vector’

MICROSAR OS RH850

Technical Reference

Authors Senol Cendere, Yohan Humbert
Version 1.11

Status Released

Technical Reference MICROSAR OS RH850 vecktor'

Document Information

History

Author Date Version Remarks

S. Cendere 2014-01-21 [1.00 Creation

S. Cendere 2014-02-03 [1.01 Release for RH850 SafeContext

S. Cendere 2014-04-24 |1.02 Release for RH850 P1M

S. Cendere 2014-09-30 |1.03 Added error numbers for interrupt consistency checks

Y. Humbert 2014-10-14 |1.04 Update

Y. Humbert 2015-01-29 |1.05 Added ASID support

Y. Humbert 2015-02-26 |1.06 Added D1M, E1L, E1M and F1M

Y. Humbert 2015-06-10 |1.07 Added Multicore chapter

S. Cendere 2015-06-29 |1.08 Added Timing Protection chapter

S. Cendere 2015-08-20 |1.09 Removed core exception attributes

Y. Humbert 2015-11-10 |1.10 Support Multicore SC3

S. Cendere 2016-01-22 (1.1 Added description for osCheckAndRefreshTimer

Reference Documents

Ref. Source Title Version

[1] AUTOSAR AUTOSAR Operating System Specification 3.0.x
(downloadable from www.Autosar.org) 4.0.x

4.1.x

[2] OSEK OSEK/VDX Operating System Specification 223
(downloadable from www.osek-vdx.org)

[3] Vector Informatik GmbH | Technical Reference MICROSAR OS 9.01

©2016, Vector Informatik GmbH

Version: 1.11

2/58

Technical Reference MICROSAR OS RH850 VeCtOf

Scope of the Document

This technical reference describes the specific use of the MICROSAR OS for Renesas
RH850. It supplements the general technical reference for MICROSAR OS [3].

| Caution
. We have configured the programs in accordance with your specifications in the
¥ questionnaire. Whereas the programs do support other configurations than the one
specified in your questionnaire, Vector’s release of the programs delivered to your
company is expressly restricted to the configuration you have specified in the
questionnaire.

Overview

This document describes the implementation specific part of the AUTOSAR operating
system for the Renesas RH850 microcontroller family. In this document a processor of the
family may be referred as RH850.

The common part of all MICROSAR OS implementations is described in document [3].

The implementation is based on the OSEK-OS-specification 2.2.3 and on AUTOSAR OS
specifications 3.0.x/4.0.x/4.1.x. This document assumes that the reader is familiar with the
OSEK and AUTOSAR OS specifications.

OSEK/VDX is a registered trademark of Continental Automotive GmbH (until 2007:
Siemens AG).

©2016, Vector Informatik GmbH Version: 1.11 3/58

Technical Reference MICROSAR OS RH850 VeCtOf

Contents
1 Overview of MICROSAR OS.......cciiiss s 8
1.1 Overview Of Properties..........ouuuuiiiiiiii et 8
2 INStallation.... ... 9
2.1 10| I 00 g1 ile U] ¥=1 (o] SO OO PPPTPOPPRR 9
2.1.1 OIL-Implementation Filesccooomiiiiiiii e, 9
3 CoNFIGUIAtioONeeeieeeeee 10
3.1 XML ConfigUuration ... 10
3.2 OIL CONFIGUIATION ...ttt eeseeenees 10
3.3 L@ IS N (01U (= 11
3.3.1 MpuRegion Sub-Attributes (SC3 and SC4)uvuvviiiiiiiiiiiiiinnnns 13
3.3.2 PeripheralRegion Sub-Attributes (SC3 and SC4)............uuvvvvvviinnnnnns 14
3.4 Counter AtHDULESeeiiii e 15
3.4.1 OSTM Sub-Attributescccoeeeiieieeeeeeeeee e, 15
3.4.2 OSTM_HIRES Sub-Attributesccooeiiiiii 15
3.5 ISR ARFDULES ... 16
3.5.1 ExceptionType Sub-Attributescooveiiiiciiiic e, 16
3.6 Application AHIDULEScoeee e 17
3.6.1 Attribute MPUREQIONccovviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 17
3.7 Event AHIDULES. ... 18
3.8 Linker Include Files (SC3 and SC4)coovvviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 18
4 System Generation........ 19
4.1 COdE GENEIALONccveeeeee ettt 20
5 Stack Handling.........ueeeeeemee 21
5.1 B2 E1 QS = o TP 21
5.2 ISR StACKS ... 21
5.3 SYSEM SEACK ... e 21
5.4 SEATUD SEACK. ... e aaaae 21
5.5 StACK USAQE SIZE.....uuiiiiiiiiiiiiiiiiiiiiii e 21
5.5.1 Task Stack USAQEcooiiuiiiiiiiiiiiee e 22
5.5.2 System Stack Usagecooooviiiiiiiieeee e 22
5.5.3 ISR Stack USAQEceeiiiiiiiiiiiiiiiei e 22
6 Interrupt Handling........cooeeeeei e 23
6.1 Lo (T BT o /=T o (o] = 23
6.1.1 RESEL VECION ... e 23

