCP functionality during runtime.

Particularities and Limitations

> The switch XCP_ENABLE_CONTROL has to be defined

6.2.12 XcpGetVersionInfo: Request module version information

XcpGetVersionInfo

Prototype

Single Channel

Single Receive Channel void XcpGetVersionInfo (Std_VersionInfoType *XcpVerInfoPtr)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

XcpVerInfoPtr Pointer to the location where the Version information shall be stored.

Return code

- -

Functional Description

With this service it is possible to get the version information of this software module.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

42 / 105

Particularities and Limitations

 The switch XCP_ENABLE_VERSION_INFO_API has to be defined

> Call context: task level (Re-entrant)

6.3 XCP Protocol Layer Functions, called by the XCP Transport Layer

For using the following functions there are some limitations which have to be taken into
consideration – especially when using an operation system like, i.e. OSEK OS:

> The ISR level for the transmission and reception of CAN messages has to be the same.

> Interrupts must be mutually

> No nested calls of these functions are allowed. (i.e. these functions are not reentrant)

All functions provided by the application must match the required interfaces. This can be
ensured by including the header file in the modules which provide the required functions. If
these interfaces do not match unexpected run-time behavior may occur.

6.3.1 XcpCommand: Evaluation of XCP packets and command interpreter

XcpCommand

Prototype

Single Channel

Single Receive Channel void XcpCommand (MEMORY_ROM vuint32* pCommand)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

pCommand Pointer to the XCP protocol message, which must be extracted from
the XCP protocol packet.

Return code

- -

Functional Description

Every time the XCP Transport Layer receives a XCP CTO Packet this function has to be called.
The parameter is a pointer to the XCP protocol message, which must be extracted from the XCP
protocol packet.

Particularities and Limitations

> The XCP Protocol Layer has to be initialized correctly.

> Call context: Task and interrupt level (not reentrant)

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

43 / 105

6.3.2 XcpSendCallBack: Confirmation of the successful transmission of a XCP
packet

XcpSendCallBack

Prototype

Single Channel

Single Receive Channel vuint8 XcpSendCallBack (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

vuint8 0 : if the XCP Protocol Layer is idle (no transmit messages are

pending)

Functional Description

The XCP Protocol Layer does not call ApplXcpSend again, until XcpSendCallBack has

confirmed the successful transmission of the previous message. XcpSendCallBack transmits

pending data acquisition messages by calling ApplXcpSend again.

Note that if XcpSendCallBack is called from inside ApplXcpSend a recursion occurs, which

assumes enough space on the call stack.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly.

> Call context: Task and interrupt level (not reentrant)

6.3.3 XcpGetState: Get connection state of XCP

XcpGetState

Prototype

Single Channel

Single Receive Channel vuint8 XcpGetState (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

XCP_CONNECTED XCP is connected

XCP_DISCONNECTED XCP is disconnected

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

44 / 105

Functional Description

Get the connection state of the XCP Protocol Layer.

E.g. this service is used by the XCP on CAN Transport Layer to determine the connection state in
case multiple CAN channels are used.

Particularities and Limitations

> The XCP Protocol Layer has to be initialized correctly.

> Call context: Task and interrupt level (not reentrant)

> Enabled/Disabled by XCP_xxx_GET_CONNECTION_STATE

6.4 XCP Transport Layer Services called by the XCP Protocol Layer

The prototypes of the functions that are required by the XCP Protocol Layer can be found in the
component’s header.

6.4.1 ApplXcpSend: Request for the transmission of a DTO or CTO message

ApplXcpSend

Prototype

Single Channel

Single Receive Channel void ApplXcpSend (vuint8 len, MEMORY_ROM BYTEPTR msg)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

len Length of message data

msg Pointer to message

Return code

vuint8 0 : if the XCP Protocol Layer is idle (no transmit messages are

pending)

Functional Description

Requests for the transmission of a command transfer object (CTO) or data transfer object (DTO).

XcpSendCallBack must be called after the successful transmission of any XCP message. The

XCP Protocol Layer will not request further transmissions, until XcpSendCallBack has been

called.

Particularities and Limitations

> Call context: Task and interrupt level (not reentrant)

> ApplXcpSend is not defined as macro

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

45 / 105

6.4.2 ApplXcpInit: Perform XCP Transport Layer initialization

ApplXcpInit

Prototype

Single Channel

Single Receive Channel void ApplXcpInit (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

Initializations of the XCP Transport Layer.

This function is required by XCP on CAN if no CAN transmit queue is used.

Particularities and Limitations

> Call context: Task and interrupt level (context of XcpInit)

> ApplXcpInit is not defined as macro

6.4.3 ApplXcpBackground: XCP Transport Layer background operations

ApplXcpBackground

Prototype

Single Channel

Single Receive Channel void ApplXcpBackground (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

Performs background operations of the XCP Transport Layer.

This function is required by XCP on CAN if no CAN transmit queue is used.

Particularities and Limitations

> Call context: Task and interrupt level (context of XcpBackground)

> ApplXcpBackground is not defined as macro

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

46 / 105

6.4.4 ApplXcpInterruptEnable: Enable interrupts

ApplXcpInterruptEnable

Prototype

Single Channel

Single Receive Channel void ApplXcpInterruptEnable (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

Enabling of the global interrupts.

Particularities and Limitations

> XCP is initialized correctly

> Call context: Task and interrupt level

> This function is reentrant!

> The function ApplXcpInterruptEnable can be overwritten by the macro

ApplXcpInterruptEnable.

6.4.5 ApplXcpInterruptDisable: Disable interrupts

ApplXcpInterruptDisable

Prototype

Single Channel

Single Receive Channel void ApplXcpInterruptDisable (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

Disabling of the global interrupts.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

47 / 105

Particularities and Limitations

> XCP is initialized correctly

> Call context: Task and interrupt level

> This function is reentrant!

> The function ApplXcpInterruptDisable can be overwritten by the macro

ApplXcpInterruptDisable.

6.4.6 ApplXcpTLService: Transport Layer specific commands

ApplXcpTLService

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpTLService (MEMORY_ROM BYTEPTR pCmd)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

pCmd Pointer to COMMAND that has been received by the XCP Slave.

Return code

vuint8 XCP_CMD_OK : Done

XCP_CMD_PENDING : Call XcpSendCrm() when done

XCP_CMD_SYNTAX : Error

XCP_CMD_BUSY : not executed

XCP_CMD_UNKNOWN : not implemented optional command

XCP_CMD_OUT_OF_RANGE : command parameters out of range

Functional Description

Transport Layer specific command that is processed within the XCP Transport Layer.

Particularities and Limitations

> XCP is initialized correctly

> Call context: Task and interrupt level

> The switch XCP_ENABLE_TL_COMMAND has to be defined

6.5 Application Services called by the XCP Protocol Layer

The prototypes of the functions that are required by the XCP Protocol Layer can be found
in the header.

The XCP Protocol Layer provides application callback functions in order to perform
application and hardware specific tasks.

Note: All services within this chapter are called from task or interrupt level. All services are
not reentrant.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

48 / 105

6.5.1 ApplXcpGetPointer: Pointer conversion

ApplXcpGetPointer

Prototype

Single Channel

Single Receive Channel MTABYTEPTR ApplXcpGetPointer (vuint8 addr_ext, vuint32 addr)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

addr_ext 8 bit address extension

addr 32 bit address

Return code

MTABYTEPTR Pointer to the address specified by the parameters

Functional Description

This function converts a memory address from XCP format (32-bit address plus 8-bit address
extension) to a C style pointer. An MCS like CANape usually reads this memory addresses from
the ASAP2 database or from a linker map file.

The address extension may be used to distinguish different address spaces or memory types. In
most cases, the address extension is not used and may be ignored.

This function is used for memory transfers like DOWNLOAD and UPLOAD.

Example:

The following code shows an example of a typical implementation of ApplXcpGetPointer:

MTABYTEPTR ApplXcpGetPointer(vuint8 addr_ext, vuint32 addr)

{

 return (MTABYTEPTR)addr;

}

Particularities and Limitations

> XCP is initialized correctly and in connected state

> This function can be overwritten by defining ApplXcpGetPointer as macro.

6.5.2 ApplXcpGetIdData: Get Identification

ApplXcpGetIdData

Prototype

Single Channel

Single Receive Channel vuint32 ApplXcpGetIdData (MTABYTEPTR *pData, vuint8 id)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

pData Returns to identification information

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

49 / 105

id Id of requested information

Return code

vuint32 length of the identification information

Functional Description

Returns a pointer to a pointer of MAP file names.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_GET_ID_GENERIC has to be defined

6.5.3 ApplXcpGetSeed: Generate a seed

ApplXcpGetSeed

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpGetSeed (MEMORY_ROM vuint8 resource,
 BYTEPTR seed)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

Resource Resource for which the seed has to be generated

XCP Professional and XPC Basic

RM_CAL_PAG : to unlock the resource calibration/paging

RM_DAQ : to unlock the resource data acquisition

XCP Professional only

RM_STIM : to unlock the resource stimulation

RM_PGM : to unlock the resource programming

Seed Pointer to RAM where the seed has to be generated to.

Return code

vuint8 The length of the generated seed that is returned by seed.

Functional Description

Generate a seed for the appropriate resource.

The seed has a maximum length of MAX_CTO-2 bytes.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_SEED_KEY has to be defined

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

50 / 105

6.5.4 ApplXcpUnlock: Valid key and unlock resource

ApplXcpUnlock

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpUnlock (MEMORY_ROM vuint8 *key,
 MEMORY_ROM vuint8 length)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

key Pointer to the key.

length Length of the key.

Return code

vuint8 XCP Professional and XPC Basic

0 : if the key is not valid

RM_CAL_PAG : to unlock the resource calibration/paging

RM_DAQ : to unlock the resource data acquisition

XCP Professional only

RM_STIM : to unlock the resource stimulation

RM_PGM : to unlock the resource programming

Functional Description

Check the key and return the resource that has to be unlocked.

Only one resource may be unlocked at one time.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_SEED_KEY has to be defined

6.5.5 ApplXcpCheckReadEEPROM: Check read access from EEPROM

ApplXcpCheckReadEEPROM

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpCheckReadEEPROM (MTABYTEPTR addr,
 vuint8 size,
 BYTEPTR data)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

addr Address that is checked

size Number of bytes

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

51 / 105

data Pointer to data
(if the address is on the EEPROM the data is written here)

Return code

vuint8 0 : This is not EEPROM

1 : Read from EEPROM

Functional Description

Checks whether the address lies within the EEPROM memory or in the RAM area.

