Reference Manual HexView

HexView
Reference Manual

Version 1.08.06

Authors Armin Happel
Status Released

©2014, Vector Informatik GmbH

Version: 1.08.06

vactor’

1711

Reference Manual HexView vector

Document Information

History
Author Date _ |Version |Remarks |
Vishp 2006-02-21 1.0 > Creation
Vishp 2006-07-14 1.1 > Description of new features for V1.2.0

> Main features are:

> Support for Ford-VBF and Ford-IHex in

dialogs

> Compare-Feature

> Auto-detect file format on file open/save
Vishp 2006-09-27 1.2 > Description of new features for V1.3.0

> Merge and compare uses now the auto-

filetype detection

> Merge operation available from
commandline

> Address calculation from banked to linear
addresses from commandline

> Checksum calculation feature from
commandline places results into file or data.

Vishp 2006-12-07 1.3 > Description of new features for V1.4.0

> Commandline: Checksum operates on
selected section. Multiple checksum areas
can be specified from the commandline.

> Postbuild operation added

> Fixing Ford IHex configuration problem for
flashindicator and File-Browse in the dialog

> Option /CR (cut-section) added to the
commandline

> Delete and Cut&paste with internal
clipboard added.

> Description of the commandline processing
order added to the document

> Program returns a value depending on the
status of operation

> New option combination /XG with /MPFH to
re-position existing NOAM to adjusted
NOAR-fields

> Goto start of a block (double-click to block
descriptor)

> Find ASCII string in data was added

Vishp 2007-07-09 1.31 > Description of new features for V1.4.6
> Support part number in GM-files (option /pn)

©2014, Vector Informatik GmbH Version: 1.08.06 27111

based on template version 5.1.0

Reference Manual HexView

Vishp 2007-09-19
Vishp 2008-01-31
Vishp 2009-05-19
Vishp 2009-11-27
Vishp 2010-10-11
Vishp 2011-12-05

©2014, Vector Informatik GmbH

1.4

1.5

1.6

1.06.01

1.06.04

1.07.00

vV V. V. V V V V V

vactor’

from the commandline and reading the file

Description of new features for V1.5

Start CANflash from within Hexview

Create partial datafiles for Fiat-export
Support VBF V2.4 for Ford

Support Align Erase (/AE)

Use ranges instead of start and end address
Creation of a validation structure

New About-dialog with personalized license
info

Fixing wrong description of checksum
calculation for method 8 (see Table 3-3,
index 8)

> Description of new features for V1.6
> Fixing problem when HEX-file contain

addresses until OxFFFF.FFFF

Extend expdatproc interface to allow
insertion of data processing results into
HEX-file

Now browse for data processing parameter
file

> Intel-HEX record length now adjustable

This document can now be opened from
Help menu

Allow to select multiple post build files

> Generate structured hex file from Eeprom

\

data set

C-array generation supports structured list,
Ansi-C and memmap.

Fixing problems with path names using a
colon, e.g. “D”

Minor corrections in the documentation
(CRC calculation algorithms)

AccessParameter for Fiat export now
editable.

Export binary blocks from commandline
interface

Fixing Windows7 problems in dialogs.

> Faster HEX read operation
> Support dsPIC copy and ghost byte

clearance

> Export splitted binary data files per segment
> Add checksum to last data bytes (@end)

Version: 1.08.06 3/111

Reference Manual HexView vector

> Further support for compress+sign
> Padding for data encryption

> Scanning memory for EepM data (for
development)

> S5 records are now tolerated.
> Swapping words or longwords
Vishp 2012-09-15 1.08.00

\Y

Solving further Win7 problems in dialogs.

> Adding SHA256 in checksum and data
processing DLL

> Record type specifier in the commandline for
Intel-HEX and Motorola S-Records.

> Add import and Export for HEX ASCII data
through commandline

> Generate signature header for GM
Support for VBF V2.5 (Volvo)

Correcting padding mode for AES
Add support for IV-Vector w/ AES-CBC
Support for VBF V3.0 (Ford)

Improvements for the GM-header signature
generation for cyber security.

\Y

Vishp 2014-03-11 1.08.04

VvV V V V

> Corrections on address range definition for
data processing.

> Ford-VBF allows now to omit the erase
table. Editable now in the GUI.

> Call to CANflash removed.

> Description for validation structure
generation added.

> Support multiple part numbers for VBF

> Merging files over commandline supports
now wildcards.

> Order of identifiers for VBF corrected.
> Expdatproc V1.08.04 added

> RSA encprytion/decryption byte order
corrected.

> Padding mode for AES corrected

> |V can be specified explicitly for AES
CBC in the parameter

Vishp 2014-04-07 1.08.05 > Commandline option to export MIME coded
files

Vishp 2014-05-19 1.08.06 > Export/Import of GAC binary files

©2014, Vector Informatik GmbH Version: 1.08.06 47111

Reference Manual HexView vector

Reference Documents

No. Title

[1] Fiat-Specification 07284-01, dated 2003-05-15

[2] Ford/Volvo: Versatile Binary Format V2.2-V3.0

[3] Ford: Module programming and Design specification, V2003.0
[4] GM: GMW3110, V1.5, chapter 11

| Caution

- We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
guestionnaire.

©2014, Vector Informatik GmbH Version: 1.08.06 5/111

based on template version 5.1.0

Reference Manual HexView vector

Contents

1 Introduction ... 12
0 TR 1 ¢ o Yo =T 1 A Vo] L= TS 12
O =Y a1 0] Vo] (oo Y 13
2 USErINtErfacecooooiiii e 14
2.1 With a Double Click to the Main MeNU...........ccooiiiiiiiiiiiii e 15
211 Edita HEX data liN@uueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiaaeeeeaeeeeeeeseaneesnnsesnennnnnnnes 15

2.1.2 Change the base address of a data block, erase it or jump directly to the
beginning of the block data................cooo 15
2.2 MEBNU ...ttt e e e e e et 16
2.2 MENU: “FIlE7 .cooiiiiiiiiiiiieeeeeeeeee e 16
2200t T T - 16
2.2.0.2 OPBN i e 16
2.21.2.1 Auto-file format analysing proCess...........couuvvvvieiiiiiiiiiiiiiiiiiiiiiiieene, 16
2203 MBI .. 17
D I ©7o] 4] o - | (= YRS 18
D I T - V= S 19
0t T TS T Y- Y T 19
227205 I A W To 070 43 4 F= T o £ 19
F22 < T |11 o T o P 19
2.2.1.8.1 Import Intel-Hex/Motorola S-Recordccccccvveeiiiiiiiiiiiiiceee e, 20
2.2.1.8.2 Read 16-Bit Intel HEX.....ovvvvvviiiiiiiiiiiiiiiieeie 20
2.21.8.3 Importbinary data..........ccccevvviiiiiiiiiiiiiiiii 20
2.21.84 IMpPOrt HEXASCII....ooooiiiiiie 20
2.2.1.85 Import GM data..........ovuiiiiiiiiiice e 20
2.21.8.6 Import Fiat dataooommiiiiiiii 20
2.21.8.7 Import Ford IHex data............coooiiiiiii e 20
2.21.8.8 Import Ford VBF data........ccccceevvviiiiiiiiiiiiiiiiii 20
2.2.1.8.9 Import GAC binary fileouviiiiiiiii e 20
D220 TR B = o Yo o SRR 21
2.21.9.1 Export as S-ReCOrdcoovviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee 21
2.21.9.2 ExportasIntel-HEXo e 22
2.2.1.9.3 Export as HEX-ASCII.........cooovviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 22
2.2.1.9.4 Exportas CCP Flashkernel............ccccccvviiiiiiiiiiiieeee 23
2.2.1.9.5 EXPOrt @S C-ArTAYcooeiiiiiiiiiiiiie et 25
2.2.1.9.6 Export Mime coded data.............coovvviiiiiiiiiii e 28
2.21.9.7 Export Binary data............cooevviiiiiiiiiiiiiiiiiiie 28
2.2.1.9.8 Export binary block data ... 29
2.2.1.9.9 Export Fiat Binary Filecccoooiiiiiiiiiiii e 29

©2014, Vector Informatik GmbH Version: 1.08.06 6/111

Reference Manual HexView vector

2.2.1.9.10 Export Ford Ihex data container............ccoouvvviiiniiiiiiiiiiiccee e 30
2.2.1.9.11 Export Ford VBF data containerccoovvvviiiiii e, 31
2.2.1.9.12 EXport GM datacoovviiiiiiieieeec e 32
2.2.1.9.13 Export GM-FBL headerinfo.........cccccoviiiiiiiiiiie e, 33
2.2.1.9.14 Export VAG data containerccceeiiiiiiiiiieiieen e 34
2.2.1.9.15 Export GAC binary filescoovvviiiiiiiiiiiiiiieeee 37
2.2.1.10 Print/ Print Preview / Printer Setupocceeiiiiiiiiii e, 37
2200t T T) 37

2 = o [| 37
272025 L U | o o o 38
2222 Cut/ Copy /Pastecccouuiiiiiiiiiiiiiiii e 38
2223 Copy dsPIC like data...........cccccuummimiiiiiiiiiiii e 40
2.2.24 Data AlIgNmENt ... 41
2.2.2.5 Fill BIOCK datacuuuuuiiiiiiiiiiiiiiiiii s nnnnananne 42
2.2.2.6 Create CheCKSUML........uuuiiiiiiiiiiiiiiiiiiii bbb nessnnenenene 43
2.2.2.7 RuUn Data ProCeSSINgG......c.ciiiiiiiiiiiiiie et e et 44
2.2.2.8 Edit/Create OEM Container-Info..........ccccoceiiiiiiiiiiic e, 45
2229 Remap S12 Phys->Lin ... 45
2.2.2.10 Remap S12X PRyS->LiN.......uuuiiiiiiiiiiiiiiiiiiiiiiieeeeee 45
2.2.2.11 General REMaAPPING «..oioeeeeieeiiiiiee et e e 45
2.2.2.12 Generate file validation Structureccccccuiiiiiiiiiiiiiieens 46
2.2.2.13 RUN POSBUIIuiiiiiiiii e 49

2 R VPP 49
P27 T IR € To) (o = To [0 | =Y 50

D T 10T I =Yoo o [P 50
2.2.3.3 Repeat last findcccoooiiiiiiiiiiiii 50
2.2.3.4 View OEM container infO..........oiiiiiiiiiiiee e 50

2.24 Flash Programming ...ttt 51
2241 Scan CANOE traCe 10gccuuiiiiiiiiiiiiiiiiiee et 51
2.2.4.2 Build ID based EEP download file.cccoouviviiiiiiiiiiiiiiiiiiiiiiiinns 52
2.2.4.3 Scan EepM data SECHON...........uuuiiiiiiiiiiiiiiiii e 53

2.2.5 INfO OPEIratioN (7). 54
2.3 Accelerator Keys (Short-CUt KEYS).......ooovveeiiiieiei, 55
3 Command line arguments descCriptioncccccuuiiiiiiiiiiiiiii s 57
3.1 Command line OptioNS SUMMAIYccoeeiieiieeeee e 57
3.2 General command line operation order ... 63
3.2.1 Align Data (JADXX OF /AD:YY) .coeeeeeeieee et 64
3.2.2 Alignlength (JAL[1ENGtN]) .eenii i 64
3.2.3 Specify erase alignment value (JAE:XXX)c..uureiiiiiiiiiiiiiiieeeee e 64
3.2.4 Specify fill character (JAF:XX, /AFXX)cccooiiiiiiiiiii e 65

©2014, Vector Informatik GmbH Version: 1.08.06 77111

Reference Manual HexView vector

3.2.5 Address range reduction (/AR:'TaNge’)couvviviiiiiiiiiiiiiiiiiiiieeeeeeee 65
3.2.6 Cut out data from loaded file (/CR:’ range1[:’range2’:...] ccccceeeieeerrriiiiiiiieneeennn, 65
3.2.7 Checksum calculation method (/CSx[:target[;limited_range][/no_range])....... 66
3.2.8 Run Data Processing interface (/DPn:param|[,section,key][;outfilename])...... 70
3.2.9 Create error log file (/E:errorfile.€rT)......ccceeiieeiei e 76
3.2.10 Create single region file (/FA)oovviiiiiiiiiiiieeeeeeee 76
3.2.11 Fill region (/FR:range 1’ range2’:...) ccccc i 76
3.2.12 Specify fill pattern (/FP:XXYYZZ...) ooouviiiiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeeeeeeeeeeeeeeeee 77
3.2.13 Import HEX-ASCII data (/IA:filename[;AddressOffset])ccccvvvriviiiiiiinnnnn. 77
3.2.14 Execute logfile (/L:0gfile)coorriieiii e 77
3.2.15 Merging files (/MO, /MT)....ouiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 77
3.2.16 Run postbuild operation (/pb=postbuild-file)cccccoviriiiiiiiiiiiiiiii, 78
3.2.16.1 OPENPBFIIE ..ot 79
3.2.16.2 CIOSEPBFIIE ...t 79
3.2.16.3 CIOSEPBFIIEccoiiiiiiiieieeie e 80
3.2.16.4 GetPBDala......cccoiiiiiiiiiiiie e 80
3.2.17 Specify output filename (-0 outfilename)ccccccvvviiiiiiiiiii 81
3.2.18 RUNIN SIlENt MOAE (/S) wuvvuuiiiiiiieeecee e 81
3.2.19 Specify an INI-file for additional parameters (/P:ini-file)cccvvvvviiviiinnnnn. 81
3.2.20 Remapping address information (/remap)cceevviiiiiiiiiiiiiiiiiiiiiiieee 82
3.2.21 Create validation structure (/VS).........ccuvvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee 83
3.3 Output-control command line optionNS (/XX)......cooveeeeeeeiieeeee 84
3.3.1 Output of HEX ASCII data (/XA[:linelen[:separator]])cccccvvvrvveriierieennnnnnn. 84
3.3.2 Output a Fiat specific data file (/XB)ccovvviiiiiiiiiiiiiiiiiiiiiiiiieeeeeee 85
3.3.3 Output data into C-Code array (/XC)ccovveriiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeee 86
3.3.4 Output a Ford specific data file (/XF, IXVBF)coovviiiiiiiiiiiiiiiiiiiiiiiiiiiieeee 87
3.3.4.1 Output Ford files in Intel-HEX format...........ccccooiiiiiiii e, 87
3.3.4.2 Output Ford files in VBF formatuuuuiienns 91
3.3.5 Output a GM-specific data fileccoevereeiiiiiiiiiiiie 97
3.3.5.1 Manipulating Checksum and address/Length field within an existing

NEAAET (/XG) .. 98

3.3.5.2 Creating the GM file header for the operating software
(IXGC[:AArESS]) «.oeeeeuereeeeieiee e ettt e e e st a e e e e e s eaaeeeeaaane 100

3.3.5.3 Creating the GM file header for the calibration software
(IXGCCT:AAAIESS]) ..o eveeeeeeeeee e e ettt e e e e e st e e e e e e e s eeaaeaeaaane 100
3.3.5.4 Creating the GM file header with 1-byte HFI (/XGCS[:address])........... 101
3.3.5.5 Specify the SWMI data (/SWMIEXXXX)ccvvrrmmeeieeeiiiiiiiieiee e 101
3.3.5.6 Adding the part number to the header (/PN)..........cooviiiiiiiieiiiiiiiinnn, 101
3.3.5.7 Specify the DLS values (/DLS=XX).....cccovvviiiiiiiiiieeeeeeeeiiieee e 102
3.3.5.8 Specify the Module-ID parameter (/MODID=value)................ccceeeuuuruee 102
3.3.5.9 Specify the DCID-field (/DCID=value)...........ccceeeeeeiirimiriiiiieeeeeeeeiiiinn, 102

©2014, Vector Informatik GmbH Version: 1.08.06 8/11

Reference Manual HexView vector

3.3.5.10 Specify the MPFH field (/MPFH[=file1+file2+...]ovvvviiiiiiiiiiiiiiiiinnnnns 102

3.3.5.11 Signature version (/sSigver=vallig)ccccccceeiiiiiiiiiiiiiiiiiie e, 103
3.3.5.12 Signature Key ID (/Sigkeyid=value).................uuuurrmmmmmmmmminiiiiiiiiiiiiiiinnnnns 103
3.3.5.13 Generate Routine header (/XGCR[:header-address])...........cccevvvvrrnnnnn. 103
3.3.5.14 Generate key exchange header (/XGCK)ccccceviiriiiiiiiiieeenceeiiinn, 104

3.3.6 Output a VAG specific data file (/XV)......ooouvriiiiiiiiiiiiiiiiiiiiiee 104

3.3.7 Output data as Intel-HEX (/XI[:reclinelen[:rectype]])ccvveieeeiiiierrieiinnnnnnn. 104

3.3.8 Output data as Motorola S-Record (/XS[:reclinelen[:rectype]])ccvvvvnnnnn. 104

3.3.9 Outputs to a CCP/XCP kernel file (/XK)........couvveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeee, 105
3.3.10 Output to a GAC binary file (/XGAC, IXGACSWIL).......cccvvvviiiiiiiiiiiiiiiiinnnnn, 105

4 EXPDATPRORC ... 107
4.1 Interface function for checksum calculationcccoooviiiiiiiiii e, 107
4.2 Interface function for data processing...........ccccccvviviiiiiiiiiiiiiiii 108
4.3 SOfWAIE lICEBNSEScvviiiiieie et e e e e ab e e e e ar s 109

5 Glossary and Abbreviations.......................cciiiii s 110
T B €1 0117 oY S 110
5.2 ADBDBreviatioNSooooiiiiiii e 110

T 0o Y | - o PP 111

©2014, Vector Informatik GmbH Version: 1.08.06 9/1M1

Reference Manual HexView

lllustrations

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4:
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12

Figure 2-13:
Figure 2-14:
Figure 2-15:
Figure 2-16:
Figure 2-17:

Figure 2-18
Figure 2-19

Figure 2-20

Figure 2-21:

Figure 2-22:

Figure 2-23
Figure 2-24
Figure 2-25
Figure 2-26

Figure 2-27:

Figure 2-28

Figure 2-29:
Figure 2-30:
Figure 2-31:
Figure 2-32:
Figure 2-33:

Figure 3-1
Figure 3-2

Figure 3-3:
Figure 3-4:
Figure 4-1

Figure 4-2

Tables

Table 1-1
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 3-1

©2014, Vector Informatik GmbH

Main Menu of HEXVIEWcooeiiiiiiiie e 14
Edit-Line dialog.......ccouuiiiiiiiiieece e 15
Change the base address of asegmentccoovviiiiii i, 15
Customizing merge data in the merge dialog.............ccvviiiiiiiiiiiiiiiiiiiinnnns 17
Overlapping data when merging afile.........cccoooooviiiiiiii e, 17
Compare INfo dialogcooveiviiiiii e 18
Export data in the Motorola S-Record format............cccceeiiiiiiviiiiiien, 21
Export dialog for the Intel-Hex output...........cccooiiiiiiiii e, 22
Export HEX ASCIl data..........cooviiiiiiicce i 23
Export flashkernel data for CCP/XCPouciiiiiiiiiicie e 23
Export data into @ C-ArTAYuuueiiiiiiiiiiiiiiiieiiiiiiiiiiiieieeeeeeeeneeeeeeneneneenae 25
Export binary block datacccooooriii i, 29
Export dialog for the FIAT binary filecccccooiiiiiiii e, 29
Export dialog for Ford I-Hex output file..........ccccoooeiiiiiiiiiii e, 31
Export dialog for the Ford/VolvoCars-VBF data file format........................ 32
The output information for the GM data export..............ccooiiiiieeininnn, 33
Export dialog to generate the GM-FBL header information for GENy........ 33
Exports data into a VAG-compatible data container.............cccccccceeenn. 34
Example of ‘Copy window’ when Ctrl-C or “Paste” pressed using start-

ANA ENA-AAAIESS.... it eeeee 39
Example of cut-data using start-address and length as a parameter......... 39
Pasting the clipboard data into the document specifying the target

= Lo (o £ =TT TSRS 40
Copy dSPIC like datauuuiiiiiiiiiiiiiiiiiii e 41
Data alignment OpLioN............uuuiiiiiiiiiiiiiiiiiiiiii i 42
Dialog that allows to fill datauueviiiiiiiiiiiiiiiiii. 43
Dialog to operate the checksum calculation...................euvevviiiiiiiiiiiiiiininn. 44
Dialog for Data ProCeSSINGuuuuuuuuuuiriiiiiiiiiiiiiiiiiieieenininnnennnneennnnnnnnennnes 44
Configuration window for general remapping................eeeeeeemiremmemnimninnnnnnn. 46
Generate the validation structure for your target memory..............cccc.euee. 47
Jump to a specific address in the display windowccccccceeeiiieinnninne, 50
Find a string or pattern within the documentccccooiii 50
Dialog to run @ CANOE traCeuvuuuiuiieiiiiiiiiiiiiiiiieiieeeneneeenenennernnennnnnnnnne 51
Example output for building ID based download files.ccccvvveennnnn. 53
Scan EepM dialog and exampleuuuuiiiiiiiiiiiiiiiiiiiiii, 53
Order of commandline operations within Hexview...............ccccccccivninnnnnnn. 63
Example on how to select the checksum calculation methods in the

“Create Checksum” operation............oooooeieeeeiie, 66
Calling sequence of the post-build functions.............ccccccviiiiiiiiiiiiiiiinnnn. 79
Mapping pysical to linear address Spaces..........cccovvveuiiiiiiiieeeiiiiiiceee e 82
Build the list box entries for the GUI..............coeiiiiiiiii e, 107
Function calls when running checksum calculation................cccccvvviinnn. 108
TerMINOIOGY ... 13
Auto-file format detection ... 17
Currently available commands in the log-file............ccccooeii i 19
Description of the elements for the VAG SGML output container 36
Accelerator keys (short-cut keys) available in Hexview....................co..... 56
Command line optioNs SUMMArY............covviiiiiiiiiiiiiecee e 62

Version: 1.08.06

vactor’

10/111

Reference Manual HexView vector

Table 3-2 Checksum location operators used in the commandline 68
Table 3-3: Functional overview of checksum calculation methods in “expdatproc.dil” 70
Table 3-4 Functional overview of data processing methods in “expdatproc.dll’......... 76
Table 3-5 OPENPBFIIE ... e 79
Table 3-6 (@ 0= 0| = 1 80
Table 3-7 (O3 (o= o = 1 = 80
Table 3-8 LC L=y =TI - - 81
Table 3-9 INI-file information fort he Fiat file container generation 86
Table 3-10 INI-File definition fort he C-Code array export functioncccceevvvenenn. 87
Table 3-11 INI-file description for Ford I-Hex file generation............ccccccooooiiiiiiiininnnnnn. 89
Table 3-12 INI-File description for Ford VBF export configuration..................cccvvvvenn. 93

©2014, Vector Informatik GmbH Version: 1.08.06 1711

Reference Manual HexView vector

1 Introduction

This document describes the usage of the PC-Tool “HexView”. Originally a study of the
usage of the MFC library to display the contents of Intel-HEX or Motorola S-Record files, it
has been enhanced to create data containers for some OEMs used for flash download.

Another purpose is to manipulate this data or file contents to adapt it to the specific needs
for a flash download.

An open interface has been designed to allow data processing and checksum calculation.

Some of the features of Hexview can be used by the graphical user interface. But there
are also powerful features available via a command line interface. Some features are even
just accessible via the command lines.

Thanks to André Caspari for his lcon.

1.1 Important notes

' Caution
= > The application of this product can be dangerous. Please use it with care.

Note that this tool may be used to alter the program or data intended to be downloaded
into an ECU for series production. The results of this data manipulation must be observed
very carefully and thoroughly tested.

Vector Informatik GmbH is furnishing this item "as is" and free of charge. Vector Informatik
GmbH does not provide any warranty of the item whatsoever, whether express, implied, or
statutory, including, but not limited to, any warranty of merchantability or fithess for a
particular purpose or any warranty that the contents of the item will be error-free.

In no respect shall Vector Informatik GmbH incur any liability for any damages,
including, but limited to, direct, indirect, special, or consequential damages arising
out of, resulting from, or any way connected to the use of the item, whether or not
based upon warranty, contract, tort, or otherwise; whether or not injury was
sustained by persons or property or otherwise; and whether or not loss was
sustained from, or arose out of, the results of, the item, or any services that may be
provided by Vector Informatik GmbH.

©2014, Vector Informatik GmbH Version: 1.08.06 12/ 111

Reference Manual HexView vector

1.2 Terminology

Item Description

> Address Region Area of coherent data that can be described
> PMA by a start address and length of data.

> Section
> Block
> Segment

Table 1-1 Terminology

©2014, Vector Informatik GmbH Version: 1.08.06 137111

based on template version 5.1.0

Reference Manual HexView vector

2 User Interface

This chapter describes the user interface and menu items of the program.
To understand the user interface, some basics of file contents need to be clarified.

First, an Intel-HEX or Motorola S-Record consists of data assigned to specific addresses.
The data can be continuous from a specific start address. A continuous data block is
named as a section or segment. Such files can contain one or more data sections.

