RENESAS

-
o
o
ﬁ\.
7
=
O
=
=
QO

AUTOSAR MCAL R4.0.3
User’s Manual

WDG Driver Component Ver.1.0.4

Embedded User’s Manual

Target Device:
RH850/P1x

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.0.01 Apr 2015

http://www.renesas.com/
http://www.renesas.com/

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is subject to
change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest
product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different
information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third
parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license,
express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and
information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by

you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control laws
and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products
or the technology described in this document for any purpose relating to military applications or use by the military, including but
not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or
incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign
laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does
not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by
you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and
"Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated
below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may
not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas
Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the
prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by
you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which
the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of
each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data
books, etc.

""Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti- crime
systems; safety equipment; and medical equipment not specifically designed for life support.

""Specific™: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages
arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas
Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against
the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a

Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control
and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of
each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations
that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics
assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority- owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Abbreviations and Acronyms

Abbreviation / Acronym

Description

ADC

Analog Digital Converter

ANSI American National Standards Institute
API Application Programming Interface
AUTOSAR Automotive Open System ARchitecture
CAN Controller Area Network
DEM Diagnostic Event Manager
DET/Det Development Error Tracer
DIO Digital Input And Output
ECU Electronic Control Unit
EEPROM Electrical Erasable Programmable Read Only Memory
ID/Id Identifier
ISR Interrupt Service Routine
LIN Local Interconnect Network
MCAL Microcontroller Abstraction Layer
MCU MicroController Unit
PWM Pulse Width Modulation
RAM Random Access Memory
ROM Read Only Memory
SCI Serial Communication Interface
SPI Serial Peripheral Interface
WDG/wdg WatchDog
WDT WatchDog Timer
WDGIF WatchDog Interface
CDD Complex Device Driver
Definitions
Term Represented by
Sl. No. Serial Number
WDTAEVAC Watchdog Timer Enable Register for Varying Activation Code
WDTAMD Watchdog Timer Mode Register
WDTAWDTE Watchdog Timer Enable Register for Fixed Activation Code

Table Of Contents

Chapter 1 INtroduCtionccooviiiiiiie e e 11
1.1 DOCUMENT OVEIVIEW ...t s 13
Chapter 2 Reference DOCUMENTS.........iiiviiiiiiiiiii e 15
Chapter 3 Integration And Build Processcccooovviiiiiiiiiciiinncenn, 17
3.1. WDG Driver Component MaKefile ... 17
3.1.1. FOIABN STIUCIUIE.......eiiiiic e 17
Chapter 4 Forethoughtsoouiiiiiiiii e 19
4.1. GBNETAL.....oiieei et 19
4.2. PreCONAItiONS ..o 20
4.3. D= U= B O o g E=T £ (= o oY 20
4.4, AT BT RS = L= T B F= Vo | = [P 21
4.5, WDTA 75% ISR Usage Details for R4.0.3.........uuviiiiiiiiiiiiiiiiiiiiiieieininieisininnsnneeesennnnnnnns 22
4.6. DeVviation LiSt ..o 24
4.7. User mode and SUPErVISOr MOGEuuuuuuuiuieriiuieieiuinieininrnrernrnrnnnrnrnrrrennee—————————————. 25
4.38. LR To TS (=T R U= = o F = - o 25
Chapter 5 Architecture DetailS.........cocuiiiiiiiiiiiiii e 27
Chapter 6 Registers DetailSccuoveiiiiiiiiiiiee e 29
Chapter 7 Interaction Between The User And WDG Driver
(7o) 0] 0 ToT o 1=] o | PP 31
7.1. Services Provided By WDG Driver Component To the User.........cccceeeeeveieiii e, 31

Chapter 8 WDG Driver Component Header And Source File

DY of] o] A [0] o ISP 33
Chapter 9 Generation Tool GUIdEccuuiiiiiiiiiiii e, 35
Chapter 10 Application Programming Interface...........ccccooeevvvnnenns 37
10.1. [aT oo Y (=To B N o =1 T PP TP UUPUPPPRPR 37

O T A S = g o = T (o B I8/ 1= PRSPPI 37

10.1.2. Other MOAUIE TYPES....coiiiiitieet ettt e e e e e e e bbb e ee e e e e e enes 37
10.2. TYPE DEFINITIONS .ottt et e e e s bae e e e s nbeeeeans 37

10.2.1. WdAg_59 DriverA ConfigTyYPe. ..o it 37
10.3. FUNCLION DEINITIONS .oeiiiei e 38
Chapter 11 Development And Production Errors...........cccceeeveeennn.. 39
11.1. WDG Driver Component Development ErTOrSooiciviieeiee e e s 39
11.2. WDG Driver Component ProdUCtion ErfOrS ... icciiiiieee e s e ssiiiiee e e e e s essivieee e e e e e s 39

Chapter 12 Memory Organizationcccceeuiieiiiiiieeiiis e 41

Chapter 13 P1M Specific Information...........coccoeiiiiiiiiiciiiiceceiee e 43
13.1. Interaction Between The User And WDG Driver COmMpPONeNnt.......ccoccuevveiniiereiiiieeenninee 43
13.1.1. ISR Function Mapping Interrupt Vector Tableccccccooviiiiiiiee e 43

13.1.2. Translation Header File..........cccvi i 43

13.1.3. Parameter Definition File..........cooiiiiiiiii e 44

13.2. ST T a1 o] L3N o] o] [o= 41 Y o 1RSSR 44
13.2.1 Sample ApPlICAtioN STIUCTUIE.........uiviiiiiiiie e 44

13.2.2 Building Sample APPIICALION.........c.ueiiiiiiiieiiece e 46

13.2.2.1 Configuration EXamplec.eeioiiiiiiii e 46

13.2.2.2 Debugging The Sample ApPliCationccooiveeeiiiiieeniiiieee e 46

13.3. Memory and Throughput fOr RA.0.3uuiiiiiiiiiiiiiiieieieieiaieieeereeerererereersreeenraraernrernnannne 47
13.3.1 ROM/RAM USAQJE ...ooiiiiiiiiiiiiiie ettt ettt ettt e e nabn e e e nnnnees a7

R T T - T3 QI 1T o] 1 o 48

R R T N oo 10T o] o 10 D T=3 =V 48

Chapter 14 Release Detailsccoueviiiiiiiiiiiicci e 49

Figure 1-1
Figure 1-2
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 5-1
Figure 5-2
Figure 12-1
Figure 13-1

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 6-1
Table 8-1
Table 10-1
Table 11-1
Table 11-2
Table 13-1
Table 13-2
Table 13-8
Table 13-9
Table 13-10

List Of Figures

System Overview Of AUTOSAR ArchiteCtureccceevviieeeiiiiie e 11
System Overview Of The WDG Driver In AUTOSAR MCAL Layer..........ccceee..... 12
State Diagram of WDG when WdgDisableAllowed is true..........ccccccceeevvicvvvnnnnnnn. 21
State Diagram of WDG when WdgDisableAllowed is falsecccccccevvvvinnnnnn. 21
WDG behavior during Data exchange with hardwarecccccceeiiiiiiiieeneee e, 22
WDG behavior when Wdg_SetTriggerCondition is calledcccccvvveeeeennnns 23
Watch Driver And Watchdog Interface Architecturecccccoviieiiiiieeciiiieeene 27
Basic Architecture Of WDG COMPONENT.......ccuuiiiiiiiiieiiiiiie et 28
Memory Organization Of WDG Driver COMPONENt.........ccueveviieeeeniiieeeniieee e 41
Overview Of WDG Driver Sample Applicationcccccoviieiiiei e 44

