

ECU-C File Handling
Technical Reference

Version 1.13

Authors: Michael Schuele, Matthias Wernicke

Version: 1.13

Status: released (in preparation/completed/inspected/released)

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

2 / 34

History

Author Date Version Remarks

M. Schuele 2009-02-19 0.1.0 Initial version

M. Schuele 2009-04-11 1.0.0 final version

M. Wernicke 2009-04-17 1.1 Review and update

M. Schuele 2009-08-03 1.2 Added description of difference dialog

M. Schuele 2010-01-27 1.3 Added new ECU-C parameters for DaVinci 3.0

M. Wernicke 2010-01-28 1.4 Review and update

M. Schuele 2010-05-05 1.5 Introduced different but equivalent parameter values

M. Schuele 2010-05-14 1.6 Added new ECU-C parameters for DaVinci 3.0 SP2

M. Schuele 2010-07-20 1.7 Added new ECU-C parameters for DaVinci 3.0 SP3

M. Schuele 2010-11-29 1.8 Added new ECU-C parameters for DaVinci 3.0 SP4

M. Schuele 2011-05-06 1.9 ComTimeoutFactor synchronization is configurable

M. Schuele 2012-02-02 1.10 Added new ECU-C parameters for DaVinci 3.0 SP5 and 3.1

M. Schuele 2012-08-30 1.11 Added a note about AUTOSAR 4

M. Schuele 2013-05-03 1.12 Added new ECU-C parameters for DaVinci 3.5

M. Schuele 2014-03-27 1.13 Added SchM config to Rte section

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

3 / 34

Contents

1 Overview ... 5

1.1 Intended Audience .. 5

1.2 Terms and Acronyms ... 5

2 The ECU-Configuration Process ... 7

2.1 The ECU-Configuration File .. 8

3 DaVinci DEV and the ECU-C file .. 11

3.1 Project Assistant... 11

3.2 Initial synchronization (bi-directional update) .. 11

3.3 Automatic synchronization .. 12

3.4 ECU-C file locking ... 12

3.5 BSWMD files ... 13

3.5.1 Pre- and Recommended config sections ... 13

3.6 Synchronizing an ECU-C file ... 13

3.6.1 Step 1: Analysis of the RTE configuration in the workspace 14

3.6.2 Step 2: Comparison of workspace and ECU-C file .. 15

3.6.3 Synchronization direction “import” ... 16

3.6.4 Synchronization direction “export” ... 16

3.6.5 ECU-Configuration difference dialog ... 16

4 ECU-Configuration parameters ... 18

4.1 Vendor Specific Configuration Parameters .. 18

4.2 Rte module ... 18

4.2.1 Parameters ... 18

4.3 SchM module .. 19

4.3.1 General ... 19

4.3.2 Parameters ... 20

4.3.3 Rte .. 20

4.3.4 Os 20

4.4 Com module.. 21

4.4.1 Parameters ... 21

4.4.2 Equivalent parameter values ... 22

4.4.2.1 ComTimeoutFactor ... 23

4.5 Os module .. 23

4.5.1 Parameters ... 23

4.5.2 Equivalent parameter values ... 26

4.6 NvM module .. 26

4.6.1 Parameters ... 26

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

4 / 34

4.6.2 Equivalent parameter values ... 27

4.7 Board .. 27

4.7.1 Parameters ... 27

4.7.2 Equivalent parameter values ... 28

4.8 ComSignals and ComSignalGroups .. 28

4.8.1 dbc files ... 28

4.8.2 ECU-Extract .. 28

4.8.3 AUTOSAR 2.1 ... 29

4.8.4 AUTOSAR 3.x ... 29

4.8.5 Relevant ComSignals .. 29

4.8.6 Callbacks .. 29

5 Best practices .. 31

5.1 Always work on the latest communication databases 31

5.2 Do not edit the same module configuration in different tools at the same
time ... 31

5.3 Ensure that all tools use the same max. SHORT-NAME length 32

5.4 ECU-C files have to be valid according to the AUTOSAR schema 32

5.5 Configuration elements must have unique SHORT-NAMEs 33

6 Contact ... 34

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

5 / 34

1 Overview

DaVinci Developer is part of Vector’s solution for AUTOSAR compatible ECU
development. It is used to configure and generate the Rte in AUTOSAR 3.x based projects
and therefore interacts with other BSW configurators through the ECU-Configuration file.

This document describes the configuration process related to DaVinci Developer from a
technical point of view, trying to give the user a better understanding of the internal
processes and how the tool reacts in different situations.

Note

Starting with DaVinci Developer 3.3, AUTOSAR 4.0 based software designs can be

created and edited. However, the configuration and generation of the AUTOSAR 4.0

Rte has been moved from DaVinci Developer to DaVinci Configurator Pro. Therefore

this document is only relevant for AUTOSAR 3.x based projects.

1.1 Intended Audience

This document aims at ECU developers who are involved in the AUTOSAR compatible
ECU-Configuration process and use DaVinci Developer to configure and generate the Rte
module.

As DaVinci DEV updates the ECU-Configuration file automatically during save and load of
a workspace, the presented information is not essential when working with the tools but
provides some additional information how the ECU-Configuration process is handled
behind the scenes.

1.2 Terms and Acronyms

Term Definition

DaVinci DEV DaVinci Developer

NWD Network Designer

AR AUTOSAR – Automotive Open System Architecture

GUI Graphical user interface

Rte Runtime environment

BSW Basic Software

BSWMD Basic Software Module Description

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

6 / 34

ECU-C file ECU-Configuration file

ECU-C-Synchronization Synchronization of DaVinci DEV workspace with the

data in an ECU-C file

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

7 / 34

2 The ECU-Configuration Process

Vector
DaVinci DEV

ECU Extract of
System Description

SW-Components

Communication

Vector
DaVinci

Configurator Pro

RTE

ECU Cfg
Descr

BSW

Basic Software
Module Description

Figure 2-1 Basic SW Configuration process

Figure 2-1 displays the ECU configuration process as it is supported by Vector’s
AUTOSAR solution. All configuration tools read from and write to a common ECU-
Configuration file which will be used by the different BSW code generators after the
configuration of all modules has been completed.

