XCP on CAN

Technical Reference

XCP on CAN Transport Layer

Version 1.08

Frank Triem, Sven Hesselmann
1.08

Status: released (in preparation/completed/inspected/released)

vector”

Technical Reference XCP on CAN

1 Document Information

11

1.2

vector’

History

Author ’ Date ‘Version ‘ Remarks

Frank Triem 2005-01-03 1.0 ESCANO00010737: Initial draft

Klaus Emmert Warning Text added

Frank Triem 2005-02-28 1.1 ESCANO00011300: Manual configuration

Frank Triem 2005-06-22 1.2 ESCANO00011772: Support multiple CAN channels
ESCANO00012311: Support CAN-Driver without
transmit queue

Frank Triem 2005-12-19 13 Rework due to inspection

Frank Triem 2006-04-24 14 ESCANO00015915: Correct filenames

Frank Triem 2006-05-30 15 ESCANO00016517: Update of table of contents

Frank Triem 2006-10-26 1.6 ESCANO00017220: Documentation of reentrant
capability of all functions

Sven 2007-09-14 1.7 Multiple Identity added

Hesselmann

Sven 2008-03-19 1.07.01 Invalid reference corrected

Hesselmann

Andreas 2009-01-14 1.08 ESCANO00031509: Description of how to define

Herkommer Messages as Application Messages

Reference Documents

Index ‘ Document
[1] XCP -Part 1 — Overview, Version 1.0 of 2003-04-08

[2] XCP -Part 2- Protocol Layer Specification, Version 1.0 of 2003-04-08

[3] XCP -Part 5- Example Communication Sequences, Version 1.0 of 2003-04-08
[4] Technical Reference XCP Protocol Layer, Version 1.0 of 2005-01-17

[5] Technical Reference CAN Driver, Version 2.21 of 2003-07-29

[6]

©2009, Vector Informatik GmbH

AN-AND-1-108 Glossary of CAN Protocol Terminology
http://www.vector-informatik.de

Version: 1.08

based on template version 1.3

2127

http://www.vector-group.net/support/appnotes/AN-AND-1-108_glossary_of_can_protocol_terminology.pdf
http://www.vector-informatik.de/

Technical Reference XCP on CAN vector

1.3 Abbreviations

Abbreviations

Complete expression

A2L File Extension for an ASAM 2MC Language File

AML ASAM 2 Meta Language

API Application Programming Interface

ASAM Association for Standardization of Automation and Measuring Systems
CAN Controller Area Network

CANape Calibration and Measurement Data Acquisition for Electronic Control Systems
CMD Command

CTO Command Transfer Object

DAQ Synchronous Data Acquistion

DLC Data Length Code (Number of data bytes of a CAN message)
DLL Data link layer

DTO Data Transfer Object

ECU Electronic Control Unit

ID Identifier (of a CAN message)

Identifier Identifies a CAN message

ISR Interrupt Service Routine

MCS Master Calibration System

Message One or more signals are assigned to each message.

MRB Multi receive buffer

MRC Multi receive channel

OEM Original equipment manufacturer (vehicle manufacturer)

RES Command Response Packet

SRB Single receive buffer

SERV Service Request Packet

STIM Stimulation

XCP Universal Measurement and Calibration Protocol

VI Vector Informatik GmbH

Also refer to [6] for a list of common abbreviations and terms.

©2009, Vector Informatik GmbH Version: 1.08 3127

based on template version 1.3

Technical Reference XCP on CAN vector

1.4 Naming conventions

The names of the access functions provided by the XCP Transport Layer for CAN always
start with a prefix that includes the characters ‘Xcp’. The characters ‘Xcp’ are surrounded
by an abbreviation which refers to the service or to the layer which requests a XCP
service. The designation of the main services is listed below:

Naming conventions

Xcp.. It is mandatory to use all functions beginning with Xcp...
These services are called by either the data link layer, XCP Protocol Layer or
the application.
They are e.g. used for the transmission of messages.

AppIXcp The functions, starting with AppIXcp... are functions that are provided by the
application and are called by the XCP Transport Layer for CAN.

These services are user callback functions that are application specific and
have to be implemented depending on the application.

| Please note
. We have configured the programs in accordance with your specifications in the
guestionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
guestionnaire..

©2009, Vector Informatik GmbH Version: 1.08 4127

based on template version 1.3

Technical Reference XCP on CAN vector

Contents

1 Document INfOrmationoooiiiiiiiiii 2
1.1 [111 (0] Y 2
1.2 ReferenCe DOCUMENLScoiiiiiiiiiiiiie et 2
1.3 F Y o] o] (=3 =[] L 3
1.4 NAMING CONVENTIONS......uiiiiiiiiiiiiiiiiti et e e e 4
P © 1Y =T YT 7
3 FUNCLIONAl DESCIIPLION L.uuiiiiiii e 8
3.1 Overview of the functional SCOPEccovviieiiiiiiiiiii e 8
3.2 Reception and transmission of XCP packets...........cccccieiiii 8
3.3 Support of multiple CAN channelsccccc 8
4 Integration into the appliCatioNuueiiiiiie e 9
4.1 1= 9
4.2 VErSION CRANGES ..o e 9
4.3 Integration of XCP on CAN into the applicationcoevvviiiiiiiienenennn, 10
5 Description Of the APl e aeeene 12
5.1 Version Of the SOUICE COOEuuuiuiiiiiiiiiiiiiiiiiiiieiiieiieee e 12
5.2 XCP Transport Layer for CAN services called by the Protocol Layer 13
5.2.1 ApplXcpSend: Transmission of XCP Packets.........ccccccovveiviviviiiiiniiieecceens 13
5.2.2 ApplXcplnit: Initialization of XCP Transport Layer for CAN...........ccccvvveeee 13

