Technical Reference CANdesc vector

CANdesc

Technical Reference

GM / Opel specifics
Version 3.2.0

Authors Mishel Shishmanyan; Christoph Ratz; Oliver Garnatz;
Matthias Heil; Katrin Thurow; Vitalij Krieger; Patrick
Rieder

Status Released

©2014, Vector Informatik GmbH Version: 3.2.0 1177

Technical Reference CANdesc

Document Information

History

Author ________Date __Version Remarks

Mishel Shishmanyan
Christoph Ratz
Mishel Shishmanyan

Mishel Shishmanyan

Oliver Garnatz

Oliver Garnatz

Oliver Garnatz, Mishel
Shishmanyan

Mishel Shishmanyan

Jason Wolbers
Mishel Shishmanyan

Mishel Shishmanyan

Mishel Shishmanyan

©2014, Vector Informatik GmbH

2002-05-07
2002-07-31
2002-12-12

2003-04-09

2003-12-19

2004-05-14

2004-07-15

2006-05-02

2006-08-03
2006-10-22

2006-11-03

2007-12-14

0.9.0
094
1.0.0

2.0.0

2.1.0

2.2.0

2.3.0

24.0
2.5.0

2.6.0

2.7.0

Version: 3.2.0

based on template version 5.1.0

vactor”

Creation

Reworked and released
Added requirements for
ProgrammingMode (Sid $A5)
and DeviceControl(Sid $AE)
Released

Added default CANdelaStudio
attribute settings for
GM/OPEL ECUs

Adapted to CANdesc 2.xx.xx
New Word template used.
Replaced AppDesc with
ApplDesc

Changed support level of
‘Security access’

Added description of
CANdesc OBD support
Added:

- Service
DynamicallyDefineMe
ssage ($2C)

- Service
DefinePIDByAddress
($2D)

- The PacketHandler
(another type of
service processor)

Modified:
- Cosmetics

- All APIs described in
detailed table form

Removed:
- None

Improved wording

Added:

- 5.1 “ECU Address
configuration”

Modified:

- 6.1.2 “Multi address ECU
(dynamic addressing)”

Modified:

2177

Technical Reference CANdesc vector

- 7.3 “Service attributes”

- 6.6 "Service
DisableNormalCommunicatio
n ($28)”

Removed:

- 6.1.2 “Multi address ECU

(dynamic addressing)” — only

target addresses OxFE and

OxFD (for gateways only) are

accepted by CANdesc.
Mishel Shishmanyan 2010-12-21 2.8.0 Modified:

- 5.1 ECU Address
configuration

Added:
- 6.5 Service SecurityAccess
($27)
Matthias Heil 2011-04-20 3.0.0 Modified:
- Update to new formatting

- 6.11 Service
ProgrammingMode ($A5)

Added:

- 4.3 Update from earlier
versions

- 7.4 State group for the

Programming Sequence
Katrin Thurow 2011-12-16 3.1.0 Modified:

- 5.6.3 High speed

programming mode state
Vitalij Krieger, Patrick Rieder 2014-05-15 3.2.0 Added:

- 5.5.1 Sending the

unsolicited response from a

different channel on a

dynamic TP

- 6.6.1 Activate a $28 post-

handler for the application

Modified:

- 6.2 Service
ReadFailureRecordData

($12)

©2014, Vector Informatik GmbH Version: 3.2.0 3177

Technical Reference CANdesc vector

' Caution

- We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

©2014, Vector Informatik GmbH Version: 3.2.0 4177

Technical Reference CANdesc vector

Contents

1 Related docUumMEeNts...............ooooiiiiiii 10
b O 1 =Y V- P 1
3 CANdesc support by diagnostic servicecciiiii e, 12
4 Important application requirements.....................cccccoiiiiii 16
4.1 INIETALIZATION e e 16
4.2 DeviceControl ($AE) service requirementccccvveeeeeeeeeeeiiiiiiieee e 17
4.3 Update from earlier VErSioNSouvuuiiiiiiiiiiieiie e 17
5 GM/Opel specific functionality..................cccuuuiiiiiiiiiiiiiii 18
5.1 ECU Address configuration ... 18
51.1 Gateway ECUS ... 18
51.2 Virtual network management..........ccooooeviiiiiiiiiiin e 18
51.3 Diagnostic activity notificationcccccceieeiiii 18
5.2 Request validationooii 19
5.3 TIMEOUL EVENES ..o e et e e e e e aareeas 21
5.3.1 Tester present timeout............oo oo 21
5.4 Using the extended negative reSpONSEecovvvuiiiiiiiiiiiiiiii e 21
5.4.1 Sending an extended negative response during service processing 21
54.2 Sending an unsolicited extended negative response........................ 22
5.5 Sending an unsolicited single frame responseccccvvveiiiiiiiiiiiiiiiiiiiieennn. 23

5.5.1 Sending the unsolicited response from a different channel on a
dynamiC TP .., 24
5.6 GM/Opel CANdesc state maching aCCesscceveevvviiiieiiiiiiieeeee e, 24
5.6.1 Normal communication state............ooiiii 25
5.6.2 Programming mode state................uuiiiiiiiiiiiiiiiiiiiiiiie 25
5.6.3 High speed programming mode stateccccccvviiiiiiiiiiiiiiiiiinnns 26
5.7 The PacketHandler (another type of service processor).........ccccccevvviiviiiennnnn. 26
5.7.1 PacketHandler AP ... 27
6 GM/Opel service implementationsccccuuiiiiiiiiiiiiiiii s 30
6.1 Service InitiateDiagnosticOperation ($10)ccuveeiiireriieeiie e 30
6.1.1 Service DisableAlIDTCS ($10 $02)cccvvveriieeeiiee e 30
6.1.2 Service EnableDTCsDuringDeviceControl ($10 $03)ccccccvvvee.. 30
6.2 Service ReadFailureRecordData ($12)coocvvveiiiiiiiiieeeee e 31
6.2.1 Service ReadFailureRecordldentifiers ($12 $01).......coovivveiieeinrnns 31
6.2.2 Service ReadFailureRecordParameters ($12 $02)...........ccccvveeenneee. 32

©2014, Vector Informatik GmbH Version: 3.2.0 5177

Technical Reference CANdesc vector

6.3 Service ReturnToNormalMode ($20).......cccveeiiiieeiiieecie e 32
6.4 Service ReadDataByParameterldentifier ($22)cccooveeeeiiiiiiiiiiiiees 33
6.4.1 Reading a dynamically defined PID (Parameter Identifier) 33
6.5 Service SeCUrityACCESS ($27) ...uuvreieeeee e 33
6.6 Service DisableNormalCommunication ($28)...........ccccvvvieiieiiiiiiiiiiiiieee e, 34
6.6.1 Activate a $28 post-handler for the application..............c..c.ccceveees 35
6.7 Service DynamicallyDefineMessage ($2C)ooevveeeiiiiiiiiiieieeee e 35
6.8 Operations on dynamically definable DPIDSuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiines 36
6.8.1 Defining a dynamically definable DPIDccccooiiiiiiiiiiiiiiiiiiiiens 36
6.8.2 Reading a dynamically definable DPIDccccccoviiieiiieiinniiiinn, 37
6.9 Service DefinePIDBYAdAress ($2D).......ccuiiiiiiiieeiiieeeiieesiie e 40
6.10 Operations on dynamically definable PIDs..............ccoooo i, 41
6.10.1 Defining a dynamically definable PIDc..ooooiiiiiiiin i, 41
6.10.2 Reading a dynamically definable PID..............ccccccoiiiiiiiiiiiiiiiiiiiinns 42
6.11 Service ProgrammingMode ($AS5)ccooiiiiiiiiiie e 48
6.11.1 Allowing programming mode ($A5 $01/$02)cccccvvvveeeeieeiiiinnnnne, 48
6.11.2 Entering programming mode ($A5 $03)ccoveviiveiiieeiiire e 49
6.11.2.1 FBL start on EnterProgrammingMode ($A5 $03) 49
6.11.2.2 FBL start on RequestDownload ($34)cccceevvveenneen. 50
6.11.2.3 Concluding programming modecoeeveeeeeeeeeeeenenn. 50
6.11.3 Considerations when upgrading..........ccoooeeieiieiiiiieeeeeeeeeeeee, 51
6.12 Service ReadDiagnosticinformation ($A9)ccceoviviiiiiiiiie e 51
6.12.1 ReadStatusOfDTCByNumber ($A9 $80)........ccccvveeeiiiiieeeiiiieeeeee, 52
6.12.2 ReadStatusOfDTCByStatusMask ($A9 $81)c.covvvviviveeeiiiieeeee 55
6.12.3 SendOnChangeDTCCount ($A9 $82)........cccovveiiireiiiieeiiee e 60
6.13 Service ReadDataByPacketldentifier (FAA)ccceveeiiiiiee e 64
6.13.1 Handling undefined USe CaSEesuuvuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiees 65

6.13.1.1 Service $AA handling for undefined dynamically
definable DPIDS..........uoiiiiiiieieeee e 65

6.13.1.2 Service $AA handling for undefined referenced

dynamically defined PIDS..........ccccccovvviiiiiiiiiiiiiiiiiiiiiiee 65
6.13.1.3 Service $AA handling for unaccessible referenced PIDs 65
6.14 Service DeviceControl (SAE)ccueieiiie e 65
6.15 Service TesterPresent ($3E)ccovviiiieeiiieece e 66
7 CANdelaStudio default attribute settingsccccoiiii 67
71 Diagnostic class attributes ... 67
7.2 Diagnostic instance attributes ... 68
7.3 Service attribDUIESuuiiiiiiiiiii 69
7.4 State group for the Programming SEQUENCEoevviiiiiieiiiiiiiiciee e, 72
L= N O 1 = 1 I T o o Yo T o 73

©2014, Vector Informatik GmbH Version: 3.2.0 6/77

Technical Reference CANdesc vector

8.1 (7 (NI To [T 0 11T £ 73

8.2 ReSHNCHONS ..o 73

8.3 CANdelaStudio default attribute settings for OBD servicesccccccvvvvrnnnnnne 74
8.3.1 DiagnostiC ClasSEsScooeeviiiiiici e 74

8.4 CANGgen configuration.............cuuuiiiiii e e aaaees 74
8.4.1 DBC attribute settings for the OBD request message...........cccc........ 74

8.4.2 CANgen version < 4.15.00coiiiiiiiiiieee e 74

8.4.3 CANgen version 2 4.15.00ccoooiiiieeeeeee e 74

8.4.4 GENy configurationccoooooioioi e 74

8.5 CANdesc configuration (without a Powertrain CANdela template) 75

9 Debug assertion COUES ...t 76
10 Contact ... 77

©2014, Vector Informatik GmbH Version: 3.2.0 7177

Technical Reference CANdesc

lllustrations

Figure 1-1
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4

Figure 5-5

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13
Figure 6-14

Figure 6-15
Figure 6-16

Figure 6-17
Figure 6-18

Figure 6-19

Figure 6-20
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4

Tables

Table 4-1
Table 4-2
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9

©2014, Vector Informatik GmbH

Manuals and References for CANAESC.........ccovviiiiiiiiiiiiiiiiieeeeeee e 10
Request message logical format............ccccoooiiiiiiiiiiiii e, 20
Example code for transmitting an unsolicited responsecccccceee.e. 23
Asynchronous PacketHandler for current CANdesc versions.................... 28
Asynchronous PacketHandler with delayed processing of the first data
PACKET. ... e 29
Asynchronous PacketHandler with dummy response, due to an

application error while obtaining response dataccccevvviiiiiiiinninenes 29
Dynamically defined DPID service relations............cccccceeeiiiieiiiiiiiienneee, 36
Dynamically definable DPID is not definedcccccvviiiiiiiiiiiiiiiiiiiiinns 37
Single referenced PID cannot provide any data..........cccoooveevviiiiiiiicenneeenn, 38
Reading the dynamically defined DPID succeeds..........cc.ccevvvviiiiieennnnnn. 39
Dynamically definable PID, referenced by the DPID, is not defined 40
Dynamically defined PID service relationsuvvviiiiiiiiiiiiiiiiiiiinnnn. 41
Definition of dynamically definable PID with valid parameter 41
Defining of a dynamically definable PID failed due to security violation..... 42
The dynamically definable PID is not defined...............ooooeeieie 43
Application error when reading the memory blockcccccvviiiiin. 44
Reading of dynamically defined PID succeedscccccoeeviieiiiiiiiiiennnennn, 45
Programming mode flowchart ..., 48

Request $A9 $80 where the requested fault type combination was found 52
Request $A9 $80 where the requested fault type combination was not

FOUN L. e 53
Request $A9 $81 where the application found two DTCs with the

requested status Mask........ccocooiiiiiiii e, 56
Request $A9 $81 where the application cannot find any DTCs with the
requested status Mask........ccocoiiiii i, 57

Request $A9 $82 with activation of the background DTC count monitor... 60
Request $A9 $82 with explicit deactivation of the background DTC count

[pT0] a1 1 (o] SRR 61
Request $A9 $82 with deactivation of the background DTC count

MONItOr DY tIMEOUL. 62
PostHandler for “DeviceControl” (SAE)ccovvveeiiiiiiee e 66
CANAEIaSTUIO VIEWS ...t 67
Diagnostic Class level attributes ... 68
Diagnostic Instance level attributes. ... 69
Service related attributes ..o, 70
DeSCINtPOWEION........ei e 16
TS o1 | o 1 S 17
AppIDescONDIagACHIVEccooveiieiie 19
ApplDescOnDiaglinactive ... 19
DesSCSetEXINEgRESPONSEuviiiiiiiiiiiii e 22
DescTransmitSingleFrame. ... 24
DesSCGEtCOMMSEAE.......uuiiiiiiiiiiiiiiiieieie bbbt eaeeeenae 25
DeSCGEtPrOgIMOAEee e 26
DescGetHISPEEAMOEuuuueieiiiiiiiiiiiiiiiiiiiieieieeeaeeaeeeneeenenenernnnnnnnnnnnnne 26
PacketHandler....... ... 27
DescDataPacketProcessingDone...........oovviviiiiiiieiieeeeee e 28

