

Vector CAN Driver

Technical Reference

Renesas

RH850

RSCAN

Version 1.05.00

Authors Torsten Kercher

Status Released

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

2 /46

Document Information

History

Author Date Version Remarks

Torsten Kercher 2013-05-27 1.00.00 Initial release (support F1L with Green Hills compiler)

Torsten Kercher 2013-07-18 1.01.00 Support R1L
Correct description of nested interrupt behavior

Torsten Kercher 2013-08-26 1.02.00 Support HighEnd features
Support Diab compiler

Torsten Kercher 2013-10-16 1.03.00 Support R1M
Update referenced version of the R1x hardware manual
Support external wakeup functionality
Update chapters 5, 6, 7.2.2

Torsten Kercher 2014-04-04 1.04.00 Support extended CAN RAM check
Support RSCAN RAM test
Support D1L, D1M, P1M
Update referenced version of the F1L hardware manual

Torsten Kercher 2014-04-29 1.04.01 Update description of nested interrupt behavior

Torsten Kercher 2014-05-15 1.05.00 Support IAR compiler
Support F1H
Update expected loop durations in chapter 5

Table 1-1 History of the document

Please note
We have configured the programs in accordance with your specifications in the
questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector´s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

3 /46

Contents

1 Introduction .. 5

2 Important References .. 6

3 Usage of Controller Features .. 7

3.1 [#hw_comObj] - Communication Objects ... 7

3.2 Acceptance Filters ... 10

4 [#hw_sleep] - SleepMode and WakeUp ... 11

4.1 Sleep ... 11

4.2 Internal Wakeup .. 11

4.3 External Wakeup ... 11

5 [#hw_loop] - Hardware Loop Check .. 13

6 [#hw_busoff] - Bus off ... 15

7 CAN Driver Features .. 16

7.1 [#hw_feature] - Feature List ... 16

7.2 Description of Hardware-related Features ... 18

7.2.1 [#hw_status] - Status ... 18

7.2.2 [#hw_stop] - Stop Mode .. 18

7.2.3 [#hw_int] - Control of CAN Interrupts ... 18

7.2.4 [#hw_cancel] - Cancel in Hardware ... 19

7.2.5 Remote Frames .. 19

7.2.6 CAN RAM Check .. 19

7.2.7 Extended CAN RAM Check ... 20

7.2.8 RSCAN ECC Configuration ... 21

7.2.9 RSCAN RAM Test ... 22

8 [#hw_assert] – Assertions ... 23

9 API ... 24

9.1 Category ... 24

9.2 RSCAN ECC Configuration ... 24

9.3 (Extended) CAN RAM Check .. 25

9.4 CAN Interrupt Handling by Application .. 30

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

4 /46

10 Implementations Hints ... 32

10.1 Important Notes ... 32

10.2 Interrupt Configuration ... 33

10.2.1 Configuration of Interrupt Vectors with IAR compiler...................................... 34

10.3 CAN Interrupt Handling by Application .. 35

11 Configuration.. 37

11.1 Configuration by GENy .. 37

11.1.1 Platform Settings ... 37

11.1.2 Component Settings .. 38

11.1.3 Channel-specific Settings .. 39

11.2 Manual Configuration .. 44

12 Known Issues / Limitations ... 45

13 Contact.. 46

Illustrations

Figure 3-1 Hardware Object Layout ... 7
Figure 11-1 GENy Platform Settings .. 37
Figure 11-2 GENy Component Settings ... 38
Figure 11-3 GENy Channel Specific Settings ... 39
Figure 11-4 GENy Acceptance Filter Configuration .. 41
Figure 11-5 GENy Acceptance Filter Assignment .. 42
Figure 11-6 GENy Bustiming Configuration ... 43

Tables

Table 1-1 History of the document .. 2
Table 2-1 Supported Hardware Overview ... 6
Table 3-1 Hardware Object Layout ... 9
Table 7-1 CAN Driver Functionality .. 17
Table 7-2 CAN Status ... 18
Table 9-1 API Category .. 24
Table 10-1 Interrupt Service Routines .. 33
Table 11-1 GENy Platform Settings .. 37
Table 11-2 GENy Component Settings ... 38
Table 11-3 GENy Channel Specific Settings ... 40
Table 11-4 GENy Acceptance Filter Configuration .. 41
Table 11-5 GENy Bustiming Configuration ... 43

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

5 /46

1 Introduction

The concept of the CAN driver and the standardized interface between the CAN driver and
the application is described in the document TechnicalReference_CANDriver.pdf. The
CAN driver interface to the hardware is designed in a way that capabilities of the special
CAN chips can be utilized optimally. The interface to the application was made identical for
the different CAN chips, so that the "higher" layers such as network management,
transport protocols and especially the application would essentially be independent of the
particular CAN chip used.

This document describes the hardware dependent special features and implementation
specifics of the Renesas RSCAN on the RH850 platform.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

6 /46

2 Important References

The following table summarizes information about the CAN Driver. It gives you detailed
information about the versions, derivatives and compilers. As very important information
the documentations of the hardware manufacturers are listed. The CAN Driver is based
upon these documents in the given version.

Driver
Version

Supported
Compilers

Supported
Derivatives

Hardware Manufacturer Document Version

3.11.xx,

RI 1.5

Green Hills,

Wind River Diab,

IAR

D1L
D1M

R01UH0451EJ0041, RH850/D1L/D1M
Group, User’s Manual: Hardware

Rev.0.41
Jan 2014

F1L R01UH0390EJ0100, RH850/F1L Group,
User’s Manual: Hardware

Rev.1.00
Jan 2014

F1H 1 R01UH0445EJ0010, RH850/F1H Group,
User’s Manual: Hardware

Rev.0.10
Jan 2014

P1M R01UH0436EJ0041, RH850/P1x Group,

User’s Manual: Hardware

Rev.0.41
Nov 2013

R1L
R1M

R01UH0411EJ0061, RH850/R1x Group,

User’s Manual: Hardware

Rev.0.61
Aug 2013

 R01US0058EJ0020, RH850 Family,
User’s Manual: Software

Rev.0.20
Feb 2013

Table 2-1 Supported Hardware Overview

Driver Version: This is the current version of the CAN Driver. RI shows the version of the Reference
Implementation and therefore the functional scope of the CAN Driver.
Supported Compilers: List of compilers the CAN Driver is working with.
Supported Derivatives: List of derivatives the CAN Driver can be used on.
Hardware Manufacturer Document: List of hardware documentation the CAN Driver is based on.
Version: To be able to reference to this hardware documentation its version is very important.

1
 Only RSCAN0 is supported (physical channels CAN0-CAN5).

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

7 /46

3 Usage of Controller Features

3.1 [#hw_comObj] - Communication Objects

The generation tool supports a flexible allocation of message buffers:

Figure 3-1 Hardware Object Layout

Note
Figure 3-1 depicts the maximum RSCAN capacities - the actual layout depends on the
used derivative. Refer to the hardware manual to get the number of supported physical
channels to determine which Tx buffers are available. The amount of supported Rx
buffers (nRXMBmax) equals the number of supported physical channels * 16.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

8 /46

Obj
number

Hw object
type

Log object
type

No. of
objects

Comment

0
-
(nRxFC -1)

Receive
buffer

Receive
FullCAN

0
-
nRxMBmax

= nRXFC

These objects are used to receive
specific CAN messages. The user
defines statically (Generation Tool) that
a CAN message should be received in a
FullCAN message object. The
Generation Tool distributes the
messages to the FullCAN objects. Up to
nRxMBmax receive FullCAN objects can
be configured per channel, but the sum
over all receive FullCAN objects on all
channels must not exceed nRxMBmax.
The receive buffers for the FullCAN
objects of all channels (sorted
ascending by the physical channel
index) are allocated continuously
starting from index 0.

nRxFC
-
127

Receive
buffer

Unused
0
-
128

These objects are not used. It depends
on the configuration of receive FullCAN
objects and nRxMBmax how many
receive buffers are not used. These
objects will not be configured, so they
don’t consume shared hardware buffers.

128
-
(128 +
nRxBC -1)

Receive
FIFO buffer

Receive
BasicCAN

0
-
8

= nRXBC

All other CAN messages (Application,
Diagnostics, Network Management) are
received via the BasicCAN objects.
Each object consists of one receive
FIFO buffer with a configurable amount
of acceptance filters and an individually
configurable FIFO depth (number of
allocated shared buffers). In general
there is one BasicCAN object per
channel, but by using the Multiple
BasicCAN feature the amount of used
BasicCAN objects can be configured.
Up to 8 receive BasicCAN objects can
be configured per channel, but the sum
over all receive BasicCAN objects on all
channels must not exceed 8. The
receive FIFO buffers for the BasicCAN
objects of all channels (sorted
ascending by the physical channel
index) are allocated continuously
starting from index 128.