5.2.3 ApplXcpBackground: Background task of XCP Transport Layer for
AN et e e e e e e e e e e —aaa e e e e n e —raaaaeeaaans 14
5.3 XCP Transport Layer for CAN services called by the CAN-Driver............. 15
5.3.1 XcpPreCopy: XCP message precopy function.............cccccevvevviiiiiinnnnenn. 15
5.3.2 XcpConfirmation: XCP message confirmation..............cccccccvvv, 16
5.4 XCP Protocol Layer services called by the Transport Layer for CAN 16
55 CAN-Driver services called by the Transport Layer for CANoceeee 16
6 Configuration 0f XCP 0N CANuuuiiiiiiiiieiiiiiiiiietiieereeiereerrerreeereeereearreeneeenrennesnnennnes 17
6.1 Configuration of XCP on CAN with GENY.............cccc, 17
6.1.1 Main configuration PAgeccooeeeeee e 18
6.1.2 Channel configuration PAgEooiouiiirriiiee e 19
6.1.3 Multiple Identity configuration..............ccceeeii i 20
6.2 Configuration of XCP on CAN with GENy and CANgenc.......... 22
6.2.1 XCP on CAN uses only one CAN channel...............ccccccoi, 23

©2009, Vector Informatik GmbH Version: 1.08 51727

Technical Reference XCP on CAN vector

6.2.2 XCP on CAN uses multiple CAN channelscccccccciicc, 24

A N[V1= U o] 1 PO PP OPPPPPPPPPPP 25

7.1.1 Variable length of XCP Packets is not supportedcooovvvviiiiiiineeenennns 25

7.1.2 Assignment of CAN identifiers to DAQ lists is not supported..................... 25

7.1.3 Detection of all XCP slaves within a Networkcccooccvvviiviiieeiniiiiiiinen, 25

714 Channel AP 25

7.15 Multiple Identity only supported for single channel configuration............... 25

S T o N O PP PP PP PPPRP 26

8.1 Transmit queue of CAN-Driver is disabled............ccccvveviieiiiiieviieeciieeee, 26

S I 00] o] = (o1 PP TP PP 27

[llustrations

figure 4-1 Integration of XCP on CAN into the application..............cccccvviiviiieiiiiiiiinninnn. 10

figure 6-1 CompPoNENt SEIECTHIONccevviiii e 17

figure 6-2 Main configuration page of XCP on CAN Transport Layerccccvvveeeeeeennn. 18

figure 6-3 Channel configuration page of XCP on CAN Transport Layer........................ 19

figure 6-4 Changing message attribute to “Application Message”ccceevvvevvvnninnnnnn. 20
figure 6-5 Channel configuration page for Multiple Identity configurations of XCP on

CAN TranSPOIt LAYI ..o 21

figure 6-6 Adding a user config file iIN GENYuuuiiiiiiiiiiiiiiiiiiiiiiiieiiiieeeeeeeeeeeeeeeeeeenes 22

©2009, Vector Informatik GmbH Version: 1.08 6/27

Technical Reference XCP on CAN vector

2 Overview

This document describes the features, API, configuration and integration of the XCP
Transport Layer for CAN. The XCP Protocol Layer, which is already described within a
separate document [4], is not covered by this document.

Please also refer to “The Universal Measurement and Calibration Protocol Family”
specification by ASAM e.V.

XCP on CAN is a hardware independent protocol that can be ported to almost any CAN
controller. Due to there are numerous combinations of micro controllers, compilers and
memory models it cannot be guaranteed that it will run properly on any of the above
mentioned combinations.

Please note that in this document the term Application is not used strictly for the user
software but also for any higher software layer, like e.g. a Communication Control Layer.
Therefore, Application refers to any of the software components using XCP on CAN.

The API of the functions is described in a separate chapter at the end of this document.
Referred functions are always shown in the single channel mode.

©2009, Vector Informatik GmbH Version: 1.08 7127

Technical Reference XCP on CAN vector

3 Functional Description

3.1 Overview of the functional scope
The XCP Transport Layers mange the transmission and reception of XCP Packets.

The XCP Transport Layer for CAN makes use of the CAN-Driver to transmit and receive
XCP messages. Since variable message length is not supported the XCP Transport Layer
has to ensure that all sent XCP messages have the same DLC. l.e. a DLC of 8.

3.2 Reception and transmission of XCP packets
Upon reception of any XCP message the function
vuint8 XcpPreCopy (PRECOPY_PARAM_TYPE PRECOPY_PARAM) (5.3.1)

is called by the CAN-Driver and the XCP Packet is passed to the Protocol Layer by a call
of the function:

void XcpCommand (MEMORY_ROM vuint32* pCommand)

After the command has been processed by the Protocol Layer the XCP Response Packet
is passed to the Transport Layer by the service

void ApplXcpSend (vuint8 len, MEMORY_ROM BYTEPTR msg) (5.2.1)

and the XCP message is transmitted by the CAN-Driver service
vuint8 CanTransmit (CanTransmitHandle tmtHandle)

the successful transmission is confirmed by the CAN-Driver by a call of
void XcpConfirmation (CanTransmitHandle tmtObject) (5.3.2)

The confirmation is passed to the Protocol Layer by a call of
void XcpSendCallback (void)

Asynchronous XCP Packet transmission like e.g. SERV, EV and DAQ are transmitted and
confirmed by the described sequence.