Version: 3.2.0

vactor’

Technical Reference CANdesc

Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 6-7
Table 6-8
Table 6-9
Table 6-10
Table 6-11
Table 6-12
Table 6-13
Table 6-14
Table 6-15
Table 6-16
Table 6-17
Table 6-18
Table 6-19
Table 6-20
Table 6-21
Table 6-22
Table 6-23
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 8-1
Table 9-1

©2014, Vector Informatik GmbH

AppIDescONDIsableAIIDICcouuiiii e 30
ApplDescOnEnableDtcChangeDuringDevCntrl............ccccovvvviiiiiiiiiiiinnnn. 31
ApplDescOnReturnToNormalMode..........cc.oovviiiiiiii e, 32
ApplDescOnDisableNormalCommi...........ccoooviiiiiiiiii e, 34
ApplDescOnEnableNormalComm...........coovviiiiiiiiiii e 35
ApplDescPostDisableNormalCommunicationccccceeiiiiiieiiieiiinnnnnn. 35
ApplDescCheckDynPidMemOoryAreaveeeeeieeeeiieeiiiie e, 46
ApplDescReadDynPidMemContent............ccccccceieii i, 47
DescReadDynPidMemContentDoNe..............uuvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnee 47
ApplDescONENterProgMode.............eiiiiiiiiiiccee e 49
ApplDescForceECURESEL........ccoovviii e, 50
Service $A9 parallel execution MatrixXccceeeeiiiiiii i 51
ApplDescGetDtcStatusByNumber ..., 54
DescRdiDtcStatusByNumberFound............cccoooiiiiiiiiiiiiiiieee e, 54
DescRdiDtcStatusByNumberNotFoundcoovvviiiiiiiiiienece e, 55
ApplDescGetDicStatusByMaskcoovviiiiiiiiiiiiiiie e 58
DescRdiDtcStatusByMaskFound..............iiiiiiiiiiicce e, 59
DescRdiDtcStatusByMaskNotFoundcccoooieiiiiiiiiiii e, 59
ApplDescEnableOnChangeDtcCountoooviiiiiiiiiiiieecee e, 63
ApplDescDisableOnChangeDtcCountccccoeeiiiiiiiiiiiiiiie e, 63
DescRdiOnDtcCountChangedc.ooiviiiiiiiiicicccee e, 64
DescRdiDeactivateOnChangeDtcCountuuviviiiiiiiiiiiiiiiiiiiiiiiiiinnns 64
DeSCACHVAtESITIMEN ... 66
Default ‘Diagnostic Class’ attribute settingscccooviieeii i, 68
Default ‘Diagnostic instance’ attribute settings ..., 69
Default ‘Service’ attribute Settings.............uvviiiiiiiiiiiiiiiiiiiis 71
Programming Sequence State groupeeeeeeeeiiieiiimeieeiieiienininnen. 72
Diagnostic class specific attributeseuvviiiiiiiiiiiiiiiiiiis 74
Debug asSertion COUESuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiieeeeie bbb eeeeeeeeeeenaes 76

Version: 3.2.0

vactor’

9/77

Technical Reference CANdesc vector

1 Related documents

» Technical Reference CANdesc

» User Manual CANdesc

User Manual

]

Technical Technical

Reference Reference
General OEM

You are here

CANdesc CANdescBasic)

Figure 1-1 Manuals and References for CANdesc

All GM/Opel specific CANdesc topics are described within this technical reference. Topics
which are common to all OEMs (e.g. features, concepts) are located in the general
technical reference document “TechnicalReference_ CANdesc”.

For faster integration, please refer to the user manual document “UserManual_CANdesc’.

©2014, Vector Informatik GmbH Version: 3.2.0 10/77

Technical Reference CANdesc vector

2 Overview

The GM/Opel version of CANdesc uses an internal implementation to handle many
diagnostic tasks. Many of these tasks are realized through generated code (constants,
state count, etc.) which gives more flexibility to the application in case of specification or
variant changes. On the other hand, there are “built-in” diagnostic service implementations
which can free the application from some very complex tasks (e.g.
ReadDiagnosticinformation (SID $A9), ReadDataByPacketldentifier (SID $AA), etc.) and
hide all of the underlying functionality under a simple signal interface for the application. In
addition, CANdesc also handles certain GM/Opel specific management functionality (e.g.
virtual networks) in order to fully comply with GM/Opel diagnostic specifications.

©2014, Vector Informatik GmbH Version: 3.2.0 1/77

Technical Reference CANdesc vector

3 CANdesc support by diagnostic service

CANdesc provides three possible levels of support independently for each diagnostic
service — complete, assisted, or basic. The level of support varies according to CANdesc
capability and user selection in CANdelaStudio. All three levels of support provide
complete communication handling (including all transport protocol processing and error
handling), diagnostic session and timer management, and basic error checking.

Communication handling not only includes testing support of service, but also consistency
of service, sub-function and/or identifier combination. A validity check of the addressing
method and data length is performed. Parallel requests are managed (SID $3E, $AA, and
$A9) when allowed. As error handling is a significant part of any ECU software, all low
level errors are handled internally by CANdesc. Finally, CANdesc assists with the
connection to GMLAN (e.g. supervision and management of the VN timer, message
transmission mode, bus speed switching, etc.).

Complete

Complete support means that CANdesc is capable of handling the diagnostic transaction
without requesting support from the ECU application. The ECU developer need not
provide any code to help implement the diagnostic feature; CANdesc handles all
processing. In the case where diagnostic messages contain real-time data, or “signals”,
CANdesc can map that data to global variables in the ECU application and read/write the
values directly to/from RAM without calling any ECU application callbacks; the ECU
developer does not have to concern himself with the protocol level implementation. If a
service modifies a diagnostic state group, CANdesc notifies the application using a
callback function.

Assisted

Assisted support means that CANdesc is capable of fully parsing request messages and
building response messages, but it does not contain the logic necessary to execute the
request or determine data values. The ECU developer must provide callbacks for
CANdesc to fill these logic gaps, which typically come in the form of calculating a signal
value, controlling an 1/O port, or perhaps executing an ECU-specific feature such as a self-
test or EEPROM access routine.

Basic

Basic support means that CANdesc is only capable of identifying that the ECU application
must process the request. The ECU application may have to provide logic to validate the
request message and build the response byte-by-byte. This level of support is only used
where code generation is not practical or supported.

©2014, Vector Informatik GmbH Version: 3.2.0 12/77

Technical Reference CANdesc vector

RequestCurrentDiagnosticData ($01) — Assisted

The application must implement only the handling of this service (no request length
validation).

RequestFreezeFrameData ($02) — Assisted

The application must implement only the handling of this service (no request length
validation).

RequestEmissionRelatedDTC ($03) — Assisted

The application must implement only the handling of this service (no request length
validation).

ClearDiagnosticinformation ($04) — Assisted

The application must provide a function that clears fault memory.

RequestTestResultsForNonContinouslyMonitoredSystems ($06) — Assisted

The application must implement only the handling of this service (no request length
validation).

RequestTestResultsForContinouslyMonitoredSystems ($07) — Assisted

The application must implement only the handling of this service (no request length
validation).

RequestControlOfOnBoardSystemTestOrComponent ($08) — Assisted

The application must implement only the handling of this service (no request length
validation when the request data length is a constant value).

RequestVehiclelInformation ($09) — Assisted

The application must implement only the handling of this service (no request length
validation).

InitiateDiagnosticOperation ($10) — Assisted

The application must provide a function that implements the logic to enable/disable the
settings of DTCs.

ReadFailureRecordData ($12) — Basic

The application must provide a function that implements the request parsing (validation)
and the logic to report the failure record data.

ReadDataByldentifier ($1A) — Complete

CANdesc completely implements this service for DIDs whose data maps to global
variables. Assisted support is provided for DIDs whose data does not map to global
variables.

©2014, Vector Informatik GmbH Version: 3.2.0 13/77

Technical Reference CANdesc vector

ReturnToNormalMode ($20) — Complete

The application must provide an implementation for the event-based callbacks triggered by
this service.

ReadDataByParameterldentifier ($22) — Complete

CANdesc completely implements this service for PIDs whose data maps to global
variables. Assisted support is provided for PIDs whose data does not map to global
variables. In any case, multiple PID handling (in a single request) is handled internally by
CANdesc.

ReadMemoryByAddress ($23) — Basic

The application must provide a function to determine if the requested address is valid and
a function to return the data stored at the requested address.

SecurityAccess ($27) — Basic
The application must provide functions, which implement the security access mechanism.

By utilizing a diagnostic state group, CANdesc can track the current security level and
assist the application in determining if a request is allowed at the given time.

DisableNormalCommunication ($28) — Complete

CANdesc completely implements this service.

DynamicallyDefineMessage ($2C) — Complete

CANdesc completely implements this service.

DefinePIDByAddress ($2D) — Complete

CANdesc completely implements this service.

RequestDownload ($34) — Basic

The application must implement this service.

TransferData ($36) — Basic

The application must implement this service.

WriteDataByldentifier ($3B) — Complete

CANdesc completely implements this service for DIDs whose data maps to global
variables. Assisted support is provided for DIDs whose data does not map to global
variables.

TesterPresent ($3E) — Complete

CANdesc completely implements this service.

©2014, Vector Informatik GmbH Version: 3.2.0 14177

Technical Reference CANdesc vector

ReportProgrammedState ($A2) — Complete

CANdesc completely implements this service if the programmed state maps to a global
variable. Assisted support is provided if the programmed state does not map to a global
variable.

ProgrammingMode ($A5) — Assisted

The application must only provide functions that implement programming mode requests.
CANdesc performs state checking internally.

ReadDiagnosticinformation ($A9) — Assisted

The application must provide functions that read fault memory and construct the response
messages byte-by-byte. The application must provide functions to retrieve the number of
fault codes and to step through the list of fault codes matching the requested mask.
Moreover, it has to detect a change in the number of DTCs. CANdesc handles the
scheduler internally.

ReadDataByPacketldentifier ($AA) — Complete

CANdesc completely implements this service for DPIDs whose data maps to global
variables. Assisted support is provided for DPIDs whose data does not map to global
variables. The scheduler is handled internally by CANdesc.

DeviceControl ($AE) — Assisted

The application must provide device-specific functions that implement the control
algorithms.

Q Caution
! Diagnostic services other than those listed above are not supported by CANdesc in any
way and must be implemented entirely by the ECU developer as a workaround.

©2014, Vector Informatik GmbH Version: 3.2.0 15/77

Technical Reference CANdesc vector

4 Important application requirements

41 Initialization

In order to initialize the GM/Opel CANdesc component, the application must call the
following function:

Prototype

void DescInitPowerOn (DescInitParam initParameter)

Parameter
tnitParameter Initialization parameter

(recommended: ‘kDescPowerOnlnitParam’)

Return code

Functional Description

Power-on initialization of the CANdesc component.
The application must call this function once after power-on, before all other CANdesc functions.

The GM/Opel version of CANdesc has no special behavior for initialization; therefore, the initialization
function can be called with any parameter value. Even so, it is recommended that the ECU developer use
‘kDescPowerOnlnitParam’ for the parameter value.

Particularities and Limitations

» DesclnitPowerOn (initParameter) must be called after TpInitPowerOn() (please refer to the transport
protocol documentation) or any reserved diagnostic connection will be lost.

» DesclnitPowerOn (initParameter) calls Desclnit() internally for further initializations

Call context
» Background-loop level with global interrupts disabled

Table 4-1 DesclnitPowerOn

Prototype

void Desclnit (DescInitParam initParameter)

©2014, Vector Informatik GmbH Version: 3.2.0 16 /77

based on template version 5.1.0

Technical Reference CANdesc vector

Parameter

initParameter Initialization parameter

(recommended: ‘kDescPowerOnlnitParam’)

Return code

Functional Description

Re-initializes the CANdesc component.

The application can call this function to re-initialize CANdesc (e.g. after wakeup). All internal states will be
set to their default values.

The GM/Opel version of CANdesc has no special behavior for initialization; therefore, the initialization
function can be called with any parameter value. Even so, it is recommended that the ECU developer use
‘kDescPowerOnlnitParam’ for the parameter value.

Particularities and Limitations
» The application has already initialized CANdesc once by calling DesclnitPowerOn()

Call context
» Background-loop level with global interrupts disabled

Table 4-2 Desclnit

4.2 DeviceControl ($AE) service requirement

The GM/Opel diagnostic specification requires that device control activity shall be limited
by tester present timeout.

Please refer to the section Service DeviceControl ($AE) for more details.

4.3 Update from earlier versions

The behavior of the CANdesc embedded module has not changed fundamentally in
CANdesc version 6.x, but the configuration is much more independent from the CDD
settings. Many options that were previously only configurable as attributes in the CDD file
are now available for configuration in the GENy configuration tool.

As part of this change, the naming scheme for service callbacks is now more independent
from the CDD contents and more adherent to the GMW3110 specification. This will require
modification of existing application code to fit the new naming scheme.

In addition, the implementation of mode $A5 was changed to use the standard CANdesc
state management feature. You can now easily have service execution depend on the
reprogramming sequence, e.g. prevent a service from executing while programming mode
is active. Please also refer to chapter 6.17 - Service ProgrammingMode ($A5) for more
information.

©2014, Vector Informatik GmbH Version: 3.2.0 17177

based on template version 5.1.0

Technical Reference CANdesc vector

5 GM/Opel specific functionality

5.1 ECU Address configuration

GM/Opel use extended addressing for the functional request message. By default,
CANdesc will accept any request with target address OxFE. There are some other use
cases that are considered to be supported with the help of user configuration files (refer
the “TechnicalReference_CANdesc.pdf’ for configuration details).

5.1.1 Gateway ECUs

According to the GMW3110 v1.6, gateways shall be accessible also via the special target
address OxFD. To enable the reception on this address, please insert into your user
configuration file for CANdesc the following definition:

#define DESC_ENABLE GW ECU ADDR
5.1.2 Virtual network management

A GMLAN/IVLAN specific implementation is built into CANdesc, which completely
integrates CANdesc into a GM/Opel project. CANdesc manages all aspects of the
diagnostics VN, including activation of the VN in the GMLAN handler and then deactivation
of the VN after diagnostic inactivity (e.g. missing tester) as described in GMW-3110.