128 + nRxBC
-
135

Receive
FIFO buffer

Unused
0
-
8

These objects are not used. It depends
on the configuration of receive
BasicCAN objects how many receive
FIFO buffers are not used. These
objects will not be configured, so they
don’t consume shared hardware buffers.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

9 /46

Obj
number

Hw object
type

Log object
type

No. of
objects

Comment

136
-
159

Transmit /
Receive
FIFO buffer

Unused 24

The usage of Transmit / Receive FIFO
buffers is not supported by this driver.
These objects are always unused and
will not be configured, so they don’t
consume shared hardware buffers.

160 + (n*16)
Transmit
buffer

Transmit
Normal

1
per channel

This object is used by CanTransmit()

to send several messages on the logical
channel that is mapped to physical
channel n. If the transmit message
object is busy, the transmit request is
stored in a software queue.

161 + (n*16)
Transmit
buffer

Low Level
Transmit

0 or 1
per channel

= nTXLL

This object is used by

CanMsgTransmit() to send its

messages on the logical channel that is
mapped to physical channel n if the Low
Level transmit functionality is used.

161 + (n*16)
 + nTXLL
-
161 + (n*16) +
nTXLL +
nTXFC(n) -1

Transmit
buffer

Transmit
FullCAN

0
-
15

per channel

= nTXFC(n)

These objects are used by

CanTransmit() to send a certain

message on the logical channel that is
mapped to physical channel n. The user
defines statically (Generation Tool)
which CAN messages are located in
such Tx FullCAN objects. The
Generation Tool distributes the
messages to the objects. Up to 15
transmit FullCAN objects can be
assigned per channel (up to 14 if the
Low Level transmit functionality is used).

161 + (n*16) +
nTXLL +
nTXFC(n)
-
161 + (n*16)
+14

Transmit
buffer

Unused

0
-
15
per channel

These objects are not used. It depends
on the configuration of transmit objects
how many transmit buffer objects are
not used. Additionally all transmit buffers
of not supported or unused physical
channels n are unused.

Table 3-1 Hardware Object Layout

nRxMBmax Amount of RX buffers that is supported by the used derivative (see note above)

nRxFC Number of used Rx FullCAN objects over all channels

nRxBC Number of used Rx BasicCAN objects over all channels

n Index of the physical channel

nTXLL Number of Low Level transmit objects per channel (0 or 1)

nTXFC(n) Number of used Tx FullCAN objects on the channel that is mapped to the physical channel n

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

10 /46

Caution
The number of available transmit buffer objects per physical channel is constant. The
receive buffers and FIFOs are shared over all channels and the availability per channel
is restricted as explained in table 3-1. Furthermore the internal buffers for all receive
objects are allocated out of a common buffer pool with size of (number of supported
physical channels * 64). This has to be considered when configuring the number of the
Rx FullCAN objects and the number and individual FIFO depths of the Rx BasicCAN
objects (refer to section 11.1.3 for further information and details on how to configure
the hardware objects).

3.2 Acceptance Filters

The hardware acceptance filters of the receive BasicCAN objects must allow reception of
all messages that are not received in FullCAN message objects and additionally all
messages that fit in a configured range (e.g. for Network Management, Transport
Protocol). The generation tool offers assistance for configuration. The number of used
filters is also configurable to allow efficient hardware filtering to minimize unnecessary
CPU load.

Caution
The hardware supports a pool of acceptance filters with size of (number of supported
physical channels * 64) that are used for Rx BasicCAN as well as Rx FullCAN objects.
This has to be considered when configuring the number of Rx FullCAN objects and the
number of filters per Rx BasicCAN object. See section 11.1.3 for further information
and details on the configuration.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

11 /46

4 [#hw_sleep] - SleepMode and WakeUp

The driver supports sleep and wakeup functionality. With the function CanSleep() the

CAN controller enters sleep mode and leaves it with the function CanWakeUp() (internal

wakeup) or upon a falling edge respectively dominant level on the Rx pin (external
wakeup).

If you want to use sleep/wakeup functionality specify the Sleep/Wakeup option in the

generation tool. If this functionality is not configured, the service functions CanSleep()

and CanWakeUp() are empty and return kCanNotSupported.

4.1 Sleep

The function CanSleep() changes the channel from communication mode via reset

mode to stop mode. If the function is called during CAN communication, the reception or
transmission is terminated before it is completed (the same applies to a call of

CanResetBusSleep()).

These transitions do not depend on external influences (e.g. the CAN bus level), so the

return value kCanOk is always expected. However, if the function returns kCanFailed

call CanSleep() again or re-initialize the channel.

4.2 Internal Wakeup

The function CanWakeUp() changes the channel from stop mode via reset mode to

communication mode.

The return value kCanOk is always expected for this mode change. However, as the

transition to operation mode takes two CAN bit times on the corresponding channel, the

hardware loop kCanLoopEnterOperationMode is implemented (see chapter 5). If the

function returns kCanFailed (e.g. caused by a loop cancellation) call CanWakeup()

again or re-initialize the channel.

4.3 External Wakeup

The external wakeup functionality is realized by external interrupts but fully handled by the
CAN driver. The RSCAN itself does not provide any possibility of detecting bus activity if it
is in stop mode. Instead the port configuration of the RH850 allows combining the CANn
Rx pin with an external interrupt INTPn to be able to detect a CAN event even if the driver
is in sleep mode. Refer to chapter 10 for implementation hints.

When the driver is in sleep mode and a CAN event is detected on the Rx pin a wakeup
interrupt is generated. This event can also be detected by polling. The ISR or the polling

task calls the application function ApplCanPreWakeUp() (if configured), changes the

channel mode via reset mode to communication mode and calls ApplCanWakeUp().

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

12 /46

Caution
If the Sleep/Wakeup functionality is enabled via the configuration tool both the internal
and external wakeup are available and the CAN driver expects that the Rx pin of each
used CAN channel is linked with an external interrupt in context of the RH850 port
configuration. Also the driver expects that each external interrupt source is assigned to
the lowest possible interrupt channel (check the “INTC1 interrupt select register” if
applicable).

If this configuration is not possible for the actual derivative (refer to the hardware
documentation) or any respective external interrupt cannot be used exclusively by the
driver (write accesses to the corresponding interrupt control register), the external
wakeup functionality can’t be used.

In this case Sleep/Wakeup functionality itself has to be disabled or the external wakeup
has to be deactivated by adding following to the user configuration file. Then only the
internal wakeup is possible and the driver does not wake up on bus activity.

#define C_ENABLE_EXTERNAL_WAKEUP_SUPPRESSION

Caution
The driver performs write accesses within the interrupt controller address space of the
MCU. If wakeup processing is configured to interrupt the corresponding interrupt is
enabled at successful sleep transitions and disabled at successful wakeup transitions.
Additionally the corresponding interrupt request flag is cleared right before the interrupt
is enabled; hence a wakeup event can only be detected after the sleep transition has
been completed. Refer to section 10.3 if an exclusive write access to the interrupt
control registers is not possible. Please note that the interrupt request flag also has to
be cleared for polling configurations.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

13 /46

5 [#hw_loop] - Hardware Loop Check

In context of the feature Hardware Loop Check (see TechnicalReference_CANDriver,
chapter Hardware Loop Check) this CAN Driver provides the following timer identifications.

If the common term clock is used below always consider the one with the lower frequency
out of clkc and pclk. The RSCAN requires clkc to be less or equal pclk/2, thus clkc can be
taken as a basis in general. Refer to the hardware manual for a description of the different
clocks and hardware specifics.

Caution
Always significantly increase the given durations for the loop callout implementation to
compensate additional software delays.

kCanLoopRamInit

This loop may be called within the function CanInitPowerOn() and is processed until

the CAN RAM initialization after a MCU reset has finished. This is necessary as this
initialization has to be completed before the RSCAN can be configured. As this loop is
not called in channel context the channel parameter has to be ignored.

The maximum expected duration to wait for the CAN RAM initialization starts from the
time of the MCU reset and is device specific. Refer to the corresponding hardware
manual (e.g. section RSCAN Setting Procedure – Initial Settings) to get the number of

required clock cycles. If the loop is canceled try to call CanInitPowerOn() again or

reset the MCU.

kCanLoopInit

This loop may be called within the function CanInitPowerOn(). As it is not called in

channel context the channel parameter has to be ignored. The loop may be called
multiple times within this function and the possible occurrences are as follows:

 To protect the transition via global reset mode to global stop mode (only active if the
RSCAN ECC callout is enabled).