3.3 Support of multiple CAN channels

Multiple CAN channels are supported by the XCP Transport Layer for CAN. However it is
not possible to have multiple connections at one time. l.e. only one connection on one
CAN channel is allowed.

The option ‘multi connection protection’ ensures that only one XCP Master communicates
with the XCP Slave at one time.

©2009, Vector Informatik GmbH Version: 1.08 8127

Technical Reference XCP on CAN vector

4 Integration into the application

This chapter describes the steps for the integration of the XCP Transport Layer for CAN
into an application environment of an ECU.

4.1 Files
The XCP Transport Layer for CAN consists of the following files:

Files of the XCP on CAN Transport Layer

Xcp_can.c XCP on CAN Transport Layer.
This file must not be changed by the user!
Xcp_can-h Ap| of the XCP on CAN Transport Layer.
This file must not be changed by the application!
This file has to be included prior to XcpProf.h.

v_def.h General Vector definitions of memory qualifiers and types.
This file must not be changed by the application!.

_Xcp-cfg XCP user config file template for the configuration on XCP Transport
Layer for CAN with CANgen.

N2 DD

Additionally the following files are generated by the generation tool GENy.

xcp_cfg-h configuration file for XCP on CAN.

Xcp_parc Parameter definition for the XCP on CAN.

Xcp_par-h External declarations for the parameters.

v_cfg.h General Vector configuration file for platform specifics.

v_inc.h General header for including the Vector CANbedded stack headers.

DDDDD

Note that all files of XCP on CAN must not be changed manually except if CANgen is used
for the configuration of the CAN-Driver. In this case only the generated files xcp_cfg.h,
Xcp_par.c and xcp_par .h are relevant and the additional general header for including
the generated header files _v_inc.h has to be customized and renamed to v_inc.h.

4.2 Version changes

Changes and the release versions of the XCP Transport Layer for CAN are listed at the
beginning of the header and source code.

©2009, Vector Informatik GmbH Version: 1.08 9/27

based on template version 1.3

Technical Reference XCP on CAN vector

4.3 Integration of XCP on CAN into the application

The Vector CANbedded stack includes optionally XCP on CAN, which comprises the XCP
Protocol Layer in conjunction with the XCP Transport Layer for CAN and the CAN-Driver.
Note that the CAN-Driver, which is distributed as a separate product, is only partly part of
XCP on CAN.

The following figure shows the interface between XCP on CAN and the application:

XCP on CAN
CAN Driver
(can_drv.c)
N XcpCommand
cpRreCopy
XcpConfirmatio XCP on CAN AoplXcpSend
Interface Layer ppixcpsen
XcpSendCallback
(xcp_can.c)
CanTransmit
XCP
E Protocol Layer
XcpEvent (XcpProf.c)
Xeplnit
Application XcpBackground
ApplXcp..

figure 4-1 Integration of XCP on CAN into the application

’ Practical Procedure
L The integration of XCP on CAN can be done by following these steps:

1. Configure XCP on CAN in the generation tool GENy and generate.

2. Include the include header file v_inc.h into all modules that access the
XCP on CAN services or provide services that XCP on CAN uses.

3. Add all source files and generated source files in the make file and link it
together with the data link layer and the application.

4. Initialize the data link layer after each reset during start-up before
initializing XCP on CAN (interrupts have to be disabled until the complete
initialization procedure is done) by calling XcpInit.

©2009, Vector Informatik GmbH Version: 1.08 10/27

Technical Reference XCP on CAN vector

5. If required call the background function XcpBackground cyclically.

6. Integrate the desired XCP on CAN services into your application. Call
especially the function XcpEvent(channel) cyclic with the appropriate
cycle time and channel number.

The XCP on CAN sources must not be changed for the integration into the
application.

©2009, Vector Informatik GmbH Version: 1.08 11/27

Technical Reference XCP on CAN vector

5 Description of the API

The XCP on CAN application programming interface consists of services, which are
realized by function calls. These services are called wherever they are required. They
transfer information to- or take over information from XCP on CAN. This information is
stored in XCP on CAN until it is not required anymore, respectively until it is changed by
other operations.

Examples for calling the services of XCP on CAN can be found in the description of the
services.

5.1 Version of the source code

The source code version of the XCP Transportation Layer for CAN is provided by three
BCD coded constants:

V_MEMROMO MEMORY_ROM vuint8 kXcpOnCanMainVersion
(vuint8) (CP_XCPONCAN_VERSION >> 8);

V_MEMROMO MEMORY_ROM vuint8 kXcpOnCanSubVersion
(vuint8) (CP_XCPONCAN_VERSION);

V_MEMROMO MEMORY_ROM vuint8 kXcpOnCanReleaseVersion =
(vuint8) (CP_XCPONCAN_RELEASE_VERSION);

A Example

[1] Version 1.00.00 is registered as:
kXcpOnCanMainVersion = 0x01;
kXcpOnCanSubVersion = 0x00;
kXcpOnCanReleaseVersion = 0x00;

These constants are declared as external and can be read by the application at any time.

©2009, Vector Informatik GmbH Version: 1.08 12/27

Technical Reference XCP on CAN vector

5.2 XCP Transport Layer for CAN services called by the Protocol Layer

The following XCP Transport Layer for CAN functions are called by the Protocol Layer.
The API of theses functions can be found in the header of the XCP on CAN components.