H pagela.hex - Hex-View

File Edit “jew Flash Programming 7

DeE stBE & %

Elock 0O 3tarts at: 0x 190 Ends at: O0x 1AF (Length: OxZ0=3Z2) L
BElock 1 Starts at: Ox2000 Ends at: 0xXS9FA1 (Length: O0xFL2=4002)

ooooolso: OF 1 FC 8C 85 50 BES 54 78 DA 39 BC €1 B4 C8 F4 P.Tx.9.....
oooooli0: Ag S9E 78 DS 5D 8B C1 OE CC B3 6B 4E 93 A3 AD 00 ..x.]....58KN....

ooooso0o0: 58 59 54 5B 5C 5D 5E SF 60 61 62 63 64 65 66 67 EYI[\]"*_ “abcdefg
aooos0io: 68 69 6bh 5B 6C 6D BE &F 70 7?1 072 7?3 074 75 76 77 hijklwnopgrstuvw
aoooLozo: 7?8 79 7A YB 7C 7D YE TF 50 81 82 53 84 85 56 57 xyei{|r~0O........
oooos030: 88 89 8L 8B SC 8D SE SF 90 91 92 93 594 95 96 97 Lo i i e
oooos040: 95 992 94 9B 9C 9D SE S9F AO A1 A2 A3 A4 AL RAE ATV L. i i
aooo2050: AS A9 Abh AR AC AD AE AF BO Bl B2 B3 E4 BS Bo B7 ...
oooos0s0: BS ES BAL EE EC EBD EE EF CO 21 C2 23 €4 C5 C8 C7 i i e e
oooos0vo: Cg C9 CA CE O CC CD CE CF DO D1 D2 D3 D4 D5 DE D7 e s i i s i
NNNNan&mn: A 19 i DR T T TVE NF FN F1 F2 FA F4 FR FA BT oL
Bereit Size=4034 Twpe=5-Rec MLIM

Figure 2-1 Main Menu of HexView

The figure above shows the main menu of HexView after a HEX-.File has been loaded. In
the upper part of the tool the sections of the file are listed. In the example above, the file
consists of 2 section2, named “Block 0..1”. For each block the start and end address is
given, as well as the length in hexadecimal and decimal value.

After the block section description, the data itself are displayed. Two adjacent blocks are
separated by a blank line (between 00000190 and 0009000).

A HEX-display line consists of the start address and its data. On the right side, the data is
partly interpreted as characters if possible (if the data is lower 32, the character is shown
asa'‘)).

Any mouse click with the left button restores the display in the window.

On the bottom of the window some status information is displayed.

From left to right:

» Information about the selected menu option
» Total number of bytes (decimal) of the currently loaded file (Size=Xxxxx)

» The file format of the data file that is currently loaded (see section 2.2.1.2.1 for
possible values).

©2014, Vector Informatik GmbH Version: 1.08.06 14 /111

Reference Manual HexView vector

2.1 With a Double Click to the Main Menu

To edit a hex-line, make a double click on the corresponding line you want to edit. This will
open the Edit-Line dialog.
2.1.1 EditaHEXdataline

You can edit the line in two different modes. In the upper line the data can be entered in
hexadecimal mode. In the lower line, the data can be entered as ASCII-characters. The left
field shows which base address the line is assigned to.

Edit record data Iﬁ

Addrezs: Binary D ata

Q0003010 E2E9EABE BCED BE BF 7O 71 727374 7R 7E 77

Format; 01 23 4548 CD

ASCI |hiiklmnupqrstuvw

Cancel

5

Figure 2-2 Edit-Line dialog

If only a few characters or hex values are entered, HexView will only change these lines.
All others will remain.

2.1.2 Change the base address of a data block, erase it or jump directly to the
beginning of the block data

It is also possible to make a double click onto the block info which is on top of the main
menu. This opens the block shift address menu:

Block cperation Iﬁ

Old Address: |0w3000 [hex] Cancel

Eraze this block,

Mew Address:

Exarnple: 0x1000

Figure 2-3 Change the base address of a segment

This dialog allows you to change the address of a block. Simply enter the new base
address.

©2014, Vector Informatik GmbH Version: 1.08.06 157111

Reference Manual HexView vector

You can also jump to the beginning of the specified block to display the data by selecting
the “Goto”-button (Note that it may also shift the address if another value in “New Address
will be specified).

It is also possible to delete the whole block from the list by pushing the button “Erase
entire block” button.

2.2 Menu

The main menu is grouped into the categories
» File

> Edit

> View

» Flash Programming

The file menu operates directly on complete files. The view menu allows searching for
options and the Edit menu can operate on the data.

Each of the elements of the menu will be described now.
2.2.1 Menu: “File”

22.1.1 New
Closes the current file and restarts a new session
2.2.1.2 Open

This dialog allows to open a data file. Hexview analyses the data container and checks for
a known format. The resulting data format is displayed in the status line in the bottom area.

2.2.1.2.1 Auto-file format analysing process
The format analyse process uses the following method and order:

> Fiat File Check the filename extension if it is a “.prm” - file, and try to read it as a
Fiat parameter and BIN-File combination.
> GM binary files Check the filename extension if it is a “.gbf” - or “.bin” — file, and try to
(GBF) load it in the GM-binary file format.
> Binary file, if no Read the first line with non-zero length and check if it contains non-
ASCII is found ASCII characters. If so, read the file as a binary block
> |-Hex if the line If the first 25 lines of the file corresponds to an ASCII string and starts
begins with ‘’ with a *’, the data are read as Intel-HEX.
> S-Rec if the line If the ASCII-string starts with the character ‘S’ it will be read as Motorola
begins with ‘S’ S-Record
> Ford VBF-File Check, if the contains the string “vbf_version”. Load it as VBF-file in that
case.
> Ford I-Hex Check if the file contains one of the Ford’s Intel-HEX header information

and read it as Ford-IHex file.
> Binary file in all In all other cases, read the file as a binary data input with the base

©2014, Vector Informatik GmbH Version: 1.08.06 16/ 111

Reference Manual HexView vector

File-format detection | Scan process and order during file-read operation
other cases address of 0.

Table 2-1 Auto-file format detection

2.2.1.3 Merge

This item reads a file and adds the data to the current document data. After selecting this
item, a file-select dialog will open. You can select any of the files in the format of the
autofile-type selections (see section 2.2.1.2.1). After selsecting the file and pressing OK,
the following dialog will appear:

#

Merge data file to current document

Specn:y range: |_|:l:|:;|_"_"_|-|_|:l:|:;._"|ff I:I

Format example: 0x1000-0:11FF or 01000512

Specify affzet for target address: 0 HibrzeiEn

Exarmple: 0x1000 aor 256

Filename: | C:\Hexview'_E xamplesinewblock. hes Browse

e

Figure 2-4: Customizing merge data in the merge dialog

The specified range shows the area of data from the merge file. A smaller range can be
selected that shall be merged to the current document. An offset can be specified that will
be applied to each segment that will be merged. The offset can be positive or negative and
will be added or subtracted. Use a minus-sign to subtract the offset from the base address
of each segment.

If the data of the merged file overlaps with the file data, a warning will be displayed.

[Hex-View 3 |

la Mein Abbrechen

...................................

Figure 2-5 Overlapping data when merging a file

©2014, Vector Informatik GmbH Version: 1.08.06 177111

based on template version 5.1.0

Reference Manual HexView vector

If “Overwriting existing data” is accepted, the newly read data will overwrite the data that is
internally present. If this is not accepted, the internal data is kept and just the surrounding
data is read into the internal memory.

All filetypes can be merged that are also supported with the automatic filetype detection
method.

2.2.1.4 Compare

This item provides the means to compare the internal data against the data in an external
file. The compare option can load the same filetypes as supported with “File open”.

After selecting this item, a file select dialog will open. Select the file that contains the data
you want to compare. Afterwards, the file compare dialog will be opened.

Display compare info [—LhJ

Internal document [ata from file:

|C:\H exviews_Examplesipage3a hex

00009000: 58 59 5A 5B 5C 5D 5E 5F ~|00009000: 58 59 5A 5B 5C 5D 5E 5F
00009008: 60 61 62 63 64 65 66 67 00009008: 60 61 62 63 64 65 66 67
00009010: 68 69 6A 6B BC 6D 6E 6F 00009010: 68 69 6A 6B 6C 6D 6E 6F
00009018: 70 71 72 ¥3 T4 75 76 F7 00009018: 70 71 72 73 74 75 ¥6 77
00008020: 78 79 FA B VC IDVE 7F 00008020: 78 79 FJA YB 7C ID 7E 7F
000090286: &0 81 82 83 84 85 86 87 00009028: &0 81 82 83 ©4 85 86 87
00009030: &8 89 8A 8B 8C 8D 8E 8F 00009030: &8 89 8A 8B &C 8D 8E 8F
00009036: 90 91 92 93 94 95 96 97 00009038: 90 91 92 93 94 95 96 97
00009040: 98 99 9A 9B 9C 9D 9E 9F 00009040: 98 99 9A 9B 9C 9D 9E 9F
00009048: A0 A1 A2 A3 A4 Ab AB A7 00009048: AD Al AZ A3 A4 Ab AG A7

00009050: ES& E9 EA EB EC ED EE EF
0000905%8: FO F1 F2 F3 F4 F5 F6 F7

00009060: B8 B9 BA BB BC BD BE BF 00009060: B3 B9 BA BB BC BD BE BF
00009068: CO C1 C2 C3 C4 C5 Cb C7 00009068: CO C1 C2 C3 C4 C5 C6 C7
00008070: C& C9 CACB CC CDCE CF 00008070: CB C9 CACB CCCDCECF
00009076: DO D1 D2 D3 D4 D5 D6 D7 00009078: DO D1 D2 D3 D4 D5 D6 D7
00009080: D8 D9 DA DB DC DD DE DF 00009080: D3 D9 DA DB DC DD DE DF
00009086: EO E1 E2 E3 E4 ES E6 E7 00009088: EO E1 E2 E3 E4 E5S E6 E7
00009090: E& E9 EA EB EC ED EE EF 00009090: E8& E9 EA EB EC ED EE EF
00009098: FO F1 F2 F3 F4 F5 F6 F7 00009098: FO F1 F2 F3 F4 F5 Fb6 F7
000090A0: F8 F9 FA FB FC FD FE FF 000090A0: F8 F9 FA FB FC FD FE FF
000090A8: 00 01 02 03 04 05 06 07 000090A8: 00 01 02 03 04 05 06 07
000090B0: 08 09 0A OB OC 0D OE OF 000090B0: 08 09 0A OB OC 0D OE OF
000p90B8: 10 11 12 13 14 15 16 17 000090B8: 10 11 12 13 14 15 16 17
0000s0Co: 18 19 1A 1B 1C 1D 1E 1F ooo0soco: 18 19 1A 1B 1C 1D 1E 1F
000090C8: 20 21 22 23 24 25 26 27 000090C8: 20 21 22 23 24 25 26 27
000090D0; 28 29 2A 2B 2C 2D 2E 2F ~|000090D0; 28 29 2A 2B 2C 2D 2E 2F

Figure 2-6 Compare Info dialog

The left window displays the internal data, whereas the right window displays the data
from the external file. All differences are marked in colors. Data sections that are not
present in the internal or external document are marked with ‘-‘.

The green up- and down arrows in the upper middle can be used to search for further
differences in the file. The next/previous search procedure starts always from the first line
displayed in the window.

As mentioned above, the next/prev search algorithm starts from the top line of the window.
It uses the next/previous line and searches for the next equal data. If equal data found, it
searches for the next difference or non-presence of data. If this is found, the first
appearance will be displayed on top of the window.

©2014, Vector Informatik GmbH Version: 1.08.06 18 /111

Reference Manual HexView vector

2.2.1.5 Save

After any modification of the data (e.g. modifying a hexline or the base address of a block),
the save option will be enabled. This indicates, that the file has been modified. In that
case, the “Save” option enables you to store the data to the current file name. Hexview
writes the data in the current file format. The current file format is displayed in the status
line.

2.2.1.6 Save as

Enables you to store the internal data to a file with a different filename. Hexview uses the
current file format displayed in the status line. If a file format cannot be stored (e.g. the
Intel-Hex/Motorola S-Record “Mixed” file type), a warning will be shown and no data can
be saved. Use the export function of Hexview to store the data in a different format.

2.2.1.7 Log Commands

This option is reserved for future use. It is intended as a certain kind of macro recorder. If
selected, the “save as” dialog will open. Within it, a log file can be selected. HexView will
create a new file or delete the contents of an existing file. Once this has been selected,
some commands will be stored within it.

The following commands are implemented at the moment:

Command option

FileOpen filename Opens a file.

FileClose - Close the file

FileNew - Deletes the current file and creates a new
object

Table 2-2 Currently available commands in the log-file

This might be extended in the future.
The LOG-File commands can be executed through the command line options.

2.2.1.8 Import

The Import option allows to read files in different other file formats. The following file
formats are supported:

» Motorola S-Record or Intel-Hex data
Binary data

GM data

Fiat data

Ford Intel-HEX data

Ford VBF-Data

vV v.v v Vv

©2014, Vector Informatik GmbH Version: 1.08.06 197111

based on template version 5.1.0

Reference Manual HexView vector

2.2.1.8.1 Import Intel-Hex/Motorola S-Record

This item is used to provide backward compatibility to the File->Open function available in
previous versions of Hexview (V1.1.2 or lower). It scans a textfile and analyses each line if
it is an Intel-HEX or a Motorola S-Record line and reads the data.

The resulting file type will be displayed in the filetype-area of the status line (‘S-Record’,
‘Intel-Hex’ or ‘Mixed’)
2.2.1.8.2 Read 16-Bit Intel Hex

This option reads an Intel-hex file and treats the address and data as 16-bit values. Every
address information is multiplied by two. Then the data is read into the buffer.

2.2.1.8.3 Import binary data

Reads a data file content as a binary. The data is treated as one binary block starting at
address 0. The base address can be changed by a double click to the block info line at the
top of the file.

2.2.1.84 Import HEX ASCII

This option provides the ability to read text information in HEX ASCII format. Every byte
will be represented as a pair or single HEX characters, e.g. 34, 5, F3. All non-HEX-ASCII
characters like spaces or carriage returns will be dropped and treated as separators.

The base address of the read operation is always set to O.

Note: The current file in the editor is not deleted. So, the HEX ASCII is rather merged to
the existing one. Use “File -> New” to read in only the ASCII data.

2.2.1.85 Import GM data

Reads a binary file that contains the GM header information. Since the header should
contain address and length information, all sections can be restored from the file. Note that
this option can only be used if the file actually contains a GM binary header.

2.2.1.8.6 Import Fiat data

This option reads the file in the Fiat binary format. The Fiat files are split into two files, the
parameter file (*.porm) and the binary file (*.bin). The parameter file contains section
information, the checksum, etc. The binary file contains the actual data. HexView reads the
PRM file and interprets the section information. Then it reads the actual data from the
binary file.

2.2.1.8.7 Import Ford IHex data

Reads the header container information used by Ford and the following Intel-HEX
information from the file.

All information from the Ford header will be stored in an INI-file.

2.2.1.8.8 Import Ford VBF data

Reads the Ford VBF data file. This version of Hexview manages the vbf-version V2.2.
All information from the header will be stored in an INI-File.

2.2.1.8.9 Import GAC binary file

Allows to read in GAC binary files. The header information like DCID, S/W version etc. are
stored in an internal buffer and are hidden from the user. The address and length
information from the binary will be taken to re-construct the memory representation of the

©2014, Vector Informatik GmbH Version: 1.08.06 20 /111

Reference Manual HexView vector

binary data. Hence, the GAC binary files without address information (e.g. for the SWIL)
will not displayed as GAC files and must be handled like binaries.

2.2.1.9 Export

This item groups a number of different options to store the internal data into different file
formats. Each export can contain some options to adjust the output information.

2.2.19.1 Exportas S-Record
This item exports the data in the Motorola S-Record format.

Setup SREC-Export -
Record type
Dutput range:; ||:|HE|EIE|EI-EIHE|fa1 & B
Faormat example: 01000-0:11FF or 01000512 " 52-Recard
"~ 53-Recard

b aw. bytes per 37
recard line:

Filehame: |E:'\.He:-:view'_E:-:amples'\pageSa.he:-: Browse |

[dec)

Figure 2-7 Export data in the Motorola S-Record format

The record type will be selected automatically depending on the length of the highest
address information.

The default values for start and end address will be the lowest respectively the highest
address of the file. The Output range specifier can be used if just a portion of the internal
data shall be exported. The range can be specified using the start and end address
separated by a ‘-, or can be specified using the start address and length separated by a
comma. Several ranges can be separated by a colon . Address and length can be
specified in hexadecimal with a preceding ‘Ox’. Otherwise it is treated as a decimal value.

Examples: 0x190,0x20:0x9020-0x903f

The option “Max. bytes per record line” specifies the number of bytes per block for the S-
Record file. The [Browse] option allows to locate the file with the file dialog.

©2014, Vector Informatik GmbH Version: 1.08.06 21711

Reference Manual HexView vector

2.2.1.9.2 Export as Intel-HEX
(Intel-Hex export settings I,ﬁJ]

Recard format type

ol i

Dutput rangs: |EI:-:E|EIEII:I-EI:-:9fa'I

Farmat exarple: 0x1000-0:11FF ar 01000512 © Extended segment

Max. bytes per [22
record line:

Filenarne: |E: YHemwview',_Examplesipageda hex Browsze

[dec]

Figure 2-8 Export dialog for the Intel-Hex output

Exports the data in Intel-HEX record format. This opens the following dialog for the export:

The address range of the output can be limited (see 2.2.1.9.1 for a description on the
format and how to use the range specifier).

Hexview supports two different types of output on the Intel-HEX file format, the extended
linear segment and the extended segment. The extended linear segment can store data
with address ranges up to 20 bits, whereas the extended linear segment format can
support address ranges with up to 32 bits (address ranges with up to 16 bit length of
addresses are not using any extended segments).

In the auto-mode, the used segment mode depends on the address length of each line. If
the address length of a line that shall be written exceeds 16 bits, but is lower or equal than
20 bits, the extended segment will be used. If the size of the address is larger than 20 bits,
the extended linear segment type will be used.

Sometimes it is necessary to restrict the number of bytes per record line in the output file.
This can be adjusted with the “Max bytes per record line” parameter.

2.2.1.9.3 Export as HEX-ASCII

The internal data will be exported as HEX-ASCII. Each byte will be written as a pair of
characters. A separator between bytes can be specified as well as the number of bytes
that shall be written per line before a newline will be inserted.

©2014, Vector Informatik GmbH Version: 1.08.06 22 /111

Reference Manual HexView

Setup HEX data export lﬁ

&ddress range for export; |DHEUDU-UH9fa1
Farmat examnple: Ox1000-0211FF ar 0x1000,512

M as. characters per ling: | [dec]

Character separator 7 Mone

* Single space

" Other

Filename: | C:hHemviewh,_Ewamplezhpageda.azc Browse

S 4

Figure 2-9 Export HEX ASCII data

2.2.1.9.4 Export as CCP Flashkernel

vactor”

This option generates the internal data into an Intel-HEX file, including the data section

necessary for the CCP/XCP flash kernel.

Export CCP/XCP flash-kernel

S

Flazh kerel name:

Flash kemel comment: |><E:P Flazh Kemel for HC1 2060 Yersion 1.0.0

Flazh kemel file address: ||:|Hg|:||:||:|

Flazh kemel size: |EI:-:F.¢‘-.2

Flash kernel Bk address: |':'7'=E":":”:I

Flazh kemel start address: |EI:-:21 1d

K.ernel file target: |E:"~He:-wiew'_E rampleshpage3a.fk|

Browse
Abbrechen

k.

Figure 2-10 Export flashkernel data for CCP/XCP

The section information is directly copied into the FKL-header section.

©2014, Vector Informatik GmbH Version: 1.08.06

23711

Reference Manual HexView vector

The kernel header contains a few information about the kernel file name, both the
addresses of the RAM and the start address of the main application in the flash kernel.

Note

The main application of each flash kernel starts with the function:
ccpBootLoaderStartup(), ensure FLASH_KERNEL_RAM_START has got the right
function address. Sometimes the flash kernel location is at the same address like a
vector interrupt table, to prove this, the developer must add the size of the kernel to the
FLASH_KERNEL RAM_START address. For Example here
FLASH_KERNEL_RAM_START + FLASH_KERNEL_SIZE = 1533. That mean the
RAM area from 0x1000 — 0x1533 must be clear.

FLASH KERNEL NAME="xxxxx.fkl"

FLASH KERNEL COMMENT="Flash Kernel for xxxxxx"
FLASH KERNEL FILE ADDR=0x1000

FLASH KERNEL SIZE=0x0533

FLASH KERNEL RAM ADDR=0x1000

FLASH KERNEL RAM START=0x1000

The parameters of the flash kernel reflect directly the input of the dialog.

These parameters are also written to an INI-file, so that it can be retrieved the next time
when this dialog will be opened. An example of the INI-file is shown below:

[FLAS H_KERNEL_CONFI G]

;FLASH_KERNEL_NAME=”S12D64kernel.fkl”

FLASH KERNEL COMMENT="CCP Flash Kernel for Starl2D64@l6Mhz Version
1.0.0”7

;FLASH_KERNEL_FILE_ADDR=OXO39A

;FLASH_KERNEL_SIZEZOXO42 o

; FLASH KERNEL RAM ADDR=0x039A

FLASH KERNEL RAM START=0x039A

; or: FLASH KERNEL RAM START=@S12D64Kernel.map:

ccpBootLoaderStartup Flx
- Note
) FLASH_KERNEL_NAME: If omitted, HexView will use the filename of the loaded file.

FLASH_KERNEL_ADDR: If omitted, HexView will use the lowest address of the block
FLASH_KERNEL_SIZE: If omitted, HexView will use the total size of the block

FLASH_KERNEL_RAM_START: If omitted, HexView will use the lowest address of the
block. See also description below.

Usually, the value of FLASH_KERNEL_RAM_START must specify the address location of
the function ccpBootLoaderStartup () in the flash kernel. Since this value can change
after changing the CCP-kernel files, a special feature has been added to extract the
address information from a MAP-file. Even though the implementation is very basic, it can
be very helpful. A special syntax enables this feature. The line must start with the ‘@’
followed by the MAP-file. A “:” separates this information from the following line. This line is

©2014, Vector Informatik GmbH Version: 1.08.06 24 /111

Reference Manual HexView vector

used for a scan process of the MAP-file. HexView reads every line and tries to interpret the
MAP-file line by using the remaining parameter in an SSCANF function call. The
parameter “%Ix” must represent the address value of the function ccpBootLoaderStartup.
If the scan process was not successful, HexView will add the complete line to the
parameter.

The example above extracts successfully the information from the following map-file
(extract of a Metrowerks compiler output):

MODULE : -— boot ccp.obj -
- PROCEDURES:

ccpBootLoaderStartup 38EB 1E
30 0 .text

2.2.1.9.5 Export as C-Array
This option writes the data into a C-style file format:

Dialog [i_z-,l
Array-Size Wwhord-Type
O T
r 158k
i
" 32-Bit
! Abbrechen
E herption
[Encrypt output Encrpt value |Cé =
[Create structure list [Usze stict standard C declarations
| Create far data declaration [Add memmap include statements
[
Prefix narne: |f|_33h|jw
C-File: |E:"xHe:-:view"'._E:-:amples\pageSa.E Browse
H-File: |E:'xHe:-:view'x_E:-:amples'xpageSa.h Browse

L

Figure 2-11 Export data into a C-Array

The array size can be either 8-, 16- or 32-bit. If 16-bit or 32-bit is selected, the output can
be chosen as either Motorola (big-endian) or Intel (little-endian) style.

The array can be exported as plain C-data. But it is also possible to encrypt it. The
encryption will be an XOR operation with the specified parameter. The decryption
parameter is also given in C-style.

The data is written into a C-array. The array name will use the prefix given from the dialog.
If the block contains several blocks, the data will be written into several C-Arrays. Each
block will contain the block number as a postfix.