When the first diagnostic request is received, CANdesc will activate the diagnostics VN to
provide communication capability with the tester. The VN is then automatically deactivated
under the following conditions:

» 8 seconds after the diagnostic request “ReturnToNormalMode” ($20) is received
» 8 seconds after the tester present timeout

» 8 seconds after the last response is sent, or in the case of requests that do not send a
response, 8 seconds after the request is completely processed

5.1.3 Diagnostic activity notification

CANdesc notifies the application via a callback function when a diagnostic session begins
(the first diagnostic request) and when it ends (the deactivation conditions listed above).
These callbacks are listed below.

void ApplDescOnDiagActive (void)

©2014, Vector Informatik GmbH Version: 3.2.0 18/77

Technical Reference CANdesc vector

Parameter

Return code

Functional Description

When the first diagnostic request (after ECU power-on or wakeup) is received, regardless of the addressing
method, CANdesc calls this function to notify the application that ECU diagnostics are now active (so that
the application can begin diagnostic specific tasks, for instance).

Particularities and Limitations

» None

Call context

» Interrupt context, if the CAN-driver is configured to handle receive messages in interrupt mode

» Background-loop level task context, if the CAN-driver is configured to handle receive messages in
polling mode

Table 5-1 ApplDescOnDiagActive

Prototype
void ApplDescOnDiagInactive (void)

Parameter

Return code

Functional Description

Once the conditions for deactivating the diagnostics VN are met (i.e. the diagnostics VN timer reaches
zero), CANdesc calls this function to notify the application that ECU diagnostics are no longer active (so
that the application can end diagnostic specific tasks to lower CPU utilization, for instance).

Particularities and Limitations
» None

Call context
» Background-loop level task context of DescTimerTask().

Table 5-2 ApplDescOnDiaglnactive

5.2 Request validation

The GM/Opel version of CANdesc is capable of performing the following request
validations:

» Is the designed diagnostic buffer big enough to hold the whole request? If the request is
physically addressed, the GM/Opel CANdesc implementation will accept it even if the
length is greater than the defined buffer and let the “request length validation” routine
handle the situation. If the request is functionally addressed and the length is greater

©2014, Vector Informatik GmbH Version: 3.2.0 19/77

based on template version 5.1.0

Technical Reference CANdesc vector

than the defined buffer, it will be ignored (regardless of whether it would normally send a
response).

» Is the requested SID supported? If the SID is not relevant for the ECU, CANdesc will
automatically send a negative response with error code “ServiceNotSupported” ($11).
Further processing will be aborted.

» Is the request addressing method for the SID correct? Two cases are possible:

» The requested SID normally provides a response (as defined in CANdelaStudio). In
this case, CANdesc will send a negative response with error code
“ConditionsNotCorrect” ($22). Further processing will be aborted.

» The requested SID normally does not provide a response (as defined in
CANdelaStudio). In this case, the request will be ignored.

» Does the request meet the minimum required length (to be distinguishable from other
instances)? Each request is formatted as shown in the figure below:

’< IBYEOF Bytes (N =0..n) L Bytes (L =0..1) >
‘ SID | SID EXT Application data

Service instance qualification

%ervice head” >

Figure 5-1 Request message logical format

» In order to process the request further, the service instance must be found (which
provides more detailed information about the request than the SID alone); therefore,
the request must be at least n + 1 bytes in length, where n is service dependent.

» If the length is less than the minimum allowed (as defined in CANdelaStudio),
CANdesc will send a negative response with error code
“SubfunctionNotSupportedinvalidFormat” ($12). Further processing will be aborted.

» Is the requested service instance supported by the ECU? If not, CANdesc will send a
negative response with error code “SubfunctionNotSupportedinvalidFormat” ($12).
Further processing will be aborted.

» Is the total request length correct? Two cases are possible:

» The request length is dynamic. In this case, no automated check can be performed,
and the task will be left to the application.

» The request length is fixed. In this case, CANdesc will check if the current request
length matches the expected length (as defined in CANdelaStudio). If not, a
negative response with error code “SubfunctionNotSupportedinvalidFormat” ($12)
will be sent. Further processing will be aborted.

» Does the requested service instance have a defined pre-handler function (please refer
to the user manual CANdesc document “UserManual _CANdesc” for more details about

©2014, Vector Informatik GmbH Version: 3.2.0 20/77

Technical Reference CANdesc vector

pre-handlers)? If so, it will be called. This allows the application to extend the built-in
validation with additional custom checks.

Note

If the request passes all of the above validation checks, the main-handler is called
(please refer to the user manual CANdesc for more details about main-handlers) for
further processing.

5.3 Timeout events

5.3.1 Tester present timeout

Once the tester present timer has been activated, the tester must send the diagnostic
service “Tester Present” ($3E) periodically in order to keep the timer running.

In case of a timeout, the diagnostic state will be initialized exactly the same as Service
ReturnToNormalMode ($20).

pm Note
CANdesc will automatically send an unsolicited positive response for the
“ReturnToNormalMode” ($20) diagnostic service (see section 5.5 Sending an
unsolicited single frame response).

5.4 Using the extended negative response

The GM/Opel version of CANdesc supports the extended negative response format to
specify service faults more precisely. This response has the following format:

$7F $AE $E3 $xx $yy (DeviceControlLimitsExceeded)

where $xx and $yy are the extended failure codes (as defined in an ECU specific
diagnostic specification).

There are two possible ways to send an extended negative response:

5.4.1 Sending an extended negative response during service processing

If the application is currently processing a request which requires an extended negative
response, the standard function DescSetNegResponse(errorCode) (please refer to the
general technical reference document “TechnicalReference_CANdesc” for more details)
cannot be used. Instead, the following function is defined:

©2014, Vector Informatik GmbH Version: 3.2.0 21177

Technical Reference CANdesc vector

Prototype

Single Context

void DescSetExtNegResponse (DescNegResCode errorCode,

DescExtNegResCode extErrorCode)

Multi Context

void DescSetExtNegResponse (vuint8 iContext,
DescNegResCode errorCode,

DescExtNegResCode extErrorCode)

iContext Reference to the corresponding request context

errorCode One of the error code constants defined by CANdesc (located in the
generated desc.h file) with the following naming convention:
kDescNrc<error name>.
Normally, only error code OxE3 is used.

extErrorCode

A two byte value which is ECU/use-case dependent

Return code

Functional Description

In the pre-handler or main-handler callback, the application can call this function to send an extended
negative response.

Normally, this extended negative response is only useful for service $AE, but the function may be used for
any currently active service (prior to calling DescProcessingDone()).

Particularities and Limitations

» The application must already have initialized CANdesc by calling DesclnitPowerOn()
» The define DESC_ENABLE_EXT_NEG_RES_CODE_HANDLING must exist in the generated code
» Once an error code has been set it cannot be overwritten or reset.

» This function does not finish the processing of the request. The application must confirm that the
request processing is completely finished by calling DescProcessingDone().

Call context
» Within a service pre-handler callback and within or after a service main-handler callback

Table 5-3 DescSetExtNegResponse

5.4.2 Sending an unsolicited extended negative response

If the application is not currently processing a request but an extended negative response
must be sent, the function above cannot be used. Instead, a generic API for transmitting
an unsolicited response can be used. In this case, the application must compose the
response message on its own. The following is an example using the format description
from the beginning of section 6.4:

©2014, Vector Informatik GmbH Version: 3.2.0 22177

based on template version 5.1.0

Technical Reference CANdesc vector

<#% (lobal buffer.
*®
ztatic vuintd applExtHrcHMsgBuffer[G]:

%% Tnitialize the const waluess.
* .
void ApplInit{woid)

<% Header for negative response. *7
applExtHrcHM=gBuffer[0] = 0=xVF;

<% Only this =ervice may us=e thisz functicnality. *®
applExtHrcHM=gBuffer[1] = O=xAE;

<% T=ze= HREC= 0xE3 =~
applEztHrcH=gBuf fer[2]

kDescHrcDeviceControlLinl tExcesded ;

<% The ext code will be ==t later.
applExtHrcM=gBuffer[3] =
applExtHrcM=gBuffer[4] =

* .

¥

%% Shall be called when the device control

put of limit=z i= detected.

* .

void ApplSendlins=olicitedExtHroc(vaintls extCode)

DescGetHiByte{extCode) ;
DesctetLoByte(extCode) ;

applExtHrcMsgBuffer[3] =
applEztHrcMsgBuffer[4] =
<% Sent the mnesszage *#-

DeszcTransmitSingleFrame{applExztHrc=gBuffer. §):

-

Figure 5-2 Example code for transmitting an unsolicited response

5.5 Sending an unsolicited single frame response

If service “DeviceControl” (3AE) has been activated and the application detects that
conditions have changed detrimentally (e.g. they are “out of limits”) since service
activation, GM/Opel requires that an unsolicited extended negative response shall be sent
by the ECU. To accomplish this, the following API is provided which allows the ECU
developer to send any single frame message using the physically addressed diagnostic
response CAN ID. This API is not just a simple “re-transmitter”, calling the TP with the
application data, but it also synchronizes the request with the current CANdesc
reception/transmission state machine:

» If CANdesc is currently receiving a request, the unsolicited response will be delayed
until the reception finishes (either with success or failure).

» If CANdesc is currently transmitting a response, the unsolicited response will be delay
until the transmission finishes (either with success or failure).

See Table 5-4 DescTransmitSingleFrame for the API description.

Prototype

void DescTransmitSingleFrame (DescMsg resData, vuint8 resLen)

Parameter

resData Pointer to the application data

©2014, Vector Informatik GmbH Version: 3.2.0 23177

based on template version 5.1.0

Technical Reference CANdesc vector

resLen The length of the data (in bytes) to be sent

Return code

Functional Description

This function is called by CANdesc to send the unsolicited positive response on a tester present timeout or
by the application to send an unsolicited extended negative response.

Particularities and Limitations

» The application must already have initialized CANdesc by calling DesclnitPowerOn().

» The data pointed to by resData is not cached (copied to another buffer) by CANdesc, so the ECU
developer should be careful not to use automatic variable references (non-static function local
variables).

» The length of the data may not exceed the transport layer single frame length (seven bytes in the case
of normal addressing and six bytes in the case of extended addressing).

Call context

» Background-loop level task context

Table 5-4 DescTransmitSingleFrame

5.5.1 Sending the unsolicited response from a different channel on a dynamic TP

In case of a static TP (Transport Protocol) CANdesc sends the unsolicited response on the
logical CAN channel CANdesc is configured to run. However, in case of a dynamic TP with
multiple channels configured it's necessary to define the logical CAN channel on which the
unsolicited response should be sent. By default, CANdesc will send the unsolicited
response on the lowest logical CAN channel. Still it's possible that CANdesc doesn’t run
on the lowest logical CAN channel. If that is the case, it's necessary to configure the
channel on which the unsolicited response should be sent. You can configure the channel
with a user configuration file in GENy with the following content:

#define kDescOemSpontanResComChannel <channel>

Please replace <channel> with the number of the channel the unsolicited response should
be sent on. The value must be in the range [0..(Number of logical channels — 1)].

5.6 GM/Opel CANdesc state machine access

The states relevant to the programming sequence are modeled as a normal CANdesc
state group. This also enables all the usual state group related callbacks and functions for
transition notification, access to the current state, and a function to modify the current
state. For naming convention and an API description, please refer to the general CANdesc
technical reference.

The state group and its states’ names have been fixed to provide a consistent API
independent from the configuration. Normally the names would depend on the settings in
the CDD file. Please refer to Table 7-4 Programming Sequence state group for the exact
names.

For compatibility reasons CANdesc still provides the API described in this chapter although
they be replaced by the state machine API.

©2014, Vector Informatik GmbH Version: 3.2.0 24177

based on template version 5.1.0

Technical Reference CANdesc vector

o1

6.1 Normal communication state

Prototype

vuint8 DescGetCommState (void)

Parameter

Return code
kDescCommDisabled Normal message transmission is deactivated
kDescCommEnabled Normal message transmission is activated

Functional Description

The application can call this function at any time to obtain the current transmission state.

Particularities and Limitations

» The application must already have initialized CANdesc by calling DesclnitPowerOn().
» The same information can be retrieved using DescGetStateProgrammingMode ().
> State information updates after any post-handler of mode $28.

Call context
> Any

Table 5-5 DescGetCommState

ol

.6.2 Programming mode state

Prototype

vuint8 DescGetProgMode (void)

Parameter

Return code
kDescProgModeIdle No enter programming mode request up to now
kDescProgModeAccepted Enter programming mode accepted (but not active yet)

kDescProgModeActive Enter programming mode sequence complete

Functional Description
The application can call this function at any time to read the “enter programming mode” sequence state.

Particularities and Limitations

» The application must already have initialized CANdesc by calling DesclnitPowerOn().
» The same information can be retrieved using DescGetStateProgrammingMode ().
> State information updates after any post-handler of mode $A5.

Call context
> Any

©2014, Vector Informatik GmbH Version: 3.2.0 25/77

based on template version 5.1.0

Technical Reference CANdesc vector

Table 5-6 DescGetProgMode

5.6.3 High speed programming mode state

Prototype

Single channel
vuint8 DescGetHiSpeedMode (void)
Multiple channel

vuint8 DescGetHiSpeedMode (vuint8 commChannel)

Parameter

commChannel Communication channel on which CANdesc is running

Return code

kDescHiSpeedModeIdle No enter programming mode request up to now.
kDescHiSpeedModeAccepted Enter high speed programming mode accepted (but not active yet)
kDescHiSpeedModeActive Enter high speed programming mode sequence complete

Functional Description

This function can be called by the application at any time to see if the programming mode requires a switch
to high speed mode.

If the define DESC_ENABLE_FLASHABLE_ECU exists in the generated code, then the application should
call this function within the callback App/DescOnEnterProgMode to decide whether to switch into high
speed mode.

Particularities and Limitations

» The result is only valid for the channel on which CANdesc is running.
» The application has already initialized CANdesc once by calling DesclnitPowerOn().