If the area is within the EEPROM area size data byte are read from addr and written to data.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_READ_EEPROM has to be defined

6.5.6 ApplXcpCheckWriteEEPROM: Check write access to the EEPROM

ApplXcpCheckWriteEEPROM

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpCheckWriteEEPROM (MTABYTEPTR addr,
 vuint8 size,
 MEMORY_ROM BYTEPTR data)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

addr Address that is checked

size number of bytes

data pointer to data

(if addr is on the EEPROM this data is written to addr)

Return code

vuint8 XCP_CMD_OK : EEPROM written

XCP_CMD_DENIED : This is not EEPROM

XCP_CMD_PENDING : EEPROM write in progress, call XcpSendCrm

 when done

Functional Description

Checks whether the address addr is within the EEPROM memory. If not, the function returns

XCP_CMD_DENIED. If it lies within, EEPROM programming is performed. The function may return

during programming with XCP_CMD_PENDING or may wait until the programming sequence has

finished and then returns with XCP_CMD_OK.

If the programming sequence has finished, the XcpSendCrm function must be called.

XcpSendCrm is an internal function of the XCP Protocol Layer.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

52 / 105

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_WRITE_EEPROM has to be defined

6.5.7 ApplXcpCheckWriteAccess: Check address for valid write access

ApplXcpCheckWriteAccess

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpCheckWriteAccess (MTABYTEPTR address,
 vuint8 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

address address

size number of bytes

Return code

vuint8 0 : if access is denied

>= 1 : if access is granted

Functional Description

Check addresses for valid write access. A write access is enabled with the

XCP_ENABLE_WRITE_PROTECTION, it should be only used, if write protection of memory

areas is required

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_WRITE_PROTECTION has to be defined

> Can be overwritten by the macro ApplXcpCheckWriteAccess

6.5.8 ApplXcpCheckReadAccess: Check address for valid read access

ApplXcpCheckReadAccess

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpCheckReadAccess (MTABYTEPTR address,
 vuint32 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

address address

size number of bytes

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

53 / 105

Return code

vuint8 0 : if access is denied

>= 1 : if access is granted

Functional Description

Check addresses for valid read access. A read access is enabled with the

XCP_ENABLE_READ_PROTECTION, it should be only used, if read protection of memory areas

is required

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_READ_PROTECTION has to be defined

> Can be overwritten by the macro ApplXcpCheckReadAccess

6.5.9 ApplXcpCheckDAQAccess: Check address for valid read or write access

ApplXcpCheckDAQAccess

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpCheckDAQAccess (DAQBYTEPTR address,
 vuint8 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

address address

size number of bytes

Return code

vuint8 XCP_CMD_DENIED : if access is denied

XCP_CMD_OK : if access is granted

Functional Description

Check addresses for valid read or write access. This callback is called when a WRITE_DAQ
command is performed. Therefore it is not possible to know whether this is a read or write
access. Out of this reason this unified function is called.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_READ_PROTECTION or XCP_ENABLE_WRITE_PROTECTION has to

be defined

6.5.10 ApplXcpCheckProgramAccess: Check address for valid write access

ApplXcpCheckProgramAccess

Prototype

Single Channel

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

54 / 105

Single Receive Channel vuint8 ApplXcpCheckProgramAccess (MTABYTEPTR address,
 vuint8 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

address address

size number of bytes

Return code

vuint8 0 : if access is denied

>= 1 : if access is granted

Functional Description

Check addresses for valid write access. A write access is enabled with the

XCP_ENABLE_PROGRAMMING_WRITE_PROTECTION, it should be only used, if write protection

of memory areas is required

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_PROGRAMMING_WRITE_PROTECTION has to be defined

> Can be overwritten by the macro ApplXcpCheckWriteAccess

6.5.11 ApplXcpUserService: User defined command

ApplXcpUserService

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpUserService (MEMORY_ROM BYTEPTR pCmd)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

pCmd Pointer to XCP command packet

Return code

vuint8 XCP_CMD_OK : positive response

XCP_CMD_PENDING : Call XcpSendCrm() when done

XCP_CMD_SYNTAX : negative response

Functional Description

Application specific user command.

Please refer to 3.10 User Defined Command.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

55 / 105

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_USER_COMMAND has to be defined

6.5.12 ApplXcpOpenCmdIf: XCP command extension interface

ApplXcpOpenCmdIf

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpOpenCmdIf (MEMORY_ROM BYTEPTR pCmd

BYTEPTR pRes, BYTEPTR pLength)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

pCmd Pointer to COMMAND that has been received by the XCP Slave.

pRes Pointer to response buffer that will be sent by the XCP Slave.

pLength Number of bytes that will be sent in the response.

Return code

vuint8 XCP_CMD_OK : Done

XCP_CMD_PENDING : Call XcpSendCrm() when done

XCP_CMD_ERROR : Error

Functional Description

Call back that can be used to extend the XCP commands of the XCP protocol layer.

Particularities and Limitations

> XCP is initialized correctly

> Call context: Task and interrupt level

> The switch XCP_ENABLE_OPENCMDIF has to be defined

6.5.13 ApplXcpSendStall: Resolve a transmit stall condition

ApplXcpSendStall

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpSendStall (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

56 / 105

Return code

vuint8 0 : if not successful

> 0 : successful

Functional Description

Resolve a transmit stall condition in XcpPutchar or XcpSendEvent.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_SEND_EVENT or XCP_ENABLE_SERV_TEXT_PUTCHAR and

XCP_ENABLE_SEND_QUEUE are defined

> The function can be overwritten by the macro ApplXcpSendStall()

6.5.14 ApplXcpSendFlush: Flush transmit buffer

ApplXcpSendFlush

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpSendFlush (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

Flush the transmit buffer if there is one implemented in ApplXcpSend.

This function can be overwritten by a macro.

Particularities and Limitations

> The function can be overwritten by the macro ApplXcpSendFlush()

6.5.15 ApplXcpDisableNormalOperation: Disable normal operation of the ECU

ApplXcpDisableNormalOperation

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpDisableNormalOperation (MTABYTEPTR a,
 vuint16 size)

Multi Channel

Indexed not supported

Code replicated not supported

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

57 / 105

Parameter

a Address (where the flash kernel is downloaded to)

size Size (of the flash kernel)

Return code

vuint8 XCP_CMD_OK : download of flash kernel confirmed

XCP_CMD_DENIED : download of flash kernel refused

Functional Description

Prior to the flash kernel download has the ECU’s normal operation to be stopped in order to
avoid misbehavior due to data inconsistencies.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_BOOTLOADER_DOWNLAOD has to be defined

6.5.16 ApplXcpStartBootLoader: Start of boot loader

ApplXcpStartBootLoader

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpStartBootLoader (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

vuint8 This function should not return.

0 : negative response

> 0 : positive response

Functional Description

Start of the boot loader.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_BOOTLOADER_DOWNLAOD has to be defined

6.5.17 ApplXcpReset: Perform ECU reset

ApplXcpReset

Prototype

Single Channel

Single Receive Channel void ApplXcpReset (void)

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

58 / 105

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

Perform an ECU reset after reprogramming of the application.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_PROGRAM has to be defined

6.5.18 ApplXcpProgramStart: Prepare flash programming

ApplXcpProgramStart

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpProgramStart (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

vuint8 XCP_CMD_OK : Preparation done

XCP_CMD_PENDING : Call XcpSendCrm() when done

XCP_CMD_ERROR : Flash programming not possible

Functional Description

Prepare the ECU for flash programming.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_PROGRAM has to be defined

6.5.19 ApplXcpFlashClear: Clear flash memory

ApplXcpFlashClear

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

59 / 105

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpFlashClear (MTABYTEPTR address,
 vuint32 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

address Address

size Size

Return code

vuint8 XCP_CMD_OK : Flash memory erase done

XCP_CMD_PENDING : Call XcpSendCrm() when done

XCP_CMD_ERROR : Flash memory erase error

Functional Description

Clear the flash memory, before the flash memory will be reprogrammed.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_PROGRAM has to be defined

6.5.20 ApplXcpFlashProgram: Program flash memory

ApplXcpFlashProgram

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpFlashProgram (MEMORY_ROM BYTEPTR data,
 MTABYTEPTR address,
 vuint8 size)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

data Pointer to data

address Address

size Size

Return code

vuint8 XCP_CMD_OK : Flash memory programming finished

XCP_CMD_PENDING : Flash memory programming in progress.

 XcpSendCrm has to be called when done.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

60 / 105

Functional Description

Program the cleared flash memory.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switch XCP_ENABLE_PROGRAM has to be defined

6.5.21 ApplXcpDaqResume: Resume automatic data transfer

ApplXcpDaqResume

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpDaqResume (tXcpDaq * daq)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

daq Pointer to dynamic DAQ list structure

Return code

vuint8 0 : failed

>0 : Ok

Functional Description

Resume the automatic data transfer.

The whole dynamic DAQ list structure that had been stored in non-volatile memory within the

service ApplXcpDaqResumeStore(..) has to be restored to RAM.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_RESUME are defined

6.5.22 ApplXcpDaqResumeStore: Store DAQ lists for resume mode

ApplXcpDaqResumeStore

Prototype

Single Channel

Single Receive Channel void ApplXcpDaqResumeStore (MEMORY_ROM tXcpDaq * daq)

Multi Channel

Indexed not supported

Code replicated not supported

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

61 / 105

Parameter

daq Pointer to dynamic DAQ list structure.

Return code

- -

Functional Description

This application callback service has to store the whole dynamic DAQ list structure in non-
volatile memory for the DAQ resume mode. Any old DAQ list configuration that might have
been stored in non-volatile memory before this command, must not be applicable anymore.

After a cold start or reset the dynamic DAQ list structure has to be restored by the application

callback service ApplXcpDaqResume(..).

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_RESUME are defined

6.5.23 ApplXcpDaqResumeClear: Clear stored DAQ lists

ApplXcpDaqResumeClear

Prototype

Single Channel

Single Receive Channel void ApplXcpDaqResumeClear (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

The whole dynamic DAQ list structure that had been stored in non-volatile memory within the

service ApplXcpDaqResumeStore(..) has to be cleared.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_RESUME are defined

6.5.24 ApplXcpCalResumeStore: Store Calibration data for resume mode

ApplXcpCalResumeStore

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpCalResumeStore (void)

Multi Channel

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

62 / 105

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

vuint8 0 : Storing not yet finished (STORE_CAL_REQ flag kept)

>0 : Storing finished (STORE_CAL_REQ flag cleared)

Functional Description

This application callback service has to store the current calibration data in non-volatile
memory for the resume mode.

After a cold start or reset the calibration data has to be restored by the application.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_RESUME are defined

6.5.25 ApplXcpGetTimestamp: Returns the current timestamp

ApplXcpGetTimestamp

Prototype

Single Channel

Single Receive Channel XcpDaqTimestampType ApplXcpGetTimestamp (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

XcpDaqTimestampType timestamp

Functional Description

Returns the current timestamp.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_TIMESTAMP are defined

> The parameter kXcpDaqTimestampSize defines the timestamp size. It can either be
DAQ_TIMESTAMP_BYTE, DAQ_TIMESTAMP_WORD, DAQ_TIMESTAMP_DWORD

6.5.26 ApplXcpRtsStart: Start Trigger for DAQ runtime supervision

ApplXcpRtsStart

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

63 / 105

Prototype

Single Channel

Single Receive Channel void ApplXcpRtsStart (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

- -

Functional Description

Function is used to trigger start of DAQ runtime supervision. This function must store a current
timestamp to be used for comparison later on.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_RUNTIME_SUPERVISION are

defined

6.5.27 ApplXcpRtsSnapshot: Trigger for DAQ runtime supervision

ApplXcpRtsSnapshot

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpRtsSnapshot (void)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

- -

Return code

uint8 Returns either XCP_OK or XCP_NOT_OK depending on whether
current measurement shall be continued or aborted.