The various BSW modules are part of different layers of the AUTOSAR stack with the Rte
lying on top. Whenever one module utilizes another one its configuration likely depends on
the configuration of the utilized module and the configurator has to read or even write not
only the configuration section corresponding to his own module but also the section of the
other module.

Since this document is focused on DaVinci DEV, chapter 4 describes the dependencies of
the Rte configuration on other module configurations in detail. But before going into
details, the next section provides some basic knowledge about the ECU-Configuration file
structure.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

8 / 34

2.1 The ECU-Configuration File

AUTOSAR specifies all configuration parameters of a BSW module as a so called
„Standardized Module Definition“. These definitions are contained in an XML-Document
(AUTOSAR_EcucParamDef.arxml) and are modeled according to the „ECU Configuration
Parameter Definition Meta model“.

To support vendor specific configuration parameters, BSW modules may provide a
BSWMD („Vendor Specific Module Definition“) file which includes the standardized
parameter definitions for the particular module and defines additional parameters.
Additionally, a BSWMD may contain a section with a pre-configuration, i.e. parameter
values which cannot be changed, or a section with a recommended configuration, i.e.
parameter values which are appropriate for most use cases but can still be changed.

BSWMD files define which parameters are available to configure a BSW module, an
example is given in Figure 2-2. The ECU-Configuration file contains the actual parameter
values, i.e. the configuration of the modules used on a specific ECU, an example is given
in Figure 2-1.

Figure 2-2 Configuration parameter definition of “ComBitPosition” in the BSWMD file

<AUTOSAR>
 <TOP-LEVEL-PACKAGES>
 <AR-PACKAGE>
 <SHORT-NAME> MICROSAR</SHORT-NAME>
 <ELEMENTS>
 <MODULE-DEF>
 <SHORT-NAME> Com</SHORT-NAME>
 <CONTAINERS>
 <PARAM-CONF-CONTAINER-DEF>
 <SHORT-NAME> ComConfig</SHORT-NAME>
 <SUB-CONTAINERS>
 <PARAM-CONF-CONTAINER-DEF>
 <SHORT-NAME> ComSignal</SHORT-NAME>
 <PARAMETERS>
 <INTEGER-PARAM-DEF>
 <SHORT-NAME> ComBitPosition</SHORT-NAME>
 <MAX>63</MAX>
 <MIN>0</MIN>

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

9 / 34

Figure 2-3 Value specification for configuration parameter “ComBitPosition” in the ECU-C file

The two files are connected by means of standard AUTOSAR references as defined in the
specification „Model Persistence Rules for XML“. A parameter is configured in the ECU-C
file by referencing its parameter definition element included in the BSWMD file (via
<DEFINITION-REF>) and defining the actual value (highlighted in red in the given
examples).

<AUTOSAR>
<TOP-LEVEL-PACKAGES>

<AR-PACKAGE>
<SHORT-NAME>MyProject</SHORT-NAME>
<ELEMENTS>

<ECU-CONFIGURATION>
<SHORT-NAME>MyEcu</SHORT-NAME>
<ECU-EXTRACT-REF DEST="SYSTEM">

/VehicleProject/ReceiverEcu
</ECU-EXTRACT-REF>
<MODULE-REFS>

<MODULE-REF DEST="MODULE-CONFIGURATION">
/MyProject/Com

</MODULE-REF>
</MODULE-REFS>

</ECU-CONFIGURATION>

<MODULE-CONFIGURATION>
<SHORT-NAME>Com</SHORT-NAME>
<DEFINITION-REF DEST="MODULE-DEF">

/AUTOSAR/Com
</DEFINITION-REF>
<CONTAINERS>

<CONTAINER>
<SHORT-NAME>ComConfig</SHORT-NAME>
<DEFINITION-REF DEST="PARAM-CONF-CONTAINER-DEF">

/AUTOSAR/Com/ComConfig
</DEFINITION-REF>
<SUB-CONTAINERS>

<CONTAINER>
<SHORT-NAME>Signal_1</SHORT-NAME>
<DEFINITION-REF DEST="PARAM-CONF-CONTAINER-DEF">

/AUTOSAR/Com/ComConfig/ComSignal
</DEFINITION-REF>
<PARAMETER-VALUES>

<INTEGER-VALUE>
<DEFINITION-REF DEST="INTEGER-PARAM-DEF">
/AUTOSAR/Com/ComConfig/ComSignal/ComBitPosition

</DEFINITION-REF>
<VALUE>7</VALUE>

</INTEGER-VALUE>
[…]

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

10 / 34

As each BSW module’s parameters are defined in a separate <MODULE-DEF>, one

<MODULE-CONFIGURATION> is needed for each of the BSW modules. The complete

configuration of the ECU is defined by <ECU-CONFIGURATION> which references all

relevant BSW module configurations.

All “Standardized Module Definitions” are included in a package named “AUTOSAR” and
only those are allowed to be placed there. “Vendor Specific Module Definitions” must be
included in a different package; Vector modules use “MICROSAR” as the package name.
Since it is required that custom BSWMD files must include all standardized parameters as
well, the package name is visible in all references to the parameter definitions. Hence,
switching to another BSWMD requires adaption of all corresponding references in the
ECU-C file.