©2016, Vector Informatik GmbH Version: 1.11 4/58

Technical Reference MICROSAR OS RH850 VeCtOf

6.1.2 Level Initialization............ooooeeiiiiii e 23

6.2 Interrupt Level and Category ..o 24
6.3 Interrupt Category 1 ... 24
6.3.1 Interrupt Processing in C........oooviiiiiiiiiii e 24

6.3.2 Unhandled Exception Determination...............ccoooevviiiieiiiiiiiceeiinnn. 24

6.4 Interrupt Category 2. 25
6.4.1 INterrUpt ENtry ... 25

6.4.2 INterrupt EXIt ... 25

6.4.3 CAT2 ISR FUNCLION ... 25

6.5 Disabling INterruUPLSooviiiii e 25
7 MPU Handling (SC3 and SC4).........nnnnnnnnnnnnnsnnssnnes 26
7.1 MPU REGION USAQJEcoeviiiiiiiiiiiiiiiiiiiiiiiieee ettt e e e e eeeees 26
711 Y| W (Yo [o] o N RN 26

71.2 Static MPU REQIONScooiiiiiii e 26

7.1.3 Dynamic MPU REQIONSccovviiieiiiii et 27

8 RHB50 Peripherals........ciiiiiiiiieccccrsr s s rrc s s e s s s s s s s e e e s s nn s s e r e e e mmmn s as 28
8.1 Supported System TIMEr........oouiiiii e e e e e eeeeees 28
8.2 Supported Time Monitoring TiMerooeiiiiiii e 28
8.3 LU= 7= 11T o S 28
9 Implementation SPeCIfiCS......commiimciiiii i 29
9.1 Y o I T o o 1= 29
9.1.1 Disable AlINTErTUPLS ... 29

9.1.2 ENableAllINterruptSo 29

9.1.3 SuspendAlINtErrUPESooeiee e 29

9.14 ResUMEAIINtErTUPES.cooee e 29

9.1.5 SuspendOSINtEITUPLS.......coeuiiiiei e 29

9.1.6 ResumeOSINtErruptSoooevieeeeee e 30

9.1.7 GEtRESOUICE.....ceiiecii et e e e e 30

9.1.8 ReleasSERESOUICEccooiiiiie e 30

9.1.9 GetAlarMBASE. ... 30

9.1.10 OSINEANZE ... 30

9.1.11 OSINIEINTC .. 30

9.2 Peripheral Region AP 31
9.2.1.1 Read FUNCLIONS.......ccooii e 31

9.2.1.2 Write FUNCLIONSoovveiiii e, 32

9.21.3 Modify FUNCLIONS......cooiiiieee, 33

9.3 Peripheral Interrupt API Functions (SC3 and SC4)..........coooiiiiiiiiiiiiiiiiiine 34
9.3.1 Write to Interrupt Control Register..........vvvviiiiiiiiiiiiiiiiiiiiiiiiiiieee 35

