vactor’

MICROSAR ComStackLib

Technical Reference

ComStackLib based BSW generators
Version 2.00.01

Authors Gunnar Meiss

Status Released

Technical Reference MICROSAR ComStackLib VeCtOf [

Document Information

History

Author ___ Date

Gunnar Meiss 2013-03-25 1.00.00 initial version

Gunnar Meiss 2013-08-23 1.01.00 ESCANO00068919 Remove
<MSN>UseSignedDataTypesinindexArrays

ESCANO00070017 Remove <MSN>_Resource.xml

Gunnar Meiss 2014-10-06 2.00.00 ESCANO00078776 AR4-698: Post-Build Selectable
(Identity Manager)

Gunnar Meiss 2014-12-19 2.00.01 ESCANO00080380 Minor typing and grammar corrections

Reference Documents

No. Source Twe __ ______ ___________Version

[1] Vector Compliance Documentation MISRA-C:2004 / MICROSAR 220

Scope of the Document

This technical reference describes the general use of the ComStackLib based BSW
generators.

' Caution

- We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

©2014, Vector Informatik GmbH Version: 2.00.01 2/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib

Contents

Component HISTOry ... e e e aaaee 5
011 oY o 11 Tex 1 o o SN 6
21 ArchiteCture OVEIVIEWoooiiiiiieee e 7
Functional DescCription...............cooiiii i 8
3.1 CONFIG-CLASS Of DAt@.....uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiisiiissiisiasesseesneeeeneessseenseneeeenneeee 9
3.2 CONFIG-CLASS PRE-COMPILE Optimizationsuvvuviimiiiiiiiiiniiinieiiiinnnn. 9
3.2.1 Optimize Const Datato Defines...........oueiiiiiiiiiiiiicii e, 9

3.2.2 Optimize Data TYPESccviieeeiiiie e e e 10

3.2.3 Optimize Bool Data in Structscooviiiieii e, 11

3.24 Data Deduplication and Reduction............ccccooeeviviiiiiiiiinieeeecceiiiin, 12

3.241 Equal Data..........coiiiiiiiiecce e 13

3.24.2 Unary and Binary Operations...........cccccceeeeiieieiiiieiiinnnnnn. 14

3.2.5 Data Strea@ming e e 15

3.3 CONFIG-CLASS Independent Optimizations............ccccceeeiiiiiiiiiiiiiiiiee e, 16
3.3.1 Sort Struct Elementscoooooiiiiii 16

3.4 SELECTABLE OptimizationS........cooiiiiiiiiiiiiiis e e e 17
3.4.1 Merge of VAR and CONST Based Data.............ccccccceeeeeeeiiniieiiinnnnnn. 17
INEEGratioN 18
4.1 Y aF=T g (o | o 18
4.2 IMPLEMENTATION-CONFIG-VARIANT dependent Dataccccoevvvveee. 20
4.3 OptimiIZation LEVEIS.......ccoi i aaaees 21
4.4 MISRA, PRQA and Compiler Warnings..........ccuuuuvieiieiiiiiieiiiiiiiiieeieeieeeeeeeeeeeee 23
4.4.1 GENETAL 23

442 =[£I 28

443 <MSN>_Has Macros in the SELECTABLE Use Caseccc......... 29
CoNfIGUIAtION ... e e e aaane 30
5.1 Configuration VariantsS................uuuuuuiiiiiiiiiiiiii e 30
5.2 Configuration With @ GCE.............uuuuiiiiiiiiiiiiiiiii e 30
Glossary and Abbreviationsccccciiiiiiiiiiiii e 36
6.1 (€10 11T PR 36
6.2 ADDIeVIatioNS ... 36
CONEACKo et e e aan 37

©2014, Vector Informatik GmbH Version: 2.00.01

vactor’

3/37

Technical Reference MICROSAR ComStackLib

lllustrations
Figure 2-1
Figure 2-2
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 4-1

Tables

Table 1-1
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9
Table 4-10
Table 4-11
Table 5-1
Table 5-2
Table 6-1
Table 6-2

©2014, Vector Informatik GmbH

Embedded Code ASPECLSouuuiiiiiiieiieeeeee e 6
AUTOSAR 4.x Architecture OVerviewccccccciiiiiiiiiii 7
Resources in compiler optimization variants............cccocooeiiiiiiencci, 8
Using defines for CONST dat@...........uuuuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeinnnens 9
Data type minimizationeuuiiiiiiiiiiiiiiiiii 10
Boolean struct data variantseeeiiiiiiiiiiiiiiiii, 11
Boolean struct data versus Bitmaskingccccooooviiiiiiiiiiiiee e, 12
Data deduplication without operationscccooovviiiciii e, 13
Data deduplication with operationsccccooivviiiiiiiin e, 14
Data Streaming...........ecoiiiiiiiiece e 15
Sorting Struct €lemMentsuuiiiiiiiii 16
Resources in optimization variantscccccooiiiiiiiiii 21
Component NISTOrY.........coiiiiiice e e 5
Generated fileSuvueiii i 19
IMPLEMENTATION-CONFIG-VARIATIONSoooviiiiiiieeeeeeeee, 20
Optimization LEVEISccooiicee e 21
Optimization Decision Table........ccccoooiiiiiiiiiii e 22
Y1 O I i L 23
MD_CSL_750_759euiieeiiiiiueiieiieuniunnunseeensensnnssenennsnssennsnssnsenrsessnnnnnnnnnnnne 24
Y1 O I A 4 PR 25
Y1 O 2 0 I 26
MD_CSL_3355 3356cuuuuuururrernnrrnnnnennensnnennnnnnnnnmnnnnnnnnnssnnnnnnsnnnnnnnns 26
Y1 O I X R 27
IMICROSAR/EcuC/EcucGeneral/BitFieldDataTypeccccccvvvviviiinnnnnn. 28
(07] o] =11 0 = 30
Attributes of ComStackLib based BSW generators.........cccccvvvvvvvvvieeinnn. 35
€[1SS 36
ADDIEVIAtIONS 36

Version: 2.00.01

vactor’

4/37

Technical Reference MICROSAR ComStackLib VeCtOf [

1 Component History

The component history gives an overview over the important milestones that are
supported in the different versions of the component.