As already mentioned, a module’s configuration may depend on the settings of another
module. In this case a reference parameter contains an AUTOSAR reference as its value,
pointing into the configuration of the other module, e.g. the runnable mapping of the Rte
module configuration references the task of the Os configuration it is mapped to via
<VALUE-REF DEST="CONTAINER">/MyProject/Os/Task1</VA LUE-REF>.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

11 / 34

3 DaVinci DEV and the ECU-C file

As displayed in Figure 2-1, DaVinci DEV is used to configure and eventually generate an
AUTOSAR compatible RTE. Obviously this requires reading from and writing to the Rte
module configuration in the ECU-C file, but also to other modules, which directly interface
the RTE (called depending modules within this document). Depending modules are Com,
NvM and Os. These modules may be read and/or changed, too. Some of these foreign
parameters are directly visible and changeable; some are automatically derived from other
settings or the software design. Some parameters are needed to ensure that the
generated code of different BSW generators matches regarding used and/or provided
APIs, handles and other interface related code. Details about the affected parameters and
their sources or relation to the Rte configuration are given in chapter 4.

3.1 Project Assistant

The most convenient way to create a new ECU-C file is the Project Assistant (available via
the menu item File | Project Assistant). The Project Assistant automatically creates one or
more1 ECU-C files based on an ECU Extract of System Description and a SIP (Software
Integration Package) from Vector, and sets up an ECU-Project in DaVinci DEV.

3.2 Initial synchronization (bi-directional update)

To update an existing ECU-C file created by any third party tool without involving DaVinci
DEV, you have to open the properties dialog of the ECU-Project (see Figure 3-1). The
“select file” button (labeled “…”) shows a “File Open” dialog where an existing ECU-C file
can be selected. The selected file is analyzed and if the configuration does not match the
workspace settings, a synchronization dialog is displayed (this is explained in detail in
section3.6.1). When the properties dialog is closed the ECU-C file will be assigned to the
ECU-Project. To perform the synchronization process again, you can then select
“Synchronize ECU-Configuration” from the context menu of the ECU-Project.

1
 Several ECU-C files are created if „one file per module“ is selected in the „Output Paths“ section.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

12 / 34

Figure 3-1 ECU-C file reference in the ECU-Project properties dialog

Before the Rte generator is started, DaVinci DEV checks if the ECU-Project has an ECU-C
file assigned and automatically executes the synchronization process. This ensures that
the current workspace settings reflect the settings in the ECU-C file and that the ECU-C
file contains the current configuration of the workspace. Both configurations must match
because all code generators of the different modules have to work with exactly the same
ECU configuration data.

3.3 Automatic synchronization

Once the ECU-C file is assigned to the ECU-Project it is checked for consistency during
every load or save of the workspace. This ensures that other tools always work with a
consistent configuration.

3.4 ECU-C file locking

The tools DaVinci Configurator, DaVinci Developer and GENy implement a locking
mechanism to ensure that the user edits a specific configuration only in a single tool at a
time. If the configuration is changed and not yet saved in one tool the other tools consider
the configuration as read-only and display this state accordingly. This mechanism targets
on a single user’s daily work, it does not support distributed development or multi-user
scenarios.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

13 / 34

3.5 BSWMD files

The ECU-Project properties dialog allows selecting the BSWMD files for each of the
potentially modified modules. These files are needed for two reasons:

n Since configuration parameters are identified through an absolute reference to their
parameter definition, the name of the root package in the BSWMD file has to be
known.

n DaVinci DEV only exports Vector specific configuration parameters if the
corresponding BSWMD file is assigned to the ECU-Project.

The selection of a specific BSWMD file for the Rte is not required because DaVinci DEV
only configures the Vector’s MICROSAR RTE, which is based on the standard AUTOSAR
BSWMD file of the RTE.

If the ECU-C file follows the AUTOSAR Releases 2.1 Specification, DaVinci DEV uses the
standard module definitions, <DEFINITION-REF> values therefore begin with

“/AUTOSAR”.

If the ECU-C file follows the AUTOSAR Releases 3.x Specification, DaVinci DEV implicitly
uses the Rte BSWMD file, <DEFINITION-REF> values therefore begin with

“/MICROSAR”.

If there’s a mismatch between the configured BSWMD file and the module configuration in
the ECU-C file (e.g. the BSWMD file’s package name is MICROSAR and the ECU-C file’s

module configuration references an AUTOSAR package), the definition of the ECU-C file is

used. A message about this misconfiguration is written to the “Action Log” window saying:

ActionLog output

Inconsistent BSWMD configuration detected:

/MICROSAR/Os is defined by BSWMD file D:\BSWMD_file s\Os_bswmd.arxml
 /AUTOSAR/Os is used by ECU-C file D:\ECU_1_ecuc.a rxml

using ECU-C definition

The misconfiguration can be detected because the module names are standardized, i.e.
the <DEFINITION-REF> of a <MODULE-CONFIGURATION> always follows the rule
/[MODULE-DEF-PACKAGE-NAME]/[standardized module nam e].

3.5.1 Pre- and Recommended config sections

DaVinci DEV in general does not evaluate Pre- and/or Recommended Module
Configuration sections in the BSWMD or any other file. However, one exception exists for
the Os where a preconfigured OsCounter is set as an Alarm’s OsAlarmCounterRef by
default (see 4.5.1).

3.6 Synchronizing an ECU-C file

Synchronizing an ECU-C file is necessary if the configuration of the RTE does not match
to the configuration of the depending modules (see section 4 for a detailed description of

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

14 / 34

the parameters for each module). The synchronization process can be divided into several
steps which will be explained in the following sections.

3.6.1 Step 1: Analysis of the RTE configuration in the workspace

In the first step the settings of the workspace (more precisely, the ECU project) are
analyzed and all additionally derived attributes are calculated. In general, there are two
different categories of settings.

The first category (explicit parameters) includes settings which are directly configured by
the user in DaVinci DEV or derived from this configuration because of standardized rules
given in AUTOSAR’s System Template Specification chapter “Harmonisation between
Upstream Templates and ECU Configuration”.

The second category (implicit parameters) includes implementation dependant settings
which are determined by the Rte generator and consists of those Os module configuration
elements which are written by DaVinci DEV and are not visible to the user (see section 4.5
for details).

To ensure that the determined configuration is consistent the corresponding ECU-Project
is checked for a correct design. If DaVinci DEV detects an error the dialog in Figure 3-2 is
shown.