List Of Tables

WDG Driver DeViation LIStcoueoiiiiiiiiiieie et e e 24
Supervisor mode and User mode details..........ccccovevevii 25
Registers categorization definition ..o, 25
Watchdog module Static Register Table............uuuuuiuieiiimiiiiiiiiiiieiiieiieiein. 26
REQISIEN DEIAIIS ... ——— 29
Description Of The WDG Driver Component FileScccoveiiiiiiiniiiee e 34
APIs provided by the WDG Driver COMPONENT........ccciiiiiieiiiiiieiiieeeeniieee e 38
DET Errors Of WDG Driver COMPONENTccoiuuiiieiiiiie ittt 39
DEM Errors Of WDG Driver COMPONENT.......ccuueieiiiiiieiiiiiee et e e e e 40
INtErrupt VECLOr TaDIEciiiiiiiii e 43
PDF information fOr PLM.......ouuuiiiiiiieie e 44
ROM/RAM Details WithOUt DETooiiiiiiieiiiiiie i see e 47
ROM/RAM Details With DETccciiiiiieiiiiiie et see e nniae e 48
Throughput Details Of The APISoovvvviiiiiiee e 48

10

Introduction Chapter 1

Chapter 1 Introduction

The purpose of this document is to describe the information related to WDG
Driver Component for Renesas P1x microcontrollers.

This document shall be used as reference by the users of WDG Driver
Component. The system overview of complete AUTOSAR architecture is
shown in the below Figure:

Application Layer

AUTOSAR RTE

System Services

On board Device Abstraction

WDG Driver

Microcontroller

Figure 1-1 System Overview Of AUTOSAR Architecture

The WDG Component comprises embedded software and the Configuration
Tool to achieve scalability and configurability.

The WDG Generation Tool is a command line tool that accepts ECU
configuration description files as input and generates source and header files.
The configuration description is an ARXML file that contains information about
the configuration for Watchdog timer. The tool generates the

Wdg_59 DriverA_PBcfg.c and Wdg_59_DriverA_Cfg.h for Watchdog

Driver A.

11

Chapter 1

Introduction

The Figure in the following page depicts the WDG Driver as part of layered
AUTOSAR MCAL Layer:

12

Microcontroller Drivers Memory Drivers Communication Drivers 1/O Drivers
m 2
=1 @
9% & T B (]
@ S £ 3 3 2 2 o E = 3 > 3
3 = (@] Q);E D ISR m g [> X) s o =} o
oll8lisS| | [zl z|| D Szl z]|3 Sl 2((o]|o]|3
5 «Q g — — @ 2 o % 9 o < 9 o o g]
< Z [} o 7] 4 o] 3. =, 3. 3 S, =3 g
s (18] 3]]2 @ ||= olla|lz]|9 sl 21151152
= = = - - o 9 < 3|7 2] g = @ o = @
? 5118 s o
@ = < -
o)
Q| s oo Mi X 4 m » C|Q S llzll»
= = C
315 | 838 conmoner| E118 |IF3] | 2|82 2 SHIEIE
% & S|Controller | @ || T) S
Figure 1-2 System Overview Of The WDG Driver In AUTOSAR MCAL Layer

Watchdog Driver module provides the services for initializing, changing the
operation mode and triggering the watchdog.

Introduction

Chapter 1

1.1. Document Overview
The document has been segmented for easy reference. The table below
provides user with an overview of the contents of each section:

Section Contents

Section 1 (Introduction)

This section provides an introduction and overview of WDG Driver
Component.

Section 2 (Reference Documents)

This section lists the documents referred for developing this document.

Section 3 (Integration And Build
Process)

This section explains the folder structure, Makefile structure for WDG
Driver Component. This section also explains about the Makefile
descriptions, Integration of WDG Driver Component with other
components, building the WDG Driver Component along with a sample
application.

Section 4 (Forethoughts)

This section provides brief information about the WDG Driver
Component, the preconditions that should be known to the user before it
is used, data consistency details, WDG State Diagram, WDTA 75% ISR
Usage Details, deviation list, Support For Different Interrupt Categories,
user-mode and supervisor mode API support list, register read-back.

Section 5 (Architecture Details)

This section describes the layered architectural details of the WDG
Driver Component.

Section 6 (Register Details)

This section describes the register details of WDG Driver Component.

Section 7 (Interaction Between
The User And WDG Driver
Component)

This section describes interaction of the WDG Driver Component with
the upper layers.

Section 8 (WDG Driver
Component Header And Source
File Description)

This section provides information about the WDG Driver Component
source files is mentioned. This section also contains the brief note on the
tool generated output file.

Section 9 (Generation Tool Guide)

This section provides information on the WDG Driver Component Code
Generation Tool.

Section 10 (Application
Programming Interface)

This section explains all the APIs provided by the WDG Driver
Component.

Section 11 (Development And
Production Errors)

This section lists the DET and DEM errors.

Section 12 (Memory
Organization)

This section provides the typical memory organization, which must be
met for proper functioning of component.

Section 13 (P1M Specific
Information)

This section provides the P1M Specific Information.

Section 14 (Release Details)

This section provides release details with version name and base
version.

13

Chapter 1

Introduction

14

Reference Documents

Chapter 2

Chapter 2 Reference Documents

Sl. No. Title Version
1. Autosar R3.2 23.0
AUTOSAR_SWS_WatchdogDriver.pdf
2. Autosar R4.0 250
AUTOSAR_SWS_WatchdogDriver.pdf
3. AUTOSAR BUGZILLA (http://www.autosar.org/bugzilla) -
Note: AUTOSAR BUGZILLA is a database, which contains concerns raised
against information present in AUTOSAR Specifications.
4, r01uh0436ej0070_rh850p1x.pdf 0.70
5. AUTOSAR_SWS_CompilerAbstraction.pdf 3.2.0
6. AUTOSAR_SWS_MemoryMapping.pdf 1.4.0
7. AUTOSAR_SWS_PlatformTypes.pdf 250
8. AUTOSAR_BSW_MakefileInterface.pdf 0.3

15

http://www.autosar.org/bugzilla

Chapter 2

Reference Documents

16

Integration And Build Process Chapter 3

Chapter 3

Remark

3.1.

3.1.1.

Remark

Integration And Build Process

In this section the folder structure of the WDG Driver Component is explained.
Description of the Makefiles along with samples is provided in this section.

The details about the C Source and Header files that are generated by the
WDG Driver Generation Tool are mentioned in the
“‘“AUTOSAR_WDG_Tool_UserManual.pdf”.

WDG Driver Component Makefile

The Makefile provided with the WDG Driver Component consists of the GNU
Make compatible script to build the WDG Driver Component in case of any
change in the configuration. This can be used in the upper level Makefile (of
the application) to link and build the final application executable.