©2014, Vector Informatik GmbH Version: 1.08.06 25/111

Reference Manual HexView vector

Example for the C-File

‘ I /**
[1] * Filename: D:\Usr\Armin\VC\HexView\ pageda.C
— * Project: C-Array of Flash-Driver

* File created: Sun Jan 15 20:59:35 2006

**/

#include <fbl inc.h>
#include < pageda.h>

#if (FLASHDRV_GEN_RAND!=1739)
error “Generated header and C-File inconsistent!!”
#endif

V_MEMROMO MEMORY ROM unsigned char flashDrvB1k0[FLASHDRV BLOCKO LENGTH] = ({

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0Ox06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0xO0D,
0x0E, O0xO0F,

0x10, 0x11, 0x12, 0x13, 0x14, 0x15, Oxle, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D,
0x1E, O0Ox1F,

0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D,
0x2E, O0x2F,

0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D,
0x3E, 0x3F,

0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D,
0x4E, O0x4F,

0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D,
0x5E, O0x5F,

0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D,
Ox6E, O0x6F,

0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D,
0x7E, O0x7F,

0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D,
0x8E, 0x8F,

0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D,
0x9E, 0x9F,

0xAO0, 0OxAl, 0xA2, 0xA3, 0xA4, 0xA5, OxA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, O0xAC, O0xAD,
0xAE, OxAF,

0xB0O, 0xBl, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, O0xBA, 0xBB, 0xBC, 0xBD,
0xBE, O0xBF,

0xC0, 0xCl, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD,
0xCE, O0xCF,

0xD0, 0xDl, 0OxD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, OxDA, 0xDB, 0xDC, 0xDD,
0xDE, O0xDF,

0xEO, OxEl, 0xE2, O0xE3, 0xE4, O0xE5, OxE6, O0xE7, 0xE8, 0xE9, OxEA, 0xEB, OxEC, OxED,
0xEE, OxEF,

0xF0, OxFl, OxF2, OxF3, OxF4, OxF5, 0xF6, 0xF7, O0xF8, OxF9, OxFA, O0xFB, 0xFC, OxFD,
0xFE, OxFF
}i

Example of the Header-File:
/**

*

* Filename: D:\Usr\Armin\VC\HexView\ pageda.h

* Project: Exported definition of C-Array Flash-Driver
* File created: Sun Jan 15 20:59:35 2006

*

**/

#define FLASHDRV_GEN_ RAND 1739

#define FLASHDRV DECRYPTDATA (a) (unsigned char)a
#define FLASHDRV BLOCKO ADDRESS 0x9000

#define FLASHDRViBLOCKoiLENGTH 0x100

#define FLASHDRVﬁBLOCK07CHECKSUM 0x7F80u

extern V MEMROMO MEMORY ROM unsigned char flashDrvB1kO[FLASHDRV BLOCKO LENGTH];

©2014, Vector Informatik GmbH Version: 1.08.06 26 /111

based on template version 5.1.0

Reference Manual HexView

©2014, Vector Informatik GmbH

vactor”

Example for the C-File
/‘k*‘k*‘k‘k‘k‘k‘k‘k‘k‘k*‘k*‘k*‘k‘k‘k‘k‘k
D:\Usr\Armin\VC\HexView\ pageda.C

* Project: C-Array of Flash-Driver
* File created: Sun Jan 15 20:59:35 2006

**/

* Filename:

#include <fbl inc.h>
#include < pageda.h>

#if (FLASHDRV_GEN_RAND!:l739)
error “Generated header and C-File inconsistent!!”
#endif

V_MEMROMO MEMORY ROM unsigned char flashDrvB1k0[FLASHDRV BLOCKO LENGTH] = ({
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
0x0E, O0xO0F,
0x10, 0x11,
0x1E, O0Ox1F,
0x20, 0x21,
0x2E, 0x2F,
0x30, 0x31,
0x3E, O0x3F,
0x40, 0x41,
0x4E, 0x4F,
0x50, 0x51,
0x5E, O0x5F,
0x60, 0x61,
0x6E, 0x6F,
0x70, 0x71,
0x7E, O0x7F,
0x80, 0x81,
0x8E, 0x8F,
0x90, 0x91,
0x9E, O0x9F,
0xAQ0, O0xAl,
O0xAE, OxAF,
0xB0O, O0xB1,
0xBE, OxBF,
0xC0, 0xC1,
0xCE, 0xCF,
0xD0, 0xD1,
0xDE, OxDF,
0xEO, OxEL,
OxEE, OxEF,
0xFO0, OxF1,
OxFE, OxFF
bi

0x0C,

0Ox12, 0Ox13, Ox14, 0x15, Oxl6, 0x17, 0x18, 0x19, OxlA, 0x1B, 0x1C,

0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, O0x2A, O0x2B, 0x2C,

0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, O0x3A, 0x3B, 0x3C,

0x42, 0x43, Ox44, 0x45, 0x46, 0x47, O0x48, 0x49, Ox4A, Ox4B, 0x4C,

0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, O0x5A, 0x5B, 0x5C,

0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, O0x6A, 0x6B, 0x6C,

0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C,

0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, Ox8A, O0x8B, 0x8C,

0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9%9A, 0x9B, 0x9C,

0xA2, 0xA3, O0xA4, OxA5, 0xAe6, O0xA7, 0xA8, 0xA9, O0xAA, O0xAB, O0xAC,

0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, O0xBA, 0xBB, 0xBC,

0xC2, 0xC3, 0xC4, 0xC5, 0xCe, 0xC7, 0xC8, 0xC9, 0OxCA, 0xCB, 0xCC,

0xD2, 0xD3, 0OxD4, 0xD5, 0OxD6, 0xD7, 0xD8, 0xD9, O0xDA, O0xDB, 0xDC,

O0xE2, O0xE3, OxE4, OxE5, OxE6, OxE7, O0xE8, 0xE9, OxEA, OxEB, OxEC,

O0xF2, 0xF3, OxF4, OxF5, 0xF6, OxF7, O0xF8, 0xF9, OxFA, O0xFB, O0xFC,

0x0D,
0x1D,
0x2D,
0x3D,
0x4D,
0x5D,
0x6D,
0x7D,
0x8D,
0x9D,
0xAD,
0xBD,
0xCD,
0xDD,
0xED,

0xFD,

Version: 1.08.06

based on template version 5.1.0

27 /11

Reference Manual HexView vector

A Example of the Header-File
I= /**
*
* Filename: D:\Usr\Armin\VC\HexView\ pageda.h
* Project: Exported definition of C-Array Flash-Driver
*

File created: Sun Jan 15 20:59:35 2006

*
**/

#define FLASHDRV_GEN RAND 1739

#define FLASHDRV_ DECRYPTDATA (a) (unsigned char)a
#define FLASHDRV BLOCKO ADDRESS 0x9000

#define FLASHDRVﬁBLOCKOiLENGTH 0x100

#define FLASHDRVﬁBLOCK07CHECKSUM 0x7F80u

extern V_MEMROMO MEMORY ROM unsigned char flashDrvB1kO[FLASHDRV BLOCKO LENGTH];

The macro [Prefix-name]_DECRYPTDATA() can be used to extract and encrypt the data. It
will be generated according to the encryption option and value.

The output can also generated via the command line. Refer to section 3.3.3 for further
information.

The declaration of the C-arrays are dedicated to the Vector 28ootloader. In some cases, it
might be necessary to use these structures in a pure C-environment without compiler
abstraction used by Vector’'s naming convention. Use the “Use strict Ansi-C declaration” in
this case.

Another option is to use so-called memmap-statements. Hexview will generate statements
to delare a define and then include the file memmap.h:

Example

Tig

Memmap declarations generated by Hexview:
#define FLASHDRV_ START SEC_CONST
#include “memmap.h”

The file memmap.h may look like this:
#ifdef FLASHDRV START SEC CONST
#undef FLASHDRV START SEC CONST
#pragma section .flashdrv

#endif

2.2.19.6 Export Mime coded data
This item exports the data file in MIME-coded format with BASE6G4 coding.

2.2.1.9.7 Export Binary data
This item will write all data contents in the order of their appearance into a binary file.

All segments will be written linear into the data block

©2014, Vector Informatik GmbH Version: 1.08.06 28 /111

vactor”

Reference Manual HexView

2.2.1.9.8 Export binary block data

This item will export the data into a binary file. However, if the internal data file contains
several blocks, the data is written to different files. Each filename will have the base
address as a postfix.

| 4I¢ pageda.hex - Hex-View = | @ 22
Eile Edit ¥iew Flash Prograrnming 2
D & =
Elock 0 5Starts at: Ox FEZ Ends at: 0x11FF (Length: O0x2Z21E=542) -
Elock 1 Starts at: 0x4020 Ends at: 0x431F (Length: 0x300=T&8)
Block 2 5Starts at: 0x9000 Ends at: 0x9FAl (Length: O0xFAz2=4002) E
O0000FE2: D9 SE 04 A0 97 C3 BEE 4B 62 39 14 53 55 TE -4 %= I 1 B
OQO000FFD: 23 C8 4D DO CO 76 F8 F1 37 C4 2F 28 41 DC 286 88 #.M..v..7./(A...
Q0001000: 33 0OC 21 74 T7& &C C9 63 37 C2 3E E1 5F A2 CF D7 3.!tvl.c7.>. ...
Q0001010: Ce& DR 292 0B L3 0D 6D ER 48 9D 85 86 OC CE BT DB Jbe.am.H. L.

Figure 2-12 Export binary block data

File output names:
» page3_overlap_fe2.bin

» _page3_overlap_4020.bin
» _page3_overlap_9000.bin

2.2.1.9.9 Export Fiat Binary File
This exports data in the FIAT file format.

FIAT Parameter Data

Comme-tddress zettings Export address range

FHqull]}'IJe: 9-Bit 1D Hi+Marmal [HF1=4, ECllAddress ,T ihes] |DxSDDD-DHSfa‘I
[Eih'ghlﬁ;nﬁﬂ: [DAT4, PROG and BOOT =) Testeradiess F1 e Format example: 01 000-0¢11FF or 01000512
Checksumn method CAMAD settings P2 P4
" TotalSegment CSUM & Total CSUM Testerld [18DAZIFT fres) Min: |5_ b ax: |2_ Min: lu_
Type: | 1:ButeSum into 16-B, LE-out ~| F3 Baudrate ID
Address Size Length Size R 12 [l Min: 1 iz ,T e ,D_
e e
™ 4 Bytes " 4 Bytes J‘-["-BCESBCSE' giﬁm: ﬂi%g?;i%?] ID— Data format identifier [RegquestDownload): ,T [hex]

Partial dowrload Data processing type

| 0:MNo action

vV Uze partial download Fange for partial OL: |D:<9'I 00,0x100

PRb-file for partial DL:

DP-Param: |
page3a_partial.prm

Browse

Filenarne for BIM-file: |C:'\H exviemt_E xamplestpage3a.bin

Browse oK
Browsge

Cancel

4

Filename for PRb-file: | C:AHesview',_Exampleshpage3a.prm

Figure 2-13: Export dialog for the FIAT binary file

©2014, Vector Informatik GmbH Version: 1.08.06 29 /111

Reference Manual HexView vector

The dialog shown above can only be understood if the Fiat file format is known. This
document does not intend to explain this file format. Refer to 0728401.pdf for further
explanation.

During the export, an INI-file will be updated or generated. If the INI-File was specified by
the commandline, this file will be used. Otherwise, an existing file will be updated or new
file will be generated with the same name and location as the export filename. For the INI-
file format, refer to section 3.3.2, “Output a Fiat specific data file (/XB)”.

2.2.1.9.10 Export Ford Ihex data container

The file format generated with this output is based on the Ford-specification “Module
Programming & Configuration Design Specification”, V 2003.0, dated: 25 April 2005,
Annex C.

Besides the download data itself, there are some optional and mandatory values added to
the output file. The optional fields can be selected/unselected with the option checkbox.

All values entered in the dialog below will be written to the INI-File. The INI-file can also be
used for the command line option to generate the output without the needs of a user input.

For detailed description of each item of the data fields, refer to the document mentioned
above. Further information can be found in section 3.3.4.1, “Output Ford files in Intel-HEX
format”.

Information: The file format has been replaced by VBF.

©2014, Vector Informatik GmbH Version: 1.08.06 30/ 111

Reference Manual HexView

vactor”

Ford Intel-HEX header info

S5

Optiar:
v A pplication

v t azk rurmber
Filename
v Release date

[v Module type

Froduction module

part number
¥ WERS natice
¥ Comments
v Released by
¥ todule name

tModule [D

Download Farmat

File checksum

Flazh indic:ator

Flazh erase sectors

Filenarne:

FORD FROS-Demall

|? or later

|AF'F'L.he>c

| 1 0052001 j

|Hestraint Control Module

|><|_5-tx-1 4B 327ty

|DEEIEIE1 07573130

|Henrys header for flazhdata

|.-’-‘n.rmin Happel

|F|ESTFHAINTS COMTROL MODULE

|D:-:?BEI

|D:-:I:I1

|D:-:E?2'|

" non-Flash [e.0. SBL/Flash-driver)

% Flash [e.0. App. or CAL)

Abbrechen

|:D:-:E!DDD,D:-:F.E\2

|E: YHewview,_Examples\page3a hex

Browse

Figure 2-14: Export dialog for Ford I-Hex output file

2.2.1.9.11 Export Ford VBF data container

The VBF file format is the Versatile Binary Format used by Ford and VolvoCars. The
output of this file is based on the specification “Versatile Binary Format”, V2.2 until V2.5.

All values entered in the dialog below will be written to the INI-File. The INI-file can also be
used for the command line option to generate the output without the needs of a user input.

Refer to section 3.3.4.2, “Output Ford files in VBF format” for further information.

©2014, Vector Informatik GmbH

Version: 1.08.06

317111

Reference Manual HexView vector

VEF data dialog i

Thiz the demo application for r

Descriptior: the FJ16LX FEL-Ford FNDS 3.
Al Cancel

Software part [12345675 Frame format: WEBF wersion
number|z]; K

f* Standard CAMAD w2z O W2AMCD)

i -
 Estonded CANAD W23 Y3.0 [Ford)

'3
Software | HEE
werzion (o, Z];

St : Gateway info
oftware par -
type: |E><E J [Reference through gateway
Call address: | Sutb netinrk: | J
Sub network address: |
tait netwark: |E‘AN_MS ﬂ I

Sub node address: |

ECL address: |UH?EU

Eraze table: (%3000-0x10000 -
012000, 0:2000
td arwal -
[ata Processing
Drata farmat identifier
[RequestDownload):
[ata processing type: | 0:Mo action ﬂ

[ata processing parameter: |

Filename: |D:\page3a.vbf Browse

Figure 2-15: Export dialog for the Ford/VolvoCars-VBF data file format

2.2.1.9.12 Export GM data

This item is just present to indicate, that the tool also supports GM-data export. In fact, the
GM data preparation must be done through the commandline option. More information can
be found in section 3.3.5ff,”Output a GM-specific data file”.

The GM data container is simply a binary file stream. It can be exported through the binary
export.

¥

Hex-View I&]

! Export GM: This corresponds to binary export. Use Export -> Binary
L instead.

©2014, Vector Informatik GmbH Version: 1.08.06 32/ 11

Reference Manual HexView vector

Figure 2-16: The output information for the GM data export

2.2.1.9.13 Export GM-FBL header info

This option provides the possibility to export the address and length information of each
segment into an XML-File. Also, the number of segments and the checksum value will be
written into the XML-file. If the checksum target address is located within the segment
array, the tool will automatically split this region into two to spare the location of the
checksum. Thus, the checksum can be re-calculated.

The purpose of this output is to read the XML-file into the configuration and generation tool
“‘Geny’. It is used to generate the GM-header info for the GM flash Bootloader. It allows the
Bootloader to calculate the checksum on its own data.

It may require two rounds (generate the configuration, compile and link the Bootloader,
generate the XML-file with Hexview) for a valid header.

Export GM-FBL header info

Output range: 03000-0=5f=1 0K

Format erample:; 021000-0211FF ar 041000512

Checksum and Carnicel

header address:

Checksum bpe: | Bwfardsum BE into 16-Bit, 2's Compl BE-Out [GM new styﬂ

B

Filename: |I::"-.H exview'_Examplez\pageda.xml Browse

Figure 2-17: Export dialog to generate the GM-FBL header information for GENy

The XML-file has the following format:

<!—Created by HexView v2006 (Vector Informatik GmbH) =2
<ECU xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:noNamespaceSchemalocation="FBLConfiguration.xsd”>
<FBLConfiguration>
<PMA ID="1">
<Checksum Value="51434"/>
<NumberOfPMA Value="2"/>
<PMAField>
<Address Value="8380416"/>
<Length Value="1932"/>
</PMAField>
<PMAField>
<Address Value="8388368"/>
<Length Value="240"/>
</PMAField>
</PMA>

©2014, Vector Informatik GmbH Version: 1.08.06 33/ 111

Reference Manual HexView

</FBLConfiguration>
</ECU>

2.2.1.9.14 Export VAG data container

This item exports the data into a VAG-compatible data container format.

vactor”

WAG - File export configuration

SGHL template-file configuration

SGM-pre header file
header.log

<< dataref. section >
SGM-post header file

|header2.lug

<« data section >»
SGM-Footer file

|f|:n:|ter.|ng

Flazh driver configuration

Flazh driver HE-File

DA srhdrmintVENH ediewh FLASHCODE _SH70<F_704 hex

Section pararmeter

Flash driver section |FLASHDRY

Flaghdry format 1D |00 [2-byte hex)

dav_pfu
00 | 2byte hex)

bawn. section data li[heg]

[rata Encryption
[rata zection Encropt parameter

D ata farmat 1D
Part number

Browse

Browse |

Edit

Edi |

Browse

Browse

Edit

[v Insert Flaghdriver

—

S wersion

Checkzum calculation | 2fardzum BE into 16-Bit, BE-Out ﬂ
| 0:Mo action j
|1 234567890

D eztination file |E:HH exview’_Examples\pageda.zam

Abbrechen

Browse

-

Figure 2-18 Exports data into a VAG-compatible data container

’T" Note

=

The generated VAG data file is NOT compatible with the ODX-F format used for UDS.

The VAG data container is a SGML-file that can be divided into five sections. Three

sections are merged from external files, two others are generated.

©2014, Vector Informatik GmbH

Version: 1.08.06

34 /111

Reference Manual HexView

Section 1:

“SGM pre-header file”.

HexView parses this file and checks, if the fields
in [1], [2] or [3] are blank. If not blank, it will copy
the contents as is from the file. But if the fields
are left blank, it will be filled with parameters
from the dialog box:

[1] = filename from “destination file” without the
path

[2] = the value from “S/W version”

[3] = the value from “Part number”

©2014, Vector Informatik GmbH

vactor”

<!DOCTYPE SW-CNT PUBLIC “-//Volkswagen AG//DTD
Datencontainer fuer die SG-Programmierung
v00.80:MiniDC08.DTD//GE” “minidc08.dtd”>
<SW-CNT>
<IDENT>
<CNT-DATEI> [1] </CNT-DATEI>
<CNT-VERSION-TYP>cvt pfu 01</CNT-VERSION-
TYP>
<CNT-VERSION-INHALT>0.80</CNT-VERSION—-
INHALT>
<CNT-IDENT-TEXT>MyProject</CNT-IDENT-TEXT>
<SW-VERSION-KURZ> [2] </SW-VERSION-KURZ>
<SW-VERSION-LANG> [3] </SW-VERSION-LANG>
</IDENT>
<INFO>
<ADRESSEN>
<ADRESSE>
<FIRMENNAME>S/W-Development
GmbH</FIRMENNAME>
<ROLLE>Entwicklung VAG-Software</ROLLE>
<ABTEILUNG>ESVG</ABTEILUNG>
<PERSON>Klaus Mustermann</PERSON>
<ANSCHRIFT>Gewerbestrasse 40, D-03421
Ingolsheim</ANSCHRIFT>
<TELEFON>+49-6234-123-456</TELEFON>
<FAX>+49-6234-123-200</FAX>
<EMAIL>Klaus.Mustermann@sw-
develop.de</EMAIL>
</BADRESSE>
</ADRESSEN>
<REVISIONEN>
<REVISION>
<WANN></WANN>
<WER></WER>
<WAS></WAS>
<WARUM></WARUM>
<VERSION></VERSION>
</REVISION>
</REVISIONEN>
</INFO>
<ABLAEUFE>
<ABLAUF>
<ABLAUF-NAME>abn pfu</ABLAUF-NAME>
<KWP-2000>
<KWP-2000-TGT>0x62</KWP-2000-TGT>
<KWP-2000-REI>
<KWP-2000-PSTAT-BIT0>255</KWP-2000-
PSTAT-BITO>
<KWP-2000-PSTAT-BIT1>6</KWP-2000-
PSTAT-BIT1>
<KWP-2000-PSTAT-BIT2>10</KWP-2000-
PSTAT-BIT2>
<KWP-2000-PSTAT-BIT3>0</KWP-2000-
PSTAT-BIT3>
<KWP-2000-PSTAT-BIT4>0</KWP-2000-
PSTAT-BIT4>
<KWP-2000-PSTAT-BIT5>0</KWP-2000-
PSTAT-BIT5>
<KWP-2000-PSTAT-BIT6>0</KWP-2000-
PSTAT-BIT6>
<KWP-2000-PSTAT-BIT7>0</KWP-2000-
PSTAT-BIT7>
</KWP-2000-REI>
<KWP-2000-ACP>
<KWP-2000-P2MIN>0xFF</KWP-2000-P2MIN>
<KWP-2000-P2MAX>0xFF</KWP-2000-P2MAX>
<KWP-2000-P3MIN>0xFF</KWP-2000-P3MIN>
<KWP-2000-P3MAX>0xFF</KWP-2000-P3MAX>
<KWP-2000-P4MIN>0xXFF</KWP-2000-P4MIN>
</KWP-2000-ACP>
<KWP-2000-
SA2>0x12,0x23,0x23,0x34,0x45, 0x56C</KWP-2000-
SA2>
</KWP-2000>

Version: 1.08.06

357111

mailto:Klaus.Mustermann@sw-develop.de%3c/EMAIL
mailto:Klaus.Mustermann@sw-develop.de%3c/EMAIL

Reference Manual HexView

Section 2:

Generated “Data Reference section”

The reference section contains a reference to
each segment or block. An external Hex-file can
be added for reference, e.g. a HIS-flash driver. It
is necessary that this hex field contains only one
segment or block.

Section 3:
“SGM post-header file”.

Section 4:

Generated “data section”.

This section contains the current data. On the
right side an example of the output is shown.
Start and end address is taken from the block
information. The checksum is calculated with the
given checksum method (see section 2.2.2.6 or
3.2.7 for further details on checksum
calculation). The erase section is calculated out
of the section length. The value of
<DATENBLOCK-FORMAT> is taken from the
“‘Data Format ID” field in the dialog box.

The <DATENBLOCK-DATEN> contains the data
of the block or segment in a MIME-coded format.

Section 5:
Appending file contents from ,SGM footer file®

Table 2-3

vactor’

<DATEN-VERWEISE>
<DATEN-VERWEIS>FLASHDRV</DATEN-VERWEIS>
<DATEN-VERWEIS>dav pfu 01</DATEN-
VERWEIS>
</DATEN-VERWEISE>

</ABLAUF>
</ABLAEUFE>

<DATENBLOCK-

NAME>dav_pfu 01</DATENBLOCK-NAME>
<DATENBLOCK-FORMAT-

NAME>dfn mime</DATENBLOCK-FORMAT-NAME>
<START-ADR>0x9000</START-ADR>
<DATENBLOCK-FORMAT>0x00</DATENBLOCK-

FORMAT>
<GROESSE-DEKOMPRIMIERT>0xFA2</GROESSE-

DEKOMPRIMIERT>
<LOESCH-BEREICH>

<START-ADR>0x9000</START-ADR>
<END-ADR>0x9FA1</END-ADR>
</LOESCH-BEREICH>
<DATENBLOCK-CHECK>
<START-ADR>0x9000</START-ADR>
<END-ADR>0x9FA1</END-ADR>
<CHECKSUMME>0xA866</CHECKSUMME>
</DATENBLOCK-CHECK>
<DATENBLOCK-DATEN>
MIME-Version: 1.0

WflaWlxdX19gYWJJZGVmZ2hpamt sbWSvcHFyc3R1ldnd4eXp
7TfH1+£4CbgoOE
hYaHiImKi4yNjo+QkZKT1JWW15iZmpucnZ6foKGio6Slpge
ogqagqrrK2ur7Cx
srO0tba3ulméu7y9vr/AwcLDxMXGx873JysvMzc7PONHSO9T
V1tfY2drb3N3e
</DATENBLOCK-DATEN>
</DATENBLOCK>

</DATENBLOECKE>
</DATEN>
</SW-CNT>

Description of the elements for the VAG SGML output container

It should be noted, that the filename is automatically generated out of the part number and
the S/W-version fields whenever the fields are changed. You can overwrite the name if the
filename is changed at last. When editing the filename or [Browse] for a file, the name will
not automatically adapted.

It is also possible to preprocess the data before it is MIME-coded. This process is done
after the checksum calculation. It is intended to be used for e.g. Data Encryption.

It uses the standard interface functions from the EXPDATPROC.DLL (refer to section 4.2,
2.2.2.7 and 3.2.8 for further details).

INI-File info for VAG export

The dialog information is stored in an INI-file. This file has the same name as the HEX-file,
but with the file extension INI. Every time this dialog will be opened, CANflash checks for
such an INI-file and retrieves the information from there. This allows to store project

36 /111

©2014, Vector Informatik GmbH Version: 1.08.06

Reference Manual HexView vector

information in separate files. It is a prerequisite that the INI-file resides in the same folder
as the HEX-file.

This INI-File can then also be used in the command line option.
The following list file shows an example of the INI-file:

[SGMDATA]

DATENBLOCKNAME=dav_ pfu
FLASHDRVSECTION=FLASHDRV
FLASHDRV=D:\Usr\Armin\VC\HexView\FLASHCODE SH70XXF 704.hex
SGMHEADERPRE=headerl.txt
SGMHEADERPOST=header?2.txt
SGMFOOTER=footer.txt
CHECKSUMTYPE=2
DATAPROCESSINGTYPE=0
DATAPROCESSINGPARAMETER=1234567890
PARTNUMBER=12345678%ab
SW_VERSION=cdef

FLASHDRV_DLID=12

DATA_DLID=24

MAXBLOCKLEN=0x400

- Note
This INI-file is automatically created when executing this dialog.

2.2.1.9.15 Export GAC binary files
This option allows to write the internal data from Hexview to a GAC binary file.

The header information will be taken from the INI-file info section and written to the binary.
With this option it is only possible to write GAC files with address information.

If you want to generate GAC files without address info, use the commandline option
“Ixgacswil”.

2.2.1.10 Print/Print Preview / Printer Setup

There is no special support for printer output other than that from the MFC. Thus, the view
output will directly sent to the printer.

2.2.1.11 Exit
Leaves the program.

2.2.2 Edit
This menu item collects some options that can be used to manipulate data in HexView.

©2014, Vector Informatik GmbH Version: 1.08.06 37 /111

Reference Manual HexView vector

2.2.2.1 Undo
This option is currently not supported by HexView.

2.2.2.2 Cut/Copy/ Paste

Hexview uses an internal clipboard (not the Windows clipboard). Cut and Copy can put
data into this clipboard. Even if files are closed and others are opened, the data remain in
clipboard.

It allows, to cut or copy data regions and put it into the data section. As a new challenge,
another syntax to specify range has been introduced. Different from the other regions,
where start and end address must be specified as HEX-values, the range can now
specified in one single string. The range can be specified in two ways: Using start- and
end address or with startaddress and length.

Start and end address is separated with a *-‘ sign. Startaddress and length are separated
with a ‘,.

©2014, Vector Informatik GmbH Version: 1.08.06 38 /111

Reference Manual HexView vector

Example
Address range with start and end address: 0x9020-0x903f

This specifies start- and end-address in hexadecimal value. A ‘0Ox’ is required to
preceed. If ‘Ox‘ is omitted, the value is treated as a decimal value. This allows to use
the parameters in both hexadecimal or decimal values.

Copy data block I,i‘s-,l

Tig

Specify range: | LENEIEIENE]

Format example: 0:1000-0:11FF or 01000512

Abbrechen

Figure 2-19 Example of ‘Copy window’ when Ctrl-C or “Paste” pressed using start- and end-address

Address range with start address and length: 0x9020,32

This specifies a range from 0x9020 with length of 32 bytes (0x20 bytes). It is the
range of 0x9020-0x903f.

The standard short-cuts (acceleration keys) for delete (del or Ctrl-x), copy (Ctrl-
c) and paste (Ctrl-V) are supported by Hexview.

Delete data block or range I,i‘s-,l

Specify range: |DHE":|2|132

Format example: 0:1000-0:11FF or 01000512

Abbrechen

Figure 2-20 Example of cut-data using start-address and length as a parameter

Cut or paste can only be used if data are present inside Hexview.

The paste-operation is activated when something is present in Hexview’s
internal clipboard.