Figure 3-2 ECU-Project is inconsistent

In this case the implicit parameters won’t be available in the next steps. Depending on the
next actions this may remove already existing implicit parameters from the configuration
although this was not intended. Therefore the dialog is shown to indicate that there is a
problem which should be fixed if a correct Os configuration is needed. The design errors
are displayed in the “Messages” tab and should be checked for a more detailed description
of the problem.

If DaVinci DEV did not detect any problems or the user wants to continue anyway, the Rte
generator is called which determines all required Os elements. Since some design
constraints are currently not checked by DaVinci DEV additional checks are performed by
the Rte generator. The dialog in Figure 3-3 is shown if the Rte generator aborted and
reported an error. The detailed error message is available in the “Code Generator Log” tab.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

15 / 34

Figure 3-3 The Rte generator detected an inconsistent system design

3.6.2 Step 2: Comparison of workspace and ECU-C file

If all parameters could be derived, the given ECU-C file is imported and the settings of the
workspace are compared to the settings of the ECU-C file. If differences were detected the
dialog in Figure 3-4 is shown. The user can then select whether the settings of the ECU-C
file should be imported (direction “<<”), i.e. the ECU-Project should be changed according
to the settings in the ECU-C file, or if the settings of the ECU-Project should be exported,
i.e. the ECU-C file should be changed according to the settings in the ECU-Project
(direction “>>”). Remember that an export might remove existing Os elements from the
ECU-C file if the ECU-Project is inconsistent but the previously shown dialog (Figure 3-2)
was closed with “Yes” (“export anyway”).

Figure 3-4 ECU-C-Synchronization dialog

On the left side the dialog displays the timestamp of the last synchronization of the ECU-
Project, and on the right side the “last modified” timestamp of the ECU-C file is displayed.
Since both the ECU-C file and the ECU-Project can be edited in parallel there’s no rule of
thumb to decide which synchronization direction has to be chosen without considering
additional information. Therefore the “Details…” button shows a dialog with the actual
differences of both configurations. Section 3.6.5 describes the dialog in detail.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

16 / 34

Chapter 5 shows some practical approaches, which makes it easier for the user to avoid
errors like selecting the wrong synchronization direction or to run a synchronization
process even though it is not required to do so.

Chapter 4 shows in details, which parameters are affected or relevant for DaVinci DEV.

The next sections describe what happens if the user selects “import” or “export”.

3.6.3 Synchronization direction “import”

If “import” is selected, the ECU-Project is changed according to the settings of the ECU-C
file. If one of the modules Rte, Os, Com, NvM is not configured in the ECU-C file the user
is asked if he wants to delete the corresponding settings in the ECU-Project as well or if
they should be kept as they are. This is useful if the user already added a task mapping in
DaVinci DEV but did not yet configure the Os module. When the import has completed the
new ECU-Project settings are analyzed again and the resulting configuration parameters
are compared to the ECU-C file settings. This is necessary because changes of the Rte
configuration might result in additional changes of the Com or Os configuration. If this is
the case the user is asked if he wants to update the corresponding module configuration in
the ECU-C file or not (Figure 3-5). Depending on the user’s role he might be allowed to
change the Os or Com configuration or he has to confer with the responsible person at
first.

Again, the “Details…” button allows to further investigate the actual differences between
the ECU-Project’s implicit configuration and the settings from the ECU-C file.

Figure 3-5 Module specific ECU-Configuration update dialog

3.6.4 Synchronization direction “export”

If “export” is selected, the ECU-C file is changed according to the settings of the ECU-
project. This means that the explicit parameters are written to the file. Then it is checked if
other module configurations have to be updated with implicit parameters, e.g.
ComCallbacks or Os elements. If this is the case, DaVinci DEV asks the user to decide if
the corresponding module configuration in the ECU-C file should be updated or not (Figure
3-5).

Again, the “Details…” button allows to further investigate the actual differences between
the ECU-Project’s implicit configuration and the settings from the ECU-C file.

3.6.5 ECU-Configuration difference dialog

The ECU-Configuration difference dialog helps the user to decide about his further actions
whenever the configurations of the ECU-Project and the ECU-C file are inconsistent. It

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

17 / 34

may be opened from the ECU-C synchronization dialog described in section 3.6.2 as well
as the dialogs from sections 3.6.3 and 3.6.4 which are displayed for each module
configuration.

Figure 3-6 ECU-Configuration difference dialog

The dialog displays the relevant module configurations and a status icon indicating if there
are inconsistencies () or if the settings in the ECU-Project and the ECU-C file are equal

() or equivalent (). Values which are not set in the ECU-Project (either explicit or
implicit parameters) are not displayed in the dialog unless it is required that these values
have to be removed from the ECU-C file as well.

If there are only small changes in a complex configuration the “Show conflicts only” option
may be used to reduce the displayed parameters to those which are considered
inconsistent.

Figure 3-6 shows an example where a new task “EventTask” was added in DaVinci DEV
and a Runnable was moved from “ControlTask” to the new task. The SensorTask’s
attribute “TaskType” is displayed as equivalent because “AUTO” is the default value if no
specific attribute value is set in the ECU-C file.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

18 / 34

4 ECU-Configuration parameters

The following sections list the parameters and/or containers which are read and/or written
by DaVinci DEV. All other parameters/containers in the ECU-C file do not affect the RTE.
They can be changed in the ECU-C file without need of synchronizing the workspace.

For some parameters it is allowed that the ECU-Project and the ECU-C file contain
different values. These parameters and the corresponding rules are given in the following
sections as well. Remember these values are not displayed in the difference dialog if the
ECU-Project’s parameter has no specific value.

4.1 Vendor Specific Configuration Parameters

Vendor specific configuration parameters for Microsar Modules are specified in each
module’s BSWMD file which is named <Modulename>_bswmd.arxml. These parameters
are marked with (MICROSAR) in the following sections.