 To protect the transition to global reset mode.

 To protect transitions and settings in context of the global test mode (only active if the
RSCAN RAM test is enabled)

 To protect the transition to channel reset mode for each active channel.

 To protect the transition to global operation mode.

The duration for each mode transition in this context is expected to be 10 clock cycles at

highest. If any loop occurrence is canceled try to call CanInitPowerOn() again or

reset the MCU.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

14 /46

kCanLoopBusOffRecovery

This channel dependent loop may be called in CanInit() if the RSCAN is currently in

BusOff state and is processed until 11 consecutive recessive bits have been detected
128 times on the bus to ensure compliance to the BusOff recovery specification (see
chapter 6).

The maximum expected duration is 1408 CAN bit times on a recessive bus, 128
message times (including inter-frame space) on a communicative bus or any time if
disturbances are present. There is no issue and nothing to do if the loop is canceled, but
the specified BusOff recovery time may not be met.

kCanLoopEnterResetMode

This channel dependent loop may be called in CanInit() and is processed as long as

the CAN cell does not enter channel reset mode.

The maximum expected duration of the loop is three clock cycles. If the loop is canceled

try to reinitialize the channel again or call CanInitPowerOn().

kCanLoopEnterOperationMode

This channel dependent loop is always called in CanInit(), CanStart() and

CanWakeUp() and is processed as long as the CAN cell does not enter channel

operation mode.

The maximum expected duration of the loop is two CAN bit times on the current channel.

If the loop is canceled try to call CanStart() respectively CanWakeUp() again or

reinitialize the channel.

kCanLoopRxFcProcess

This channel depended loop is always called in CanFullCanMsgReceived() and is

processed as long as new messages are received by the current hardware object while
copying a previously received message to a temporary software buffer. This ensures that
always consistent and most recent data is indicated.

It is expected that the loop iterates one or two times. Please note that if the loop iterates
more than one time previously received messages of the current receive buffer are
discarded without further notification as data consistency cannot be ensured. There is no
issue and nothing to do if the loop is canceled, but the latest message is also discarded

and CanFullCanMsgReceived() returns without indicating any message at all.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

15 /46

6 [#hw_busoff] - Bus off

In case of a BusOff event the controller automatically changes to stop mode on the
respective channel. There is no automatic recovery as specified by ISO11898-1; the
application has to restart communication following the description in the Technical

Reference CAN driver, i.e. by calling CanResetBusOffStart/-End() which leads to a

call of CanInit(). Please note that if CanResetBusOffEnd() is called before 11

consecutive recessive bits have been detected 128 times, kCanLoopBusOffRecovery is

called within CanInit() (see chapter 5).

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

16 /46

7 CAN Driver Features

7.1 [#hw_feature] - Feature List

Standard HighEnd

Initialization

Power-On Initialization  

Re-Initialization  

Transmission

Transmit Request  

Transmit Request Queue  

Internal data copy mechanism  

Pretransmit functions  

Common confirmation function  

Confirmation flag  

Confirmation function  

Offline Mode  

Partial Offline Mode  

Passive-Mode  

Tx Observe mode  

Dynamic TxObjects ID  

 DLC  

 Data-Ptr  

Full CAN Tx Objects  

Cancellation in Hardware  

Low Level Message Transmit - 

Reception

Receive function  

Search algorithms Linear  

 Table - -

 Index  

 Hash  

Range specific precopy functions
(min. 2, typ.4)

4 4

DLC check  

Internal data copy mechanism  

Generic precopy function  

Precopy function  

Indication flag  

Indication function  

Message not matched function  

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

17 /46

Overrun Notification  

Full CAN overrun notification - -

Multiple Basic CAN - 

Rx Queue
2
 - 

Bus off

Notification function  

Nested Recovery functions  

Sleep Mode

Mode Change  

Preparation  

Notification function  

Special Features

Status  

Security Level  

Assertions  

Hardware loop check  

Stop Mode  

Support of OSEK operating
system

 

Polling Mode Tx  

 Rx (FullCAN)
3
  

 Rx (BasicCAN)  

 Error  

 Wakeup  

Individual Polling
4
 - 

Multi channel  

Support extended ID addressing
mode

 

Support mixed ID addressing
mode

 

Support access to error counters  

Copy functions  

CAN RAM check
5
  

Extended CAN RAM check
6
  

Table 7-1 CAN Driver Functionality

2
 Consider that the Rx BasicCAN hardware FIFOs in combination with Rx BasicCAN polling might be a more

efficient alternative to the Rx Queue in many configurations.
3
 Due to hardware limitations (no interrupt request can be generated for receive buffers) Rx FullCAN polling

is mandatory if Rx FullCAN objects are configured.
4
 Due to hardware limitations (see note 3) all Rx FullCAN objects have to be polled.

5
 Due to hardware limitations (no write access to Rx objects) only supported for Tx objects.

6
 This feature is project specific and only available if explicitly ordered.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

18 /46

7.2 Description of Hardware-related Features

7.2.1 [#hw_status] - Status

If a status is not supported, the related macro always returns false.

Status Support

CanHwIsOk(state) 

CanHwIsWarning(state) 

CanHwIsPassive(state) 

CanHwIsBusOff(state) 

CanHwIsWakeup(state) 

CanHwIsSleep(state) 

CanHwIsStart(state) 

CanHwIsStop(state) 

CanIsOnline(state) 

CanIsOffline(state) 

Table 7-2 CAN Status

7.2.2 [#hw_stop] - Stop Mode

The service function CanStop() calls CanInit() and then puts the CAN Controller into

channel reset mode, where it is disconnected from the bus. If the function is called during
CAN communication, the reception or transmission is terminated before it is completed.

This mode can be left by calling CanStart(). Both transitions do not depend on external

influences (e.g. the CAN bus level), so the return value kCanOk is always expected.

However, if the functions return kCanFailed (e.g. caused by a hardware loop

cancellation) call CanStop(), respectively CanStart() again or re-initialize the channel.

7.2.3 [#hw_int] - Control of CAN Interrupts

CAN interrupt locking is performed by modifying the interrupt request mask bits (MK) in the
control registers of the appropriate sources directly within the interrupt controller address
space of the MCU. Therefore the driver needs exclusive write access to all CAN related EI
level interrupt control registers (ICn). If the sleep/wakeup functionality is enabled this may
include the ICn of external interrupt sources (see chapter 4).

Since Rx FIFO interrupt and overrun (global error) cannot be enabled and disabled for
every object individually they are disabled globally when the interrupts of at least one
controller are disabled and enabled globally if the interrupts of no controller are disabled
anymore.

All CAN related ICn are initialized and then modified by the driver during runtime (interrupt
disable and restore). The priority level for the initialization can be selected via the
configuration tool (all CAN interrupts must have the same priority), see section 11.1.3.
Refer to chapter 10 for further information on CAN interrupts.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

19 /46

Caution
In standard configuration the driver needs exclusive write access to all CAN related EI
level interrupt control registers. Refer to chapter 10 for further information and
especially section 10.3 if an exclusive write access is not possible.

7.2.4 [#hw_cancel] - Cancel in Hardware

 Yes No

Has the CanTxTask() to be called by the application to handle the canceled

transmit request in the hardware?
 

Cancelling transmission of messages via CanCancelTransmit() or

CanCancelMessageTransmit():

 Yes No

ApplCanTxConfirmation() is only called for transmitted messages, successfully

canceled messages are not notified. That means the CAN driver is able to detect
whether a message is transmitted even if the application has tried to cancel.



7.2.5 Remote Frames

Remote Frames will not have any influence on the communication because they are not
received due to hardware filtering.

7.2.6 CAN RAM Check

The CAN driver supports a check of the CAN mailboxes which is performed internally

every time the function CanInit() is called. The CAN driver verifies that no used

mailboxes are corrupt. A mailbox is considered corrupt if predefined patterns are written to
the appropriate mailbox registers and read operations do not return the expected patterns.

If a corrupt mailbox is found the function ApplCanCorruptMailbox() is optionally

called to inform the application which mailbox is affected.

After the check of all mailboxes on the given channel the CAN driver calls the function

ApplCanMemCheckFailed() if at least one corrupt mailbox was found. The application

can control whether the CAN driver disables communication on the current channel or not
by means of the return value of the call-back function. If the application has decided to
disable the communication there is no possibility to enable the communication again until

the next call of CanInitPowerOn().