5.2.1 ApplXcpSend: Transmission of XCP Packets
ApplXcpSend

Prototype

Single Channel

Single Receive Channel void ApplXcpSend (vuint8 len, const BYTEPTR msg)

Single Receive Buffer N/a

Multiple Receive Buffer N/a

Multi Channel

Indexed (MRC) Not supported

Code replicated (SRB) N/a

Code replicated (MRB) N/a

Parameter

len Length of the XCP Packet that has to be transmitted.
(withlen=1...8)

msg Pointer to the XCP Packet data.

Return code

Functional Description
Transmission of XCP Packets.

Particularities and Limitations

= Not reentrant
m Call context of: XcpEvent, XcpBackground and context of CAN-Driver

5.2.2 ApplXcplnit: Initialization of XCP Transport Layer for CAN

ApplXcplnit
Single Channel
Single Receive Channel void ApplXcplnit (void)
Single Receive Buffer N/a
Multiple Receive Buffer N/a
Multi Channel
Indexed (MRC) Not supported
Code replicated (SRB) N/a
Code replicated (MRB) N/a
©2009, Vector Informatik GmbH Version: 1.08 13727

based on template version 1.3

Technical Reference XCP on CAN vector

Parameter

Return code

Functional Description
Initialization of the XCP Transport Layer for CAN.

Particularities and Limitations
m Not reentrant
m Call context of Xcplnit

5.2.3 ApplXcpBackground: Background task of XCP Transport Layer for CAN
ApplXcpBackground

Prototype
Single Channel
Single Receive Channel void ApplXcpBackground (void)

Single Receive Buffer N/a

Multiple Receive Buffer N/a

Multi Channel

Indexed (MRC) Not supported
Code replicated (SRB) N/a

Code replicated (MRB) N/a

Parameter

Return code

Functional Description
Cyclic background task of the XCP Transport Layer for CAN.

Particularities and Limitations
m Not reentrant
m Call context of XcpBackground

©2009, Vector Informatik GmbH Version: 1.08 14727

based on template version 1.3

Technical Reference XCP on CAN vector

5.3 XCP Transport Layer for CAN services called by the CAN-Driver

The following XCP Transport Layer for CAN functions are called by the CAN-Driver.
The API of theses functions can be found in the header of the CAN-Driver parameter file.

5.3.1 XcpPreCopy: XCP message precopy function

XcpPreCopy
Single Channel CAN-Driver
Single Receive Channel vuint8 XcpPreCopy (CanRxInfoStructPtr rxStruct)
Single Receive Buffer vuint8 XcpPreCopy (CanReceiveHandle rxObject)
Multiple Receive Buffer vuint8 XcpPreCopy (CanChipDataPtr rxDataPtr)
Multi Channel CAN-Driver
Indexed (MRC) vuint8 XcpPreCopy (CanRxInfoStructPtr rxStruct)
Code replicated (SRB) vuint8 XcpPreCopy (CanReceiveHandle rxObject)
Code replicated (MRB) vuint8 XcpPreCopy (CanChipDataPtr rxDataPtr)
rxStruct Pointer to RxInfoStruct
rxObject Handle of the received object
rxDataPtr Pointer to received data

Return code

vuint8 kCanNoCopyData : no data needs to be copied by the CAN-Driver
Functional Description

Precopy function that is called upon every reception of a XCP message.

Particularities and Limitations

= Not reentrant
m Call context of CAN-Driver

©2009, Vector Informatik GmbH Version: 1.08 15/27

based on template version 1.3

Technical Reference XCP on CAN vector

5.3.2 XcpConfirmation: XCP message confirmation

XcpConfirmation

Single Channel CAN-Driver

Single Receive Channel void XcpConfirmation (CanTransmitHandle tmtObject)
Single Receive Buffer void XcpConfirmation (CanTransmitHandle tmtObject)
Multiple Receive Buffer void XcpConfirmation (CanTransmitHandle tmtObject)
Multi Channel CAN-Driver

Indexed (MRC) void XcpConfirmation (CanTransmitHandle tmtObject)
Code replicated (SRB) void XcpConfirmation (CanTransmitHandle tmtObject)
Code replicated (MRB) void XcpConfirmation (CanTransmitHandle tmtObject)
tmtObject Transmit Handle of the confirmed message.

Return code

Functional Description
Confirmation function for the XCP message.

This function is called by the CAN-Driver whenever the XCP message has been transmitted successful.
Particularities and Limitations

= Not reentrant

m Call context of CAN-Driver

5.4 XCP Protocol Layer services called by the Transport Layer for CAN
The following XCP Protocol Layer services are called by the Transport Layer for CAN:
- void ApplXcplnterruptEnable(void)
- void ApplXcpInterruptDisbable(void)
- void XcpCommand(MEMORY_ROM vuint32* pCommand)
- void XcpSendCallBack(void)
- vuint8 XcpGetState(void)

For a description of the API and the functionality of these functions please refer to the
Technical Reference XCP Protocol Layer [4].

5.5 CAN-Driver services called by the Transport Layer for CAN

The following CAN-Driver services are called by the Transport Layer for CAN:
- wvuint8 CanTransmit (CanTransmitHandle tmtHandle)

For a description of the API and the functionality of these functions please refer to the
Technical Reference CAN Driver [5].