Functional Description

Function is used to perform DAQ runtime supervision. This function must compare the current
time stamp to the one stored in ApplXcpRtsStart and determine whether runtime is exceeded.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_RUNTIME_SUPERVISION are

defined

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

64 / 105

6.5.28 ApplXcpGetCalPage: Get calibration page

ApplXcpGetCalPage

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpGetCalPage (vuint8 segment, vuint8 mode)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

segment Logical data segment number

mode Access mode

The access mode can be one of the following values:

CAL_ECU : ECU access

CAL_XCP : XCP access

Return code

vuint8 Logical data page number

Functional Description

This function returns the logical number of the calibration data page that is currently activated
for the specified access mode and data segment.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_TIMESTAMP are defined

6.5.29 ApplXcpSetCalPage: Set calibration page

ApplXcpSetCalPage

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpSetCalPage (vuint8 segment,
 vuint8 page, vuint8 mode)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

segment Logical data segment number

Page Logical data page number

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

65 / 105

mode Access mode

CAL_ECU : the given page will be used by the slave device application

CAL_XCP : the slave device XCP driver will access the given page

Both flags may be set simultaneously or separately.

Return code

vuint8 0 : Ok

CRC_OUT_OF_RANGE : segment out of range

 (only one segment supported)

CRC_PAGE_NOT_VALID : Selected page not available

CRC_PAGE_MODE_NOT_VALID : Selected page mode not available

Functional Description

Set the access mode for a calibration data segment.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_DAQ and XCP_ENABLE_DAQ_TIMESTAMP are defined

6.5.30 ApplXcpCopyCalPage: Copying of calibration data pages

ApplXcpCopyCalPage

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpCopyCalPage (vuint8 srcSeg, vuint8 srcPage
 vuint8 destSeg, vuint8 destPage)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

srcSeg Source segment

srcPage Source page

destSeg Destination segment

destPage Destination page

Return code

vuint8 0 : Ok

XCP_CMD_PENDING : Call XcpSendCrm() when done

CRC_PAGE_NOT_VALID : Page not available

CRC_SEGMENT_NOT_VALID : Segment not available

CRC_WRITE_PROTECTED : Destination page is write protected.

Functional Description

Copying of calibration data pages.

The pages are copied from source to destination.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

66 / 105

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_PAGE_COPY and XCP_ENABLE_DAQ_TIMEOUT are defined

6.5.31 ApplXcpSetFreezeMode: Setting the freeze mode of a segment

ApplXcpSetFreezeMode

Prototype

Single Channel

Single Receive Channel void ApplXcpSetFreezeMode (vuint8 segment, vuint8 mode)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

segment Segment to set freeze mode

mode New freeze mode

Return code

- -

Functional Description

Setting the freeze mode of a certain segment. Application must store the current freeze mode
of each segment.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_PAGE_FREEZE is defined

6.5.32 ApplXcpGetFreezeMode: Reading the freeze mode of a segment

ApplXcpGetFreezeMode

Prototype

Single Channel

Single Receive Channel vuint8 ApplXcpGetFreezeMode (vuint8 segment)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

segment Segment to read freeze mode

Return code

vuint8 Return the current freeze mode, set by ApplXcpSetFreezeMode().

Functional Description

Reading the freeze mode of a certain segment. Application must store the current freeze mode
of each segment and report it by the return value of this function.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

67 / 105

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_PAGE_FREEZE is defined

6.5.33 ApplXcpReadChecksumValue: Read a single byte from memory for
checksum creation

ApplXcpReadChecksumValue

Prototype

Single Channel

Single Channel tXcpChecksumAddType ApplXcpRead (vuint32 addr)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

addr 32 Bit address

Return code

tXcpChecksumAddType Value used to create checksum.

Functional Description

Read from the memory to create checksum

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_MEM_ACCESS_BY_APPL and XCP_ENABLE_CHECKSUM is

defined

6.5.34 ApplXcpRead: Read a single byte from memory

ApplXcpRead

Prototype

Single Channel

Single Channel vuint8 ApplXcpRead (vuint32 addr)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

addr 32 Bit address

Return code

vuint8 Pointer to the address specified by the parameters

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

68 / 105

Functional Description

Read a single byte from the memory.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_MEM_ACCESS_BY_APPL is defined

6.5.35 ApplXcpWrite: Write a single byte to RAM

ApplXcpWrite

Prototype

Single Channel

Single Channel void ApplXcpWrite (vuint32 addr, vuint8 data)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

addr 32 Bit address

data data to be written to memory

Return code

- -

Functional Description

Write a single byte to RAM.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_MEM_ACCESS_BY_APPL is defined

6.5.36 ApplXcpCalculateChecksum: Custom checksum calculation

ApplXcpCalculateChecksum

Prototype

Single Channel

Single Channel vuint8 ApplXcpCalculateChecksum (ROMBYTEPTR pMemArea,
BYTEPTR pRes, vuint32 length)

Multi Channel

Indexed not supported

Code replicated not supported

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

69 / 105

Parameter

pMemArea Address pointer

pRes Pointer to response string

Length Length of mem area, used for checksum calculation

Return code

vuint8 XCP_CMD_OK/XCP_CMD_PENDING

Functional Description

Normally the XCP uses internal checksum calculation functions. If the internal checksum
calculation does not fit the user requirements this call-back can be used to calculate the
checksum by the application.

Particularities and Limitations

> XCP is initialized correctly and in connected state

> The switches XCP_ENABLE_CHECKSUM and XCP_ENABLE_CUSTOM_CRC is defined

6.6 XCP Protocol Layer Functions that can be overwritten

The following functions are defined within the XCP Protocol Layer and can be overwritten
for optimization purposes.

Note: All services within this chapter are called from task or interrupt level. All services are
not reentrant.

6.6.1 XcpMemCpy: Copying of a memory range

XcpMemCpy

Prototype

Single Channel

Single Receive Channel void XcpMemCpy (DAQBYTEPTR dest,
MEMORY_ROM DAQBYTEPTR src, vuint8 n)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

dest pointer to destination address

src pointer to source address

n number of data bytes to copy

Return code

- -

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

70 / 105

Functional Description

General memory copy function that copies a memory range from source to destination.

This function is used in the inner loop of XcpEvent for data acquisition sampling.

This function is already defined in the XCP Protocol Layer, but can be overwritten by a macro or
function for optimization purposes. E.g. it would be possible to use DMA for faster execution.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly.

> This function can be overwritten XcpMemCpy is defined.

6.6.2 XcpMemSet: Initialization of a memory range

XcpMemSet

Prototype

Single Channel

Single Receive Channel void XcpMemSet (BYTEPTR p, vuint16 n, vuint8 b)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

p pointer to start address

n number of data bytes

b data byte to initialize with

Return code

- -

Functional Description

Initialization of n bytes starting from address p with b.

This function is already defined in the XCP Protocol Layer, but can be overwritten by a macro or
function for optimization purposes. E.g. it would be possible to use DMA for faster execution.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly.

> This function can be overwritten if XcpMemSet is defined.

6.6.3 XcpMemClr: Clear a memory range

XcpMemClr

Prototype

Single Channel

Single Receive Channel static void XcpMemClr (BYTEPTR p, vuint16 n)

Multi Channel

Indexed not supported

Code replicated not supported

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

71 / 105

Parameter

p pointer to start address

n number of data bytes

Return code

- -

Functional Description

Initialize n data bytes starting from address p with 0x00.

This function is already defined in the XCP Protocol Layer, but can be overwritten by a macro or
function for optimization purposes. E.g. it would be possible to use DMA for faster execution.

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly.

> This function can be overwritten if XcpMemClr is defined.

6.6.4 XcpSendDto: Transmission of a data transfer object

XcpSendDto

Prototype

Single Channel

Single Receive Channel void XcpSendDto (MEMORY_ROM xcpDto_t *dto)

Multi Channel

Indexed not supported

Code replicated not supported

Parameter

dto pointer to data transfer object

Return code

- -

Functional Description

Transmit a data transfer object (DTO).

Particularities and Limitations

> The XCP Protocol Layer has been initialized correctly and XCP is in connected state.

> The switch XCP_ENABLE_DAQ is defined

> This function can be overwritten by defining XcpSendDto.

6.7 AUTOSAR CRC Module Services called by the XCP Protocol Layer (XCP
Professional Only)

The following services of the AUTOSAR CRC Module are called by the XCP Protocol
Layer:

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

72 / 105

Crc_CalculateCRC16(…)

Crc_CalculateCRC32(…)

A detailed description of the API can be found in the software specification of the CRC
Module [VII].

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

73 / 105

7 Configuration of the XCP Protocol Layer

This chapter describes the common options for configuring (customizing) the XCP Protocol
Layer. Please note that the XCP Professional can conveniently be configured with GENy
(chapter 7.1). In this case no manual configuration has to be applied to the configuration
files.
The configuration of the XCP Protocol Layer without GENy can be found in chapter 7.2.It
is mainly applicable for the configuration of XCP Basic.

7.1 Configuration with GENy (XCP Professional only)

The XCP Protocol Layer is a higher software layer that can be configured independent of
the communication system channels. Therefore in GENy the Protocol Layer component is
attached to the ECU. I.e. it can be configured without associating any XCP Transport
Layer in GENy.

Therefore there are no database attributes defined for the XCP Protocol Layer.

7.1.1 Component Configuration

7.1.1.1 General Settings

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

74 / 105

Figure 7-1 Component configuration – General settings

Configuration option Description of configuration option

XCP Station Identifier The 'XCP Station Identifier' is an ASAM-MC2 filename without path
and extension that identifies the ECU's software program version.
It is used for slave device identification and automatic session
configuration.

The Master Control System (MCS) can interpret this identifier as file
name for the ECU database. The ECU developer should change the
XCP station identifier with each program change. This will prevent
database mix-ups and grant the correct access of measurement and
calibration objects from the MCS to the ECU.

Another benefit of the usage of the XCP station identifier is the
automatic assignment of the correct ECU database at program start
of the MCS via the Plug&Play mechanism. The Plug&Play
mechanism prevents the user to choose the wrong ECU database.

Command Parameter
Check

Checks of the range and validity of Command Transfer Object (CTO)
and Data Transfer Object (DTO) parameters.