1.00.00 Support of embedded data generation in the
IMPLEMENTATION-CONFIG-VARIANT VARIANT-PRE-COMPILE

2.00.00 Support of the
IMPLEMENTATION-CONFIG-VARIANT VARIANT-POST-BUILD-
LOADABLE

3.00.00 Revision of existing techniques

4.00.00 Revision of existing techniques

5.00.00 AR4-698: Post-Build Selectable (Identity Manager)

Table 1-1 Component history

©2014, Vector Informatik GmbH Version: 2.00.01

based on template version 5.5.0

5/37

Technical Reference MICROSAR ComStackLib VeCtOf [

2 Introduction

This document describes the configuration of ComStackLib based BSW generators.

Supported AUTOSAR Release*: 4

Supported Configuration Variants: PRE-COMPILE [SELECTABLE]
POST-BUILD-LOADABLE [SELECTABLE]
* For the precise AUTOSAR Release 4.x please see the release specific documentation.

The ComStackLib is an embedded data generation engine designed for AUTOSAR based
BSW software. Generating embedded software is situated in the context of different
aspects.

== Developer === Customer A Customer B

Size of ROM

Development costs Size of RAM

Complexity of different

) . . Size of code
configuration variants

Complexity of Features Runtime of code

Compiler implementations \

and configurations
A
Hardware qd

Maintainability of the B
and code generators

Readability of code

eadability of generated
data

MISRA conformance

Figure 2-1 Embedded Code Aspects

The number of aspects for embedded software is quite high and they have a various
importance from the view of different stakeholders. Some aspects contradict to each other
and other aspects cannot be changed at the time of the project. Due to this the
ComStackLib has been introduced as scalable embedded data generation engine
designed for AUTOSAR.

©2014, Vector Informatik GmbH Version: 2.00.01 6/37

Technical Reference MICROSAR ComStackLib VeCtOf [

2.1 Architecture Overview

The following figure shows where the ComStackLib is used in the MICROSAR
architecture.

E2E Protection P

E2E Transformer
SCHM RTE
SOME/IP Transformer
CoM
[DEM | | FEE CRC
TS (CRY) e — T -
= o] | anxer FRXCP ETHXCP DNS
FRTP UDPNM EXT
STBM LINNM FRARTP SOME/IP* HTTP
™ CANXCP SD ScC
e DOIP s
WoeH AMD SOAD XML Security
DBG TCPIP
DLl ETHSM
nver
RTM? ETHIF
AVTP
BMCA
XCP! PIP
MCAL
ADCDRV DIODRV FLSDRV GPTDRV LINDRV PORTDRV SHEDRV* CANTRCY FRTRCY
CANDRV EEPDRV FLSTST ICUDRV MCUDRV PWMDRV SPIDRV DRVEXT? LINTRCV
CORTST ETHDRV FRDRV TICDRV* OCUDRY RAMTST WDGDRV ETHTRCV
Vector Standard Software 3rd Party Software ! Available extensions for AUTOSAR

2 Includes EXTADC, EEPEXT, FLSEXT, and WDGEXT
Figure 2-2 AUTOSAR 4.x Architecture Overview

©2014, Vector Informatik GmbH Version: 2.00.01 7137

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

3 Functional Description

This chapter gives necessary information for the tailoring of the MICROSAR ComStackLib
based software into your environment. Figure 3-1 Resources in compiler optimization
variants shows the resource consumption of two different ECUs combined with different
compiler optimization levels. The compiler is not able to influence the size of CONST and
VAR data. The embedded software developer is in charge to reduce the CONST and VAR
data consumption.

25000

20000

e CanLin CONST
15000

e CanlLin VAR
=== CanlLin CODE

10000 \ FrLin CONST

\/ VAR
=== FrLin CODE

O T T T 1
/Od (Disable /01 (Minimize Size) /02 (Maximize /Ox (Full
(Debug)) Speed) Optimization)

5000

Figure 3-1 Resources in compiler optimization variants

©2014, Vector Informatik GmbH Version: 2.00.01 8137

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

3.1 CONFIG-CLASS of Data

The code generator has an internal knowledge of the required CONFIG-CLASS. Due to
this data can be moved dependent on the IMPLEMENTATION-CONFIG-VARIANT. See
chapter 4.2 IMPLEMENTATION-CONFIG-VARIANT dependent Data.

3.2 CONFIG-CLASS PRE-COMPILE Optimizations

3.2.1 Optimize Const Data to Defines

Set the configuration parameters <MSN>OptimizeConstVars2Define and
<MSN>OptimizeConstArrays2Define to TRUE to optimize automatically CONST data in
the CONFIG-CLASS PRE-COMPILE to a define.

25000 12,00%
- 10,00%
20000 -
- 8,00% .
m Canlin %
15000 - .
s Frlin %
- 6,00% =CanLin Off
e CanLin On
10000 - .
e FrLin Off
- 4,00% .
== FrLin On
5000 -
- 2,00%
0 - - 0,00%
CONST VAR CODE

Figure 3-2 Using defines for CONST data

The optimization effect depends on the available configuration data. CONST and CODE
size in the ECU can be reduced.