When ‘Paste’ (Ctrl-V) is entered, a window will open where the target paste
address can be specified. By default, the clipboard’s start address will be shown
as a default value. This can be overwritten. An address offset will be applied to
the pasting range from the clipboard.

©2014, Vector Informatik GmbH Version: 1.08.06 39/ 111

Reference Manual HexView vector

Paste clipboard data block into current file [&J

Specify destination address: |UHEUUDE1
Ewxample: 0x1000

Abbrechen

Figure 2-21: Pasting the clipboard data into the document specifying the target address

2.2.2.3 Copy dsPIC like data

The dsPIC24/33 has a 24-bit addressing format. The flash memory only contains 3 bytes
per 4 words. Direct data access can be accomplished by addressing the lower 2 bytes,
disregarding the the upper byte. The 4™ byte is also known as the ghost byte and is always
read as 0. Since the machine is a 16-bit machine, its internal words are normally
addressed 16-bit wise, Thus, address 0x1000 specifies e.g. OXABCD, whereas 0x1001
then specifies 0XOOEF and so on. Intel-HEX or Motorola S-records uses byte addresses.
The Microchip toolchain generates therefore hexfiles with double address. The values from
the example above is then represented on address 0x2000 with bytes 00 EF CD AB.

In somve cases it can be helpful to change the representation in a HEX file from “outer” to
‘inner” addresses and vice versa. The copy procedure of Hexview allows to copy any
section from outer addressed (doubled address) to inner (word) address (Shrink option in
dialog) and vice versa (Expand option in the dialog).

©2014, Vector Informatik GmbH Version: 1.08.06 40/111

Reference Manual HexView vector

4# Unbenannt - Hex-View = | =

File Edit View Flash Programming Z

Nl s28|&

Block 0 Starts at: 0x1000 Ends at: 0x1003 (Length: 0O0x4=4)
Elock 1 Starts at: 0xZ2000 Ends at: 0x2Z2007 (Length: O0xE=8)

00001000: 95 B4 62 28 .
00002000: 95 B4 00 00 62 28 00 00 P«
Copy dsPIC data ﬁ
Copy type

S pecify range: " Shrink

Format example: 0w 000-0x11FF or 01000512 ' Expand
" Clear ghost

T arget location: |UHEUUU

Format example: 0x1000 [will be calculated automatically it empty].

Cancel

Figure 2-22: Copy dsPIC like data

When expanding data, Hexview will add 2 zero bytes to the expanded location, one for the
ghost byte and one for the remaining byte. After flashing these data into dsPIC memory,
the data can be access using a byte pointer to data. The correct data will be read now.

When shrink operation is used, the upper two high bytes will not copied, only the lower two
bytes are copied to the new location.

When selecting the “Clear ghost byte” Copy type, no data will be copied, but the highest of
the four bytes will be set to 0. This allows to calculate a correct checksum over the data,
since internally of the dsPIC the ghost byte is always read with O.

A target location is only required if the shrink or expand address is not double or half of the
specified source address. This option is also available through commandline.

2.2.2.4 Data Alignment

Data Alignment operates on the block start address and its length. This can be used to
adjust the start address and length on all blocks/segments.

©2014, Vector Informatik GmbH Version: 1.08.06 41/111

Reference Manual HexView vector

Align data value

Data alignment
Segment alignment valle: 2

Fill character: FF ke Cancel

Align zize: [

il

Block eraze alignment

Eraze zegment alignment; a2

Figure 2-23 Data alignment option

This option ensures, that the start address of all blocks is a multiple of the segment size
alignment value. E.g., if this parameter is 2, then HexView ensures that all addresses are
even (dividable by 2 without remainder). If an odd address is detected, HexView fills bytes
with the “Fill character” at the beginning of a block until the address is even.

If “Align size” is selected, too, the size of all blocks is a multiple of the given segment
alignment value. If a length of a block is not a multiple of the segment align value, a fill
pattern will be added until the size meets this condition.

Some export file formats contain separate address and length information used to specify
the erasable ranges of a flash memory. These address ranges require different alignment
definition. This align value can be specified in the “Erase segment alignment”. It is mainly
used with Ford-VBF and Fiat binary/parameter files. This value can also be specified
through the commandline option /AE.

2.2.25 Fill block data

This option provides the ability to fill data regions. This is possible with either random data
or with a pattern that will be added repetitively.

Within the dialog, one or more block ranges must be given. This parameter is used to
generate the block base address and its size.

The overwrite method specifies how to treat the fill data with the existing data. If the new
data overlaps, the new data may overwrite it or will be weaved into the existing data as a
fill pattern.

The data pattern can either be a random data value or can be filled with a given pattern.
Here, you can even specify several ranges, each one separated by ‘.

If you push the “Get fill all region” button, the Fill address range will be filled in with the
smallest and largest address of the currently loaded hey data to create a single region file.

With the button “Get Geny block config” you can read the .gny file from geny. Hexview
then tries to load the Flash block configuration for the address ranges. That can be used to
create a test file that fills all known flash blocks for a download.

©2014, Vector Informatik GmbH Version: 1.08.06 42/111

Reference Manual HexView vector

You may have to generate a Document from the GENy-component
“GenTool_GenyPluginConfigDocumentor”. Make sure you have selected the checkbox
(Ignore Default Values).

Fill data record e |

Get "Fil all" regian |

et Geny black canfig |

041000.4
Format exarmple: 0x1000-0:11FF or 0x1000.512

Owenunte method

Fill address range:

v Fill with random data " Overwrite existing data

[wiite direct o file ¥ Keep exizting data

Fill with a record:

00 ef cd ab
Hex-Format, 01 23 45 4B CD

Cancel

"

Figure 2-24 Dialog that allows to fill data

2.2.2.6 Create Checksum
There are two different methods to allow to operate on the data set of the loaded file info:

» data processing
» checksum calculation.

Data processing operates directly on the data set and change it. The checksum calculation
operates on the data without changing them. The resulting value can be added to the data
set.

The dialog above shows the method to operate on the data. The checksum range can
limit the data section where the checksum calculation operates on. Please note, that you
can specify only one range. If several ranges are specified using the colon separator, only
the first one will be used to limit the data area.

©2014, Vector Informatik GmbH Version: 1.08.06 43 /111

Reference Manual HexView vector

p
Create a checksum value

Format example: 0=1000-0:11FF or 01000512

)
Checksum range:; |I:I:-:E|I:II:II:I-I:I:-:E|fa1 Ihsert

Checksum type: | A.CRC-32 j

Checksum address FA2
Checksum value &893 F42

Figure 2-25 Dialog to operate the checksum calculation

The checksum type depends on the capability of the underlying checksum DLL. For the
interfaces, refer to section 4.1. Also, section “Checksum calculation method
(/CSx[:target[;limited_range][/no_range])” provides further details on checksum calculation.

The button [Calculate] will run the calculation and shows the result in the field checksum
value. If [Insert] is selected, the checksum calculation will be performed and the result will
be added to the internal data blocks on the given address.

2.2.2.7 Run Data Processing

The second method that uses the EXPDATPROC.DLL functions is the data processing
field. As already mentioned in the Checksum calculation section, the data processing
directly operates on the internal data. Most of these operations requires a parameter for
this operation. Typically, the resulting data is the manipulated data. Therefore, no result of
the data processing can be inserted or added to the data sections.

Data Processing ﬁ

Data proceszing range; | Dx3000-0x3Fa1

Format example: 0=1000-0=11FF ar 01000512 Ahbbrechen

Type: 18:R5A-Decyption

Farameter: DA Trophreakeys. bt j

Browse |

¥

Figure 2-26 Dialog for Data Processing

The data processing allows to operate on the data. Typical applications are data
decryption/encryption or compression/decompression.

©2014, Vector Informatik GmbH Version: 1.08.06 44 /111

Reference Manual HexView vector

The string value given in the Parameter field is passed to the routines for the data
processing.

The Data processing range can limit the data range, where the data processing will
operate on. The parameter will be stored in the registry, to retrieve the information the next
time this option is activated. Please note, that you can specify only one range. If several
ranges are specified using the colon separator, only the first one will be used to limit the
data area.

See also section 4.2 for further details on the DLL-interface. Please, read also section
‘Run Data Processing interface (/DPn:param[,section,key][;outfilename])” for more details
on available data processing functions.

Some data processing options allow to use a file that contains the parameter. You can
browse for the specific file using the “Browse” button.

2.2.2.8 Edit/Create OEM Container-Info
This option is currently not available.

2.2.29 Remap S12 Phys->Lin

This option is used to remap all blocks from physical paged addressing to the linear
address mode. It is dedicated to be used with HEX-files with paged address information for
the Motorola Star12 (MC9S12 family). The Star12 paged addressing mode uses 24-bit
addresses, where the upper 8-bit specifies the bank address in the range from 0x30 to
0x3F. The lower 16-bit address is the physical bank address in the range from 0x8000-
OxBFFF. These address ranges are shifted to the linear addresses starting from
0x0C.0000 for Bank 0x30 up to the highest address OxF.FFFF.

The non-banked addresses from 0x4000-0x7FFF and 0xC000-OxFFFF are mapped to the
linear address range of the corresponding pages (0x4000-0x7FFF mapped to 0xOF.8000-
OxOF.BFFF [Bank Ox3E] and 0xCO000-OxFFFF mapped to OxOF.CO00-OxOF.FFFF (Bank
0x3F]). See also chapter 3.2.20 for further explanations.

2.2.2.10 Remap S12x Phys->Lin

This option is used to remap all blocks from physical paged addressing to the linear
address mode. It is dedicated to be used with HEX-files with paged address information for
the Motorola Star12X (MC9S12X family). The Star12X paged addressing mode uses 24-
bit addresses, where the upper 8-bit specifies the bank address in the range from OxEO to
OxFF. The lower 16-bit address is the physical bank address in the range from 0x8000-
OxBFFF. These address ranges are shifted to the linear addresses starting from 0x78.0000
for Bank OxEOQ up to the highest address Ox7F.FFFF.

The non-banked addresses from 0x4000-0x7FFF and O0xC000-OxFFFF are mapped to the
linear address range of the corresponding pages (0x4000-0x7FFF mapped to 0x7F.4000-
Ox7F.7FFF [Bank OxFD] and OxCO00-OxFFFF mapped to 0x7F.CO00-Ox7F.FFFF (Bank
O0xFF]). See also chapter 3.2.20 for further explanations.

2.2.2.11 General Remapping

This option can be used to remap any banked address information into a linear address
range, e.g. for the Motorola MCS08 or NEC 78kO.

Detailed information about banked and linear addresses can be found in chapter 3.2.20.

©2014, Vector Informatik GmbH Version: 1.08.06 45/111

Reference Manual HexView

vactor”

4I¥ Unbenannt - Hex-View =N

Eile Edit View Flash Programming 2

Elock 0 Starts at: 0x5050 End=s at: 0O0x56AL (Length: O0x65B=162T7) -

Block 1 Starts at: 0x56AC Ends at: Ox59FF (Length: Ox354=852)

Elock 2 Starts at: O0x8000 Ends at: OxBFF0 (Length: O0x3FF1=16369)

Block 3 Starts at: 0x18000 Ends at: O0x1S4AED (Length: O0xI1AEE=&894)

00005050: C7T 85 25 3A 9F BT 07 01 41 26 FR AB FC 07 5D AT ceElL L L BEL L]

000 -5 ’

000 Remap address ranges

e]e]s] .

o0))) ~

qao B anking configuration .

[a]a]a] .
Address range where bank] BO00-0x1 Gaed

000 remapping shall be applied ta; | " wl-ae .

Q00 Format exarnple: 0w1000-0411FF or 0x1000,512 .

000 Abbrechen)

000 Single barlk size: [+4000 .

[a]a]a] D

000 Format example: 010000 .

Qoo O

000 Offset between banks: ||:|":1 0000 .

000 Format example: 0x4000 N

o0 H

[e]a]s]

Q00

[e]a]s] . .
Linear base address:

000 000000 -

Qo0 Format example: 0xFEODOO

[e]a]s]

[a]a]a]

oo0 ?

QO00051ED: 4B 42 TC 1F 37 14 &0 T4 74 EC BB 48 35 30 6B E4 EE|.7. tt..H50k.

Figure 2-27: Configuration window for general remapping

2.2.2.12 Generate file validation structure

This menu item provides a powerful way to generate a validation structure over the
complete download data. The purpose is to generate a list of target address and length
information that can be located at a specific address within the flash memory. The target
location can be used to verify the complete that all download information is available in
your target memory. This validation information must be spared out from this range.

©2014, Vector Informatik GmbH Version: 1.08.06

46 /111

Reference Manual HexView

1

Creating a validation structure

Target: Internal data

[+ Inzert validation structure to data field

Target address: |0x10000

Target: External C-structure files

| Generate C-structure fileset

YWiord-Type
* Little-Endian [Intel, Lobyte first)
(" Big-Endian [Matorala, hibyte first]

C-File |

H-File |

ID tag begin: 01234

D ata zources:

Range from |0x3000-0x3f51
internal data:

Spared range:; |

Additional file list; J E

Browse

Browse

Format example: 01000-0:11FF or 01000512

D:himphpage3a_tst hes

Block checksum ~

Checkzum type: | 2M%fordsum BE into 16-Bit, BE-Out

Add total checksum [

Checksum type: | 9.CRC-32

I tag end: ||:|:'=“r32'I

E
=}

I

v Add 16-Bit byte-checksum to validation structure Ahhrechen

Figure 2-28 Generate the validation structure for your target memory.

The following options are available:
e Target address:

vactor”

The fixed address where the validation structure shall be placed into the currently

open file.

e External C-structure

A C-file and header will be generated that helps you to access all the individual

elements of the generated structure

©2014, Vector Informatik GmbH

Version: 1.08.06

47 1111

Reference Manual HexView vector

Example
Below is an example of the generated C and H-file:

2

age3a.h:
/***
* Filename: D:\uti_page3a.h
* Project: Header-File for validation structure

* File created: Tue Mar 11 19:59:54 2014

'k***********************/

#ifndef PAGE3A H
#define PAGE3A H

/* Structure describing a single block info */
typedef struct tVsBlockInfo {

unsigned short blockAddress;

unsigned short blockLength;

unsigned short blockChecksum;
} tVsBlockInfo;

typedef struct tValidateInfo {
unsigned short tagBegin;
unsigned char blockCount;
tVsBlockInfo blockInfoll];
unsigned long fileChecksum;
unsigned short tagEnd;
unsigned short validateSum;

} tvValidateInfo;

/* Extern definition of the data generated structure */
#define VALIDATEINFO START SEC CONST EXPORT
#include "memmap.h"

extern const tValidateInfo ValidateInfo;

#define VALIDATEINFO STOP_ SEC CONST EXPORT
#include "memmap.h"

#endif

age3a.c:
/**
* Filename: D:\uti\ page3a.c
* Project: C-File for validation structure

* File created: Tue Mar 11 19:59:54 2014

**/

#include " page3a.h"

#define VALIDATEINFO START SEC CONST
#include "memmap.h"

const tValidatelInfo ValidateInfo = {
0x1234u, /* Magic Tag begin */
1 /* Number of block elements */
,0x9000u, OxFA2u, 0xE321
, 0xA893AF42ul /* Total file checksum*/
, 0x4321u /* Magic Tag end */
,0x2F0u /* 16-bit byte-sum on validation area. */};

©2014, Vector Informatik GmbH Version: 1.08.06 48 /111

based on template version 5.1.0

Reference Manual HexView vector

#define VALIDATEINFO STOP SEC CONST
#include "memmap.h"

e Word type:
This specifies the endianess for 16- and 32-bit fields of the generated data structure

e |D tag begin:
Will be placed at the beginning of the address/length list. This can be used to
uniquely identify if the address/length field is actually present there.

e Data source:.
For sure, the internal data of Hexview will be used. A limited range of the data can
be specified. In addition, a range can be specified if an address range shall be
spared out. It could be useful to add also address/length information from other
files. These files can be specified In the file list as well. Hexview will scan the
address/length information and will add it to the list, and also calculate its checksum
if soecified.

e Block Checksum:
If checked, Hexview will calculate and add the specified checksum to each
address/length field.

e Total checksum:
if checked, a checksum/CRC will be calculated over the complete set of data. This
checksum can be calculated in addition or instead to the block checksum values.

e |Dtagend:
Here you can specify a magic number that indicates the end of the list. It can be
used to verify if the complete validation list is present.

e 16-bit byte checksum:
This is a checksum that is generated over the complete validation array. It can be
used in addition to check if the complete validation structure is present.

When generating the data, all parameters will be written to the INI-file. This INI-file can be
used for the commandline option.

2.2.2.13 Run Postbuild

This option allows to scan for postbuild files. Typically, a postbuild file contains address
and length information as well as data information which shall be used to overwrite the
current contents within a hexfile. With Hexview V1.6 and higher it is even possible to
create segment blocks based on the information in a postbuild file.

Note, that the postbuild option is only available if the pbuild.dll is available. After selecting
the item Edit -> Run postbuild, you can select one or more XML files that follows the data
scheme for postbuild. Normally, the postbuild files will be generated by Geny. If you need
further information about the postbuild options, please contact Vector.

2.2.3 View
This menu item provides some features to control the view.

©2014, Vector Informatik GmbH Version: 1.08.06 49/111

Reference Manual HexView vector

2.2.3.1 Goto address...
This item allows to jump to a specific address within the view.

Goto Address [&J

Goto Address: |03080
Example: 0=1000 ﬂ

Figure 2-29: Jump to a specific address in the display window

If the address is valid, the slider will be moved to the beginning of the address. Thus, the
address information will be shown on the top of the display. The line is not highlighted.

A way to jump to the beginning of an address block can be done by jump to the beginning
of the file (press POS1 or Ctrl-Pageup button)

2.2.3.2 Find record
This option allows to search for a pattern within the file.

Find record data ot S
Find-string farmat
Find what: |':"I 2344 * HEX - shing
Hex - Fommat: 01 23 45 AR CD " ASCI - shing

ASCI - Format: abcde

Cancel

Figure 2-30: Find a string or pattern within the document

The format of the pattern can be selected on the right side of the window. By default, the
data pattern is given as a hexadecimal data byte stream. The search algorithm searches
from the beginning until the presence of this pattern is found. HexView tries to display the
value on the top of the screen. If a pattern has been found, the search can be repeated
from the last position where the pattern has been found.

If the “Find-string format” is changed to “ASCII-string”, the pattern entered in “Find what”
will be treated as an ASCII pattern and will search for the ASCII values.

2.2.3.3 Repeat last find

This option is only present after a successful search operation. This item will continue the
search given from “View -> Find record”.

2.2.3.4 View OEM container info

This option was implemented to present some OEM-specific information available in the
file. However, at the moment only the GM header information will be shown.

This may be extended in the future.

©2014, Vector Informatik GmbH Version: 1.08.06 50 /111

Reference Manual HexView

2.2.4 Flash Programming
This menu item is directly related to the flash process.

2241

Scan CANoe trace log

vactor’

This menu allows you to backtrace a download of CAN data. You need an ASCII-based log

file from CANoe.

#

Diag CAMN-trace scanner

23]

CaM channel:

Diag requests
Functional requests
Func. request CAN-ID:

Func. req. address;

Phyzical requests
Phwsz. request CAM-D:
Physz. req. address:

Diag rezponges

Phys. res. address:

s

]

]

Phys. responze Cap-D: |4E0 b

L ¥

CaMoe trace filename: |E:"~H exvie_Examplesh\CAMOE_Ewxample ASC

Log wverbosity level
" Problems arly ¢ Extended
{+ Standard " Verboze

%)

Standard addressing

" Extended addressing
" Mone

)

Standard addreszing
" Extended addressing

{* Standard addressing
" Extended addreszing

Browse

f* UDS (150 14229)
" KwP2000

" GMLaM

TD Addrsize: |4 Bvtes |

.....................................

TransferD ata scanner
[Scan data

E =it

Save log |

Drir | Abs tirme | Delta tirme | Service data | Remark.
F-> 3.0209 10 83 Seszion=03
Fro 37220 0ama2 85 82

Fr 32229 0.0av 3 81 FFO500

Fr 33246 0amv 28 9m

P> 33517 0.0265 10 0z Seszion=02
¢~ 33516 0.0005 50 0Z 00714 00C8

P> 33536 0.0020 22 F100

¢~ 33539 0.0003 £2 F1 000 000002

P> 33567 0.0022 2in

¢~ 33564 0.0003 EF11TB3ICEFE... C1BZ..

P> 34174 0.0333 27 1283B2E048

i T I

,

Figure 2-31: Dialog to run a CANoe trace

You need to go through the menu step-by-step. First, you need browse for the CANoe
trace file, which normally has the file extension “* ASC”. Then, select the channel. Hexview
will show the available channel numbers in the list box. Then select the functional and
physical CAN identifier. Also here, Hexview will show you all available CAN IDs found in

the trace file.

Not only UDS downloads are supported, but also KWP2000 and GMLAN. Pre-select the

desired option before running the scan.

©2014, Vector Informatik GmbH

Version: 1.08.06

517111

Reference Manual HexView vector

Select the checkbox “Scan Data” if the resulting data information shall be scanned and
placed into the memory buffer. Now you can run the trace by clicking on the “Run Trace”
button. An output window like shown above can be seen. Depending on the “log verbosity
level’”, more or less information per trace can be seen. The internal Transport layer
analyser will analyse the timing of each service and indicated in the list box. The
information can be stored into a CSV file through the “Save log” button, to further process
this with a spreadsheet.

After finishing the trace you can exit through the “Exit” button. But if you have selected the
“Scan data” checkbox and the trace ran successfully, you can also leave using the “Exit
and insert scan” button. Then, all scanned data will be placed into the memory buffer with
the specified addresses, length and data found in the RequestDownload/TransferData
services.

2.2.4.2 Build ID based EEP download file.

This option is intended to be used to create an address based data file with EEPROM
information. Each segment in the memory represents one entry of an EEPROM block. The
virtual address space shall address a special driver that extracts the block number and
data from each record and writes the data to an EEPROM emulation.

Hexview takes the information from an XML-file with the following format:

<?xml version="1.0"7?>
<DataFlash>
<AdministrativeSection>
<SectionSize>0x0800</SectionSize>
<0ffset>0x0000</0Offset>
<VirtualBaseAddress>0x100000</VirtualBaseAddress>
<IdMultiplier>256</IdMultiplier>
</AdministrativeSection>
<Record>
<ID>0x80</ID>
<Length>4</Length>
<Data>
0x47, 0x48, 0x49, Ox4da
</Data>
</Record>
<Record>
<ID>0x81</ID>
<Length>8</Length>
<Data>
0x20, 0x30, 0x31, 0x32,
0x40, 0x40, 0x41, 0x42
</Data>
</Record>
</DataFlash>

Each record consists of its ID, length and data. The block address of a segment will be
created by the formula:

<VirtualBaseAddress> + <|IdMultipler> * <ID>

The above example generates the following output:

©2014, Vector Informatik GmbH Version: 1.08.06 52 /111

vactor”

Reference Manual HexView

41# Unbenannt - Hex-View NN X
File Edit View Flash Pregramming Z
O * 22 %
BElock 0O Starts at: 0x108000 Ends at: 0x108003 (Length: 0Ox4=4)
Elock 1 Startcs at: 0x1083100 End=s at: 0x108107 (Length: Ox8=8)
00108000: 47 48 49 44 GHIJ
00108100: 20 30 31 32 40 40 41 42 012@ERE
Bereit Size=12 Type=I-HE}

.

Figure 2-32: Example output for building ID based download files.

The offset and SectionSize information is not used and just present for compatibility.

2.2.4.3 Scan EepM data section

The EepM is a software component from Vector to emulate EEPROM in data or program
flash. If EepM has written data into a flash memory, it is often difficult to re-trace the block
information. This option is used to provide the possibility to upload the memory contents of
the flash memory into a HEX file and then let Hexview trace back the block number, length
and information and put the results into an XML file.

4F _test_EepM.hex - Hex-View =B 2
File Edit View Flash Programming

O = & S %
Elock 0 Starts at: 0x10000 Ends at: O0x103FF (Length: 0=x400=1024) -
00010000: 3n 7C FF FF 40 00 0OC 11 10 4D 16 OF 10 11 02 03 HE I - IR A,
00010010 04 05 06 O7 08 05 0OA OB 0OC 4D FF FF 40 00 OB 01 M..E..)
Q001007 Foeeen 3
000100 Scan EepM data frem memeory block Iﬁ ..
ooolio04 e e
oootoo|| | wx |[].....
000100 . lzi
000100 Flazh segment size: Cancel | ||
oooloody oo —_-— e
nooi00 Address range: |EI:-:1 ooooQed0n
LI N (| S
cooiooVy e
000100 ML output filename: |Ltest_E ephd. xml VR I | A
ooo01001 | e
Qoo1ooy | e
ooQloOOp —>//">">"> ...
NOnT 0700 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF oo oo oo o S
Bereit Size=1024 Type=I-HE}

L

Figure 2-33: Scan EepM dialog and example

The above picture shows the flash memory data in the background and the dialog for scan
in the foreground. You need to specify the flash segment size (flash sector size, the
minimum write unit of the flash memory), but also specify the range of data and the XML
output file.

If the scan could be executed successfully, an output fiel as shown below can be seen:

©2014, Vector Informatik GmbH Version: 1.08.06 53 /111

Reference Manual HexView vector

<?xml version="1.0"7?>
<DataFlash>
<AdministrativeSection>
<SectionSize>0x2</SectionSize>
<O0ffset>0x0000</0Offset>
<VirtualBaseAddress>0x400</VirtualBaseAddress>
<IdMultiplier>1</IdMultiplier>
</AdministrativeSection>
<Record>
<ID>12</1ID>
<Length>17</Length>
<Data>
0x10, 0x4D, O0Oxleo, O0xOF,
0x10, 0Ox11, 0x02, 0x03,
0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, O0xO0B,
0x0C
</Data>
</Record>
<Record>
<ID>13</1ID>
<Length>17</Length>
<Data>
0x10, Ox4E, 0x17, 0xO0D,
Ox0E, OxOF, Ox10, Ox11,
0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09,
0x0A
</Data>
</Record>
<Record>
<ID>11</1ID>
<Length>1</Length>
<Data>
OxXFD
</Data>
</Record>
</DataFlash>

2.2.5 Info operation (?)

This option contains the About information of HexView. It shows the version of the tool and
displays also the copyright information.