Enable Calibration The option 'Enable Calibration' unlocks the commands
- DOWNLOAD
- DOWNLOAD_NEXT
- DOWNLOAD_MAX
- SHORT_DOWNLOAD
- MODIFY_BITS

If this option is disabled, these commands will return an
ERR_ACCESS_DENIED error and calibration of parameters will not
be possible!

Event Codes 'Event Codes' are transmitted within event packets (EV) from the
slave device to the master device.
The transmission is not guaranteed since event packets are not
acknowledged.

Please refer to the XCP Protocol Layer specification for the 'Table of
Event codes'.

Bootloader Download In order to reprogram the internal flash of some microcontrollers it is
necessary to use a bootloader, because code cannot be executed
from flash while programming flash.

Memory Write Protection The option 'Memory Write Protection' enables write access to memory
areas.

I.e. prior to carrying out write access to RAM an application callback
function is called and the memory address is passed as parameter.
The application has to either grant or deny the memory access.

Memory Read Protection The option 'Memory Read Protection' enables read access to memory
areas.

I.e. prior to carrying out read access to RAM an application callback
function is called and the memory address is passed as parameter.
The application has to either grant or deny the memory access.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

75 / 105

XCP Control The option ‘XCP Control’ enables an API to en- or disable the XCP
module (s. 3.20).

Get Xcp Data Pointer The option ‘Get Xcp Data Pointer’ enables an API to retrieve the
pointer to the internal data of the XCP module (s. 3.19)

Version Info API Support The 'Version Info Api' option provides access to the version
information of the XCP Protocol Layer module. Provided informations
are Module identifier, Vendor identifier and vendor specific Version
numbers.

Open Command
Interface

The ‘Open Command Interface’ can be used to add unsupported XCP
commands. A user call back is made available which must be
implemented in the application.

Session Status API This option enables the API XcpGetState which can be used to
determine whether the XCP is in state XCP_CONNECTED or in state
XCP_DISCONNECTED

Address Doubling Address Doubling allows byte addressing on word addressable
CPUs. For this purpose the Tool must double all addresses. If the
Tool does not support this automatically all addresses in the a2l file
must be doubled manually.

User Config File The configuration file xcp_cfg.h is generated by GENy. If you want

to overwrite settings in the generated configuration file, you can
specify a path to a user defined configuration file.

The user defined configuration file will be included at the end of the
generated file. Therefore definitions in the user defined configuration
file can overwrite definitions in the generated configuration file.

EEPROM Access

Read Access The option 'Read Access' allows read access to EEPROM.

The routines for accessing the EEPROM have to be implemented in
the application.

Write Access The option 'Write Access' allows write access to EEPROM.

The routines for accessing the EEPROM have to be implemented in
the application.

Service Request Message

Service Request
Message

'Service Request Messages' are always transmitted within service
request packets (SERV) by the slave device, in order to request the
master device to perform some action.

The transmission is not guaranteed since service request packets are
not acknowledged by the master device.

Please also refer to the XCP Protocol Layer specification for the
'Table of service request codes

Print The function XcpPrint(..) can be used for the transmission of

service request packets that contain text.

Table 7-1 Component configuration – General settings

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

76 / 105

7.1.1.2 Synchronous Data Acquisition

Figure 7-2 Component configuration – Synchronous Data Acquisition

Configuration option Description of configuration option

Synchronous Data Acquisition
(DAQ)

Data elements located in the slave's memory are transmitted in
Data Transfer Objects (DTOs) from slave to master (DAQ) and
from master to slave (STIM).

The Object Description Table (ODT) describes the mapping
between the synchronous data transfer objects and the slave's
memory.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

77 / 105

Send Queue The ‘Send Queue’ should be enabled if more than one ODT
(Object Description Table) is used and if the Transport Layer
does not support data queuing or data buffering.

It has to be enabled if the Vector XCP Transport Layer for CAN
is enabled.

Memory Size [byte] A memory area has to be reserved for the dynamic allocation of
DAQ and ODT (Object Description Table) lists and for the
transmit queue.

Prescaler If the option 'Prescaler' is enabled all DAQ lists support the
prescaler for reducing the transmission period.

Overrun Indication Overrun situations are indicated to the Master Control System.

An overrun situation is e.g. an overflow of the transmit queue.

Write DAQ Multiple This command allows downloading multiple DAQ list entries in
one CMD frame. This option only works if:

1. MAX_CTO is at least 16 bytes big

2. This feature is enabled in CANape (Extended driver
settings)

DAQ / ODT Message Header If the option 'DAQ/ODT message header' is enabled the 2 byte
DAQ/ODT XCP Packet Identification is used: Relative ODT
number (1 byte), absolute DAQ list number (1 byte).

If the option 'DAQ/ODT message header' is disabled a 1 byte
Packet Identification (PID) is used: Absolute ODT number.

Attention: The 'DAQ/ODT Message Header' must not be
enabled if the XCP Transport Layer for CAN or FlexRay is
enabled.

Resume Mode The option 'Resume Mode' or often also called 'Cold Start
Measurement' allows automatic data transfer (DAQ, STIM)
directly after power-up of the slave without prior connection to
the master calibration system. Also prior set calibration data can
be restored.

General Info The option 'General Info' enables the XCP command
GET_DAQ_PROCESSOR_INFO, which provides general
information on DAQ lists.

Resolution Info The option 'Resolution Info' enables the command
GET_DAQ_RESOLUTION_INFO, which provides information
on the resolution of DAQ lists.

Synchronous Data Stimulation (STIM)

Synchronous Data Stimulation
(STIM)

'Synchronous Data Stimulation (STIM)' is the inverse mode of
'Synchronous Data Acquisition (DAQ)'.

Data elements located in the slave's memory are transmitted in
Data Transfer Objects from the master device to the slave
device.
These data elements are written to RAM upon XCP events.

Number of ODTs for STIM The maximum number of Object Descriptor Tables (ODTs) for
Synchronous Data Stimulation (STIM) has to be configured.

Event Info

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

78 / 105

Event Info The option 'Event Info' enables the XCP command
GET_DAQ_EVENT_INFO, which provides the following
information about event channels:

> Number of event channel

> Name of event channel

> Measurement cycle time of event channel

> Direction of event channel: DAQ, STIM, DAQ&STIM

Events The information about event channels, which is transferred from
the slave device to the master device, can be configured.
Attention: The number of the event channels has to be dense
and zero-based

Event Channel For each 'Event Channel' information can be configured.
This information is transferred from the slave device to the
master device.

Number The event channel numbers have to be dense and zero-based.
Therefore this number can not be entered manually.
The event channel number is passed as a argument to the

function XcpEvent(..).

Name The name of the event channel is used to identify an event
within the master control system.

Cycle Time [Event Info Unit] The 'Cycle Time' of the event channel is transferred to the
master control system and used to set up the master control
system.

Event Info Unit Select the resolution of the time stamp ticks.

Direction The following data acquisition 'Directions' of event channels are
possible:

> DAQ: send cyclic data transfer packets from the slave device
to the master control system

> STIM: send cyclic data transfer packets from the master
control system to the slave device

> DAQ/STIM: both directions are possible, but not
simultaneously

DAQ Timestamp

DAQ Timestamp Timestamps can be attached to Data Transfer Object (DTO)
Packets, to avoid measurement errors due to bus latency.

The timestamp unit and ticks per unit have to be defined if
timestamps are used.

Fixed Timestamp If the 'Fixed Timestamp' option is selected the slave always
sends Data Transfer Object (DTO) Packets in time stamped
mode.

Otherwise timestamps are dynamically and individually enabled
for each DAQ list.

Size [byte] Size of Timestamp. Possible timestamp sizes are 1Byte, 2Bytes
and 4Bytes.

Timestamp Unit Select the resolution of the time stamp ticks.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

79 / 105

Ticks per Unit The timestamp will increment per unit by the value specified
here and wrap around if an overflow occurs.

Table 7-2 Component configuration – Synchronous Data Acquisition

7.1.1.3 Standard Commands

Figure 7-3 Component configuration – Standard Commands

Configuration option Description of configuration option

Communication Mode Info The XCP command 'GET_COMM_MODE_INFO' returns
optional information on different Communication Modes
supported by the slave and also the version number of the
Protocol Layer implementation.
If the master block mode is supported, also the maximum
allowed block size and the minimum separation time are
returned.
The XCP Protocol Layer supports the Standard Communication
model and also the Master Block Transfer Mode and the Slave
Block Transfer Mode.

Seed & Key Resources within the slave device can be protected by a 'Seed
& Key' mechanism.
The following resources can be protected:

> Synchronous data acquisition (DAQ)

> Synchronous data stimulation (STIM)

> Online calibration (CAL)

> Programming (PGM)

Modify Bits This command can be en- or disabled.

Short Download This command can be en- or disabled. For bus systems with
maximum data length less equal eight (e.g. CAN, LIN) this
command make no sense as no data can be transported in
addition to the address information.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

80 / 105

User Defined Command The 'User Defined Command' is optional and can be
implemented within the application.
However it must not be used to implement functionalities done
by other services.
The application callback function ApplXcpUserService() is
provided to perform application specific actions.

GET_ID Command Slave identification via GET_ID Command.
This option enables a call-back that is called when the XCP
Master sends the GET_ID command and can be used to return
the requested information (e.g. Map Filename, EPK Number, ...)

Transport Layer Command The option 'Transport Layer Command' has to be enabled if
transport layer specific commands are used and supported by
the transport layer component.

Block Transfer

Block Upload The Slave Block Transfer Mode speeds up memory upload by
transmitting an entire block of continuous response packets.
There is only a response packet before and after transmission
of the entire block.
There are no limitations allowed for the master device.
The slave returns whether it supports Slave Block Transfer
Model in the response of the request CONNECT.

Block Download The Master Block Transfer Mode speeds up memory download
by transmitting an entire block of continuous request packets.
There is only one response packet after transmission of the
entire block.
The XCP Master has to meet the slave's limitations of the
maximum block size and the minimum separation time. These
communication parameters are responded within the response
to GET_COMM_MODE_INFO.

MIN_ST for Block Download MIN_ST indicates the required minimum separation time
between the packets of a block transfer from the master device
to the slave device in units of 100 microseconds.

The value given in GENy is transmitted within the response to
the command GET_COMM_MODE_INFO.

Table 7-3 Component configuration – Standard Commands

7.1.1.4 Checksum

Figure 7-4 Component configuration – Checksum

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

81 / 105

Configuration option Description of configuration option

Checksum The XCP command BUILD_CHECKSUM returns a checksum
that is calculated over the memory block defined by the Memory
Transfer Address (MTA) and block size. The MTA will be post-
incremented by the block size.
The checksum type (size of the checksum) and the calculation
method can be configured.

Custom CRC Module Support Support a custom CRC module by calling a user call-back.
Internal CRC calculation is deactivated.

AUTOSAR CRC Module
Support

If ‘AUTOSAR CRC Module Support’ is enabled only the
following checksum calculation methods are available:

> CRC16_CCITT: CRC16 CCITT algorithm

> CRC32: CRC32 algorithm

The CRC32 algorithm is only supported if the AUTOSAR CRC
Module is used.