Folder Structure

The files are organized in the following folders:

Trailing slash ‘\" at the end indicates a folder

X1X\common_platform\modules\wdg\src\ Wdg_59 DriverA.c
\Wdg_59 DriverA_lIrg.c
\Wdg_59 DriverA_Private.c
\Wdg_59 DriverA_Ram.c
\Wdg_59 DriverA_Version.c

X1X\common_platform\modules\wdg\include\Wdg_59 DriverA.h
\Wdg_59 DriverA_Debug.h
\Wdg_59 DriverA_lIrg.h
\Wdg_59 DriverA_PBTypes.h
\Wdg_59 DriverA_Private.h
\Wdg_59 DriverA_Ram.h
\Wdg_59 DriverA RegReadBack.h
\Wdg_59 DriverA_Types.h
\Wdg_59 DriverA_Version.h

X1X\P1x\modules\wdg\sample_application\<SubVariant>\make\<Complier>
\App_WDG_P1M_Sample.mak

X1X\P1x\modules\wdg\sample_application\<SubVariant>\obj\sComplier>
(Note: For example compiler can be ghs.)

X1X\P1x\modules\wdg\generator

17

Chapter 3

Integration And Build Process

Notes:

18

\R403_WDG_P1x_BSWMDT.arxml
X1X\common_platform\modules\wdg\generator\Wdg_X1x.exe

X1X\P1x\common_family\generator
\Sample_Application_P1x.trxml
\P1x_translation.h

X1X\P1x\modules\wdg\user_manual
(User manuals will be available in this folder)

<Compiler> can be ghs.
<SubVariant> can be P1M.

<AUTOSAR_version> should be 4.0.3.

Forethoughts

Chapter 4

Chapter 4

4.1.

Forethoughts

General

Following information will aid the user to use the WDG Driver Component
software efficiently:

The WDG Component does not enable or disable the ECU or
Microcontroller power supply. The upper layer should handle this
operation.

Option byte values required for the operation of watchdog will be flashed
through Start up code.

The WDG Component does not implement any scheduled functions.
WDG Component does not implement any Call Back Notification functions.

Example code mentioned in this document shall be taken only as a
reference for implementation.

The Watchdog hardware supports only Driver A. Hence, WDG Driver
Component is implemented as Driver A. WDG_DRIVER_INSTANCE
variable of Base Make file is updated for Driver A.

All development errors will be reported to Det by using the API
Det_ReportError() provided by DET.

All production errors will be reported to Dem by using the API
Dem_ReportErrorStatus() provided by DEM.

"It should be ensured that the respective clock source is switched ON
before Watchdog is set to corresponding Clock Unit in
Wdg_59 DriverA_Init() API.

The API Wdg_59 DriverA_SetTriggerCondition() initializes the trigger
counter global variable with timeout value divided by either slow or fast time
Value generated by the configuration.

For WDG Reset functionality in debug mode, unmask the reset in debug
mode during debug session with GHS command "target pinmask k".

The file Interrupt_VectorTable.c provided is just a Demo and not all
interrupts will be mapped in this file. So the user has to update the
Interrupt_VectorTable.c as per his configuration.

19

Chapter 4

Forethoughts

20

4.2.

4.3.

Preconditions

Following preconditions have to be adhered by the user, for proper
functioning of the WDG Driver Component:

« The user should ensure that WDG Component API requests are invoked in
the correct and expected sequence along with correct input arguments.

User should ensure that the appropriate option bytes are flashed for the
configured mode in the watchdog driver module.

Validation of input parameters are done only when the static configuration
parameter WDG_59 DRIVERA DEV_ERROR_DETECT is enabled.
Application should ensure that the right parameters are passed while
invoking the APIs when WDG_59 DRIVERA_DEV_ERROR_DETECT is
disabled.

« A mismatch in the version numbers will result in compilation error. Ensure
that the correct versions of the header and the source files are used.

« The files Wdg_59_DriverA_Cfg.h and Wdg_59_DriverA_PBcfg.c
generated using watchdog driver generation tool has to be linked along
with WDG Component source files.

File Wdg_59 DriverA_PBcfg.c generated for single configuration set using
Watchdog Driver Generation Tool can be compiled and linked
independently.

The WDG Component needs to be initialized before accepting any API
requests. Wdg_59_DriverA_Init should be called by the ECU State
Manager Module to initialize WDG Component. It should not be called
more than once.

Data Consistency

To support the re-entrance and interrupt services, the AUTOSAR WDG
component will ensure the data consistency while switching the watchdog
mode and during the watchdog trigger routine. The WDG Driver component
will use SchM_Enter_Wdg and SchM_Exit_Wdg functions. The
SchM_Enter_Wdg function is called before the data needs to be protected
and SchM_Exit_Wdg function is called after the data is accessed.

The following exclusive areas along with scheduler services are used to
provide data integrity for shared resources:

e TRIGG_PROTECTION
e MODE_SWITCH_PROTECTION

The protection areas TRIGG_PROTECTION and
MODE_SWITCH_PROTECTION are used to protect the WDG
triggering and WDG mode switching respectively.

The functions SchM_Enter_Wdg and SchM_Exit_Wdg can be disabled by
disabling the configuration parameter ‘WdgCiriticalSectionProtection’.

Forethoughts Chapter 4

4.4. WDG State Diagram

The State diagram of WDG Driver is as shown below

No mitialization

Wdg_59_DriverA_Setmode()
with WDGIF_FAST_MODE

Wdg_5S_DriverA_Init()
with WDGIF_OFF_MODE

Wdg_5S_DriverA_Init()
with WDGIF_SLOW_MODE

Wdg_59_DriverA_Init()
with WDGIF_FAST_MODE

Wdg_58_DriverA_Setmode()
with WDGIF_SLOW_MODE

Figure 4-1 State Diagram of WDG when WdgDisableAllowed is true

WDG Driver supports following modes when configuration parameter
WdgDisableAllowed is true.

1.WDGIF_OFF_MODE
2.WDGIF_SLOW_MODE
3.WDGIF_FAST_MODE

No Initialization

Wdg_59_DriverA_lnit() with
WDGIF_S LOW_MODE

Figure 4-2 State Diagram of WDG when WdgDisableAllowed is false

Wdg_59_DriverA_lInit() with
WDGIF_FAST_MODE

21

Chapter 4

Forethoughts

4.5.

Maximum counter

WDG Driver supports following modes when configuration parameter
WdgDisableAllowed is false

1. WDGIF_SLOW_MODE
2. WDGIF_FAST_MODE

Like shown in the above figures when WDG Driver is initialized by the API
Wdg_59 DriverA_lInit(), the WDG Driver gets into one of the modes based on
the default value configured during configuration. Also the modes can be
changed by the API Wdg_59 DriverA_SetMode() only once after

Wdg_59 DriverA_Init(), if the current mode is WDGIF_OFF_MODE.

WDTA 75% ISR Usage Details for R4.0.3

WDG Driver using '75% interrupt output' feature services the Watchdog
hardware to trigger watchdog hardware as long as the trigger condition is
valid. If the trigger condition becomes invalid the Wdg Driver stops triggering
and the watchdog expires.

value OxFFFF

75% of maximum

counter value

Counter Valu

d '
de_59_Driv_lerA_Init()<% [
Reset Release | |

de_59_Driv_brA_SetTriggerk:ondition()!H |

i 75% of Time Period

Wdg_59_DriverA_SetTriggerCondition()

}
INTWDTN(75% Interru pit)

WDG Trigger

WDTANTRES

Figure 4-3 WDG behavior during Data exchange with hardware

22

Forethoughts Chapter 4
Maximum Counter value FF FFH
_ta%ofmaxdmun . _ . _ et]
counter value v .
! !
C ounter Value I i
! !
I i
7NN N N O M— 7
Reset Release VWdo_58_DriverA _Init () | : 75 % of Time Period | l
5 " = I
Wdg_59_DriverA _SefTriggerCondition | l ! |
1 1
IO TR 5% Interrupt) I I H l |_| I
i i A T T
: I I I : 1 I
g I | | I
. | ; : I
WDG Trigger i | | | :
H M X i
Iq—-—r'-ﬂ- L —
B A 25% of Time Period
I !
: :
WOTANTRES or WDTADTHEL I i
e o

Actual Timeout Value

Figure 4-4 WDG behavior when Wdg_SetTriggerCondition is called

Note User should adjust the Timeout value in such a way that the corrections of 'A’

and 'B' are considered while passing the 'timeout' value to API
'‘Wdg_59_DriverA_SetTriggerCondition’.