©2014, Vector Informatik GmbH Version: 2.00.01 9/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

3.2.2 Optimize Data Types

Every generated data element generated with the ComStackLib has an own C data type.
Due to this, the data type itself can be calculated automatically as small as possible. Set
<MSN>MinimizeNumericalDataTypes to MINIMIZE_NUMERICAL_DATA_TYPES to
calculate the data types as small as possible.

25000 50,00%
- 40,00%
20000 -
- 30,00%)
m Canlin %
15000 - |
s Frlin %
- 20,00% ==Canlin Off
== CanLin On
10000 - |
e FrLin Off
- 10,00%)
== FrLin On
5000 -
—] L 0,00%
0 ' T -10,00%
CONST VAR CODE

Figure 3-3 Data type minimization

The usage of data type minimization saves CONST, VAR and CODE size.

©2014, Vector Informatik GmbH Version: 2.00.01 10/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

3.2.3 Optimize Bool Data in Structs

Boolean data can be represented differently in C structs. Due to this, the generation of
boolean data can be configured with <MSN>StructBoolDataUsage as BOOLEAN,
BITFIELD and BITMASKING. There is nearly no difference between the usage of different

bit data types.

25000
20000 \\
15000
——— CanLin CONST
10000 = CanLin VAR
5000 ~\= == CanLin CODE
———FrLin CONST
0 T T T T T FrLin VAR
& QO & & S o« —— FrLin CODE
L 0 C Y Q7 2
0 &% S o/ N4 &
2 S N © >
3 S S
& ® S
S S R
0 > %®
&S {\\é &
B2 N

Figure 3-4 Boolean struct data variants

©2014, Vector Informatik GmbH Version: 2.00.01

based on template version 5.5.0

11/37

Technical Reference MICROSAR ComStackLib

vecktor”

25000

20000

15000 -

10000 -

5000 -

CONST

VAR CODE

25,00%

20,00%

15,00%

10,00%

5,00%

0,00%

mm Canlin %
s Frlin %
e CanLin Off
e CanLin On
e FrLin Off

e FrLin On

Figure 3-5 Boolean struct data versus Bitmasking

The usage of BITMASKING reduces the CONST size. The increase of the CODE size is

so tiny, that it can be omitted.

3.2.4 Data Deduplication and Reduction

Data deduplication and reduction is a typical way to reduce the amount of data. The
ComStackLib provides generic algorithms which implement typical data deduplication

mechanisms.

©2014, Vector Informatik GmbH

Version: 2.00.01

based on template version 5.5.0

12/37

Technical Reference MICROSAR ComStackLib

3.2.4.1 Equal Data

Identical data can be deduplicated by redirection of the data access to other data. There is

no influence to the runtime of the embedded software.

vecktor”

25000

N\

20000 -

15000 -

10000 -

5000 -

CONST

VAR CODE

14%

12%

10%

8%

6%

4%

2%

0%

m Canlin %
s Frlin %
= CanLin Off
@ CanLin On
e FrLin Off

e FrLin On

Figure 3-6 Data deduplication without operations

©2014, Vector Informatik GmbH

Version: 2.00.01

based on template version 5.5.0

13/37

Technical Reference MICROSAR ComStackLib

3.2.4.2 Unary and Binary Operations

Data can be reduced by using unary operations or operations on constants or operations
on other data elements. The operations are located in the data access layer. Due to this,
the code itself remains as implemented. This reduction has influence to the runtime of the

embedded software.

vector”

25000

N\

20000 -

15000 -

10000 -

5000 -

CONST

VAR CODE

35%

30%

25%

20%

15%

10%

5%

0%

B Canlin %
s Frlin %
e CanLin Off
@ CanLin On
e FrLin Off

e FrLin On

Figure 3-7 Data deduplication with operations

©2014, Vector Informatik GmbH

Version: 2.00.01

based on template version 5.5.0

14 /37

Technical Reference MICROSAR ComStackLib

3.2.5 Data Streaming

Data can be packed into multiple streams of basic data types and identical parts can be
overlapped with and without data offsets. The data access layer redirects to the dependent
data index. There is no influence to the runtime of the embedded software, but the data
compression rate is quite high in large configurations and complex modules containing lots

vecktor”

of data.
25000 40,00%
- 35,00%
20000 -
- 30,00%
- 2500% Canlin %
15000 - , |
s Frlin %
- 20,00% ==CanLin Off
@ CanLin On
10000 -
- 15,00% === FrLin Off
e FrLin On
- 10,00%
5000 -
- 5,00%
0 - B
CONST VAR CODE

Figure 3-8 Data Streaming

©2014, Vector Informatik GmbH Version: 2.00.01

based on template version 5.5.0

15737

Technical Reference MICROSAR ComStackLib

3.3 CONFIG-CLASS Independent Optimizations

3.3.1 Sort Struct Elements

C structs are always sorted depending on the size of an element data type. Sorting
structure elements reduces the number of padding bytes added by the compiler to align

vecktor”

the data.
25000 7,00%
6,00%
20000
5,00%
m Canlin %
15000 - .
4,00% [Frlin %
== CanLin Off
3,00% == CanLin On
10000 - .
e FrLin Off
2.00% == FrLin On
, ()
5000 -
1,00%
0 T 0,00%
CONST VAR CODE

Figure 3-9 Sorting struct elements

©2014, Vector Informatik GmbH

Version: 2.00.01

based on template version 5.5.0

16/37

Technical Reference MICROSAR ComStackLib VeCtO(:

3.4 SELECTABLE Optimizations

If the configuration variant is SELECTABLE based the following optimizations are
automatically performed.

3.4.1 Merge of VAR and CONST Based Data
All VAR based generated data is merged between different predefined variants.

Example

Tlg

A predefined variant LEFT_ECU needs a VAR based array of the type uint8 with 10
elements and predefined variant RIGHT_ECU needs a VAR based array of the type
uint8 with 6 elements in the same context. The result is a variant independent
generated VAR based array of the type uint8 with 10 elements.