Caution
Due to hardware limitations (no write access for receive objects) the CAN RAM check
is only supported for transmit mailboxes. Consider the behavioural differences of CAN
RAM check when it is used in combination with the extended CAN RAM check feature.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

20 /46

The additional call-back function ApplCanCorruptMailbox() can only be activated via

the user configuration file - the settings are listed below. In case no user config file is used
(i.e. the mentioned switch is not defined) the feature is disabled.

Switch Value Description

C_ENABLE_NOTIFY_CORRUPT_MAILBOX Activate call of ApplCanCorruptMailbox()

in case the CAN RAM check fails for a certain
mailbox.

7.2.7 Extended CAN RAM Check

The extended RAM check provides an additional check of the CAN cell control registers
RAM with extended API and modified standard CAN RAM check and driver behaviour.

The RSCAN control registers are differentiated between registers that have to be written in
global reset mode (afterwards referred to as “global registers”) or can also be written in
channel reset mode (afterwards referred to as “channel registers”). Since the transition to
global reset mode affects all channels, the global register RAM is checked only once within

CanInitPowerOn(). If the global register RAM is considered corrupt a call-back function

(see below) is issued to allow the application to control whether the driver initialization is
proceeded or not.

The channel register and mailbox RAM check is performed within the function

CanInit(). The registers RAM check disables the complete channel communication if at

least one of the checked registers is considered corrupt. The mailbox RAM check (only
available for Tx objects) disables corrupt mailboxes so that no transmission is possible on
them. In both cases the appropriate call-backs (see below) are called to inform the
application about the failures. Channels and mailboxes can be re-enabled by the
application using the extended API. If any of the control registers check or the mailbox

registers check fails the overall RAM check call-back ApplCanMemCheckFailed() is

invoked.

More detailed information is given below; section 9.3 describes the API functions:

 If any of the global registers (e.g. global configuration registers, registers relating to the
configuration of receive objects and receive rules) are considered corrupt the function

ApplCanGlobalMemCheckFailed() is invoked within CanInitPowerOn(). If this

function returns kCanEnableCommunication the initialization is continued ignoring

the results of the check. If it returns kCanDisableCommunication the RSCAN is put

back into global stop mode and CanInitPowerOn() returns without initializing the

RSCAN. The check of the channel registers RAM is also not performed and

CanInitPowerOn() has to be called again to be able to use the CAN functionality in

this case (other CAN API functions must not be called until CanInitPowerOn() was

executed completely). The check is performed with every call of this function.

 If any of the channel control registers are considered corrupt the function

ApplCanCorruptRegisters() is called and the communication on the given

channel is disabled. The CAN cell stays in stop mode whatever the general call-back

function ApplCanMemCheckFailed() returns and the channel is disconnected from

the Tx port pin.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

21 /46

 If a corrupt mailbox is found it is disabled by the driver and the call-back function

ApplCanCorruptMailbox() is invoked (if this is enabled by the definition of

C_ENABLE_NOTIFY_CORRUPT_MAILBOX). In this case (but only if no corrupt CAN
control registers were found on the given channel) the application can decide whether
the communication on the channel should be disabled using the return value of the

function ApplCanMemCheckFailed(), but the mailbox stays disabled anyway.

 If the communication on a channel was disabled previously it can be re-enabled using

the function CanEnableChannelCommunication().

 Mailboxes that were disabled by mailbox RAM check can be re-enabled by the function

CanEnableMailboxCommunication() (but only if the communication on the given

channel is enabled).

 No mailbox or register RAM check is performed and no RAM check call-backs are

invoked if CanInit() is called by CanResetBusOffEnd(). However, all previously

disabled channels or mailboxes stay disabled.

Caution
The only way to re-enable channel or mailbox communication is to use the functions

CanEnableChannelCommunication(), CanEnableMailboxCommunication()

or CanInitPowerOn().

The extended CAN RAM check feature needs the standard CAN RAM check functionality
to be activated. The following settings have to be done in the user configuration file. In
case no user config file is used (i.e. the mentioned switch is not defined) the feature is
disabled. Please note that this is a project specific feature that might not be available and
C_ENABLE_CAN_RAM_CHECK_EXTENDED has no effect in this case.

Switch Value Description

C_ENABLE_CAN_RAM_CHECK_EXTENDED Activate the extended CAN RAM check feature.

7.2.8 RSCAN ECC Configuration

In context of the RSCAN RAM error detection and correction (ECC) the driver provides the

additional call-back function ApplCanEccConfiguration() (see section 9.2) that is

invoked by CanInitPowerOn() after the CAN RAM initialization is complete and before

the RSCAN is configured while the cell is in global stop mode. This gives the application
the possibility to configure the ECC behavior for the RSCAN. The driver offers no further
support for this feature - any ECC configuration and handling has to be performed by the
application.

The following settings have to be done in the user configuration file. In case no user config
file is used (i.e. the mentioned switch is not defined) the feature is disabled.

Switch Value Description

C_ENABLE_ECC_CALLOUT Activate call of ApplCanEccConfiguration().

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

22 /46

7.2.9 RSCAN RAM Test

The RSCAN provides a global test mode that enables the driver to perform a check of the
entire internal RSCAN RAM that is not accessible during normal operation. This check is

performed once within CanInitPowerOn(). Similar to the (extended) CAN RAM check

the internal RAM is considered corrupt if predefined patterns are written to the appropriate
RAM addresses and read operations do not return the expected patterns. If any corrupt

bits are found the call-back function ApplCanGlobalMemCheckFailed() is invoked

(see section 9.3). If this function returns kCanEnableCommunication the initialization is

continued ignoring the results of the check. If it returns kCanDisableCommunication

the RSCAN is put back into global stop mode and CanInitPowerOn() returns without

initializing the RSCAN. CanInitPowerOn() has to be called again to be able to use the

CAN functionality in this case (other CAN API functions must not be called until

CanInitPowerOn() was executed completely). The RAM test is performed with every

call of this function.

The size of RAM to be checked is given by 2432 bytes multiplied with the number of CAN
channels that are supported by the used derivative (as configured in the configuration tool;
see section 11.1.2). The test always starts at the first address but the size to be checked
can be changed via user configuration (see below).

If this test is used in combination with the (extended) CAN RAM check the latter one is
reduced in order to save runtime.

 The receive rule registers are omitted by the global register check within the function
CanInitPowerOn().

 The mailbox check is omitted if CanInit() is called out of CanInitPowerOn().

The following settings have to be done in the user configuration file. In case no user config
file is used (i.e. the first switch is not defined) the feature is disabled. The optional second
switch is only evaluated if C_ENABLE_CAN_HW_RAM_CHECK is defined.

Switch Value Description

C_ENABLE_CAN_HW_RAM_CHECK Activate the RSCAN RAM test feature.

C_ENABLE_CAN_HW_RAM_CHECK_SIZE 32 .. 65504
(bytes)

Instead of the default size as stated above the
given number of bytes is checked by the RAM
test. The value must be a multiple of 32 bytes
and has to be valid for the used derivative
(refer to the corresponding hardware manual).

Caution
Depending on the size of RAM to be checked, used compiler options, clock settings
and others this check might take up to several milliseconds. Suggestion is to verify the

runtime of CanInitPowerOn()in the actual project if this feature is enabled.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

23 /46

8 [#hw_assert] – Assertions

The driver implements no specific assertions with additional error codes.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

24 /46

9 API

9.1 Category

Single Receive Channels (SRC)

 A “Single Receive Channel” CAN Driver supports one CAN
channel.)

Multiple Receive Channel (MRC)

 A "Single Receive Channel" CAN Driver is typically
extended for multiple channels by adding an index to the

function parameter list (e.g. CanOnline() becomes to

CanOnline(channel)) or by using the handle as a

channel indicator (e.g. CanTransmit(txHandle)).

Table 9-1 API Category

9.2 RSCAN ECC Configuration

In context of the RSCAN ECC feature the application has to provide following callback
function (see section 7.2.8 further information).

ApplCanEccConfiguration

Prototype

Single Receive Channel void ApplCanEccConfiguration (void)

Multiple Receive Channel void ApplCanEccConfiguration (void)

Parameter

- -

Return code

- -

Functional Description

This function is called by CanInitPowerOn() to allow the configuration of the RSCAN ECC functionality.

Particularities and Limitations

Only available if C_ENABLE_ECC_CALLOUT is defined.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

25 /46

9.3 (Extended) CAN RAM Check

In context of the CAN RAM check feature the application has to provide following callback
functions (see sections 7.2.6 and 7.2.7 for further information).