The above figure illustrates the scenario where
Wdg_59 DriverA_SetTriggerCondition API
is called before the expiry of the Initial Timeout value.

The 75% duration calculation for one WDG trigger cycle in slow mode
WDTATCKI = 240 kHz

For example considering current mode settings = WDTATCKI/2"16

Period = 2716/240k = 0.273 sec

Total window time = 273 msec

75% interrupt time = 204.7 msec

Generation tool will round off the 75% interrupt time “204.7 msec” to “205
msec” and rounded value is displayed on the command prompt. For the
above example the information on command prompt for slow mode will be
displayed as given below.

The duration of 75% of one WDG trigger cycle for slow mode is <205
msec>

If the timeout value passed by the API Wdg_59 DriverA_Settriggercondition
is 410 msec, then the counter value will be calculated in the WDG Driver as
2.

23

Chapter 4

Forethoughts

4.6.

The duration of 75% of one WDG trigger cycle calculation for fast mode
WDTATCKI = 240 kHz

For example considering current mode settings = WDTATCKI/2"9

Period = 2"9/240k = 0.0021 sec

Total window time = 2.1 msec

75% interrupt time = 1.5 msec

Generation tool will round off the 75% interrupt time “1.5 msec” to “2 msec”
and rounded value is displayed on the command prompt. For the above
example the information on command prompt for fast mode will be displayed
as given below.

The duration of 75% of one WDG trigger cycle for fast mode is <2
msec>

If the timeout value passed by the API
Wdg_59 DriverA_Settriggercondition() is 50 msec, then the counter value
will be calculated in the WDG Driver as 25.

The API Wdg_59 DriverA_SetTriggerCondition() will not trigger the
watchdog hardware it will only calculate the trigger counter value.

In General the user should use the below formula while calculating the
Timeout Period by considering the corrections of 75% duration round off, A
and B values.

Timeout Period = (Trigger Count)* (75% of Time Period + A)+B
where ‘A” is the time required for the ISR to trigger the WDG hardware and

‘B’ is the time gap between Wdg_59_DriverA_SetTriggerCondition() execution
and next WDG trigger from 75% ISR.

Deviation List

Table 4-1 WDG Driver Deviation List

Sl. No.

Description AUTOSAR Bugzilla

1.

"WDG_SETTINGS_SLOW" and -
"WDG_SETTINGS_FAST" is configured from the list of
clock selections (16 choices are possible) and depending
on the mode configured for "WDG_DEFAULT_MODE",
watchdog settings is initialized in the API
Wdg_59_DriverA_lInit().

The requirement 'WDGO025' is handled in the generation -
tool itself by the error 'ERR102009'.

If the API Wdg_59_DriverA_SetTriggerCondition, is -
invoked with the timeout value "0" will not result in
instantaneous watchdog reset of the ECU like mentioned
in WDG140, instead the trigger counter will be set to "0"
and watchdog reset will occur after the WatchDog counter
value has reached its maximum value.

The API Wdg_59_DriverA_GetVersioninfo is -
implemented as macro without DET error
Wdg_59_DriverA_E_PARAM_POINTER.

24

Forethoughts

Chapter 4

4.7. User mode and supervisor mode

The below table specifies the APIs which can run in user mode, supervisor
mode or both modes

Table 4-2 Supervisor mode and User mode details

Sl.No APl Name User Mode Supervisor mode
1 \Wdg_59 DriverA_Init - X
2 \Wdg_59_DriverA_SetMode X X
3 Wdg_59 DriverA_SetTriggerCondition X X
4 \Wdg_59_DriverA_GetVersioninfo X X
4.8. Register Read-Back
Categorization of registers
Register read-back is a functional safety based implementation were all the
registers used in the module are categorized into two different category which
are as fallows
1 Static registers.
2 Dynamic registers.
Static Registers:
Static registers is defined as the registers which are written only in
Wdg_59 DriverA_Init () API and not changed during runtime.
Dynamic Registers:
Dynamic register is defined as the register which are written during runtime
API’s independently to that of it is used in Wdg_59_DriverA_Init ().
Table 4-3 Registers categorization definition
Static Registers Dynamic Registers
HW Write-read-verify performed for each |Write-read-verify performed for each register
Register [egister write. DEM report in case of write. DEM report in case of error.
error.
RAM Only for static registers same value |Write-read-verify performed for each register
mirror [as written to the register is written to write. DEM report in case of error.
RAM mirror.

Register read-back

In register read-back implementation each register which is written in the WDG
timer is verified by doing read-back on that registers. However a global copy of
the register value is always kept in the RAM for static registers and a global
copy is not made for dynamic registers. These variables can be used to verify
the registers in CDD.

25

Chapter 4

Forethoughts

26

In the below table, details about the static register, global mirror variable and
mask value to be used in connective with the register is provided. The Global
mask provided in the table is of logical “&” based mask

Table 4-4 Watchdog module Static Register Table

SI.No.

Register Global Mirror variable Global Mask Variable
Name

Wdg_59 DriverA_GullIMR1Mask

IMRO Wdg_59_DriverA_GulIMR1Mirror (OXFFEFFDFF)

Architecture Details Chapter 5

Chapter 5 Architecture Details

The WDG Driver architecture is shown in the following figure. The WDG user
shall directly use the APIs to configure and execute the WDG conversions:

Watchdog Interface

Watchdog Driver

~_~

Hardware Registers

Figure 5-1 Watch Driver And Watchdog Interface Architecture

Watchdog Interface invokes the corresponding Driver. The Driver APIs will
access the hardware register of the Watchdog Timers for changing the mode
and trigger the Watchdog Timer.

Watchdog Driver component:

The Watchdog Driver component is composed of following modules:
Watchdog Driver Initialization module
Watchdog Driver SetMode module
Watchdog Driver SetTriggerCondition module

Watchdog Driver Versioninfo module

27

Chapter 5

Architecture Details

28

The basic architecture of the Watchdog Driver component is illustrated in the
following figure:

Watch Dog Driver

Initialization Module SetMode Module
SetTriggerCondition VersionIinfo Module
Module

Figure 5-2 Basic Architecture Of WDG Component

Remark

Watchdog Driver Initialization module:

This module initializes the watchdog driver and watchdog hardware. It
provides the APl Wdg_59 DriverA_Init(). This API should be invoked before
the usage of any other APIs of Watchdog Driver Module.

Watchdog Driver SetMode module:

This module will handle the functionality for setting the modes. It provides the
APl Wdg_59_DriverA_SetMode(). Following are the possible mode settings:

- WDGIF_SLOW_MODE

- WDGIF_FAST_MODE

The above settings are configured using the WDTAMD register. SetMode will
support mode switch as described in the chapter 4.4 WDG State Diagram.