Due to this, if the BSW configuration data is identical in different predefined variants, the
module configuration is completely merged.

©2014, Vector Informatik GmbH Version: 2.00.01

17137

Technical Reference MICROSAR ComStackLib VeCtOf [

4 Integration

This chapter gives necessary information for the integration of the MICROSAR
ComStackLib based software into an application environment of an ECU.

4.1 Dynamic Files

The dynamic files are generated by the configuration tool CFGS for ComStackLib based
BSW software.

File Name Description

<MSN>_Cfg.h This file contains:
> global constant macros
> global function macros
> global data types and structures
> global data prototypes

> global function prototypes
of CONFIG-CLASS PRE-COMPILE data.

<MSN>_Cfg.c This file is generated dependent on the used code generator for
compatibility reasons and contains if generated:

\%

local constant macros
local function macros
local data types and structures
local data prototypes
local data
> global data
of CONFIG-CLASS PRE-COMPILE data.
<MSN>_Lcfg.h This file contains:
> global constant macros

VvV V V V

> global function macros
> global data types and structures
> global data prototypes

> global function prototypes
of CONFIG-CLASS LINK data.

<MSN>_Lcfg.c This file contains:
> |ocal constant macros
local function macros
local data types and structures
local data prototypes
local data

global data
of CONFIG-CLASS LINK and PRE-COMPILE data if the <MSN>_Cfg.c is

V V. V V V

©2014, Vector Informatik GmbH Version: 2.00.01 18/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

File Name Description

not generated.
<MSN>_PBcfg.h This file contains:
> global constant macros
> global function macros
> global data types and structures
> global data prototypes

> global function prototypes
of CONFIG-CLASS POST-BUILD data.

<MSN>_PBcfg.c This file contains:
> |ocal constant macros
local function macros
local data types and structures
local data prototypes
local data

global data
of CONFIG-CLASS POST-BUILD data.

<MSN>_XMI21.xml This file is a XMl file to visualize data relations e.g. in Enterprise Architect.

The file is used for development purposes at Vector and informational for
the customer.

V V. V V V

Table 4-1 Generated files

©2014, Vector Informatik GmbH Version: 2.00.01 19/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

4.2 IMPLEMENTATION-CONFIG-VARIANT dependent Data

The CONFIG-CLASS of generated data depends on the configured IMPLEMENTATION-
CONFIG-VARIANT and the IMPLEMENTATION-CONFIG-CLASSES described in the
<MSN>_bswmd.arxml.

f ﬁ‘] Expert Knowledge
S If the generated data is in a C struct and the struct contains pre-compile and postbuild
changeable data, the data nature is postbuild.

IMPLEMENTATION- | Description

CONFIG-VARIANT
VARIANT-PRE- > All generated data is of CONFIG-CLASS PRE-COMPILE and generated
COMPILE into <MSN>_Cfg.c or <MSN>_Lcfg.c (if <MSN>_Cfg.c does not exist).
[SELECTABLE]

> CONFIG-CLASS LINK and POST-BUILD data does not exist.

VARIANT-LINK-TIME > CONFIG-CLASS PRE-COMPILE data and is generated into
<MSN>_Cfg.c or <MSN>_L cfg.c(if <MSN>_Cfg.c does not exist).

> CONFIG-CLASS LINK data and is generated into <MSN>_Lcfg.c.
> CONFIG-CLASS POST-BUILD data changeable data does not exist.

VARIANT-POST- > CONFIG-CLASS PRE-COMPILE data and is generated into
BUILD-LOADABLE <MSN>_Cfg.c or <MSN>_Lcfg.c(if <MSN>_Cfg.c does not exist).
[SELECTABLE] > CONFIG-CLASS LINK data and is generated into <MSN>_Lcfg.c.

> CONFIG-CLASS POST-BUILD data and is generated into
<MSN>_PBcfg.c.

Table 4-2 IMPLEMENTATION-CONFIG-VARIATIONS

©2014, Vector Informatik GmbH Version: 2.00.01 20/ 37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

4.3 Optimization Levels

This chapter describes optimization levels and their configuration. Use Table 4-3
Optimization Levels and Table 4-4 Optimization Decision Table to tailor your
configuration.

Optimization Description

Small (Default) The data is reduced by operations and not packed into a data stream.
Fast The data is not reduced by operations and not packed into a data stream.
Tiny The data is not reduced by operations and packed into a data stream.
Teeny-weeny The data is reduced by operations and packed into a data stream.

Table 4-3 Optimization Levels

25000

20000 \

e CanLin CONST

15000 ——CanLin VAR

e CanlLin CODE
\ e FrLin CONST

10000
e FrLin VAR
e FrLin CODE

5000 \:
O T T T T 1
Off Default Fast Tiny Teeny Weeny

Figure 4-1 Resources in optimization variants

©2014, Vector Informatik GmbH Version: 2.00.01 21/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

Optimization Level

2 ¢
E e
7 >
Parameter (% L(L‘@ £ §
<MSN>MinimizeNumericalDataTy TRUE TRUE TRUE TRUE

pes
DEDUPLICATE A DEDUPLICATE_ DEDUPLICATE_ DEDUPLICATE_

<MSN>ConstDataDeduplication CONST_DATA_ CONST_DATA_ | CONST_DATA_ CONST_DATA_
WITH_CAST WITH_CAST WITH_CAST WITH_CAST

:2/ISN>OptimizeConstArraysZDefi TRUE TRUE TRUE TRUE
<MSN>OptimizeConstVars2Define TRUE TRUE TRUE TRUE
<MSN>StructBoolDataUsage BITMASKING BOOLEAN BOOLEAN BITMASKING
<MSN>DeduplicateZero2NIndirect TRUE TRUE TRUE TRUE
edData