©2016, Vector Informatik GmbH Version: 1.11 5/58

Technical Reference MICROSAR OS RH850 VeCtOf

9.3.2 Set or Clear Mask FIagcoooooiiiiii 37

9.3.3 Set or Clear ICR Request Flag...........couviiiiiiiiiiiiice e, 38

9.3.4 Read, Set or Clear Mask Bit in Registers IMRMccccccuiiinnnnes 39

9.3.5 Write to Registers IMRM ..., 40

9.4 HOOK ROULINES ... 41
9.4.1 ErTOrHOOK ... e 41

9.4.2 StArtUPHOOK ... 41

943 ShUtdOWNHOOK. ... 41

944 PreTaskHOOK.uu e 41

9.4.5 POStTaSKHOOKuuiiiiiiiiiiiiiiii e 41

9.4.6 PreAlarmHOOK (SC1 ONIY) ...uuiiiiiiiiiiiiiiiiiiiiiiiiii 41

9.4.7 ISRHOOKS (SC1 ONIY) ..coviiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 42

9438 Callbacks (SC1 0ONlY)...cooiiiiiiieee e 42

9.4.9 ProtectionHook (SC3 and SC4)uvvvmiiimeiiiiiiiiiiiiieiiieeiieiaianaannes 42

9.5 Functions for MPU functionality checks...........c.cccooiiiiiiiiiiiii e, 43
9.5.1 Function 0SCheCKMPUACCESSuuuuuuummniiiiiieiiiiiiininninnnnnnnnnnnnnnnnne 43

9.5.2 Function osCheckAndRefreshMPUcccooiiiiiiiiiiiiiiiieeeen, 44

9.6 Function for OSTM functionality Checks............cccceeiiiiiiiiiiiii e, 45
9.6.1 Function osCheckAndRefreshTimer.........cccooovvviiiiiiiiciiii e, 45

10 Non-Trusted Functions (SC3 and SC4)ccoommiiemcciiirrrrrr s e e e 46
10.1 U e 1o o =1 1142 46
10,2 AP 47
10.3 Call CONEXL ... 48
10.3.1 EXAMPIE e e 49

B T 1 1T 50
1.1 (@70 0170 [0 =1 (o o 50
11.1.1 (O70] (=N | B LR 50

11.2 MURI-COre Start-Up ...coeeeii e e e e e e eeeeees 50
11.21 Both PEs controlled by OS...........ouuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiee 51

11.2.2 Only PE1 controlled by OS.......ccooiiiiiie e, 51

11.2.3 Only PE2 controlled by OS.......coooiiiie, 52

12 Timing Protection (SC4) ... 53
12.1 Configuration AtrDULES..........eiiiiiiii e 53
12.2 Restrictions for SC4 Configurationsccooiiiiiiiiiiiiiiiiieee e 53

T = o gl F= T s Vo | 11 4V OOt 54
13.1 MICROSAR OS RH850 Error NUMDbErScccooeiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee 54
13.1.1 RHB850 specific Error NUMDbErS...........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiees 54

©2016, Vector Informatik GmbH Version: 1.11 6/58

Technical Reference MICROSAR OS RH850 VeCtOf

I S 1 o Yo 11 = 56
141 Lo 18| {013 w1 == TP 56
14.2 [(oY= L0 [T S 1 (<Y SRR 57

I T 0 oY 11 7= o A 58

©2016, Vector Informatik GmbH Version: 1.11 7 /58

Technical Reference MICROSAR OS RH850

1 Overview of MICROSAR OS

1.1 Overview of Properties

vector”

Property Class Version / Range / Support

AUTOSAR OS specification

Scalability Classes supported

Conformance Classes supported

Scheduling policy

Scheduling points

Maximum number of tasks

Maximum number of events per task
Maximum number of activations per task
Maximum number of priorities

Maximum number of counters

Maximum number of alarms

Maximum number of resources

Maximum number of resources locked
simultaneously

Maximum number of schedule tables
Maximum number of expiry points

Maximum number of ISRs
Status Levels
Nested Interrupts

Interrupt level resource handling

ORTI support

Library Version
FPU support

Table 1 OS Properties

©2016, Vector Informatik GmbH

3.0.x,4.0.x,4.1.x

SC1
SC3 (SafeContext)
SC4 (SafeContext)

SC1: BCC1, BCC2, ECC1, ECC2
SC3 and SC4: ECC2

SCA1: full-, non- and mixed-preemptive
SC3 and SC4: full- and mixed-preemptive

depending on scheduling policy
65535

32

255

8192

256

32767

8192

255
65535

65535 (cyclical expiry points counted by their

multiplicity)

depending on derivative

SC1: STANDARD and EXTENDED
SC3: EXTENDED

SC4: EXTENDED

supported

SC1: supported

SC3: not supported
SC4: not supported

SC1: 2.1 Standard and 2.1 Additional
2.2 Standard and 2.2 Additional

SC3: 2.2 Additional

SC4: 2.2 Additional

not supported
supported (if provided by derivative)

Version: 1.11

8/58

Technical Reference MICROSAR OS RH850 VeCtor

2 Installation

The general installation is described in the common document [3].
The RH850 specific files are described below.