SetMode API will set module’s state to WDG_BUSY during execution and
reset the module’s state to WDG_IDLE before return.

Watchdog Driver SetTriggerCondition module:

This module will handle the functionality to reset the watchdog timeout
counter according to the timeout value passed. It provides the API
Wdg_59 DriverA_SetTriggerCondition.

There are two types of Activation codes to trigger the Watchdog. They are
Fixed Activation Code.
Varying Activation code.

Depending on the Activation code chosen, this function has to trigger the
corresponding register.

WDTAWNDTE register will be used for Fixed Activation Code.
WDTAEVAC register will be used for Varying Activation Code.
Watchdog Driver VersionIinfo module:

This module will provide the current version of the Watchdog Driver Module. It
contains the API Wdg_59 DriverA_GetVersionInfo().

Registers Details

Chapter 6

Chapter 6

Registers Details

This section describes the register details of WDG Driver Component.

Table 6-1 Register Details

API Name Registers Config Parameter Macro/Variable
Wdg_59_DriverA_Init IMRnN WdgErrorModeSetting | WDG_59 DRIVERA_INTWDTIM
R_MASK
WDTANMD WdgDefaultMode ucWdtamdDefaultValue.
Wdg_59_DriverA_SetMode WDTANMD - ucWdtamdSlowValue,
ucWdtamdFastValue
Autosar R4.0: - - -
Wdg_59_DriverA_SetTriggerCon
dition
Wdg_59_DriverA_GetVersionInfo | - - -
Wdg_59_DriverATrigger WDTANEVAC | - WDG_59_DRIVERA_RESTART -
WDG_59_DRIVERA_WDTAREF
_ADDRESS
WDTANWDT | - WDG_59_DRIVERA_RESTART
E
WDTANREF | - -

29

Chapter 6

Registers Details

30

Interaction Between The User And WDG Driver Component Chapter 7

Chapter 7 Interaction Between The User And WDG
Driver Component

The details of the services supported by the WDG Driver Component to the
upper layer users are provided in the following sections:

7.1. Services Provided By WDG Driver Component To the
User

The WDG Driver Component provides the following functions to upper layers:
To Initialize Watchdog Timer
To Set the Mode of the Watchdog Timer
To handle the functionality of calculating the trigger counter value

To Read the WDG Component Version Information.

31

Chapter 7

Interaction Between The User And WDG Driver Component

32

WDG Driver Component Header And Source File Description Chapter 8

Chapter 8

WDG Driver Component Header And
Source File Description

This section explains the WDG Driver Component’s C Source and C Header
files. These files have to be included in the project application while
integrating with other modules.

The C header file generated by WDG Driver Generation Tool:
Wdg_59 DriverA_Cfg.h

The C source file generated by WDG Driver Generation Tool:
Wdg_59 DriverA_PBcfg.c

The WDG Driver Component C header files:
Wdg_59 DriverA.h
Wdg_59 DriverA Debug.h
Wdg_59 DriverA_Irg.h
Wdg_59 DriverA PBTypes.h
Wdg_59 DriverA_Private.h
Wdg_59 DriverA_Ram.h
Wdg_59 DriverA_Types.h
Wdg_59 DriverA Version.h
Wdg_59 DriverA_RegReadBack.h

The WDG Driver Component source files:
Wdg_59 DriverA.c
Wdg_59 DriverA_lIrq.c
Wdg_59 DriverA_Private.c
Wdg_59 DriverA_Ram.c
Wdg_59 DriverA_Version.c

The port specific C header files:
Compiler.h
Compiler_Cfg.h
MemMap.h
Platform_Types.h
rh850_Types.h

33

Chapter 8

WDG Driver Component Header And Source File Description

The description of the WDG Driver Component files is provided in the table
below:

Table 8-1 Description Of The WDG Driver Component Files

File

Details

Wdg_59 DriverA_Cfg.h

This file is generated by the WDG Generation Tool for various WDG component
pre-compile time parameters. Generated macros and the parameters will vary
with respect to the configuration in the input ARXML file.

Wdg_59 DriverA_PBcfg.c

This file contains post-build configuration data. The structures related to WDG
Initialization are provided in this file. Data structures will vary with respect to
parameters configured.

Wdg_59_DriverA.h

This file provides extern declarations for all the WDG Component APIs. This file
provides service IDs of APIs, DET Error codes and type definitions for
Watchdog Driver initialization structure. This header file shall be included in
other modules to use the features of WDG Component.

Wdg_59_DriverA_Debug.h

This file provides Provision of global variables for debugging purpose.

Wdg_59 DriverA_lIrg.h

This file contains the macro for the WDG Timer channels. It also contains the
external declaration for the interrupt functions used by WDG Driver component.

Wdg_59_DriverA_PBTypes.h

This file contains the macros used internally by the WDG Component code and
the structure declarations related to watchdog control registers.

Wdg_59 DriverA_Private.h

This file contains the declarations of the internally used functions.

Wdg_59 DriverA_Ram.h

This file contains the extern declarations for the global variables that are
defined in Wdg_59_DriverA_Ram.c file and the version information of the file.

Wdg_59_DriverA_Types.h

This file contains the common macro definitions and the data types required
internally by the WDG software component.

Wdg_59_DriverA_Version.h

This file contains the macros of AUTOSAR version numbers of all modules that
are interfaced to WDG.

Wdg_59_DriverA_RegReadBa
ck.h

This file contains the extern declarations for the global variables that are
defined in Wdg_59_DriverA_Ram.c file for read-back functionality.

Wdg_59 DriverA.c

This file contains the implementation of all APIs.

Wdg_59_DriverA_lrg.c

This file contains the implementation of all the interrupt functions used by WDG
Driver Component.

Wdg_59 DriverA_Private.c

This file contains the definition of the internal functions that access the
hardware registers.

Wdg_59_DriverA_Ram.c

This file contains the global variables used by WDG Component.

Wdg_59 DriverA_Version.c

This file contains the code for checking version of all modules that are
interfaced to WDG.

Compiler.h

Provides compiler specific (non-ANSI) keywords. All mappings of keywords,
which are not standardized, and/or compiler specific are placed and organized
in this compiler specific header.

Compiler_Cfg.h

This file contains the memory and pointer classes.

MemMap.h

This file allows to map variables, constants and code of modules to individual
memory sections. Memory mapping can be modified as per ECU specific
needs.

Platform_Types.h

This file provides provision for defining platform and compiler dependent types.

rh850_Types.h

This file provides macros to perform supervisor mode (SV) write enabled
Register ICxxx and IMR register writing using OR/AND/Direct operation.

34

Generation Tool Guide

Chapter 9

Chapter 9

Generation Tool Guide

For information on the WDG Driver Component Code Generation Tool,
please refer “AUTOSAR_WDG_Tool UserManual.pdf’ document.

35

Chapter 9

Generation Tool Guide

36

Application Programming Interface Chapter 10

Chapter 10

Application Programming Interface

This section explains the Data types and APIs provided by the WDG Driver
Component to the Upper layers.

