VECTOR > MICROSAR OS SafeContext Safety Manual

MICROSAR OS SafeContext
Safety Manual

Renesas RH850 with compiler Green Hills

Authors Senol Cendere, Yohan Humbert, Michael Kock
Version 1.10
Status Released

© 2016 Vector Informatik GmbH Version 1.10

based on template version 2.0

VECTOR D>

Document Information

History

MICROSAR OS SafeContext Safety Manual

Author ____Date __|Version Remarks

Senol Cendere
Senol Cendere
Senol Cendere
Senol Cendere
Senol Cendere

Yohan Humbert
Michael Kock
Senol Cendere
Senol Cendere
Senol Cendere
Michael Kock

2014-02-17
2014-02-26
2014-05-09
2014-08-18
2014-09-22

2014-12-03
2015-08-18
2016-01-05
2016-01-29
2016-02-09
2016-06-17

© 2016 Vector Informatik GmbH

1.00
1.01
1.02
1.03
1.04

1.05
1.06
1.07
1.08
1.09
1.10

Creation for RH850

Updated the Requirement IDs
Adaption for RH850 P1M

Reworked after Safety Manual Review

Added reference for Renesas Electronics RH850/P1M
Safety Application Note

Removed CPU derivative specification

Removed compiler options (both are specified in safety
case)

Added level support

Updated chapter Configuration Block

Updated hardware specific part

Rework after review

Rework after review

Updated chapter Review Generated Code and Rework

Version 1.10 2

based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

Reference Documents

No.|Source | Titl Version

[1] AUTOSAR AUTOSAR Operating System Specification
This document is available in PDF-format on the Internet at 4.X
the AUTOSAR homepage: http://www.autosar.org

[2] OSEK OSEK/VDX Operating System Specification 223
This document is available in PDF-format on the Internet at
the OSEK/VDX homepage: http://www.osek-vdx.org

[3] Vector Informatik MICROSAR OS SafeContext Technical Reference 9.01
GmbH TechnicalReference_Os.pdf

[4] Vector Informatik MICROSAR Safe Silence Verifier Technical 1.04
GmbH Reference

TechnicalReference MSSV.pdf

[5] Vector Informatik MICROSAR OS RH850 User Manual 1.10
GmbH TechnicalReference. MICROSAROS RH850.pdf

[6] Vector Informatik Vector MICROSAR OS SafeContext Concept 1.04
GmbH

[71 I1SO International Organization for Standardization, 2009

Draft International Standard ISO/DIS 26262 Road
Vehicles - Functional Safety (all parts), 2009

[8] Renesas Electronics V850E3v5 Architecture Specifications (5™ edition)
[9] Renesas Electronics RH850G3K User’s Manual: Software Rev. 1.00
r01us0125ej0100_rh850g3k.pdf Aug, 2014
[10] Renesas Electronics RH850G3M User’s Manual: Software Rev. 1.00
r01us0123ej0100_rh850g3m.pdf Aug, 2014
[11] Green Hills Software MULT]I: Building Applications for Embedded V850 PublD:
and RH850 build_v800-
build_v800.pdf 496213
Date: October
4,2013
© 2016 Vector Informatik GmbH Version 1.10 3

based on template version 2.0

http://www.autosar.org/
http://www.osek-vdx.org/

VECTOR > MICROSAR OS SafeContext Safety Manual

Contents

PUIPOSE ... et et e e e e e e e e e e e 8
1.1 Safety Element out of Context (SEOOC)ccooeviiiviiiiiiiii e, 8
1.2 Standards and Legal Requirementscccoooooviiiiiiiiiin e 8
0o 3 -1 1 PRSP 9
2.1 SafeContext Is One Part of a Whole..........coooiiiiiiiiiiiii e 9
2.2 SAfEly GO@I ... 9
2.3 Safety ReqQUIrEMENTS ..o 9
2.4 SafeContext Functionality..............oooiiiiiiiiii e 10
241 ASIL FUNCHONAIITY......euiiiiiiiiiiiiiiiii e 10
242 Detailed List..... ... 12
24.21 Provided Functionalityccccovvviiiiiiiiiiiiiiiiiiiiie 12
24211 osGetConfigBlockVersion...............ccccuvenes 14
24.2.2 Not provided Functionalityccccoovviiiiiiiii i 14
2.5 SaAfe S alE .o 15
Overview of Requirements to the OS User.................ccccoviiiiii i, 16
SafeContext ASSUMPLIONS ... e 18
4.1 Context DefiNitioNccuuiiii 20
OS SoUIrce ChECKSUM ... e e e e e e eaere s 21
Patching the Configuration BIOCK...............coooiiiiiiiiiii e, 23
6.1 USING EIfCONVEITENttt 24
6.2 Using ConfigBIOCKCRCPALCHuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieee 24
SafeContext GUIdEIINES ..o 25
71 CONFIGUIALION ... 25
7.2 Linking Example for Memory Mapping..........ueeeuueurmmmmmmemmeiiinnneennennnnnnennnnnnnnnnnn. 27
Configuration BIOCK REVIEW...............ouiiiiiiiiii e 28
8.1 How to Read Back the Configuration................coooeiiiiiiiiiiiieeeee e 28
8.1.1 Using EFCONVEIEreiiiiiiiieee e 29
8.1.2 USING HEXCONVEIET ... 29
8.1.3 USIiNG CoNfIgQVIEWEToviiiiiiiieie e 30
8.2 Configuration BIOCK Head...............uuuiiiiiiiiiiiiiii e 31
8.3 General INformation...........oouiiiii i 32
8.4 Task Start AdAreSsScoooeeeeeeeeeee 34

© 2016 Vector Informatik GmbH Version 1.10

based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.5 Task Pre-emptive Configuration..............oooooiiiiii 35
8.6 Task Trusted Configuration...............iiiii i 36
8.7 Task STACK AQArESSEScovieiiii e e e 37
8.8 Task to Application Mappingccouviiiiiiiieri e 38
8.9 Category 2 ISR Trusted Configurationccccouvviiiii e, 39
8.10 Category 2 ISR to Application Mappingccoovveeeeiiiiiiieeeeceee e 40
8.11 Application Trusted Configuration............ccooviiiiiiin e, 41
8.12 Trusted Functions Configuration..............cccoo i 42
8.13 Non-Trusted Functions Configurationcccooiiii, 43
8.14 Category 2 ISR Start AddreSSES........oovviiiiiii e 44
8.15 Category 2 ISR Nesting Configuration.............cccoooeiii i, 45
8.16 Process t0 Core MapPiNguuuuiiiiieiiiieeiiiiese e e ee e eeetess e e e e e eeraa e e e e e e eeeeeans 46
8.17 Alarms 10 Core Mapping.........ceeiii i i 47
8.18 Resources to Core MappPingccooeeiiiieiiiiiiiie e e e e e 48
8.19 Counters t0 Core Mappingucceiiieiiiiiiiiie e 49
8.20 Schedule Tables to Core Mappingcceeiiiieiiiiiiiiie e e 50
8.21 Application to Core Mapping.........cuuuuuiiiiieeiiiiiieee e e e e e e e 51
8.22 Trusted Functions to Core Mapping.......ccceeeieeeiiiiiiiiiiiii e 52
8.23 Non-Trusted Functions to Core Mappingccoueuvriiiiiieeeeiieiiieee e 53
8.24 Core Control BIOCK AQAIESSoiiiiiiiieieiiiiee e e e e 54
8.25 Peripheral Regions Configuration............cccoooooiiiiiiiiiiii e, 55
8.26 SpInlock LOCK Methodoovveiiiiiecieeee e 56
8.27 Spinlock Config TYPE...ccooe i 56
8.28 Optimized Spinlock Variable Addresses.............ooouviiiiiiieiiiiiiiiceee e, 56
8.29 Category 2 ISR StaCk AdAresscoooiiiiiiiiiieeeeeee 57
8.30 Category 2 ISR Interrupt Channel IndeX............ccooeieiiiii, 57
8.31 Category 2 ISR Priority LeVel ... 58
8.32 Category 2 ISR t0 Core Mapping.......ccooouiiiiiiiiiii 60
8.33 Application MPU Configuration.............ccccooe i, 61
8.34 MPU Configurationcoooriiii i 62
8.35 Application MPU ASID Configuration.............cccoooeeiiii, 63
9 Generated OS Codecooiiiiiiiiiee e 64
9.1 Using MICROSAR Safe Silence Verifier (MSSV).......ccccuviiiiiiiiiiiiiiiiiiiieeeeee 64
9.2 ManUal REVIEWS ...t e et e e e e e e e eeenees 66
9.21 Review generated file tCh.hcccooiiiiiii 66
9.2.2 REVIEW OFf 1CD.C ...t 67
9.2.3 Review of tehbposSt.n ... 69
9.24 Review of trustfct.c & trustfct.h ..., 71
9.241 File trustfCt.Cuvvvveiiiiiieeeeeeee 71
9.24.2 File trustfct.n... ..o, 73

© 2016 Vector Informatik GmbH Version 1.10

based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

10 ReVview User SOftWare..............coo oo 75

11 Hardware SpecifiC Part ... 79

11.1 Interrupt VECtor Tablei i 82

11.1.1 Header Include Sectioncccooovieiiiiiiiiii e, 82

11.1.2 Core Exception Vector Tablecoiiiiiiiiiiiiiiii e 83

11.1.3 EIINT Vector Table.........cooooeeiiiiiii e 84

1114 CAT2 ISR WIAPPELS ...ttt e e e e 85

11.1.5 End of file Intvect_c<CorelD>.C........coovviiiiiiiiiiiiiciee e 85

11.2 Linker Memory SECHONScoii i 86

11.3 I =T [Tod [0 T L= o =P 88

11.3.1 Review File osdata.dldcooooiiiiiiiiiii e, 88

11.3.2 Review File ossdata.dld..........cccoooviiiiiiiii e, 89

11.3.3 Review File osstacks.dldccoooiiiiiiiiiiiii e, 90

11.3.4 Review File 0srom.dldccooviiiiiiiiii e 91

11.3.5 Review File ostdata.dldccoooiiiiiiiiii e, 91

11.4 Stack Size Configurationceeuviiiiiiiiiiiiiiiiieee e 92

11.5 Stack MONItOrING......cooiie e e 93

11,6 Usage of MPU REQIONSccvviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee ettt 93

11.7 Usage of Peripheral Interrupt APl ..o 93

12 Glossary and Abbreviations......................cii s 94

12.1 GlOSSANY ... n e nnnnnes 94

12.2 ABDIreVviatioNnscouiiiii e 95

I3 CONtACT ... e a e e e aaan 96
© 2016 Vector Informatik GmbH Version 1.10

based on template version 2.0

VECTOR >

MICROSAR OS SafeContext Safety Manual

lllustrations

Figure 2-1 Stored and active CONEXESoooviiiiiiii 11
Figure 3-1 Strategy for safety configuration...............cciiiii 17
Figure 7-1 LinKING EXamMPIe .. 27
Tables

Table 2-1 MICROSAR OS SafeContext Functionality ..., 14
Table 2-2 Functionality — Not provided.........cccooooiiiiiiiiie e 15
Table 4-1 General SafeContext ASSUMPLIONS.........ccoiiiiiiiiiiie e 19
Table 6-1 ElfConverter Parameters.............ciiii i 24
Table 8-1 ElfConverter Parameters.............ooiii i 29
Table 8-2 HexConverter parameters..........cccooiv e 29
Table 8-3 ConfigViewer Parameters ... 30
Table 12-1 GOS8 S ANY ..t 94
Table 12-2 ADDIreviationsoouuiii 95
© 2016 Vector Informatik GmbH Version 1.10

based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

1 Purpose

1.1 Safety Element out of Context (SEo0C)

MICROSAR OS SafeContext is a Safety Element out of Context (SEooC). It is developed
based on assumptions on the intended functionality, use and context, including external
interfaces. To have a complete safety case, the validity of these assumptions has to be
checked in the context of the actual item after integration of the SEooC.

The application conditions for SEooC provide the assumptions made on the requirements
(including safety requirements) that are placed on the SEooC by higher levels of design
and also on the design external to the SEooC and the assumed safety requirements and
assumptions related to the design of the SEooC.

Information given by this document helps to check whether the SEooC fulfills the item
requirements, or whether a change to the SEooC is necessary in accordance with the
requirements of ISO 26262.

1.2 Standards and Legal Requirements
Standards followed by the development of MICROSAR OS SafeContext:
> IS0 26262*

> OSEK 0O§?
> AUTOSAR 0OS?

! International Standard 1SO 26262 Road Vehicles - Functional Safety (all parts), 2011
2 OSEK/VDX Operating System, v2.2.3
¥ AUTOSAR Specification of Operating System

© 2016 Vector Informatik GmbH Version 1.10 8
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

2 Concept

This chapter provides a description of the assumed safety requirements and the main
concept.

21 SafeContext Is One Part of a Whole

SafeContext is part of Vector SafeExecution. SafeExecution consists of SafeContext for
prevention from corrupted data and SafeWatchdog for supervision of timing behavior. This
document covers SafeContext only.

2.2 Safety Goal

The safety goal is to ensure context integrity for all safety critical parts. Whenever a safety
critical code is executed, it is guaranteed that the code is executed with the correct
context. After pre-emption or interruption, execution is resumed with the correct context.
The integrity of the memory is ensured by usage of hardware (e.g. MPU) and software
measures.

2.3 Safety Requirements

To achieve this safety goal, the following assumed safety requirements are provided by
SafeContext:

ASA_OS_1: Non-trusted software must be prevented from overwriting data of safety
relevant software.

The OS assures this mainly by programming of an MPU.

ASA_OS_2: A runtime context (Task, Hook, (Non-)Trusted-Function or ISR) must not
be destroyed by a switch (to another runtime context).

The OS assures this mainly by correct storage and restauration of the register
context.

ASA_OS_3: A runtime context shall be set up according to compiler and processor
specifications.

The OS assures this mainly by correct implementation of the register setup at context
switches.

ASA_OS_4: Services to prevent data inconsistencies by racing conditions shall be
provided.

The OS provides the following functions for this purpose:
e DisableAllinterrupts/EnableAllinterrupts,
e SuspendOsinterrupts/ResumeQOSinterrupts
e SuspendAllinterrupts/ResumeAllinterrupts
ASA_OS_5: The OS never writes to unintended memory locations.
The OS assures this mainly by correct implementation of its functionality.

© 2016 Vector Informatik GmbH Version 1.10 9
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

2.4 SafeContext Functionality

MICROSAR OS SafeContext implements the AUTOSAR OS and OSEK OS standards of a
real-time operating system with some restrictions.

2.4.1 ASIL Functionality

Derived from our safety requirements, SafeContext provides the following functionality
safely:

1. Context management

2. MPU management

3. Interrupt API

4. no unintended overwriting of memory

The context is defined as:
> The set of registers, which is used by the compiler

> The stack pointer
> CPU mode (including interrupt state and privilege mode)

> Memory access rights

Explanations:

> A context switch occurs in several situations. These are: Task start/preemption/stop,
ISR entry/exit, call of OS services, call of (Non-)Trusted Functions and Hook routines.

Conclusions:
> |If a user program is executed, it will always be executed with the correct context

> After interruptions it is guaranteed that execution is resumed with the correct context

> Freedom from interference with respect to memory will be achieved by using memory
protection hardware (e.g. MPU) for non-trusted code.