» The define DESC_ENABLE_REQ_HISPEED_PROG must exist in the generated code (if the ECU must
support service $A5 $02).

» Idle and Accepted can be retrieved using DescGetStateProgrammingMode ()
» Active can be queried using IINwmGetState()
> State information updates after any post-handler of mode $A5.

Call context
> Any
Table 5-7 DescGetHiSpeedMode

5.7 The PacketHandler (another type of service processor)

A main-handler is the typical callback function for request processing (please refer to the
general technical reference document “TechnicalReference_ CANdesc” for more details).
For the GM/Opel version of CANdesc, a different type of service processor for Service
ReadDataByPacketldentifier ($AA) is necessary — the PacketHandler.

©2014, Vector Informatik GmbH Version: 3.2.0 26/77

based on template version 5.1.0

Technical Reference CANdesc vector

A PacketHandler is a very simple callback that has only one task — to query the application
data and place it into the correct position of the response data buffer. The application may
not use the negative response API with a PackedHandler. The API works asynchrounously,
to allow moving time-consuming operations to different task contexts.

5.7.1 PacketHandler API
Prototype

void ApplDescReadPack<Instance-Qualifier> (DescMsg pMsgq)

Parameter

pMsg A pointer to a buffer where the application must copy its data

Return code

Functional Description

CANdesc calls this function to query the application for the response data related to <Instance-Qualifier>.
The application can provide the data within this function, or it can exit the function and provide it later on
the task level. When the data is ready, the application must call DescDataPacketProcessingDone().

Once the application calls DescDataPacketProcessingDone(), the PacketHandler assembles the data to
be sent with the response (the response length is predefined in CANdelaStudio by the DPID data structure
definition).

Particularities and Limitations

» The application may not call DescProcessingDone().

Call context
» Background-loop level context of DescStateTask().

Table 5-8 PacketHandler

Prototype

void DescDataPacketProcessingDone (DescDataPacketProcessStatus status)

Parameter

status Valid values:

» kDescDataPacketOk — if the application copied the data
successfully

» kDescDataPacketFailedSendDummy — if the application
encountered an error while obtaining the requested data. CANdesc
will transmit the UUDT response, but it will contain only the
message padding pattern and no actual data.

» kDescDataPacketFailedDoNotSend - if the application
encountered an error while obtaining the requested data. No UUDT
response will be sent.

Return code

©2014, Vector Informatik GmbH Version: 3.2.0 27177

based on template version 5.1.0

Technical Reference CANdesc vector

Functional Description

The application must call this function when it has finished the ApplDescReadPack<Instance-Qualifier>
(DescMsg pMsg) request.

This function allows the ECU developer to have a very slow PacketHandler (e.g. read data from another
CPU).

The CANdesc scheduler can process only one DPID at a time, so once the data has been copied to the
pMsg buffer the application should call this function immediately to avoid long scheduler delays (time jitter
from the configured scheduler rates).

Particularities and Limitations

» CANdesc must have previously called a PacketHandler callback ApplDescReadPack<Instance-
Qualifier> (DescMsg pMsg).

Call context
» Background-loop level context of DescStateTask().

Table 5-9 DescDataPacketProcessingDone

sd PacketHandler for CANdesc 4.xx /

Tester CANdesc Application
i [USDT] $AA $01 [DPID] : :
L] > '
! ! ApplDescReadPack<Instance-Qualifier> (pMessage) !
E . -t
: : T II
' [UUDT] [DPID] [pMsg] u, [status == kDescDataPacketOk]: DescDataPacketProcessingDone (status)
[T] :

Figure 5-3 Asynchronous PacketHandler for current CANdesc versions

©2014, Vector Informatik GmbH Version: 3.2.0 28177

based on template version 5.1.0

Technical Reference CANdesc vector

sd PacketHandler for CANdesc 4.xx ($78) /

Tester CANdesc Application

[USDT] $AA $01 [DPID]

ApplDescReadPack<Instance-Qualifier> (pMessage)

B

BesponsePending time = P2]: [USDT] $7F $AA $78

1
[status == kDescDataPacketOk]: DescDataPacketProcessingDone (status)
[UUDT] [DPID] [pMsg]

A s N
A

Figure 5-4 Asynchronous PacketHandler with delayed processing of the first data packet

sd PacketHandler for CANdesc 4.xx (Dummy)

Tester CANdesc Application

[USDT] $AA $01 [DPID]

ApplDescReadPack<Instance-Qualifier> (pMessage)

")

T1
[status==kDescDataPacketFailedSendDummy]: DescDataPacketProcessingDone (status)
[UUDT] [DPID] 00 00 00 00 00 00 00

SRR [NP oy PR
A

Figure 5-5 Asynchronous PacketHandler with dummy response, due to an application error while obtaining response data

©2014, Vector Informatik GmbH Version: 3.2.0 29/77

Technical Reference CANdesc vector

6 GM/Opel service implementations

6.1 Service InitiateDiagnosticOperation ($10)

CANdesc implements a special handling of the following sub-functions of this service:
» “DisableAllDtcs” (sub-function $02)

» “EnableDtcsDuringDeviceControl” (sub-function $03)

WakeUpLinks (sub-function $04) can be implemented using standard main- and post-
handlers.

'T] Note

N The actual implementation of these services is still left to the application, controlled by
the callbacks mentioned below. CANdesc only manages the internal states and
performs service validation.

6.1.1 Service DisableAlIDTCs ($10 $02)

Prototype
void ApplDescOnDisableAllDtc (void)

Parameter

Return code

Functional Description

Once the service $10 $02 execution has completed with success, CANdesc calls this function to notify the
application about the new state of the diagnostics module.

Particularities and Limitations

» In this callback the application must implement the actual disabling of DTCs.
» Also refer to ApplDescOnReturnToNormalMode in order to re-enable DTCs.

Call context
» Background-loop level task context of DescStateTask()

Table 6-1 ApplDescOnDisableAllDtc

6.1.2 Service EnableDTCsDuringDeviceControl ($10 $03)

Prototype
void ApplDescOnEnableDtcsChangeDuringDevCntrl (void)

©2014, Vector Informatik GmbH Version: 3.2.0 30/77

based on template version 5.1.0

Technical Reference CANdesc vector

Parameter

Return code

Functional Description

Once the service $10 $03 execution has completed with success, CANdesc calls this function to notify the
application about the new state of the diagnostics module.

Particularities and Limitations

» In this callback, the application must enable DTCs during device control.
» Also refer to ApplDescOnReturnToNormalMode.

Call context
» Background-loop level task context of DescStateTask().

Table 6-2 ApplDescOnEnableDtcChangeDuringDevCntrl

" '] Note
)) CANdesc activates the tester present timer for both service instances above.

6.2 Service ReadFailureRecordData ($12)

CANdesc generates only one function callback (main-handler) for all service $12 requests
and does not offer any special support for this service. Therefore all dispatching and
validation steps (e.g. dispatching on sub-function level, check the request length or
validate the PID parameter if applicable), as well as the assembly of the response
message (including the sub-function byte) have to be performed by the application.

6.2.1 Service ReadFailureRecordldentifiers ($12 $01)

Depending on the report type requested (PID or DPID) the application must place one of
the following values into the first data byte of the response message:

» 0x00 - for report by PID
» 0x01 - for report by DPID

©2014, Vector Informatik GmbH Version: 3.2.0 31/77

based on template version 5.1.0

Technical Reference CANdesc vector

e '] Note
) The ECU can support either reports by PID or DPID, but not both.

—D

6.2.2 Service ReadFailureRecordParameters ($12 $02)

CANdesc does not automatically include the PID parameter in the response message for
service $12 $02. The application must perform this task.

6.3 Service ReturnToNormalMode ($20)

CANdesc completely handles this service and performs the following actions after a
positive response has been sent (or after finishing service execution when the request
does not require a response):

» The tester present timer will be deactivated.

» If communication was disabled, it will be re-enabled. CANdesc will notify the application
via the callback function App/DescOnEnableNormalComm.

» The network management timer will be started by a new request (timeout: 8 seconds).

» If the service SendOnChangeDTCCount ($A9 $82) was active, CANdesc will notify the
application to deactivate it by calling the function App/DescDisableOnChangeDtcCount.

» The scheduling mechanism for the Service ReadDataByPacketldentifier ($AA) will be
deactivated, and the scheduler lists will be cleared.

CANdesc also notifies the application of the return to normal mode event via the function
call ApplDescOnReturnToNormalMode:

Prototype

void ApplDescOnReturnToNormalMode (void)

Parameter

Return code

Functional Description

CANdesc calls this function on completion of service $20 processing (after the response has been sent, if
applicable) or a tester present timeout.

Particularities and Limitations

» None
Call context
» Background-loop level task context of DescStateTask().

Table 6-3 ApplDescOnReturnToNormalMode

©2014, Vector Informatik GmbH Version: 3.2.0 32/77

based on template version 5.1.0

Technical Reference CANdesc vector

6.4 Service ReadDataByParameterldentifier ($22)

The description for this service is located in the general technical reference document
“TechnicalReference_ CANdesc”. Detailed below are only the deviations and behavior not
defined in the general technical reference.

6.4.1 Reading adynamically defined PID (Parameter Identifier)

Some PIDs are statically defined in CANdelaStudio (i.e. their data structure is predefined
at compile time); however, others can only be defined at runtime using a special service
request (see

Service DefinePIDByAddress ($2D). These dynamically definable PIDs have no data
definitions at power-on, so if the tester tries to read them the result is undefined (according
to GMW-3110 version 1.6). In this situation, CANdesc sends a positive response with no
actual data (only the response service ID ($62) and the PID number from the request).

Please refer to the sequence in The dynamically definable PID is not defined.

6.5 Service SecurityAccess ($27)

In general, the application shall implement this service by itself, but CANdesc already
handles some of the tasks regarding this implementation. In the following, you will learn
about what already has been done for you by CANdesc and about the remained parts to
be implemented by your application.

CANdesc tasks:

» Service format verification.
This step includes: request length and supported sub-service checks.

» Sub-service execution preconditions specified in the CDD file.

» SecurityAccess state change
according to the CDD file on positive response for “send-key” service(s).

Application tasks:

» Additional preconditions checks (pre-handling).

» Seed-key sequence verification.

» Timeout monitoring for next seed retry.

» MEC and vulnerability flag implementation (if applicable).
» Seed generation.

» Key computation and verification upon requested key.

>

In case of valid keys, starting of the TesterPresent timer in CANdesc (see API
DescActivateS1Timer). The best place to do that would be the post-handler of a “send-
key” service. Just verify if the service has been responded positively, and the response
was sent successfully. For details about service post-handling, please refer the OEM
independent CANdesc TechnicalReference file located in the delivered software
package.

©2014, Vector Informatik GmbH Version: 3.2.0 33177

Technical Reference CANdesc vector

6.6 Service DisableNormalCommunication ($28)

The GM/Opel version of CANdesc takes the following actions prior sending the positive
response:

» Requests GMLAN/IVLAN to disable normal communication
» If the disable normal communication request succeeds:
» Sets the new communication status (kDescCommbDisabled)
» Activates the tester present timer
» Notifies the application via the function call App/DescOnDisableNormalComm.
» Positive response will be sent
» If the disable normal communication request fails:

» A negative response with NRC $22 (ConditionsNotCorrect) will be sent

Prototype
void ApplDescOnDisableNormalComm (void)

Parameter

Return code

Functional Description

CANdesc calls this function once normal message transmission has been disabled by a service $28
request and the resulting positive response has been sent.

Particularities and Limitations

» None

Call context
» Background-loop level task context of DescStateTask().

Table 6-4 ApplDescOnDisableNormalComm

Prototype
void ApplDescOnEnableNormalComm (void)

Parameter

Return code

Functional Description

Once normal message transmission has been restored, CANdesc calls this function to notify the
application.

©2014, Vector Informatik GmbH Version: 3.2.0 34/77

based on template version 5.1.0

Technical Reference CANdesc vector

Particularities and Limitations
» None

Call context
» Background-loop level task context of DescStateTask().

Table 6-5 ApplDescOnEnableNormalComm

6.6.1 Activate a $28 post-handler for the application

Since version 6.17.00 of CANdesc the post-handler of service $28 is implemented
internally. If required or for compatibility reasons, an application post-handler can be
activated additionally. You can activate this post-handler with a user configuration file in
GENy with the following content:

#define DESC ENABLE SID 28 APPL POST HANDLER

Prototype

Single Context

void ApplDescPostDisableNormalCommunication (vuint8 status)

Multi Context

void ApplDescPostDisableNormalCommunication (vuint8 iContext, wvuint8 status)

iContext Current request handle (reserved for future use)
status For a detailed description please refer to the post-handler description in the

document “TechnicalReference_ CANdesc”

Return code

Functional Description

For a detailed description please refer to the post-handler description in the document
“TechnicalReference_ CANdesc”

Particularities and Limitations

» Only available if activated via user configuration file
Call context
» Background-loop level task context of DescStateTask().

Table 6-6 ApplDescPostDisableNormalCommunication

6.7 Service DynamicallyDefineMessage ($2C)

The GM diagnostic specification (GMW-3110 version 1.6) allows some DPIDs to be
defined at runtime by the tester, rather than at compile time. Using this technique, the
tester can map one or more PIDs (statically or dynamically defined) to a DPID and then
read them back via Service ReadDataByPacketldentifier ($AA).

©2014, Vector Informatik GmbH Version: 3.2.0 35/77

based on template version 5.1.0

Technical Reference CANdesc vector

CANdesc completely implements this service; no application implementation is required.

The diagram below depicts the relationship between statically and dynamically defined
DPIDs and PIDs and the services that can access them.

Service ID $22 Read |~ =00 ool

| (static and
Find dynamic)
Service ID $2C
il Dynamically

Read definable
DPID pool

Service ID $AA Ml Static defined

DPID pool

Figure 6-1 Dynamically defined DPID service relations

6.8 Operations on dynamically definable DPIDs

Dynamically definable DPIDs can be defined and read. The following sections illustrate
these operations with sequence charts involving the tester, CANdesc, and application.
6.8.1 Defining a dynamically definable DPID

If the requested parameters are valid (both PIDs referenced and DPID to be defined are
valid, request has the correct length, etc.), CANdesc overwrites the current DPID definition
with the new list of PIDs.