©2009, Vector Informatik GmbH Version: 1.08 16/27

based on template version 1.3

Technical Reference XCP on CAN vector

6 Configuration of XCP on CAN

The configuration of XCP on CAN (XCP Protocol Layer and XCP Transport Layer for CAN)
is only supported by the generation tool GENy.

Therefore if the CAN-Driver is configured with CANgen two generation tools are used:
GENYy for the configuration of the XCP Protocol Layer

CANgen for the configuration of the CAN-Driver. The XCP Transport Layer for CAN
has to be configured manually (refer to chapter 6.2).

6.1 Configuration of XCP on CAN with GENy

If GENy is used for the configuration of the whole CANbedded stack the configuration of
XCP on CAN is conveniently done by GENy. No database attributes are required for the
configuration of XCP on CAN.

i’é: GEMy - [tscXCP_Zch_Release.gny : Boardl] -0l =l
l-gy Filz= Edit Wew Configuration ‘Window Help ==
D 28 &% dra~Q -~ iR
{;} My ECU Configurable Options Boardl
EI" é;mgon;nls Type of bussystem CaM bl
i p_Aep =
H Manufact -
- EF MameD ecorator AnUTacirer Vector —
L Hw_CanoeemuCpu |= Cp_#cpOnCan on CAN
=-E3 Cp_weplnCan Slave id CCP_DTO =l
| Eg™ Channels Waster Id CCP CRO =
T - 5
- B2 DrvCan_CanceemuCanoeH|l
(-2 Tx Messages
[RxMessages
[y Tw Signals
[+-uly Fx Signals
4] i3]
* * |Cp_XcpOnC. *
+ |Software Components MpECU |Boardl Board2 1= . |-P—~cplnban P
Col__core - Il ol
Cp Ccp [- Hl
Cp_¥cp [[V
Cp_MeplnCan r i F
DPR T S 1
Diag_CanDesch asic_khw P ol ol ol
Diag_CanDescBasic_UDS [l Hl
= Diag_CanDesc_kKwWP - ol ol
' |Diag_CanDesc_UDS] [[-
S %ComponentSeIec’tion] £} Generated Files] AT], Hessages AFind in
For Help, press F1 LM |Number of Objects Displayed: 1 o

figure 6-1 Component selection

©2009, Vector Informatik GmbH Version: 1.08 17/27

Technical Reference XCP on CAN vector

In order to configure the XCP Transport Layer for CAN (Cp_XcpOnCan) it has to be
activated on the designated channels. The activation of the XCP Transport Layer for CAN
requires to activate the XCP Protocol Layer (Cp_Xcp).

The configuration of each component is done on separate pages. Furthermore XCP
Transport Layer for CAN has ECU specific and channel specific settings that have to be
customized separately.

6.1.1 Main configuration page

i’.'g: GENy - [tscXCP_2ch_Release.gny : Cp_XcpOnCan] ;Iglil
;‘i,u File Edit Wiew Configuration ‘Window Help ==l x]
DEeHE 2R EF = 8- Fo R

{;} My ECU Configurable Options IEp_chDnEan

=B Components |— Cp_¥cpOncan on CAN

B Cp_®ep 7

H - Wariahle DLC *

E2 NameDecorator r
Multi Connection Protection Ird

; ot Board2
@3 DrvCan_CanoeemuCanoeHl
H-Eg T Messages
H-Eg Fix Messages
]y, Tx Signals
Ml Rz Signals

&[]

< [

Software Components yw ECL
Cel__core ol
Cp_Ccp

Cp_Xcp

Cp_XcpOnCan

DPH

Diag_CanDezcB azsic_kywP
Diag_CanDezcBasic_LIDS
Diag CanDesc KMWP
Diag_CanDesc_UDS

=

* |Cp_¥cpOnCan

5
o
=
&

0. e =
0 =4
|

L 1
reen Help

nSc

Swstern (

E¥ Component Selection | 467 Generated Files | ENRIR A, Hessages AFind in
For Help, press F1 LM |Number of Objects Displayed: 1 &

figure 6-2 Main configuration page of XCP on CAN Transport Layer

Configuration options Value Description
XCP on CAN Transport Layer options
Variable DLC m Enable Activate/Deactivate the transmission of messages

m Disable with variable DLC.
This option is not available yet!

Multi connection protection = Enable Activate/Deactivate the protection against multiple
= Disable connections.

Only available if XCP on CAN is used on multiple
CAN channels.

Table 6-1 Main configuration page of XCP on CAN Transport Layer

©2009, Vector Informatik GmbH Version: 1.08 18/27

based on template version 1.3

Technical Reference XCP on CAN vector

6.1.2 Channel configuration page

The messages can be selected in GENy within Component Cp_XcpOnCan under the
channel view (see below). The list boxes of the master/slave ID entry fields provide
messages which fit to the requirements. The user can select the appropriate message.

i’é: GEMy - [tscXCP_Zch_Release.gny : Boardl] =101]
l-gy Flle Edit W%iew Configuration ‘Window Help ;lilﬂ
DEE 2R (E9 S-=-Q Y- Fonn
{;} My ECU Configurable Options Boardl
EI" Components Type of bussystem CaM i
L5 Cp_ep Manufacturer ‘ectar l
EZ NameDecorator —
% Hw_CanoeemuCpu |: Cp_XcponCan on CAMN
5 Cp XepOnCan Slave Id CCP_DTO =l
-;:"- Charinels Mhaster I CCP_CRO =l
----- Pl Eioard]
e Board2