2.1 OIlL-Configurator

The OlL-configurator is a general tool for different AUTOSAR implementations. The
implementation specific parts are the code generator and the OIL-implementation files for
the code generator.

= OIL-Configurator root\OILTOOL
» OlL-Implementation files root\OILTOOL\GEN
» Code Generator root\OILTOOL\GEN

211 OlL-Implementation Files

The implementation specific files will be copied onto the local hard disk. The OlL-tool has
knowledge about these files through the file OILGEN.INI (the correct path is set by the
installation program).

Implementation file Standard obiject file Description
D1L RH850 D1L.i41 RH850 D1L.s41 Source code version
D1M RH850 D1M.i41 RH850 D1M.s41 Source code version
E1L RH850_E1L.i41 RH850_E1L.s41 Source code version
E1M RH850_E1M.i41 RH850_E1M.s41 Source code version
E1x-FCC2 |RH850 E1x FCC2.i41 |RH850 E1x FCC2.s41 Source code version
F1H RH850 F1H.i41 RH850 F1H.s41 Source code version
F1L RH850 F1L.i41 RH850 F1L.s41 Source code version
F1M RH850 F1M.i41 RH850 F1M.s41 Source code version
P1M RH850 P1M.i41 RH850 P1M.s41 Source code version
Table 2 OIL implementation Files

©2016, Vector Informatik GmbH Version: 1.11 9/58

Technical Reference MICROSAR OS RH850 VeCtOf

3 Configuration

Before an application can be compiled all static MICROSAR OS objects have to be defined
in a configuration file. The OS generator generates code in accordance to this
configuration file.

The configuration can be done either in XML language (AUTOSAR ECU configuration
format) or in OIL (OSEK implementation language).

Chapter 4 shows the program flow of a configuration / generation / compilation process in
detail.

There are configuration attributes which are standard for all MICROSAR OS
implementations. These are described in [3].

Platform specific attributes (which only apply to this implementation of MICROSAR OS)
are described hereafter.

3.1 XML Configuration

An XML configuration of the OS must conform to the AUTOSAR XML schema. To edit such
a configuration the DaVinci configurator of Vector Informatik GmbH can be used.

3.2 OIL Configuration

MICROSAR OS systems for RH850 can also be described using OIL. The OIL configurator
tool is capable of reading and writing OIL files. The finished OIL file is passed to the code
generator which generates the configuration files of the OS.

©2016, Vector Informatik GmbH Version: 1.11 10/ 58

Technical Reference MICROSAR OS RH850

3.3

OS Attributes

vector”

The OS object controls general aspects of the operating system. The following attributes
are provided for scalability class SC1, SC3 and SC4:

Attribute Name

Values
Default value is

Description

OlL XML written in bold
Compiler OsOSCompiler GHS Selects the supported compiler.
SystemStackSize 0OsOSSystemStackSize 0 ... OXFFFC | Size of the system stack in bytes.
EnumeratedUnhandl | OsOSEnumeratedUnhandl | TRUE This attribute determines handling
edISRs edISRs FALSE of unused interrupt sources.
If set TRUE then variable
ossUnhandledExceptionDetail is
set to the exception number before
calling osUnhandledException.
ORTIDebugSupport OsOSORTIDebugSupport TRUE The RH850 implementation
FALSE supports ORTI debug information if
this attribute is selected.
ORTIDebugLevel OsOSORTIDebugLevel ORTI_22_Ad | Support ORTI 2.2 with additional
ditional features which require some
additional runtime and memory.
UserConfigurationVe | OsOSUserConfigurationVer | 0 ... OXFFFF | This value specifies the current
rsion sion user specific version of the OS
configuration. It can be read back
by the user for validation.
SupportFPU OsOSSupportFPU TRUE Switches on the support for FPU.
FALSE (if provided by derivative)
TimingProtectionTim | OsOSTimingProtectionTime | 0 ... 999999 | Only SC4: peripheral clock of timer
erClock rClock No default unit TAUJO specified in [kHz]