<MSN>ReduceBoolDataByNegati) 0 0)
onThreshold

<MSN>ReduceNumericalDataByO) 0 0)
ffsetThreshold

<MSN>ReduceBoolDataByNumeri) 0 0)
calComparisonThreshold

<MSN>ReduceNumericalDataByA) 0 0)
rraySubtractionThreshold

<MSN>DeduplicateBoolDataByNu) 0 0)
mericalComparision

<MSN>UseSignedDataTypesInind FALSE FALSE FALSE FALSE
exArrays

<MSN>ReduceDataByStreaming FALSE FALSE TRUE TRUE

Table 4-4 Optimization Decision Table

©2014, Vector Informatik GmbH Version: 2.00.01 22/ 37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

44 MISRA, PRQA and Compiler Warnings

The MICROSAR code is in the most cases a piece of hand written static code and
generated data and code for different compilers. This combination of hand written and
generated code can produce MISRA deviations or compiler warnings. This chapter
extends [1].

441 General

e 'I Note
i . The ComStackLib switch <MSN>OptimizeConstArrays2Define may produce compiler
“warnings. If you don’t trust your compiler or your project settings do not allow the usage
of compiler warnings, configure <MSN>OptimizeConstArrays2Define to false.

Deviation ID MD_CSL_3199

Violated rule PRQA Redundancy 3199 (The value of '%s' is never used following this
assignment.)

Reason The parameter /IMICROSAR/EcuC/EcucGeneral/DummyStatement is
configured to TRUE to avoid the compiler warning about unused function
parameters.

If the function is an interface to other modules and the prototype is specified by
a standard, the prototype cannot be changed.

If the function is not defined by a standard, the parameter could be removed in
the implementation. The disadvantage is that the code itself is stuffed with
preprocessor statements and the number variations of the software are
exploding. Due to this, the code will not be changed.

Potential risks The function contains unused code.

Prevention of risks Configure the parameter /MICROSAR/EcuC/EcucGeneral/DummyStatement to
FALSE and accept the compiler warning about unused function parameters.

OR
The code inspection is in charge to detect unused code.
Examples #define MSN PROCESS DATA STD OFF

#define MSN_USE_DUMMY STATEMENT STD ON

void Msn foo (uint8 a)

{

#if (MSN_PROCESS DATA == STD ON)
/* some code which uses the parameter a */
#endif
#if (MSN _USE DUMMY STATEMENT == STD ON)
if (MSN_PROCESS DATA == STD OFF)
a=a;
endif
#endif

}

Table 4-5 MD_CSL_3199

©2014, Vector Informatik GmbH Version: 2.00.01 23/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

Deviation ID MD_CSL_750_759

Violated rule Rule 18.4 (Unions shall not be used.)

Reason Generated data uses array and symbol based data access. The embedded
code itself uses only one access type. Due to this critical runtime effects do not
occur.

Potential risks The A2L data may not match to the real data.

Prevention of risks Each delivery is integrated and tested on the real target system.

Examples /* symbolic data access for A2L */

typedef struct sMsn FooDataStructType
{

boolean indexA;

boolean indexB;
} Msn FooDataStructType;

/* union data type to have array and symbolic data
access */

typedef union uMsn FooDataType

{

boolean raw([2]; /**< this element is used for array
based data access from the embedded code */

Msn FooDataStructType str; /**< this element is
used for symbolic based data access from A2L */
} Msn FooDataUType;

/* this variable array uses the union data type */
Msn FooDataUType msn FooData;

Table 4-6 MD_CSL_750_759

©2014, Vector Informatik GmbH Version: 2.00.01 2437

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

Deviation ID MD_CSL_0779

Violated rule Rule 5.1 (Identifiers (internal and external) shall not rely on the significance of
more than 31 characters.)

Reason Generated symbols may exceed the 31 character limitation, because the code
generator concatenates strings based on fixed rules.

Potential risks The linker or compiler may mismatch symbols.

Prevention of risks Modern compilers for AUTOSAR platforms do not have this limitation any
more.
#if (MSN_DEFRXSIGGRPINFOENDIDXOFDEFRXPDUINFO == STD ON)

Examples i

Msn DefRxSigGrpInfoEndIdxOfDefRxPdulnfoType idxRxSigGrpInfo =
Msn_ GetDefRxSigGrpInfoStartIdxOfDefRxPdulnfo (idxRxPdulnfo);
/* some code */

fendif
Table 47 MD_CSL_0779

Deviation ID MD_CSL_2018
Violated rule Rule 14.1 (This switch default label is unreachable.)
Reason The parameter <MSN>OptimizeConstArrays2Define is configured to TRUE.
Potential risks The default case of the switch statement contains possibly dead code.
Prevention of risks The code inspection is in charge to detect useless conditions with possibly
dead code.
Examples #define MSN_ PROCESS DATA STD ON
#define MSN CASE SMALL 5
#define MSN CASE MEDIUM 8
#define MSN CASE LARGE 12
#define MSN CASE SMALL USED FALSE
#define MSN CASE MEDIUM USED TRUE
#define MSN CASE LARGE FALSE

/* this array is reduced to a constant define
const uint8 msn FooData [2] =
{
MSN CASE MEDIUM,
MSN CASE MEDIUM
}i
*/
#define Msn GetFooData (Index) MSN CASE MEDIUM

void Msn foo (uint8 a)
{
#if (MSN_PROCESS_DATA == STD_ON)
switch (Msn GetFooData(a))
{
#if (MSN_CASE_SMALL USED == STD_ ON)
case MSN CASE SMALL:
/* some MSN CASE SMALL code */
break;

©2014, Vector Informatik GmbH Version: 2.00.01 25/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

Deviation ID MD_CSL_2018

#endif
#if (MSN_CASE MEDIUM USED == STD ON)
case MSN CASE MEDIUM:
/* some MSN CASE MEDIUM code */
break;
#endif
#if (MSN _CASE LARGE USED == STD ON)
case MSN CASE LARGE:
/* some MSN CASE LARGE code */
break;
#endif
default:
/* some default handling like calling Det */
}
#endif
}

Table 4-8 MD_CSL_2018

Violated rule Rule 13.7 (The result of this logical operation is always 'false' or ‘true’)

Reason The parameter <MSN>OptimizeConstArrays2Define is configured to TRUE.