@3 DirvCan_CanoesmulCanoeH|l
o[Tx Messages

H-fg Px Messages

#--Mly. Tx Signals

f- il B Signals

-5

4] i3]
T Software Cormpanents MyECU |Boardl Board? = Multi Connection Protection
Tl _aoe — — = The =CP Protocol allows only single
= — = = connections (one ¥CF slave is connected to
Cp_Cep one ¥CF mazster). If multiple CaN channels are
Cp_¥cp v [V [V used it has to be ensured that only one CAN
Cp_¥cpOnCan [Ird i channel iz uzed at one time. [f thiz option iz
DPM]] O 1 selected all CONMECT commands to an aleady
- - = — — connected XCP slave are ignored [there is no
- |Diag_CanDescBasic kWP response].
‘g Diag_CanDescBasic_UDS [l 'l
I:c" Diag_CanDesc_kKwWP - ol ol
' |Diag_CanDesc_UDS] [[-
¢ P Component Selection] £} Generated Files] A], Messages {Find in

For Help, press F1 LM |Number of Objects Displayed: 1 o

figure 6-3 Channel configuration page of XCP on CAN Transport Layer

Configuration options Value Description

Type of bus system Ready Only |Bus system type for the specific channel.
Manufacturer Ready Only |Value of the database attribute ‘manufacturer’.
XCP on CAN Transport Layer

Slave Id Tx-1D XCP Slave ldentifier

This is the ID for Response Packets and DAQ packets.

Only IDs that are not IL, TP or Diag messages and that
have a DLC of 8 can be selected.

Master Id RX-ID XCP Master Identifier
This is the ID for Command Packets and STIM Packets.

©2009, Vector Informatik GmbH Version: 1.08 19/27

based on template version 1.3

Technical Reference XCP on CAN vector

Only IDs that are not IL, TP or Diag messages and that
have a DLC of 8 can be selected.

Table 6-2 Channel configuration page of XCP on CAN Transport Layer

In case there are no messages of type Application available, no selection can be made in
the Master/Slave ID field.

In this case two possible solutions exist:

1. Change the attributes of the XCP message(s) in the database. There are special
attributes to specify a message as NM, TP, IL, etc.

In case this is not possible, use solution 2:

2. Within GENy an IL message can be configured to be ‘Appl’ message. In Tx and Rx
message view, set the checkbox ‘Application Message’ for the appropriate message (as
shown below, message B1_CCP). Then the type changes to Message Class ‘Appl’. Now
this message should be found in the slave or master ID selection.

enerate| Channel IID Estended ID | Length [byte]| Application Mezzane| Meszage Class
MM_Asr Board [e B EE e g r b4 -
&pplhitd_Bosr ¥* e R g r IL =
1 e dPhim i D m s — P - =rnl— A — . n

figure 6-4 Changing message attribute to “Application Message”

6.1.3 Multiple Identity configuration

For information about setting up a Multiple Identity configuration please refer to the
according Technical Reference. This chapter only explains the XCP specific configuration.

For each configured Identity the Slave Id and Master Id must be configured. For a
configuration with Multiple Identity this is not done on the channel dependent page as
shown in chapter 6.1.2, but on the Identities page below the channel dependent page (s.
figure below).

©2009, Vector Informatik GmbH Version: 1.08 201/ 27

Technical Reference XCP on CAN

15: GENy - [GENy2 : Identities*]
:@File Edit Yiew Configuration Window Help

vector’

=101 x|
=121 x|

DeE ¢ &% b= % -~

& o S

{;} My ECU #CF on CAM Transport Layer
L:_IH' Cornponents
..... B Cp Xep : Slave D I aster [0
. . Ilertity 0 - j
----- E» GenTool_GenyPluginConfigD ocumentar
----- % Hw_CanoeemuCpu Iclertity_1 “ j
B B2 MameDecorator
----- E> GenT ool_GenyPlugintultiplel dentities
E-E» Cp_¥ep0OnCan
E‘TIL Chanrels
El-== Channeld
E|---n.|l¢ Identities
: |dentity_00
| dentity_1
&£ DrvCan_CanoeemuCanoeHl
H-fg TxMeszages
[+ R= Meszages
-y, Tx Signals
BNy Rx Signals
): Software Compaonents by ECL | Channell = Master ID 1):
The master device CAM identifier is
Cp_%cp ¥ ¥ uzed to transmit
Diag_Testsuite] r - Command Tranzfer Qbjects
GenTool_GenyFlugindsl fE cuConfigFile] r [commands requests]
GenT ool_GeryFluginkultiplel dertitie: Imd v : Diata transfer objects in
Hw_CanosemuCpu 7] [%%rﬂ}r?;;es]Data Stimulation
Sys3ervice_AsrDet [r [from the master contral systemn the
Cp_Ccp [l r dlave device.
DrvCan_CanoeemuCanoedss [r
DrvCan_CanoeemuCanoeH|l r Ird A AN message has to be chosen
GenT ool_GeryPluginE stractDbe [r - LIS o
= The list conating only Be-10e with a

S N EE Component Selec’tion] 6} Generated Filesl

DLC of 8 that are not signed as LI

lntaracting | ansr meceans ot Al

= RN Hessages

For Help, press F1

[[nom |

[rumber of Cbjects Displaved: 2 v

figure 6-5 Channel configuration page for Multiple Identity configurations of XCP on CAN Transport Layer

©2009, Vector Informatik GmbH

Version: 1.08

based on template version 1.3

211727

Technical Reference XCP on CAN vector

6.2 Configuration of XCP on CAN with GENy and CANgen

If the CAN-Driver is configured by CANgen the configuration of the XCP Transport Layer
for CAN has to be done manually. The configuration of the XCP Protocol Layer is
performed conveniently by GENy.