©2014, Vector Informatik GmbH Version: 1.08.06 54 /111

Reference Manual HexView vector

2.3 Accelerator Keys (short-cut keys)

Some of the menu items mentioned above can be entered by hotkeys or accelerator keys.
This can be helpful to activate functions from the keyboard without using the menu and the
mouse.

The following table provides a list of available accelerator keys:

Accelerator key

Ctri+A Align data

Ctrl+B Run postbuild configuration

Ctri+C Copy data to the internal clipboard
Ctri+D Data Processing

Ctrl+F Find record

Ctri+G Goto address

Ctri+K Open checksum calculation dialog
Ctrl+L Opens the fill data dialog

Ctrl+N File new

Ctrl+O Open file

Ctrl+P Print file

Ctrl+S Save current file

Ctrl+T Generate validation structure information
Ctrl+V Paste data from clipboard into the currently

loaded document
Ctrl+X Remove data from current document and put
them into the internal clipboard

Alt+A Export as HEX-ASCII

Alt+B Export Fiat binary

Alt+C Export C-Array

Alt+E Export Ford Intel-HEX format

Alt+F Export Ford VBF format

Alt+G Export GM file format

Alt+ Export Intel-HEX

Alt+L Export GM-FBL data

Alt+M Export MIME-Data

Alt+N Export Binary data

Alt+S Export S-Record

Alt+V Export VAG-Data

Alt+Y Export splitted binary file.

F3 Repeat last find

Alt+F4 Exit application

DEL Delete a range from the currently loaded
©2014, Vector Informatik GmbH Version: 1.08.06 55 /111

based on template version 5.1.0

Reference Manual HexView vector

Accelerator key Description

document

Table 2-4 Accelerator keys (short-cut keys) available in Hexview

©2014, Vector Informatik GmbH Version: 1.08.06 56 /111

based on template version 5.1.0

Reference Manual HexView vector

3 Command line arguments description

HexView cannot only be used as a PC-program with a GUI to display information. It is also
possible to manipulate the data via command line. There are even some options only
available through command lines.

The following section describes the usage of the command line.

The command line can be grouped roughly into two groups: general options that operates
generally and OEM-related command line options. The OEM command line options control
the generation of files in OEM specific file formats.

3.1 Command line options summary

This section provides a summary of all command line options. An option must start either
with a ‘I’ or a *-“. In this description, a slash is used. The switches are not case-sensitive.

Some options require additional parameter information. Some parameters are followed
directly by the option, some others require a separator. The separator can either be the
equal-sign or a colon.

Hexview infile [options] [-0 ouffile]

Infile This is the input filename either in Intel-HEX or
Motorola S-Record format

/Ad:xx Align data. Xx is specified in standard-C

/Adyy notation, e.g. OxFF, whereas yy are only hex-

digits. Format is distinguished by the
separator ' or ‘=,

IAE:zzzz Specify AlignErase section size, e.g. for VBF
or Fiat Erase sections aligned to a multiple of
this value.

/AL Align length.

[Afxx Specifies the fill character for /AL, /AD and /FA

as hexadecimal value

/Af:xx Same as above: specifies the fill character for
/AL, /AD, but xx can either be specified as
decimal (no suffix), hex value (0x-suffix) or
binary (b-suffix)

/AR:’range’1 Load a limited range of data.

The ‘range’ is an address range, that can be
specified in two ways: either with start address
and length, separated by a comma, or with
start address and end address, separated by
a minus-sign.

/cdspx:range[;target][:range[;target]] Expand dsPIC like data from range (0x1000-
0x103ff/0x1000,0x400) to the target address.

©2014, Vector Informatik GmbH Version: 1.08.06 57 /111

Reference Manual HexView

/cdsps:range[;target][:range[;target]]...

/cdspg:range[:range]...
/CR:’range1’:’range2’....

/CSxx:target[;limited_range]
[fexclude_range1]
[fexclude_range2]
[:target[;limited_range]
[fexclude_range1]
[fexclude_range2]]...

/DLS=AA or /DLS=ABC

/DCID=0x8000
/DCID:32238

/DPn:param

/E=errorfile
/e:errorfile

/FA
/FR:’range1’’range?2’:... 1
/FP:11223344
/N2=filename.hex

/IA=filename[;startAddress]

©2014, Vector Informatik GmbH

vactor’

If target is not specified, the doubled address
(0x2000) will be used (see section “Copy
dsPIC like data”).

Same as /cdspx, but it’s the shrink operation
(see section “Copy dsPIC like data”)

Clear ghost byte in the specified range.
Cut out data ranges from the loaded file

This option specifies the checksum calculation
method. If the optional location parameter is
added, the checksum value is written into this
file. The result can also be placed into the file
using the @ operator.

Note: ‘location’ is a pre-requisit in most cases.

This option is used in combination with the
/XG group option to specify the DLS code and
length.

The DLS code can be 2 or 3 characters. A ‘=’
is required between the option and the
characters itself.

Do not use this option for GM cyber security
files.

This option is used in combination with the
/XG group option to specify the DCID code.
The value can be represented in integer or
hexadecimal. In the latter case, a ‘0x’ must
preceed the value. The value is treaded as a
16-bit value and will be added to the header
when creating the GM-header.

Do not use this option for GM cyber security
files.

Run the data processing interface from
expdatproc.dll. The value ‘n’ specifies the
method, ‘param’ is used as the string
parameter to the DoDataProcessing function
(see section 3.2.8 for parameter details).

This specifies an error log file. HexView can
run in silent mode. In that case, no error will
be displayed to the GUI. However, error
messages are also suppressed. This option
allows an error report to the file in the silent
mode.

Create a single region file (fill all)
Fill regions.
Fill pattern in hex. Used by the /FR parameter

Special import for 16-bit addressed Intel-HEX
files

Read Hex data from a file. Startaddress

Version: 1.08.06

Reference Manual HexView vector

Command line option Description

specifies the address of the block.Cannot be
combined with infile.

/L:lodfile.log Load and execute a commandfile

/M:path-to-licensefile Specify a path to the license.liz file (if not
specified, hexview looks in its own folder).

/IMPFH[=cal1.hex+cal2.hex+...] Special option for /XG. Sets the MPFH flag

and optionally adds the address, length and
DCID-info to the GM-header.

/MPFH must be specified if an existing NOAM-
field shall be re-positioned adjacent to the new
NOAR-field.

Do not use this option for GM cyber security
files.

/MODID:value Special option for GM-header creation. Sets
the Module-ID for this header.

Do not use this option for GM cyber security

files.
IMO:file1[;offset] Merges the file(s) from the filelist into the
[+file2][;offset] memory in Opaque mode (existing data will be

overwritten). The optional offset may be added
to all addresses of the file that is merged.

File names can have wildcards such as ? or *.

IMT:file1 Merges the file(s) or portions of it from the
[;offset][:range1] filelist into the memory in transparent mode
[+file2][;offset][:range1] (existing data not overwritten). The optional

offset will be applied to all addresses of the file
that is merged. The range limits the before
the offset

File names can have wildcards such as ? or *.
-0 outfilename Specifies the output filename. The filename

must follow directly the —o option separated
with a blank character.

[P:ini-file Specifies the path and file for the INI-
information partly used by some conversion
routines.

/PB:”PostbuildXML-file1”;"XML-File2”;... Applies Postbuild operation to the specified
file.

/PN Add part number to the GM-header. This

option is only useful in combination with /XGC
or /XGCC. The part number must not be
specified and will be taken from the SWMI

value.
Do not use this option for GM cyber security
files.
/remap This option was intended to be used for
[:range,bankbase,banksize,linearbase] controllers using a memory banked

addressing scheme. The option calculates

©2014, Vector Informatik GmbH Version: 1.08.06 59 /111

based on template version 5.1.0

Reference Manual HexView

vactor”

Command line option Desoription

/swmi:value

Is
/s08map

/s12map

/s12xmap

/swapword
/swaplong
tms570-parity
/tms570-ECC

Ivs

/XA[:Linelen[:ExportSeparator]]

IXB

IXC

©2014, Vector Informatik GmbH

from physical banked addressing to a linear
addressing scheme.

One of the most popular controllers using
banked method, the Star12 and Star12x, is
directly supported with the special option
/s12map resp. /s12xmap (see below).

Specifies the SWMI parameter when creating
the GM-header

Do not use this option for GM cyber security
files.

Run HexView in silent mode.

Re-maps the physical address spaces of the
Freescale Star08 to its linear address spaces,
e.g. maps segments in the range of 0x4000-
O0x7FFF to 0x104.000 or from 0x02.8000-
0x02.BFFF to 0x10.8000-0x10.BFFF and so
on.

Re-maps the physical address space to the
linear address space of the Freescale Star12
to its linear address spaces, e.g. maps
segments in the range of 0x4000-0x7FFF to
0xF8000 or from 0x308000-0x30BFFF to
0xC0000-0xC3FFF and so on.

Re-maps the physical address space to the
linear address space of the Freescale Star12x
to its linear address spaces, e.g. maps
segments in the range of 0x4000-0x7FFF to
0x7F4000-0x7F7FFF or from OxE08000-
OXEOBFFF to 0x780000-0x783FFF and so on.

Swaps the byte on an even address with its
successor. AA BB becomes BB AA.

Swaps 4 bytes on longword addresses. AA BB
CC DD becomes DD CC BB AA

Generates the parity data for the TMS570
flash file

Generates the ECC data for the TMS570 flash
file.

Create validation structure. All necessary
information are provided through an INI-file.
See section 3.2.21 for further details.

Exports the data as HEX ASCII data. Use
doublequotes if separator shall contain
spaces.

Outputs the data in the Fiat binary format
including the PRM- and BIN-file .

Outputs the data into a C-like array. All
configuration options are provided through an

Version: 1.08.06 60/ 111

based on template version 5.1.0

Reference Manual HexView vector

Command line option Desoription

INI-file.

IXF Exports data in the Ford-HEX specific file
format. Adds the Ford header information and
data in an Intel-HEX like file format.

IXGAC Exports data into a GAC binary file format.
The data information will be taken from an INI-
file. Address and length information will be
added accordingly.

IXGACSWIL Like the /XGAC export option, but the
address/length information will not be added.
Typical use-case for the SWIL (software

interlock).

/XG[:header-address] Completes the information in an existing GM-
header

IXGC[:header-address] Generates the GM-file header and completes
the information.

IXGCC[:header-address] Generates the header information for a single-
region calibration file.

IXGCS Generates the header, but with a 1-byte HFI

information (backward compatibility with
previous “SAAB”-specific header).
IXGC_APP_PLAIN Generate the GM file header applicable for
IXGC_APP_SIGN GM Cyber security.
/IXGC_CAL_PLAIN
/IXGC_CAL_SIGN
/XML:xml-file Specifies an XML file used for some additional

command options (mainly for the new GM
header generation)

/IXGMFBL Exports the GM-FBL XML-data file

/XI[:reclinelen[:rectypel]] Exports in Intel-HEX format

/XK Outputs the data into an FKL-file for CCP/XCP
kernel

/XN Exports data into the binary file format

IXP Exports data into a single region binary file

and appends a checksum. Typically used by a
Porsche download (KWP2000).

IXS[:reclinelen[:rectype]] Exports in Motorola S-Record format

/IXSB Export each section of a hex file into a binary
file. The start address of the block is used as a
postfix for the binary name.

IXV Outputs the VAG-compatible SGML file
format.
IXVBF Generates the Ford-specific VBF file format.
All parameters are specified through an INI-
file.
©2014, Vector Informatik GmbH Version: 1.08.06 61/111

based on template version 5.1.0

Reference Manual HexView vector

Table 3-1 Command line options summary

TA range defines a section area. It can be entered in two ways, either with start address
and length or with start address and end address. Examples are: 0x1000,0x200 or
0x1000-0x11FF. Both parameters spans the same range and will be treaded the same
way. Note that the end address must be higher than the start address.

©2014, Vector Informatik GmbH Version: 1.08.06 62 /111

Reference Manual HexView

Note

list.

/Mt and /MO cannot be combined as well.

3.2 General command line operation order

Read data from input file using the auto-
filetype detection
¥

| Apply /E. Open log-file |
¥

| Apply /S, Suppress messages |
¥

| Apply /112, Import Intel-Hex 16-Bit |

¥

Apply /S12map or /s12xmap {only one of
the options can be applied)

¥

| Apply fremap. |
¥

| Apply /FR: Fill ranges operation |

]

| Apply /CR. Cut ranges |

Apply /MT or /MO, merge operation. Only
one of them can be applied.

| Apply /AR to load only alimited range |
¥

| Apply /L. Execute the LOG-file, |
¥

| apply /FA: Create a single-region file |

¥

| Apply /PB. Load the post-build parameter |

!

Apply /aDwxx and JaL, align address and
length.

]

| apply /CS. Run checksurm calculation

!

| Apply /DP. Execute data processing |

¥
Apply /%=, Export data, Since only one
Jew can be applied, only the last f=x
option will execute.

Figure 3-1 Order of commandline operations within Hexview.

©2014, Vector Informatik GmbH

Version: 1.08.06

vactor’

Parameter /Xx cannot be combined. /Xx can be specified only once in the parameter

63 /111

Reference Manual HexView vector

The commandlines can be specified in any order. Hexview will first summarize the
commandline operations and will then execute them. Since some operations may have
influences to subsequent operations, the commandline operation sequence within hexview
is important to know. The following commandline sequence will be applied (if specified):

This section describes command line options of HexView, that can be used in general.
There is no restriction or limitation in the combination of the options (as long as they are
useful).

3.2.1 Align Data (/ADxx or /AD:yy)

The start address of each block will be aligned to multiples of the given parameter xx. If
the separator .’ or ‘=" is omitted, the parameter xx is a hexadecimal value. If the separator
is used, the value xx is interpreted in C-style, e.g. /AD:0xFF is the same as /AD:255 or
/AD:11111111b. This value can only be an unsigned char value.

Example

/AD2

Aligns address to be a multiple of 2.

If a block starts at 0OxFEO1 a fill byte will be inserted at 0OxFEOQO. The inserted character
will be OxFF by default. The default character can be overwritten with the /AF
parameter.

An address starting at OXxEOQ0O will be left unchanged. No characters are inserted.

Tlg

[AD:0x80

Align the addresses of all sections to a multiple of 128
If an address starts at e.g. 0xE730, the address will be aligned to 0xE700.

3.2.2 Align length (/AL[:length])

This option is useful in combination with the /AD parameter. It aligns also the length of all
blocks to be a multiple of the parameter given in the /Adxx option. The option corresponds
to the “Align size” option in section 2.2.2.4: “Data Alignment”.

Example
/AD4 /AL

A block 0xE432-0xE47E will be aligned to 0xE430-0xE47F. All characters will be filled
with OxFF or the value specified by /Afxx.

Tlg

3.2.3 Specify erase alignment value (/AE:xxx)

This parameter specifies the erase alignment parameter. This value is used to align data
blocks that specifies erase blocks for certain output file formats for Ford and Fiat.

©2014, Vector Informatik GmbH Version: 1.08.06 64 /111

Reference Manual HexView vector

& Example
[[IAE:0x200

Erase blocks are always aligned to multiples of 0x200

3.2.4 Specify fill character (/AF:xx, /AFxXx)

This option specifies the fill character used for the align options (/AL, /AD or /FA). If the fill
parameter is located directly after the option, it is treaded as a hex-string. If the parameter
is separated by a colon, the parameter must use the C-convention for characters, e.g.
0xCC for hexadecimal values.

Important: Distinguish if a colon or equal-sign is in-between the option field or not. If the fill
value follows directly the /AF option, then xx is always treated as HEX value. If you put a
colon or equal in-between, it can be either dec, hex or binary like “1284ec”, “OXAAnex’ OF
“b01001100y,". Thus, /AFdd is the same as /AF:0xdd or /AF:221,.

This option corresponds to the “Fill character” in section 2.2.2.4: “Data Alignment”.

Y Example

iz IAF:0xEF
Fill character is OXEF
IAFCD

Fill character is OxCD

3.2.5 Address range reduction (/AR:’range’)
This option can limit the range of data to be loaded into the memory. This is useful if only a
reduced range of data shall be processed within HexView.

An address range is specified by its block start address and its length. Address and length
are separated by a comma. You can also specify the range with the start and end
address. Then, the two values must be separated by ‘-“.

Y Example
[L] /AR:0x1000,0x200

Only the data between 0x1000 and 0x11FF are loaded to the memory and then further
processed.

[AR:0x7000-0x7FFF
This loads the data from 0x7000 to Ox7FFF

3.2.6 Cut out data from loaded file (/CR:’range1[:’range2’:...]

The parameter option /CR is used to cut out a range from the loaded data file. It removes
any data within the specified ranges. More than one range can be specified. Each range
must be separated by a colon ‘.

©2014, Vector Informatik GmbH Version: 1.08.06 65/ 111

Reference Manual HexView vector

Example
/ICR:0x1000,0x200

If a data section in the range from 0x1000-0x11FF exist, the data will be removed from
the file. All successive operations will operate on data that don’t include this section. Al
other sections remain unchanged. If this section is located within a segment or block, it
will be splitted into two.

ICR:0x7000-0x7FFF
This removes the data from 0x7000 to Ox7FFF if present.

Tig

3.2.7 Checksum calculation method (/CSx|[:target[;limited_range][/no_range])

This option is used to specify the checksum calculation method provided by the checksum
calculation feature. The checksum calculation

When using, The parameter x in the option /CSx denotes the index to the checksum
calculation algorithm. The function in the EXPDATPROC.DLL will be called that
corresponds to this parameter value. The index can be calculated by counting the list of
checksum methods in the checksum dialog starting with index 0*.

Example
[:BuyteS urm inta 16-Bit, BE -ou

0:BpteSum into 16-Bit, BE-out
1:ButeSurm inta 16-Bit, LE-out
2wfordsum BE into 16-Bit, BE-Out

Ifardzum LE ko 16-Bit, LE-Out

4:ByteSum w25 complement into 16-Bit BE [GM
Bvwfordzum BE into 16-Bit, 2's Compl BE-Out [GM
B:\fardzum LE inta 16-Bit, 2'z Compl LE-Out [GM
F:CRC-16 [Standard]

FCRCABICCITTI

Figure 3-2 Example on how to select the checksum calculation methods in the “Create Checksum” operation

A
1=

! Newer versions of expdatproc.dil (V1.3 and higher) shows the function index in the dialog.

©2014, Vector Informatik GmbH Version: 1.08.06 66 /111

Reference Manual HexView vector

A 'l Example
1=
Se—

/CS6:csum.txt

Runs the checksum calculation method “Wordsum LE into 16-Bit, 2’'s Compl LE-Out
(GM new style)” and writes the results into the file CSUM.TXT.

This example uses the checksum method “Wordsum LE into 16-Bit, 2’s Compl LE-Out
(GM new style)”, as this is the 7th option in the checksum dialog menu shown above.

ICS1:@append;0x1000-0x7FFF or /CS1:@append;0x1000,0x7000

Runs the checksum calculation method “Bytesum into a 16-Bit LE-out” and appends
the checksum at the very end of the internal file. The checksum is calculated over the
limited range from 0x1000-0x7FFF as specified.

A range within the checksum range can be excluded, if for example a data array shall
not be used for checksum calculation, Such an excluded range can be specified with a
preceding /.

ICS7:@upfront;0x2000-0x3fff/0x2800-0x29ff/0x3000,0x200

The option above calculates the checksum using method 7 (the 8th) on data within the
range from 0x2000-0x3ffff. The range from 0x2800-0x29ff and 0x3000-0x31ff will be
excluded for the checksum calculation. The exclude has no affect to the real data. The
result of the checksum calculation will be written before the very beginning of the file
data (Note: it will be written not upfront to 0x2000, but to the very beginning of the
loaded file. This applies to all other labelled address specifier, such as ‘upfront’, ‘begin’
and ‘append’).

With HexView version V1.2.0 and higher, the results of the checksum can now also be
written into an output file or placed into a location within the internal data. The location is
separated by a “’ or ‘=" sign, followed by the target where the resulting checksum value
shall be placed in. The example above shows how to write the results of the checksum
calculation into the file “csum.txt”.

The following target IDs can be used:

Filename (e.g. csum.txt) Writes the result into a file. The value is

written from high to low byte in hexadecimal
form. Each byte is separated by a comma.

@append The results of the checksum will be added at
the very end of the file.

@begin Writes the contents at the very beginning of
the file.

Important Note: It will overwrite the first bytes
of your data. The number of bytes that will be
overwritten depends on the checksum

method.
@upfront Write the checksum results prior to the
©2014, Vector Informatik GmbH Version: 1.08.06 67 /111

based on template version 5.1.0

Reference Manual HexView

vactor”

@end

@0x1234

beginning of the first block. No data will be
overwritten.

Places the checksum on the last bytes of the
last section of the file. The address is
automatically calculated.

Important Note: It will overwrite the last bytes
of your data. The number of bytes that will be
overwritten depends on the checksum
method.

Writes the checksum result into the address
location given after the @ operator.

' Caution
- Whenever using the @ operator to write the results into the file, make sure that the
checksum is at the proper location and is not overwriting accidentally any imported

data!

Table 3-2 Checksum location operators used in the commandline

The available checksum methods depends on the expdatproc.dil. Version 1.05.00 of the

DLL provides the following methods:

0 ByteSum into 16-Bit, BE-out
1 ByteSum into 16-Bit, LE-out
2 Wordsum BE into 16-Bit, BE-Out
3 Wordsum LE into 16-Bit, LE-Out

©2014, Vector Informatik GmbH

Sums the bytes of all segments into a
16-bit value. The result is a 16-Bit
value in Big-Endian order (high byte
first).

Sums the bytes of all segments into a
16-bit value. The result is a 16-Bit
value in Little-Endian order (low-byte
first)

Sums the data of every segment as
16-bit words. The result is a 16-bit
value.

The input stream is treaded as big-
endians (high-byte first), the 16-bit
checksum result is given in big-
endian format (high-byte first).

Note that this routine requires aligned
data. The number of bytes per
segment and the start address of
each segment must be a multiple of
two. If not, Hexview/expdatproc will
generate the errors “Base address
mis-alignment” or “Data length mis-
alignment”

Same as above, but the data are
treaded as 16-bit values with low byte

Version: 1.08.06 68 /111

based on template version 5.1.0

Reference Manual HexView vector

first. The 16-bit result is also stored
with low-byte first

4 ByteSum w/ 2s complement into 16-Bit BE (GM Each byte of the segments are
old-style) complemented with its 2’s
complement and then added to a 16-
bit sum value. The result is stored in
big-endian format (high-byte first).

5 Wordsum BE into 16-Bit, 2's Compl BE-Out (GM Sums the data of every segment as
new style) 16-bit words. The result is the 2’s

complement of the 16-bit sum.
The input stream is treaded as big-
endians (high-byte first), the 16-bit
checksum result is given in big-
endian format (high-byte first).
Note that this routine requires aligned
data. The number of bytes per
segment and the start address of
each segment must be a multiple of
two. If not, Hexview/expdatproc will
generate the errors “Base address
mis-alignment” or “Data length mis-
alignment”

6 Wordsum LE into 16-Bit, 2's Compl LE-Out (GM Same as above, but the input data is
new style) managed in little-endian format. The
result is also given as 16-bit little-
endian.

7 CRC-16 (Standard) Calculation of a CRC-16 using the
polynomial:
215+214+27+26+20 ($C0OC1)
8 CRC-16 (non-standard) This is a 16-bit checksum algorithm
that can easily implemented in a

microcontroller. The used algorithm is
as follows:

CS = Oxffff; // pre-initialize CS
Foreach 8-bit data byte do

Swap(CS) // swap upper and lower
bytes

CS = CS XOR data-byte

CS = CS XOR ((CS AND 0xFF) SHR
4)

CS =CS XOR ((CS SHL 8) SHL 4)
CS = CS XOR (((CS AND 0xFF) SHL
4) SHL 1)

Endeach

CS =NOT CS // Inverse CS after
operation

9 CRC-32 Calculation of the CRC-32 according

©2014, Vector Informatik GmbH Version: 1.08.06 69 /111

based on template version 5.1.0

Reference Manual HexView vector

to IEEE, using the polynomial:
0x04C11DBY7. The start value is

OxFFFFFFFF.
The result is inverted.

10 SHA-1 Hash Algorithm Creating a 20-byte hash value based
on the SHA-1 algorithm.

11 RIPEMD-160 Hash Algorithm Dto for RIPE-MD 160

12 Wordsum LE into 16-Bit, 2's Compl BE-Out (GM Same as method 6, but the resulting

new style) 16-bit value will be represented as

16-bit big-endian.

13 CRC-16 (CCITT) LE out 16-Bit CRC using the non-reflected
CCITT polynomial with start value
OxFFFF:

212 +25+20 ($1021)

The function returns the 16-bit
checksum in Little-Endian format
(low-byte first)

The start value is OxFFFF.

The result is inverted.

14 CRC-16 (CCITT) BE out Same as method 13, but result is in
Big-Endian format.

15 MD5 Hash algorithm The MD5 has value.

16 Constant expression Doesn’t calculate a checksum but

places a constant string to the
specified location. The constant is
taken from an INI-file with the name
“expdatproc.ini” located in the same
folder as the HEX file. The INI-file
must have the following format:

[constant]
NumBytes=8
HexDataString=0123456789ABCDEF

17 CRC16 CCITT LE-Out Sames as method 13, but with start
value 0.

18 CRC16 CCITT BE-Out Same as method 17, but in big-
endian output format.

19 RIPEMD-128 Hash Algorithm The RIPEMD128 Hash value.

20 SHA-256 Hash Algorithm Build the Hash value on the data

using SHA-256.

Table 3-3: Functional overview of checksum calculation methods in “expdatproc.dll”

3.2.8 Run Data Processing interface (/DPn:param[,section,key][;outfilename])

This option will run the data processing interface. This method is called right before the
data export commands are executed.