Potential risks The function contains useless conditions with possibly dead code.

Prevention of risks The code inspection is in charge to detect useless conditions with possibly
dead code.

Examples #define MSN PROCESS DATA STD_ON

/* this array is reduced to a define
const boolean msn FooData [2] =
{
TRUE,
TRUE
}i
*/
#define Msn IsFooData (Index) TRUE

void Msn foo (uint8 a)

{

#1if (MSN_PROCESS_DATA == STD_ON)
1f (Msn IsFooData(a))
{

/* some code */

}
#endif

}

Table 4-9 MD_CSL_3355_ 3356

©2014, Vector Informatik GmbH Version: 2.00.01 26 /37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

Deviation ID MD_CSL_3453

Violated rule Rule 19.7 (A function should be used in preference to a function-like macro.)

Reason ComStackLib based modules use macros to access generated RAM and ROM
data. The implementation of data access functions would cause much code
and runtime.

Potential risks Resulting code is difficult to understand or may not work as expected.

Prevention of risks Code inspection and test of the different variants in the component test.

Examples #define MSN PROCESS DATA STD ON

/* this array is accessed by a generated data access
macro */
const boolean msn FooData [2] =

{
TRUE,
TRUE

}s
#define Msn IsFooData (Index) msn_FooData[Index]

void Msn foo(uint8 a)

{

#if (MSN_PROCESS_DATA == STD_ON)
if (Msn_IsFooData(a))
{

/* some code */

}
#endif

}

Table 4-10 MD_CSL_3453

©2014, Vector Informatik GmbH Version: 2.00.01 27137

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

4.4.2 Bitfields

The data type of bit fields is configurable in the EcuC module and important if
<MSN>StructBoolDataUsage is configured to BITFIELD. According to Table 4-11

/IMICROSAR/EcuC/EcucGeneral/BitFieldDataType the usage of UNSIGNED_INT is the
best choice, but for some compilers the usage of UNSIGNED CHAR is for some reasons
required and you want to live with the MISRA violations.

BitFieldDataType |Description

Literal
INT e does typically not produce a compiler warning
e violates

MISRA Rule 6.4 Bit fields shall only be defined to be of type unsigned int or
signed int.
MISRA Rule 6.5 Bit fields of type signed int shall be at least 2 bits long.
MISRA Rule 10.1 The value of an expression of integer type shall not be
implicitly converted to a different underlying type if: @) it is not a conversion to a
wider integer type of the same signedness, or b) the expression is complex, or
c) the expression is not constant and is a function argument, or d) the
expression is not constant and is a return expression (if TRUE is assigned to
the value as initializer)

UNSIGNED_INT e does typically not produce a compiler warning

e violates no MISRA Rule

UNSIGNED_CHAR ¢ does typically produce a compiler warning like warning C4214: nonstandard
extension used : bit field types other than int

¢ violates MISRA Rule 6.4 Bit fields shall only be defined to be of type unsigned
int or signed int.

UNSIGNED_SHORT

does typically produce a compiler warning like warning C4214: nonstandard
extension used : bit field types other than int

¢ violates MISRA Rule 6.4 Bit fields shall only be defined to be of type unsigned
int or signed int.

Table 4-11 /MICROSAR/EcuC/EcucGeneral/BitFieldDataType

©2014, Vector Informatik GmbH Version: 2.00.01 28 /37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf :

4.4.3 <MSN>_Has Macros in the SELECTABLE Use Case

The usage of <MSN>_Has* macros produces in the SELECTABLE use case compiler
warnings like “The result of this logical operation is always 'false' or ‘true’”. This compiler
warning is up to now acceptable because the compiler detects automatically the case
where the “if” condition is not needed and removes automatically the runtime consuming if
condition. A typical use case is described in the following example code.

Example

The generated CONST or VAR data element accesses by Msn GetFooData () is
needed in all predefined variants. Due to this, the generated Msn HasFooData ()
macro is always true and the compiler warning occurs.

Tlg

#define MSN USE INIT POINTER STD_ ON
#define Msn HasFooData () TRUE

void Msn foo (uint8 a)

{

#1if (MSN USE INIT POINTER == STD ON)
if(Msn:HasfooDaEa()) a
#endif
{
/* some code and process Msn GetFooData () */
}
}

©2014, Vector Informatik GmbH Version: 2.00.01 29/37

Technical Reference MICROSAR ComStackLib VeCtOf [

5 Configuration

ComStackLib based BSW generators can be configured according with CFG5. For a
detailed description see 5.2.

5.1 Configuration Variants

The configuration classes of ComStackLib based BSW generators depend on the
supported configuration variants. For their definitions please see the BSW specific
<MSN>_ bswmd.arxml file.

5.2 Configuration with a GCE

'?] Note

N The configuration parameters, their multiplicity and default values depend on the BSW
module. For their definitions please see the BSW specific <MSN>_bswmd.arxml file.