4.2 Rte module

4.2.1 Parameters

Rte module configuration

Parameter Read/Write

RteVfbTrace r/w

RteVfbTraceFunction r/w

RteA2LVersion (MICROSAR) r/w

RteXcpEventSupport (MICROSAR) r/w

RteMeasurementSupport r/w

RteCalibrationSupport r/w

RteCalibrationBufferSize r/w

RteOptimizationMode r/w

RteTaskConfiguration (MICROSAR) r/w

 RteTaskUsesSchedule (MICROSAR) r/w

 RteTaskRef (MICROSAR) r/w

SwComponentInstance/ r/w

 ImplementationRef w

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

19 / 34

 ServiceComponentPrototypeRef w

 SoftwareComponentPrototypeRef w

 ExclusiveAreaImplementation r/w

 NvRamAllocation/ r/w

 SwNvRamMappingReference r/w

 NvmBlockRef r/w

 RunnableEntityMapping/ r/w

 ActivationOffset r/w

 PositionInTask r/w

 RTEEventRef (resolved to Runnable) r/w

 MappedToTaskRef r/w

 RteCyclicTriggerImplementation (MICROSAR) r/w

ComponentTypeCalibration/

 CalibrationSupportEnabled r/w

Table 4-1 Rte configuration parameters

These settings are configured in DaVinci DEV at ECU-Project level.

Please note:

• The implementation selection is not read since DaVinci DEV always assumes that
only one implementation per atomic component type exists.

• RteCyclicTriggerImplementation is not visible in DaVinci DEV and cannot be
modified.

• RteTaskConfiguration settings are displayed in the Os section in the ECU-
Configuration difference dialog (3.6.5).

4.3 SchM module

4.3.1 General

The SchM module configuration is never changed by DaVinci DEV; it is only used as the
read-only master configuration for RunnableEntityMappings of ServiceComponentTypes
and the “Role” attribute of an OsTask.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

20 / 34

4.3.2 Parameters

SchM module configuration

Parameter Read/Write

SchMMainFunctionMapping/ r

 SchMMainFunctionSymbol r

 SchMBswActivationOffset r

 SchMMappedToTask r

 SchMPositionInTask r

Table 4-2 SchM configuration parameters

4.3.3 Rte

The SchM module configuration contains a task mapping for BSW functions similar to the
RTEEvent mapping in the Rte module configuration. If these BSW functions are
represented by a Runnable of a corresponding ServiceComponentType the mapping of its
RTEEvents to an OsTask has to be added to the Rte module configuration.

If DaVinci DEV detects a SchMMainFunctionMapping for a Runnable2 of a
ServiceComponentType used in the ECUProject, a corresponding virtual
RunnableEntityMapping is derived automatically. The mapping is called virtual because it
is only displayed in the ECU-Configuration difference dialog and not automatically added
to the Rte ECU-Configuration section. This has to be done by the usual synchronization
mechanism, i.e. the new RunnableEntityMapping has to be imported in DaVinci DEV and
exported to the Rte ECU-Configuration section.

If the Runnable of the ServiceComponentType is already mapped to another OsTask in
DaVinci DEV, the mapping will be adapted to ensure both SchM and the Rte use the same
OsTask. As the actual position of a runnable within a task is not used by the Rte generator
in this context, DaVinci DEV does not modify PositionInTask if it differs from
SchMPositionInTask.

Whenever DaVinci DEV adds a virtual RunnableEntityMapping or modifies the OsTask of
an existing RunnableEntityMapping a log message is written to the Action Log.

4.3.4 Os

DaVinci DEV sets the “Role” attribute of an OsTask to “BSW Scheduler” if it is referenced
by any SchMMainFunctionMapping container.

2
 the Runnable is found by matching its name with the value of SchMMainFunctionSymbol

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

21 / 34

4.4 Com module

4.4.1 Parameters

Com module configuration

Parameter Read/Write

ComSignal/ w

 ShortName (r)

 ComDataInvalidAction w

 ComInvalidNotification w

 ComSignalDataInvalidValue w

 SystemTemplateSystemSignalRef (r)/w

 ComSignalInitValue w

 ComErrorNotification w

 ComNotification w

 ComTimeoutNotification w

 ComTimeoutFactor w

 ComSignalType w

 ComFilter/

 ComFilterAlgorithm w

 ComFilterMask w

ComSignalGroup/ w

 ShortName (r)

 ComDataInvalidAction w

 ComErrorNotification w

 ComInvalidNotification w

 ComNotification w

 ComTimeoutFactor w

 ComTimeoutNotification w

 SystemTemplateSignalGroupRef (r)/w

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

22 / 34

 ComGroupSignal/ (r)/w

 ShortName (r)

 ComSignalDataInvalidValue w

 ComSignalInitValue w

 ComSignalType w

 SystemTemplateSystemSignalRef (r)/w

 ComFilter/

 ComFilterAlgorithm w

 ComFilterMask w

Table 4-3 Com configuration parameters

For simplicity, only the term “ComSignal” is used in the following explanation but the basic
principle is true for ComSignalGroups, too.

DaVinci DEV assumes that the same communication database has been used to setup the
workspace as well as the ComSignals in the ECU-C file (which is done by the BSW
Configuration Tool by importing e.g. a dbc file or an AUTOSAR ECU Extract of System
Description). Therefore, DaVinci DEV does not import ComSignals.

“(r)” means that either the ShortName or the SystemTemplateSignalRef is read to identify
the ComSignal and store its name to be able to use correct ComSignal handles in the
generated Rte code.

Please see section 4.8 for details about ComSignals and usage of their symbolic handles.