10.1. Imported Types
This section explains the Data types imported by the WDG Driver Component
and lists its dependency on other modules.
10.1.1. Standard Types
In this section all types included from the Std_Types.h are listed:
Std_ReturnType
Std_VersioninfoType
10.1.2. Other Module Types
In this section all types included from the Wdglf_Types.h and Dem.h are listed.
Wdglf _ModeType
Wdglf_Statustype
Dem_EventldType
Dem_EventStatusType
10.2. Type Definitions
This section explains the type definitions of WDG Driver Component
according to AUTOSAR Specification.
10.2.1. Wdg_59 DriverA_ConfigType
Name: Wdg_59_DriverA_ConfigType
Type: Structure
Type Name Explanation
unit32 ulStartOfDbToc Database start
value
uint16 usInitTimerCountValue Trigger counter
value
uint16 usSlowTimeValue SLOW mode
value of
WDTAMD
register
uint16 usFastTimeValue FAST mode
value of
WDTAMD
register
Element: uint8 ucWdtamdSlowValue WDTANMD
register value for
the Slow Mode.

37

Chapter 10

Application Programming Interface

Name: Wdg_59_DriverA_ConfigType
Type: Structure
uint8 ucWdtamdFastValue WDTANMD
register value for
the Fast Mode.
uint16 usDefaultTimeValue 75% time value
of either slow or
fast mode in
milliseconds
uint8 ucWdtamdDefaultValue Watchdog
default mode
Wdglf_ModeType ddwdtamdDefaultMode Default mode
value configured
by the user
Description: This is the type of the data structure required for initializing the Watchdog Hardware unit.
Function Definitions
This section explains the APIs provided by the WDG Driver Component.
Table 10-1 APIs provided by the WDG Driver Component
SI.No At
1. Wdg_59_DriverA_Init
2. Wdg_59_DriverA_SetMode
3. Wdg_59_DriverA_SetTriggerCondition
4. Wdg_59_DriverA_GetVersioninfo

38

Development And Production Errors

Chapter 11

Chapter 11

11.1.

Table 11-1

Development And Production Errors

In this section the development errors that are reported by the WDG Driver
Component are tabulated. The development errors will be reported only when
the pre compiler option WdgDevErrorDetect is enabled in the configuration.

WDG Driver Component Development Errors

The following table contains the DET errors that are reported by WDG Driver
Component. These errors are reported to Development Error Tracer Module
when the WDG Driver Component APIs are invoked with wrong input
parameters or without initialization of the driver.

DET Errors Of WDG Driver Component

Sl. No.

1

Error Code

WDG_59_DRIVERA _E_PARAM_CONFIG

Related API(s)

Wdg_59_DriverA_lInit

Source of Error

When the API service is called with a configuration set which is not within the allowed
boundaries.

Sl. No.

2

Error Code

WDG_59 DRIVERA_E_PARAM_MODE

Related API(s)

Wdg_59_DriverA_SetMode

Source of Error

When the API service is called the Driver is not possible to change the mode.

Sl. No.

3

Error Code

WDG_59_DRIVERA E_DRIVER_STATE

Related API(s)

Wdg_59_DriverA_SetMode, Wdg_59_DriverA_Trigger and
Wdg_59_DriverA_SetTriggerCondition.

Source of Error

If the API service is called when the driver state is not in idle state.

Sl. No.

4

Error Code

WDG_59_DRIVERA_E_INVALID_DATABASE

Related API(s)

Wdg_59_DriverA_lInit

Source of Error

When the API service is called with wrong database.

Sl. No.

5

Error Code

WDG_59_DRIVERA E_PARAM_TIMEOUT

Related API(s)

Wdg_59_DriverA_SetTriggerCondition

Source of Error

When the API service Wdg_59_DriverA_SetTriggerCondition is called with timeout
value greater maximum timeout value (WdgMaxTimeout).

11.2.

WDG Driver Component Production Errors

The following table contains the DEM errors that are reported by WDG
Component

39

Chapter 11

Development And Production Errors

Table 11-2 DEM Errors Of WDG Driver Component
SI. No. 1
Error Code WDG_59 DRIVERA_E_DISABLE_REJECTED
Related API(s) Wdg_Init

Source of Error

If error during mode switch failed, the above error is reported to DEM

Sl. No.

2

Error Code

WDG_59 DRIVERA_E_MODE_FAILED

Related API(s)

Wdg_Init

Source of Error

When switching between the modes is failed above error is reported to DEM.

Sl. No.

3

Error Code

WDG 59 DRIVERA READBACK_FAILURE

Related API(s)

In Wdg_Init, Wdg_59_DriverA_SetMode and Wdg_59_DriverA_Trigger API read
back failure report DEM error.

Source of Error

Read back failure is caused whenever a register is written and the register is not
updated with the written value then this error is reported.

40

Memory Organization Chapter 12

Chapter 12 Memory Organization

Following picture depicts a typical memory organization, which must be met for
proper functioning of WDG Component software.

ROM Section WDG Driver Component RAM Section
Library / Object Files

o e e e e e e e e e e e e e ————————
1 1
! . — $o
1 WDG Driver component APIs are placed in this T Global RAM required for WDG functioning. 1
1 code memory. Segment Name: Y1 1
: X1 NOINIT_RAM_UNSPECIFIED :
1 Segment Name: 1
: WDG59 A _PUBLIC_CODE_ROM l :
: Global bit RAM to be initialized by WDG T :
1 Driver. 1
: Segment Name: Y2 :
: WDG Driver code related to internal and ISR NOINIT_RAM_16BIT l :
1 | functions are placed in this memory. :
| !

: Segment Name: X2 Glgbal bit RAM to be initialized by WDG :
1 | WDG 59 DRIVERA FAST _CODE_ROM Driver. vy3 1
: l Segment Name: :
: NOINIT_RAM_32BIT ¢ :
i e, ———————)

Tool Generated Files

The const section in the file
Wdg_59_DriverA_PBCfg.c is placed in this T
memory.

Segment Name: X3
WDG59_A_CFG_DBTOC_UNSPECIFIED ¢

Figure 12-1 Memory Organization Of WDG Driver Component
ROM ion (X1, X2 and X3):

WDG59_A_PUBLIC_CODE_ROM (X1): API(s) of WDG Driver Component,
which can be located in code memory.

WDG_59 DRIVERA_FAST_CODE_ROM (X2): Internal and ISR functions of
WDG Driver Component code are placed in this code memory.

WDG59 A _CFG_DBTOC_UNSPECIFIED(X3): This section consists of
WDG Component database generated by the Watchdog Driver Generation
Tool and the constant structures used in AUTOSAR Renesas WDG Driver
Component. This can be located in code memory.

41

Chapter 12

Memory Organization

42

RAM Section (Y1, Y2 and ¥3);

NOINIT_RAM_UNSPECIFIED (Y1): This section consists of the global RAM
variables that are used internally by WDG Component and other software
components. The specific sections of respective software components will
be merged into this RAM section accordingly.

NOINIT_RAM_16BIT (Y2): This section consists of the global RAM variables
of 16-bit size that are used internally by WDG Driver Component. This can be
located in data memory.

NOINIT_RAM_32BIT (Y3): This section consists of the global RAM variables
of 32-bit size that are used internally by WDG Driver Component. This can be
located in data memory.

« X1, X2,Y1, Y2 and Y3 pertain to only WDG Component and do not
include memory occupied by Wdg_59 DriverA_PBCfg.c file generated
by Watchdog Driver Generation Tool.

User must ensure that none of the memory areas overlap with each other.
Even ‘debug’ information should not overlap.