> Data inconsistency due to race conditions can be prevented by using the interrupt
API.

Note
ﬂ All other OS functionality, for example the sequence of task executions (scheduling)
including the Task pre-emption is provided on QM level.

© 2016 Vector Informatik GmbH Version 1.10 10
based on template version 2.0

VECTOR D>

The operating system provides safe switching of memory access rights during context
switches to ensure that non-trusted code does not modify data of other OS-Applications (if
not explicitly allowed). In addition the OS interrupts Tasks or ISRs to execute higher priority
ISRs. By switching to another context the correct context is set up. By switching back to an
interrupted Task or ISR, the correct and unchanged context is restored. To avoid change of
a saved context of an interrupted or waiting task, memory protecting hardware is used.

All points in the OS where context switches are performed or are necessary to perform are

MICROSAR OS SafeContext

identified and developed according the safety standard.

At each point in time only one context is active. All other contexts are saved and protected

by hardware against accidental alterations.

1
inactive inactive
1
1
1
1

inactive

inactive

Safety Manual

inactive

e

MPU Protection néw MPU Protection
_____________ 1 U
1 |
Register Register 1 Register 1 Register Register Register
Context Context 1 Context | Context Context Context
1 |
Stack Stack | Stack ! Stack Stack Stack
1 |
1 |
1 |
1 |
————————————— - L———————————————————
Figure 2-1 Stored and active contexts
© 2016 Vector Informatik GmbH Version 1.10

based on template version 2.0

1"

VECTOR D>

2.4.2 Detailed List

MICROSAR OS SafeContext Safety Manual

2.4.2.1 Provided Functionality

The following OS services are provided by MICROSAR OS SafeContext.

Class Description

Startup API S
>
>

Shutdown API >

Application API >
>
>
>
>
>
>
>
>
>

Interrupt API >
>
>
>
>
>

Stack usage API >
>

Trusted Function >

API
Schedule Table API <

vV V V V

Event API

\%

© 2016 Vector Informatik GmbH

osInitialize
0osInitINTC
Start0OS

ShutdownOS

GetApplicationID
CheckObjectOwnership
CheckObjectAccess
GetApplicationState (if ASR4)
AllowAccess

GetISRID

GetTaskID
GetActiveApplicationMode
CheckObjectAccess
CheckObjectOwnership

DisableAllInterrupts
EnableAllInterrupts
SuspendAllInterrupts
ResumeAllInterrupts
SuspendOSInterrupts

ResumeOSInterrupts

osGetStackUsage
osGetISRStackUsage
osGetSystemStackUsage

CallTrustedFunction

StartScheduleTableRel
StartScheduleTableAbs
StopScheduleTable
NextScheduleTable
GetScheduleTableStatus

SetEvent
ClearEvent

GetEvent

Version 1.10
based on template version 2.0

12

VECTOR >

MICROSAR OS SafeContext Safety Manual

Class Description

>
Alarm API S
>
>
>
Resource API >
>
Task API >
>
>
>
>
Counter API >
>
>
SafeContext >
Extensions S
>
>
>
>
>
>
>
>
>
>
>
>
OS System Hooks >
>
>
>
Error Handling >
>

© 2016 Vector Informatik GmbH

WaitEvent

GetAlarm
SetRelAlarm
SetAbsAlarm

CancelAlarm

GetResource

ReleaseResource

ActivateTask
TerminateTask
ChainTask
Schedule
GetTaskState

IncrementCounter

GetElapsedValue(ASR4)/GetElapsedCounterValue(ASR3)

GetCounterValue

osCheckMPUAccess

osCheckAndRefreshTimer

osCheckAndRefreshMPU

osGetConfigBlockVersion

CallNonTrustedFunction

osReadPeripherals8
osReadPeripherall6
osReadPeripheral3?2
osWritePeripherals8
osWritePeripherall6
osWritePeripheral3?2
osModifyPeripherals
osModifyPeripherall6
osModifyPeripheral32

StartupHook
ErrorHook
ProtectionHook

ShutdownHook

osUnhandledException
osAbortSystem

OSErrorGetServiceId

Version 1.10

based on template version 2.0

13

VECTOR > MICROSAR OS SafeContext Safety Manual

Timer handling The handling of timer hardware is realized as QM software.

Scheduling The correct sequence of processing application programs is realized with
QM-Software (priority handling, including Resources).

ORTI ORTl is realized as QM software.

Table 2-1 MICROSAR OS SafeContext Functionality

2.4.2.1.1 osGetConfigBlockVersion
Description of the osGetConfigBlockVersion-APIl. [SPMF92:0045]

Prototype

uintl6 osGetConfigBlockVersion (void)

Return code

uintlé The version number which was specified by the user in the
configuration attribute UserConfigurationversion.

Functional Description
Return user configuration version.

Particularities and Limitations

V ‘
[

Call context

> any

2.4.2.2 Not provided Functionality
The features listed in the following table are not supported in SafeContext per default.

Class Description

OS service API TerminateApplication

CheckISRMemoryAccess
CheckTaskMemoryAccess
StartScheduleTableSynchron
SyncScheduleTable
SetScheduleTableAsync

VvV V. V V V V

COM OSEK COM inter task communication with messages is not supported

Interrupt resources Resources are only available at task level.

Protection Reaction The only allowed protection reaction in the ProtectionHook is
PRO_SHUTDOWN. Other reactions will be interpreted as PRO_SHUTDOWN.
[SPMF92:0020]

© 2016 Vector Informatik GmbH Version 1.10 14
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

Class _____Descripton . _

Killing Terminating Tasks or Applications is not supported.

OS Hooks > PreTaskHook (only for debugging!)
> PostTaskHook (only for debugging!)

> ISRHook

>

PreAlarmHook

0S Application > StartupHook<AppName>
specific Hooks
ErrorHook<AppName>
> ShutdownHook<AppName>

Address Parameter In case API functions with output-parameters are called with illegal

Check address, they do not return with the error code
E_OS_ILLEGAL_ADDRESS as required by the AUTOSAR specification.
Instead the out parameter is written with the access rights of the caller,
which may lead to a memory protection violation in case the given pointer
is invalid.

Stack optimization Single stack model and stack sharing are not supported.

Internal Resources Internal Resources are not supported.

Configuration The following hooks must always be enabled:

Aspects > StartupHook
> ErrorHook
> ShutdownHook
> ProtectionHook

Only SCALABILITYCLASS SC3 or SC4 is supported. Memory protection
must be active.

STACKMONITORING must be enabled.
OSInternalChecks must be configured to Additional.
ORTIVersion = 2.0 is not supported.
ErrorInfolevel = Modulenames is not supported

Table 2-2 Functionality — Not provided

25 Safe State

The safe state in SafeContext is shutdown (endless loop with interrupts disabled). The
safe state is entered whenever the OS detects a violation of its safety goal or even an
attempt. Before the safe state is entered, the ShutdownHook is called. The
ShutdownHook may contain user code which is necessary to reach the defined safe state
of the system. This might lead to a reset in combination with a watchdog.

© 2016 Vector Informatik GmbH Version 1.10 15
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

3 Overview of Requirements to the OS User

For integration of the SafeContext into a particular context, the user has the following
requirements to be fulfilled. They can be seen as steps to integrate the SEooC in the ECU
without harming the assumed safety goal.

The top level requirements are listed in the following table. They are considered in more
detail later. If all sub-requirements are checked, you can check the according top level
requirement too.

Description of requirements to the OS user Fulfilled

Check that all assumptions made by SafeContext are valid
(see chapter “SafeContext Assumptions”)

Check code integrity of the used OS sources

(see chapter “OS Source Checksum”)

Add CRC into the configuration block after linkage
(see chapter “Patching the Configuration Block”)

Follow SafeContext guidelines
(see chapter “SafeContext Guidelines”)

Review the safety relevant configuration data
(see chapter “Configuration Block Review”)

Qualify the generated OS code
(see chapter “Generated OS Code”)

Review your software
(see chapter “Review User Software”)

Check specific requirements to the user
(see chapter “Hardware Specific Part”)

Caution
“ All requirements listed in this document must be checked and fulfilled by the user!

© 2016 Vector Informatik GmbH Version 1.10 16
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

OS Configuration
(OIL or ECUC)

[OS Generator }—

Static OS Generated OS
Sources Sources
ConfigBlock
OS Source
Checksum Ve
Qualify generated
Sources
Application (MssV)
Sources &
e
User Review }

Review User 1\
Software

v

e ™
Compiling + Configuration in
> Linking XML
N\ \l/ J
Executable SN Intermediate Read Back
! Format ConfigBlock
h 14
1
1
i
. ' In Human
Patching th !
Confiagl::rallgi%n B('elock _____ I () Readable
Hex Converter ConfigB|ock
Executable Hex File
Verify ConfigBlock
CRC 14

Flashing Read Back

Figure 3-1 Strategy for safety configuration

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

4 SafeContext Assumptions

All assumptions must be checked to be true. Assumptions concerning the focus of
SafeContext are given by the safety goals and related safety requirements described in
the safety case. Assumptions about the environment are described in this chapter.

Description of requirements to the OS user Fulfilled

Know the SafeContext concept

The system safety concept must not rely on OS functionality which is not part of the
SafeContext safety requirements. Only the safety requirements (see chapter “Safety
Requirements”) are assured by SafeContext.

[SPMF92:0075]

Timing and Scheduling

If timing and scheduling is safety critical in your application, you have to supervise this
by an external tool like e.g. SafeWatchdog.

[SPMF92:0050]

Know your memory configuration

Setup of memory sections must be planned by the system designer. Whether or not
the planned setup is configured correctly must be verified by reading the configuration
back from the ECU and reviewing it against system design and hardware manuals.
Know the OS specifications

The user shall read the OS specifications for OSEK OS and AUTOSAR OS.

Know how to use the OS

The user shall read the OS manuals:

> General Technical Reference Manual

> Specific Technical Reference Manual
Versions are listed in the delivered safety case.

Use only the delivered OS generator

The user shall only use the delivered OS generation tool for generating the user
specific configuration.

Correctness of processor

The processor provides its functionality with sufficient safety, so that the OS needs
not take care about potential hardware failure.

This might be assured by usage of a lockstep processor.

Correctness of memory

The memory works with sufficient safety, so that the OS needs not to take care about
potential hardware failure.
Correctness of MPU

The MPU provides its functionality with sufficient safety, so that the OS needs not
take care about potential hardware failure.

The OS provides an API (osCheckMPUAccess) which can be used by the user to
check the MPU.

Correctness of hardware manuals

© 2016 Vector Informatik GmbH Version 1.10 18
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

Description of requirements to the OS user Fulfilled

The Hardware manuals and the compiler manuals are sufficiently reliable, so that the
OS needs not take care about potential deviations between hardware functionality
and its description in the manuals.

Versions of the used hardware manuals are listed in the delivered safety case.

[SPMF92:0017]

Correctness of compiler tool chain

SafeContext assumes that the compiler, assembler and linker generate code with the
required safety level.

Correctness of compiler version and options

The used compiler version and options are identical to them which are used during
development.

Used compiler version and options are listed in the delivered safety case.
Code integrity

The source code and generated configuration of MICROSAR OS SafeContext is
compiled, linked and downloaded to the ECU correctly and not modified afterwards.

[SPMF92:0043]

Context definition
The user shall not rely on registers, which are not part of the context of the OS.
The context definition is listed in chapter 4.1

Hardware handled by the OS shall not be manipulated by user code

User code shall not handle hardware which is handled by the OS. This may include:
> Interrupt Controller [SPMF92:0083]

> MPU [SPMF92:0085]

> Timer

Don't manipulate short addressing base registers

Do not manipulate registers which are used by the compiler for relative addressing of
code or data. [SPMF92:0084]

Table 4-1 General SafeContext Assumptions

© 2016 Vector Informatik GmbH Version 1.10 19
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

4.1 Context Definition
The context which is used by MICROSAR OS RH850 consists of the following registers:

FPU used Registers Size in Bytes FPU not used Registers Size in Bytes
R4 284 =112 R4 284 =112
R5 R5
R30 R30
R31 R31
total size = 152 total size = 144
EIPC 4
EIPSW 4
CTPC 4 EIPC 4
CTPSW 4 EIPSW 4
MPLAO 4 CTPC 4
MPUAO 4 CTPSW 4
FPSR 4 MPLAO 4
FPEPC 4 MPUAO 4

Caution
FPU setting in OS configuration must match the used compiler FPU option!

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

20

VECTOR > MICROSAR OS SafeContext Safety Manual

5 OS Source Checksum

The OS is delivered as source code. To assure that source code files are not altered after
the testing and release a checksum is calculated. The user shall calculate the checksum to
verify the correctness of the source code he is using. [SPMF92:0042]

A checksum calculation program (CCodeSafe.exe) is provided to the user. It is called with
the following argument:

CCodeSafe.exe <config.ini>

This tool calculates the CRC32 checksum over all files specified in file <config.ini>.

Description of requirements to the OS user m

Use the delivered source files from Vector! Do not use changed copies in a productive
system! Also consider header include order of the compiler.

The file <config. ini> shall contain the OS sources listed in the Safety Case.

The calculated checksum returned by tool CCodeSafe.exe must be identical to the
checksum given in the Safety Case.

© 2016 Vector Informatik GmbH Version 1.10 21

based on template version 2.0

VECTOR D> MICROSAR OS SafeContext

P L A A A A A A A A A A A A A L A A A

Example
An example for a <config.ini> file:

.\implementation\atosappl.c
.\implementation\atostime.c
.\implementation\osek.c
.\implementation\osekalrm.c
.\implementation\osekasm.c
.\implementation\osekerr.c
.\implementation\osekevnt.c
.\implementation\osekrsrc.c
.\implementation\oseksched.c
.\implementation\osekstart.c
.\implementation\osektask.c
.\implementation\osektime.c
.\implementation\osOstmHiRes.c
.\implementation\osSysCall.c
.\implementation\Os.h
.\implementation\Os Cfg.h
.\implementation\osDerivatives.h
.\implementation\osek.h
.\implementation\osekasm.h
.\implementation\osekasrt.h
.\implementation\osekcov.h
.\implementation\osekerr.h
.\implementation\osekext.h
.\implementation\oseksched.h
.\implementation\osINTC2.h
.\implementation\osRH850 F1L.h
.\implementation\testmacl.h
.\implementation\vrm.h
.\implementation\osSysCallTable.dld

© 2016 Vector Informatik GmbH Version 1.10

based on template version 2.0

Safety Manual

22

VECTOR > MICROSAR OS SafeContext Safety Manual

6 Patching the Configuration Block

Configuration information which is relevant to reach the safety goals is stored in a data
structure called the configuration block. The integrity of this information is checked in
Start0Os using a CRC16 checksum.

The CRC must be calculated after compiling and linking the application. There are two
programs provided to calculate and apply the CRC patch into the binary file:

ElfConverter.exe For patching the CRC into an ELF file.

Creating an intermediate file for reading back the configuration
block is also possible with this tool.

ConfigBlockCRCPatch.exe For patching the CRC into an Intel HEX or Motorola SREC file.

The following steps are necessary to patch the configuration block:
1. Compile and link the complete application project to build the executable
2. Run CRC patch tool on executable
3. Write modified executable into ECU flash memory

Description of requirements to the OS user Fulfilled

Check that CRC is non-zero. If so, change user configuration version to avoid zero CRC.
[SPMF92:0071]

© 2016 Vector Informatik GmbH Version 1.10 23
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

6.1 Using ElfConverter
The program ElfConverter.exe is called with the following parameters:

ElfConverter.exe <Input-File> <Output-File> --crc patch

Parameter Description ‘

<Input-File> Input file with ELF-format which was built by the compiler tool chain

<Output-File> Intermediate output file which is used by the tool ConfigViewer.exe for
reading back the configuration block.