©2014, Vector Informatik GmbH Version: 3.2.0 36/77

based on template version 5.1.0

Technical Reference CANdesc vector

' Caution

- If the tester request contains multiple instances of the same PID, the resulting DPID
definition will contain multiple instances as well. CANdesc does not verify that all of the
requested PIDs are unique.

6.8.2 Reading a dynamically definable DPID

When a read operation is performed on a dynamically definable DPID, four scenarios are
possible:

» The DPID is not defined
» The DPID is defined, but the data is not accessible at the moment
» The DPID is defined, and the data is accessible

» The DPID is defined, but one of the contained PIDs is dynamically definable and it has
not been defined

If the DPID is not defined, the CANdesc scheduler will send UUDT messages with no
actual data content (only zeros):

sd Read DynDPID (not defined)

Tester CANdesc Application

[USDT] $AA [rate = fast] [DPID]

0 >0

*[UUDT] $DPID $00 $00 $00 $00 $00 $00 $00 !
[|
! [UUDT] $DPID $00 $00 $00 $00 $00 $00 $00 !
1 0

Figure 6-2 Dynamically definable DPID is not defined

The next example assumes that the dynamically definable DPID has already been defined
and references a single PID. In addition, the reading of this PID is not possible at the time
of data access (e.g. the data is corrupted), and therefore the application would like to

©2014, Vector Informatik GmbH Version: 3.2.0 37177

Technical Reference CANdesc vector

reject the PID processing. In this situation, the UUDT response message would once
again contain no actual data (only zeros):

f Caution
- In the case where multiple PIDs are contained in the DPID, and some of them cannot
be processed with success, these PIDs will be skipped in the UUDT response.

sd Read DynDPID (PID failed)/

Tester CANdesc[MAIN ICANdesc[DYN_DPID Application

[USDT] $AA [rate = fast] [DPID]

N

! DescProcessDynDPID(DPID) |
Send virtual request($22 [PID]) :

! ApplDescReadDataByldentifier_PID |
: : .]
E E De:scSetNegResponse(kDeschcConditionsNt:)tCorrect)
| | o .
. . . DescProcessingDone '
| | o .
i 1 Send Response($7F $22 $22) | !
E ' < 1 E
E[UUDT] $DPID $00 $00 $00 $00 $00 $00 $0CIE| H E

E]<

Figure 6-3 Single referenced PID cannot provide any data

©2014, Vector Informatik GmbH Version: 3.2.0 38177

Technical Reference CANdesc vector

If the PID is accessible at the time of the request, the UUDT message will contain its data:

sd Read DynDPID (PID ok)/

Tester CANdesc[MAIN ICANdesc[DYN_DPID Application

[USDT] $AA [rate = fast] [DPID]

I—,]
! DescProcessDynDPID(DPID)

Send virtual request($22 [PID]) :

gn

! ApplDescReadDataByldentifier PID

U

T Copy data

DescProcessingDone E

: C U
' Send Response($62 [PID] [Data])!

; L
; [UUDT] $DPID [Data]
D‘

Figure 6-4 Reading the dynamically defined DPID succeeds

©2014, Vector Informatik GmbH Version: 3.2.0 397177

Technical Reference CANdesc vector

Since dynamically defined DPIDs can also contain dynamically definable PIDs, any
dynamically definable PIDs within the requested DPID must be defined, or the resulting
UUDT response will not contain any actual data (only zeros):

sd Read DynDPID (DynPID not defined)/

Tester CANdesc[MAIN ICANdesc[DYN_DPID: Application

, [USDT] $AA [rate = fast] [DPID] ,
U g
: E DescProcessDynDPID(DPID)

]

Send virtual request($22 [PID]) :

gt

Send Response($62 [PID])

. e
E[UUDT] $DPID $00 $00 $00 $00 $00 $00 $00
m L

Figure 6-5 Dynamically definable PID, referenced by the DPID, is not defined

Q Caution

! When a read operation is performed on a DPID which contains a dynamically definable
PID that is not defined but also other defined PIDs, the resulting UUDT response will
not contain the data for this PID.

6.9 Service DefinePIDByAddress ($2D)

The GM diagnostic specification (GMW-3110 version 1.6) allows some PIDs to be defined
at runtime by the tester, rather than at compile time. Using this technique, the tester can
map a certain memory area to a PID and then read it back via Service
ReadDataByParameterldentifier ($22) or pack the PID into a DPID (Service
DynamicallyDefineMessage ($2C)) for future read operations via Service
ReadDataByPacketldentifier ($AA).

CANdesc completely implements this service. The application must only implement the
memory area validation and access functionality.

The diagram below depicts the relationship between statically and dynamically defined
PIDs and the services that can access them.

©2014, Vector Informatik GmbH Version: 3.2.0 40/ 77

Technical Reference CANdesc vector

Read

A 4

Read

Define

A 4

Figure 6-6 Dynamically defined PID service relations

6.10 Operations on dynamically definable PIDs

Dynamically definable PIDs can be defined and read. The following sections illustrate
these operations with sequence charts involving the tester, CANdesc, and application.

6.10.1 Defining a dynamically definable PID

If the requested memory area parameters are valid and do not refer to a secured location,
the following diagram applies:

sd Definition of memory block (ok)/

Tester CANdesc Application

$2D [PID] [memAddress] [memSize]

E ApplDescCheckDynPidMemoryArea(memAddress, memSize) !

memBlockOk
ARG LR L PR 7

Update definition of PID

$6D [PID]

B
0

Figure 6-7 Definition of dynamically definable PID with valid parameter

©2014, Vector Informatik GmbH Version: 3.2.0 a1/77

Technical Reference CANdesc vector

If the application detects a problem with the requested memory area (e.g. bad location
reference, security protection, etc.), the sequence below will take place:

sd Definition of memory block (failed)/

Tester CANdesc

Application

$2D [PID] [memAddress] [memSize]

! E ApplDescCheckDynPidMemoryArea(memAddress, memSize) E
i memBlockinvSecurit
: Dbt hih bbby L ,
E Convert UseCase->NRC
E $7F $2D [NRC = $31] El]
Epy u

Figure 6-8 Defining of a dynamically definable PID failed due to security violation

6.10.2 Reading a dynamically definable PID

When a read operation is performed on a dynamically definable PID, three scenarios are
possible:

» The PID is not defined

» The PID is defined, but the data is not accessible at the moment

» The PID is defined, and the data is accessible

If the PID is not defined, CANdesc returns a positive response with no actual data bytes:

©2014, Vector Informatik GmbH Version: 3.2.0 42177

Technical Reference CANdesc vector

sd Read DynPID (not defined)/

Tester CANdesc Application

$22 [PID]

$62 [PID]

<

e [Feo [0 ---

Figure 6-9 The dynamically definable PID is not defined

©2014, Vector Informatik GmbH Version: 3.2.0 43177

Technical Reference CANdesc vector

If the application has already accepted the PID read request (in
ApplDescCheckDynPidMemoryArea) but it cannot complete the read operation, a negative
response can still be sent back to the tester:

sd Read DynPID (failed)/

Tester CANdesc Application
$22 [PID] ;
ApplDescReadDynPidMemContent(memAddress, memSize) E
[ResponsePending time = P2]: $7F $22 $78 :
< :
DescReadDynPidMemContentDone(memBlockinvCondition)
- u|
$7F $22 $22
¢

SRS 1 PR i Y o R
U I DU, e s, SO

Figure 6-10 Application error when reading the memory block

©2014, Vector Informatik GmbH Version: 3.2.0 44 177

Technical Reference CANdesc vector

In the ideal case, the application writes the data into the supplied data buffer (see
ApplDescCheckDynPidMemoryArea) and acknowledges the end of writing with success:

sd Read DynPID (ok)/

Tester CANdesc Application
5 $22 [PID] 5
[:
! ApplDescReadDynPidMemContent(memAddress, memSize; !
E [ResponsePending time = P2]: $7F $22 $78 !
D<l ‘
E < DescReadDynPidMemContentDone(memBlockOK) i
E $62 [PID] [Data] L
|:|<

Figure 6-11 Reading of dynamically defined PID succeeds

Prototype

Single Context

DescDynPidMemAccessResult ApplDescCheckDynPidMemoryArea (
const DescDynPidMemBlockInfo* const memArea)

Multi Context

DescDynPidMemAccessResult ApplDescCheckDynPidMemoryArea (
vuint8 iContext,
const DescDynPidMemBlockInfo* const memArea)

iContext Current request handle (reserved for future use)

memArea A pointer to the memory area definition which must be validated by the
application

Address|] The requested start address (can be a 2, 3 or 4 byte array)

size The requested memory block size

Return code

memBlockOk The requested area is valid (no memory protection violation, range ok, etc.)
memBlockInvAddress The requested memory address is invalid (wrong memory access)

memBlockInvSize The requested memory size is invalid (e.g. out of range)

©2014, Vector Informatik GmbH Version: 3.2.0 45177

based on template version 5.1.0

Technical Reference CANdesc vector

memBlockInvSecurity The requested memory address and size are valid, but the area is protected
by security

memBlockInvCondition The access conditions are not correct

Functional Description

CAN(desc calls this function when the tester requests a valid $2D service (according to the specification).
The application must validate the memory area parameters.

When the application exits the function, CANdesc generates the appropriate NRC based on the application
return value.

Particularities and Limitations

> Only available if the ECU supports service $2D.
» This function runs synchronously, so the application should exit the function as quickly as possible.

Call context
» Background-loop level task context of DescStateTask().

Table 6-7 ApplDescCheckDynPidMemoryArea

Prototype

Single Context

void ApplDescReadDynPidMemContent (DescMsg pMsg,
const DescDynPidMemBlockInfo* const memArea)

Multi Context

void ApplDescReadDynPidMemContent (vuint8 iContext,
DescMsg pMsg,
const DescDynPidMemBlockInfo* const memArea)

iContext Current request handle (reserved for future use)

pMsg A pointer to a buffer where the application must write the requested memory
contents

memArea A pointer to the memory area definition which the application can use for data
acquisition:

Address|[] The requested start address (can be a 2, 3 or 4 byte array)

size The requested memory block size

Return code

Functional Description

Once defined, a dynamically definable PID can be read by the tester using service $22. Dynamically
defined PIDs have special main-handlers which are implemented internally by CANdesc. These main-
handlers call this function to retrieve the data at the requested memory address.

CANdesc does not use a direct memory access implementation for this service since certain ranges may
be located in slow (external) memory chips that require extended periods of time to access. As a result, this
data acquisition function is designed to be asynchronous.

Once the requested data bytes have been written into the buffer pointed to by pMsg, the application must
call DescReadDynPidMemContentDone to acknowledge that the operation is complete.

©2014, Vector Informatik GmbH Version: 3.2.0 46 /77

based on template version 5.1.0

Technical Reference CANdesc vector

Particularities and Limitations

> Only available if the ECU supports service $2D.

» This function runs asynchronously, so once the application exits this function it can take as much time
as necessary to complete the requested operation

Call context
» Background-loop level task context of DescStateTask().

Table 6-8 ApplDescReadDynPidMemContent

Prototype

Single Context
void DescReadDynPidMemContentDone (DescDynPidMemAccessResult result)
Multi Context

void DescReadDynPidMemContentDone (vuint8 iContext,

DescDynPidMemAccessResult result)

Parameter

iContext The request handle previously passed as a parameter to the application in the
callback ApplDescReadDynPidMemContent.

result The result of the operation:

» memBlockOk: The requested area is valid (no memory protection
violation, range ok, etc.)

» memBlockInvAddress: The requested memory address is not
valid (bad memory access)

» memBlockInvSize: The requested memory size is invalid (e.g.
out of range)

» memBlockInvSecurity: The requested memory address and
size are valid, but the area is protected by security

» memBlockInvCondition: The access conditions are not correct

Return code

Functional Description

Once the data requested by App/DescReadDynPidMemContent has been written into the buffer pointed to
by pMsg, the application must call this function to acknowledge that the operation is complete.

Particularities and Limitations
> Only available if the ECU supports service $2D.

Call context
» Background-loop level task context of DescStateTask().

Table 6-9 DescReadDynPidMemContentDone

©2014, Vector Informatik GmbH Version: 3.2.0 47177

based on template version 5.1.0

Technical Reference CANdesc vector

6.11 Service ProgrammingMode ($A5)
This service is implemented completely using the CANdesc state management.
The programming sequence follows the state graph shown below:

stm PreProgramming Sequence/

Normal \

+ kDescStateProgrammingModeNormal

‘ DesclnitPowerOn()

ECUPowerOn \

Successfully processed SID $28

CommHalted \

t kDescStateProgrammingModeCommHaItej

Request $A5 $02
[ApplDescPreRequestProgrammingMode_HiSpeed]

Request $A5 $01
[ApplDescPreRequestProgrammingMode]

Requested Request $A5 $02 [ApplDescPreRequestProgrammingMode] Requested HiSpeed

t kDescStateProgrammingModeRequested + kDescStateProgramm|ngModeRequested_H|Speﬂ

Request $A5 $01 [ApplDescPreRequestProgrammingMode_HiSpeed]

Request $A5 $03 Request $A5 $03

/ Active \
t kDescSlateProgrammingModeActiﬂ

Figure 6-12 Programming mode flowchart

To further restrict service execution based on the current state in the programming
sequence, please refer to 7 - CANdelaStudio default attribute settings regarding the setup
of the corresponding state group in CANdela studio.

6.11.1 Allowing programming mode ($A5 $01/$02)

Prior to activating programming mode, the tester must ask the ECU for permission. The
application may accept or deny this request using a standard prehandler for the respective
level. CANdesc will activate these prehanders per default.

Prehandler names can be changed in the CDD file or the configuration tool, for your
reference the default names are:

» $A5 $01: ApplDescPreRequestProgrammingMode

» Compatibility note: This completely replaces the dedicated callback
ApplDescMayEnterProgMode

©2014, Vector Informatik GmbH Version: 3.2.0 48177

Technical Reference CANdesc vector

» $A5 $02: ApplDescPreRequestProgrammingMode HiSpeed

» Compatibility note: This completely replaces the dedicated callback
ApplDescMayEnterHiSpeedProgMode

Please also refer to the general CANdesc technical reference for further information about
prehandler implementation.