P1M Specific Information

Chapter 13

Chapter 13 P1M Specific Information

P1M supports following devices:

R7F701304
R7F701305
R7F701310
R7F701311
R7F701312
R7F701313
R7F701314

R7F701315
R7F701318

R7F701319
R7F701320
R7F701321

R7F701322
R7F701323

13.1. Interaction Between The User And WDG Driver
Component

13.1.1. ISR Function Mapping Interrupt Vector Table

The table below provides the list of handler addresses corresponding to the
hardware unit ISR(s) in WDG Driver Component. The user should configure
the ISR functions mentioned below:

Table 13-1 Interrupt Vector Table

Interrupt Source

Name of the ISR Function

Autosar R4.0 only
El level mask able interrupt

WDG_59 DRIVERA_TRIGGERFUNCTION_ ISR

WDG_59 DRIVERA_TRIGGERFUNCTION_CATZ2_ISR

13.1.2. Translation Header File

P1x_translation.h supports following devices:

R7F701304
R7F701305
R7F701310
R7F701311
R7F701312
R7F701313
R7F701314

R7F701315
R7F701318

R7F701319

43

Chapter 13 P1M Specific Information

e R7F701320
e R7F701321

e R7F701322
e R7F701323

13.1.3. Parameter Definition File
Parameter definition files support information for P1M

Table 13-2 PDF information for P1M
PDF files Devices supported

701304, 701305, 701310, 701311, 701312, 701313,
701314, 701315, 701318, 701319, 701320, 701321,
701322, 701323

R403_WDG_P1M_04_05 10 to_1
5 18 to_23

13.2. Sample Application

13.2.1 Sample Application Structure

The Sample Application is provided as reference to the user to understand the
method in which the WDG APIs can be invoked from the application.

Generic
RH850
AUTOSAR TYPES COMPILER TYPES
Devices
COMMON P1x STUB STUB STUB STUB
Dem
Det SchM
WDG WDG Wdglf
Sample Sample
Application Application STUB
Os

Figure 13-1 Overview Of WDG Driver Sample Application

The Sample Application of the P1M is available in the path
X1X\P1x\modules\wdg\sample_application

The Sample Application consists of the following folder structure

X1X\P1x\modules\wdg\definition\<AUTOSAR _version>\<SubVariant>
\ R403_WDG_P1M_04 05 10 to_15 18 to_23.arxml
X1X\P1x\modules\wdg\sample_application\<SubVariant>\<AUTOSAR_version>
\src\WDG_59 DriverA_PBcfg.c

\inc\WDG_59 DriverA_cfg.h
44

P1M Specific Information Chapter 13

\config\App_WDG_P1M_701304_Sample.one
\config\App_WDG_P1M_701304_Sample.arxml
\config\App_WDG_P1M_701304_Sample.html
\config\App_WDG_P1M_701305_Sample.one
\config\App_WDG_P1M_701305_Sample.arxml
\config\App_WDG_P1M_701305_Sample.html
\config\App_WDG_P1M_701310_ Sample.one
\config\App_WDG_P1M_701310_Sample.arxml
\config\App_WDG_P1M_701310_ Sample.html
\config\App_WDG_P1M_701311_Sample.one
\config\App_WDG_P1M_701311_Sample.arxml
\config\App_WDG_P1M_701311_ Sample.html
\config\App_WDG_P1M_701312_Sample.one
\config\App_WDG_P1M_701312_Sample.arxml
\config\App_WDG_P1M_701312_Sample.html
\config\App_WDG_P1M 701313 Sample.one
\config\App_WDG_P1M_701313_Sample.arxml
\config\App_WDG_P1M_701313_Sample.html
\config\App_WDG_P1M_701314_Sample.one
\config\App_WDG_P1M_701314 Sample.arxml
\config\App_WDG_P1M_ 701314 Sample.html
\config\App_WDG_P1M_701315 Sample.one
\config\App_WDG_P1M_701315 Sample.arxml
\config\App_WDG_P1M_701315 Sample.html
\config\App_WDG_P1M_701318_Sample.one
\config\App_WDG_P1M_701318_Sample.arxml
\config\App_WDG_P1M_701318_Sample.html
\config\App_WDG_P1M_701319 Sample.one
\config\App_WDG_P1M_701319 Sample.arxml
\config\App_WDG_P1M_ 701319 Sample.html
\config\App_WDG_P1M_701320_Sample.one
\config\App_WDG_P1M_701320_Sample.arxml
\config\App_WDG_P1M_701320_ Sample.html
\config\App_WDG_P1M_701321_Sample.one
\config\App_WDG_P1M_701321_Sample.arxml
\config\App_WDG_P1M_701321_Sample.html
\config\App_WDG_P1M_701322_Sample.one
\config\App_WDG_P1M_701322_Sample.arxml
\config\App_WDG_P1M_701322_Sample.html
\config\App_WDG_P1M_701323_Sample.one
\config\App_WDG_P1M_701323_Sample.arxml
\config\App_WDG_P1M_701323_Sample.html

In the Sample Application all the WDG APIs are invoked in the following
sequence

When DriverA (WDTAQO) is selected:

The API Wdg_59 DriverA_GetVersioniInfo is invoked to get the version of
the WDG Driver module with a variable of Std_VersionInfoType, after the
call of this API the passed parameter will get updated with the WDG Driver
version details.

The API Wdg_59 DriverA_|Init is invoked with a valid database address for
45

Chapter 13

P1x Specific Information

46

13.2.2
13.2.2.1

13.2.2.2

the proper initialization of the WDG Driver, all the WDG Driver control
registers and RAM variables will get initialized after this API is called.

The API Wdg_59 DriverA_SetMode is invoked with the mode which needs
to be set, this API changes the mode of the Watchdog.

The API Wdg_59 DriverA_SetTriggerCondition initializes the trigger counter
global variable with timeout value divided by either usSlowTimeValue or
usFastTimeValue based on the current mode of Watchdog'.

Building Sample Application

Configuration Example
This section contains the typical configuration which is used for measuring
RAM/ROM consumption, stack depth and throughput details.

Configuration Details:
App_WDG_<SubVariant>_<Device_Number>_Sample.html

The <Device Number> indicates the device to be compiled, which can be
701304, 701305, 701310, 701311, 701312, 701313, 701314, 701315, 701318,
701319, 701320, 701321, 701322 and 701323.

Remark In this typical configuration, all the conversion modes available for WDG
Driver Component are configured so that each API’s throughput analysis could
be performed. Throughput is measured by toggling a port pin before invoking
the API and again toggling the same port pin after the execution of the API.

Following Opbyte setting shall be followed:

If Variable activation code is enabled, Opbyte value = 0x71DF3FEB.
If Variable activation code is disabled, Opbyte value = Ox719F3FEB.

In debug mode unmask the reset using GHS command "target pinmask".

Debugging The Sample Application

GNU Make utility version 3.81 or above must be installed and available in the
path as defined by the environment user variable “GNUMAKE” to complete the
build process using the delivered sample files.

+ Open a Command window and change the current working directory
to’make”directory present as mentioned in below path:
“X1X\P1x\common_family\make\<Complier>”

Now execute the batch file SampleApp.bat with following parameters
SampleApp.bat Wdg < AUTOSAR_version> <Device_Name>

- After this, the tool output files will be generated with the configuration as
mentioned in App_WDG_<SubVariant>_<Device_Number>_Sample.html
file available in the path:

“X1X\P1x\modules\wdg\sample_application\<SubVariant>\<cAUTOSAR_ve

rsion>\config”.