--crc_patch Patch CRC checksum into ELF-file

--help Show help

Table 6-1 ElfConverter Parameters

Example
Patching the CRC checksum into configuration block of ELF-file testappl.out:

ElfConverter.exe testappl.out testcfg.hex --patch crc

6.2 Using ConfigBlockCRCPatch
The tool ConfigBlockCRCPatch.exe is called with the following parameters:

ConfigBlockCRCPatch.exe <Input-File> <Output-File> <Base-Address>

Example
E Read HEX-file project.hex and create file project2.hex with patched CRC checksum:
ConfigBlockCRCPatch.exe project.hex project2.hex 0x4000

Read SREC-file project.mot and create file project2.mot with patched CRC checksum:

ConfigBlockCRCPatch.exe project.mot project2.mot 0x4000

The address of the configuration block must be taken via symbol _osConfigBlock from
the linker generated map file. [SPMF92:0016]

© 2016 Vector Informatik GmbH Version 1.10 24
based on template version 2.0

VECTOR D> MICROSAR OS SafeContext

7

7.1

SafeContext Guidelines

Configuration

Description of requirements to the OS user

Non-ASIL user code shall be part of Non-Trusted Applications

All non-ASIL user code must be executed by Non-Trusted Applications with no write
access to safety relevant data (including stacks) and no read or write access to

safety relevant peripherals. [SPMF92:02.0034]
ASIL user code shall not violate the SafeContext safety goals

All user code, which has access to safety relevant data (including stacks, and OS
data) or peripherals, must be implemented on ASIL level. This code shall never

violate the safety goals of SafeContext. [SPMF92:0011]

Code which typically has access to safety relevant data (depending on user
configuration):

Trusted Functions [SPMF92:0080] [SPMF92:03.0008]
Trusted Tasks

Trusted ISRs

System Hooks

>

>
>
>

>
>

>

All data sections shall be linked with MPU alignment granularity (e.g. 32 bytes). See
the controller’'s reference manual to know what the MPU granularity i

\Y

\%

>

>

StartupHook [SPMF92:0040] [SPMF92:03.0007]
ErrorHook [SPMF92:0012] [SPMF92:03.0006]
ProtectionHook [SPMF92:0009] [SPMF92:03.0005]
ShutdownHook [SPMF92:0013] [SPMF92:03.0009]

Safety Manual

Reset Handler / Startup Code [SPMF92:0005] [SPMF92:03.0001]
Exception Handlers [SPMF92:0087] [SPMF92:03.0010]
Category 1 ISRs [SPMF92:0054] [SPMF92:03.0004] [SPMF92:03.0010]

Alignment of data sections

[SPMF92:0065] [SPMF92:04.0005]
Consider category 1 ISRs

Category 1 ISRs are completely transparent to the OS. The OS does not perform
stack switching for category 1 ISRs! Consider this during configuration of stack

sizes. [SPMF92:0086]

NMIs shall be category 1 ISRs

Non-maskable Interrupts (NMI) shall be configured to be category 1 ISRs.
[SPMF92:0053] [SPMF92:03.0002]

Link global safety data considering stack growing direction

Link global safety data (all OS data and at least ASIL relevant application data) so
that it cannot be corrupted by stack overflows (see Figure “Linking example” below

for an example). [SPMF92:0091]

FPU setting in OS configuration must match compiler

[SPMF92:04.0019]

© 2016 Vector Informatik GmbH Version 1.10

based on template version 2.0

FPU option.

25

VECTOR > MICROSAR OS SafeContext Safety Manual

Description of requirements to the OS user Fulfilled
Check that osdRH850_FPU is only defined in file tcb.h and in osek.h

If compiler option -fnone or -fsoft is used, then assure that in OS
configuration the attribute SupportFPU is set to FALSE and that in file tcb.h
the following line is generated:

#define osdRH850 FPU 0

If compiler option -fsingle or -fhard is used, then assure that in OS
configuration the attribute SupportFPU is set to TRUE and that in file tcb.h

the following line is generated:
#define osdRH850 FPU 1

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

26

VECTOR > MICROSAR OS SafeContext Safety Manual

7.2 Linking Example for Memory Mapping
The memory mapping should look like following example:

Supervisor User
Address Space Address Space Legend

OXFFFFFFFF OXFFFFFFFF

[writeable

— Peripherals + Peripherals

Application Data Application Data

Global Shared Data
OS Data

~RAM —RAM

Stacks | Stacks —

Current Stack --

Current Stack -

- ROM ~ROM

0x00000000 0x00000000

Figure 7-1 Linking Example

© 2016 Vector Informatik GmbH Version 1.10 27
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8 Configuration Block Review

The configuration of MICROSAR OS SafeContext is generated into C-code. The generator
itself has not been developed in accordance to ASIL. Therefore, the generated
configuration information needs to be reviewed. The safety relevant configuration is
generated into a structure called configuration block (or ConfigBlock). This chapter
describes how to review this ConfigBlock. As the ConfigBlock is simply a constant data
structure in the flash memory of an ECU, humans will have difficulties to read it. Therefore,
the configuration viewer is able to transform the ECU internal representation into a human
readable format. The process of reading the ConfigBlock and transforming it into the
human readable format is described in the following subchapter. [SPMF92:0038]

The setup of the memory protecting hardware depends on the correct configuration of the
OS. All configuration parameters, which are necessary to ensure the safety goal, are
stored in a contiguous memory block (configuration block). The configuration block can be
located to a fix address and can be read back from the ECU, e.g. by XCP or a debug
interface. [SPMF92:0034]

The configuration block is secured by a CRC16 checksum. The way how the configuration
block is read back does not need to be safe. The configuration block is translated into a
human readable format to allow a review against the intended configuration.

8.1 How to Read Back the Configuration
The configuration is read back in two steps:

1. Patch CRC checksum into executable file and create the intermediate file:
a) use ElfConverter.exe for CRC patch and intermediate file creation

b) or use ConfigBlockCRCPatch.exe for CRC patch and use HexConverter.exe for
intermediate file creation

2. Extract the configuration block from intermediate file into human readable output by
using the tool ConfigViewer.exe

The configuration block format is platform dependent. Also this information may be
retrieved in different ways, e.g. as the HEX output of the linker or as an upload from the
ECU via a protocol like XCP. As this may result in various file formats a conversion into an
intermediate format is required.

© 2016 Vector Informatik GmbH Version 1.10 28
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.1.1 Using ElfConverter

The tool ElfConverter.exe is able to patch CRC into ELF-file and create the intermediate
file for reading back the configuration block. It is called with the following parameters:

ElfConverter.exe <Input-File> <Output-File> --crc patch

Parameter Descripton

<Input-File> Input file with ELF-format which was built by the compiler tool chain

<Output-File> Intermediate output file which is used by the tool ConfigViewer.exe for
reading back the configuration block.

--crc_patch Patch CRC checksum into ELF-file

--help Show help

Table 8-1 ElfConverter Parameters

8.1.2 Using HexConverter

The tool HexConverter.exe creates the intermediate file for reading back the configuration
block. It must be used after the CRC is patched via tool ConfigBlockCRCPatch.exe. Tool
HexConverter.exe is called with the following parameters:

HexConverter.exe -i <Input-File> -o <Output-File> -b <Address> -s <Size>

All parameters are mandatory.

-i Input File Path and Name File which was created by ConfigBlockCRCPatch.exe
-0 Output File Path and Intermediate output file which is used by the tool
Name ConfigViewer.exe for reading back the configuration
block.
-b Base Address of data Base address of the configuration block as defined in the
structure _osConfigBlock linker map file.
(see linker map file) It is the address of the symbol ‘osConfigBlock’.

Value has to be given as hexadecimal (e.g. 0x008000).

-s OxFFFF This value must be at least the size of the configuration
block in byte. Bigger values are also allowed.

E.g. this value can be set to OXFFFF

Table 8-2 HexConverter parameters

© 2016 Vector Informatik GmbH Version 1.10 29
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.1.3 Using ConfigViewer

The tool ConfigViewer.exe reads the intermediate file and creates a human readable file.
The intermediate input file must be generated via tool EIfConverter.exe or
HexConverter.exe. ConfigViewer.exe is called with the following parameters:

ConfigViewer -i <Input-File> -o <Output-File> -x <XML-File>

-i Input File Path & Name Intermedia input file which was created by
ElfConverter.exe or HexConverter.exe

-o Output File Path & Name Human readable configuration output file

-X XML-ConfigFile optional: XML-file which was generated by the OS
generator with additional description of the OS
configuration

Table 8-3 ConfigViewer Parameters

ConfigViewer.exe expects the intermediate file format to contain nothing else than the
configuration block with patched CRC checksum.

© 2016 Vector Informatik GmbH Version 1.10 30
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.2 Configuration Block Head
The configuration block head contains information to identify the configuration block.

Example
The configuration block head must look like:

Start of Config Block 0x00004000
Length 636

CRC 0x14e9
Config Block Format Version 03.00
MICROSAR OS RH850 SafeContext Version 01.06

User Config Version 1

Description of requirements to the OS user m

Check that the listed start address, length and CRC is correct and matches the linker
map file of symbol osConfigBlock.

Check that the listed configuration block format is 03.00
Check that the listed version of MICROSAR OS RH850 SafeContext matches the
delivered OS version.

If you are using the user configuration version, check that the listed one matches the
configured value. [SPMF92:0045]

The names printed by the ConfigViewer come from an unsafe source. For this reason
check that object IDs and object Names have the same mapping in all configuration
block sub-containers.

© 2016 Vector Informatik GmbH Version 1.10 31
based on template version 2.0

VECTOR >

8.3 General Information

The configuration viewer generates the general information as followed [SPMF92:0063].

Example
The container “General Information” must look like:

0. General Information

MICROSAR OS SafeContext

Safety Manual

Stack Usage Measurement

Number of
Number of
Number of
Number of
Number of
Number of
Number of
Number of
Number of
Number of
Number of
Number of
Number of
Number of
Number of
Number of
Number of

Tasks

Catl ISRs

Cat2 ISRs

Trusted Functions
Non-Trusted Functions
Applications
Peripheral Regions
Alarms

all Resources

CPU Cores

Counters

Processes
ScheduleTables
Spinlocks

MPU Regions

Dynamic MPU Regions
Static MPU Regions

System Stack Start-Address
System Stack End-Address

O ORPEFEPNEFEFREPENOWOR W

1

O0xfedf0720
0xfedf08b0

Note
ﬂ To minimize variants in code, the OS generator introduces dummies for each OS object
type. These dummies can be identified by the prefix osSystem and are handled the

same way like other OS objects. None of these objects are active at runtime.

© 2016 Vector Informatik GmbH

based on template version 2.0

Version 1.10

32

VECTOR > MICROSAR OS SafeContext Safety Manual

Description of requirements to the OS user

Check that the listed number of OS objects matches the OS configuration. (Consider
that dummy OS objects are generated, to minimize variants in the OS code.)

Check number of listed OS objects matches the elements in the following sub
containers. [SPMF92:0074]

Check the number of MPU regions which are provided by the used CPU derivative.

Check the number of dynamic MPU regions which must be same as the number of
MPU regions configured in the application with most dynamic MPU regions.

Check the number of static MPU regions configured for the OS.
Check the stack MPU values lower address matches the corresponding stack start
address

Compare the system stack start address in the configuration viewer output against
the label _osSystemStack _<CorelD>_StartAddr in the linker map-file.

Compare the system stack end address in the configuration viewer output against
the label _osSystemStack _<CorelD>_EndAddr in the linker map-file.

Check that both labels are 4 Byte aligned [SPMF92:04.0002]. This prevents that any
data of other sections is accessible by the same MPU region.

Check that only the array variable osSystemStack<CorelD> is located between the
labels described above.

Check the difference between the system stack start- and end-address against the
designed (and therefore also configured) system stack size.

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

Fulfilled

33

VECTOR > MICROSAR OS SafeContext Safety Manual

8.4 Task Start Address

Container “Task Start Address” contains the start addresses of all task functions.

Example
The container “Task Start Address” must look like:

1. Task Start Address:

Task-ID Task-Name Value Checked?
0 (osSystemExtendedTask) 0x00007cea []
1 (Task2) 0x0000553a []
2 (Taskl) 0x00005508 [1]
3 (osSystemBasicTask) 0x00007ce8 []

Description of requirements to the OS user Fulfilled

Check that the listed Task start addresses match to the function start address called
<Task-Name>func (see linker map file). [SPMF92:02.0025]

© 2016 Vector Informatik GmbH Version 1.10 34
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.5 Task Pre-emptive Configuration

Container “Task Pre-emptive Attribute Setting” contains information about which task is
full-pre-emptive or non-pre-emptive.

Example
Container “Task Pre-emptive Attribute Setting" must look like:

2. Task Pre-emptive Attribute Setting:

Task-ID Task-Name Value Checked?
0 (osSystemExtendedTask) full pre-emptive []
1 (Task2) full pre-emptive []
2 (Taskl) full pre-emptive []
3 (osSystemBasicTask) non pre-emptive []

Description of requirements to the OS user Fulfilled

Check that the listed task pre-emptive attribute settings matches the OS
configuration.

© 2016 Vector Informatik GmbH Version 1.10 35
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.6 Task Trusted Configuration

Container "Task Trusted Attribute Setting” contains information about which task is trusted
or non-trusted.

Example
Container “Task Trusted Attribute Setting” must look like:

3. Task Trusted Attribute Setting:

Task-ID Task-Name Value Checked?
0 (osSystemExtendedTask) trusted []
1 (Task2) non-trusted [1]
2 (Taskl) non-trusted []
3 (osSystemBasicTask) trusted []

Description of requirements to the OS user Fulfilled

Check that the trusted attribute setting of each task fits to the trusted attribute setting
of the owner application [SPMF92:0061].

© 2016 Vector Informatik GmbH Version 1.10 36
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.7 Task Stack Addresses

Container “Task Stack Lower Boundary Address” contains start address of all task stacks.

Example
Container “Task Stack Lower Boundary Address” must look like:

4. Task Stack Lower Boundary Address:

Task-ID Task-Name Value Checked?
0 (osSystemExtendedTask) 0xfedf08b0 []
1 (Task?2) 0xfedf0590 []
2 (Taskl) O0xfedf0720 [1]
3 (osSystemBasicTask) Oxfedf08cO [1]

Container “Task Stack Upper Boundary Address” contains end address of all tasks stacks.

Example
Container “Task Stack Upper Boundary Address” must look like:

5. Task Stack Upper Boundary Address:

Task-ID Task-Name Value Checked?
0] (osSystemExtendedTask) 0xfedf08cO []
1 (Task2) Oxfedf0720 [1]
2 (Taskl) Oxfedf08b0 [1]
3 (osSystemBasicTask) Oxfedf08d0 [1]

Description of requirements to the OS user m

Check that the difference between stack start and stack end address fits to the
configured size of each task stack.

Check that the stacks do not overlap [SPMF92:0056]. Start address of stack on higher
address must be >= end address of stack on lower address.

Compare address value of each stack with the address given in the linker map file.