ApplCanMemCheckFailed

Prototype

Single Receive Channel vuint8 ApplCanMemCheckFailed (void)

Multiple Receive Channel vuint8 ApplCanMemCheckFailed (CanChannelHandle channel)

Parameter

CanChannelHandle channel This parameter specifies the CAN channel on which the memory check is
performed.

Return code

vuint8 kCanEnableCommunication – Allow communication (see note in

“Particularities and Limitations”).

kCanDisableCommunication – Disable communication, no reception and

no transmission is performed.

Functional Description

This call-back function is invoked within CanInit() if the CAN driver has found at least one corrupt bit

within the CAN mailboxes RAM or (if extended CAN RAM check is enabled) at least one corrupt bit within
the channel control registers RAM. The application can decide whether the CAN driver allows further
communication by means of the return value.

Particularities and Limitations

Call context: If the feature Extended CAN RAM check is deactivated this function is called on task level or
within the BusOff interrupt; else only on task level.

Configuration: The following setting must be active:

C_ENABLE_CAN_RAM_CHECK

Important note: If the optional feature “Extended CAN RAM check” is activated
(C_ENABLE_CAN_RAM_CHECK_EXTENDED is defined) and the registers RAM check failed (call-back

function ApplCanCorruptRegisters() was called for the given channel), the communication on the

channel will be disabled, the CAN cell stays in stop mode and the return value of this function is ignored –

the communication will NOT be allowed even if the return value is kCanEnableCommunication.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

26 /46

ApplCanCorruptMailbox

Prototype

Single Receive Channel void ApplCanCorruptMailbox (CanObjectHandle hwObjHandle)

Multiple Receive Channel void ApplCanCorruptMailbox (CanChannelHandle channel,

CanObjectHandle hwObjHandle) CanObjectHandle hwObjHandle)

Parameter

CanChannelHandle channel This parameter specifies the CAN channel on which the memory check is
performed.

CanObjectHandle
hwObjHandle

This parameter specifies the index of the corrupt mailbox.

Return code

- -

Functional Description

This function is called within CanInit() if the CAN driver has found a corrupt mailbox.

Particularities and Limitations

Call context: If the feature “Extended CAN RAM check” is deactivated this function is called on task level or
within the BusOff interrupt; else only on task level.

Configuration: The following settings must be active:

C_ENABLE_CAN_RAM_CHECK

C_ENABLE_NOTIFY_CORRUPT_MAILBOX

In case the feature extended CAN RAM check is enabled the following additional callback
functions have to be provided by the application.

ApplCanCorruptRegisters

Prototype

Single Receive Channel void ApplCanCorruptRegisters (void)

Multiple Receive Channel void ApplCanCorruptRegisters (CanChannelHandle channel)

Parameter

CanChannelHandle channel This parameter specifies the CAN channel on which the memory check is
performed.

Return code

- -

Functional Description

This function is called if the CAN driver has found corrupt channel control registers.

Particularities and Limitations

Call context: This function is called out of task level within CanInit() on the given channel if the RAM

check is not suppressed. The RAM check is suppressed if CanInit() is called in scope of the functions

CanResetBusOffEnd()or (dependent on parameter) CanEnableChannelCommunication().

Configuration: The following settings must be active:

C_ENABLE_CAN_RAM_CHECK

C_ENABLE_CAN_RAM_CHECK_EXTENDED

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

27 /46

ApplCanGlobalMemCheckFailed

Prototype

Single Receive Channel vuint8 ApplCanGlobalMemCheckFailed (void)

Multiple Receive Channel vuint8 ApplCanGlobalMemCheckFailed (void)

Parameter

- -

Return code

vuint8 kCanEnableCommunication – Continue initialization of the RSCAN.

kCanDisableCommunication – Stop initialization of the RSCAN.

Functional Description

This call-back function is invoked if the CAN driver has found at least one corrupt bit within the global control
registers RAM in context of the extended CAN RAM check or if any corrupt bit was found in context of the
RSCAN RAM test (see section 7.2.9). The application can decide whether the CAN driver proceeds with the
RSCAN initialization by means of the return value.

Particularities and Limitations

Call context: This function is called out of task level within CanInitPowerOn().

Configuration: The following settings must be active:

C_ENABLE_CAN_RAM_CHECK

C_ENABLE_CAN_RAM_CHECK_EXTENDED

or

C_ENABLE_CAN_HW_RAM_CHECK

Important note: Be aware of undefined runtime behavior if kCanEnableCommunication is returned as

the driver tries to initialize and communicate despite corrupt RAM was found. The application has to verify
the system in this case.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

28 /46

The following service functions are provided by the driver in context of the extended CAN
RAM check feature.

CanEnableChannelCommunication

Prototype

Single Receive Channel void CanEnableChannelCommunication (vuint8 suppressRamCheck)

Multiple Receive Channel
void CanEnableChannelCommunication (CanChannelHandle channel,

vuint8 suppressRamCheck)

Parameter

CanChannelHandle channel This parameter specifies the CAN channel that shall be re-enabled.

vuint8 suppressRamCheck kCanTrue – RAM check will be suppressed while re-enabling the

communication on the channel.

kCanFalse – RAM check will be performed while re-enabling the

communication on the channel

Return code

- -

Functional Description

The function re-enables the channel communication if it was disabled previously. It calls CanInit()

internally but all eventually disabled mailboxes stay disabled. If the RAM check is not suppressed it can fail
again and the appropriate call-back function is invoked in this case.

Particularities and Limitations

Restriction: Same restrictions as for a call of CanInit() apply.

Call context: This function is called by the application.

Configuration: The following settings must be active:

C_ENABLE_CAN_RAM_CHECK

C_ENABLE_CAN_RAM_CHECK_EXTENDED

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

29 /46

CanEnableMailboxCommunication

Prototype

Single Receive Channel vuint8 CanEnableMailboxCommunication (CanObjectHandle

hwObjHandle)

Multiple Receive Channel
vuint8 CanEnableMailboxCommunication (CanChannelHandle channel,

CanObjectHandle hwObjHandle)

Parameter

CanChannelHandle channel This parameter specifies the CAN channel for which the mailbox shall be
re-enabled.

CanObjectHandle
hwObjHandle

The index of the mailbox to be re-enabled.

Return code

vuint8 kCanOk - Mailbox communication was re-enabled.

kCanFailed - Enabling of mailbox communication failed: hwObjHandle is

not a valid Tx mailbox, the mailbox was not disabled previously or the
communication on the channel is still disabled.

Functional Description

The function re-enables the mailbox communication that was disabled previously by the extended CAN
RAM check. Note that the mailbox RAM check is not performed in scope of this function call - the
application must guarantee that the mailbox is not corrupt.

Particularities and Limitations

Call context: This function is called by the application.

Configuration: The following settings must be active:

C_ENABLE_CAN_RAM_CHECK

C_ENABLE_CAN_RAM_CHECK_EXTENDED

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

30 /46

9.4 CAN Interrupt Handling by Application

These additional call-back functions are used if the driver does not perform CAN interrupt
handling. See section 10.3 for details and the functional description.

OsCanCanInterruptDisable

Prototype

Single Receive Channel void OsCanCanInterruptDisable (void)

Multiple Receive Channel void OsCanCanInterruptDisable (CanChannelHandle channel)

Parameter

CanChannelHandle channel
This parameter specifies the CAN channel for which the interrupts shall be
disabled.

Return code

- -

Functional Description

This function is called by CanCanInterruptDisable().

Particularities and Limitations

Only available if C_ENABLE_OSEK_CAN_INTCTRL is defined.

OsCanCanInterruptRestore

Prototype

Single Receive Channel void OsCanCanInterruptRestore (void)

Multiple Receive Channel void OsCanCanInterruptRestore (CanChannelHandle channel)

Parameter

CanChannelHandle channel
This parameter specifies the CAN channel for which the interrupts shall be
restored.

Return code

- -

Functional Description

This function is called by CanCanInterruptRestore().

Particularities and Limitations

Only available if C_ENABLE_OSEK_CAN_INTCTRL is defined.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

31 /46

ApplCanWakeupInterruptDisable

Prototype

Single Receive Channel void ApplCanWakeupInterruptDisable (vuint8 channel)

Multiple Receive Channel void ApplCanWakeupInterruptDisable (vuint8 channel)

Parameter

vuint8 channel
This parameter specifies the CAN channel for which the wakeup interrupt
shall be disabled.