©2014, Vector Informatik GmbH Version: 1.08.06 70 /111

based on template version 5.1.0

vactor”

Reference Manual HexView

The parameter ‘n’ specifies the method. The value ‘n’ can be calculated in a similar way to
the checksum calculation method. The number can be found from the list box in the Edit-
>Run Data processing” option dialog. Count the number of entries in this dialog starting
from 0. The number of processing methods depends on the EXPDATPROC.DLL.

Some of the data processing interface functions may take over useful (optional)
parameters. This parameter is separated by a colon directly after the command line option.

A 'l Examples
[HexView testfile.dat /DP1:CC

This option runs the second data processing method in the list. It passes the parameter
string “CC” to the function.

Hexview testfile.dat /dp11:00112233445566778899aabbccddeeff;RFC1321#IV=0

This command encrypts a file using AES128 in CBC-mode. The initialization vector is 0
and the padding mode according to RFC1321 is applied.

The EXPDATPROC that comes with this delivery of Hexview can manage the following
data processing methods:

0 No action Does no modification on -
the data
1 XOR data with byte Runs XOR operation on If no parameter is given, all data
parameter the data will be inverted (XOR by OxFF).

Otherwise, it will run a byte-wise
operation with a HEX-string
passed as a parameter

2 AES-128 encryption Encrypts the data with the A 16 byte hex string

AES-128 standard 00112233445566778899%aabbcc

encryption method ddeeff[;padding method]

This is security class AAA. Padding to 16 byte block is
optional. The following padding
methods are accepted:

- PKCS7
- RFC1321
- ANSIX.923
Example: /DP:
00112233445566778899
aabbccddeeff;PKCS7
3 AES-128 decryption Decrypts data with the A 16 byte hex string

AES-128 method 00112233445566778899%aabbcc
ddeeff[;padding method]

Use the same padding method
for decryption to reconstruct the
original size of the block.

4 HMAC (ANSI-X9.71) Creates a signature based The key-parameter as HEX-

©2014, Vector Informatik GmbH

Version: 1.08.06

based on template version 5.1.0

7711

Reference Manual HexView

with SHA-1

5 HMAC /w SHA-1 on
addr+len+data

6 HMAC (ANSI-X9.71)
with RIPEMD-160

7 HMAC /w RIPEMD-160

on addr+len+data

8 RSA-Signature /w SHA-

1 on data

9 RSA-Signature /w
RIPEMD160 on
Addr+Len+Data

©2014, Vector Informatik GmbH

on Runs the HMAC using
SHA-1.

By default, the signature is
written to a file
signd_sha1.txt.

Creates a signature based
on HMAC using SHA-1
including the address and
length information for each
segment

By default, the signature is
written to the file
signdal_sha1.txt.

This is security class C.

Creates a signature based
on HMAC using
RIPEMD160 including the
address and length
information for each
segment.

By default, the signature is
written to the file
SignD_Ripemd160.HMAC.

Creates a signature based
on HMAC using
RIPEMD160.

By default, the signature is
written to the file
SignDAL_Ripemd160.HMA
C

This is security class C..

Creating the hash-value
using the SHA-1 algorithm
the data (only) for every
segment and encrypt the
result with the RSA
algorithm. By default, the
output is written to
SignD_SHA1.RSA.

Creating the hash-value
using the RIPEMD160
algorithm on address,
length and data for every
segment and encrypt the
result with the RSA
algorithm. By default, the

vactor’

string or an ASN-formatted string

The ASN-string must be
preceeded by the tag bytes
FF59 or FF5B.

Example: /dp:mykeyfile[;outfile]
/dp:647262756473[;outpuftfile]

The key-parameter as HEX-
string or an ASN-formatted
string.

The ASN-string must be
preceeded by the tag bytes
FF59 or FF5B

Example: /dp:mykeyfile[;outfile]
/dp:647262756473[;outputfile]

The key-parameter as HEX-
string or an ASN-formatted
string.

The ASN-string must be
preceeded by the tag bytes
FF59 or FF5B

Example: /dp:mykeyfile[;outfile]
/dp:647262756473[;outputfile]

The key-parameter as HEX-
string or an ASN-formatted
string.

The ASN-string must be
preceeded by the tag bytes
FF59 or FF5B

Example: /dp:mykeyfile[;outfile]
/dp:647262756473[;outputfile]

The private key as an ASN
formatted string. The string must

be preceeded by the tag FF49 or

FF4B. The tag for the exponent
is 0x91 and the tag for the
modulo is 0x81.

Example: /dp:mykeyfile[;outfile]
Note: Signature follows the
EMSA-PKCS1-v1_5 format.

The private key as an ASN
formatted string. The string must

be preceeded by the tag FF49 or

FF4B. The tag for the exponent
is 0x91 and the tag for the
modulo is 0x81.

Example: /dp:mykeyfile[;outfile

Version: 1.08.06

727111

Reference Manual HexView

vactor”

10 RSA-Signature /w SHA-
1 on Addr+Len+data

11 AES-CBC Encryption
128-Bit

12 AES-CBC Decryption
128-Bit

13 HMAC (ANSI-X9.71)
with MD-5"

14 HMAC /w MD-5 on
addr+len+data

©2014, Vector Informatik GmbH

output is written to Note: Signature follows the
SignDAL_RIPEMD160.RS EMSA-PKCS1-v1_5 format.
A

This is security class CCC.

Creating the hash-value The private key as an ASN

using the RIPEMD160 formatted string. The string must
algorithm on address, be preceeded by the tag FF49 or
length and data for every FF4B. The tag for the exponent
segment and encrypt the is 0x91 and the tag for the

result with the RSA modulo is 0x81.

algorithm. By default, the Example: /dp:mykeyfile[;outfile]
output is written to Note: Signature follows the

SignDAL_SHA1.RSA EMSA-PKCS1-v1_5 format.
This is security class CCC.

Encrypts the data with AES The IV will be taken from the first

in CBC-mode using an 16 bytes of the data stream. The

initialisation vector (V). data for the IV will be skipped for
encryption operation. Instead,
the IV can also defined explicitly
in the parameter field separated
by the Hash sign. Example:
“00112233445566778899aabbcc
ddeeff;RFC1321#1V=0"
IV=0 sets the IV explicitly to 0.
Use a 32 char hex string if you
want to define an explicit vector
(remaining values will be setto 0

by default).
See option 2 for further
description.
Counter operation of AES- See operation #11 for further
CBC Encryption. description.
Calculating the Hash-MAC The key-parameter as HEX-
based on MD5 string or an ASN-formatted string

The ASN-string must be
preceeded by the tag bytes
FF59 or FF5B.

Example:
/dp:mykeyfile[;outfile]
/dp:647262756473[;outputfile]

Same as #13, but also The key-parameter as HEX-
including address and string or an ASN-formatted string
length of each block to the The ASN-string must be
hash value. preceeded by the tag bytes
FF59 or FF5B.
Example:

/dp:mykeyfile[;outfile]
/dp:647262756473[;outpuftfile]

Version: 1.08.06 737111

based on template version 5.1.0

Reference Manual HexView

15

16

17

18

19

20

21

22

23

24

25

RSA-Signature /w MD5
on data

RSA-Signature /w MD5
on Addr+Len+data

RSA Encryption
RSA Decryption

LZ Vector data
compression (0)

LZ Vector data
compression (1)

LZ Vector data
compression (2)

LZ Vector data
decompression (0)

LZ Vector data
decompression (1)

LZ Vector data
decompression (2)

RSA-RIPEMD sign.
A+L+D /w Vector data
compression (0)

©2014, Vector Informatik GmbH

Creating the hash-value
using the MD5 algorithm
the data (only) for every
segment and encrypt the
result with the RSA
algorithm. By default, the
output is written to
SignD_MD5.RSA.

Creating the hash-value
using the MD5 algorithm on
address, length and data
for every segment and
encrypt the result with the
RSA algorithm. By default,
the output is written to
SignDAL_MD5.RSA

Encrypt data using a
private RSA key.

Decrypt data using a
private/public RSA key.

LZSS with Vector specific
coding of compressed
data.

This is the default and
preferred algorithm!

LZSS with Vector specific
coding of compressed
data.

LZSS with Vector specific
coding of compressed
data.

LZSS decompression of
Vector specific method

LZSS decompression of
Vector specific method

LZSS decompression of
Vector specific method

Calculates the hash with
RIPEMD-160 with address
and uncompressed length
over compressed data,
encrypts the signature
using RSA-1024 and writes
the result to the signature
file. Outputs compressed

Version: 1.08.06

vactor’

The private key as an ASN
formatted string. The string must
be preceeded by the tag FF49 or
FF4B. The tag for the exponent
is 0x91 and the tag for the
modulo is 0x81.

Example: /dp:mykeyfile[;outfile]
Note: Signature follows the
EMSA-PKCS1-v1_5 format.

The private key as an ASN
formatted string. The string must
be preceeded by the tag FF49 or
FF4B. The tag for the exponent
is 0x91 and the tag for the
modulo is 0x81.

Example: /dp:mykeyfile[;outfile]
Note: Signature follows the
EMSA-PKCS1-v1_5 format.

Example: /dp:mykeyfile
Example: /dp:mykeyfile

Uses 8 bits for sliding window
and 4 bits for repeated
characters

Uses 9 bits for sliding window
and 4 bits for repeated
characters

Uses 12 bits for sliding window
and 6 bits for repeated
characters

Counter operation of #19
Counter operation of #20
Counter operation of #21

This is the only way to add
address and uncompressed
length to the signature while
compressing the file at the same
time. The uncompressed
memory size is transferred in
RequestDownload and added to
the hash value. Input parameter

7471111

Reference Manual HexView

26

27

28

30

31

32

33

34

LZSS data compression

(10Bit/4Bit acc. Ford-
SWDL005)

LZSS data compression

(10Bit/4Bit acc. Ford-
SWDLO005)

RSA-Signature /w
RIPEMD160 on Data

HMAC-RIPEMD sign.
A+L+D /w Vector
compression (0)

HMAC-SHA256

HMAC-SHA256 on
segment-
address+segment-
length+data

RSA-Signature on data

using SHA256.

RSA-Signature using
SHA256 on
address+length+data.

©2014, Vector Informatik GmbH

data. Thus, signature and
compression is done in one

step.

This is a pure LZSS

compression with bit coded

value of plain text or
repeated data.

The LZSS decompression

algorithm

RSA signature without

address and length info.

Calculates the hash with
RIPEMD-160 with address
and uncompressed length
over compressed data,

encrypts the signature

using RSA-1024 and writes
the result to the signature
file. Outputs compressed
data. Thus, signature and
compression is done in one

step.

Calculate the Hash MAC

with SHA256

Calculate the Hash-MAC
with SHA256, hashing also
start address and length

per segment.

Builds the signature on the

data

Builds the signature on the

segment start
address+segment

length+segmentdata (per

vactor’

like in operation #9.

It can fulfull Security class CCC
w/ compression.

This method is not needed when
using “LifeCompression”

Sliding window is 10 bit length,
repeat character is 4 bits.

Counter operation of #26.

Like e.g. in operation #9.

This is the only way to add
address and uncompressed
length to the signature while
compressing the file at the same
time. The uncompressed
memory size is transferred in
RequestDownload and added to
the has value. Input parameter
like in operation #9. It can fulfull
Security class C w/
compression.

This method is not needed when
using “LifeCompression”

Segment address and length is
not added to the hash value.

A symmetric key as parameter is
required.

A symmetric key as parameter is
required.

The private key as an ASN
formatted string. The string must
be preceeded by the tag FF49 or
FF4B. The tag for the exponent
is 0x91 and the tag for the
modulo is 0x81.

Example: /dp:mykeyfile[;outfile]
Note: Signature follows the
EMSA-PKCS1-v1_5 format.

The private key as an ASN
formatted string. The string must
be preceeded by the tag FF49 or
FF4B. The tag for the exponent

Version: 1.08.06 757111

Reference Manual HexView vector

all segments) is 0x91 and the tag for the
modulo is 0x81.

Example: /dp:mykeyfile[;outfile]
Note: Signature follows the
EMSA-PKCS1-v1_5 format.

Table 3-4 Functional overview of data processing methods in “expdatproc.dil”

With EXPDATPROC.DLL, V1.02, it is also possible to pass the parameters not only
directly but through a file or an INI-file. The parameter must be passed as follows:

Passing the parameter through a file:
/DP:input-filename[;output-filename]
Passing the parameter through an INI-file:
/DP:input-filename,sectionname, keyname[;out-filename]
The INI-file has the format:
[sectionname]
keyname="0011223344’

In every case, an output-flename can be optionally entered, preceeded by a “”. This
output-filename will overwrite the default output filename.

The output is always written relative to the location of the Hex-File loaded by HexView.

3.2.9 Create error log file (/E:errorfile.err)

This specifies an error log file. HexView can run in silent mode (see 3.2.18). In that case,
no error will be displayed to the GUI. However, error messages are important to know. This
option allows to re-direct the output to a file.

3.2.10 Create single region file (/FA)

This option can be used to create a single block file. In that case, HexView will use the
start address of the first block and the end address of the last block and will fill all
remaining holes in-between with the fill character given with the /AFxx parameter.

Note that some files should be a single region file, e.g. the flashdrivers are not allowed to
have more than 1 region. This option can ensure that the file is a single region file.

3.2.11 Fill region (/FR:’range1’:’range2’:...)

This option is used to create and fill memory regions. If the /FP parameter is not provided,
HexView will create random data to fill the blocks or regions. Otherwise, the value given by
the /FP parameter will be used repetitively. The fill-operation does not touch existing data.
Thus, it can even be used to fill data between segments. Ranges are either specified by its
start and length, separated by a coma, or by start and end address, separated by the
minus sign (e.g. /FR:0x1000,0x200:0x2000-0x2FFF).

©2014, Vector Informatik GmbH Version: 1.08.06 76 /111

Reference Manual HexView vector

3.2.12 Specify fill pattern (/FP:xxyyzz...)

This option can be used to specify a fill pattern that's been used to fill regions. This option
is only useful in combination with the /FR parameter. The parameter for /FP is a list of
(see /FR option). The parameter will be treaded as a data stream in hexadecimal format.

3.2.13 Import HEX-ASCII data (/IA:filename[;AddressOffset])

This option is used to instruct Hexview to read in HEX-ASCII data values to the internal
data memory. Since HEX-ASCII files are not detected automatically, it cannot be read in as
a normal input file. However, if you want to use this option, you cannot read in a normal
HEX file while you are also want to read in HEX-ASCII data. The accepted format is as
follows:

23456789
0x12, 0x23, 0x34, ...

All data are expected to be in HEX data format. No integers will be recognized.

Typically, the input data will be located at start address 0. An offset can be specified with
the parameter, e.g. /IA:myhexstring.asc;0x1000, which will place the string at address
0x1000. No data overlapping is allowed with data from the input file! If data overlaps, a
warning is generated and the HEX input is completely ignored.

Hint: Set the filename in double quotes if spaces or other untypical characters are used for
the filename itself.

3.2.14 Execute logfile (/L:logfile)

This option is intended to load a logfile command. Similar to a macro recorder, actions in
the GUI can be logged and later on re-executed using this command line option. Refer to
section 2.2.1.7 for further description).

3.2.15 Merging files (/MO, IMT)

One or more files can be merged into the internal data memory of the program. The files
are read using the auto-detect filetype mechanism described in chapter 2.2.1.2.1. The
commandline operation has some optional parameters to control the merge operation.

First, the type of merge operation need to be chosen. The merge can done in a
transparent (/MT) or opaque (/MO) mode. Both cannot be mixed. Only one can be chosen
in one commandline operation.

In the transparent mode, the loaded filedata will not overwrite data in the internal memory.
The opaque mode does not check if data already exist and will load the data from the
merged file unconditionally. Already existing data may be overwritten.

Option extensions: file1[;offset][:'range’][+file2;offset][:'range’]

The filename must be followed directly to the option, separated by either a : or the ‘=’ sign
(/Mx:file or /IMx=file). An optional offset parameter can be added. The offset can be positive
or negative, specified in hexadecimal or integer. In addition, a data range that's been
loaded from the merge-file can be specified. This can be given with or without the offset.
Note, that the range will be applied on the unshifted data, then the address shift operation
will be applied.

Further files to merge can be added using the ‘+’ character to separate the next file to load.

©2014, Vector Informatik GmbH Version: 1.08.06 77111

Reference Manual HexView vector

Tlg

A

Example

HexView will merge the file “cal1.hex” with address offset -0x1000, then loads
“cal2.s19” with address offset 128. Existing address information in the internal memory
will not be overwritten.

Example
IMT:cal1.hex;-0x1000+cal2.s19;128

IMO:testfile.hex;0x2000-0x3FFF

Simply reads the address range from 0x2000-0x3FFF from the file “testfile.hex” into the
memory. No offset will be added or subtracted. Existing data on the same address will
be overwritten.

IMT:testfile1.hex;0x2000:0x1000,0x4000+cal2.s19;-0x3000:0x1000-0x1FFF

Merges the address range 0x1000-0x4FFF of testfile1.hex and shifts all block
addresses of these ranges by the offset 0x2000. Afterwards, merges the address range
0x1000-0x1FFF of file cal2.s19 and changes the block start addresses by -0x3000.

Note: /MT and /MO cannot be combined in one commandline. Only the last in the
commandline-list will be used, in that case.

Caution
Since this operation can manipulate data in a post process, make sure HexView
creates the resulting file containing the desired data and applies the correct changes.

3.2.16 Run postbuild operation (/pb=postbuild-file)
This option applies the postbuild operation. This option requires a valid PBUILD.DLL to
read the data from a postbuild file. The results will be applied to the internal document.

Originally, it is used to read the generated postbuild XML-file using the PBUILD.DLL that
comes along with Hexview. However, it can also be used to apply your own postbuild
configuration or to apply data changes to the currently loaded document.

The only pre-requisite is that the DLL provides the correct interface functions.

The DLL interface functions will be called in the following sequence:

©2014, Vector Informatik GmbH Version: 1.08.06 78 /111

Reference Manual HexView vector

OpenPBFile(Filename)

GetPBSegmentInfo(Address[], Length[],
maxNoOfSegments)

>
l

GetPBData(srcAddress, dstAddress,
length)

y

ClosePBFile()

Figure 3-3: Calling sequence of the post-build functions

The following function interface will be applied:
3.2.16.1 OpenPBFile
Prototype

Long declspec(dllexport) cdecl OpenPBFile (LPCSTR filename)

Parameter

Filename Pointer to the location of the file that shall be opened. This is the full-path of
the file that has been selected in the file dialog when slecting the “Apply
postbuild options”.

Return code

Long Number of segments found in the postbuild file and shall be applied to.

Functional Description

Requests to open a file used for the postbuild operation process. Typically, it is the XML file generated by
GENYy to apply the postbuild configuration data.

Particularities and Limitations

> The function must return the number of segments that shall be applied to the postbuild operation
Call context

> -

Table 3-5 OpenPBFile

3.2.16.2 ClosePBFile
Prototype

Void declspec(dllexport) cdecl ClosePBFile (void)

Parameter

Return code

©2014, Vector Informatik GmbH Version: 1.08.06 79/111

based on template version 5.1.0

Reference Manual HexView vector

Functional Description

Closes the previously opened file. Concludes all operations within the DLL.

Particularities and Limitations

V ‘
1

Call context
> -

Table 3-6 OpenPBFile

3.2.16.3 ClosePBFile
Prototype

Long _ declspec(dllexport) cdecl GetPBSegmentInfo (DWORD address[], DWORD
length[], long maxSegments)

Address Pointer to a list of addresses. Will be filled by the operation.

Length Pointer to a list of length values. Each field for one segment. The index
corresponds to the address field.

Long maxSegments Size of the fields where Address and Length points to. The interface function

shall not place more address and length information into the list as specified
by maxSegments (will exceeds internal data structures within Hexview).

Return code

Long Number of segments found in the postbuild file and loaded to the segment
arrays of Address[] and Length[]..

Functional Description

Provides all segments from the postbuild file that shall be loaded.-

Particularities and Limitations
> The function must return the number of segments that has been loaded to the arrays.

> Segments provided in the list of address[] and length[] shall not overlap, length shall be greater than 0 in
all cases (otherwise, the element in the list should be omitted).

Call context
> -

Table 3-7 ClosePBFile

3.2.16.4 GetPBData

Prototype

Long _ declspec(dllexport) cdecl GetPBData (DWORD srcAddress, char
*dstBuffer, DWORD length)

©2014, Vector Informatik GmbH Version: 1.08.06

based on template version 5.1.0

Reference Manual HexView vector

srcAddress Pointer to the segment that shall be read. Corresponds to at least one of
Length the Addresses of addresses. Will be filled by the operation.

Pointer to a list of length values. Each field for one segment. The index
Long maxSegments corresponds to the address field.

Size of the fields where Address and Length points to. The interface function
shall not place more address and length information into the list as specified
by maxSegments (will exceeds internal data structures within Hexview).

Return code

Long Number of bytes read for post-building.

Functional Description

Reads the segment data from the postbuild file and applies it to the current document.

Particularities and Limitations

> The function must return the number of bytes read from the segment.

> The number of bytes read from the segment must correspond to the size previously specified for the
segment that belongs to the address given in the parameter.

Call context
> -

Table 3-8 GetPBData

3.2.17 Specify output filename (-o outfilename)
This option is used to overwrite the default output filename when exporting data to a file.

3.2.18 Run in silent mode (/s)

This option is used to suppress any output to the GUI. After executing all commands given
in the command line options, HexView will be closed.

3.2.19 Specify an INI-file for additional parameters (/P:ini-file)

Some output control functions require complex parameters that cannot be passed on by
command lines. These output controls reads parameters from the INI-file. By default, if the
/P parameter is not given, HexView will extract the path and file information from the input
file and will search for the same file and location, but with the INI-extension. It will read the
contents from there. However, it could be useful to specify the INI-file explicitly. This is for
example useful, if several output controls shall be used with the same parameters.

p Note
1]> Some export functions from the GUI automatically generates an INI-file with the same
name and path location as the output file, to write these parameters into it. These
values will then automatically taken when reading or converting the file through
commandline.

The path and filename for the INI-file must follow directly the /P parameter, but separated
either with a colon or an Equal sign. No blank character is allowed for separation or within
the file and path name (or use double quotes to specify such file and path names).

©2014, Vector Informatik GmbH Version: 1.08.06 81/ 111

based on template version 5.1.0

Reference Manual HexView vector

'T] Example

B2 ' /P:testfile.ini
HexView will read the data from the path of the input file. If no explicit path is used for
the input file, HexView will search for the file in its current path.

IP=c:\testpath\testfile.ini
HexView reads the INI-file from the specified path and filename.

3.2.20 Remapping address information (/remap)

The remap option is used to shift the start address of block. This can be useful to remap
several address blocks from physical to logical addresses. A use-case for that is the re-
mapping of address spaces in banked mode to a contiguous linear address space?2.

Physical address space Virtual, linear address space

Bank no.
#2
Bank no.
#1 .
Linear base Bank size
address
Non- Non-
banked banked
section #2 Bank end section #2
address
Bank no. | Bankno. | Bankno. ,Peep-
#1 #2 #3 Hole
Bank start
address - -
banked banked
section #1 section #1

Figure 3-4: Mapping pysical to linear address spaces

The parameters to this option are as follows:

Iremap:BankStartAddress-BankEndAddress,LinearBaseAddress,BankSize,Bankincrement

Figure 3-4 gives a reference to the parameters of the memory map. The BankStartAddress
and BankEndAddress spans a range of the memory region, where the remap shall be
applied to. The LinearBaseAddress is the base address, where the first BankStartAddress

2 Such linear address spaces are also called ,virtual“ addresses, because the address itself does cannot
directly used for a read operation on the micro. An address calculation of the virtual address is necessary to

split it to a banked and a physical address.

©2014, Vector Informatik GmbH Version: 1.08.06 82 /111

Reference Manual HexView vector

shall be mapped to. The BankSize is the maximum size of a block that shall be remapped
and the BankIincrement is the difference of address between two banks, e.g. the difference
between BankStartAddress of bank #1 and BankStartAddress of bank #2.

Please note, that just blocks can be remapped, that fits within the BankStartAddress and
BankEndAddress or multiples of Bankincrement. That is to say, only blocks with maximum
size of BankSize can be remapped. A continuous block section cannot be splitted and
remapped into linear addresses (this is not necessary. In that case, only the whole base
address of a block may be shifted).

The following example shows, how address shift operations are applied:
Assuming, the input file contains the following data sections:
Non-Banked addresses from 0x0000 — Ox7FFF.

Banked addresses: 0x018000-0x01BFFF; 0x028000-0x02BFFF.

In this example, the address mapping consists of a non-banked section and two bank
sections. The bank numbers are 0x01 and 0x02. The physical bank addresses are from
0x8000-0xBFFF. The bank size is 0x4000.

The following option will remap the addresses to a linear address space:
/remap:0x018000-0x02BFFF,0x008000,0x4000,0x010000
This remaps the address space in the example above to 0x0000-0OxFFFF.

3.2.21 Create validation structure (/vs)

This item is used to create an information structure intended to be used for application
validation. It is typically used for flash download systems where it is difficult or impossible
to determine if all elements necessary for a download are available and complete.

There are some flash download procedures, where it is impossible to verify if the download
is completed. For example, if partial download is used without an information in the
download procedure, where the complete download can be verified, or where a download
can be interrupted at a certain state that appears like a completed download.

For a successful usage of the validation structure, it is necessary, some important
precautions must be considered. To use the structure it is necessary to be able to re-
program it with every download, even if it is just a partial download. Before the validation
structure itself can be used, it is necessary to determine if the validation structure is
present and complete. There are three options that can be used in combination to verify if
the structure is complete. A magic value at the beginning and the end can be added to the
structure In addition, a simple byte checksum can be inserted that is added at the very end
to the structure.