Check that all task stack sizes are a multiple of 4 Bytes [SPMF92:04.0008]. This
prevents that any data of another section is accessible in the same MPU region.

© 2016 Vector Informatik GmbH Version 1.10 37
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.8 Task to Application Mapping

Container “Task to Application Mapping” contains the assignment of tasks to applications.

Example
Container “Task to Application Mapping” must look like:

6. Task to Application Mapping:

Task-ID Task-Name Appl-ID Appl-Name Checked?
0 (osSystemExtendedTask) 3 (osSystemApplicationCore0) []
1 (Task2) 0 (ApplNonTrust) []
2 (Taskl) 0 (ApplNonTrust) [1]
3 (osSystemBasicTask) 3 (osSystemApplicationCore0) []

Description of requirements to the OS user Fulfilled

The configuration of each application contains a list of the tasks which belong to this
application. Check for each of the named applications that it owns exactly those tasks
listed in the configuration viewer output. [SPMF92:0062]

© 2016 Vector Informatik GmbH Version 1.10 38
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.9 Category 2 ISR Trusted Configuration

Container “Category 2 ISR Trusted Attribute Setting” contains information about which
category 2 ISR is trusted or non-trusted.

Example
Container “Category 2 ISR Trusted Attribute Setting” must look like:

7. Category 2 ISR Trusted Attribute Setting:

ISR-ID ISR-Name Value Checked?
0 (ISR1) trusted [1]
1 (osOstmInterrupt c0) trusted [1]
2 (osSystemCat2ISR) trusted []

Description of requirements to the OS user Fulfilled

Check that the trusted attribute setting of each category 2 ISR fits to the trusted
attribute setting of the owner application.

Note
ﬂ The trusted attribute setting of the system timer ISR osOstminterrupt_c<CorelD>
cannot be configured because it is always a trusted ISR.

© 2016 Vector Informatik GmbH Version 1.10 39
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.10 Category 2 ISR to Application Mapping

Container “Category 2 ISR to Application Mapping” contains the assignment of category 2
ISR functions to applications.

Example
Container “Category 2 ISR to Application Mapping ” must look like:

8. Category 2 ISR to Application Mapping:

ISR-ID ISR-Name Appl-ID Appl-Name Checked?
0 (ISR1) 1 (abcAppl) [1]
1 (osOstmInterrupt c0) 2 (osSystemApplicationCore0) [1]
2 (osSystemCat2ISR) 2 (osSystemApplicationCore0) []

Description of requirements to the OS user Fulfilled

The configuration of each application contains a list of ISRs which belong to this
application. Check for each of the named applications that it owns exactly those ISRs
which are listed in the configuration viewer output [SPMF92:02.0028].

Check that category 1 ISRs are not listed in the configuration block [SPMF92:0055].

© 2016 Vector Informatik GmbH Version 1.10 40
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.11 Application Trusted Configuration

Container “Application Trusted Attribute Setting” contains information about which
application is trusted or non-trusted.

Example
Container “Application Trusted Attribute Setting” must look like:

9. Application Trusted Attribute Setting:

Application-ID Application-Name Value Checked?
0 (ApplStartVectCorel) trusted []
1 (abcAppl) trusted []
2 (osSystemApplicationCore(0) trusted []

Description of requirements to the OS user Fulfilled

Check that the trusted attribute of the listed applications matches to the OS
configuration. [SPMF92:02.0027]

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

41

VECTOR > MICROSAR OS SafeContext Safety Manual

8.12 Trusted Functions Configuration

Container “Trusted Functions Start address and Application Mapping” contains the
configuration of trusted functions.

Example
Container “Trusted Functions Start Address and Application Mapping” must look like:

10. Trusted Functions Start Address and Application Mapping:

Function-ID Function-Name Start-Address Appl-ID Appl-Name Checked?
0 (TF1) 0x0000560c 4 (TrustedApplB) [1]
1 (TF2) 0x0000564c 4 (TrustedApplB) [1]
2 (TF3) 0x000056£0 4 (TrustedApplB) []
3 (osSystemTrustedFunction) 0x00007ed2 5 (osSystemApplicationCore0) [1]
4 (step) 0x0000d3do6 3 (TraceAppl) [1]

Description of requirements to the OS user m

Check that the listed Trusted Function IDs match to the corresponding defines of
function names generated in tcb.h. [SPMF92:0048]

Check that the listed Trusted Function start addresses matches the Trusted Function
start addresses called TRUSTED <TrustedFunctionName> (see linker map file).
[SPMF92:0057]

The configuration of each application contains a list of the trusted functions which
belong to this application. Check for each of the named applications that it owns
exactly those trusted functions listed in the configuration viewer output.

© 2016 Vector Informatik GmbH Version 1.10 42
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.13 Non-Trusted Functions Configuration

Container “Non-Trusted Functions Start Address and Application Mapping” contains the
configuration of non-trusted functions.

Example
Container “Non-Trusted Functions Start Address and Application Mapping” must look like:

11. Non-Trusted Functions Start Address and Application Mapping:

Function-ID Function-Name Start-Address Appl-ID Appl-Name Checked?
0 (NTFuncl) 0x000054dc 2 (NonTrustedApplA) []
1 (NTFunc?2) 0x000068e6 3 (NonTrustedApplB) []

Description of requirements to the OS user Fulfilled

Check that the listed Non-Trusted Function start addresses matches the address of
symbols NONTRUSTED <NonTrustedFunctionName> (see linker map file).
[SPMF92:02.0024]

Check that the listed Non-Trusted Function to application assignment matches the OS
configuration. [SPMF92:02.0029]

© 2016 Vector Informatik GmbH Version 1.10 43
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.14 Category 2 ISR Start Addresses

Container “Category 2 ISR Function Start Address” contains the start address of all
category 2 ISR functions.

Example
Container “Category 2 ISR Function Start Address” must look like:

12. Category 2 ISR Function Start Address:

ISR-ID ISR-Name Value Checked?
0 (ISRNonTrust) 0x000054b6 []
1 (osSystemCat2ISR) 0x00007cac []

Description of requirements to the OS user m

Check that the listed category 2 ISR start addresses match to the function start
address called _<ISR-Name>func (see linker map file). [SPMF92:02.0026]

Note

ﬂ In case the ISR has a configured SpecialFunctionName, search for the symbol
_<SpecialFunctionName>func instead, which is located at the address, shown in
the configuration block.

© 2016 Vector Informatik GmbH Version 1.10 44
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.15 Category 2 ISR Nesting Configuration

Container “Category 2 ISR Nested Attribute Setting” contains information about which
category 2 ISR is nestable or non-nestable.

Example
Container “Category 2 ISR Nested Attribute Setting” must look like:

13. Category 2 ISR nested attribute setting:

ISR-ID ISR-Name Value Checked?

0 (TestTimerl) nested []
(osOstmInterrupt c0) nested [1]

2 (osSystemCat2ISR) non-nested []

Description of requirements to the OS user Fulfilled

Check that the listed category 2 ISR nested attributes match the OS configuration.
[SPMF92:02.0031]

© 2016 Vector Informatik GmbH Version 1.10 45
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.16 Process to Core Mapping

Container “Process to Core Mapping” contains mapping information of all processes to the
available cores. The term “process” means the superset of Tasks and ISRs.

Example
Container “Process to Core Mapping” must look like:

14. Process to Core Mapping:

Process—-ID Process-Name Core—-ID Core—-Name Checked?
0 (osSystemExtendedTask) 0 (Core0) [1]
1 (TaskTrust) 0 (Core0) [1]
2 (osSystemBasicTask) 0 (Core0) []
3 (ISRNonTrust) 0 (Core0) []
4 (osSystemCat2ISR) 0 (Core0) []

Description of requirements to the OS user m

Check that the listed Task and ISR to core assignment matches the OS configuration.
In single core systems the core ID should be identical in all “to core” sub-containers.

Note
ﬂ In single core systems the core ID should be identical in all “to-core” sub-containers.

© 2016 Vector Informatik GmbH Version 1.10 46
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.17 Alarms to Core Mapping

Container “Alarms to Core Mapping” contains the mapping of Alarms to processor cores.

Example
Container “Alarms to Core Mapping” must look like:

15. Alarms to Core Mapping:

Alarm-ID Alarm-Name Core-ID Core-Name Checked?
0 (AlarmO) 0 (Core0) [1]
1 (Alarml) 0 (Core0) [1]
2 (Alarm?2) 0 (Core0) [1]
3 (osSystemAlarm) 0 (Core0) []

Description of requirements to the OS user Fulfilled

Check that the listed Alarms to core assignment matches the OS configuration.

© 2016 Vector Informatik GmbH Version 1.10 47
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.18 Resources to Core Mapping

Container “Resources to Core Mapping” contains the mapping of Resources to processor
cores.

Example
Container “Resources to Core Mapping” must look like:

16. Resources to Core Mapping:

Resource-ID Resource-Name Core-ID Core-Name Checked?

0 (RES_SCHEDULER) 0 (Core0) []
(osSystemResource) 0 (Core0) []

2 (resourceConfl) 0 (Core0) []

Description of requirements to the OS user Fulfilled

Check that the listed Resources to core assignment matches the Resource usage.
All Tasks and ISRs, which use a Resource, shall belong to OS Applications, which
belong to the listed core.

© 2016 Vector Informatik GmbH Version 1.10 48
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.19 Counters to Core Mapping

Container “Counters to Core Mapping” contains the mapping of Counters to processor
cores.

Example
Container “Counters to Core Mapping” must look like:

17. Counters to Core Mapping:

Counter-ID Counter—-Name Core-ID Core-Name Checked?

0 (AddCount) 0 (Core0) [1]
(osSystemSWCounter) 0 (Core0) [1]

2 (SystemTimer) 0 (Core0) []

Description of requirements to the OS user Fulfilled
Check that the listed Counter to core assignment matches to the OS configuration.

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

49

VECTOR > MICROSAR OS SafeContext Safety Manual

8.20 Schedule Tables to Core Mapping

Container “Schedule Tables to Core Mapping” contains the mapping of Schedule Tables to
processor cores.

Example
Container “Schedule Tables to Core Mapping” must look like:

18. Schedule Tables to Core Mapping:

ScheduleTable-ID ScheduleTable-Name Core-ID Core-Name Checked?
0 (ScT1) 0 (Core0) []
1 (ScT2) 0 (CoreO) []
2 (ScT3) 0 (Core0) [1]
3 (ScT4) 0 (Core0) [1]
4 (osSystemSchT) 0 (Core0) []

Description of requirements to the OS user Fulfilled

Check that the listed Schedule Tables to core assignment matches the OS
configuration.

© 2016 Vector Informatik GmbH Version 1.10 50
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.21 Application to Core Mapping

Container “Applications to Core Mapping” contains the mapping of applications to
processor cores.

Example
Container “Applications to Core Mapping” must look like:

19. Applications to Core Mapping:

Application-ID Application-Name Core-ID Core-Name Checked?
0 (allAppl) 0 (Core0) []
(osSystemApplicationCore0) O (Core0) []

Description of requirements to the OS user Fulfilled

Check that the listed Applications to core assignment matches the OS configuration.

© 2016 Vector Informatik GmbH Version 1.10 51
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.22 Trusted Functions to Core Mapping

Container “Trusted Functions to Core Mapping” contains the mapping of Trusted Functions
to processor cores.

Example
Container “Trusted Functions to Core Mapping” must look like:

20. Trusted Functions to Core Mapping:

Function-ID Function-Name Core-ID Core-Name Checked?

0 (TF1) 0 (Core0) [1]
(TriggerISR1) 0 (Core0) []

2 (osSystemTrustedFunction) 0 (Core0) []

Description of requirements to the OS user Fulfilled

Check that the listed Trusted Functions to core assignment matches the OS
configuration.

© 2016 Vector Informatik GmbH Version 1.10 52
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.23 Non-Trusted Functions to Core Mapping

Container “Non-trusted Functions to Core Mapping” contains the mapping of Non-Trusted
Functions to processor cores.

Example
Container “Non-Trusted Functions to Core Mapping” must look like:

21. Non-Trusted Functions to Core Mapping:

Function-ID Function-Name Core-ID Core-Name Checked?

0 (NTF1) (Core0) [1]
(NTEZ2) (Core0) [1]

2 (NTE3) (Core0) [1]

Description of requirements to the OS user Fulfilled

Check that the listed Non-Trusted Functions to core assignment matches the OS
configuration.

© 2016 Vector Informatik GmbH Version 1.10 53
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.24 Core Control Block Address

Container “Core Control Block Start Address” contains the start address of the core
specific control block data structure.

Example
Container “Core Control Block Start Address" must look like:

22. Core Control Block Start Address:

Description of requirements to the OS user Fulfilled

Check that the listed Control Block Start Address matches to the start address of
RAM data structure called osCtrlvarsCore0 (see linker map file).

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

54

VECTOR > MICROSAR OS SafeContext Safety Manual

8.25 Peripheral Regions Configuration

Container “Peripheral Regions Configuration” contains information about peripheral
regions configuration. [SPMF92:02.0030]

Example
Container “Peripheral Regions Configuration” must look like:

23. Peripheral Regions Configuration:

Region-ID Region-Name Start-Addr End-Addr Application-Name Application-ID Checked?
(IORegion0) 0xff030000 OxffO3ffff (AppNT1) 0 []
(IORegionl) 0xff080000 O0xff080fff (AppNTL1) 0 []

2 (IORegion2) 0xffff0000 OxffffO0O0ff (AppNT2) 1 []

Description of requirements to the OS user m

Check that the listed peripheral region start and end addresses match the OS
configuration.

Check that the listed accessing application names match the OS configuration.

© 2016 Vector Informatik GmbH Version 1.10 55
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.26 Spinlock Lock Method

Container “Spinlock Lock Method” contains information about how spinlocks prevent
interruption by ISRs and pre-emption by tasks with higher priority.

Possible settings are:
LOCK ALL INTERRUPTS
LOCK CAT2 INTERRUPTS
LOCK_WITH RES SCHEDULER
LOCK_NOTHING

This container is always available but only relevant in multi core systems.

Example
Container “Spinlock Lock Method” must look like:

24. Spinlock Lock Method: N/A

8.27 Spinlock Config Type

Container “Spinlock Config Type” contains information whether the spinlock type is
standard AUTOSAR or optimized.

This container is always available but only relevant in multi core systems.

Example
Container “Spinlock Config Type” must look like:

25. Spinlock Config Type: N/A

8.28 Optimized Spinlock Variable Addresses

Container “Optimized Spinlock Variable Addresses” contains information about the variable
addresses of optimized spinlocks. Standard AUTOSAR spinlocks have no such address,
so there will be a NULL pointer for them.

This sub-container is always available but only relevant in multi core systems.

© 2016 Vector Informatik GmbH Version 1.10 56
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

Example
Container “Optimized Spinlock Variable Addresses” must look like:

26. Optimized Spinlock Variable Address: N/A

8.29 Category 2 ISR Stack Address

Container “Category 2 ISR Stack Address Area” contains the stack start and stack end
address of all category 2 ISR functions.

Example
Container “Category 2 ISR Stack Address Area” must look like:

27. Category 2 ISR Stack Addresses:

ISR-ID ISR-Name Start-Address End-Address Checked?