4.4.2 Equivalent parameter values

Com module configuration

Parameter Equivalence rule

ComSignal/

 ComDataInvalidAction Parameter values “NONE” and “” (undefined attribute value) are equivalent

 ComInvalidNotification ECU-Project parameter is set but ECU-C file contains a non-Rte callback

 ComSignalInitValue ECU-Project parameter is not set (InvalidAction is not set to “Replace”)

 ComErrorNotification ECU-Project parameter is set but ECU-C file contains a non-Rte callback

 ComNotification ECU-Project parameter is set but ECU-C file contains a non-Rte callback

 ComTimeoutNotification ECU-Project parameter is set but ECU-C file contains a non-Rte callback

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

23 / 34

 ComTimeoutFactor ECU-C file value is greater than 0 but less than ECU-Project value

Starting with DaVinci Developer 3.0 SP3 this depends on the workspace

setting “SWC Alive Timeout overrides ComSignal” (see 4.4.2.1)

ComSignalGroup/

 ComDataInvalidAction Parameter values “NONE” and “” (undefined attribute value) are equivalent

 ComErrorNotification ECU-Project parameter is set but ECU-C file contains a non-Rte callback

 ComInvalidNotification ECU-Project parameter is set but ECU-C file contains a non-Rte callback

 ComNotification ECU-Project parameter is set but ECU-C file contains a non-Rte callback

 ComTimeoutFactor ECU-C file value is greater than 0 but less than ECU-Project value

Starting with DaVinci Developer 3.0 SP3 this depends on the workspace

setting “SWC Alive Timeout overrides ComSignal” (see 4.4.2.1)

 ComTimeoutNotification ECU-Project parameter is set but ECU-C file contains a non-Rte callback

 ComGroupSignal/

 ComSignalInitValue ECU-Project parameter is not set (InvalidAction is not set to “Replace”)

Table 4-4 Com equivalent parameter value rules

If a ComSignal’s callback is already set to a non-Rte callback this configuration is
accepted but a message is displayed which contains the ComSignal name and the
callback name. In this configuration the user is in charge to ensure that the Rte’s callback
function is called.

4.4.2.1 ComTimeoutFactor

Depending on the design approach, the ComTimeoutFactor may be specified by the
communication design or should be updated based on the software design. To support
both strategies, a workspace specific setting allows specifying how to synchronize the
ComTimeoutFactor: “never”, only if the value of the software design is lower than the
current ComTimeoutFactor value or “always”.

4.5 Os module

4.5.1 Parameters

The column “Category“ of the following table specifies if the user can edit the
corresponding parameter (“DEV“) or if it is automatically derived by the Rte code generator
(“Rte generator“).

Os module configuration

Parameter Read/Write Category

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

24 / 34

OsAlarm/ w Implicit

 OsAlarmAccessingApplication w Implicit

 OsAlarmAction/ Implicit

 OsAlarmActivateTask/ Implicit

 OsAlarmActivateTaskRef w Implicit

 OsAlarmSetEvent/ Implicit

 OsAlarmSetEventRef w Implicit

 OsAlarmSetEventTaskRef w Implicit

 OsAlarmCounterRef w Explicit

OsEvent/ w Implicit

 OsEventMask w Implicit

OsApplication/ w Explicit / Implicit

 OsTrusted r/w Explicit / Implicit

 OsAppAlarmRef w Implicit

 OsAppResourceRef w Implicit

 OsAppTaskRef w Implicit

 OsApplicationTrustedFunction/ Implicit

 OsTrustedFunctionName w Implicit

 OsApplicationParams (MICROSAR) w Implicit

 OsApplicationReturnType (MICROSAR) w Implicit

 OsApplicationGenerateStub (MICROSAR) w Implicit

OsCounter w Explicit

OsResource/ w Implicit

 OsResourceProperty w Implicit

OsTask/ r/w Explicit

 OsTaskPriority r/w Explicit

 OsTaskSchedule r/w Explicit

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

25 / 34

 OsTaskTYPE (MICROSAR) r/w Explicit

 OsTaskActivation w Implicit

 OsTaskAutostart/ Implicit

 OsTaskAppModeRef r/w Implicit

 OsTaskAppMode w Implicit

 OsTaskEventRef w Implicit

 OsTaskResourceRef w Implicit

 OsTaskAccessingApplication w Explicit / Implicit

 AdminData/

 DV_TaskTimingPreConfig (DaVinci DEV) r/w Explicit

 DV_TaskTimingCycleTime (DaVinci DEV) r/w Explicit

 DV_TaskTimingOffset (DaVinci DEV) r/w Explicit

Table 4-5 Os module parameters

Most of the Os objects are implicit, i.e. not directly visible and editable in DaVinci DEV.
Only OsTask and OsApplication can be changed by the user. All other objects (OsAlarm,
OsEvent, OsResource) are implicit. They reflect the implementation of the MICROSAR
RTE.

The OsApplication is classified as “Explicit / Implicit”, because an additional implicit special
OsApplication named “Rte” might be required beside the explicitly defined OsApplications.
The existence of this implicit OsApplication depends on runnable and task mapping
configuration.

Depending on the Os module version the configuration parameter OsTaskTYPE is stored
in different configuration container layouts; therefore the module’s BSWMD file has to be
configured at the ECU-Project to ensure that the parameter is written in the correct layout.

All implicit Os elements are prefixed with “Rte_”. Their name must not be changed.

OsCounter and OsAlarmCounterRef are only exported if a BSWMD is configured which
contains a pre-config section with an OsCounter. The OsAlarmCounterRef is set to this
OsCounter by default but may be changed by the user in the Os configuration tool.

The optional TaskTiming configuration is used by DaVinci DEV to check for consistent
cyclic runnable triggers and is not evaluated by the Os module.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

26 / 34

4.5.2 Equivalent parameter values

Os module configuration

Parameter Equivalence rule

OsAlarm/

 OsAlarmCounterRef No Os-BSWMD file is referenced or the user has configured a specific

OsCounter.