The key information for the validation is the block structure containing the segment start
address and length for each segment or block. The data information is not only (and not
necessarily) taken from the internal data but also from external files. A list of files can be
provided in the list box. An optional checksum per block can be added. The checksum
method can be chosen from the available checksum methods from EXPDATPROC.DLL.
Instead or in addition to the block checksum a total checksum that is calculated over all
segment and block data can be added. The total checksum method can be different from
the block checksum.

©2014, Vector Informatik GmbH Version: 1.08.06 83 /111

Reference Manual HexView vector

The resulting data structure can now generated in two ways, or even in both if wanted.
First, a C-structure can be generated that can be compiled and linked together with your
program data. If the data don’t change, the resulting HEX-files should be the same just
with the additional structure added to the HEX-file. A header-file may helps you to access
the data structure during the validation method.

A second method is to insert the data directly into the HEX-data file. Since 16-bit or 32-Bit
values are generated, it is important to select if the CPU uses little- or big-endian format.
The 16- and 32-Bit values will be generated according to the selected option.

When using this commandline option, all parameters will be taken from the INI-file (see
section 3.2.19). The contents of the INI-file has the following parameters:

[VALIDATION]
GenerateCFiles=1 ; 0=no, l=yes
InsertData=1
CFilename=D:\uti\ page3a.c
HFilename=D:\uti\ page3a.h
BlockChecksumType=0
FileChecksumType=9
ValidateChecksum=1
IdTagBegin=0x1234
IdTagEnd=0x4321
BaseAddress=0x10000
SpareRange=

EndianType=0

See section 2.2.2.12: “Generate file validation structure” for further information.

3.3 Output-control command line options (/Xx)

The following chapter describes the options used to control the output generator of
HexView. Note that only one output can be generated per execution. That is, you cannot
combine several output generator options (/X..) in one command line call of HexView.

The output control is used to generate a file in a specific output format. Some of the
formats correspond to a file format used for flash download in the OEM specific download
process. Therefore, the output control is named in combination with a car manufacturer’s
brand name.

3.3.1 Output of HEX ASCII data (/XA[:linelen[:separator]])
This option provides the possibility to output the data into a file as HEX ASCII.

There are two optional parameters to control the output. The first option is the length of the
output line. The second option is the separator between bytes within a line. Each option
will be separated by a semicolon. The line number always comes first, followed by the
separator. If you want to use spaces for the separator, you need to use doublequotes. The
separator is only placed between two HEX values within a line, not at the beginning or end
of it.

©2014, Vector Informatik GmbH Version: 1.08.06 84 /111

Reference Manual HexView vector

A Example #1
IZ ' Output HEX ASCII as a number of HEX strings
C L IXA32
0102030405060708090A0BOCODOEOF 10
1112131415161718191A1B1C1D1E1F20
A Example #2
iz . Output HEX ASCII in a formatted string using the separator.
C o XA32”,

01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, OE, OF, 10
11,12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 20

3.3.2 Output a Fiat specific data file (/XB)

This option commands to create the BIN- and PRM file used for the Fiat specific download.
The format of the file will not described here, but can be found in the Fiat specific
documentations (07284-01). Refer also to section 2.2.1.9.9.

The Fiat file contains a number of parameters. These parameters are too complex to pass
them all through command line options. Therefore, HexView reads this information from an
INI-file. This INI-file can either be specified explicitly with the command line option /P (see
section 3.2.19) or will use the filename of the input file, but with the file extension ‘.INI
(same location of INI as the HEX-file).

The base address and length of the erase sections within the parameter file fields will be
aligned with the erase alignment value. See sections 2.2.2.4 and 3.2.3 on how to specify
this value.

The following table shows the options for the INI-File used with the Fiat output.

HFIType=4 HFIType: Header Format Identifier. Should be
4 for 07209 or 2 for 07274
DownloadMethod=0 DownloadMethod or Fingerprint (FPM):

O=all Fingerprints,
1=Prog+Data,

2=Prog-only
ChecksumMethod=1 ChecksumMethod:
O=Files and Segments,
1=File only
ChecksumType=1 ChecksumType=Type of Checksum

calculation. Same paramter value as in
section 3.2.7 resp. 2.2.2.6.

ECUAddress=0x20

©2014, Vector Informatik GmbH Version: 1.08.06 85/ 111

based on template version 5.1.0

Reference Manual HexView vector

TesterAddress=0xf1
TesterCanID=0x18DA20F 1
EcuCanID=0x18DAF120
TypeOfSeedKey=0
AccessMethod=0
AccessParameter=0
RegDLMethod=0
ReqDLType=0

P2Min=5

P2Max=2

P3Min=1

P3Max=20

P4=0

AddressLengthSize The size for the used addresses and length of
the segment information in the parameter file.
The default value is 0x33, which denotes, that
3-bytes will be used for address and length
values.

ReqgDLParam The parameter to the data processing

algorithm. See “Data Processing” chapter for
more information.

UseParialDownload This flag is set to 1 if a partial download
parameter file shall be generated. The partial
download is used if the binary data file
consists of the application and data file. In this
case, the partial download extracts the
parameter file info for the data section only. A
data range must be specified for the data field.

PartialRange This is the range for the data field if the binary
download is used for application and data. It'll
be used to generate a separate parameter file
that specifies only the data section within the
combined binary section.

PartialPrmFile Specifies the separate parameterfile that will
be generated if partial download is used.

Table 3-9 INI-file information fort he Fiat file container generation

3.3.3 Output data into C-Code array (/XC)

This option allows to create arrays in a C-language. This allows to compile and link
complex data packets with a program. This option directly reflects the GUI-option in
section 2.2.1.9.4.

The parameter for this output can also controlled by an INI-file (for INI-file rule, refer to
section 3.2.19).

©2014, Vector Informatik GmbH Version: 1.08.06 86 /111

based on template version 5.1.0

Reference Manual HexView vector

The following list shows the options of the INI-file for this output:

Decryption=0 Option:
0=0ff,
1=0On
Decryptvalue=0xCC Value for encryption using XOR with each

uchar/ushort/ulong
Prefix=flashDrv
WordSize=0 O=uchar,
1=ushort,
2=ulong
WordType=0 Only used if WordSize > 0.
O=Intel,
1=Motorola

Table 3-10 INI-File definition fort he C-Code array export function

A '] Example
Iz HexView test.dat /XC
Reads data from test.dat as Intel-HEX or S-Record and outputs to test.c/test.h. Tries to
read the INI-Info from test.ini in the same folder where test.dat is located.
HexView /XC test.dat /P:myini.ini —o outfile.c

Reads the data from test.dat and the parameter from myini.ini and outputs the file
outfile.c/ouffile.h.

3.3.4 Output a Ford specific data file (/XF, IXVBF)

The Ford data container comes along in two resp. three different formats. One is the Intel-
HEX format with additional information at the beginning of the file and the other is the VBF-
format.

This section describes the two different formats:

3.3.4.1 Output Ford files in Intel-HEX format

The Ford files in Intel-HEX format consist of a header information with some Ford specific
information and the data itself in Intel-HEX format. The header has the following format:

©2014, Vector Informatik GmbH Version: 1.08.06 87 /111

based on template version 5.1.0

Reference Manual HexView vector

APPLICATION>FORD FNOS-DemoIL

MASK NUMBER>7 or later

FILE NAME>APPL.hex

RELEASE DATE>10/05/2001

MODULE TYPE>Restraint Control Module

PRODUCTION MODULE PART NUMBER>XL5A-14B321-AA

WERS NOTICE>DEOQOE10757919001

COMMENTS>Any comments can be entered here.

RELEASED BY>Armin Happel

MODULE NAME>RESTRAINTS CONTROL MODULE

MODULE ID>0x7BO

DOWNLOAD FORMAT>0x01

FILE CHECKSUM>0xBF76

FLASH INDICATOR>1

FLASH ERASE
SECTORS>:0xFC0002,0x5716:0xFF9D00, 0xC:0xFF9F54, 0x8C:0xFF9F54, 0x8C
$

:0200000400FCFE
:2000020011AA0001230000BC614E4141000AFFFFFFFFFFFFFFFFFFFFFFFFFEFFEE
FFFFFFF1A

The whole file format can be written by HexView. The only information that HexView needs
in addition to the data itself are the parameters for the header shown above.

Some information can be generated automatically by the tool. Further information is
necessary and will be given by the INI-file parameter. The parameters from the INI-file are
controlled according to the INI parameter rule (see section 3.2.19).

The base address and length of the erase sections in the “flash erase sections” field will be
aligned with the erase alignment value. See sections 2.2.2.4 and 3.2.3 on how to specify
this value.

The following table shows the INI-information:

[FORDHEADER] T

APPLICATION=FORD FNOS-DemolL Mandatory text field

MASK NUMBER=7 or later Mandatory text field

FILE NAME=APPL.hex Optional If omitted, the file-output name will be
used. Otherwise, the text field paramter is
used.

RELEASE DATE=10/05/2001 If omitted, the current PC-date will be used.
Otherwise, if specified, the textfield will be
used.

MODULE TYPE=Restraint Control Module Mandatory text field

PRODUCTION MODULE PART Mandatory text field

NUMBER=XL5A-14B321-AA

WERS NOTICE=DEOOE10757919001 Mandatory text field

COMMENTS=Henrys header for flashdata Mandatory text field

RELEASED BY=Armin Happel Mandatory text field

©2014, Vector Informatik GmbH Version: 1.08.06 88 /111

based on template version 5.1.0

Reference Manual HexView vector

MODULE NAME=RESTRAINTS CONTROL Mandatory text field

MODULE

MODULE ID=0x7B0 Mandatory text field

DOWNLOAD FORMAT=0x01 Specifies the download method:
0: Download Application file
1: Download SBL

;FILE CHECKSUM=0x0A33 Will be generated by HexView. This is a byte
sum of the data in the datafield.

FLASH INDICATOR=1 0: for Flashdriver aka. SBL,

1: for normal file download

Note: Writes 0 if paramter is omitted.
:FLASH ERASE Can be given as a textual information. If
SECTORS=:0xF0000,0x4000:0xF4000,0x4000:0 omitted, the block sections will be listed. This
xF8000,0x4000:0xFC000,0x4000:0xFD800,0x04 can be used with GGDS and 13 to specify the

00 erase values (Note: for I3 und GGDS, usually
the VBF-format is used).

In 14230/KWP2000, the Erase indicator must
be given here.

0: Erase all
1: Any erase section numbers
1,3,5: erase section number as a list.

Table 3-11 INI-file description for Ford I-Hex file generation

©2014, Vector Informatik GmbH Version: 1.08.06 89 /111

based on template version 5.1.0

Reference Manual HexView vector

'T] Example 1
& Output an application file for FNOS 101 (KWP2000 based):
HexView /FR:0x4000,0x200 /XF /P:test.ini /AD2 /AL —o demo_fill1.hex

INI File contents of test.ini:

[FORDHEADER]

APPLICATION=FORD FNOS-Demo DemoAppl, adapted for
Bootloader

MASK NUMBER=Must be adapted by TIER I

;FILE NAME=appl.hex ; Will be filled out automatically

if not present.

;RELEASE DATE=02/18/2005 ; dto.

MODULE TYPE=Demo Software

PRODUCTION MODULE PART NUMBER=XL5A-14B321-AA
WERS NOTICE=DEOOE10757919001
COMMENTS=This is just an example software
RELEASED BY=Armin Happel

MODULE NAME=Test software

MODULE ID=0x7BO

DOWNLOAD FORMAT=0x00

;FILE CHECKSUM=0x0A33 ; dto.

FLASH INDICATOR=1

FLASH ERASE SECTORS=0

HEX file output:

APPLICATION>FORD FNOS-Demo DemoAppl, adapted for
Bootloader

MASK NUMBER>Must be adapted by TIER I

FILE NAME>Demo Filll f.hex

RELEASE DATE=17/02/2004

MODULE TYPE>Demo Software

PRODUCTION MODULE PART NUMBER>XL5A-14B321-AA
WERS NOTICE>DEOOE10757919001

COMMENTS>This is just an example software
RELEASED BY>Armin Happel

MODULE NAME>Test software

MODULE ID>0x7BO0

DOWNLOAD FORMAT>0x00

FILE CHECKSUM>0x1BFB

FLASH INDICATOR>1

FLASH ERASE SECTORS>O0

$

:02000004000EEC

:20000000E25C9D40D6874BEAFAF1CT7824BF70FE1CAEL157397509A05577408C2
29C6D716FD1

©2014, Vector Informatik GmbH Version: 1.08.06 90 /111

Reference Manual HexView vector

Example 2
[[Output an SBL aka. Flashdriver file:

HexView flash_s12.hex /XF /P:flashdrv.ini /FA
INI File contents of flashdrv.ini:

[FORDHEADER]

APPLICATION=FORD FNOS-Secondary Bootloader
MASK NUMBER=Must be adapted by TIER I

;FILE NAME=Flash S12.hex ; Will be filled out
automatically if not present.

; RELEASE DATE=02/18/2005

MODULE TYPE=Restraint Control Module
PRODUCTION MODULE PART NUMBER=XL5A-14B321-AA
WERS NOTICE=DEOQOE10757919001

COMMENTS=Henrys header for flashdata
RELEASED BY=Armin Happel

MODULE NAME=RESTRAINTS CONTROL MODULE

MODULE ID=0x7BO

DOWNLOAD FORMAT=0x01

;FILE CHECKSUM=0x0A33

;FLASH INDICATOR=1 Set to 0 if not present
FLASH ERASE SECTORS=

HEX file output:

APPLICATION>FORD FNOS-Secondary Bootloader
MASK NUMBER>Must be adapted by TIER I

FILE NAME>Flash S12 f.hex

RELEASE DATE=17/02/2004

MODULE TYPE>Restraint Control Module
PRODUCTION MODULE PART NUMBER>XL5A-14B321-AA
WERS NOTICE>DEOOE10757919001
COMMENTS>Henrys header for flashdata
RELEASED BY>Armin Happel

MODULE NAME>RESTRAINTS CONTROL MODULE
MODULE ID>0x7BO0

DOWNLOAD FORMAT>0x01

FILE CHECKSUM>0xO0AO1

FLASH INDICATOR>O0

FLASH ERASE SECTORS>:0x0,0x480

$

:200000000B00021202DF02D8036E02976CADB745EEE0L8B746EDES1IAC60ELSE
AQ04306B8211

3.3.4.2 Output Ford files in VBF format

Another output format used by Ford, especially in the FNOS 13 and GGDS projects, is the
VBF format. This file format is typically generated during the export of a VBF-file using the

©2014, Vector Informatik GmbH Version: 1.08.06 91 /111

Reference Manual HexView

vactor”

Ford VBF-export function of Hexview. The INI-file is necessary to generate the VBF-file
from the command line. It is also used to adjust the dialog options for a specific file.

The values for ERASE_ADDRESS and ERASE_LENGTH will be aligned with the erase
alignment value in a way that erase address and length are a multiple of this parameter.
See sections 2.2.2.4 and 3.2.3 on how to specify this value.

Options and data generation is also controlled by an INI-fle. The following INI-file

parameters are used to control the output:

eramaoms) I

SW_PART_NUMBER=12345678
SW_PART_TYPE=EXE

SW_CALL_ADDRESS

SW_VERSION
FRAME_FORMAT=CAN_STANDARD

DESCRIPTION1=This is the demo application
for

DESCRIPTION2=the FJ16LX FBL-Ford FNOS-
13, *)

NETWORK=CAN_MS *)

ECU_ADDRESS=0x7E0 *)
ERASE_LIST GEN_MODE

ERASE_ADDRESS *)

ERASE_LENGTH *)

DATA_FORMAT _ID

©2014, Vector Informatik GmbH

Part-number. Any arbitrary text string.

Software part type can be:

EXE, DATA, GBL, CAFCFG, CUSTOM,
SIGCFG, TEST

Only used if SW_PART_TYPE=SBL or TEST.
When SW_PART_TYPE is SBL, the call
address is mandatory.

The software version. Only used for VBF V2.5.

FRAME Format can be:
CAN_STANDARD, CAN_EXTENDED

Description field, part #1.
Description field, part #2

Network parameter. Can be:
CAN_HS, CAN_MS, SUB_MOST,
SUB _CAN1, SUB_CAN2, SUB_LIN1,
SUB_LIN2, SUB_OTHER

ECU-Address

This specifies how the erase table shall be
generated:

0 = Generate no erase table

1 =AUTO. Each segment of the input file will
correspond to an address range. The values
can be aligned to a multiple of a factor given
with the /AE parameter. This is useful to let
Hexview generate automatically the erase
table.

2 = Manual: You must specify erase address
and length value in this INI file (see below)!

Erase address and length information. This
paramter is not allowed if
SW_PART_TYPE=SBL.

Data format identifier for VBF 2.4 and higher

Version: 1.08.06 92 /111

Reference Manual HexView vector

[VBFHEADER]

DATPROC_PARAM Data processing parameter. Normally empty if
no data processing or just data compression is
used.

DATPROC_METHOD ID of the data processing method (see chapter
3.2.8).

Table 3-12 INI-File description for Ford VBF export configuration

*) The parameters marked with *) can be specified as a single parameter or in a list format.
In the list format, a continuous counter number is added at the end of the parameter starts
with “1’, e.g. NETWORK1, NETWORK?2, etc. If the iterator is used, the non-iterator name
will be ignored (e.g. NETWORK will not be used). It is much more convenient to generate
this file during an export through the GUI than writing this INI-file by hand. Make
modifications after it has been generated.

©2014, Vector Informatik GmbH Version: 1.08.06 93 /111

based on template version 5.1.0

Reference Manual HexView vector

'T‘l Example1
iz Convert an SBL resp. flashdriver
HexView.exe flashdrv.mhx /FA /s /e:flashdrv.err /xvbf /P:flashdrv.ini

flashdrv.ini-File:

[VBFHEADER]

SW_PART NUMBER=12345678

SW_PART TYPE=SBL

SW_CALL_ADDRESS=OX1000

FRAME FORMAT=CAN STANDARD

DESCRIPTION1=This 1s the flashdriver (SBL) for
DESCRIPTION2=the FJ16LX microcontroller.
NETWORK=CAN MS

ECU_ADDRESS=OX7EO

Output of flashdrv.vbf:
vbf version = 2.2;

header {
//**

* ok ok ok kK kK

//*

//* Vector Informatik GmbH

//*

//* This file was created by HEXVIEW V1.01
//*

//**

Ak Kk kKK kK

//Description

description = {"This is the flashdriver (SBL) for",
"the FJ16LX microcontroller."
}i

//Software part number

sw_part number = "12345678";

//Software part type
sw_part type = SBL;

//Network type or list
network = CAN MS;

//ecu_address or list
ecu address = O0x7EQ;

//Format frame
frame format = CAN STANDARD;

//call address
call = 0x1000;

©2014, Vector Informatik GmbH Version: 1.08.06 94 /111

Reference Manual HexView vector

//file checksum
file checksum = Oxab8650b7;

©2014, Vector Informatik GmbH Version: 1.08.06 95/ 111

based on template version 5.1.0

Reference Manual HexView vector

Example2
Convert an application file

HexView.exe testsuit. mhx /AD2 /AL /s /e:testsuit.err /xvbf

testsuit.ini-File:

[VBFHEADER]

SW_PART NUMBER=12345678

SW_PART TYPE=EXE

FRAME FORMAT=CAN EXTENDED
DESCRIPTION1=This the demo application for
DESCRIPTION2=the FJ16LX FBL-Ford FNOS-I3.
NETWORK1=CAN_MS

NETWORK2=SUB CAN1

//ERASE _LIST GEN MODE:

// 0=0ff (generate no erase list);

// 1=Auto (generate erase list from segment list and,
if given, from the erase alignment parameter /AE) ;

// 2=Manual (the erase list is specified in this INI-
file)!

ERASE LIST GEN MODE=1
; ERASE_ADDRESS1=0x£f0000
;ERASE_LENGTH1=0x10000

ECU_ADDRESS1=0x00
ECU_ADDRESS2=0x06
ECU_ADDRESS3=0x65

testsuit.vbf-File:

vbf version = 2.2;

header {
//**

*k kK kk Kk k%
//*
//* Vector Informatik GmbH
//*
//* This file was created by HEXVIEW V1.01
//*

//**
* Kk Kk k Kk kkxk
//Description
description = {"This the demo application for",
"the FJ16LX FBL-Ford FNOS-I3."
i
//Software part number
sw_part number = "12345678";

//Software part type

©2014, Vector Informatik GmbH Version: 1.08.06 96 / 111

Reference Manual HexView vector

sw_part type = EXE;

//Network type or list
network = { CAN MS, SUB CAN1};

//ecu address or list
ecu address = { 0x00, 0x06, 0x65};

//Format frame
frame format = CAN EXTENDED;

//erase block
erase = { { 0x00££0002, 0x00007764},
{ OxO00f££f7£00, 0x0000008c}
}s

//file checksum
file checksum = 0x73940915;

3.3.5 Output a GM-specific data file

A file used for a flash download within GM contains important information necessary for its
download at the very beginning. This is the so-called GM file-header. It contains a
description of the download data and also some version information. A detailed description
of this file-header can be found in GMW3110, V1.5, section 11.

Roughly, the header can be divided up into two groups, the header for the operational
respectively executable software and the calibration file. The main difference is, that the
operational software contains the address information of both the operational and the
calibration software. The calibration software therefore doesn’t contain any address
information, even not about itself.

The file header can roughly be divided up into two parts, a static part and a dynamic part.
The static part contains information that changes only the version management and
contains, e.g. version information and other file descriptions like module-id, DLS-code and
DCID. The information is static in respect to the compile and link process.

The dynamic data part contains the address and length of all sections of a file and also the
total checksum over all sections. Thus, the dynamic data contents is changing by the
compile and link process and must therefore be adapted after every link process.

The command line options of HexView are therefore adapted to these two stages and can
roughly be divided up into two groups: manipulating the dynamic part within an existing
header of the hex-file or to create the complete header information including the static and
dynamic parts, without the existence of any predefined data.

©2014, Vector Informatik GmbH Version: 1.08.06 97 /111

Reference Manual HexView vector

If only the dynamic part is inserted, the static part must already be present in the loaded
file. In that case, HexView analyzes the static part and checks if enough placeholder has
been reserved to insert the dynamic part. To avoid the risk that HexView accidentally
overwrites important software part data, a unique ID must be written at the very beginning
of the header block. This ID has the value 0x11AA.

If its commanded to HexView to create also the static part, the whole header will be
generated. This also implies, that the information of the static part must be given by the
command line options. These options are the /DLS, /SWMI, /DCID and the /MPFH.

This document does not describe completely the format and meaning of the header. You
must refer to GMW3110 for further details.

3.3.5.1 Manipulating Checksum and address/Length field within an existing
header (/XG)

The option /XG is used to command HexView to change the checksum, address and
length information (the dynamic part) within the existing header data fields of the hex-file. It
is a prerequisite, that the header is at the very beginning of a block or a section. The
header must contain all static information like Module-ID, SWMI, DLS and HFI. There must
also already be data as a placeholder for the PMA and the checksum. The placeholder for
the checksum must have the value 0x11AA, the placeholder data for the address and
length information can be of any value.

p Note
HexView will overwrite these data during the conversion process. Make sure that no
important data is overwritten. Test the output results carefully!!.

By default, HexView checks the presence of the header on the lowest address of the
block. However, if the header is at the beginning of another block, the address information
of this block can be specified in this command line, separated by the colon.

©2014, Vector Informatik GmbH Version: 1.08.06 98 /111

Reference Manual HexView vector

re Example

iz IXG ICS5 test.dat
Reads in the file test.dat as Intel-HEX or S-Record file and tries to fill in the header
information into the lowest address. The value 0x11AA must be specified there.
Outputs the data into test.bin (GM-binary format) and test.hex (Intel-HEX).
IXG:0x1000 /CS6
HexView searches for the block at address 0x1000. If this is not the first block in the
internal list (e.g. it's not the lowest address of the block), the block will be moved to the
front. The specified address must be the beginning of a segment or block.
moduleld01.hex /XG /CS6 /MPFH —o myGMfile.bin
The hex-file “moduleld01” contains a header with placeholder 0x11aa for the
checksum, SWMI, DLS, the HFI and a NOAR with dummy address/length information
and optional DCID. It also contains values for the additional modules (NOAM-fields).
Hexview will fill the placeholder 0x11AA with the calculated checksum, will adjust the
NOAR and address/length information from the address fields of “moduleld01.hex” and
then copies the NOAM fields to the end of the last address/length information.

Note
The parameter /CSx must be given when manipulating the header to specify the
checksum method for the checksum value.

If the existing header already contains data for the additional modules (NOAM-data),
the option /IMPFH can be specified to let Hexview copy the contents of the NOAM field
adjacent to the end of the new address region. Extensive checks are done internally to
avoid overwriting existing data. Do not use the /MPFH option if you don’t use
calibration information within the GM file.

Besides the presence of the value 0x11AA, the parameter NOAR in the static part must be
equal or greater than the number of sections available in the hex-file. If the NOAR in the
static part is lower, HexView generates an error and does not write the output.

After the NOAR parameter, there must be at least 8*NOAR data bytes within the header,
reserved for the address and length information.

Note

HexView will overwrite these reserved data bytes with the address and length
information of the sections. Also, the value 0x11AA for the checksum will be overwritten
with the result of the checksum calculation value.

The output file format of HexView is a BIN-file.

If the —o0 parameter is not given, HexView will use the input filename and will replace the
file extension of the input file with “.bin” to specify the output filename.

In addition, HexView will create an Intel-HEX file with the extension “.hex”.

©2014, Vector Informatik GmbH Version: 1.08.06 99 /111

Reference Manual HexView vector

If the output filename already contains the extension .hex, HexView will create a Motorola
S-record file with the extension “.s19”.

3.3.5.2 Creating the GM file header for the operating software (/XGC[:address])

This option is used to create the header for the operational software respectively the
executable.

Without any address information in the parameter, the header will be added at the very
beginning of the first section (lowest address of the file). The address information will be
adapted according to the necessary size of the header (the size can vary depending on
the information in the header). If the header doesn’t fit to the lowest address, an error will
be generated and the output file will not be written.