Reference the user config file xcp.cfg on the XCP Protocol Layers main page in GENy
as shown in figure 6-6 and customize it according to Table 6-3.

i’.'g: GENy - [tscXCP_2Zch_Release.gny : Cp_Xcp] i [m] B3]
;‘i,u File Edit Wiew Configuration ‘Window Help ==]
NEH + 2R &E2 $-=-Q 8- S
{;} My ECU Configurable Optiohs | Cp_*cp o
E'“’ Components | General Settings
i B3 Cp_Hep e - -
- XCP Station ldentifier
w3 MameDecorator flestuite
e E% Hw_CanoeemuCpu Command parameter check W*
EE}' Cp_#cpOnCan Evert Codes I
E‘TIL Channels Bootloader download [+
[. Tan V o ———
B DrvCan_CanoesmuCanoeHIl User Config File |)£>
-y TwMessages [-E
w64 Ru Messages EEPRCM read access ~
E-1u, Tx Sllgnals EEPROM write access I~
[-ruly Fx Signals
|: Service request message
Service Reguest Message Il
Print 7
|: Synchronous Data SAcoquisition (DACH
Synchronous Data Acquisition (DAG) =
Memory Size 2RE
Prescaler I~
Cwerrun indication I~
DACIODT message header]
1 I I ﬂ M ras ma medla = LI
’: Software Components MpECU |Boardl Board2 1=): Us_et Config File .):
ool oo W r r This cortrol holds the pathname of an optional
= uzer defined configuration file. Such a file can
Cp_Cop [] [be uged to add additional elements to the
Cp_icp I~ I~ =2 generated xop_cfah fle. Since the contents of
Cp_¥cpOnCan [l [~ thiz file is added at the end of the generated file
DP_IVI] | O = #cp_cfah some values defined there can be
: - redefined.
Diag_CanDescBasic_ kP [(] O
Diag_CanDescBasic_UDS [(] O
| |Diag_CanDesc_kwWP [(] O
Diag_CanDesc_LIDS [(] O -
= F =T — — — _'
= B Component Selection | 467 Generated Files | ENRIRE], Hessage= AFind 3n
Far Help, press F1 LM |Number of Objects Displaved: 1 v

figure 6-6 Adding a user config file in GENy

©2009, Vector Informatik GmbH Version: 1.08 22127

based on template version 1.3

Technical Reference XCP on CAN vector

' Configuration options - Value LDescription
XCP on CAN Transport Layer Options
XCP_TRANSPORT_LAYER_TYPE_CAN Activate the XCP on CAN Transport Layer
XCP_xxx_VARIABLE_DLC ENABLE | Activate/Deactivate the transmission of
DISABLE | messages with variable DLC.
This option is not available yet!
XCP_xxx_MULTI_CHANNEL ENABLE | Enable support of multiple CAN channels
DISABLE
XCP_xXxX_MULTI_CONNECTION_PROT |ENABLE | Protection against multiple connections.
ECTION DISABLE Only available if XCP on CAN is used on
multiple CAN channels
kXcpNumberOfCanChannels 2..255 | Specify the number of CAN channels that
use XCP on CAN.
Only available if XCP on CAN is used on
multiple CAN channels

Table 6-3 Options and configuration of XCP on CAN Transport Layer

The XCP Slave ID and XCP Master ID have to be configured in the generation tool that
configures the CAN-Driver. If XCP on CAN is only used on one CAN channel refer to
chapter 6.2.1 ‘XCP on CAN uses only one CAN channel’ otherwise refer to chapter 6.2.2
‘XCP on CAN uses multiple CAN channels’.

6.2.1 XCP on CAN uses only one CAN channel
The generation tool CANgen has to be configured as follows:

m Add the precopy function XcpPreCopy for the XCP Master ID in your generation tool.
m Add the confirmation function XcpConfirmation for the XCP Slave ID in your generation tool.

The Transmit handle and the data buffer of the XCP Slave ID have to be defined in the
user config file xcp.cfg:

m #define XcpGetTransmitHandle() TransmitHandleOfSlaveld
#define XcpGetTransmitDataPtr() TransmitDataBufferOfSlaveld

m Replace TransmitHandleOfSlaveld by the transmit handle of the XCP Slave Id that can be
found in the header <node>.h.

m Replace TransmitDataBufferOfSlaveld by the transmit data buffer of the XCP Slave Id
that can be found in the header <node>.c.

A 'I Example for Slave Id XCP_DTO
[1] #define XcpGetTransmitHandle() CanTxXCP_DTO
— #define XcpGetTransmitDataPtr() (XCP_DTO. c)

©2009, Vector Informatik GmbH Version: 1.08 23127

Technical Reference XCP on CAN vector

6.2.2 XCP on CAN uses multiple CAN channels

If XCP on CAN is used on multiple CAN channels (e.g. vehicle bus and private CAN) the
configuration of the XCP Master ID and XCP Slave ID is done by the following steps.

The generation tool CANgen has to be configured as follows:

m Add the precopy function XcpPreCopy for the XCP Master IDs in your generation tool.

m Add the confirmation function XcpConfirmation for the XCP Slave IDs in your generation tool.
The Transmit handles and the data buffers of the XCP Slave IDs have to be defined in an
additional source file.