Container Name <MSN>General
\MICROSAR\<MSN>\<MSN>General
Multiplicity 1.1

Description The general configuration container of the ComStackLib based BSW
configuration

Table 5-1 Container

Attribute Name | Value Description

Type
<MSN>MinimizeNu ENUM This parameter is used to minimize the datatypes of CONFIG-CLASS
mericalDataTypes PRE-COMPILE numerical data based on the used values.

NONE: The datatype is not minimized.

MINIMIZE_NUMERICAL_DATA_TYPES_WITHOUT_CAST: The
datatype of numerical data is minimized. Unsigned data types are not
changed to signed datatypes.

Code: the code size is reduced.
RAM: the RAM size is reduced.
ROM: the ROM size is reduced.
Runtime: no change expected.

©2014, Vector Informatik GmbH Version: 2.00.01 30/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

Attribute Name | Value Description
Type

MINIMIZE_NUMERICAL_DATA_TYPES_WITH_CAST: The datatype of
numerical data is minimized. Unsigned data types can be optimized to
signed datatypes.

Code: the code size is reduced.
RAM: the RAM size is reduced.
ROM: the ROM size is reduced.
Runtime: no change expected.

<MSN>ConstDataD ENUM This parameter is used to deduplicate CONFIG-CLASS PRE-COMPILE
eduplication ROM data.

NONE: The generated data is not deduplicated.

DEDUPLICATE_CONST_DATA_WITHOUT_CAST: The data is
deduplicated without using casts.

Code: no change expected.

RAM: no change expected.

ROM: the ROM size can be minimized.
Runtime: no change expected.

DEDUPLICATE_CONST DATA WITH_CAST: The data is deduplicated
using casts.

Code: no change expected.
RAM: no change expected.

ROM: the ROM size can be minimized more than in
DEDUPLICATE_CONST_DATA WITHOUT_CAST.

Runtime: no change expected.

<MSN>OptimizeCon BOOL This parameter activates/deactivates the capability to generate
stArrays2Define CONFIG-CLASS PRE-COMPILE ROM arrays as constant define.

TRUE: ROM arrays are generated as constant define if all values are
identical.

Code: the code size is smaller.
RAM: no change expected.

ROM: the ROM size is minimized.
Runtime: the runtime is increased.

FALSE: ROM arrays are generated as data even if all values are

identical.
<MSN>OptimizeCon BOOL This parameter activates/deactivates the capability to generate
stVars2Define CONFIG-CLASS PRE-COMPILE ROM constants as constant define.

TRUE: ROM constants are generated as constant define.
Code: the code size is smaller.
RAM: no change expected.

©2014, Vector Informatik GmbH Version: 2.00.01 31/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

Attribute Name | Value Description
Type

<MSN>StructBoolD ENUM
ataUsage

<MSN>Deduplicate BOOL
Zero2NIndirectedDa
ta

<MSN>ReduceBool INT
DataByNegationThr
eshold

©2014, Vector Informatik GmbH

ROM: the ROM size is minimized.
Runtime: the runtime is increased.

FALSE: ROM constants are always generated as data.

This parameter is used to tailor the usage of boolean data in structures
in all CONFIG-CLASSES. The difference between BITFIELD and
BITMASKING depends on your compiler options and memory mapping.

BOOLEAN: The datatype of boolean data is native boolean.
Code: the code size is small.

RAM: no change expected.

ROM: the ROM size is large.

Runtime: the runtime is fast.

BITFIELD: The bitfield type is used and the compiler extracts the
boolean data from structures.

Code: the code size is larger than using BOOLEAN.
RAM: no change expected.

ROM: the ROM size is smaller than using BOOLEAN.
Runtime: the runtime is larger than using BOOLEAN.

BITMASKING: Generated Masks are used to extract the boolean data
from structures.

Code: the code size is larger than using BOOLEAN.

RAM: no change expected.

ROM: the ROM size is smaller than using BOOLEAN.

Runtime: the runtime is larger than using BOOLEAN.

This parameter activates/deactivates the capability to compress 0:N

relational ROM data in all CONFIG-CLASSES without increasing the
runtime.

This option can be used in lib builds and in postbuild configurations.

TRUE: 0:N relational ROM data is compressed without decreasing the
runtime.

Code: no change expected.

RAM: no change expected.

ROM: the ROM size is minimized.
Runtime: no change expected.

FALSE: O:N relational ROM data is not compressed.

This parameter activates/deactivates the capability to compress
boolean CONFIG-CLASS PRE-COMPILE ROM data by using the
negation operator.

Version: 2.00.01 32/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

Attribute Name | Value Description
Type

0: The optimization is not performed.
>0: This is the threshold to activate the data optimization.

Code: the code size is increased due to the usage of the negation
operator in the data access.

RAM: no change expected.
ROM: the ROM size is minimized.

Runtime: the runtime is increased due to the usage of the negation
operator in the data access.

<MSN>ReduceNum INT This parameter activates/deactivates the capability to compress
ericalDataByOffsetT numerical CONFIG-CLASS PRE-COMPILE ROM data by using a
hreshold constant offset.

0: The optimization is not performed.
>0: This is the threshold to activate the data optimization.

Code: the code size is increased due to the usage of the constant offset
operation in the data access.

RAM: no change expected.
ROM: the ROM size is minimized.

Runtime: the runtime is increased due to the usage of the constant
offset operation in the data access.

<MSN>ReduceBool INT This parameter activates/deactivates the capability to compress
DataByNumericalCo boolean CONFIG-CLASS PRE-COMPILE ROM data by using
mparisonThreshold comparison with other ROM data.

0: The optimization is not performed.
>0: This is the threshold to activate the data optimization.

Code: the code size is increased due to the usage of the operation in
the data access.

RAM: no change expected.
ROM: the ROM size is minimized.

Runtime: the runtime is increased due to the usage of the operation in
the data access.