OsTask/

 OsTaskTYPE (MICROSAR) ECU-C file does not contain a value and no Os-BSWMD file is

referenced by the ECU-Project which contains the parameter definition

 OsTaskAutostart ECU-Project parameter is not set

Table 4-6 Os equivalent parameter value rules

4.6 NvM module

4.6.1 Parameters

NvM module configuration

Parameter Read/Write Category

NvmBlockDescriptor/ r/w Explicit

 NvmNvBlockLength w Implicit/Explicit

 NvmRamBlockDataAddress w Implicit

 NvmRomBlockDataAddress w Implicit

 NvmNvramBlockIdentifier r/w Explicit

 NvmBlockUseSyncMechanism w Implicit

 NvmWriteRamBlockToNvCallback w Implicit

 NvmReadRamBlockFromNvCallback w Implicit

Table 4-7 NvM configuration parameters

To be able to do a memory mapping in DaVinci DEV, NvMBlocks are imported from an
ECU-C file. However, other attributes cannot be changed and the above mentioned
attributes are automatically derived from an existing memory mapping during ECU-C-
Synchronization.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

27 / 34

4.6.2 Equivalent parameter values

NvM module configuration

Parameter Equivalence rule

NvmBlockDescriptor/

 NvmNvBlockLength ECU-Project parameter is not set (no MemoryMapping for

NvMBlock)

 NvmRamBlockDataAddress ECU-Project parameter is not set (no MemoryMapping for

NvMBlock)

 NvmRomBlockDataAddress ECU-Project parameter is not set (no MemoryMapping for

NvMBlock)

 NvmNvramBlockIdentifier ECU-Project parameter is not set but the ECU-C file contains a

value

 NvmBlockUseSyncMechanism ECU-Project parameter is not set to “true” or the Nvm BSWMD

does not specify this parameter

 NvmWriteRamBlockToNvCallback ECU-Project parameter is set but ECU-C file contains a non-Rte

callback or the Nvm BSWMD does not specify this parameter

 NvmReadRamBlockFromNvCallback ECU-Project parameter is set but ECU-C file contains a non-Rte

callback or the Nvm BSWMD does not specify this parameter

Table 4-8 NvM equivalent parameter value rules

4.7 Board

4.7.1 Parameters

Board module configuration

Parameter Read/Write Category

BoardGeneral/

 BoardAtomicVariableAccess (MICROSAR) r (Explicit)

 BoardEnableSnvPrefixes (MICROSAR) r (Explicit)

Table 4-9 Board configuration parameters

The parameters are marked as “(Explicit)” because it is not visible in DaVinci DEV but the
Rte generator adapts the Rte code according to the parameter’s value.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

28 / 34

4.7.2 Equivalent parameter values

Board module configuration

Parameter Equivalence rule

BoardGeneral/

 BoardAtomicVariableAccess

 (MICROSAR)

ECU-C file does not contain a value and ECU-Project parameter is set

to default value “Atomic16BitAccess”

 BoardEnableSnvPrefixes

 (MICROSAR)

ECU-C file does not contain a value and ECU-Project parameter is set

to value “false”

Table 4-10 Board equivalent parameter value rules

4.8 ComSignals and ComSignalGroups

Since the Rte utilizes the Com module to transfer application data over the communication
bus it has to know the mapping of SystemSignals to ComSignal handles defined by the
Com module. If the handles are completely different or even worse existing handles are
used for the wrong SystemSignal the result may be a simple compile error or in the worst
case the problem is only visible at run time. In general, it is not possible to always use the
default approach and use the SystemSignal’s name as the ComSignal handle because the
Rte has to support Gateway signals (receive) and FanOut signals (write). In this case,
more than one ComSignal exists for each SystemSignal and the Rte has to call the
Com_SendSignal-API for each of these ComSignals with the correct handle.

To ensure that the Rte knows about the correct ComSignal handles, there are different
approaches depending on the AUTOSAR version and the source of the communication
data.

4.8.1 dbc files

The signals in the dbc file are imported as SystemSignals and the ComSignal handles are
derived from their name. In case of Gateway/FanOut signals the dbc file contains signal
names following the rule <SystemSignal>_ISig_<number> to be able to identify the original
SystemSignal and to provide a unique name for each of the ComSignals on the different
communication buses.

When such a dbc file is imported in DaVinci DEV one SystemSignal is created for each
unique SystemSignal name and the complete signal name, e.g. SigMyData_ISig_0, is
internally stored to be able to find the correct ComSignal during ECU-C-Synchronization.

NWD creates dbc files with these signal names if the export option “Create GENy
compatible signal names” is activated.

4.8.2 ECU-Extract

An ECU-Extract is imported as it is, i.e. SystemSignals are imported as SystemSignals
and no special naming rules apply for these signals.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

29 / 34

If AUTOSAR 3.0 is used there’s one limitation: The AUTOSAR ShortName path of a
SignalToIPDUMapping has to follow the rule:
DaVinci/PKG_Cluster<ClusterName>/<PDUName>/<SystemS ignalName>_S for
Signals
DaVinci/PKG_Cluster<ClusterName>/<PDUName>/<SystemS ignalName>_SG
for SignalGroups
for CAN <PDUName> has to be the name of the CAN frame

ECU-Extracts of DaVinci DEV and NWD follow this rule.
If an ECU-Extract is used with a different package structure and/or naming of the relevant
elements it is usually not possible to match the ComSignals of the ECU-C file with the
SystemSignals of DaVinci DEV’s workspace.

4.8.3 AUTOSAR 2.1

Since there is no explicit relation of a ComSignal to the corresponding SystemSignal the
ECU-Synchronization identifies matching pairs of ComSignal/SystemSignal by their name.

4.8.4 AUTOSAR 3.x

With AUTOSAR 3.0 an indirect relation from ComSignal to the SystemSignal was
introduced. The ComSignal references a SignalToIPduMapping which itself eventually
references the SystemSignal.
To be able to resolve this reference from the ECU-Configuration into the ECU-Extract, the
naming rule described in section 4.8.2 has to be fulfilled.