Using the /XGC parameter, the HFI will always be a two byte value. If the parameter /DCID
and /MPFH are given, the corresponding bits in the HFI field will be set and the values
from the parameters will be added. If the parameters /SWMI and /DLS are not given, the
default values will be used.

Example

myHexFile.hex /XGC /CS5 /DCID=0x8000 /DLS=AA /SWMI=12345678
/IMODID=1 /AL /AD4 IMPFH=cal1.hex+cal2.hex —o myGmFile.bin

This will create a full header with all options passed through command line. It
will put the header data upfront to the first block data on the lowest address.
The base address of the header will be shifted down to match the header size.
The data will be filled in to the block. The DCID-field will be added and the flag
in the HFI as well. The NOAM-field will be 2 followed either with the placeholder
or the real data of cal1.hex and cal2.hex. If placeholder or real data are used
depends on if HexView can read the contents of the data from cal1.hex and/or
cal2.hex.

Please note, that a GM-binary file cannot be used as an input file of CAL-files,
as this file doesn’t contain address information.

Tlg

myHexFile.hex /XGC:0x1000 /CS5 /DCID=0x8000 /DLS=AA
ISWMI=12345678 /MODID=1 /IMPFH=cal1.hex+cal2.hex /AL /AD4 —o
myGmpFile.bin

This will create the file header at the address 0x1000. The created section will be
located at the very beginning of the data. Thus, the header will be the first data in the
output file, regardless if there are any sections with lower addresses.

3.3.5.3 Creating the GM file header for the calibration software (/XGCC[:address])

The option /XGCC is used to create the header for the calibration software. The major
difference is, that the calibration file does not contain the PMA-field for address information
and the NOAR-field. The corresponding PMA-bitfield is not set in the HFI (typically 0x22).

The parameters /DCID, /SWMI, /DLS and /CS are also accepted. The /MPFH parameter
must not be added to the command line.

©2014, Vector Informatik GmbH Version: 1.08.06 100/111

Reference Manual HexView vector

Example

1= myCalHexFile.hex /XGCC /CS5 /DCID=0x8000 /DLS=AA /ISWMI=12345678
/IMODID=2 /FA /AL /AD4 —o mycCalFile.bin

This will create a full header with all options passed through command line. It
will put the header data upfront to the first block data on the lowest address.
The base address of the header will be shifted down to match the header size.
The data will be filled in to the block. The DCID-field will be added and the flag
in the HFI as well. A NOAM-field is not allowed in CAL-files. Therefore, the
/MPFH option is not allowed to be used.

Please note, that a GM-binary file cannot be used as an input file of CAL-files,
as this file doesn’t contain address information. However, Hexview will
automatically generate a myCalFile.hex in parallel to the bin-file. Make sure,
that your input file has not the same name as the output file as this will overwrite
your origin.

Note: The option /FA should be used for CAL-files, because CALs are always
single-region files!

myHexFile.hex /XGCC:0x1000 /CS5 /DCID=0x8000 /DLS=AA
ISWMI=12345678 /MODID=2 /FA /AL /AD4 —o myGmFile.bin

This will create the file header at the address 0x1000. The created section will be
located at the very beginning of the data. Thus, the header will be the first data in the
output file, regardless if there are any sections with lower addresses.

3.3.5.4 Creating the GM file header with 1-byte HFI (/XGCS[:address])

For backward compatibility, it is also possible to create the header with one-byte HFI.
In that case, the parameters /DCID and /MPFH shall not be given as an option.

All other information are in accordance with the other options described above.

3.3.5.5 Specify the SWMI data (/SWMI=xxxXx)

The parameter /SWMI is used to specify the value within the SWMI field. The parameter in
the command line option is used to add it to the field. The parameter is treaded as a
integer value and added to a 4-byte field in the SWMI-field of the header. The data can be
represented in decimal or in hex by a leading ‘0x’.

If the /SWMI parameter is omitted, HexView will use the default value 0x12345678.
This parameter is only useful in combination with /XGC, /XGCC or /XGCS.

3.3.5.6 Adding the part number to the header (/PN)

In some cases, the part number needs to be added to the GM-header. The part number is
an ASCII representation of the SWMI value. If the option /PN is added in combination with
any /XGC option, the ASCII representation of the part number will be added to the header.
The corresponding bit of the 2" byte of the HFI-field will be set if the option is given.

This parameter is only useful in combination with the option /XGC or /XGCC.

©2014, Vector Informatik GmbH Version: 1.08.06 101/111

Reference Manual HexView vector

3.3.5.7 Specify the DLS values (/DLS=xx)

The DLS parameter is used to specify the DLS field information in the header. The
parameter is interpreted as ASCII characters and added to the DLS-field. The number of
characters in the DLS-field can either be two or three characters. The HFI-field will be
adapted according to the number of characters given in the parameters.

This parameter is only useful in combination with /XGC, /XGCC or /XGCS.

Example
/ DLS=AA
The DLS is AA. The HFI field specifies a two-byte DLS field.

Tlg

/IDLS=ABC
The DLS is ABC. The HFI field is set to be a three-byte field.

3.3.5.8 Specify the Module-ID parameter (/MODID=value)

The /MODID parameter specifies the module id of the header. The parameter specifies the
number. The parameter can be either a decimal or a hexadecimal value if a ‘0x’ is added
upfront.

This parameter is only useful in combination with /XGC, /XGCC or /XGCS.

Example
Imodid=1
The module-ID is 0001 in the module-id field

T1g

/IMODID:0x0051
The Module-ID is set to 814., resp. 51nex.

3.3.5.9 Specify the DCID-field (/DCID=value)

The /DCID parameter specifies the DCID-value in the GM-header. This option can only be
used for a 2-byte HFI. Thus, it can only combined with the options /XGC or /XGCC (not
with /XGCS or /XG).

The value can either a decimal or a hexadecimal value if it precedes with ‘0x’.

- Example
1= IXGC /DCID:32238

IXGCC /DCID=0x8000

3.3.5.10 Specify the MPFH field (/MPFH[=file1+file2+...]

The /MPFH option is added to specify the MPFH data. In combination with /XGC the
header will be extended to store the NOAM, DCID and address/length information from the
files specified in the options field. The value of NOAM is taken from the number of files
specified in the parameter field. Each file is separated by the ‘+’ sign.

©2014, Vector Informatik GmbH Version: 1.08.06 102/111

Reference Manual HexView vector

In combination with the /XG or /XGC parameter, HexView will scan the files listed in the
parameter field. If they could be found, the address, length and DCID-fields will be
extracted and added to the header information.

Note that the files listed in the MPFH parameter must be single region files. If they contain
multiple sections, an error will be generated and the address/length information will not be
added.

File format: HexView first tries to read the files as Intel-Hex or Motorola-S-Record files. If
this is not possible, that means, if it results in a zero data container, it will try to read it as a
GM-binary file.

In combination with the /XGC option, HexView will create sufficient data information to
store the information for the calibration files.

If this option is added with /XG, Hexview will analyse for existing data of additional
modules and will copy this field to the end of the address- and length field.

3.3.5.11 Signature version (/sigver=value)

With Global Bootloader specification V2.2, GM introduces signature verification within the
Bootloader. The GM-header requires to contain signature information that the Bootloader
will use for signature verification. These values are the signature version, the signature key
ID and the signature itself. With Hexview V1.08.00, it is possible to generate this
information in the header file.

One essential parameter for hexview is the signature version. This value is placed into the
header at the required position and is passed to Hexview with this option. The value can
either be an integer or a HEX-number. Example #1 (integer value): /sigver=12345678.
Example #2 (hex value): /sigver=0x12345678.

The signature version is a 4 byte value in the header.

Note, that the parameter /DP must be used in conjunction with this parameter to instruct
Hexview to calculate the correct signature. Normally, the /DP parameter outputs the
signature value into a file. But here with this option, Hexview will place the results into the
corresponding position of the header within the data.

If this option is given, Hexview outputs a concatenated file without the signature. It is the
exact same output, but without the signature itself. So, this file can be given to GM to let
them generate and insert the signature with real keys.

3.3.5.12 Signature Key ID (/sigkeyid=value)

This option is also required for the signature header generation. It provides the key ID
information used for the signature calculation. It identifies uniquely the private/public key
combination for the signature. The value can be given in HEX or integer format, similar to
the sigver option. The value will be placed as a 2-byte value into the corresponding
location of the header.

3.3.5.13 Generate Routine header (/XGCR[:header-address])

This option is similar to the /XGC, but generates a header suitable for the routines, e.g.
flashdriver, etc. The major difference is, that the start address will not decrease while the

©2014, Vector Informatik GmbH Version: 1.08.06 103 /111

Reference Manual HexView vector

header is placed upfront. Instead, the header is placed at the same start address where
the routines itself are placed to . This is because the Vector bootloader does use the start
address of the header as the start address for the code itself and will use the header
information only for internal processes but will not locate this into the memory (typically
RAM).

3.3.5.14 Generate key exchange header (/XGCK)

This option is used to generate a key exchange file. It contains only the header and
signature information. The data after the header contains the new public key information
for proceeding signature values.

Note, that the signature must be built from the previous keys, not the new key!

3.3.6 Output a VAG specific data file (/XV)

This option generates an SGM-file that can be used for the VAS-tester. The file is
generated as described in section 2.2.1.9.14.

The VAG-export also requires parameters from an INI-file as described in section 0.

& Example
i HexView testappl.mhx /XV /P:vagparam.ini —o demoappl.sgm

3.3.7 Output data as Intel-HEX (/XI[:reclinelen[:rectype]])
This option generates the data in the Intel-HEX file format.

The output can be either as Extended Segment or Extended Linear Segment. Hexview
selects the appropriate format automatically, depending on the highest address of the data
file. If you want to force Hexview to use a specific output file format, use the rectype
selector. The following selection is possible:

» Rectype = 0: Auto selection (same as omitting the parameter)
» Rectype = 1:Extended Linear Segment
» Rectype = 2: Extended Segment

Also, the number of data bytes in the output line can be specified using the reclinelen
parameter.

r Example
[1] HexView anyfile.hex /X1:32 —o intelhex.hex

Hexview myhexfile.S19 /s /xi:16:2 —o myihex.hex

3.3.8 Output data as Motorola S-Record (/XS[:reclinelen[:rectype]])
This option generates the data in the Motorola S-Record format.

The format (S1, S2 or S3) is automatically detected by HexView according to the size of
the highest address. If this address is 16-bit, the S1-record format is used. If it is up to 24-
bit, the S2-record type is used. If it is up to 32 bit long, the S3-record format is used.

©2014, Vector Informatik GmbH Version: 1.08.06 104 /111

Reference Manual HexView vector

However, it could be useful to select the record type, e.g. when S2 or S3 is desired even
though the highest address is below its threshold. In that case, the “rectype” parameter
can be selected. Use the following settings:

» Rectype = 0: S1-Record
» Rectype = 1: S2-Record
» Rectype = 2: S3-Record.

Note that Hexview will throw an error if you select a rectype lower than the address ranges
can handle. No data will be generated. “Reclinelen” must be specified when usrecord type
shall be selected.

The number of data bytes per S-Record line can be specified in the reclinelen parameter.
The parameter is separated by a colon. It can be specified in integer or hexadecimal
format.

r Example
[[} HexView intelfile.hex /XS:32 —o srecord.s19

Hexview myhexfile.S19 /s /xs:16:2 —o mysrecord.s3

3.3.9 Outputs to a CCP/XCP kernel file (/XK)

This option generates the flash kernel data file according to the file format necessary for
CANape to read the file. This file format specifies a header and the data itself as Intel-HEX
record format.

For detailed description refer to section 2.2.1.9.4.

3.3.10 Output to a GAC binary file (/XGAC, IXGACSWIL)

The GAC binary file can be generated in two ways. The standard file format contains a
header information with some container information such as DCIDs, software version, part
numbers, etc. A complete list of supported IDs are listed in the example for the INI-file.

Example
The following is an example of the INI-file information for the GAC header

[GACHEADERINFO]

DCID 0=0x00

DCID 1=0x01

DCID 2=0x00

SoftwareVersion="123"
SoftwarePartNumber="1234567890ABCD"
AppOrCalVersion="123"
EcuCodeAndSupplierId="123456789"

Tlg

The required information will take the tool from an INI-file. The corresponding format and
item is listed in the example above.

©2014, Vector Informatik GmbH Version: 1.08.06 105/111

Reference Manual HexView vector

Besides this information, the GAC header also includes the address and length information
and the number of address/length info. Thus, the GAC binary file header contains three
sections:

e The GAC software information
e The number of address/length, the address and length itself
e The data of the file.

We distinguish two file formats, the GAC file with complete information of all three
sections, which is typically for the program and calibration files, and the file for the
software interlock (SWIL, sometimes also called as the “flash driver”).

The flash driver itself has no GAC software information and consists only of the two parts,
the address/length info and the binary data itself. Note that the SWIL should have just one
region, so it should start with the binary value ‘01’ as the first byte.

The SWIL file can only be generated through the commandline with the option /xgacswil,
whereas the standard GAC file can be generated through the commandline or with “File ->
Export -> GAC Binary File”. For the latter one it is required, that the corresponding INI-file
contains the valid entries (see example in this section).

©2014, Vector Informatik GmbH Version: 1.08.06 106 /111

Reference Manual HexView vector

4 EXPDATPROC

HexView provides an open interface for data processing and checksum calculation. The
interface is realized by a DLL, called EXPDATPROC.DLL (EXPorted DATa PROCessing).

This item describes how HexView calls these functions.

4.1 Interface function for checksum calculation

The checksum calculation is called whenever the /CSn parameter is used in the command
line or when “Edit ->Checksum calculation” is used in the GUI.

The checksum calculation is also called during the export of Fiat-binary, GM-header and
the VAG-export.

The following diagram shows the collaboration of function calls between HexView and
Expdatproc.dll.

To run the checksum calculation via the GUI, HexView first reads all available checksum
calculation methods from the DLL. It first reads the number of available methods by calling
the GetChecksumFunctionCount (), then reads the corresponding name by an iterate
call to GetChecksumFunctionName (). This builds the list box entries in the dialog.

sd Build GUI entry/

Hexview Expdatproc

GetChecksumFunctionCount()

\7 GetChecksumFunctionName()

g
"

Figure 4-1 Build the list box entries for the GUI

After the method has been selected, HexView runs the calculation in three steps. First, it
initializes the calculation, runs the calculation by passing the data block wise to the DLL
and then concludes the calculation.

Init and Deinit has the purpose to construct and destruct a context sensitive data section.
This section is passed to the calculation together with the data.

The function GetChecksumSizeOfResult () has been introduced to check the length of
the results of the checksum calculation. This allows HexView to prepare the data
container. It also allows HexView to spare the address section where the checksum
calculation shall be placed to.

The following diagram shows the message flow when processing the checksum
calculation method:

©2014, Vector Informatik GmbH Version: 1.08.06 107 /111

Reference Manual HexView vector

An error code can be passed to HexView during the calculation. HexView asks for the text
description in a separate function. This error text description is then shown in the error
report.

sd Run Checksum calculation /

Hexview Expdatproc

GetChecksumSizeOfResult(methodIndex)

InitChecksum (T ExportDatalnfo)

DoCalculateChecksum(T ExportDatalnfo,CSumActionBegin)

RepeatPerSection
DoCalculateChecksum(T ExportDatalnfo,CSumActionDoData)

[fe—

DoCalculateChecksum(T ExportDatalnfo,CSumActionEnd)

Figure 4-2 Function calls when running checksum calculation

The diagram above shows the function interface and the message sequence chart. The
function DoCalculateChecksum with the parameter CSumActionDoData is called
several times. Typically, once per section. The seglnData contains the pointer to the
section data, datalnLength specifies the length of the data, and datalnAddress contains
the base address of the section.

Note

seglnData is a pointer to the internal data buffer of HexView. The function can therefore
operate and destroy the data. Be careful not to write to any location where seglnData
or segOutData points to in the DoCalculateChecksum() function.

After the calculation has been completed, the DoCalculateChecksum function is called
the last time, but with the parameter CSumActionEnd. The segOutData must contain
pointer to the data buffer, that holds the checksum. The segOutLength specifies the
number of bytes in segOutData. The segOutAddress parameter is not used and ignored
here.

4.2 Interface function for data processing

The data processing interface is similar to the interface of the checksum calculation. It’'s
the same way how HexView gets the available methods by calling the functions
GetDataProcessingFunctionCount () that returns the number of available methods,

©2014, Vector Informatik GmbH Version: 1.08.06 108 /111

Reference Manual HexView vector

and then repetitively the function GetDataProcessingFunctionName () until one name
per method has been read.

It also runs first the function InitDataProcessing (TExportDataInfo*) before
running the DoDataProcessing (). But with the difference, that the DoDataProcessing is
called only once. HexView does not distinguish between the Begin, DoData and End
function, but calls the DoDataProcessing once. But the TExportDatalnfo structure also
contains the seglnData, seglnLength and seglnAddress information. It also contains the
structure segOutData, segoutLength and segOutAddress. Before HexView calls
DoDataProcessing, it initializes segOutData and segOutLength with the values and pointer
of seginData and seglnLength. Thus, if the data remains the same, HexView will use the
same data set.

However, if the DoDataProcessing() function wants to manipulate the data, it can overwrite
the default output. HexView will then replace the returned data with the new contents. The
memory buffer where segOutBuffer points to will be used instead. The former seglinBuffer
will be released If segOutLength is different, the segment length will be adapted. The
operation is done for every segment or block.

It is also possible to manipulate the data in seglnData without restructuring the data buffer
(only possible if the resulting data is not larger than the input data). The manipulation can
operate directly on the seglnData buffer which is the internal data buffer of HexView. This
allows to run data encryption, decryption, compression and decompression with this
method.

Since most of these data processing operation requires a parameter, the TExportDatalnfo-
>generalParam contains a pointer to a parameter string. The parameter typically points to
the data buffer from the ‘parameter’ field of the dialog (see section: “Run Data
Processing”), or it points to the buffer of the command line if the command line option is
used (option ‘param’ in section 3.2.8: “Run Data Processing interface
(/DPn:param[,section,key][;outfilename])”).

4.3 Software licenses

Some algorithms in the expdatproc.dll are based on free code from the internet. To honor
the efforts of the authors, the following disclose the authors and their work:

» Code for SHA1 is based upon free code from Dominik Reichl.

» The code for RIPEMD-160 is based upon the code from K.U.Leuven Department of
Electrical Engineering-ESAT/COSIC. RIPEMD-160 software written by Antoon
Bosselaers, available at http://www.esat.kuleuven.ac.be/~cosicart/ps/AB-9601/.

» Algorithms for AES encryption/decryption are based upon the following authors (public
domain):

» @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
» @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>

» @author Paulo Barreto <paulo.barreto@terra.com.br>

©2014, Vector Informatik GmbH Version: 1.08.06 109/111

http://www.esat.kuleuven.ac.be/~cosicart/ps/AB-9601/

Reference Manual HexView vector

5 Glossary and Abbreviations

5.1 Glossary

Term Description

5.2 Abbreviations

Abbreviation Description

©2014, Vector Informatik GmbH Version: 1.08.06 110/ 111

based on template version 5.1.0

Reference Manual HexView vector

6 Contact

Visit our website for more information on

News

Products
Demo software
Support

Training data

vV v v v v Vv

Addresses

www.vector.com
Send feedback to: mailto:fblsupport@vector-informatik.de

©2014, Vector Informatik GmbH Version: 1.08.06 11/ 111

http://www.vector.com/
mailto:fblsupport@vector-informatik.de

	1 Introduction
	1.1 Important notes
	1.2 Terminology

	2 User Interface
	2.1 With a Double Click to the Main Menu
	2.1.1 Edit a HEX data line
	2.1.2 Change the base address of a data block, erase it or jump directly to the beginning of the block data

	2.2 Menu
	2.2.1 Menu: “File”
	2.2.1.1 New
	2.2.1.2 Open
	2.2.1.2.1 Auto-file format analysing process

	2.2.1.3 Merge
	2.2.1.4 Compare
	2.2.1.5 Save
	2.2.1.6 Save as
	2.2.1.7 Log Commands
	2.2.1.8 Import
	2.2.1.8.1 Import Intel-Hex/Motorola S-Record
	2.2.1.8.2 Read 16-Bit Intel Hex
	2.2.1.8.3 Import binary data
	2.2.1.8.4 Import HEX ASCII
	2.2.1.8.5 Import GM data
	2.2.1.8.6 Import Fiat data
	2.2.1.8.7 Import Ford IHex data
	2.2.1.8.8 Import Ford VBF data
	2.2.1.8.9 Import GAC binary file

	2.2.1.9 Export
	2.2.1.9.1 Export as S-Record
	2.2.1.9.2 Export as Intel-HEX
	2.2.1.9.3 Export as HEX-ASCII
	2.2.1.9.4 Export as CCP Flashkernel
	2.2.1.9.5 Export as C-Array
	2.2.1.9.6 Export Mime coded data
	2.2.1.9.7 Export Binary data
	2.2.1.9.8 Export binary block data
	2.2.1.9.9 Export Fiat Binary File
	2.2.1.9.10 Export Ford Ihex data container
	2.2.1.9.11 Export Ford VBF data container
	2.2.1.9.12 Export GM data
	2.2.1.9.13 Export GM-FBL header info
	2.2.1.9.14 Export VAG data container
	2.2.1.9.15 Export GAC binary files

	2.2.1.10 Print / Print Preview / Printer Setup
	2.2.1.11 Exit

	2.2.2 Edit
	2.2.2.1 Undo
	2.2.2.2 Cut / Copy / Paste
	2.2.2.3 Copy dsPIC like data
	2.2.2.4 Data Alignment
	2.2.2.5 Fill block data
	2.2.2.6 Create Checksum
	2.2.2.7 Run Data Processing
	2.2.2.8 Edit/Create OEM Container-Info
	2.2.2.9 Remap S12 Phys->Lin
	2.2.2.10 Remap S12x Phys->Lin
	2.2.2.11 General Remapping
	2.2.2.12 Generate file validation structure
	2.2.2.13 Run Postbuild

	2.2.3 View
	2.2.3.1 Goto address…
	2.2.3.2 Find record
	2.2.3.3 Repeat last find
	2.2.3.4 View OEM container info

	2.2.4 Flash Programming
	2.2.4.1 Scan CANoe trace log
	2.2.4.2 Build ID based EEP download file.
	2.2.4.3 Scan EepM data section

	2.2.5 Info operation (?)

	2.3 Accelerator Keys (short-cut keys)

	3 Command line arguments description
	3.1 Command line options summary
	3.2 General command line operation order
	3.2.1 Align Data (/ADxx or /AD:yy)
	3.2.2 Align length (/AL[:length])
	3.2.3 Specify erase alignment value (/AE:xxx)
	3.2.4 Specify fill character (/AF:xx, /AFxx)
	3.2.5 Address range reduction (/AR:’range’)
	3.2.6 Cut out data from loaded file (/CR:’range1[:’range2’:…]
	3.2.7 Checksum calculation method (/CSx[:target[;limited_range][/no_range])
	3.2.8 Run Data Processing interface (/DPn:param[,section,key][;outfilename])
	3.2.9 Create error log file (/E:errorfile.err)
	3.2.10 Create single region file (/FA)
	3.2.11 Fill region (/FR:’range1’:’range2’:…)
	3.2.12 Specify fill pattern (/FP:xxyyzz…)
	3.2.13 Import HEX-ASCII data (/IA:filename[;AddressOffset])
	3.2.14 Execute logfile (/L:logfile)
	3.2.15 Merging files (/MO, /MT)
	3.2.16 Run postbuild operation (/pb=postbuild-file)
	3.2.16.1 OpenPBFile
	3.2.16.2 ClosePBFile
	3.2.16.3 ClosePBFile
	3.2.16.4 GetPBData

	3.2.17 Specify output filename (-o outfilename)
	3.2.18 Run in silent mode (/s)
	3.2.19 Specify an INI-file for additional parameters (/P:ini-file)
	3.2.20 Remapping address information (/remap)
	3.2.21 Create validation structure (/vs)

	3.3 Output-control command line options (/Xx)
	3.3.1 Output of HEX ASCII data (/XA[:linelen[:separator]])
	3.3.2 Output a Fiat specific data file (/XB)
	3.3.3 Output data into C-Code array (/XC)
	3.3.4 Output a Ford specific data file (/XF, /XVBF)
	3.3.4.1 Output Ford files in Intel-HEX format
	3.3.4.2 Output Ford files in VBF format

	3.3.5 Output a GM-specific data file
	3.3.5.1 Manipulating Checksum and address/Length field within an existing header (/XG)
	3.3.5.2 Creating the GM file header for the operating software (/XGC[:address])
	3.3.5.3 Creating the GM file header for the calibration software (/XGCC[:address])
	3.3.5.4 Creating the GM file header with 1-byte HFI (/XGCS[:address])
	3.3.5.5 Specify the SWMI data (/SWMI=xxxx)
	3.3.5.6 Adding the part number to the header (/PN)
	3.3.5.7 Specify the DLS values (/DLS=xx)
	3.3.5.8 Specify the Module-ID parameter (/MODID=value)
	3.3.5.9 Specify the DCID-field (/DCID=value)
	3.3.5.10 Specify the MPFH field (/MPFH[=file1+file2+…]
	3.3.5.11 Signature version (/sigver=value)
	3.3.5.12 Signature Key ID (/sigkeyid=value)
	3.3.5.13 Generate Routine header (/XGCR[:header-address])
	3.3.5.14 Generate key exchange header (/XGCK)

	3.3.6 Output a VAG specific data file (/XV)
	3.3.7 Output data as Intel-HEX (/XI[:reclinelen[:rectype]])
	3.3.8 Output data as Motorola S-Record (/XS[:reclinelen[:rectype]])
	3.3.9 Outputs to a CCP/XCP kernel file (/XK)
	3.3.10 Output to a GAC binary file (/XGAC, /XGACSWIL)

	4 EXPDATPROC
	4.1 Interface function for checksum calculation
	4.2 Interface function for data processing
	4.3 Software licenses

	5 Glossary and Abbreviations
	5.1 Glossary
	5.2 Abbreviations

	6 Contact