0 (ISRNonTrust) Oxfedf0400 0xfedf0800 [1]
(ISRTrust) Oxfedf0800 OxfedfO0AO0O [1

2 (osSystemCat2ISR) 0x00000000 0x00000000 [1

Check that for each listed category 2 ISR the start and end address matches to the

stack of the corresponding interrupt priority level. See linker map file for symbols
_osintStackLevel<PriorityLevel>_c<CorelD>

8.30 Category 2 ISR Interrupt Channel Index

Container “Category 2 ISR Interrupt Channel Index” contains the interrupt channel index of
all category 2 ISR functions.

© 2016 Vector Informatik GmbH Version 1.10

57
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

Example
Container “Category 2 ISR Interrupt Channel Index” must look like:

28. Category 2 ISR Interrupt Channel Index:

ISR-ID ISR-Name Channel-Index Checked?
0 (TestTimerl) 75 []
1 (osOstmInterrupt c0) 76 [1]
2 (osSystemCat2ISR) 0 []

Description of requirements to the OS user Fulfilled

Check that for each listed category 2 ISR the interrupt channel index matches to the
OS configuration.

8.31 Category 2 ISR Priority Level

Container “Category 2 ISR Interrupt Priority Level” contains the priority level of all category
2 ISR functions.

Example
Container “Category 2 ISR Interrupt Priority Level” must look like:

29. Category 2 ISR Interrupt Priority Level:

ISR-ID ISR-Name Priority Checked?
0 (TestTimerl) 6 []
1 (osOstmInterrupt c0) 6 []
2 (osSystemCat2ISR) 128 []

Description of requirements to the OS user Fulfilled

Check that for each listed category 2 ISR the interrupt priority level matches to the
OS configuration.

© 2016 Vector Informatik GmbH Version 1.10 58
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

Description of requirements to the OS user
Note: The interrupt priority of system ISR 0osSystemCat2ISR is always 128.

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

Fulfilled

59

VECTOR > MICROSAR OS SafeContext Safety Manual

8.32 Category 2 ISR to Core Mapping

Container “Category 2 ISR to Core Mapping” contains the mapping of category 2 ISRs to
processor cores. [SPMF92:02.0030]

Example
Container “Category 2 ISR to Core Mapping” must look like:

30. Category 2 ISR to Core Mapping:

ISR-ID ISR-Name Core-ID Core-Name Checked?
0 (TestTimerl) 0 (Core0) [1]
1 (osOstmInterrupt c0) O (Core0) [1
2 (osSystemCat2ISR) 0 (Core0) []

Description of requirements to the OS user Fulfilled
Check that the listed category 2 ISR to core assignment matches the OS
configuration.

© 2016 Vector Informatik GmbH Version 1.10 60

based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.33 Application MPU Configuration

Container “Application MPU Configuration” contains the dynamic MPU region settings of all

applications. [SPMF92:02.0030]

Example
Container “Application MPU configuration” must look like:

31. Application MPU configuration:

Appl-ID Appl-Name Region Start-Addr End-Addr Checked?
o @peLl) 1 Oxfedf2000 Oxfedf2lff []
1 @peL2) 1 Oxfedf2200 Oxfedf23ff []
> @apeL3) 1 Oxfedf3000 Oxfedf3fff []
3 (ApplStartVectCore0d) 1 0x00000010 0x00000000 []
4 (TraceAppl) 1 0x00000010 0x00000000 []
5 (osSystemdpplicationCore0) 1 0x00000010 0x00000000 []

Trusted applications must always have Start-Addr = 0x00000010 and End-Addr =
0x00000000.

Unused MPU regions in non-trusted applications must have Start-Addr = 0x00000010
and End-Addr = 0x00000000

Check that values of Start-Addr and End-Addr in row of non-trusted applications
matches the OS configuration.

Check that MPU regions of trusted applications have Start-Addr value smaller than the
End-Addr value.

Check that unused MPU regions of non-trusted applications have Start-Addr value
smaller than the End-Addr value.

Check that all trusted and non-trusted applications are listed.

Check that all Start-Addr values are aligned to 4 Byte boundary [SPMF92:04.0009]
Check that all End-Addr values point to the last valid byte in the specified area.
Overlapping of memory regions is not allowed [SPMF92:04.0010].

The next region after the end address must be aligned at to a 4 Byte boundary.

Compare Start-Addr of non-trusted applications that the address value fits to address
of the application specific linker symbol used in configuration settings [SPMF92:0052].

Compare End-Addr of non-trusted applications that the address value fits to address of
the application specific linker symbol used in configuration settings [SPMF92:0052].

If a linker section for application data memory region is empty then the end address is
below the start address. The start or end address may then overlap with other linker
sections. This can be ignored because it does not harm the MPU functionality.

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

61

VECTOR > MICROSAR OS SafeContext Safety Manual

8.34 MPU Configuration

Container “MPU Configuration” contains the MPU regions settings [SPMF92:02.0030]. The OS
uses the settings to initialize the MPU during StartOS. Static regions stay unchanged after
StartOS. Stack region and dynamic regions are reprogrammed when context is switched.

Example
Container “MPU configuration” must look like:

32. MPU Configuration:

Region Start-Addr (MPLAnN) End-Addr (MPUAn) Attributes (MPATn) Type Checked?
0 Oxfedf0400 Oxfedf0S8c 0x000000c3 (Stack Region) []
1 0x00000010 0x00000000 0x000000c3 (Dynamic Region) []
2 0x00000000 OxfEfffffc 0x03££00c5 (Static Region) [1
3 Oxfedf0768 Oxfedf07fc 0x03£f£00c3 (Static Region) []

The MPU configuration in ConfigBlock must be reviewed by the user: [SPMF92:04.0005]

Description of requirements to the OS user Fulfilled

Check that the total number of Region matches the number of MPU regions which are
provided by the used CPU derivative.

Dynamic regions must have the following entries:
Start-Addr=0x00000010, End-Addr=0x00000000 and Attributes=0x000000c3.

Unused regions must have the following entries: Start-Addr=0x00000010, End-
Addr=0x00000000 and Attributes=0x00000000

Region 0 Start-Addr must match to the system stack start address.

Region 0 End-Addr must match to the system stack end address — 4 Bytes.

Region 0 entry Attributes must match 0x000000c3.

Check that the number of static regions matches the OS configuration.

Check each static region that Start-Addr and End-Addr match the OS configuration.
Check each static region that Start-Addr is lower than End-Addr.

Check each static region that Attributes access rights matches the OS configuration.

Check each static region that Attributes access rights contain the correct ASID.

Note
ﬂ Default ASID value is 0x3ff if no ASID is configured.
RH850 F1L does not support ASID due to hardware restrictions.

© 2016 Vector Informatik GmbH Version 1.10 62
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

8.35 Application MPU ASID Configuration

Container “Application MPU ASID Configuration” contains the MPU ASID settings of all
applications.

Example
Container “Application MPU ASID configuration” must look like:

33. Application MPU ASID configuration:

Application-ID Application-Name Value Checked?
0 (APPL1) 0x0001 []
1 (APPL2) 0x0002 []
2 (APPL3) 0x0003 [1]
3 (ApplStartVectCoreO) 0x03ff []
4 (TracelAppl) 0x03ff []
5 (osSystemApplicationCore(0) 0x03ff []

Description of requirements to the OS user m

Check that the listed ASID configuration matches the OS configuration.
All applications with ASID value 0x03ff must not have an ASID identifier configured.

Note
ﬂ Default ASID value is 0x3ff if no ASID is configured.
RH850 F1L does not support ASID due to hardware restrictions.

© 2016 Vector Informatik GmbH Version 1.10 63
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

9 Generated OS Code

MICROSAR OS is a massively configurable software component. As a result, the analysis
of the OS modules cannot be completely performed until the user’s configuration data is
available. The user shall use MICROSAR Safe Silence Verifier (MSSV) to qualify the
generated part of the OS, which depends on user’s configuration. MSSV is a Vector tool,
which performs checks of potential dangerous code constructs. [SPMF92:0049] For more
information about MSSV see the Technical Reference Manual of MSSV [4].

Description of requirements to the OS user m

The user must not modify a generated module configuration code file manually
unless explicitly required by the technical reference manual or explicitly direction
formulated by Vector.

All generated files of a software project shall be generated based on the same
configuration. Generated files of several configurations must not be mixed up unless
explicitly allowed by Vector.

The user shall apply steps for qualifying the generated sources on the final
configuration which is used for the production. If the configuration changes, source
qualification steps shall be reapplied.

9.1 Using MICROSAR Safe Silence Verifier (MSSV)
The following chapter tells how you shall apply MSSV.exe on the OS sources.
MSSV.exe is called with the following parameters:

MSSV.exe -i <SourcePath> -i <GenPath> -i <HeaderPath> -D osdNOASM

Parameters Description

-i <SourcePath> This parameter is multiple used:
At least path of OS source files (e.g. osek.c), path of generated OS
files (e.g. tcb.c) and path of additional header files (e.g. Std_Types.h)
must be specified.

-r <ReportFile> Optional: Path and name which shall be used to save the MSSV report.
If not used then the results will be saved in file report.html

-D osdNOASM Disable OS assembler code parts. Mandatory for OS.
Parameter -D can be multiple used.

--help Show help

Description of requirements to the OS user Fulfilled

The MICROSAR Safe Silence Verifier shall only be executed on Windows XP SP3+
(32Bit) or Windows 7 (32Bit or 64Bit).

The user must not modify the MICROSAR Safe Silence Verifier report.

© 2016 Vector Informatik GmbH Version 1.10 64
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

Description of requirements to the OS user Fulfilled

The user shall verify that the used OS sources are checked by verifying the names
and paths of the modules within the report.

The user shall verify that the evaluated report matches to the execution of the
MICROSAR Safe Silence Verifier by verifying the name, creation date and time, path
and folder of the report.

Check that MSSV returns with no errors, no warnings and the final verdict of the
report is “pass”. If MSSV did not pass contact OS support. [SPMF92:0088]

E Example

An example for qualifying generated OS sources:

MSSV.exe -i .\BSW\OS -i .\TestAppl -i .\TestAppl\Gen -D osdNOASM

The output of MSSV.exe must look like:

note: MICROSAR Safe Silence Verifier Version 1.04.00
note: Copyright (C) 2012-2015 Vector Informatik GmbH
note: License <CBD1600111> Vector Informatik GmbH
note: mssv.exe started at 12:01:28 2016-01-21

note: scanning plugin directory '... \MSSV\plugins'
note: scanning input directory '... \BSW\OS'

note: scanning input directory '... \TestAppl'
note: scanning input directory '... \TestAppl\Gen'

note: found 29 source code files, 57 header files and 3 include directories
note: module plugin 'Tcb' successfully initialized

note: starting execution of plugin 'Tcb'

note: plugin 'Tcb' executed 57 rules (84 assertions held, 0 assertions did
not hold)

note: Log file written to 'stdout'

note: Report file written to 'report.invalid'

note: On success report file will be renamed to 'report.html'

note: mssv.exe finished at 12:01:28 2016-01-21

note: 0 Errors

note: 0 Warnings

note: the final verdict of the report is 'pass'

© 2016 Vector Informatik GmbH Version 1.10 65
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

9.2 Manual Reviews

Some generated code parts currently cannot be checked automatically. Therefore the user
has to check them manually.

9.2.1 Review generated file tch.h

Description of requirements to the OS user Fulfilled

1. You shall review the system level definition osdSystemLevel to be the
maximum of all category 2 ISR priorities and check mask definition
osdSystemLevelMask to be the corresponding value, which has to be
stored in PMR register to mask (i.e. disable) all category 2 interrupts.
[SPMF92:02.0019] [SPMF92:04.0017] [SPMF92:02.0032] [SPMF92:02.0033]
[SPMF92:0059] [SPMF92:0060]

#define osdSystemLevel <MAXIMUM OF ALL CAT2 ISR PRIORITIES>
#define osdSystemLevelMask <PMR VALUE MASK ALL CAT2 ISR>

2. Check that osdExceptionDetails is defined = 1

#define osdExceptionDetails 1

© 2016 Vector Informatik GmbH Version 1.10 66
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

9.2.2 Review of tcb.c

The function osSTWorkActions () is used for handling Expiry Points. It calls OS internal
functions to perform the configured actions at the configured Expiry Points. This function is
generated, therefore the user has to review that safety requirements are fulfilled.

Example
The function osSTWorkActions () may look like:

osgFuncl osSTReactionType osgFunc2 osSTWorkActions (GlobalTimeTickType* diff,
0sSTIndexType CurrentEP)

{
switch (CurrentEP)
{
case 0: /* SchedTl */
(void)osSysActivateTask (TaskBasic) ;
diff= 250; / no sync for this schedule table / this expiry point */
return osdSTReact Continue;
case 1: /* SchedTl */
(void)osSysSetEvent (TaskExt, evTaskExt) ;
diff= 150; / no sync for this schedule table / this expiry point */

return osdSTReact Continue;

case 15: /* osSystemSchT */
(void)osSysSetEvent (osSystemExtendedTask, osSystemEvent) ;
*diff=0;
return osdSTReact Stop;
/* MISRA RULE 14.1 VIOLATION: return is not
* reachable but this is the only way for prevent a compiler warning (3201)
=/
default:
osSysErrAssertFailed (osdErrWSUnknownAction)

return osdSTReact Stop; /* PRQA S 3201 */

Description of requirements to the OS user

Check that osSTWorkActions () is only called by osWorkScheduleTable () in
atostime.c and nowhere else.

Check for all osSysActivateTask () calls pass valid Task names

© 2016 Vector Informatik GmbH Version 1.10 67
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

Description of requirements to the OS user

User has to review that the parameter of each call of osSysActivateTask in tcb.c is a
valid task identifier (define in tcbpost.h). [SPMF92:05.0009]

Check for all osSysSetEvent () calls pass valid Task and Event names

The user has to review that the first parameter of all calls of osSysSetEvent in
tcb.c is a valid task identifier (define in tcbpost.h) and that the value of the
define is smaller than osdNumberOfExtendedTasks.

[SPMF92:05.0006]

Check that the array oskAlarmCounterRef [] contains osdNumberOfAlarms
elements and that each element contains the index of the counter related to that
alarm.

Check that the array oskAlarmTask[] contains valid task ID values (Task ID of
either the activated task or the Task ID of the task which receives an event).
Check that oskResCeilingPrio[] contains priorities smaller than

oskNumberOfPriorities[<Core ID of the Core to which the
resource is assigned>]

Check the size of all osQTaskActivation <Prio Index> arrays
The size must be the value of

oskQMaxActivations[Prio Index] + 1

[SPMF92:05.0012]

Check that the array “oskAlarmHeaps” has the size of “osdNumberOfCounters”
[SPMF92:05.0002]

Check that all elements of one entry in “oskAlarmHeaps” are related to the same
counter
{

os<Counter Name>Heap,
&osAlarmHeapCount [<Counter Name>]

I3
[SPMF92:05.0002]

Check for the correct ordering of the entries in “oskAlarmHeaps”. Correct ordering
means that the first entry must be related to the counter which is defined to zero (in
tcbpost.h). The second entry must be related to the counter which is defined to
one etc.