6.11.2 Entering programming mode ($A5 $03)

Once the entire programming mode sequence is complete, the application usually makes
the jump to the bootloader (FBL) in one of two ways. Both strategies are discussed in the
following sections.

6.11.2.1 FBL start on EnterProgrammingMode ($A5 $03)

If the application jumps to the FBL on this service, the ECU developer must enable the
“Flashable ECU” option in the generation tool. CANdesc will notify the application to
perform the FBL jump by calling the function App/DescOnEnterProgMode. The application
can use the function DescGetHiSpeedMode to determine if a high speed mode switch
must be performed manually.

e '] Note
)) If the a}pplication jumps to the FBL on this service, it must manage the bus speed
switching manually.

Prototype
void ApplDescOnEnterProgMode (void)

Parameter

Return code

Functional Description
CANdesc will call this function so the application can perform the FBL jump.

Particularities and Limitations

» To enable this notification, the ECU developer must enable the “Flashable ECU” option in the
generation tool (the define DESC_ENABLE_FLASHABLE_ECU exists in the generated code).

Call context
» Background-loop level task context of DescStateTask().

Table 6-10 ApplDescOnEnterProgMode

©2014, Vector Informatik GmbH Version: 3.2.0 49177

based on template version 5.1.0

Technical Reference CANdesc vector

6.11.2.2 FBL start on RequestDownload ($34)

If the application jumps to the FBL on this service, the ECU developer must disable the
option “Flashable ECU” in the generation tool. CANdesc will automatically handle the high
speed switching (if necessary) to comply with the tester expectations. The application must
only implement the service main-handler and perform the jump to the FBL. In order to
verify that the programming mode sequence was completed successfully, the ECU
developer can call the function DescGetProgMode() in the main-handler.

e '] Note
) The ECU developer must disable the option “Flashable ECU” in the generation tool
Y when no FBL is present in the ECU.

6.11.2.3 Concluding programming mode

Once the flashing activity has concluded (through a service $20 tester request or tester
present timeout), the GM/Opel diagnostic specification states that the ECU shall perform a
software reset. Two scenarios are possible:

> |f the ECU was actually re-flashed, the FBL should perform the reset.

> If the ECU was not actually re-flashed (the tester was re-flashing another ECU or the
ECU is not flashable), CANdesc notifies the application to perform an ECU reset via the
function call ApplDescForceEcuReset.

Prototype

void ApplDescForceEcuReset (void)

Parameter

Return code

Functional Description

CANdesc calls this function to notify the application that it shall perform an ECU reset.

It is not required that the application perform the reset within this function call since it may need to prepare
first (by saving RAM variables into EEPROM, for instance).

Particularities and Limitations
» None

Call context
» Background-loop level task context of DescStateTask().

Table 6-11 ApplDescForceEcuReset

©2014, Vector Informatik GmbH Version: 3.2.0 50/77

based on template version 5.1.0

Technical Reference CANdesc vector

6.11.3 Considerations when upgrading

The callback functions used by CANdesc have changed in version 6.x. The following APls
are no longer used and need to be replaced by service prehandlers:

» ApplDescMayEnterProgMode

» ApplDescMayEnterHiSpeedProgMode

6.12 Service ReadDiagnosticlnformation ($A9)

This service supplies the tester with information about various DTC statuses (e.g. on
change count of the DTCs, a list of all DTCs matching a given status mask, etc.).

Since the DTC storage and management is application specific, the implementation of the
diagnostic service “ReadDiagnosticinformation” (RDI) ($A9) generalizes this functionality,
reducing the application task to a few callback implementations.

The ECU developer should keep the following important properties in mind when
designing the application:

1. When an $A9 sub-function has been requested, CANdesc cannot process another
request until after the first UUDT response message has been sent.

2. While processing and sending the list of matching DTCs for an $A9 $81 request,
CANdesc can process another request except $A9 $80.

3. CANdesc can process the requests $A9 $80 and $A9 $81 in parallel with $A9 $82.
4. Application callbacks are handled asynchronously.

Here is a parallel service execution matrix:

Active $A9 $80 $A9 $81 Other requests
(except scheduled

$AA)

Requested

$A9 $80 Not possible Not possible Possible after Not possible
the first UUDT is
sent
$A9 $81 Not possible Not possible Possible after Not possible
the first UUDT is
sent
$A9 $82 Not possible Possible after Possible after Not possible
the first UUDT is | the first UUDT is
sent sent
Other requests [\ e§sletS o] Possible after Possible after Not possible
the first UUDT is | the first UUDT is
sent sent
Table 6-12 Service $A9 parallel execution matrix
©2014, Vector Informatik GmbH Version: 3.2.0 51/77

based on template version 5.1.0

Technical Reference CANdesc

Note

vactor’

The RCR-RP responses in the sequence diagrams below are shown for better timing

request-response relation understanding; however, if the application is fast enough
there will be no RCR-RP response sent.

6.12.1 ReadStatusOfDTCByNumber ($A9 $80)
CANdesc processes this service as shown below.

If the application finds the requested DTC number with the given failure type byte, the

following sequence will be executed:

sd ReadStatus OfDTCByNumber (good) /

Tester

CANdesc

[USDT] $A9 $80 [DTC] [FailureTypeByte]

|

gn!

E ApplDescGetDtcStatusByNumber(DTC, FailureTypeByte)

Application

' [ResponsePending time = P2]: [USDT] $7F $A9 $78U|

<

|

[ResponsePending time = P3Max]: [USDT] $7F $A9 $78

[T

[UUDT] $80 [DTC][FailureTypeByte][StatusByte]

DescRdiDtcStatusByNumberFound(StatusByte)

|:|<

-
A

Cl

Figure 6-13 Request $A9 $80 where the requested fault type combination was found

©2014, Vector Informatik GmbH

Version: 3.2.0

52177

Technical Reference CANdesc vector

If the requested fault type combination is not supported by the ECU, the following
sequence will be executed:

sd ReadStatusOfDTCByNumber (failed)/

Tester CANdesc Application

[USDT] $A9 $80 [DTC] [FailureTypeByte]

E ApplDescGetDtcStatusByNumber(DTC, FailureTypeByte

—

BesponsePending time = P2]: [USDT] $7F $A9 $78 IJ:

RﬁsponsePending time = P3Max]: [USDT] $7F $A9 $78
]

[USDT] $7F $A9 $31 <

. DescRdiDtcStatusByNumberNotFound
o 0

Figure 6-14 Request $A9 $80 where the requested fault type combination was not found

©2014, Vector Informatik GmbH Version: 3.2.0 53177

Technical Reference CANdesc vector

Here are the detailed descriptions of the APIs used in the above diagrams:

Prototype
void ApplDescGetDtcStatusByNumber (vuintl6é dtcNum, vuint8 failureTypeByte)

dtcNum The requested DTC number
failureTypeByte The requested failure-type byte

Return code

Functional Description

CANdesc calls this function to query the application for the request combination of DTC number and
failure-type byte. When the application finds this combination, it must acknowledge this by calling the
function DescRdiDtcStatusByNumberFound. If the application cannot find a matching entry, it must
acknowledge this by calling the function DescRdiDtcStatusByNumberNotFound.

Particularities and Limitations

> Only available if the ECU supports $A9 sub-function $80

» The application can call DescRdiDtcStatusByNumberFound or DescRdiDtcStatusByNumberNotFound
within this function, or it can exit this function and call one of them later on the application task level.

Call context
» Background-loop level task context (same as DescStateTask()).

Table 6-13 ApplDescGetDtcStatusByNumber

Prototype

void DescRdiDtcStatusByNumberFound (vuint8 statusByte)

Parameter

statusByte The current status of the DTC which was passed as a parameter in the
callback ApplDescGetDtcStatusByNumber

Return code

Functional Description

The application can call this function to acknowledge the successful search result of the DTC number and
failure-type byte combination which were passed as parameters in the callback
ApplDescGetDtcStatusByNumber.

Particularities and Limitations

> Only available if the ECU supports $A9 sub-function $80
» CANdesc must have previously called ApplDescGetDtcStatusByNumber

Call context
» Background-loop level task context

Table 6-14 DescRdiDtcStatusByNumberFound

©2014, Vector Informatik GmbH Version: 3.2.0 54 /77

based on template version 5.1.0

Technical Reference CANdesc vector

Prototype
void DescRdiDtcStatusByNumberNotFound (void)

Parameter

Return code

Functional Description

The application can call this function to acknowledge the unsuccessful search result of the DTC number
and failure-type byte combination which were passed as parameters in the callback
ApplDescGetDtcStatusByNumber

Particularities and Limitations

> Only available if the ECU supports $A9 sub-function $80
» CANdesc must have previously called App/DescGetDtcStatusByNumber

Call context
» Background-loop level task context

Table 6-15 DescRdiDtcStatusByNumberNotFound

6.12.2 ReadStatusOfDTCByStatusMask ($A9 $81)

This service transmits a list of DTCs and their properties back to the tester. CANdesc uses
an iteration-based process to request each element of the list from the application.

’_]. Note
)) The iterator parameter discussed below is only provided to help the application keep
track of where it should begin/continue searching the list. The value of this parameter
has no meaning to CANdesc.

CANdesc processes this service as shown below.

©2014, Vector Informatik GmbH Version: 3.2.0 55/77

based on template version 5.1.0

Technical Reference CANdesc vector

If the application finds DTCs that match the given status mask byte, the following
sequence will be executed:

sd ReadStatusOfDTCByStatusMask (At Least one DTC found)/

Tester CANdesc Application

[USDT] $A9 $81 [DTC] [StatusMask]

. g =
n

ApplDescGetDtcStatusByMask(iter = 0, StatusMask)

E[ResponsePending time = P2]:
[USDT] $7F $A9 $78

o : e
E[ResponsePending time = P3Max]: E E
|[USDT] $7F $A9 $78 ' :

o H

! i DescRdiDtcStatusByMaskFound(iter = X, DT CO, FailureTypeByteO, StatusByterI

h L
E[UUDT] $81 [DTCO][FaiIureTypeByteO][StatusByteO]E:|
e]

ApplDescGetDtcStatusByMask(iter = X, StatusMask)

o

i DescRdiDtcStatusByMaskFound(iter = Y, DTC1, FailureTypeBytel, StatusBytel)

[UUDT] $81 [DTCL][FailureTypeByte1][StatusByte1]CT®

o 0

ApplDescGetDtcStatusByMask(iter =Y, StatusMask)

[UUDT] $81 $00 $00 $00 [StatusAvailabiliyMasy [T
e 0

DescRdiDtcStatusByMaskNotFound(StatusAvailabilityMask)

Figure 6-15 Request $A9 $81 where the application found two DTCs with the requested status mask

Notes

1. If the application cannot send the second and the following DTCs matching the
requested mask within P2ecu time, CANdesc will not send further RCR-RP
messages back to the tester.

2. Although CANdesc can process another request after the first UUDT response has
been sent, if that next request is either $A9 $80 or $A9 $81 the request will be
rejected with negative response “ConditionsNotCorrect” ($22).

3. CANdesc can process $A9 $80 or $A9 $81 requests again once the “End of DTC
report” message has been sent..

If the application cannot find any DTCs matching the requested status mask, CANdesc will
only send the final UUDT response as shown below:

©2014, Vector Informatik GmbH Version: 3.2.0 56 /77

Technical Reference CANdesc

vactor’

sd ReadStatusOfDTCByStatusMask (No DTC found) /

Tester

[USDT] $A9 $81 [DTC] [StatusMask]

CANdesc

Application

ApplDescGetDtcStatusByMask(iter = 0, StatusMask)

BesponsePending time = P2]: [USDT] $7F $A9 $78

ResponsePending time = P3Max]: [USDT] $7F $A9 $78!

<€

]

EDescRdiDtcStatusByM askNotFound(StatusAvailabilityMask)

<

0l
! [UUDT] $81 $00 $00 $00 [StatusAvailabilityMasq [
O

L

L]

Figure 6-16 Request $A9 $81 where the application cannot find any DTCs with the requested status mask

©2014, Vector Informatik GmbH

Version: 3.2.0

57177

Technical Reference CANdesc vector

Here are the detailed descriptions of the APIs used in the above diagrams:

Prototype
void ApplDescGetDtcStatusByMask (vuintl6 iterPos, wvuint8 statusMask)

iterPos An iterator for the search start position (abstract)
statusMask The status mask that the DTC shall match (OR-ed)

Return code

Functional Description

CANdesc calls this function to query the application for the first/next DTC number that has at least one bit
in its status byte matching the parameter statusMask. When the application finds this combination, it must
acknowledge this by calling the function DescRdiDtcStatusByMaskFound. If the application cannot find any
(more) matching DTCs, it must acknowledge this by calling the function
DescRdiDtcStatusByMaskNotFound.

The application can use the iterator parameter as a marker to continue the search from a certain position
instead of implementing a counter or state machine.
Particularities and Limitations

> Only available if the ECU supports $A9 sub-function $81
» The application can call DescRdiDtcStatusByMaskFound or DescRdiDtcStatusByMaskNotFound within
this function, or it can exit this function and call one of them later on the application task level.

Call context
» Background-loop level task context (same as DescStateTask()).

Table 6-16 ApplDescGetDtcStatusByMask

Prototype
void DescRdiDtcStatusByMaskFound (DescRdiDtcRecord *pDtcReport)

©2014, Vector Informatik GmbH Version: 3.2.0 58/77

based on template version 5.1.0

Technical Reference CANdesc vector

vuintl6é nextIterPos The position of the current matching DTC
vuintl6 dtcNum The DTC number which matches the given mask

vuint8 failureTypeByte The failure type byte of the DTC
vuint8 statusByte The actual status byte value of the DTC

Return code

Functional Description

The application can call this function to acknowledge the successful search result of the statusMask which
was passed as a parameter in the callback ApplDescGetDtcStatusByMask.