Return code

- -

Functional Description

This function is called by CanWakeup() and CanInit().

Particularities and Limitations

Only available if C_ENABLE_OSEK_CAN_INTCTRL and C_ENABLE_SLEEP_WAKEUP are defined and

external wakeup is used.

ApplCanWakeupInterruptEnable

Prototype

Single Receive Channel void ApplCanWakeupInterruptEnable (vuint8 channel)

Multiple Receive Channel void ApplCanWakeupInterruptEnable (vuint8 channel)

Parameter

vuint8 channel
This parameter specifies the CAN channel for which the wakeup interrupt
shall be enabled.

Return code

- -

Functional Description

This function is called by CanSleep().

Particularities and Limitations

Only available if C_ENABLE_OSEK_CAN_INTCTRL and C_ENABLE_SLEEP_WAKEUP are defined and

external wakeup is used.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

32 /46

10 Implementations Hints

10.1 Important Notes

1. The following condition will lead to an endless recursion in the CAN Driver:
Recursive call of 'CanTransmit' within a confirmation routine, if the CAN Driver has

been set into the passive state by CanSetPassive. Recommendations are:

> NO CALL OF CanTransmit WITHIN CONFIRMATION-ROUTINES

> PLEASE USE CanSetPassive ONLY ACCORDING TO THE DESCRIPTION

2. Only the transmit line of the CAN Driver is blocked by the functions CanOffline().

However, messages in the transmit buffer of the CAN-Chip, are still sent. For a reliable

prevention of this fact, call function CanInit() after calling CanOffline(). The

order of the two function calls is urgently required, due to the fact, that CanInit() is

only allowed in offline mode.

3. If the VStdLib interrupt-lock-level is used, the chosen priority level must be higher than
the highest level of any functionality of the CAN Driver (signal access, etc). Keep in
mind that smaller values represent higher priorities.

4. Resetting indication flags and confirmation flags is done by Read-Modify-Write. The

application is responsible for consistency. CanGlobalInterruptDisable() and

CanGlobalInterruptRestore() must be called to avoid interruption by the CAN.

Otherwise confirmations or indications can be lost.

5. Port and general clock settings are not handled by the driver. This has to be performed

by the upper layers before the call of CanInitPowerOn(). Please check the

appropriate hardware manual of the used derivative for details regarding the hardware
specific configuration aspects. The CAN clock (fCAN) for baudrate generation can be
selected via the configuration tool; refer to section 11.1.2.

6. If external wakeup support is used the port configuration (performed by the upper
layers) has to be extended. Besides setting the correct port functions for CAN it has to
be ensured that this function is combined with the respective external interrupt.
Additionally the edge/level detection has to be configured correctly to generate interrupt
requests upon detection of CAN events (e.g. on low level or falling edges) on the
corresponding pins (see the hardware manual for details; refer to the filter control
register for instance). If the external wakeup is used the control registers of the external
interrupts are also fully handled by the CAN driver in default configuration.

7. When using Green Hills or IAR compiler the ID bit of the PSW is cleared by software
when any category 1 interrupt service routine of the CAN driver is entered to allow
nesting of interrupts. For other compilers the default platform behavior is not modified
(the ID bit stays set) and the acknowledgement of further interrupt requests is blocked
when any driver ISR is processed. This default driver behavior for category 1 interrupts

can be changed by definition of C_DISABLE_NESTED_INTERRUPTS respectively

C_ENABLE_NESTED_INTERRUPTS via the user configuration file. Keep in mind that the

feature is redundant if the compiler inserts code to allow nesting of interrupts in general
and always verify that the compiler generates correct code if the feature is enabled.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

33 /46

10.2 Interrupt Configuration

With exception of the CAN related EI level interrupt control registers (ICn, see section
7.2.3) all further interrupt configuration within the interrupt controller address space of the

MCU has to be performed by the application before the call of CanInitPoweron().

The default implementation configures table reference as the way to determine the
interrupt vector (TB bit in ICn registers is set). The application has to take care about
referencing the CAN interrupt service routines in the interrupt vector table - the prototypes
are exported in the driver header file. Please check the appropriate hardware manual of
the used derivative for details regarding the hardware specific configuration aspects. Table
10-1 shows the provided ISRs and the accordant interrupt sources (n is the index of the
physical channel). Please note that it is configuration dependent whether a particular
interrupt service routine is available (see remarks in table).

CAN interrupt
request name

CAN interrupt
request cause

Provided service
routine

Remarks

INTRCANGRECC
CAN RX FIFO
interrupt

CanIsrRxFifo
Used for BasicCAN reception if ‘Rx
BasicCan Polling’ is not enabled or
‘Individual Polling’ is configured.

INTRCANGERR
CAN global error
interrupt

CanIsrGlobalStatus
Used for Rx BasicCAN overrun if ‘Error
Polling’ is not enabled.

INTRCANnTRX CANn TX interrupt CanIsrTx_n
Used for transmission on physical
channel n if ‘Tx Polling’ is not enabled
or ‘Individual Polling’ is configured.

INTRCANnREC
CANn TX/RX FIFO
RX complete interrupt

- This interrupt is not used.

INTRCANnERR CANn error interrupt CanIsrStatus_n
Used for BusOff detection on physical
channel n if ‘Error Polling’ is not
enabled.

INTPn
External interrupt
(see chapter 4)

CanIsrWakeup_n

Used for wakeup detection on physical
channel n if the sleep/wakeup
functionality is enabled, the external
wakeup is used and ‘Wakeup Polling’ is
not enabled.

Table 10-1 Interrupt Service Routines

If the INTC shall implement direct jumps to an address determined by the interrupt priority

level (instead of table reference) the switch C_ENABLE_DIRECT_INTERRUPT_BRANCH

has to be defined via the user configuration file. (This setting affects the TB bit in the ICn
registers.) In this case the application has to implement a common service routine for all
CAN interrupts and jump to it from the corresponding address (refer to hardware manual
for configuration aspects).

See below an implementation example for Green Hills compiler and a full interrupt system
with disabled sleep/wakeup functionality that uses physical channels 1 and 4; also refer to
the information in table 10-1 about the presence of the individual CAN interrupt functions.
Each driver routine must not be called if the CAN interrupts for the corresponding channel
(respectively any CAN channel for the global handlers) are currently disabled. This is
especially relevant if more than one channel is used or other interrupt sources also call the
common service routine. In general it is recommended to check the status of the MK bit in

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

34 /46

the ICn register of each CAN interrupt source before invoking the corresponding driver
routine as these bits directly indicate the status of the CAN interrupt lock mechanism. Any
driver routine may only be called if the corresponding interrupt source is enabled (MK bit
== 0). These actions may differ if the application handles the CAN interrupt disable/restore
mechanism (see section 10.3 below), but the requirements above must always be met. If
the feature “Multiple Configurations” is used only functions corresponding to channels that
are used in the active identity should be called.

#pragma ghs interrupt

void CommonIsr_Prio_x (void)

{

 /* handling for other interrupts that are assigned to

 this priority and not handled by table reference */

 /* CAN interrupts */

 if (MK bit of INTRCANGRECC == 0) CanIsrRxFifo();

 if (MK bit of INTRCANGERR == 0) CanIsrGlobalStatus();

 if (MK bit of INTRCAN1ERR == 0) CanIsrStatus_1();

 if (MK bit of INTRCAN1TRX == 0) CanIsrTx_1();

 if (MK bit of INTRCAN4ERR == 0) CanIsrStatus_4();

 if (MK bit of INTRCAN4TRX == 0) CanIsrTx_4();

 /* handling for other interrupts that are assigned to

 this priority and not handled by table reference */

}

Since the common service routine is already qualified as an ISR to the compiler, the
individual CAN interrupt routines have to be configured as void-void functions if this variant

is used. Therefore the switch C_ENABLE_ISRVOID additionally has to be defined via the

user configuration file (if category 1 CAN interrupts are used).

Caution
The driver performs no measures to ensure the correct functionality of the CAN
interrupt disable/restore mechanism if it is bypassed by the common interrupt handler

when C_ENABLE_DIRECT_INTERRUPT_BRANCH is defined. Therefore the usage of

this switch in not recommended in general and should only be defined if table reference
is not possible at all.

10.2.1 Configuration of Interrupt Vectors with IAR compiler

Instead of a manual initialization of the interrupt vector table it is possible to let the IAR
compiler set up the table by using the #pragma vector=xx directive (only for category 1
interrupts). This feature can be enabled via the user configuration file by defining the EI
level interrupt number for each used CAN interrupt. The names of these defines are
derived from the corresponding ISR names.