Calculation Method The following checksum calculation methods are supported:

> ADD_11: add a BYTE into a BYTE checksum

> ADD_12: add a BYTE into a WORD checksum

> ADD_14: add a BYTE into a DWORD checksum

> ADD_22: add a WORD into a WORD checksum

> ADD_24: add a WORD into a DWORD checksum

> ADD_44: add a DWORD into a DWORD checksum

> CRC16_CCITT: CRC16 CCITT algorithm

> CRC32: CRC32 algorithm

The CRC32 algorithm is only supported if the AUTOSAR CRC
Module is used.
All checksum calculation algorithms except of the CRC
algorithms ignore overflows. The block size has to be a multiple
of the size of the type that is added.

Block Size Please refer to the help of 'Checksum'.

Table 7-4 Component configuration – Checksum

7.1.1.5 Page Switching

Figure 7-5 Component configuration – Page Switching

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

82 / 105

Configuration option Description of configuration option

Page Switching If calibration page switching (PAG) is enabled the access mode
calibration data segments can be set.
Calibration data segments and their pages are specified by
logical numbers.

General Paging Info If 'General Paging Info' is enabled the XCP command
'GET_PAG_PROCESSOR_INFO' returns general information
on paging.
The following information is transferred from the slave device to
the master device:

> The total number of segments

> Whether the freeze mode is supported

Specific information for segments or pages is so far not
supported.

Copy Page If more than one calibration page is defined, the slave can copy
a calibration page into another.
In principle any page of any segment can be copied to any page
of any segment. However, restrictions might be possible.

Freeze Mode If enabled the commands SET_SEGMENT_MODE and
GET_SEGMENT_MODE are enabled and forwarded to the
application.

Enabling this feature also set the Freeze Mode Supported bit in
General Paging Info

Table 7-5 Component configuration – Page Switching

7.1.1.6 Programming

Figure 7-6 Component configuration – Programming

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

83 / 105

Configuration option Description of configuration option

Programming The option 'Programming' enables the programming of non-
volatile memory.
If the internal flash of the microcontroller cannot be
programmed while execution of code from the flash, the
'bootloader download' functionality has to be used instead.

Programming Write Protection The option 'Programming Write Protection' enables the
programming write protection of non-volatile memory. I.e. prior
to carrying out write access to non-volatile memory an
application callback function (see 6.5.10) is called and the
memory address is passed as parameter. The application has
to either grant or deny the memory access.

Min_St_Pgm This parameter defines the delay the Master should insert
between two consecutive PROGRAM_NEXT commands. This
parameter is only relevant if Block Mode is used.

Processor and Sector Info The option 'Processor and Sector Info' enables the commands:

> GET_PGM_PROCESSOR_INFO
Transfers the general properties for programming and the
total number of available sectors from the slave device to
the master device.

> GET_SECTOR_INFO
Transfers information on a specific sector from the slave
device to the master device.

Sectors The information for sectors, which is transferred from the slave
device to the master device, can be configured.
Attention: The sector number has to be dense and zero-based!

Sector For each 'Sector' information can be configured. This
information is transferred from the slave device to the master
device.

Number The sector numbers have to be dense and zero-based.
Therefore this number can not be entered manually.

Start Address The 'Start Address' of each sector is individually configured in
the slave device and transferred to the master device.

End Address The 'End Address' of each sector is individually configured in
the slave device and transferred to the master device.

Table 7-6 Component configuration – Programming

7.1.1.7 Generated a2l files

GENy also generates multiple a2l files which can be used in the Master tool for easier
integration. The following files are generated:

 XCP.a2l (general protocol layer settings)

 XCP_daq.a2l (DAQ specific settings)

 XCP_events.a2l (DAQ event info)

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

84 / 105

Example Master.a2l:

...

/begin IF_DATA XCP

 /include XCP.a2l

 /begin DAQ

 /include XCP_daq.a2l

 /include XCP_events.a2l

 ...

 /end DAQ

 /include CanXCPAsr.a2l

/end IF_DATA

...

/include bsw.a2l

...

7.2 Configuration without Generation Tool

The configuration of the configuration switches and constants is done in the file

xcp_cfg.h. An example that contains the default configuration of XCP Basic is distributed

together with XCP Basic. It is recommended to use this example as a template for the
individual configuration.

7.2.1 Compiler Switches

Compiler switches are used to enable/disable optional functionalities in order to save code
space and RAM.

In the following table you will find a complete list of all configuration switches, used to
control the functional units that common of XCP Basic and XCP Professional. The default
values are bold.

Configuration switches Value Description

XCP_xxx_DAQ ENABLE, DISABLE Enables/disables synchronous
data acquisition.

XCP_xxx_DAQ_PRESCALER ENABLE, DISABLE Enables/disables the DAQ
prescaler.

XCP_xxx_DAQ_OVERRUN_INDICATION ENABLE, DISABLE Enables/disables the DAQ
overrun detection.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

85 / 105

XCP_xxx_DAQ_HDR_ODT_DAQ3 ENABLE, DISABLE The 2 Byte DAQ/ODT XCP
Packet identification is used
instead of the PID.

Enabled: Relative ODT
number, absolute list number
(BYTE)

Disabled: Absolute ODT
number

XCP_xxx_DAQ_PROCESSOR_INFO ENABLE, DISABLE Plug & play mechanism for
the data acquisition processor.

XCP_xxx_DAQ_RESOLUTION_INFO ENABLE, DISABLE Plug & play mechanism for
the data acquisition resolution.

XCP_xxx_DAQ_EVENT_INFO ENABLE, DISABLE Plug & play mechanism for
the event definitions.

XCP_xxx_DAQ_TIMESTAMP ENABLE, DISABLE DAQ timestamps

XCP_xxx_DAQ_TIMESTAMP_FIXED ENABLE, DISABLE Slave always sends DTO
Packets in time stamped
mode. Otherwise are
timestamps used individual by
each DAQ-list.

kXcpDaqTimestampSize DAQ_TIMESTAMP_BYTE,

DAQ_TIMESTAMP_WORD,

DAQ_TIMESTAMP_DWORD

The size of timestamps which
can either be 1Byte, 2Bytes or
4Bytes.

XCP_xxx_SEED_KEY ENABLE, DISABLE Seed & key access protection

XCP_xxx_CHECKSUM ENABLE, DISABLE Calculation of checksum

XCP_xxx_CRC16CCITT_REFLECTED ENABLE, DISABLE Enable/disable reflected
CRC16 CCITT checksum
calculation algorithm.

Also refer to 7.2.2.1 ‘Table of
Checksum Calculation
Methods’.

XCP_xxx_AUTOSAR_CRC_MODULE ENABLE, DISABLE Usage of CRC algorithms of
AUTOSAR CRC module.

XCP_xxx_PARAMETER_CHECK ENABLE, DISABLE Parameter check

XCP_xxx_SEND_QUEUE ENABLE, DISABLE Transmission send queue
(shall be used in conjunction
with synchronous data
acquisition and stimulation).

XCP_xxx_SEND_EVENT ENABLE, DISABLE Transmission of event packets
(EV)

XCP_xxx_USER_COMMAND ENABLE, DISABLE User defined command

XCP_xxx_TL_COMMAND ENABLE, DISABLE Transport Layer command

XCP_xxx_COMM_MODE_INFO ENABLE, DISABLE Communication mode info

3
 The XCP Protocol allows three identification field types for DTOs: ‘absolute ODT number’, ‘relative ODT

number and absolute DAQ list number’, ‘empty identification field’ (not supported)

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

86 / 105

XCP_xxx_CALIBRATION_PAGE ENABLE, DISABLE Calibration data page
switching

XCP_xxx_PAGE_INFO ENABLE, DISABLE Calibration data page plug &
play mechanism

XCP_xxx_PAGE_COPY ENABLE, DISABLE Calibration data page copying

XCP_xxx_PAGE_FREEZE ENABLE, DISABLE Segment freeze mode
handling

XCP_xxx_DPRAM4 ENABLE, DISABLE Supports the usage of dual
port RAM

XCP_xxx_GET_CONNECTION_STATE ENABLE, DISABLE Get connection state of XCP

The following table contains an additional list of all configuration switches, used to control
the functional units that are only available in XCP Professional. The default values are
bold.

Configuration switches Value Description

XCP_xxx_BLOCK_UPLOAD ENABLE,

DISABLE
Enables/disables the slave block
transfer.

XCP_xxx_BLOCK_DOWNLOAD ENABLE,

DISABLE
Enables/disables the master block
transfer.

XCP_xxx_WRITE_PROTECTION ENABLE,

DISABLE
Write access to RAM

XCP_xxx_READ_PROTECTION ENABLE,

DISABLE
Read access to RAM

XCP_xxx_READ_EEPROM ENABLE,

DISABLE
Read access to EEPROM

XCP_xxx_WRITE_EEPROM ENABLE,

DISABLE
Write access to EEPROM

XCP_xxx_PROGRAMMING_WRITE_PROTECTION ENABLE,

DISABLE
Write access to flash

XCP_xxx_PROGRAM ENABLE,

DISABLE
Flash programming

XCP_xxx_PROGRAM_INFO ENABLE,

DISABLE
Flash programming plug & play
mechanism

XCP_xxx_BOOTLOADER_DOWNLOAD ENABLE,

DISABLE
Flash programming with a flash
kernel

XCP_xxx_STIM ENABLE,

DISABLE
Enables/disables data stimulation.

(also XCP_ENABLE_DAQ has to be

defined in order to use data
stimulation)

XCP_xxx_DAQ_RESUME ENABLE,

DISABLE
Data acquisition resume mode.

XCP_xxx_SERV_TEXT ENABLE,

DISABLE
Transmission of service request
codes

4
 Not supported by XCP Professional

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

87 / 105

XCP_xxx_SERV_TEXT_PUTCHAR ENABLE,

DISABLE
Putchar function for the
transmission of service request
messages

XCP_xxx_SERV_TEXT_PRINTF ENABLE,

DISABLE
Print function for the transmission of
service request messages

XCP_xxx_MEM_ACCESS_BY_APPL ENABLE,

DISABLE
Memory access by application

XCP_xxx_MODEL_PAGED ENABLE,

DISABLE
Support for paging / banking

XCP_xxx_SHORT_DOWNLOAD ENABLE,

DISABLE
Support for SHORT_DOWNLOAD
command

XCP_xxx_MODIFY_BITS ENABLE,

DISABLE
Support for MODIFY_BITS
command

XCP_xxx_WRITE_DAQ_MULTIPLE ENABLE,

DISABLE
Write DAQ multiple command

XCP_xxx_GET_XCP_DATA_POINTER ENABLE,

DISABLE
Enable API for internal data access

XCP_xxx_CONTROL ENABLE,

DISABLE
Enable API for en- / disable XCP
module

XCP_xxx_GET_SESSION_STATUS_API ENABLE,

DISABLE
Enable API to acquire the current
session status

XCP_xx_CUSTOM_CRC ENABLE,

DISABLE
Enable call-back for custom CRC
calculation

XCP_xxx_GET_ID_GENERIC ENABLE,

DISABLE
ECU identification

The following table contains an additional list of all configuration switches, used to control
the functional units that are only available in XCP basic. The default values are bold.