<MSN>ReduceBool INT This parameter activates/deactivates the capability to compress
DataByNumericalRe boolean CONFIG-CLASS PRE-COMPILE ROM data by using relational
lationThreshold comparison with other ROM data.

0: The optimization is not performed.
>0: This is the threshold to activate the data optimization.

Code: the code size is increased due to the usage of the operation in
the data access.

RAM: no change expected.
ROM: the ROM size is minimized.

Runtime: the runtime is increased due to the usage of the operation in
the data access.

©2014, Vector Informatik GmbH Version: 2.00.01 33/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

Attribute Name | Value Description
Type

<MSN>ReduceNum INT
ericalDataByArrayS
ubtractionThreshold

<MSN>Deduplicate ENUM
BoolDataByNumeric
alComparision

<MSN>ReduceData BOOL
ByStreaming

©2014, Vector Informatik GmbH

This parameter activates/deactivates the capability to compress
numerical CONFIG-CLASS PRE-COMPILE ROM data by using a
subtraction with other ROM data.

0: The optimization is not performed.
>0: This is the threshold to activate the data optimization.

Code: the code size is increased due to the usage of the operation in
the data access.

RAM: no change expected.
ROM: the ROM size is minimized.

Runtime: the runtime is increased due to the usage of the operation in
the data access.

This parameter is used to tailor the CONFIG-CLASS PRE-COMPILE
ROM data deduplication mechanisms. A comparison with 0 is very
efficient, but a numerical comparison with a value not 0 can be used to
increase the ROM data compression rate.

NONE: ROM data deduplications are switched off.
Code: the code size is small.

RAM: no change expected.

ROM: the ROM size is large.

Runtime: the runtime is fast.

DEDUPLICATE_DATA_WITH_ZERO: ROM data deduplications can be
applied with the value 0.

Code: the code size is larger than using NONE
RAM: no change expected.

ROM: the ROM size is smaller than using NONE.
Runtime: the runtime is larger than using NONE.

DEDUPLICATE_DATA WITH_ANY_VALUE: ROM data deduplications
can be applied with any numerical value.

Code: the code size is larger than using NONE
RAM: no change expected.

ROM: the ROM size is smaller than using
DEDUPLICATE_DATA_WITH_ZERO.

Runtime: the runtime is larger than using NONE.

This parameter activates/deactivates the capability to pack generated
CONFIG-CLASS PRE-COMPILE ROM data into a data type dependent
stream.

TRUE: generated const data is packed into a data type dependent
stream.

Code: no change expected.

Version: 2.00.01 34/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtor [

Attribute Name Value Description
Type
RAM: no change expected.
ROM: configuration dependent smaller than with FALSE.
Runtime: no change expected.

FALSE: generated const data is not packed into a data type dependent
stream.

Table 5-2 Attributes of ComStackLib based BSW generators

©2014, Vector Informatik GmbH Version: 2.00.01 35/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib VeCtOf [

6 Glossary and Abbreviations

6.1 Glossary

Term Description

BSWMD The BSWMD is a formal notation of all information belonging to a certain
BSW artifact (BSW module or BSW cluster) in addition to the
implementation of that artifact.

CFG5 Generation tool for MICROSAR components.

Electronic Control Also known as ECU. Small embedded computer system consisting of at

Unit least one CPU and corresponding periphery which is placed in one
housing.

Post-build This type of configuration is possible after building the software module or

the ECU software. The software may either receive parameters of its
configuration during the download of the complete ECU software resulting
from the linkage of the code, or it may receive its configuration file that
can be downloaded to the ECU separately, avoiding a re-compilation and
re-build of the ECU software modules. In order to make the post-build
time reconfiguration possible, the reconfigurable parameters shall be
stored at a known memory location of ECU storage area.

Table 6-1 Glossary

6.2 Abbreviations

Abbreviation Description

API Application Programming Interface

AUTOSAR Automotive Open System Architecture

BSW Basis Software

ECU Electronic Control Unit

HIS Hersteller Initiative Software

MICROSAR Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

MISRA Motor Industry Software Reliability Association

RAM Random Access Memory

ROM Read-Only Memory

SWS Software Specification

Table 6-2 Abbreviations

©2014, Vector Informatik GmbH Version: 2.00.01 36/37

based on template version 5.5.0

Technical Reference MICROSAR ComStackLib

7 Contact

Visit our website for more information on

> News

> Products

> Demo software
> Support

> Training data

> Addresses

www.vector.com

©2014, Vector Informatik GmbH

Version: 2.00.01

vactor’

37137

	1 Component History
	2 Introduction
	2.1 Architecture Overview

	3 Functional Description
	3.1 CONFIG-CLASS of Data
	3.2 CONFIG-CLASS PRE-COMPILE Optimizations
	3.2.1 Optimize Const Data to Defines
	3.2.2 Optimize Data Types
	3.2.3 Optimize Bool Data in Structs
	3.2.4 Data Deduplication and Reduction
	3.2.4.1 Equal Data
	3.2.4.2 Unary and Binary Operations

	3.2.5 Data Streaming

	3.3 CONFIG-CLASS Independent Optimizations
	3.3.1 Sort Struct Elements

	3.4 SELECTABLE Optimizations
	3.4.1 Merge of VAR and CONST Based Data

	4 Integration
	4.1 Dynamic Files
	4.2 IMPLEMENTATION-CONFIG-VARIANT dependent Data
	4.3 Optimization Levels
	4.4 MISRA, PRQA and Compiler Warnings
	4.4.1 General
	4.4.2 Bitfields
	4.4.3 <MSN>_Has Macros in the SELECTABLE Use Case

	5 Configuration
	5.1 Configuration Variants
	5.2 Configuration with a GCE

	6 Glossary and Abbreviations
	6.1 Glossary
	6.2 Abbreviations

	7 Contact