V_MEMROMO V_MEMROM1 CanTransmitHandle V_MEMROM2 xcpTxHandleField[] =

Tx handle of XCP Slave ID 1,
Tx handle of XCP Slave ID 2

}1
V_MEMROMO V_MEMROM1 TxDataPtr V_MEMROM2 xcpTxDataPtrField[] =

data bufferTx of XCP Slave ID 1,
data bufferTx of XCP Slave ID 2

}:
The following macros have to be defined in the user config file xcp.cfg:

m #define XcpGetTransmitHandle() (xcpTxHandleField[xcpChannelNumber])
#define XcpGetTransmitDataPtr() (xcpTxDataPtrField[xcpChannelNumber])

A Example for Slave Id XCP_DTO and XcpSlave

User config file xcp.cfg :

#define XcpGetTransmitHandle() (xcpTxHandleField[xcpChannelNumber])
#define XcpGetTransmitDataPtr() (xcpTxDataPtrField[xcpChannelNumber])

C Source Code:
V_MEMROMO V_MEMROM1 CanTransmitHandle V_MEMROM2 xcpTxHandleField[] =

CanTxXCP_DTO,
CanTxXcpSlave

};

V_MEMROMO V_MEMROM1 TxDataPtr V_MEMROM2 xcpTxDataPtrField[] =
XCP_DTO._c,

XcpSlave._c

};

©2009, Vector Informatik GmbH Version: 1.08 24127

Technical Reference XCP on CAN vector

7 Limitations

7.1.1 Variable length of XCP Packets is not supported

The XCP protocol allows a variable length of XCP Packets. However many OEMs require
that all CAN messages sent within their automotive networks have to have a static DLC.
Therefore the DLC of XCP on CAN messages is always 8 and the Control Field of the
XCP Talils consists of fill bytes.

7.1.2 Assignment of CAN identifiers to DAQ lists is not supported
The assignment of CAN identifiers to DAQ lists is not supported.

7.1.3 Detection of all XCP slaves within a network

The detection of all XCP slaves within a network with the command GET_SLAVE_ID is not
supported.

7.1.4 Channel API
XCP on CAN is only available with a single channel API.

However all currently available single and multiple channel APIs of the CAN-Driver are
supported.

7.1.5 Multiple Identity only supported for single channel configuration
Multiple Identity for XCP on CAN is only available fora single CAN channel configuration.

©2009, Vector Informatik GmbH Version: 1.08 25/ 27

Technical Reference XCP on CAN vector

8 FAQ

8.1 Transmit queue of CAN-Driver is disabled

r)? FAQ

How to operate XCP on CAN if the transmit queue of the CAN-Driver is disabled.

If the transmit queue of the CAN-Driver is disabled at any time it might not be possible to
transmit the XCP Slave message due to an ongoing message transmission. Therefore the
message transmission might have to be requested several times.

This is done with the service ApplXcpBackground() that gets called by
XcpBackground(). This service has to be called cyclic with a recommended call cycle of
1ms. The faster it gets called the faster the XCP Slave message will participate in the
arbitration on the bus.

©2009, Vector Informatik GmbH Version: 1.08 26/ 27

Technical Reference XCP on CAN

9 Contact

Visit our website for more information on

News

Products
Demo software
Support
Training data
Addresses

V VVYVYVYV

www.vector-informatik.com

©2009, Vector Informatik GmbH

Version: 1.08

vector’

27127

	1 Document Information
	1.1 History
	1.2 Reference Documents
	1.3 Abbreviations
	1.4 Naming conventions

	2 Overview
	3 Functional Description
	3.1 Overview of the functional scope
	3.2 Reception and transmission of XCP packets
	3.3 Support of multiple CAN channels

	4 Integration into the application
	4.1 Files
	4.2 Version changes
	4.3 Integration of XCP on CAN into the application

	5 Description of the API
	5.1 Version of the source code
	5.2 XCP Transport Layer for CAN services called by the Protocol Layer
	5.2.1 ApplXcpSend: Transmission of XCP Packets
	5.2.2 ApplXcpInit: Initialization of XCP Transport Layer for CAN
	5.2.3 ApplXcpBackground: Background task of XCP Transport Layer for CAN

	5.3 XCP Transport Layer for CAN services called by the CAN-Driver
	5.3.1 XcpPreCopy: XCP message precopy function
	5.3.2 XcpConfirmation: XCP message confirmation

	5.4 XCP Protocol Layer services called by the Transport Layer for CAN
	5.5 CAN-Driver services called by the Transport Layer for CAN

	6 Configuration of XCP on CAN
	6.1 Configuration of XCP on CAN with GENy
	6.1.1 Main configuration page
	6.1.2 Channel configuration page
	6.1.3 Multiple Identity configuration

	6.2 Configuration of XCP on CAN with GENy and CANgen
	6.2.1 XCP on CAN uses only one CAN channel
	6.2.2 XCP on CAN uses multiple CAN channels

	7 Limitations
	7.1.1 Variable length of XCP Packets is not supported
	7.1.2 Assignment of CAN identifiers to DAQ lists is not supported
	7.1.3 Detection of all XCP slaves within a network
	7.1.4 Channel API
	7.1.5 Multiple Identity only supported for single channel configuration

	8 FAQ
	8.1 Transmit queue of CAN-Driver is disabled

	9 Contact