« Afterthis, all the object files, map file and the executable file

P1M Specific Information

Chapter 13

Remark

Notes:

App_WDG_P1M_Sample.out will be available in the output folder

(“X1X\P1x\modules\wdg\sample_application\<SubVariant>\obj\
<Complier>").
(Note: For example compiler can be ghs.)

The executable can be loaded into the debugger and the sample application

can be executed.

Executable files with *.out’ extension can be downloaded into the target

hardware with the help of Green Hills debugger.

If any configuration changes (only post-build) are made to the ECU
Configuration Description files

“X1X\P1x\modules\wdg\<SubVariant>\<AUTOSAR _version>

\config\App_WDG_<SubVariant>_<Device_name>_Sample.html|”

The database alone can be generated by using the following commands.

make —f App_WDG_<SubVariant>_Sample.mak generate_wdg_config

make —f App_WDG_<SubVariant>_Sample.mak
App_WDG_<SubVariant>_Sample.s37

After this, a flashable Motorola S-Record file
App_WDG_<SubVariant>_Sample.s37 is available in the output folder.

<Compiler> can be ghs.

<Device_name> can be 701304, 701305, 701310, 701311, 701312,
701313, 701314, 701315, 701318, 701319, 701320, 701321, 701322
and 701323.

<AUTOSAR_version> can be 4.0.3.

<SubVariant> can be P1M

13.3. Memory and Throughput for R4.0.3

13.3.1 ROM/RAM Usage
The details of memory usage for the typical configuration provided in Section

13.2.2.1 Configuration Example are provided in this section.

Table 13-8 ROM/RAM Details Without DET

SI. No | ROM/R | Segment Name Size in
AM bytes for
701312
1. ROM WDG59_A_PUBLIC_CODE_ROM 262
WDG_59 _DRIVERA_FAST _CODE_ROM 98
WDG59_A_CFG_DBTOC_UNSPECIFIED 16
2. RAM NOINIT_RAM_UNSPECIFIED 5

47

Chapter 13

P1M Specific Information

The details of memory usage for the typical configuration, with DET enabled
and all other configurations as provided in 13.2.2.1 Configuration Example are
provided in this section.

Table 13-9 ROM/RAM Details With DET

SI. No | ROM/R Segment Name Size in
AM bytes for
701312
1. ROM WDG59_A_PUBLIC_CODE_ROM 456
WDG_59_DRIVERA_FAST_CODE_ROM 106
WDG59_A_ CFG_DBTOC_UNSPECIFIED 16
2. RAM NOINIT_RAM_UNSPECIFIED 5

13.3.2 Stack Depth

The worst-case stack depth for WDG Driver Componentis 12 bytes for the
typical configuration provided in Section13.2.2.1 Configuration Example.

13.3.3 Throughput Details

The throughput details of the APIs for the configuration mentioned in the
Section13.2.2.1 Configuration Example are listed here. The clock frequency
used to measure the throughput is 80MHz for all APIs.

Table 13-10 Throughput Details Of The APIs

S| APl Name Throughputin Remarks
Né microsecond
: for 701312
1. |Wdg_59 DriverA0.587 Timing is measured with
_Init default mode as
WDGIF_SLOW_MODE
2. | Wdg_59 DriverA0.175 Timing is measured
_SetMode with default mode as
WDGIF_SLOW_MODE
3. | Wwdg_59 Driver 0.137 -
A_SetTriggerCo
n dition
4. |Wdg_59 DriverA0.12 -
_GetVersioninfo
5. |WDG_59 DRIV [13.59 -
ERA _TRIGGER
FUNCTION_ISR

48

Release Details

Chapter 14

Chapter 14 Release Detalils

WDG Driver Software R4.0.3
Version: 1.0.9

49

Chapter 14

Release Details

50

Revision History

SI.No

Description

Version

Date

Initial Version

1.0.0

18-Oct-2013

Following changes are made:

1. In chapter 2, Reference Documents and Device manual
version changed.

2.100 pin Device names are added.

3. Compiler version and options are changed.

4. ROM/RAM table is updated for 100 pin device.

5. Sample application folder path is updated for 100 pin
device.

1.0.1

04-Feb-2014

Following changes are made:
1. In chapter 2, Reference Documents and Device manual
version changed.

2 .In chapter 13, translation header file that supports
P1M devices are listed.

3. In chapter 13, sample application structure is modified
according to P1M supporting devices.

4. In chapter 13, 13.1.2 ISR Function Mapping Interrupt
Vector Table and 13.1.3 Parameter Definition File are
added.

5. In chapter 13, Throughput details and ROM/RAM Usage
are added.

1.0.2

26-Sep-2014

Headers are corrected in chaper10 and 11.

103

21-Nov-2014

Following changes are made:

1. Updated Chapter 4.1 to add notes.

2. Updated Chapter 13 to add new device support.

3. Removed sections for Compiler, Linker and Assembler.
4. Updated Chapter 13.3 with memory and throughput
details.

1.04

28-Apr-2015

51

AUTOSAR MCAL R4.0.3 User's Manual
WDG Driver Component Ver.1.0.4
Embedded User’s Manual

Publication Date: Rev.0.01, April 28, 2015

Published by: Renesas Electronics Corporation

LENESAS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Ar i 10, 40472 Dusseldorf, Germany

Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632

Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2015 Renesas Electronics Corporation. All rights reserved.
Colophon 1.0

http://www.renesas.com/
http://www.renesas.com/

AUTOSAR MCAL R4.0.3

User’s Manual

RENESAS

Renesas Electronics Corporation

	Chapter 1 Introduction
	1.1. Document Overview

	Chapter 2 Reference Documents
	Chapter 3 Integration And Build Process
	3.1. WDG Driver Component Makefile
	3.1.1. Folder Structure

	Chapter 4 Forethoughts
	4.1. General
	4.2. Preconditions
	4.3. Data Consistency
	4.4. WDG State Diagram
	4.5. WDTA 75% ISR Usage Details for R4.0.3
	4.6. Deviation List
	4.7. User mode and supervisor mode
	4.8. Register Read-Back

	Chapter 5 Architecture Details
	Chapter 6 Registers Details
	Chapter 7 Interaction Between The User And WDG Driver Component
	7.1. Services Provided By WDG Driver Component To the User

	Chapter 8 WDG Driver Component Header And Source File Description
	Chapter 9 Generation Tool Guide
	Chapter 10 Application Programming Interface
	10.1. Imported Types
	10.1.1. Standard Types
	10.1.2. Other Module Types

	10.2. Type Definitions
	10.2.1. Wdg_59_DriverA_ConfigType

	10.3. Function Definitions

	Chapter 11 Development And Production Errors
	11.1. WDG Driver Component Development Errors
	11.2. WDG Driver Component Production Errors

	Chapter 12 Memory Organization
	Chapter 13 P1M Specific Information
	13.1. Interaction Between The User And WDG Driver Component
	13.1.1. ISR Function Mapping Interrupt Vector Table
	13.1.2. Translation Header File
	13.1.3. Parameter Definition File

	13.2. Sample Application
	13.2.1 Sample Application Structure
	13.2.2 Building Sample Application
	13.2.2.1 Configuration Example
	13.2.2.2 Debugging The Sample Application

	13.3. Memory and Throughput for R4.0.3
	13.3.1 ROM/RAM Usage
	13.3.2 Stack Depth
	13.3.3 Throughput Details

	Chapter 14 Release Details