[SPMF92:05.0002]
Check for the correct size of the Heap arrays.
The size of such an array “os<Counter Name>Heap” must be

Number of alarms related to counter <Counter Name> + Number of Scheduletables
related to <Counter Name> + 1

[SPMF92:05.0005]

© 2016 Vector Informatik GmbH Version 1.10 68
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

9.2.3 Review of tcbpost.h

Description of requirements to the user m

Check that the Alarm names are mapped onto adjoining numbers. Starting with zero
to osdNumberOfAlarms - 1

(osdNumberOfAlarms is defined in tcb . h) [SPMF92:05.0013]

Example
/* Alarms */
#define CrossCoreATAlarm ((AlarmType)O0)

#define osSystemAlarm ((AlarmType)l)
#define MylOmsAlarm ((AlarmType)2)

Check that the Counter names are mapped onto adjoining numbers. Starting with
zero to osdNumberOfCounters - 1

(0sdNumberOfCounters is defined in tcb.h) [SPMF92:05.0003]

Example
/* Counter */

#define osSystemSWCounter ((CounterType) O0)
#define SystemTimerCoreO ((CounterType) 1)
#define OtherCounter ((CounterType) 2)

Check that the task names are mapped onto adjoining numbers starting from zero to
osdNumberOfAl1Tasks — 1

(osdNumberOfAl1Tasks is defined in tcb.h) [SPMF92:05.0010]

Example

E /* Tasks */
#define Task2Corel ((TaskType)O0)
#define osSystemExtendedTask ((TaskType) 1)
#define TasklCorel ((TaskType)?2)
#define TasklCoreO ((TaskType) 3)
#define IdleTaskCorel ((TaskType)4)
#define IdleTaskCoreO ((TaskType)5)
#define osSystemBasicTask ((TaskType) 6)

© 2016 Vector Informatik GmbH Version 1.10 69
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

Check that the category 2 ISR names are mapped onto adjoining numbers starting
from zero to osdNumberOfCat2ISRs — 1

(0sdNumberOfCat2ISRs is defined in tchb.h) [SPMF92:05.0015]

Example
/* ISR IDs */

#define SystemTimerISR Core0O ((ISRType)O0)

#define o0sIOCNotificationISRCore(O ((ISRType)l)
#define o0sIOCNotificationISRCorel ((ISRType)2)
#define o0sIOCNotificationISRCore2 ((ISRType) 3)
#define osShutdownRequestISRCore0 ((ISRType)4)
#define osShutdownRequestISRCorel ((ISRType)5)
#define osShutdownRequestISRCore2 ((ISRType) 6)
#define osSystemCat2ISR ((ISRType) 7)

Check that the Schedule Table names are mapped onto adjoining numbers. Starting
with zero to osdNumberOfScheduleTables - 1

(osdNumberOfScheduleTables is defined in tcb.h)

Example
/* Schedule Tables */

#define Scheduletablel ((ScheduleTableType) O0)
#define Scheduletable2 ((ScheduleTableType) 1)
#define osSystemSchT ((ScheduleTableType) 2)

Check that the values of osr (NumberOf) <OS Object> are defined to
osd (NumberOf) <OS Object>

Example
#define

osrRTSize 0sdRTSize
#define osrNumberOfPriorities osdNumberOfPriorities
#define osrNumberOfAppModes osdNumberOfAppModes
#define osrNumberOfAllTasks osdNumberOfAllTasks
#define osrNumberOfAllResources osdNumberOfAllResources

#define
#define

© 2016 Vector Informatik GmbH

osrSystemTimer
osrNumberOfCounters

SystemTimer
osdNumberOfCounters

Version 1.10

based on template version 2.0

70

VECTOR > MICROSAR OS SafeContext Safety Manual

9.2.4 Review of trustfct.c & trustfct.h

The following review checks are only relevant for trusted functions that belong to an OS-
application which has the parameter GenerateStub set to TRUE.

The OS provides the possibility to use generated stub functions for the call of trusted
functions. These stubs are generated into the following files:

> trustfct.c
> trustfct.h

Both files are generated on QM level but executed in supervisor-mode. Therefore the
generated code shall be reviewed.

If stubs are generated for a trusted function, there are two parts: the Caller stub and the
Callee-stub. The Caller-stub is a function which packs the parameters which shall be
passed to the trusted function into a C-struct and calls the API function
CallTrustedFunction. The Callee-stub unpacks the parameters from the struct and
passes them to the users trusted function.

9.2.4.1 File trustfct.c
Review the file trustfct.c according the following review criteria.

Description of requirements to the OS user

The name of the trusted function caller function body shall be
Call <TrustedFunctionName>

If second parameter of API function CallTrustedFunction is &§<ParamName>
then the following local variable shall exist:

TrustedFunctionParameterType <ParamName>;

Check that the API function CallTrustedFunction only uses a reference to this
local variable.

The first parameter shall be:
osd TFCT <TrustedFunctionName>

If the trusted function has no arguments, then the second parameter shall be:
(TrustedFunctionParameterRefType) 0

If the trusted function has arguments, then the second parameter shall be:
&<ParamName>

Callee-stubs shall have the following function prototype:

void TRUSTED <TrustedFunctionName>(TrustedFunctionIndexType
FunctionIndex, TrustedFunctionParameterRefType
FunctionParams) ;

Callee-stubs shall not modify any ASIL data.

© 2016 Vector Informatik GmbH Version 1.10 71
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

Description of requirements to the OS user m

Callee-stubs shall not call any function other than the specific trusted function.

Callee-stubs shall not consume more stack space than available.

Trusted functions which have arguments shall be called with following parameter
notation syntax:

((TrustedFunctionParameterType*) FunctionParams) ->

<TrustedFunctionName> args.os arg <MemberName>

Example
The following trusted function configuration:

TRUSTED FUNCTION = TRUE {

NAME = "StartTestStep";
Params = "osuint8 p";
ReturnType = "void";

}i

Leads to the following code in trustfct.c:

void Call StartTestStep(osuint8 os arg p)
{

TrustedFunctionParameterType myargs;

myargs.StartTestStep args. os arg p = 0sS_arg p;
(void) CallTrustedFunction (osd TFCT StartTestStep, &myargs):;

void TRUSTED StartTestStep (TrustedFunctionIndexType FunctionIndex,
TrustedFunctionParameterRefType FunctionParams) /* PRQA S 1505, 3673 */

{

/* osdDummyRead might intentionally assign a value to an unused variable
on some platforms to avoid compiler warnings. This is no MISRA error. (3199)
=/

osdDummyRead (FunctionIndex) /* PRQA S 3199 */

StartTestStep (((TrustedFunctionParameterType*)FunctionParams) -
>StartTestStep args. os_arg p);

}

© 2016 Vector Informatik GmbH Version 1.10

based on template version 2.0

72

VECTOR > MICROSAR OS SafeContext Safety Manual

9.2.4.2 File trustfct.h
Review the file trustfct.h according the following rules:

Description of requirements to the OS user m

Each trusted function shall have an index definition with following notation syntax:
> If configuration attribute is “GenerateStub=FALSE®

#define <TrustedFunctionName> <TrustedFunctionIndex>

> If configuration attribute is “GenerateStub=TRUE"

#define osd TFCT <TrustedFunctionName> <TrustedFunctionIndex>

The mapping of trusted function names to indexes shall be consistent to the
mapping of trusted function start addresses to indexes as printed in the
configuration block output. [SPMF92:0048]

Each trusted function stub which uses function arguments shall have its specific C-
struct type definition osTFArgType <TrustedFunctionName>

This C-struct shall contain all arguments which are used by the specific trusted
function.

Check that the following union type definition is generated and check that each
trusted function which uses function arguments is listed in this union type definition.
typedef union
{

o0sTFArgType <TrustedFuncNamel> <TrustedFuncNamel> args;

osTFArgType <TrustedFuncName2> <TrustedFuncName2> args;

osTFArgType <TrustedFuncName3> <TrustedFuncName3> args;

} TrustedFunctionParameterType;

© 2016 Vector Informatik GmbH Version 1.10 73
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

Example
The following trusted function configuration:

TRUSTED FUNCTION = TRUE {

NAME = "StartTestStep";
Params = "osuint8 p";
ReturnType = "void";

}i
Leads to the following code in trustfct.h:

#define osd TFCT StartTestStep 1

void TRUSTED StartTestStep (TrustedFunctionIndexType
TrustedFunctionParameterRefType FunctionParams) ;

void Call StartTestStep(osuint8 os arg p);

typedef struct
{
osuint8 os arg p;

} osTFArgType StartTestStep;

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

FunctionIndex,

74

VECTOR > MICROSAR OS SafeContext Safety Manual

10 Review User Software

Some code parts run in supervisor mode without any memory protection active or with
high memory access granted. Therefore, freedom from interference is not guaranteed by
the OS and the hardware. Trusted software has to guarantee freedom from interference on
its own. The application programmer typically knows best, what is to do in order to
guarantee freedom from interference. Anyhow, there are few additional points to be
covered when an OS is used.

The following requirements shall generally be fulfilled by trusted software (also valid for
software which runs in supervisor mode or with access to safety relevant memory areas):

Description of requirements to the OS user M

OS code coverage shall be disabled

Check that osdEnableCoverage is not defined when you compile the OS.
[SPMF92:0077]

Unhandled exception details shall be enabled

Check that osdExceptionDetails is defined = 1 (see tcb.h)

Check that OS attribute EnumeratedUnhandledISRs is set TRUE

No usage of system call instructions in the user software

Any system call causes the CPU to change into supervisor mode. Therefore,
the application (trusted and non-trusted parts) shall not use system calls
directly. Instead, system calls shall only be used by using OS API service
functions.

User header usrostyp.h

If trusted functions are configured, ensure that usrostyp.h does not
endanger SafeContext safety requirements.

Enabling interrupts where it is not allowed

Interrupts shall not be enabled by the application where Category 2 ISRs are
disabled by default (e.g. in Hooks). This applies not to ISRs. In ISRs it is
allowed to enable interrupts. [SPMF92:0066]

Use only documented APls

Trusted software shall only call documented API functions, which are listed in
chapter “Detailed List of Functionality”. [SPMF92:0068]

Stack usage measurement is not exact

Stack usage measurement is implemented by counting magic patterns
(osdStackCheckPattern) on the stack which have been written there
during startup. The returned value may not be correct, if the magic pattern
did not change (e.g. the user application uses the same value).
[SPMF92:0072]

Usage of osCheckMPUAccess API

If you are using the osCheckMPUAccess API, the destination address
parameter shall point to an address, where reading and writing does not
produce other exceptions than MPU exceptions.

© 2016 Vector Informatik GmbH Version 1.10 75
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

Description of requirements to the OS user Fulfilled

Usage of osCheckMPUAccess API

If you are using the osCheckMPUAccess API, Check that the API function is
only called with addresses which, reading and writing does not have any side
effects (e.g. potentially not true for peripheral registers). [SPMF92:02.0017].

If you have write access to stacks, stack overflows cannot be detected by
hardware

The OS cannot safely detect stack overflows in software which has write
access to all stacks. If write access to all stacks is really needed (e.g. for
RAM checking), the user has to ensure that the software does not produce a
stack overflow! [SPMF92:0078]

APIs in exception handlers

Exception handlers must not call any OS API function beside:
DisableAllInterrupts

EnableAllInterrupts

SuspendAllInterrupts

ResumeAllInterrupts

SuspendOSInterrupts

vV V. V V V V

ResumeOSInterrupts
[SPMF92:0067]

Category 1 ISRs shall be transparent

All ISRs of category 1 must be implemented such that they are transparent
with respect to the processor state for the code they interrupt. This includes
core registers, MPU settings and the current interrupt priority.

APIs in category 1 ISRs

Category 1 ISRs shall not call any OS API function beside:

> DisableAllInterrupts
> EnableAllInterrupts
> SuspendAllInterrupts

> ResumeAllInterrupts
[SPMF92:0067] [SPMF92:02.0018]

Check out-parameters in Trusted Functions

Trusted functions which get a pointer shall check the pointer address to be in
an expected range before they write to the pointer address. This shall
prevent overwriting of safety relevant data when writing to the pointer
address. [SPMF92:0001]

Check caller in Trusted Functions

Trusted functions shall validate whether they are called by an authorized
caller only. This may be done by using the API function
GetApplicationID. [SPMF92:0047]

No (Non-) Trusted Functions in Hooks

Hook routines shall not call any trusted function or non-trusted function.

© 2016 Vector Informatik GmbH Version 1.10 76
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

No APIs in NMls

Non-maskable interrupts shall not use any OS APIs. [SPMF92:0019],
[SPMF92:0067]

Using Interrupt API before calling StartOS
If the user needs to use the interrupt API before he calls start0s, he shall
call osInitialize and osInitINTC.

After calling these functions interrupt APl works only for the straight forward
case. OS error handling and MPU won't be initialized, so the OS won'’t be
able to handle any user errors or detect stack overflows.

Functions osDisable/EnablelLevelKM and osDisable/Enable GlobalKM

Functions osDisableLevelKM, osEnableLevelKM, osDisableGlobalKM and
osEnableGlobalKM shall only be called by trusted applications, i.e. when
CPU is in privileged mode. [SPMF92:0094]

Functions osEnablelLevelKM, osEnableLevelUM, osEnablelLevelAM

Assure that these functions are only called if the interrupt level was equal to
the task level at the matching disable function (especially: not called in ISR!)
Mind that the level functions may use the global flag, if disabling on level is
not supported for a specific hardware. [SPMF92:0095]

Functions osEnableGlobalKM, osEnableGlobalUM, osEnableGlobalAM

Assure that these functions are only called if interrupts were enabled by
means of the global flag at the matching disable function (especially: not
called in ISR with EnableNesting=FALSE) Mind that the global interrupt API
functions may use the interrupt level in case no global disabling is supported
on a specific hardware or if timing protection is active. [SPMF92:0096]

Functions osEnablelevelKM, osEnablelLevelUM, osEnablelevelAM and
functions osEnableGlobalKM, osEnableGlobalUM, osEnableGlobalAM

Assure that these functions are not called in a nested way, even if they seem
to use different locking mechanisms. [SPMF92:0097]

Header file osek.h

This header file is included into the OS almost everywhere. Make sure that
you do not manipulate the OS in an unforeseen way. [SPMF92:0098]

Timing Hooks

Assure that hook functions do not violate safety goals especially do not
manipulate safety relevant data, the interrupt state and do not cause stack
overflow (prevention of stack overflow may be unnecessary if the hardware
allows to keep the MPU active in privileged mode) (interrupt disabling by
means of the global flag and restauration its's state before returning to the
caller shall be explicitly allowed if no OS API functions are used for that).
[SPMF92:0099]

Timing Hooks Parameters

Assure that parameters of the hook routines are not used to reference a
memory location to write to without a check for validity. (Mind that the invalid
values are usually big numbers). [SPMF92:0100]

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

7

VECTOR > MICROSAR OS SafeContext Safety Manual

Description of requirements to the OS user Fulfilled

Timing Hooks

The OS does not guarantee the call of the hook routines on ASIL level. There
is no safety requirement which assures that the hooks are correctly called (at
correct time, in correct context etc.). [SPMF92:0101]

Timing Hooks

Calling OS API functions in OS_VTH* hooks is not allowed. [SPMF92:0102]
Timing Hooks

Usage of OS variables in OS_VTH* hooks is dangerous as they may not be
consistent. [SPMF92:0103]

Timing Hooks

Mind that the CAT1 ISRs may interrupt the hook routines which may cause
concurrent calls. [SPMF92:0104]

© 2016 Vector Informatik GmbH Version 1.10 78
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

11

Hardware Specific Part

For RH850 SafeContext the following safety relevant requirements must be checked by the user:

All assembly code (outside the SafeContext) shall be reviewed, not to change the content
of registers of R4 and R5 after StartOS is called [SPMF92:04.0001]. Check in compiler list
files that only the startup module and the OS modules do modify registers R4 and R5.