The parameter pDtcReport is a pointer to a DTC property structure. Since CANdesc will immediately copy
the contents of this structure, the ECU developer can use an automatic variable to save RAM.

Particularities and Limitations

> Only available if the ECU supports $A9 sub-function $81.
» CANdesc must have previously called App/DescGetDtcStatusByMask

Call context
» Background-loop level task contex

Table 6-17 DescRdiDtcStatusByMaskFound

Prototype

void DescRdiDtcStatusByMaskNotFound (vuint8 dtcSam)

Parameter

dtcSam Represents the status availability mask of the fault memory manager (i.e.
which bits of the status mask are relevant for the ECU).

Return code

Functional Description

The application can call this function to acknowledge that there were no (more) DTCs found that match the
statusMask which was passed as a parameter in the callback App/DescGetDtcStatusByMask

Particularities and Limitations

> Only available if the ECU supports $A9 sub-function $81.
» CANdesc has previously called ApplDescGetDtcStatusByMask.

Call context
» Background-loop level task context

Table 6-18 DescRdiDtcStatusByMaskNotFound

©2014, Vector Informatik GmbH Version: 3.2.0 59/77

based on template version 5.1.0

Technical Reference CANdesc vector

6.12.3 SendOnChangeDTCCount ($A9 $82)

This service manages the background application monitor which detects DTC count
changes. In an effort to more efficiently manage this functionality, CANdesc notifies the
application via function callbacks to activate/deactivate the monitor.

CANdesc processes this service as shown below.

If the tester sends a request for this service with a non-zero status mask, the DTC count
monitor shall be activated:

sd Send on change DTC count request (Enable) /

Tester CANdesc Application

[StatusMask != 0]: [USDT] $A9 $82 [StatusMask] :

0

E ApplDescEnableOnChangeDtcCount
i [ResponsePending time = P2]: [USDT] $7F $A9 $78 IJ. D.
mp u| :
[ResponsePending time = P3Max]: [USDT] $7F $A9 $78. E
[0 i
E E DescRdiOnDtcCountChanged(NewCount0) E
5 [UUDT] $82 [NewCount] |:I|< 0
Ey) s
E E DescRdiOnDtcCountChanged(NewCountl) E
: O 0
:< [UUDT] $82 [NewCount1] : ;
0] r] :

Figure 6-17 Request $A9 $82 with activation of the background DTC count monitor

©2014, Vector Informatik GmbH Version: 3.2.0 60 /77

Technical Reference CANdesc vector

If the tester sends a request for this service with a status mask of zero, the background
monitoring shall be deactivated:

sd Send on change DTC count request (Disable) /

Tester CANdesc Application

1 [StatusMask == 0]: [USDT] $A9 $82 [StatusMask]

ApplDescDisableOnChangeDtcCount

[UUDT] $82 $00 $00

SRR SO
A

Figure 6-18 Request $A9 $82 with explicit deactivation of the background DTC count monitor.

©2014, Vector Informatik GmbH Version: 3.2.0 61/77

Technical Reference CANdesc vector

Since this service is monitored for tester present timeouts, when no more $3E requests
are received the DTC count monitor shall be deactivated:

sd Send on change DTC count request (Timeout) /

Tester CANdesc Application

[StatusMask != 0]: [USDT] $A9 $82 [StatusMask]

[
E E ApplDescEnableOnChangeDtcCount
i [ResponsePending time = P2]: [USDT] $7F $A9 $78 IJ.
< 0
[ResponsePending time = P3Max]: [USDT] $7F $A9 $78E
o 0
E E DescRdiOnDtcCountChanged(NewCount0)
! [UUDT] $82 [NewCount0] 0<
<

DescRdiOnDtcCountChanged(NewCountl)

[UUDT] $82 [NewCountl]

TesterPresent Timeout

ApplDescDisableOnChangeDtcCount

@EEAE

Figure 6-19 Request $A9 $82 with deactivation of the background DTC count monitor by timeout.

Note

In addition to tester present timeout, CANdesc will react in the same way on the
following events:

» The tester sends a Service ReturnToNormalMode ($20) request

» The application calls the function DescRdiDeactivateOnChangeDtcCount.

CANdesc can process this request in parallel to an $A9 $81 request after the first UUDT
response has been sent.

©2014, Vector Informatik GmbH Version: 3.2.0 62/77

Technical Reference CANdesc vector

Here are the detailed descriptions of the APIs used in the above diagrams:

Prototype
void ApplDescEnableOnChangeDtcCount (vuint8 statusMask)

Parameter

statusMask The status mask which the application shall apply as a filter for the DTC count
monitor (i.e. which DTCs shall be monitored)

Return code

Functional Description

CANdesc calls this function to tell the application that it shall activate DTC count monitoring. From this point
on, the application shall send the DTC count on change by calling the function
DescRdiOnDtcCountChanged.

CANdesc does not store the requested statusMask; it must be stored by the application

Particularities and Limitations
> Only available if the ECU supports $A9 sub-function $82.

Call context
» Background-loop level task context (same as DescStateTask()).

Table 6-19 ApplDescEnableOnChangeDtcCount

Prototype

void ApplDescDisableOnChangeDtcCount (void)

Parameter

Return code

Functional Description

CANdesc calls this function to notify the application that it shall deactivate DTC count monitoring. From this
point on, the application shall not send the DTC count on change

Particularities and Limitations
» Only available if the ECU supports $A9 sub-function $82.

Call context
» Background-loop level task context (same as DescStateTask()).

Table 6-20 ApplDescDisableOnChangeDtcCount

Prototype

void DescRdiOnDtcCountChanged (vuintl6 newCount)

©2014, Vector Informatik GmbH Version: 3.2.0 63/77

based on template version 5.1.0

Technical Reference CANdesc vector

Parameter

newCount The new count of DTCs that match the mask that was passed as a parameter
by the function App/DescEnableOnChangeDtcCount.

Return code

Functional Description

The application can call this function to notify CANdesc that the DTC count has changed. CANdesc will
send a UUDT response back to the tester.

Particularities and Limitations

> Only available if the ECU supports $A9 sub-function $82.
» CANdesc must have previously called the function App/DescEnableOnChangeDtcCount.

Call context
» Background-loop level task context

Table 6-21 DescRdiOnDtcCountChanged

Prototype

void DescRdiDeactivateOnChangeDtcCount (void)

Parameter

Return code

Functional Description

The application can call this function to notify CANdesc that it has stopped DTC count monitoring.
CANdesc will call the function ApplDescDisableOnChangeDtcCount to acknowledge this event.

Particularities and Limitations

» Only available if the ECU supports $A9 sub-function $82.
» CANdesc must have previously called the function App/DescEnableOnChangeDtcCount.

Call context
» Background-loop level task context.

Table 6-22 DescRdiDeactivateOnChangeDtcCount

6.13 Service ReadDataByPacketldentifier (3AA)

This service allows the tester to read a DPID (data packet identifier) either once or
periodically with three possible speeds (slow, medium, or fast). CANdesc completely
handles this service. Only the PacketHandlers may be implemented by the application as
described in section 5.7 The PacketHandler (another type of service processor).

©2014, Vector Informatik GmbH Version: 3.2.0 64 /77

based on template version 5.1.0

Technical Reference CANdesc vector

6.13.1 Handling undefined use cases

There are some use cases which are not covered or completely described in the GM/Opel
diagnostic specification. The following sections describe these cases along with the
resulting CANdesc behaviour.

6.13.1.1 Service $AA handling for undefined dynamically definable DPIDs

According to GMW-3110 version 1.6, if the tester requests an undefined dynamically
definable DPID with service $AA the result is undefined. In this situation, CANdesc sends
a UUDT response with no actual data (byte zero is the DPID number and the remaining
bytes are padded).

6.13.1.2 Service $AA handling for undefined referenced dynamically defined PIDs

As mentioned in section 6.4.1 Reading a dynamically defined PID (Parameter Identifier),
the undefined PID contained by the DPID will contain no data. In this situation, CANdesc
sends a UUDT response with no actual data (byte zero is the DPID number and the
remaining bytes are padded).

6.13.1.3 Service $AA handling for unaccessible referenced PIDs

A dynamically defined DPID references one or more PIDs. If any of those PIDs are not
accessible to the application for any reason (e.g. security access, current ECU state,
memory access error, etc.) at the time the scheduler needs the data, CANdesc sends a
UUDT response with no actual data (byte zero is the DPID number and the remaining
bytes are padded).

6.14 Service DeviceControl ($AE)

The application must completely implement this service. In addition, the GM/Opel
diagnostic specification requires that the tester present timeout monitoring shall be
activated once a DeviceControl service has been executed. Since CANdesc manages the
tester present timer, the application must call the function DescActivateS1Timer to fulfill
this requirement. The proper location for this is the PostHandler for every CPID (Control
Packet Identifier) except 0x00 (reserved for “terminate device control”). To facilitate this,
the ECU developer should select ‘User’ as the PostHandler attribute for these CPIDs in
CANdela Studio. These PostHandlers must then evaluate the status parameter (see
TechnicalReference_CANdesc) and if the result is ok (i.e. CANdesc has successfully sent
the positive response) the application must call the function DescActivateS1Timer.

Note

To reduce ROM usage and improve run-time, the ECU developer can use the
“PostHanlderOverrideName” attribute in CANdelaStudio to define a single PostHandler
used by all CPIDs.

Please refer to section 7.3 Service attributes for more details.

Here is an example how the ECU developer could implement the PostHandler:

©2014, Vector Informatik GmbH Version: 3.2.0 65/77

Technical Reference CANdesc vector

wold AppDescPostXXH(vuintd iContext. wuintd status)
1f {=status == kDlescPostHandlerStatellk)

<% Do application stuff =7
DeschctivateSlTiner();
T
I

Figure 6-20 PostHandler for “DeviceControl” ($AE)

Prototype

void DescActivateSlTimer (void)

Parameter

Return code

Functional Description

The application can call this function to enable tester present timeout monitoring. This function is
normally only used in the “DeviceControl” ($AE) service PostHandler.

This function will not restart the tester present timer! Only the tester can reset the timer, by sending the
“TesterPresent” ($3E) service.

Particularities and Limitations

» None

Call context
» Background-loop level task context (same as DescStateTask()).

Table 6-23 DescActivateS1Timer

6.15 Service TesterPresent ($3E)

CANdesc implements this service by reloading the tester present timer with the original
timeout value.

| Caution
H This service does not activate tester present timeout monitoring!

©2014, Vector Informatik GmbH Version: 3.2.0 66 /77

based on template version 5.1.0

Technical Reference CANdesc vector

7 CANdelaStudio default attribute settings

In order to use the features of CANdesc described in this document, the ECU developer
must set the CANdelaStudio attributes appropriately for the corresponding services and/or
their instances as described below.

The ECU developer configures CANdelaStudio attributes on three levels:

» Diagnostic Class (like “Ecu identification”, “Security access”, etc.)

» Diagnostic Instance (like “(DID $90) Vehicle Identification Number”,
“‘RequestProgrammingModeHighSpeed”, etc.)

» Service (like “Read” or “Write” on Diagnostic Instance “(DID $90) Vehicle Identification
Number”).

The picture below illustrates these three levels in CANdelaStudio:

U Infarmatian =1 Diagnostic Instance (E cu identification)
mrnon Diaghostics - :

Identifying Features flame: (DD $500 LIM Product Id Subrnet 1
| Supported Diagnostic Clazses
@ Start session managemert Description: Further requiremerits see Gl 3110

|_§| Stop session managemernt
(E] Ecu idertificatio

----- [E (oD $50) LIN Product Id Subnet 1 Data Idertifier; [0x80

----- (DID $313 LIN Product ld Subnet 2 Service. o ctocl Servioe.

----- B (DID $53) LIN Product Id Subnet & I [Read: £ (B14) ReadDataByidertifier
----- B (01D $54) LIN Product 1d Subnet 5 || | Wirite: EI (L3R iirite Data By dertificr
----- B (0iD $35) LIN Product Id Subnet 6

Figure 7-1 CANdelaStudio views

Legend:

» RED: Diagnostic Class

» BLUE: Diagnostic Instance
> Service

7.1 Diagnostic class attributes

CANdesc is designed to handle certain events on a diagnostic class basis; therefore, the
ECU developer must configure the attributes on the diagnostic class level. The relevant
services and their attribute configurations are listed below.

©2014, Vector Informatik GmbH Version: 3.2.0 67177

Technical Reference CANdesc

vactor”

Properties of Diagnostic Class "Ecu identification™ |

Gereral Atfributes

Categories:
flarme I Type I Walle I Drezcription
MainHandler Zuppart for all Pratocal Serwvice) Enuim none Configuration of class handler
Packet Handler Support Erirm none Configuration of packet handlers
PreHandler Support for all Protocol Services) Erimn None
PostHandler Support for all Pratocal Services) Erim none

al

[Show arily overwritten sttributes

Defauft |

i

(o] I Abbrechen | I:Itgernehmenl

Figure 7-2 Diagnostic Class level attributes

Diagnostic Class nhame

MainHandler
Support (for
all Protocol

PreHandler
Support (for
all Protocol

PacketHandler
Support

PostHandler
Support (for
all Protocol
Services)

Service)

Services)

Failure Record Data — USER None None None
Parameters

Dynamic Data Packets None None All None
Data Packet OEM None All OEM
Programming mode OEM None None OEM

Table 7-1 Default ‘Diagnostic Class’ attribute settings

7.2

Diagnostic instance attributes

CANdesc is designed to handle certain events on a diagnostic instance basis; therefore,
the ECU developer must configure the attributes on the diagnostic instance level. The
relevant services and their attribute configurations are listed below.

©2014, Vector Informatik GmbH

Version: 3.2.0

based on template version 5.1.0

68 /77

Technical Reference CANdesc vector

Properties of Diagnostic Instance “{DID $80) LIN Produck Id Subnet 1 El
Seneral | Andience | A tharization I Yehicle System Groups Aftributes
LCategaoties:
Mame I Tipe I Walle I Description
PacketHandler Cption Enwirn user
1| | i
[T Show only overwritten sttributes Drefauft |
(o] I Abbrechen | Ckertnehmen |

Figure 7-3 Diagnostic Instance level attributes

Diagnostic Class name where Diagnostic PacketHandler Option
Instances shall be configured

Default Optional
Data Packet USER Generated

Table 7-2 Default ‘Diagnostic instance’ attribute settings

7.3 Service attributes

CANdesc is designed to handle certain events on a diagnostic service basis; therefore, the
ECU developer must configure the attributes on the diagnostic service level. The relevant
services and their attribute configurations are listed below.