See below an example for a full interrupt system with external wakeup support that uses
physical channels 2 and 5. Refer to the information in table 10-1 about the presence of the
individual CAN interrupt functions.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

35 /46

#define C_CANISRRXFIFO_VECTOR 15

#define C_CANISRGLOBALSTATUS_VECTOR 14

#define C_CANISRTX_VECTOR_2 211

#define C_CANISRSTATUS_VECTOR_2 209

#define C_CANISRWAKEUP_VECTOR_2 31

#define C_CANISRTX_VECTOR_5 281

#define C_CANISRSTATUS_VECTOR_5 279

#define C_CANISRWAKEUP_VECTOR_5 36

Caution
This is an example and the necessary defines depend on the actual configuration. The
interrupt numbers depend on the selected derivative; refer to the hardware manual to
get the respective values.

10.3 CAN Interrupt Handling by Application

If an exclusive write access to the CAN related EI level interrupt control registers (ICn) is
not possible or if the driver must not access registers outside the CAN address space the

switch C_ENABLE_OSEK_CAN_INTCTRL has to be defined via the user configuration file.

In this case the driver does not access the registers of the interrupt controller at all and the
application has to ensure proper initialization, disabling and restoring of the CAN interrupt
sources.

The initialization of all necessary ICn has to be performed additionally by the application

before the call of CanInitPowerOn()if this switch is defined. All used sources (see

remarks in table 10-1) have to be enabled after initialization whereas unused sources have
to be disabled.

In context of the interrupt disable/restore mechanism the driver implements application

call-backs that are used whenever the functions CanCanInterruptDisable() or

CanCanInterruptRestore() are invoked (see section 9.4 for API definitions). The

function OsCanCanInterruptDisable() should save the current mask status (MK bits)

of all used CAN interrupt sources that are linked to the given logical channel and then set

these bits to 1 in order to disable the sources. OsCanCanInterruptRestore() has to

restore the previously saved mask bits for the given logical channel. These actions may
differ based on the actual software configuration, but all CAN interrupts on the
corresponding channel have to be locked after the first call (nested calls can occur) of

OsCanCanInterruptDisable() and be available not until the last nested call of

OsCanCanInterruptRestore(). Keep in mind that the right physical channel has to be

chosen based on the given logical controller (to get the right ICn) and that the receive
FIFO and global status interrupt are used by all controllers.

If sleep/wakeup functionality is enabled and the switch C_ENABLE_OSEK_CAN_INTCTRL

is defined please note that the external wakeup interrupts always have to be disabled after
initialization as these sources are only enabled on demand. Also there are two additional
application call-back functions. See section 9.4 for API definitions. This is relevant for
interrupt and polling systems as the external interrupt request flag has to be cleared
independently of the interrupt configuration.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

36 /46

 ApplCanWakeupInterruptEnable() is always invoked in context of CanSleep().

This function first has to clear the corresponding external interrupt request flag in the ICn
and then – only if wakeup processing is performed by interrupts – enable the external
interrupt. Keep in mind that depending on the current status of the CAN interrupt
disable/restore mechanism this has to be performed either by clearing the corresponding
mask bit in the respective hardware register or in the mask status that was saved by

OsCanCanInterruptDisable().

 ApplCanWakeupInterruptDisable() is only invoked if wakeup processing is

performed by interrupts in context of CanWakeup(), respectively the external wakeup

handling and in CanInit(). This function has to disable the interrupt - depending on the

current status of the CAN interrupt disable/restore mechanism either by setting the
corresponding mask bit in the hardware register or in the saved mask status.

Caution
If C_ENABLE_OSEK_CAN_INTCTRL is defined the driver performs no measures to

ensure consistency of the interrupt lock mechanism. Additionally the application has to
ensure correct concurrent accesses to the ICn by all modules and has to handle nested

calls of OsCanCanInterruptDisable() and
OsCanCanInterruptRestore().Therefore the usage of this switch is not

recommended in general and should only be defined if the internal driver mechanisms
are not possible at all (e.g. write access to interrupt control registers is not allowed).

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

37 /46

11 Configuration

11.1 Configuration by GENy

The driver is configured with the help of the configuration tool GENy. This section
describes the configuration of the driver specific aspects. The configuration options
common to all CAN drivers are described in TechnicalReference_CANDriver.pdf.

Note
To get further information please refer to the online help of the generation tool.

11.1.1 Platform Settings

Figure 11-1 GENy Platform Settings

Attribute Supported
Values

Description

Preconfiguration Select the pre-configuration file to use.

Micro Hw_Rh850Cpu Select the target platform.

Derivative See Table 2-1 Select the specific derivative group.

Compiler See Table 2-1 Select the used compiler.

Table 11-1 GENy Platform Settings

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

38 /46

11.1.2 Component Settings

Figure 11-2 GENy Component Settings

Attribute Supported
Values

Description

Maximum number of
CAN channels

1 - 8 Enter the maximum number of physical CAN channels that
are supported by the actually used derivative. This value is
independent from the number of channels in the configuration
but used to determine the available hardware resources. Only
if this value is correct the tool can ensure valid configurations
for the actual derivative. Depending on the selected derivative
not all values may be available.

CAN external clock
source

true, false Enable this attribute to use the external clock input
(clk_xincan) as CAN clock (fCAN). If the attribute is disabled
clkc is used - this is the default selection. (This setting directly
affects the DCS bit in the global configuration register.)

Table 11-2 GENy Component Settings

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

39 /46

11.1.3 Channel-specific Settings

Figure 11-3 GENy Channel Specific Settings

Caution
The sum of the shared buffers used to allocate the receive objects over all
channels must not exceed (“Maximum number of CAN channels” * 64)7. This
includes the Rx FullCAN objects (1 buffer per actually assigned object; not the
value of “Rx FullCAN object allocation) and the depth of all Rx BasicCAN
objects (individually configurable amount of buffers, selected by the attribute
“Rx Fifo depth”) on all channels.

The sum of used acceptance filters over all channels must not exceed
(“Maximum number of CAN channels” * 64)7. Each actually assigned Rx
FullCAN object uses one filter and each Rx BasicCAN object uses the number
of filters that is selected by the attribute “Filters per BasicCAN” on the
corresponding channel.

The generation tool checks these and other restrictions (e.g. allowed selection
for the attribute “Physical controller”) to ensure valid configurations. Therefore it
is mandatory to enter a valid value for the attribute “Maximum number of CAN
channels”6. Refer to chapter 3 for further information.

7
 Refer to section 11.1.2 for the description of the attribute “Maximum number of CAN channels“.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

40 /46

Attribute Supported
Values

Description

BCFG register value The value for the Channel Configuration Register.

Acceptance Filter
Configuration

- Opens the acceptance filter dialog, see section 11.1.3.1. If
several init structures are created this is only possible for the
first structure.

Bustiming
Configuration

- Opens the bustiming dialog to determine the value for BCFG,
see section 11.1.3.2.

Physical controller CAN 0 – CAN 7 Select the physical channel you want to assign to this logical
channel. The value is enumerated the same way as referenced
in the hardware manual. Depending on the selected derivative
and configuration of the attribute “Maximum number of CAN
channels” (see section 11.1.2) not all values may be available.

CAN interrupt priority 0 – 15 Select the interrupt priority level of this CAN channel’s interrupts
that are configured if the driver has interrupt control. Depending
on the selected derivative not all levels may be available. See
section 7.2.3 and chapter 10 for further information.

Rx FullCAN object
allocation

0 – nRXMBmax You can configure as many receive FullCAN messages on this
channel as specified here. This value is used to limit the
selection for manual or automatic configuration - only the
actually arranged FullCAN objects will be configured in
hardware. The value of nRXMBmax equals “Maximum number
of CAN channels” * 16.

Filters per BasicCAN 1 – 128 Select how many acceptance filters will be assigned to each Rx
BasicCAN object on this channel; see section 11.1.3.1 for
details. Depending on the selected derivative not all values may
be available.

Rx Fifo process count 2 – 255 Select the maximum number of pending receive messages that
are processed for each Rx BasicCAN object within one polling
cycle respectively one interrupt occurrence. By adjusting this
value it can be ensured that high FIFO loads will be evenly
processed by the driver. Remaining messages are processed
within the next polling cycle respectively the interrupt of the next
received message on this channel. Select greater values if
overruns occur.

Rx Fifo depth 4; 8; 16; 32;
48; 64; 128

Individually configure the depth (amount of assigned shared
buffers) of every Rx FIFO, that is used as Rx BasicCAN object
on this channel.