Configuration switches Value Description

XCP_ENABLE_TESTMODE5 ENABLE,

DISABLE
Test mode that allows the output of debugging
information.

Not included in XCP Professional due to multiple MISRA
rule violations!

7.2.2 Configuration of Constant Definitions

The configuration of constant definitions is done as described below.
The default values are bold.

Constant definitions Range Default Description

kXcpMaxCTO 8..255 8 Maximum length of XCP command transfer
objects (CTO).

The length of the CTO can be variable.
However it has to be configured according to the
used XCP Transport Layer.

5
 Not supported by XCP Professional

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

88 / 105

kXcpMaxDTO 8..2556 8 Maximum length of XCP data transfer objects
(DTO).

The length of the DTO can be variable.
However it has to be configured according to the
used XCP Transport Layer.

kXcpDaqMemSize 0..

0xFFFF

256 Define the amount of memory used for the DAQ
lists and buffers.
Also refer to chapter 8 (Resource
Requirements).

kXcpSendQueueMinSize 1..0x7F - The minimum queue size required for DAQ. The
queue size is the unallocated memory reserved
by kXcpDaqMemSize.

kXcpMaxEvent 0..0xFF7 - Number of available events in the slave (part of
event channel plug & play mechanism)
Also refer to chapter 7.2.6.

kXcpStimOdtCount 0..0xC0 0xC0 Maximum number of ODTs that may be used for
Synchronous Data Stimulation.

kXcpChecksumMethod - - Checksum calculation method.

Refer to chapter 7.2.2.1 ‘Table of Checksum
Calculation Methods’ for valid values.

kXcpChecksumBlockSize 1 ..

0xFFFF

256 Each call of XcpBackground calculates the

checksum on the amount of bytes specified by
kXcpChecksumBlockSize.

XCP_TRANSPORT_LAYER_V

ERSION

0..

0xFFFF

- Version of the XCP Transport Layer that is used.
(this version gets transferred to the MCS)

kXcpMaxSector 1..0xFF - Number of flash sectors

Also refer to chapter 7.2.8

kXcpMaxSegment 1 1 Number of memory segments

Also refer to chapter 7.2.9.

kXcpMaxPages 1..2 2 Number of pages

Also refer to chapter 7.2.9.

7.2.2.1 Table of Checksum Calculation Methods

Constant Checksum calculation method

XCP_CHECKSUM_TYPE_ADD11 Add BYTE into a BYTE checksum, ignore overflows.

XCP_CHECKSUM_TYPE_ADD12 Add BYTE into a WORD checksum, ignore overflows

XCP_CHECKSUM_TYPE_ADD14 Add BYTE into a DWORD checksum, ignore overflows

XCP_CHECKSUM_TYPE_ADD22 Add WORD into a WORD checksum, ignore overflows, block
size must be modulo 2

XCP_CHECKSUM_TYPE_ADD24 Add WORD into a DWORD checksum, ignore overflows,
block size must be modulo 2

6
 Implementation specific range. The range is 8..0xFFFF according to XCP specification [I], [II].

7
 Implementation specific range. The range is 0..0xFFFE according to XCP specification [I], [II].

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

89 / 105

XCP_CHECKSUM_TYPE_ADD44 Add DWORD into DWORD, ignore overflows, block size
must be modulo 4

XCP_CHECKSUM_TYPE_CRC16CCITT CRC16 CCITT checksum calculation algorithm

Both the standard and the reflected algorithm are supported.
Please refer to chapter 10.8 ‘Reflected CRC16 CCITT
Checksum Calculation Algorithm’.

The CRC16 CCITT algorithm of the AUTOSAR CRC module
is only supported by XCP Professional.

XCP_CHECKSUM_TYPE_CRC32 CRC32 checksum calculation algorithm

The CRC32 algorithm is only supported in XCP Professional
if the AUTOSAR CRC module is used.

7.2.3 Definition of Memory Qualifiers

The definition of the memory qualifiers has to be customized depending on the controller
and memory model.

Type Default Description

vuint8 unsigned char Unsigned 8-bit identifier

vuint16 unsigned short Unsigned 16-bit identifier

vuint32 unsigned long Unsigned 32-bit identifier

V_MEMROM0 Addition qualifier to access data in ROM

MEMORY_ROM_NEAR const Fast data access in ROM

MEMORY_ROM const Default according to memory model in ROM

MEMORY_ROM_FAR const Slow addressing mode in ROM

MEMORY_NEAR Short addressed RAM

MEMORY_NORMAL Default addressed RAM
MEMORY_FAR Far addressed RAM
P_MEM_ROM Pointer to ROM
P_MEM_RAM Pointer to RAM

7.2.4 Configuration of the CPU Type

To provide platform independent code platform, the CPU type has to be defined.

Configuration switches Value Description

C_CPUTYPE_xxxENDIAN LITTLE,

BIG
Definition whether the CPU is little endian (Intel
format) or big endian (Motorola format).

XCP_xxx_UNALIGNED_MEM_ACCESS ENABLE,

DISABLE
Enables / disables unaligned memory access.

If XCP_DISBLE_UNALIGNED_MEM_ACCESS is

defined WORDs are located on WORD aligned and
DWORD are located on DWORD aligned addresses.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

90 / 105

7.2.5 Configuration of Slave Device Identification

The configuration of the slave device identification and automatic session configuration is
described within this chapter. Only one of the following options can be used at one time.

7.2.5.1 Identification by ASAM-MC2 Filename without Path and Extension

If the slave device identification is done by identification with an ASAM-MC2 filename
without path and extension the filename length has to be defined:

#define kXcpStationIdLength length

and the station ID itself has to be defined as string:

V_MEMROM0 vuint8 MEMORY_ROM kXcpStationId[] = “station ID”

The range of kXcpStationIdLength is 0..0xFF.

7.2.5.2 Automatic Session Configuration with MAP Filenames

The automatic session configuration by transferring MAP filenames is a Vector specific
extension that works with CANape and can be enabled by the “XcpGetIdGeneric” attribute

When this feature is enabled the API as described in 3.4.2 is enabled. This API will be
called, should CANape request the MAP filename, and must be implemented by the user
accordingly. This feature must explicitly be enabled in CANape as well!

Example

#define MAP_FORMAT 29

#define MAP_NAME "xcpsim"

uint8 MapTest[500];

uint32 MapTestSize;

uint32 XcpAppl_GetIdData(MTABYTEPTR *pData, uint8 id)

{

 if(id == IDT_VECTOR_MAPNAMES)

 {

 MapTestSize =

sprintf((char*)MapTest,"%c%c%s.map",MAP_FORMAT,0,MAP_NAME);

 /* Result: MapTest = ”290xcpsim.map” */

 *pData = MapTest;

 return MapTestSize;

 }

 else

 {

 return 0; /* Id not available */

 }

}

‘MAP_FORMAT’ represents the format of the MAP file. (See table below)

‘0’ is a counter that is used as address extension. Please set this parameter to 0.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

91 / 105

Table of MAP file formats:

 1 = "BorlandC 16 Bit" 29 = "Microsoft standard"

 2 = "M166" 30 = "ELF/DWARF 16 Bit"

 3 = "Watcom" 31 = "ELF/DWARF 32 Bit"

 4 = "HiTech HC05" 32 = "Fujitsu Softune 3..8(.mps)"

 6 = "IEEE" 33 = "Microware Hawk"

 7 = "Cosmic" 34 = "TI C6711"

 8 = "SDS" 35 = "Hitachi H8S"

 9 = "Fujitsu Softune 1(.mp1)" 36 = "IAR HC12"

 10 = "GNU" 37 = "Greenhill Multi 2000"

 11 = "Keil 16x" 38 = "LN308(MITSUBISHI) for M16C/80"

 12 = "BorlandC 32 Bit" 39 = "COFF settings auto detected"

 13 = "Keil 16x (static)" 40 = "NEC CC78K/0 v35"

 14 = "Keil 8051" 41 = "Microsoft extended"

 15 = "ISI" 42 = "ICCAVR"

 16 = "Hiware HC12" 43 = "Omf96 (.m96)"

 17 = "TI TMS470" 44 = "COFF/DWARF"

 18 = "Archimedes" 45 = "OMF96 Binary (Tasking C196)"

 19 = "COFF" 46 = "OMF166 Binary (Keil C166)"

 20 = "IAR" 47 = "Microware Hawk Plug&Play ASCII"

 21 = "VisualDSP" 48 = "UBROF Binary (IAR)"

 22 = "GNU 16x" 49 = "Renesas M32R/M32192 ASCII"

 23 = "GNU VxWorks" 50 = "OMF251 Binary (Keil C251)"

 24 = "GNU 68k" 51 = "Microsoft standard VC8"

 25 = "DiabData" 52 = "Microsoft VC8 Release Build (MATLAB DLL)"

 26 = "VisualDSP DOS" 53 = "Microsoft VC8 Debug Build (MATLAB DLL)"

 27 = "HEW SH7055" 54 = "Microsoft VC8 Debug file (pdb)"

 28 = "Metrowerks"

7.2.6 Configuration of the Event Channel Plug & Play Mechanism

The event channel plug & play mechanism is enabled with the switch

XCP_ENABLE_DAQ_EVENT_INFO

A prerequisite for the event channel plug & play mechanism is the general data acquisition
plug & play mechanism. If the mechanism is enabled the following configurations items
have top be defined as described below:

Constant Range Description

kXcpMaxEvent 0..0xFF8 Number of available events in the slave
(part of event channel plug & play mechanism)

If the event numbers do not start at 0 or are not
continuous this is the maximum used event channel
number plus 1.

8
 Implementation specific range. The range is 0..0xFFFE according to XCP specification [I], [II].

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

92 / 105

kXcpEventName[] kXcpMaxEvent List with pointers to the event channel names that are
defined as strings.

kXcpEventNameLength[] kXcpMaxEvent Length of the event channel names without the
terminating char.

kXcpEventCycle[] kXcpMaxEvent Cycle time of the event channels in milliseconds.

kXcpEventDirection[] kXcpMaxEvent Direction of the event channels.