©2014, Vector Informatik GmbH Version: 3.2.0 69/77

based on template version 5.1.0

Technical Reference CANdesc vector

Properties of Service “"Read” in instance “(DID $80) LIN Produck Id Subn il

General | Addressing | Audience I Authoriz ation | State Transitions 2tributes

Categaries:
flame I Type I Walle I Description
MainHandler suppart for Serwice] Enum uzer Configuration of Main-Handler
PreHandler Support Erum none Corfiguration of Pre-Handler. Wil be execute
PreHandler Crverride Mame Strirg Cneerride generated name for Pre-Handler .
PoztHandler Support Erum none Configuration of Post-Handler. Wil be execut
PostHandler Cwerride Mame String Owerride generated name for Post-Handler.

J | *
[~ Show ohily overwritten sttributes Lrefautt |

(o4 I Abbrechen | I:Itgernehmenl

Figure 7-4 Service related attributes

©2014, Vector Informatik GmbH Version: 3.2.0 70/77

based on template version 5.1.0

Technical Reference CANdesc vector

Notes:
Service (and MainHandler PreHandler PreHandler PostHandler PostHandler
sub-service) ID Support (for Support OverrideName Support OverrideName
that shall be Service)
configured
$10 $02 Generated |None OEM
(User)
$10 $03 Generated |None OEM
(User)
$20 OEM None OEM
$28 OEM " None None
$3E Generated OEM
(User)
$A9 $80 OEM OEM None
$A9 $81 OEM OEM None
$A9 $82 OEM None OEM
$AE $00 User None None
$AE $01-$FF User None User One function for all
sub-services (see
Service
DeviceControl
($AE))

Table 7-3 Default ‘Service’ attribute settings

> All cells defined as “None” can optionally be replaced only by “User” attributes when
desired.

> Some data access services (e.g. $22, $1A, $3B and $AA) use “Generated”
MainHandler (for $AA PacketHandler) support. This eliminates the need for the
application to correctly order the data in the response message (it must only return the
data; CANdesc will assemble the response in the correct order)

| Caution

. Y1t is not possible to implement the MainHandler for service $28 in your application
since CANdesc (since version 5.05.04) uses this service callback. To evaluate the
service execution conditions, you can use the PreHandler to perform those checks and
to reject the service if needed.

©2014, Vector Informatik GmbH Version: 3.2.0 77

based on template version 5.1.0

Technical Reference CANdesc vector

7.4 State group for the Programming Sequence

The CANdesc implementation for the programming mode sequence relies on a state
machine that can be defined as CANdela Studio state group.

ProgrammingMode | Normal $A5 $xx | $28 -> CommHalted
CommHalted $A5 $03 | $A5 $01 -> Requested

$A5 $02 -> Requested HiSpeed
$20 -> Normal

Requested None $A5 $02 -> Requested HiSpeed
$A5 $03 -> Active

$20 -> Normal

Requested HiSpeed | None $A5 $01 -> Requested

$A5 $03 -> Active

$20 -> Normal

Active $A5 $xx | $20 -> Normal

Table 7-4 Programming Sequence state group

CANdesc will generate these states and transitions even if they do not exist in the CDD
file. Otherwise, CANdesc will reuse what is already present, and add/remove all missing
states and/or transitions.

This means you cannot change the programming sequence by means of changing the
state configuration, but you can put the correct sequence in the CDD file (using the exact
qualifiers from the table above). This opens up the possibility to block further services from
executing in any of these states.

E.g. if you want to block all $AE services from executing while programming mode is
‘Active’, you can model this in CANdela Studio, and CANdesc will do the rest for you.

Note

Since the StateGroup ‘ProgrammingMode’ follows the usual state group
implementation, all functionality regarding state groups is available for use. Especially
the callback ApplDescOnTransitionProgrammingMode will notify your application of any
state change.

©2014, Vector Informatik GmbH Version: 3.2.0 72177

Technical Reference CANdesc vector

8 OBD support

What is special about OBD support? GM/Opel uses extended addressing for functionally
addressed enhanced diagnostic services; however, functionally addressed OBD requests
must use normal addressing. Due to this, CANdesc uses two separate reception paths.
Additionally, the message definition of some OBD services does not match the generic
service instance generator used by CANdesc so they can only be supported on the
protocol service level.

8.1 CAN identifiers

Enhanced diagnostic services

GM specifies enhanced diagnostic service requirements in GMW-3110.

CAN ID 0x101 - 11-bit extended addressing USDT

This ID is only used for functionally addressed enhanced diagnostic requests. Functionally
addressed OBD requests must use CAN ID 0x7DF.

OBD services
GM uses the OBD service requirements described in ISO15031-5.

CAN ID 0x7DF - 11-bit normal addressing USDT

This ID is only used for functionally addressed OBD requests. Functionally addressed
enhanced diagnostic requests must use CAN ID 0x101.

CAN ID 0x7EO0-0x7EF - 11-bit normal addressing USDT

These IDs are used for physically addressed OBD requests to individual ECUs that
support OBD services. ECUs using these IDs for OBD services may also elect to use the
same IDs for physically addressed enhanced diagnostic services; however, ECUs that do
not support OBD services may not use these IDs for enhanced diagnostic services.

8.2 Restrictions

SID $01, $02, $06, $08 and $09 must be handled at the diagnostic class level when the
‘may be combined’ property is enabled in CANdelaStudio.

©2014, Vector Informatik GmbH Version: 3.2.0 73177

Technical Reference CANdesc vector

8.3 CANdelaStudio default attribute settings for OBD services

8.3.1 Diagnostic classes
Powertrain diagnostic and freeze frame data (EOBD) — SID $01 / $02

Emission related trouble codes — SID $03 / $07 / $04

Test results for non-continuously monitored systems (EOBD) — SID $06
Control of on-board system, test, or component (EOBD) — SID $08
Vehicle information (EOBD) — SID $09

$01 None User None None
$02 None User None None
$06 None User None None
$08 None User None None
$09 None User None None

Table 8-1 Diagnostic class specific attributes

8.4 CANgen configuration

8.4.1 DBC attribute settings for the OBD request message

A message cannot be supported by both the Interaction Layer and CANdesc. For this
reason, diagnostic messages must have the attribute “GenMsgNolalSupport” set to “yes”
(or, depending on the DBC version, the attribute “GenMsglLSupport” set to “no”). The DBC
author is responsible for setting this attribute.

8.4.2 CANgen version <4.15.00

In older CANgen versions, no automatic configuration of OBD support is performed so the
ECU developer must configure it manually:

For the functional OBD request message (CAN ID Ox7DF), a precopy function with the
name DescOBDReqlInd must be configured (in CANgen on the “Receive Messages” tab).

8.4.3 CANgen version 24.15.00

Since CANgen version 4.15.00, the DBC author can set the attribute ‘DiagState’ for the
functional OBD request message (CAN ID 0x7DF) to ‘Yes’. In this case, CANgen will
automatically configure the precopy function.

8.4.4 GENy configuration

The DBC author can set the attribute ‘DiagState’ for the functional OBD request message
(CAN ID 0x7DF) to ‘Yes’. Then, CANdesc configures the precopy function automatically.

©2014, Vector Informatik GmbH Version: 3.2.0 74177

Technical Reference CANdesc vector

8.5 CANdesc configuration (without a Powertrain CANdela template)

If the ECU developer is not using a Powertrain template (no OBD services are available in
CANdelaStudio) but the ECU must still support OBD services, a workaround is necessary
to activate the OBD reception path in CANdesc. This workaround requires the ECU
developer to make changes to the file “CANdelaGenAPL.ini", which is located in the
CANgen executable folder.

To override the look up result, modify:

[GeneratorController]
OverrideAnyObdServiceDetection = [0 - don't (default), 1 -
activate OBD support]

The OBD services themselves will be handled by the application using the ‘user-service’
feature, which shall be enabled by the same INI file:

[Misc]
UseGenericUserServiceHandler = [0 - don't (default), 1 -
activated]

Optionally, the following entry can be used for post-handler support:

UseGenericUserServicePostHandler = [0 - don't (default), 1 -
activated]

©2014, Vector Informatik GmbH Version: 3.2.0 75177

Technical Reference CANdesc vector

9 Debug assertion codes

The GM/Opel specific implementation has optional debug code for certain situations where
the ECU could “hang” or incorrect behavior could occur. Depending on the debug level
chosen in the generation tool, the following cases may be checked:

Assertion name ID(HEX) Description

kDescAssertInvalidA9Mode 91 The module has set the $A9 sub-
service iterator incorrectly, which
will cause wrong buffer assignment
when there is parallel processing
of sub-service $82 with one of the
$80 and $81 sub-functions.

kDescAssertUudtBufferAlreadyUnlocked A0 CANdesc received confirmation
that a UUDT response was
successfully transmitted on the
bus, but the internal state machine
indicates that no transmission was
in progress.

kDescAssertWrongUudtTransmitterHandle A1 CANdesc received confirmation
that a UUDT response was
successfully transmitted on the
bus, but the transmit handle does
not match the one that CANdesc
actually tried to send.

kDescAssertUudtBufferStillLocked A2 CANdesc attempted a second
UUDT transmission before the
previous one was actually
transmitted on the bus.

kDescAssertlllegalPostProgModeld A3 CANdesc began the internal post
processing for a programming
mode request, but the requested
programming mode sub-function
was invalid.

Table 9-1 Debug assertion codes

©2014, Vector Informatik GmbH Version: 3.2.0 76177

Technical Reference CANdesc

10 Contact

Visit our website for more information on

> News

\

Products

\Y

Demo software

\%

Support

\%

Training data

\

Addresses

www.vector.com

©2014, Vector Informatik GmbH

Version: 3.2.0

vactor’

77177

	1 Related documents
	2 Overview
	3 CANdesc support by diagnostic service
	4 Important application requirements
	4.1 Initialization
	4.2 DeviceControl ($AE) service requirement
	4.3 Update from earlier versions

	5 GM/Opel specific functionality
	5.1 ECU Address configuration
	5.1.1 Gateway ECUs
	5.1.2 Virtual network management
	5.1.3 Diagnostic activity notification

	5.2 Request validation
	5.3 Timeout events
	5.3.1 Tester present timeout

	5.4 Using the extended negative response
	5.4.1 Sending an extended negative response during service processing
	5.4.2 Sending an unsolicited extended negative response

	5.5 Sending an unsolicited single frame response
	5.5.1 Sending the unsolicited response from a different channel on a dynamic TP

	5.6 GM/Opel CANdesc state machine access
	5.6.1 Normal communication state
	5.6.2 Programming mode state
	5.6.3 High speed programming mode state

	5.7 The PacketHandler (another type of service processor)
	5.7.1 PacketHandler API

	6 GM/Opel service implementations
	6.1 Service InitiateDiagnosticOperation ($10)
	6.1.1 Service DisableAllDTCs ($10 $02)
	6.1.2 Service EnableDTCsDuringDeviceControl ($10 $03)

	6.2 Service ReadFailureRecordData ($12)
	6.2.1 Service ReadFailureRecordIdentifiers ($12 $01)
	6.2.2 Service ReadFailureRecordParameters ($12 $02)

	6.3 Service ReturnToNormalMode ($20)
	6.4 Service ReadDataByParameterIdentifier ($22)
	6.4.1 Reading a dynamically defined PID (Parameter Identifier)

	6.5 Service SecurityAccess ($27)
	6.6 Service DisableNormalCommunication ($28)
	6.6.1 Activate a $28 post-handler for the application

	6.7 Service DynamicallyDefineMessage ($2C)
	6.8 Operations on dynamically definable DPIDs
	6.8.1 Defining a dynamically definable DPID
	6.8.2 Reading a dynamically definable DPID

	6.9 Service DefinePIDByAddress ($2D)
	6.10 Operations on dynamically definable PIDs
	6.10.1 Defining a dynamically definable PID
	6.10.2 Reading a dynamically definable PID

	6.11 Service ProgrammingMode ($A5)
	6.11.1 Allowing programming mode ($A5 $01/$02)
	6.11.2 Entering programming mode ($A5 $03)
	6.11.2.1 FBL start on EnterProgrammingMode ($A5 $03)
	6.11.2.2 FBL start on RequestDownload ($34)
	6.11.2.3 Concluding programming mode

	6.11.3 Considerations when upgrading

	6.12 Service ReadDiagnosticInformation ($A9)
	6.12.1 ReadStatusOfDTCByNumber ($A9 $80)
	6.12.2 ReadStatusOfDTCByStatusMask ($A9 $81)
	6.12.3 SendOnChangeDTCCount ($A9 $82)

	6.13 Service ReadDataByPacketIdentifier ($AA)
	6.13.1 Handling undefined use cases
	6.13.1.1 Service $AA handling for undefined dynamically definable DPIDs
	6.13.1.2 Service $AA handling for undefined referenced dynamically defined PIDs
	6.13.1.3 Service $AA handling for unaccessible referenced PIDs

	6.14 Service DeviceControl ($AE)
	6.15 Service TesterPresent ($3E)

	7 CANdelaStudio default attribute settings
	7.1 Diagnostic class attributes
	7.2 Diagnostic instance attributes
	7.3 Service attributes
	7.4 State group for the Programming Sequence

	8 OBD support
	8.1 CAN identifiers
	8.2 Restrictions
	8.3 CANdelaStudio default attribute settings for OBD services
	8.3.1 Diagnostic classes

	8.4 CANgen configuration
	8.4.1 DBC attribute settings for the OBD request message
	8.4.2 CANgen version < 4.15.00
	8.4.3 CANgen version ≥ 4.15.00
	8.4.4 GENy configuration

	8.5 CANdesc configuration (without a Powertrain CANdela template)

	9 Debug assertion codes
	10 Contact