The user has to review that each ISR is called at least once (coverage of application). The
tests shall cover the activation of all ISRs and verify that the correct ISR was started. This
measure shall prevent the activation of wrong ISRs because of a mix up in the interrupt
vector table [SPMF92:0008].

The user has to review the configuration by means of the ConfigBlock in accordance to the
review rules which are defined in chapter 12.2 [SPMF92:0014],[SPMF92:05.0008].

The user has to review that all libraries fit to the used compiler options. All used libraries
need to be checked for using the correct compiler options (e.g. SDA usage need to be
identical to the specified options for the OS) [SPMF92:0010].

The PreTaskHook and the PostTaskHook must not be used in safety code which is
released for serial production. Pre/PostTaskHook shall only be used for debugging or test
purposes. Absence of Pre/PostTaskHook must be reviewed in generated file tcb.h:
[SPMF92:02.0022],[SPMF92:02.0023],[SPMF92:05.0011]

The user must check that the following defines are set in the generated file tcb.h:

##define osdPreTaskHook O
##define osdPostTaskHook 0

The complete config block content must be reviewed by the means of the BackReader
[SPMF92:04.0002], [SPMF92:04.0006].

The address value of the application specific linker symbols for MPU region start and end
address must be checked that between them only the corresponding application data
sections are mapped [SPMF92:04.0004], [SPMF92:04.0010], [SPMF92:04.0011].

The address value of the Ilinker symbols _osGlobalShared StartAddr and
_osGlobalShared_EndAddr must be checked that between them only the global shared
data sections are mapped [SPMF92:04.0013].

The CPU must run in supervisor mode when StartOS is called [SPMF92:04.0007].

The application shall check the config block version by using OS API function
osGetConfigBlockVersion [SPMF92:0045], [SPMF92:04.0003]

The user has to review that all task stacks, all ISR stacks and the system stack have 4 Byte
alignments [SPMF92:04.0008].

The user has to review the generated linker include files osdata.dld, osrom.dld, ossdata.dId
osstacks.dld and ostdata.dld if they are used for serial production [SPMF92:04.0014]. See
chapter 11.3.

The user has to review that coverage is disabled [SPMF92:04.0015]. osdEnableCoverage
shall not be defined in header and source files and it shall not be defined via compiler
option —DosdEnableCoverage.

© 2016 Vector Informatik GmbH Version 1.10 79

based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

= The user has to consider DMA controller usage if the used RH850 derivative incorporates a
DMA controller (DMAC). The DMA controller has direct access to the data bus. Therefore
DMA access to memory is not controlled by MPU protection. This must be considered
especially for safety OS systems if any DMA access is wanted.

= The user has to review that oslnitialize and osInitINTC are called before StartOS is called if
OS interrupt API functions or OS peripheral interrupt API functions are used before StartOS
[SPMF92:0070].

= The user has to review that all generated files belong together and that all generated files
are compiled and linked [SPMF92:0064]. The user shall not change any generated header
file (*.h) or source file (*.c).

= The user has to check that the application does not modify interrupt controller registers
EBASE, INTBP, INTCFG, SCBP and SCCFG after StartOS is called [SPMF92:0069].

= The application shall not modify any register in interrupt controller unit INTC by own
functions or routines after StartOS is called. The application shall only use the OS API
functions for changing registers in unit INTC. [SPMF92:0083]

= The user has to check validity and type of the reference parameter when calling the
following OS API functions [SPMF92:05.0001]:

- GetTaskID

- GetTaskState

- GetApplicationState

- GetEvent

- GetAlarm

- GetScheduleTableStatus
- GetCounterValue

- GetElapsedValue

- GetElapsedCounterValue

= The user has to assure that symbol _osStartupStack_StartAddr is provided in linker file and
points to the startup stack [SPMF92:05.0004].

» User has to review that osdTimerInterruptSourceNumberCore0O in generated file tcb.h is
equal to channel index of timer unit OSTMO0 [SPMF92:05.0007].

= User has to review in generated file tcb.c the content of arrays "oskGetCurrentTimeOps"
and "oskCounterld2GetCurrentTimeOpldx" [SPMF92:05.0016].

= User has to review in generated file tcb.c the arrays "osklnsertMinHeapOps" and
"oskCounterld2InsertMinHeapOpldx" [SPMF92:05.0017].

= The user has to check that the application does not modify CPU core register PMR after
StartOS is called [SPMF92:04.0018].

= If High Resolution Timer is used as SystemTimer then the user has to review that the
following defines exists in tcbpost.h and that HiResSystemTimer is defined smaller than
osdNumberOfCounters [SPMF92:05.0018]:

#define HiResSystemTimer <x>
#define osdTimerOSTM_HIRESID HiResSystemTimer

© 2016 Vector Informatik GmbH Version 1.10 80
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

= |f Standard Timer is used as SystemTimer then the user has to review that the following
defines exists in tcbposth and that SystemTimer is defined smaller than
osdNumberOfCounters [SPMF92:05.0019]:

#define SystemTimer <x>
#define osdTimerOSTM SystemTimer

= The user has to review in the generated file tcb.c that the size of the array
oskAlarmHeapSize is equal to osdNumberOfCounters. Furthermore, the user has to review
that each entry must be equal to 1 + the number of alarms that are related to the counter
<CounterName> + the number of schedule tables that are related to the counter
<CounterName>. The counter 0sSystemSWCounter is the only exception to this rule. This
counter must always exist and the related array element must be one.

© 2016 Vector Informatik GmbH Version 1.10 81
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

11.1 Interrupt Vector Table

Basically the interrupt vector tables must be provided by the application. An example vector table is
generated into file intvect_c<CorelD>.c. This file is generated by QM software and must not be
used directly as ASIL code. It must be reviewed carefully for compliance to the description below
because the code which is called by the interrupt vector table runs automatically in supervisor
mode and therefore this code must be developed according to ASIL level [SPMF92:0004],
[SPMF92:02.0020], [SPMF92:02.0021], [SPMF92:04.0012].

The file intvect_c<CorelD>.c consists of the following parts:

¢ Header Include Section

e Core Exception Vector Table
o EIINT Vector Table

o CAT2 ISR Wrappers

The following subchapters describe these parts and do intentionally not describe any comments.

11.1.1 Header Include Section

Generated file intvect_c<CorelD>.c starts exactly with the following lines:

#if defined USE_QUOTE INCLUDES
#include "vrm.h"

#telse

#include <vrm.h>

#endif

#define osdVrmGenMajRelNum 1
#define osdVrmGenMinRelNum 6
#if defined USE_QUOTE_INCLUDES
#include "vrm.h"

#else

#include <vrm.h>

#endif

#if defined USE_QUOTE INCLUDES
#include "Os.h"

ftelse

#include <Os.h>

#endif

#if defined USE_QUOTE_INCLUDES
#include "osekext.h"

#else

#include <osekext.h>

#endif

#ifndef osdNOASM

© 2016 Vector Informatik GmbH Version 1.10 82
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

11.1.2 Core Exception Vector Table

The core exception vector table section looks exactly like the following lines:
#fpragma asm

.section ".osExceptionVectorTable cO0", "ax"
.align 512

.globl _osExceptionVectorTable cO
_osExceptionVectorTable cO:

.offset 0x0000

.globl _osCoreException c0_0x0000
_osCoreException c0_0x0000:

jr <interrupt handler 0>

.offset 0x0010

.globl _osCoreException c0_0x0010
_osCoreException c0_0x0010:

jr <interrupt handler 1>

.offset 0x0020

.globl _osCoreException c0 _0x0020
_osCoreException c0 0x0020:

jr <interrupt handler 2>

.offset 0x01FO0

.globl _osCoreException c0_0x01F0
osCoreException c0 0x01FO0:

jr <interrupt handler 23>

.globl osExceptionVectorTableEnd c0
_osExceptionVectorTableEnd cO:

#fpragma endasm

The sequence of core exception vector table entries starts at vector address 0x0000, increases in

steps of 0x0010 and ends with vector address 0x01FO.

<interrupt_handler_x> is the name of the handler which is called when an exception occurs.

If no specific handler is configured then osUnhandledCoreException is called:
example for unused interrupt source

.offset 0x0010

.globl _osCoreException c0_0x0010
_osCoreException c0_0x0010:

jr _osUnhandledCoreException

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

83

VECTOR > MICROSAR OS SafeContext Safety Manual

11.1.3 EIINT Vector Table
The EIINT vector table section starts exactly with the following lines:
#fpragma asm

.section ".osEIINTVectorTable c0", "ax"
.align 512

.globl osEIINTVectorTable c0
_0sEIINTVectorTable cO:

.word <EIINT handler 0>
.word <EIINT handler 1>
.word <EIINT handler 2>

.word _{EIINT_handler_x>

For each unused interrupt source the following table entry must be generated:
.word _osUnhandledEIINTException

For each interrupt source used as category 1 ISR the following table entry must be generated:
.word _<Catl EIINT handler>

<Cat1_EIINT_handler> is the name of the application specific EIINT handler which is called when
an interrupt on the corresponding source occurs.

For each interrupt source used as category 2 ISR the following table entry must be generated:
.word _<Cat2 ISR Name> CAT2

<Cat2_EIINT_handler> is the name of the OS ISR wrapper which is called when an interrupt on
the corresponding source occurs. The CAT2 ISR wrapper section is described in the next chapter.

The EIINT vector table section ends exactly with the following lines:

.globl osEIINTVectorTableEnd c0
_OsEIINTVectorTableEnd cO:

#pragma endasm

© 2016 Vector Informatik GmbH Version 1.10 84
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

11.1.4 CAT2 ISR Wrappers

The category 2 ISR wrapper section looks exactly like the following lines:
#pragma asm

.section ".os_text", "ax"
0sCAT2ISRCO(...)
0sCAT2ISRCO(...)

osCAT2ISRCO(...)

osCAT2ISRCO(...)

#pragma endasm

Each category 2 ISR handler must be generated exactly like the following line [SPMF92:0044]:
osCAT2ISRCO (<Cat2_ ISR Name>, <Cat2 ISR Priority)

Macro osCAT2ISRCO() is defined in osekext.h.
It defines the CAT2 ISR prologue for each interrupt source which is used as category 2 ISR.

<Cat2_ISR_Name> is the unique name of the ISR function. This must be the same name as used
in the EIINT vector table at the corresponding channel index position with postfix:

.word <Cat2 ISR Name> CAT2

<Cat2_ISR_Priority> is the value of the interrupt priority level which is configured for the
corresponding ISR. The valid range of <Cat2_ISR_Priority>is 0 ... 7

11.1.5 End of file Intvect_c<CorelD>.c
Generated file intvect_c<CorelD>.c ends exactly with the following line:
#tendif /* ifndef osdNOASM */

© 2016 Vector Informatik GmbH Version 1.10 85
based on template version 2.0

VECTOR >

11.2 Linker Memory Sections

MICROSAR OS SafeContext Safety Manual

The OS uses specific memory section names for the linker. Check that these section names are
used in the linker file and check that they are used in the assigned area.
The OS uses the linker memory section names described in the following table:

section type .text

.osExceptionVectorTable_c<CoreID>

Contains the core exception vector table. It is generated
into file intvect_c<CorelD>.c

section type .text

.0SEIINTVectorTable_c<coreID>

Contains the EIINT exception vector table. It is generated
into file intvect_c<CorelD>.c

.0s_text
section type .text

Contains the interrupt handler for category 2 ISRs. It is
generated into file intvect_c<CorelD>.c

Must be linked to program code section.

.0s_text
section type .text

Contains all OS program code, except those which must
be placed in special sections (e.g. vector table).

Must be linked to program code section.

.0s_rodata
section type .rodata

Contains the OS constant data, except those which must
be placed in special sections (e.g. configuration block
osConfigBlock).

Must be linked to constant data section.

.0s_rosdata
section type .rosdata

Contains all OS constants which are placed in ROSDA
area, except those which must be placed in special
sections (e.g. configuration block osConfigBlock).

Must be linked to the constant data in ROSDA section

.0sConfigBlock_rodata
section type .rodata

Contains the configuration block if SDA optimization is
disabled.

Must be linked to constant data section.

.0sConfigBlock_rosdata
section type .rosdata

Contains the configuration block if SDA optimization is
enabled

Must be linked to constant data in ROSDA section.

.0s_bss
section type .bss

Contains the uninitialized OS variables
Optional initialized to zero by system startup code.
Must be linked to the data section.

.0s_data
section type .data

Contains the initialized OS variables which must be
copied from ROM to RAM by system startup code.
Must be linked to the data section. This section must be
empty!

.0s_sbss
section type .sbss

Contains uninitialized OS variables which are placed in
SDA area if SDA optimization is enabled.

Optional initialized to zero by system startup code.
Must be linked to the SDA section.

.0s_sdata
section type .sdata

Contains initialized OS variables which are placed in SDA
area if SDA optimization is enabled.

Must be linked to the SDA section. This section must be
empty!

© 2016 Vector Informatik GmbH

Version 1.10 86
based on template version 2.0

VECTOR >

MICROSAR OS SafeContext Safety Manual

.osTaskStack<TaskIndex>
section type .bss

Contains the uninitialized task specific stack.
Must be linked to the data section.

.0sSystemStack_c<CoreID>
section type .bss

Contains the uninitialized OS system stack.
Must be linked to the data section.

.osIntStackLevel<Priority>
section type .bss

Contains the uninitialized ISR specific stack.
Must be linked to the data section.

.0sAppl_<AppIName>_bss
section type .bss

Contains uninitialized application data.
Optional initialized to zero by system startup code.
Must be linked to the data section.

.0sAppl_<AppIName>_sbss
section type .sbss

Contains uninitialized application data in SDA area if SDA
optimization is enabled.

Optional initialized to zero by system startup code.
Must be linked to SDA section.

.0sAppl_<AppIName>_data
section type .data

Contains initialized application data.
Must be linked to data section.

.0sAppl_<AppIName>_sdata
section type .sdata

Contains initialized application data in SDA area if SDA
optimization is enabled.

Must be linked to SDA section.

.0sGlobalShared_bss
section type .bss

Contains uninitialized global shared data.
Optional initialized to zero by system startup code.
Must be linked to data section.

.0sGlobalShared_sbss
section type .sbss

Contains uninitialized shared data in SDA area if SDA
optimization is enabled.

Optional initialized to zero by system startup code.
Must be linked to SDA section.

.0sGlobalShared_data
section type .data

Contains initialized shared global data.
Must be linked to data section.

.0sGlobalShared_sdata
section type .sdata

Contains initialized shared data in SDA area if SDA
optimization is enabled.

Must be linked to SDA section.

© 2016 Vector Informatik GmbH

Version 1.10 87

based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

11.3 Linker Include Files

The generated linker include files shall be reviewed if they are used for serial production.

11.3.1Review File osdata.dld

File osdata.dld contains mapping of section types .bss and .data for trusted applications.

For each trusted application the generated lines must look like:
/* trusted application <ApplName> */
.0osAppl <ApplName> bss align(4) :>.
.0osAppl <ApplName> data align(4) :>.

The linker include file ends with the section mapping for OS data which must look like:
.0s_bss align(4) :>.
.os_data align(4) :>.

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

88

VECTOR > MICROSAR OS SafeContext Safety Manual

11.3.2Review File ossdata.dld

The generated example file ossdata.dld contains the mapping of section types .sbss and
.sdata for trusted and non-trusted applications.