4.8.5 Relevant ComSignals

It is important to remember that the Rte does not need to know all ComSignals and their
handles. Only those SystemSignal/ComSignal relations are relevant which are used by
applications, i.e. where a data mapping of DataElements to SystemSignals exists. If
attributes of other ComSignals or attributes which are not handled by DaVinci DEV are
modified it is not necessary to perform an ECU-C-Synchronization.
To support the dbc based Com module configuration in a Com configurator like GENy,
DaVinci DEV derives certain ComSignal attributes from the ECU-Extract because they are
not contained in a dbc file, e.g. ComSignalType. These attributes are written to the ECU-C
file during ECU-C-Synchronization. This causes modification of ComSignals which are not
data mapped to a DataElement.

4.8.6 Callbacks

Depending on the configuration the Rte needs to be informed by the Com module about
certain events, e.g. when a signal is received. The Rte’s callback function name is set by
DaVinci DEV at the corresponding ComSignal if the configuration parameter is not set. In
case there is already a callback configured DaVinci DEV displays a corresponding warning
message in the Messages window with all ComSignals, configured callbacks and
additionally needed callbacks. In this scenario the user has to call the Rte function
manually.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

30 / 34

Message Details

ECUProject ECU1 contains the following ComSignals/C omSignalGroups with non-Rte
callbacks:

ComSignal Com_Signal_Temp_EnvData:

CallbackName
Needed Rte callback: Rte_COMCbk_Com_Signal_Temp_Env Data

Assigned callback : Custom_Callback_Com_Signal_Tem p_EnvData

The same mechanism is used for Nvm callbacks.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

31 / 34

5 Best practices

Since the process of ECU-Configuration is rather complex you should follow some basic
rules given in this chapter. These rules should be seen as a guideline to avoid
unnecessary ECU-C-Synchronization processes in DaVinci DEV and nevertheless ensure
a consistent overall configuration.

5.1 Always work on the latest communication databases

Always ensure that you are working on the latest communication databases in all tools. It
is often a problem that updated dbc files are imported in a BSW configuration tool like
GENy but not in DaVinci DEV. If both tools work on a different communication model it is
very likely that they derive a different set of ComSignals and report various errors.

Example Error Message:

ComSignal with an invalid SystemSignal reference

/DaVinci/PKG_ClusterCanA/PKG_PDU/Fr ame1/Signal1_S, the according

ISignalToIPDUMapping object could not be identified .

The given example shows an error message which is displayed if the ECU-C file contains
a ComSignal which is not known in DaVinci DEV, i.e. the Com configuration was updated
by the Com configurator based on a certain communication database but DaVinci DEV
does not have the same information available.

Another reason for this error message is the fact that DaVinci DEV can only work with
ECU-C files based on ECU-Extracts if the ECU-Extract follows a naming rule concerning
ISignalToIPDUMappings (see section 4.8).

5.2 Do not edit the same module configuration in different tools at the same time

Since several tools may edit the same module configuration (e.g. OsTasks can be edited in
DaVinci DEV and third party BSW configuration tool), it is not wise to use both tools in
parallel, especially if some of the configuration settings are automatically derived from
another module’s configuration. The decision what to do in DaVinci DEV, i.e. choose
„import“ or „export“ during ECU-C-Synchronization, becomes much easier if the module
configurations are edited exclusively by one tool at a time. So you might add a new
OsTask in DaVinci DEV, synchronize the ECU-C file, change to BSW configuration tool
and add another OsTask for a non-Rte purpose, save the ECU-C file, switch back to
DaVinci DEV, synchronize the ECU-C file again and add some more OsTasks for
additional runnables. You should not add these new OsTasks in both tools in parallel, since
either the OsTasks defined in DaVinci DEV or the OsTaks defined in the BSW
configuration tool will be lost when running the synchronization.

If you execute external generators and/or configurators from DaVinci DEV’s generator or
configurator lists you may enable “Options/Settings/ECU generation/Automatic

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

32 / 34

synchronization of ECU Configuration file”. In this case the ECU-C file is always
synchronized before the executable is run and after it has been closed. Although this
ensures that the ECU-Project and the ECU-C file are always in a consistent state, it might
be better to not use this option and explicitly synchronize the ECU-C file to avoid
unnecessary and probably time consuming synchronizations when you edit configuration
parameters which are not relevant for DaVinci DEV and the executed
generator/configurator.

As explained in 3.4 Vector tools implement a mechanism to ensure that the ECU
configuration is editable in only one tool at the same time. So you don’t have the problems
mentioned above when just working with the Vector tools.

5.3 Ensure that all tools use the same max. SHORT-NAME length

Although AUTOSAR specifications up to releases 3.0.6 and 3.1.4 specify that a SHORT-
NAME must not exceed the length of 32 characters, DaVinci DEV supports an extended
length of up to 128 characters. If this setting is enabled (Options/Settings/AUTOSAR XML)
it has to be ensured that all other tools support this extension, too. If this is not the case
configuration elements won’t be found during ECU-C-Synchronization and will be created
a second time if the name is longer than 32 characters.

Starting with AUTOSAR releases 3.0.7, 3.1.6 and 3.2, SHORT-NAMEs with up to 128
characters are allowed by the standard.

5.4 ECU-C files have to be valid according to the AUTOSAR schema

DaVinci DEV validates the ECU-C file against the corresponding AUTOSAR schema
before it is imported. If the file is not valid the XML parser error is displayed in a dialog and
the ECU-C-Synchronization is aborted.

Figure 5-1 Validation of the ECU-C file failed

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

33 / 34

5.5 Configuration elements must have unique SHORT-NAMEs

To be able to uniquely identify a configuration element all elements of the same hierarchy
level must have unique SHORT-NAMEs. If this is not the case references within the ECU-
C file may point to several different elements which makes the configuration inconsistent.
Since this constraint is not checked by the XML schema, an additional check is
implemented in DaVinci DEV and an error message is printed in the „Action Log“ tab if
such an error occurred.

ECU-C File Handling Technical Reference

2014, Vector Informatik GmbH Version: 1.13

34 / 34

6 Contact

Visit our website for more information on

> News
> Products
> Demo software
> Support
> Training data
> Addresses

www.vector-informatik.com