For XCP Basic valid values are:

- kXcpEventDirectionDaq

For XCP Professional valid values are:

- kXcpEventDirectionDaq

- kXcpEventDirectionStim

- kXcpEventDirectionDaqStim

Example

#define XCP_ENABLE_DAQ_EVENT_INFO

#define kXcpMaxEvent 3

V_MEMROM0 static vuint8 MEMORY_ROM kXcpEventName_0[] =

"10ms";

V_MEMROM0 static vuint8 MEMORY_ROM kXcpEventName_1[] =

"100ms DAQ";

V_MEMROM0 static vuint8 MEMORY_ROM kXcpEventName_2[] =

"100ms STIM";

V_MEMROM0 MEMORY_ROM vuint8* MEMORY_ROM kXcpEventName[] =

{

 &kXcpEventName_0[0],

 &kXcpEventName_1[0],

 &kXcpEventName_2[0]

};

V_MEMROM0 vuint8 MEMORY_ROM kXcpEventNameLength[] =

{

 4,

 9,

 10

};

V_MEMROM0 vuint8 MEMORY_ROM kXcpEventCycle[] =

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

93 / 105

{

 10,

 100,

 100

};

V_MEMROM0 vuint8 MEMORY_ROM kXcpEventDirection[] =

{

 kXcpEventDirectionDaq,

 kXcpEventDirectionDaq,

 kXcpEventDirectionStim

};

7.2.7 Configuration of the DAQ Time Stamped Mode

Transmission of DAQ timestamps is enabled with XCP_ENABLE_DAQ_TIMESTAMP. If

XCP_ENABLE_DAQ_TIMESTAMP_FIXED is defined all DTO Packets will be transmitted in

time stamped mode.

Constant Range Description

kXcpDaqTimestampSize DAQ_TIMESTAMP_BYTE,

DAQ_TIMESTAMP_WORD,

DAQ_TIMESTAMP_DWORD

This parameter defines the
size of timestamps. It can
either be 1 byte, 2 bytes or 4
bytes.

XcpDaqTimestampType vuint8, vuint16 or

vuint32
Type of the timestamp
depends on the parameter
kXcpDaqTimestampSize.

kXcpDaqTimestampUnit DAQ_TIMESTAMP_UNIT_1NS

DAQ_TIMESTAMP_UNIT_10NS

DAQ_TIMESTAMP_UNIT_100NS

DAQ_TIMESTAMP_UNIT_1US

DAQ_TIMESTAMP_UNIT_10US

DAQ_TIMESTAMP_UNIT_100US

DAQ_TIMESTAMP_UNIT_1MS

DAQ_TIMESTAMP_UNIT_10MS

DAQ_TIMESTAMP_UNIT_100MS

DAQ_TIMESTAMP_UNIT_1S

Unit of the timestamp

(1 ns, 10 ns .. 1 s)

kXcpDaqTimestampTicksPerUnit 0..0xFFFF Time stamp ticks per unit

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

94 / 105

7.2.8 Configuration of the Flash Programming Plug & Play Mechanism

The flash programming plug & play mechanism is enabled with the switch

XCP_ENABLE_PROGRAM_INFO

If the plug & play mechanism is enabled the number of sectors and the start address and
end address of each sector has to be defined. The constants that have to be defined can
be found in the following table.

Constant Range Description

kXcpMaxSector 0..0xFF Number of available flash sectors in the slave

kXcpProgramSectorStart[] kXcpMaxSector List with the start addresses of the sectors

kXcpProgramSectorEnd[] kXcpMaxSector List with the end address of the sectors

Example

#define XCP_ENABLE_PROGRAM_INFO

#define kXcpMaxSector 2

V_MEMROM0 vuint32 MEMORY_ROM kXcpProgramSectorStart [] =

{

 (vuint32)0x000000u,

 (vuint32)0x010000u,

};

V_MEMROM0 vuint32 MEMORY_ROM kXcpProgramSectorEnd [] =

{

 (vuint32)0x00FFFFu,

 (vuint32)0x01FFFFu,

};

7.2.9 Configuration of the Page Switching Plug & Play Mechanism

The page switching plug & play mechanism is enabled with the switch

XCP_ENABLE_PAGE_INFO

If the plug & play mechanism is enabled the following configurations items have top be
defined as described below:

Constant Range Description

kXcpMaxSegment 0x01 Number of memory segments

kXcpMaxPages 0x01..0x02 Number of pages

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

95 / 105

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

96 / 105

8 Resource Requirements

The resource requirements of the XCP Protocol Layer mainly depend on the micro
controller, compiler options and configuration. Within this chapter only the configuration
specific resource requirements are taken in consideration.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

97 / 105

9 Limitations

9.1 General Limitations

The functional limitations of the XCP Professional Version are listed below:

> Bit stimulation is not supported

> Only dynamic DAQ list allocation supported

> The interleaved communication model is not supported

> Only default programming data format is supported

> GET_SECTOR_INFO does not return sequence numbers

> Program Verify and Program Format are not supported

> DAQ and events numbers are limited to byte size

> DAQ does not support address extension

> DAQ-list and event channel prioritization is not supported

> Event channels contain one DAQ-list

> ODT optimization not supported

> Assignments of CAN identifiers to DAQ lists is not supported

> MAX_DTO is limited to 0xFF

> The resume bits in DAQ lists are not set

> STORE_DAQ, CLEAR_DAQ and STORE_CAL do not send an event message

> Entering resume mode does not send an event message

> Overload indication by an event is not supported

> SERV_RESET is not supported

> The following checksum types are not supported

> XCP_CRC_16

> XCP_CRC_32

> XCP_USER_DEFINED

> Maximum checksum block size is 0xFFFF

> Page Info and Segment Info is not supported

> Only one segment and two pages are supported

> The seed size and key size must be equal or less MAX_CTO-2

Planned:

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

98 / 105

> User defined checksum calculations

> CRC16 and CRC32

9.2 Limitations of XCP Basic

The XCP Protocol Layer is available in two variants:

> XCP Professional Version

> XCP Basic Version

The XCP Professional Version is the ‘full version’, which is also supported by the Vector
generation tool GENy. The XCP Basic Version is a subset of the ‘full version’, which is
distributed freely via the internet and which has to be configured manually.

The XCP features that are available by the XCP Professional version but not by the XCP
Basic version are listed below:

> Stimulation (Bypassing)

> Bit stimulation9

> Atomic bit manipulation

> SHORT_DOWNLOAD

> FLASH and EEPROM Programming

> The block transfer communication mode

> Resume mode

> The transmission of service request packets

> Memory write protection

> Memory read protection

> Programming write protection

> Support of AUTOSAR CRC module

> Access to internal data pointer

> XCP deactivation

> Open Command Interface

> Transport Layer Commands

> Configurable timestamp size

> Disable Calibration

9
 Not yet supported by XCP Professional

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

99 / 105

9.3 Limitations Regarding Platforms, Compilers and Memory Models

Even though XCP Professional and XCP Basic are Protocol Layers and therefore higher
software layers, they manipulate memory addresses and directly access the memory with
these addresses.

This might cause issues for some combinations of platforms, compilers and memory
models. The following list provides all known restrictions on platforms, compilers and
linkers:

> CANoeOSEK Emulation is not supported

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

100 / 105

10 FAQ

10.1 Connection to MCS Not Possible

FAQ
After integration of XCP on CAN or integration of XCP Basic with a proprietary
CAN-Driver does the MCS (e.g. CANape) not connect with the XCP slave, even
though the CAN communication is working properly.

The XCP protocol allows transmitting XCP packets with a variable data length. However
many OEMs require that all CAN messages sent within their automotive networks have to
have a static DLC. Therefore messages sent by the MCS with a DLC of less than 8 (e.g.
CONNECT has a DLC of 2) might be discarded by the ECU’s CAN-Driver and the
connection is not possible.

Check whether your MCS supports transmission with static DLC. This is supported by
CANape since Version 5.5.

10.2 Invalid Time Stamp Unit

FAQ
If using data acquisition CANape reports an error due to an invalid timestamp
unit.

If you are using CANape 5.5.x or an earlier version please define

#define XCP_ENABLE_CANAPE_5_5_X_SUPPORT

in your user config file.

10.3 Support of small and medium memory model

FAQ
How is the XCP Protocol Layer configured in order to access the whole memory
in the small and medium memory model?

By default The XCP Protocol Layer accesses the memory with a default pointer. I.e. in
small and medium memory model a near pointer is used. If the far memory (e.g. code or
read-only sections) needs to be accessed via the XCP Protocol the memory qualifiers
have to be defined as far pointers by the user within the user config file.
Two memory qualifiers are used to access the memory:

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

101 / 105

#define MTABYTEPTR vuint8 XCP_MEMORY_FAR *

This pointer is used to access memory for standard read and write operations

#define DAQBYTEPTR vuint8 XCP_MEMORY_FAR *

This pointer is used to access memory for the Synchronous Data Acquisition

Depending on the use case, microcontroller, memory model and compiler either

XCP_MEMORY_FAR or both memory qualifiers (DAQBYTEPTR and MTABYTEPTR) have to

be defined by the user.

10.4 Small memory model on ST10 / XC16X / C16X with Tasking Compiler

FAQ
How has XCP Protocol Layer to be configured in order to support small memory
model on the following microcontrollers: ST10, XC16X, C16X with Tasking

Compiler?

If the small memory model is used and the two least significant bits of the DPP register
where the data of XCP is located is not equal the default DPP register value (i.e. the two
least significant bits of DPPx are unequal x, x=0..3) the configuration of the XCP Protocol
Layer has to be adapted.
There are two options available. Both have to be configured within the user config file:

Far access to the internal data of XCP:
#define FAR far

Disable type casts from pointers to integers :
#define XCP_ENABLE_NO_P2INT_CAST

10.5 Data Page Banking on Star12X / Metrowerks

FAQ
How has the XCP Protocol Layer to be configured in order to support data page
banking on the Star12X with Metrowerks compiler?

In order to use data page banking the following definition has to be added to the user
config file:

#define XCP_MEMORY_MODEL_PAGED

If this option is enabled far pointers are used for memory access, and address conversions

are carried out in the in the application callback template _xcp_appl.c. These address

conversions have to adapted to the used derivative.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

102 / 105

Please note

The data page banking support is implemented in the template _xcp_appl.c for

the MC9S12XDP512. For other Star12X derivatives the template has to be
adapted.

10.6 Memory model banked on Star12X / Cosmic

FAQ
How has the XCP Protocol Layer to be configured in order to support the access
to far pages in the banked memory model on the Star12X with Cosmic compiler?

In order to access far pages or support data page banking the following definitions have to
be added to the user config file:

#define XCP_MEMORY_MODEL_PAGED

#define XCP_ENABLE_MEM_ACCESS_BY_APPL

If this option is enabled far pointers are used for memory access, and address conversions

are carried out in the in the application callback template _xcp_appl.c. These address

conversions have to adapted to the used derivative.

Please note

The data page banking support is implemented in the template _xcp_appl.c for

the MC9S12XDP512. For other Star12X derivatives the template has to be
adapted.

10.7 Can XCP memory be placed in far RAM?

FAQ
How can the internal XCP memory be placed in far RAM?

The current implementation does not allow the XCP memory to be easily placed in far
RAM. What you can do is to compile the whole component in the respective memory
model to allow far memory access.