Table 11-3 GENy Channel Specific Settings

Note
As the RSCAN has restrictions regarding the receive buffers (e.g. no interrupt
processing, no overrun detection) also consider configurations without Rx FullCAN
objects. The large FIFO sizes and amount of filters that are possible for the BasicCAN
objects give similar advantages as the usage of FullCAN objects. For many
configurations this can be an alternative that above all is more effective regarding
runtime and memory usage.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

41 /46

11.1.3.1 Acceptance Filter Configuration

Figure 11-4 GENy Acceptance Filter Configuration

Attribute Supported
Values

Description

Acceptance Filter representation of
type, mask and
code

The configured BasicCAN filters are shown. Each ID-bit is
represented by “0/1/X”, meaning must match “0”, “1” or don’t
care “X”. The number of filters can be adjusted by the attribute
“Filters per BasicCAN” on the channel view.

Type standard,
extended

Select if the filter shall apply to standard or extended ID types.
(Based on the database and configuration only one type may
be available.)

Mask / Code register values The register values for this filter that will be configured in
hardware.

Open filters - Open the filters completely to receive all messages.

Optimize - Configure the filters automatically to just receive IDs in the
database if possible. A large number of filters allow better
optimizations, but don’t configure more filters than the
optimization algorithm uses for message distribution.

“Use FullCAN” tries to put as many messages as possible in
FullCAN objects. Select the maximum number of available
objects by adjusting the attribute “Rx FullCAN object
allocation” on the channel view. This is useful when only a few
number of BasicCAN filters are configured for example.

Table 11-4 GENy Acceptance Filter Configuration

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

42 /46

11.1.3.1.1 Additional information if the feature “Multiple BasicCAN objects” is used

The dialog shows all BasicCAN acceptance filters for the respective channel. The amount
of filters equals the product of configured BasicCAN objects and the number of filters per
BasicCAN. An example configuration with 3 BasicCAN objects and 2 filters per object
results in 6 filters as shown in figure 11-5. The first 2 filters (in accordance with the attribute
“Filters per BasicCAN”) are assigned to the first BasicCAN object, the next 2 to the second
BasicCAN object and so on.

Figure 11-5 GENy Acceptance Filter Assignment

Please note that a received message is stored in the first mailbox with a matching filter.
After an identifier was compared against the FullCAN filters, it is compared against the
BasicCAN filters in the order that is depicted in the dialog. This has to be considered when
the feature “Multiple BasicCAN objects” is used. If filter number 1 in the example from
figure 11-5 was open (all bits “don’t care”), all non FullCAN standard identifiers would be
received by BasicCAN0 and BasicCAN2 would never receive any message.

Note
In some “Multiple BasicCAN” configurations it may be useful to assign certain
BasicCAN messages to specific hardware objects as the FIFO depths or “Individual
Polling” settings can be adapted to the actual communication aspects for example. As
the optimization algorithms don’t consider this use case the filters have to be edited
manually in this case.

Alternatively it is possible to configure and lock only several significant filters and then
use the optimization functionality. But after doing so always check the result because
manually configured filters may not always receive the pre-assigned identifiers as the
message could match an automatically assigned filter that is compared first. Focus on
filters with smaller numbers or add some “dummy filters” for earlier objects to achieve
better results.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

43 /46

11.1.3.2 Bustiming Configuration

Figure 11-6 GENy Bustiming Configuration

Attribute Supported
Values

Description

Clock CAN clock Set the clock frequency that is provided to the CAN cell for
baudrate generation (fCAN). Consider the setting of the
attribute “CAN external clock source” (see section 11.1.2).

Baudrate baudrate Set the baudrate to be used for this channel.

CAN BTR register register value Enter the value for the Channel Configuration Register (see
attribute BCFG in section 11.1.3).

Calculate - Calculate possible Channel Configuration Register settings
out of the entered baudrate or vice versa.

CAN_BTR, Sample,
BTL cycles, SJW

- Select specific channel configuration register values to adapt
the sample point and sync phase to comply with your bus
physics.

Table 11-5 GENy Bustiming Configuration

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

44 /46

11.2 Manual Configuration

This section describes additional configuration options for special features that can only be
configured via the user configuration file.

 Define C_DISABLE_NESTED_INTERRUPTS or C_ENABLE_NESTED_INTERRUPTS to

control the nesting of the CAN interrupts. See section 10.1 for further information.

 Define C_ENABLE_DIRECT_INTERRUPT_BRANCH (and if needed additionally

C_ENABLE_ISRVOID) to deactivate table reference as the method to handle CAN

interrupts. See section 10.2 for further information.

 Define C_ENABLE_OSEK_CAN_INTCTRL to prohibit write accesses by the driver within

the interrupt controller address space. See section 10.3 for further information.

 Define C_ENABLE_EXTERNAL_WAKEUP_SUPPRESSION to disable the external wakeup

functionality. See chapter 4 for further information.

 See sections 7.2.6 to 7.2.9 for options that control different RAM test features.

 See section 10.2.1 for information on how to set up the interrupt vector table when
using IAR compiler.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

45 /46

12 Known Issues / Limitations

1. Due to hardware limitations the feature CAN RAM check is not supported for receive
mailboxes (no write access is possible for these objects).

2. Due to hardware limitations receive FullCANs cannot be processed in interrupt context
and no overruns can be detected for these objects.

3. With default configuration the driver needs exclusive write access to all EI level
interrupt control registers (ICn) that are related to a CAN interrupt source (see section
7.2.3 and chapter 10 for further information.).

4. Refer to chapter 4 for restrictions when using the sleep/wakeup functionality.
Additionally the global stop mode of the RSCAN is not supported.

5. When using multiple initialization structures no multiple acceptance filter configurations
are supported by the driver. The filter settings are always derived from the first
structure. Use several structures only to arrange multiple baudrate configurations.

6. When using the feature Multiple ECU Configurations it is not supported to use a logical
channel in more than one identity. The only exception is the first logical channel which
can be present in any identity if it is also mapped to the physical channel CAN0. This
limitation does not apply to the usage of physical channels: Every available physical
channel can be used in any identity and the same physical channel can be used in as
many identities as needed (if it is referenced by different logical channels).

7. For derivatives that incorporate multiple RSCAN units only the first one (RSCAN0) is
supported by the driver.

For latest information about issues or limitations of the actually used derivative please
contact the hardware manufacturer.

Vector CAN Driver Technical Reference RH850 RSCAN

2014, Vector Informatik GmbH Version: 1.05.00

based on template version 3.2

46 /46

13 Contact

Visit our website for more information on

> News

> Products

> Demo software

> Support

> Training data

> Addresses

www.vector.com

http://www.vector.com/

	1 Introduction
	2 Important References
	3 Usage of Controller Features
	3.1 [#hw_comObj] - Communication Objects
	3.2 Acceptance Filters

	4 [#hw_sleep] - SleepMode and WakeUp
	4.1 Sleep
	4.2 Internal Wakeup
	4.3 External Wakeup

	5 [#hw_loop] - Hardware Loop Check
	6 [#hw_busoff] - Bus off
	7 CAN Driver Features
	7.1 [#hw_feature] - Feature List
	7.2 Description of Hardware-related Features
	7.2.1 [#hw_status] - Status
	7.2.2 [#hw_stop] - Stop Mode
	7.2.3 [#hw_int] - Control of CAN Interrupts
	7.2.4 [#hw_cancel] - Cancel in Hardware
	7.2.5 Remote Frames
	7.2.6 CAN RAM Check
	7.2.7 Extended CAN RAM Check
	7.2.8 RSCAN ECC Configuration
	7.2.9 RSCAN RAM Test

	8 [#hw_assert] – Assertions
	9 API
	9.1 Category
	9.2 RSCAN ECC Configuration
	9.3 (Extended) CAN RAM Check
	9.4 CAN Interrupt Handling by Application

	10 Implementations Hints
	10.1 Important Notes
	10.2 Interrupt Configuration
	10.2.1 Configuration of Interrupt Vectors with IAR compiler

	10.3 CAN Interrupt Handling by Application

	11 Configuration
	11.1 Configuration by GENy
	11.1.1 Platform Settings
	11.1.2 Component Settings
	11.1.3 Channel-specific Settings
	11.1.3.1 Acceptance Filter Configuration
	11.1.3.1.1 Additional information if the feature “Multiple BasicCAN objects” is used

	11.1.3.2 Bustiming Configuration

	11.2 Manual Configuration

	12 Known Issues / Limitations
	13 Contact