For non-trusted applications it also contains the mapping of section types .bss and .data.
This is necessary due to optimization for MPU region settings.

For each trusted application the generated lines must look like:
/* trusted application <ApplName> */

.0sAppl <ApplName> sbss align(4) :>.

.0sAppl <ApplName> sdata align(4) :>.

For each non-trusted application the generated lines must look like:
/* non-trusted application <ApplName> */

.0sAppl <ApplName> bss align(4) :>.
.0osAppl <ApplName> data align(4) :>.
.0osAppl <ApplName> sbss align(4) :>.
.0osAppl <ApplName> sdata align(4) :>.

_<Appl_Section_StartAddr> = addr(.osAppl <ApplName> bss) ;
<Appl Section EndAddr> endaddr (.osAppl_<ApplName> sdata)-1;

After the mapping of the application sections the mapping for OS SDA sections must be
generated like the following lines:

.os_sbss align(4) :>.

.0os_sdata align(4) :>.

After the mapping of the OS SDA sections the mapping for global shared sections must be
generated like the following lines:

.osGlobalShared sbss align(4) :>.

.osGlobalShared sdata align(4) :>.

.osGlobalShared bss align(4) :>.

.osGlobalshared data align(4) :>.

_osGlobalShared StartAddr addr (.osGlobalShared sbss) ;

_osGlobalShared EndAddr endaddr (.osGlobalShared data)-1;

© 2016 Vector Informatik GmbH Version 1.10 89
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

11.3.3Review File osstacks.dld
File osstacks.dld contains mapping of all stack sections.

Each stack section mapping for used interrupt priority levels must look like:

.osIntStackLevel<PriolLevel> align(4) :>.
_osIntStackLevel<PrioLevel> StartAddr = addr(.osIntStackLevel<PrioLevel>) ;
_osIntStackLevel<PrioLevel> EndAddr = endaddr(.osIntStackLevel<PrioLevel>)

<PrioLevel> is the interrupt priority level O ... 15

The mapping for the system stack section must look like:

.osSystemStack align(4) :>.
osSystemStack StartAddr = addr(.osSystemStack) ;
_osSystemStack EndAddr = endaddr (.osSystemStack) ;

The system stack section is followed by the OS task stack sections which must look like:

.osTaskStackosSystemApplicationCore00 align(4) :>.
_osTaskStackosSystemApplicationCore00_StartAddr =

addr (.osTaskStackosSystemApplicationCore00) ;
_osTaskStackosSystemApplicationCore00_EndAddr =

endaddr (.osTaskStackosSystemApplicationCore00) ;

.osTaskStackosSystemApplicationCore0l align(4) :>.
osTaskStackosSystemApplicationCore0Ol StartAddr =

addr (.osTaskStackosSystemApplicationCore0O1) ;
_osTaskStackosSystemApplicationCore0l_EndAddr =

endaddr (.osTaskStackosSystemApplicationCore0l) ;

The OS task stack sections are followed by the application task stack sections.

Each application task stack section mapping must look like:
.osTaskStack<applname><index> align(4) :>.
_osTaskStack<applname><index> StartAddr = addr (.osTaskStack<applname><index>) ;
_osTaskStack<applname><index> EndAddr = endaddr (.osTaskStack<applname><index>) ;
<applname> is the name of the owner application

<index> is the index number of the task stack: 0 ... number of tasks per application

© 2016 Vector Informatik GmbH Version 1.10 90
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

11.3.4Review File osrom.dld
File osrom.dld contains the sections used for initialized variables.

For each application which has data to be initialized during startup code the following lines must be

generated:

.ROM osAppl <ApplName> data ROM(.osAppl <ApplName> data) :>.
.ROM_osAppl <ApplName> sdata ROM(.osAppl <ApplName> sdata) :>.
.ROM_osAppl <ApplName> tdata ROM(.osAppl <ApplName> tdata) :>.

File osrom.dld ends with the global shared initialized data sections which must look like:
.ROM GlobalShared data ROM(.osGlobalShared data) >,
.ROM GlobalShared sdata ROM(.osGlobalShared sdata) :>.
.ROM GlobalShared tdata ROM(.osGlobalShared tdata) :>.

11.3.5Review File ostdata.dld
File ostada.dld contains the mapping for application data in TDA section.

For each application which has data in TDA section the following line must be generated:
.osAppl <ApplName> tdata align(4) MAX SIZE (0x0100) :>.

File ostdata.dld ends with the mapping for global shared data in TDA section which must look like:

.osGlobalShared tdata align(4) MAX SIZE (0x0100) :>.

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

91

VECTOR > MICROSAR OS SafeContext Safety Manual

11.4 Stack Size Configuration

The size of task stacks, ISR stacks and the system stack is configured by the user. The application
code must not use more stack then configured. Before trusted or non-trusted application code
(tasks, ISRs, trusted and non-trusted functions) is executed the OS always reprogramms MPU
region O in order to protect the stack memory areas.

The following table provides an overview of the stacks and which code parts need to be considered
for the analysis of the required stack sizes.

Stack Usage
System Stack StartupHook
ErrorHook

ProtectionHook [SPMF92:0082]
ShutdownHook [SPMF92:0081]

Task Stacks the corresponding task function and its call tree
ISRs of category 1 (when interrupting a task)
ErrorHook
Storing a context (144 Byte)
ISR Stacks the corresponding category 2 ISR function and its call tree
ISRs of category 1 (when interrupting an ISR)
ErrorHook

Storing a context (144 Byte)

If no static analysis for the stack requirement is made, the stack usage may be measured by
means of the API functions osGetStackUsage, osGetlSRStackUsage and
osGetSystemStackUsage, when StackUsageMeasurement is configured. Measurement has to
consider the maximum stack usage of the code under measure. It has to be ensured, that all
directly and indirectly called functions are executed and use the maximum possible stack.

Stack Usage measurement is implemented by filing the stack with a pattern on startup and
counting the number of continuous patterns which have not been overwritten with another value.
This may lead to a too small measured value in case the function under measure uses this pattern
as value on its stack.

As the hardware allows to enable interrupts even in non-trusted code, any non-trusted ISR may
enable nesting. Therefore, the user shall expect that interrupt nesting can always occur when
defining the system stack size [SPMF92:0089].

The stack usage must be measured after the maximum call depth has been reached
[SPMF92:0090].

© 2016 Vector Informatik GmbH Version 1.10 92
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

11.5 Stack Monitoring

The stack memory area is write protected via MPU region 0. Trusted and non-trusted applications
and the OS cannot write to stack areas which belong to other applications.

This hardware based stack monitoring does not detect all stack errors [SPMF92:0076]. Stack
overflow cannot be detected if the task or ISR stack is mapped immediately after the
corresponding application data or global shared section. Stack underflow cannot be detected if the
task or ISR stack is mapped immediately before the corresponding application data or global
shared section.

On derivatives with MPU inactive in privileged mode all OS API functions are executed on the
stack of caller without memory protection. [SPMF92:04.0020{'MPUPRIVMODE}]

11.6 Usage of MPU Regions

MPU region 0 is always used for stack area protection. It is always reprogrammed when
the context is switched. Therefore MPU region 0 cannot be configured by the user.

Each MPU region 1 ... 11 can be configured for static or dynamic usage:

» |f a MPU region is configured for static usage, then it is initialized in StartOS and not
changed any more. For static MPU regions the user must specify the access attributes.

» |f a MPU region is configured for dynamic usage, then it is initialized in StartOS and not
always reprogrammed when the context is switched. The access attributes for dynamic
MU regions are configured by the OS.

All stack sections must be mapped to a consecutive memory area. A static MPU region
must be configured for this memory area so that trusted and non-trusted application have
only read access to it. That means in supervisor and in user mode only reading is possible.
Write access to dedicated stack is achieved at runtime via reprogrammed MPU region 0
when a task or ISR is started.

A static MPU region must be configured for the applications data area so that in supervisor
mode read and write is possible and in user mode only reading is possible. Write access to
the dedicated application data area is achieved via dynamic MPU region which must be
configured for each non-trusted application.

A static MPU region must be configured for the code and const area (i.e. ROM/FLASH) so
that in supervisor mode (trusted applications) read, write and execute is possible and in
user mode (non-trusted applications) only read and execute is possible in that area.

11.7 Usage of Peripheral Interrupt API

The OS provides functions which allow write access to El level interrupt control registers
EICn and to El level interrupt mask registers IMRn in user mode. Non-trusted applications
can enable or disable peripheral interrupt sources by means of this functions. Call of the
OS peripheral interrupt API functions must be checked in every application that only valid
interrupt sources are modified [SPMF92:04.0016].

© 2016 Vector Informatik GmbH Version 1.10 93
based on template version 2.0

VECTOR D>

MICROSAR OS SafeContext Safety Manual

12 Glossary and Abbreviations

12.1 Glossary

OS-Application

Trusted software

Non-trusted software

Privileged mode

Non-privileged mode

Silent principle

Table 12-1

© 2016 Vector Informatik GmbH

Glossary

An OS-Application is a set of tasks, ISRs and (Non-)Trusted Functions
with common peripheral/memory access rights and executing in the same
privilege mode.

Trusted application code is code which is executed with supervisor
privileges. The user has to ensure that this code does not interfere with
other components. Examples are start-up code, global Hook functions,
Tasks and ISRs which are configured to be part of a trusted OS
Application.

Defined by AUTOSAR specification: Part of a non-trusted application.
Non-trusted software is running with memory protection enabled and in
non-privileged mode. Therefore non-trusted software might be
implemented on QM level but ASIL software which does not need
unlimited memory access or privileged access can also be configured as
non-trusted.

CPU mode with unlimited access to CPU system registers. Software
running in privileged mode is e.g. able to reconfigure the MPU and to
enable or disable interrupts. Therefore software running in privileged
mode must be implemented on ASIL level.

CPU mode without or with limited access to CPU system registers.
Software running in privileged mode is not able to reconfigure the MPU or
to enable or disable interrupts. Therefore software running in privileged
mode might be implemented on QM level.

The idea of “Silent” code is not to disturb other software by means of
unintended memory writes. To provide high performance, this is not
achieved by a hardware protection mechanism (which would require MPU
reconfiguration for each API call) but by analysis of the OS code.

Version 1.10 94
based on template version 2.0

VECTOR D>

12.2 Abbreviations

Abbreviation

API

ASIL
AUTOSAR
BSW

CRC

ECU

IRQ

ISR
MICROSAR

MPU
MSSV
ORTI
(O
QM

SC
SEooC

Table 12-2 Abbreviations

© 2016 Vector Informatik GmbH

MICROSAR OS SafeContext Safety Manual

Application Programming Interface
Automotive Safety Integrity Level
Automotive Open System Architecture
Basis Software

Cyclic Redundancy Check

Electronic Control Unit

Interrupt Request

Interrupt Service Routine

Microcontroller Open System Architecture (the Vector AUTOSAR
solution)

Memory Protection Unit (realized in hardware by the processor)
MICROSAR Safe Silence Verifier

OSEK Run Time Interface

Operating System

Quality Management (used for software parts developed following only a
standard quality management process)

Scalability Class (of AUTOSAR OS)

Safety Element out of Context: a safety-related element which is not
developed for a specific item

Version 1.10 95
based on template version 2.0

VECTOR > MICROSAR OS SafeContext Safety Manual

13 Contact

Visit our website for more information on

> News

> Products

> Demo software
> Support

> Training data

> Addresses

www.vector.com

For support requests and issue notifications write to osek-support@vector.com

© 2016 Vector Informatik GmbH Version 1.10
based on template version 2.0

96

http://www.vector.com/
mailto:osek-support@vector.com

	1 Purpose
	1.1 Safety Element out of Context (SEooC)
	1.2 Standards and Legal Requirements

	2 Concept
	2.1 SafeContext Is One Part of a Whole
	2.2 Safety Goal
	2.3 Safety Requirements
	2.4 SafeContext Functionality
	2.4.1 ASIL Functionality
	2.4.2 Detailed List
	2.4.2.1 Provided Functionality
	2.4.2.1.1 osGetConfigBlockVersion

	2.4.2.2 Not provided Functionality

	2.5 Safe State

	3 Overview of Requirements to the OS User
	4 SafeContext Assumptions
	4.1 Context Definition

	5 OS Source Checksum
	6 Patching the Configuration Block
	6.1 Using ElfConverter
	6.2 Using ConfigBlockCRCPatch

	7 SafeContext Guidelines
	7.1 Configuration
	7.2 Linking Example for Memory Mapping

	8 Configuration Block Review
	8.1 How to Read Back the Configuration
	8.1.1 Using ElfConverter
	8.1.2 Using HexConverter
	8.1.3 Using ConfigViewer

	8.2 Configuration Block Head
	8.3 General Information
	8.4 Task Start Address
	8.5 Task Pre-emptive Configuration
	8.6 Task Trusted Configuration
	8.7 Task Stack Addresses
	8.8 Task to Application Mapping
	8.9 Category 2 ISR Trusted Configuration
	8.10 Category 2 ISR to Application Mapping
	8.11 Application Trusted Configuration
	8.12 Trusted Functions Configuration
	8.13 Non-Trusted Functions Configuration
	8.14 Category 2 ISR Start Addresses
	8.15 Category 2 ISR Nesting Configuration
	8.16 Process to Core Mapping
	8.17 Alarms to Core Mapping
	8.18 Resources to Core Mapping
	8.19 Counters to Core Mapping
	8.20 Schedule Tables to Core Mapping
	8.21 Application to Core Mapping
	8.22 Trusted Functions to Core Mapping
	8.23 Non-Trusted Functions to Core Mapping
	8.24 Core Control Block Address
	8.25 Peripheral Regions Configuration
	8.26 Spinlock Lock Method
	8.27 Spinlock Config Type
	8.28 Optimized Spinlock Variable Addresses
	8.29 Category 2 ISR Stack Address
	8.30 Category 2 ISR Interrupt Channel Index
	8.31 Category 2 ISR Priority Level
	8.32 Category 2 ISR to Core Mapping
	8.33 Application MPU Configuration
	8.34 MPU Configuration
	8.35 Application MPU ASID Configuration

	9 Generated OS Code
	9.1 Using MICROSAR Safe Silence Verifier (MSSV)
	9.2 Manual Reviews
	9.2.1 Review generated file tcb.h
	9.2.2 Review of tcb.c
	9.2.3 Review of tcbpost.h
	9.2.4 Review of trustfct.c & trustfct.h
	9.2.4.1 File trustfct.c
	9.2.4.2 File trustfct.h

	10 Review User Software
	11 Hardware Specific Part
	11.1 Interrupt Vector Table
	11.1.1 Header Include Section
	11.1.2 Core Exception Vector Table
	11.1.3 EIINT Vector Table
	11.1.4 CAT2 ISR Wrappers
	11.1.5 End of file Intvect_c<CoreID>.c

	11.2 Linker Memory Sections
	11.3 Linker Include Files
	11.3.1 Review File osdata.dld
	11.3.2 Review File ossdata.dld
	11.3.3 Review File osstacks.dld
	11.3.4 Review File osrom.dld
	11.3.5 Review File ostdata.dld

	11.4 Stack Size Configuration
	11.5 Stack Monitoring
	11.6 Usage of MPU Regions
	11.7 Usage of Peripheral Interrupt API

	12 Glossary and Abbreviations
	12.1 Glossary
	12.2 Abbreviations

	13 Contact