10.8 Reflected CRC16 CCITT Checksum Calculation Algorithm

FAQ
How is the reflected CRC16 CCITT checksum calculation algorithm configured?

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

103 / 105

The XCP Protocol Layer supports both the standard CRC16 CCITT algorithm and the
reflected CRC16 CCITT algorithm. In order to use the reflected algorithm the following
definition has to be added to the user config file:

#define XCP_ENABLE_CRC16CCITT_REFLECTED

Please note

Up to CANape version 5.6.30.3 (SP3) the standard CRC16 CCITT algorithm is
not supported, but the reflected one.
However a user checksum calculation DLL can be used in order to use the
standard algorithm with former versions of CANape.

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

104 / 105

11 Bibliography

This manual refers to the following documents:

[I] XCP -Part 1 - Overview
Version 1.0 of 2003-04-08

[II] XCP -Part 2- Protocol Layer Specification
Version 1.0 of 2003-04-08

[III] XCP -Part 5- Example Communication Sequences
Version 1.0 of 2003-04-08

[IV] Technical Reference XCP on CAN Transport Layer
Version 1.4 of 2006-04-24

[V] Technical Reference XCP on FlexRay Transport Layer
Version 1.0 of 2005-12-21

[VI] Technical Reference XCP on LIN Transport Layer
Version 1.0 of 2006-05-30

[VII] AUTOSAR Specification of CRC Routines
Release 2.0.0 of 2006-04-28

Technical Reference XCP Protocol Layer

2015, Vector Informatik GmbH Version: 1.19.00

105 / 105

12 Contact

Visit our website for more information on

> News
> Products
> Demo software
> Support
> Training data
> Addresses

www.vector-informatik.com

http://www.vector-informatik.com/

	1 History
	2 Overview
	2.1 Abbreviations and Items used in this paper
	2.2 Naming Conventions

	3 Functional Description
	3.1 Overview of the Functional Scope
	3.2 Communication Mode Info
	3.3 Block Transfer Communication Model (XCP Professional only)
	3.4 Slave Device Identification
	3.4.1 XCP Station Identifier
	3.4.2 XCP Generic Identification

	3.5 Seed & Key
	3.6 Checksum Calculation
	3.6.1 Custom CRC calculation

	3.7 Memory Protection (XCP Professional only)
	3.8 Event Codes
	3.9 Service Request Messages (XCP Professional only)
	3.10 User Defined Command
	3.11 Transport Layer Command
	3.12 Synchronous Data Transfer
	3.12.1 Synchronous Data Acquisition (DAQ)
	3.12.2 DAQ Timestamp
	3.12.3 Power-Up Data Transfer (XCP Professional only)
	3.12.4 Data Stimulation (STIM) (XCP Professional only)
	3.12.5 Bypassing (XCP Professional only)
	3.12.6 Data Acquisition Plug & Play Mechanisms
	3.12.7 Event Channel Plug & Play Mechanism
	3.12.8 Runtime Supervision of DAQ Measurement

	3.13 The Online Data Calibration Model
	3.13.1 Page Switching
	3.13.2 Page Switching Plug & Play Mechanism
	3.13.3 Calibration Data Page Copying
	3.13.4 Freeze Mode Handling

	3.14 Flash Programming (XCP Professional only)
	3.14.1 Flash Programming by the ECU’s Application
	3.14.1.1 Flash Programming Plug & Play Mechanism

	3.14.2 Flash Programming with a Flash Kernel
	3.14.3 Flash Programming Write Protection

	3.15 EEPROM Access (XCP Professional only)
	3.16 Parameter Check
	3.17 Performance Optimizations
	3.18 Interrupt Locks
	3.19 Accessing internal data
	3.20 En- / Disabling the XCP module
	3.21 Support for address doubling in XCP for DSP micros

	4 Integration into the Application
	4.1 Files of XCP Professional
	4.2 Files of XCP Basic
	4.3 Version changes
	4.4 Integration of XCP into the Application
	4.4.1 Integration of XCP on CAN (XCP Professional only)
	4.4.2 Integration with a Proprietary XCP Transport Layer
	4.4.3 Motorola HC12 with CAN Transport Layer

	5 Feature List
	6 Description of the API
	6.1 Version of the Source Code
	6.2 XCP Services called by the Application
	6.2.1 XcpInit: Initialization of the XCP Protocol Layer
	6.2.2 XcpEvent: Handling of a data acquisition event channel
	6.2.3 XcpStimEventStatus: Check data stimulation events
	6.2.4 XcpBackground: Background calculation of checksum
	6.2.5 XcpSendEvent: Transmission of event codes
	6.2.6 XcpPutchar: Put a char into a service request packet
	6.2.7 XcpPrint: Transmission of a service request packet
	6.2.8 XcpDisconnect: Disconnect from XCP master
	6.2.9 XcpSendCrm: Transmit response or error packet
	6.2.10 XcpGetXcpDataPointer: Request internal data pointer
	6.2.11 XcpControl: En- / Disable the XCP module
	6.2.12 XcpGetVersionInfo: Request module version information

	6.3 XCP Protocol Layer Functions, called by the XCP Transport Layer
	6.3.1 XcpCommand: Evaluation of XCP packets and command interpreter
	6.3.2 XcpSendCallBack: Confirmation of the successful transmission of a XCP packet
	6.3.3 XcpGetState: Get connection state of XCP

	6.4 XCP Transport Layer Services called by the XCP Protocol Layer
	6.4.1 ApplXcpSend: Request for the transmission of a DTO or CTO message
	6.4.2 ApplXcpInit: Perform XCP Transport Layer initialization
	6.4.3 ApplXcpBackground: XCP Transport Layer background operations
	6.4.4 ApplXcpInterruptEnable: Enable interrupts
	6.4.5 ApplXcpInterruptDisable: Disable interrupts
	6.4.6 ApplXcpTLService: Transport Layer specific commands

	6.5 Application Services called by the XCP Protocol Layer
	6.5.1 ApplXcpGetPointer: Pointer conversion
	6.5.2 ApplXcpGetIdData: Get Identification
	6.5.3 ApplXcpGetSeed: Generate a seed
	6.5.4 ApplXcpUnlock: Valid key and unlock resource
	6.5.5 ApplXcpCheckReadEEPROM: Check read access from EEPROM
	6.5.6 ApplXcpCheckWriteEEPROM: Check write access to the EEPROM
	6.5.7 ApplXcpCheckWriteAccess: Check address for valid write access
	6.5.8 ApplXcpCheckReadAccess: Check address for valid read access
	6.5.9 ApplXcpCheckDAQAccess: Check address for valid read or write access
	6.5.10 ApplXcpCheckProgramAccess: Check address for valid write access
	6.5.11 ApplXcpUserService: User defined command
	6.5.12 ApplXcpOpenCmdIf: XCP command extension interface
	6.5.13 ApplXcpSendStall: Resolve a transmit stall condition
	6.5.14 ApplXcpSendFlush: Flush transmit buffer
	6.5.15 ApplXcpDisableNormalOperation: Disable normal operation of the ECU
	6.5.16 ApplXcpStartBootLoader: Start of boot loader
	6.5.17 ApplXcpReset: Perform ECU reset
	6.5.18 ApplXcpProgramStart: Prepare flash programming
	6.5.19 ApplXcpFlashClear: Clear flash memory
	6.5.20 ApplXcpFlashProgram: Program flash memory
	6.5.21 ApplXcpDaqResume: Resume automatic data transfer
	6.5.22 ApplXcpDaqResumeStore: Store DAQ lists for resume mode
	6.5.23 ApplXcpDaqResumeClear: Clear stored DAQ lists
	6.5.24 ApplXcpCalResumeStore: Store Calibration data for resume mode
	6.5.25 ApplXcpGetTimestamp: Returns the current timestamp
	6.5.26 ApplXcpRtsStart: Start Trigger for DAQ runtime supervision
	6.5.27 ApplXcpRtsSnapshot: Trigger for DAQ runtime supervision
	6.5.28 ApplXcpGetCalPage: Get calibration page
	6.5.29 ApplXcpSetCalPage: Set calibration page
	6.5.30 ApplXcpCopyCalPage: Copying of calibration data pages
	6.5.31 ApplXcpSetFreezeMode: Setting the freeze mode of a segment
	6.5.32 ApplXcpGetFreezeMode: Reading the freeze mode of a segment
	6.5.33 ApplXcpReadChecksumValue: Read a single byte from memory for checksum creation
	6.5.34 ApplXcpRead: Read a single byte from memory
	6.5.35 ApplXcpWrite: Write a single byte to RAM
	6.5.36 ApplXcpCalculateChecksum: Custom checksum calculation

	6.6 XCP Protocol Layer Functions that can be overwritten
	6.6.1 XcpMemCpy: Copying of a memory range
	6.6.2 XcpMemSet: Initialization of a memory range
	6.6.3 XcpMemClr: Clear a memory range
	6.6.4 XcpSendDto: Transmission of a data transfer object

	6.7 AUTOSAR CRC Module Services called by the XCP Protocol Layer (XCP Professional Only)

	7 Configuration of the XCP Protocol Layer
	7.1 Configuration with GENy (XCP Professional only)
	7.1.1 Component Configuration
	7.1.1.1 General Settings
	7.1.1.2 Synchronous Data Acquisition
	7.1.1.3 Standard Commands
	7.1.1.4 Checksum
	7.1.1.5 Page Switching
	7.1.1.6 Programming
	7.1.1.7 Generated a2l files

	7.2 Configuration without Generation Tool
	7.2.1 Compiler Switches
	7.2.2 Configuration of Constant Definitions
	7.2.2.1 Table of Checksum Calculation Methods

	7.2.3 Definition of Memory Qualifiers
	7.2.4 Configuration of the CPU Type
	7.2.5 Configuration of Slave Device Identification
	7.2.5.1 Identification by ASAM-MC2 Filename without Path and Extension
	7.2.5.2 Automatic Session Configuration with MAP Filenames

	7.2.6 Configuration of the Event Channel Plug & Play Mechanism
	7.2.7 Configuration of the DAQ Time Stamped Mode
	7.2.8 Configuration of the Flash Programming Plug & Play Mechanism
	7.2.9 Configuration of the Page Switching Plug & Play Mechanism

	8 Resource Requirements
	9 Limitations
	9.1 General Limitations
	9.2 Limitations of XCP Basic
	9.3 Limitations Regarding Platforms, Compilers and Memory Models

	10 FAQ
	10.1 Connection to MCS Not Possible
	10.2 Invalid Time Stamp Unit
	10.3 Support of small and medium memory model
	10.4 Small memory model on ST10 / XC16X / C16X with Tasking Compiler
	10.5 Data Page Banking on Star12X / Metrowerks
	10.6 Memory model banked on Star12X / Cosmic
	10.7 Can XCP memory be placed in far RAM?
	10.8 Reflected CRC16 CCITT Checksum Calculation Algorithm

	11 Bibliography
	12 Contact