Table 1: RH850 specific attributes of OS

©2016, Vector Informatik GmbH

Version: 1.11

11 /58

Technical Reference MICROSAR OS RH850

For scalability class SC3 and SC4 the following additional attributes are provided:

vector”

Attribute Name

OIL

XML

Values

Default value
is written in
bold

Description

CheckIntAPIStatus | OsOSCheckIntAPIStatus | TRUE If set to FALSE then the OS API
FALSE functions CallTrustedFunction and
CallNonTrustedFunction do not
check the interrupt status.
PeripheralRegion OsOSPeripheralRegion No default | List of peripheral regions.
A peripheral region defines an address
range where access is allowed for
selected applications (trusted or non-
trusted).
The access is granted by means of the
API functions.
MemoryProtection OsOSMemoryProtection TRUE Enables memory protection via MPU.
FALSE Mandatory for SC3 and SC4.
MpuRegion OsOSMpuRegion Enable Configures static MPU regions

©2016, Vector Informatik GmbH

Version: 1.11

12/58

Technical Reference MICROSAR OS RH850

vector”

3.3.1 MpuRegion Sub-Attributes (SC3 and SC4)
If a static MPU region is enabled then the memory area is specified by the following sub-

attributes:

Sub-Attribute Name

Values

Description

(default value is
OIL XML written in bold)
StartAddr OsOSStartAddr string Start address of static MPU region
No default hexadecimal value:
StartAddr = 0x...
or
memory area specific linker symbol:
StartAddr = <linker_start_symbol>
EndAddr OsOSEndAddr string End address of static MPU region
No default hexadecimal value:
EndAddr = 0x...
or
memory area specific linker symbol:
EndAddr = <linker_end_symbol>
AccessRights | OsOSAccessRights | uint32 MPU region access configuration
No default
ASID OsOSASID TRUE Specifies, whether ASID matching is enabled
FALSE for this MPU region.
Identifier OsOSldentifier 0 ... Ox3FE ASID value to be used as area match
0x3FF condition. The maximum value Ox3FF is used
as default value.
CORE OsOSCORE uint32 Only Multicore OS: Core assignment for
No default corresponding MPU region

Value of StartAddr must always point to the first valid Byte in the specified memory area.

Value of EndAddr must always point to the last valid Byte in the specified memory area.

The number of configurable static MPU regions depends on the derivative.

MpuRegion = Enable

{

StartAddr = 0x... ;
EndAddr =0x...;
AccessRights = 0x...;
ASID = TRUE;
Identifier = 0x01;

CORE = 0;

/* Multicore OS */

©2016, Vector Informatik GmbH

Version: 1.11 13 /58

Technical Reference MICROSAR OS RH850 VeCtOf

3.3.2 PeripheralRegion Sub-Attributes (SC3 and SC4)

Sub-Attribute Name Values Description
(default value

OIL XML is written in
bold)

StartAddress OsOSStartAddress | uint32 Numeric value.

No default Specifies the start address of the peripheral region
which shall be configured.

Any 32 bit value can be used.

EndAddress OsOSEndAddress uint32 Numeric value.

No default Specifies the end address of the peripheral region
which shall be configured.

Any 32 bit value can be used.

Identifier OsOsSldentifier string C-String

No default Must be a unique C Identifier which can be used in
an application or BSW module to access the
peripheral region.

ACCESSING__ | OsOSAccessing Application Application reference.

APPLICATION | Application Type Defines access rights of an application for this
PeripheralRegion.

This attribute can be defined multiple times, so that
different applications might have access right to the
same PeripheralRegion.

Q Caution
! The application is allowed to access memory addresses in the interval of StartAddress
¥ <= memory to be accessed <= EndAddress

The “EndAddress” value is included! All bytes of a peripheral access must fit into the
peripheral region.

©2016, Vector Informatik GmbH Version: 1.11 14/ 58

Technical Reference MICROSAR OS RH850

3.4

Counter Attributes

vector”

Platform specific attributes are located within the container “DRIVER”.

Sub-Attribute Name

Values

Description

(default value is
OIL XML written in bold)
Timer OsCounterTimer | OSTM Selects the timer hardware which drives the
OSTM_HIRES | hardware counter.
No default OSTM: OSTM timer is used and generates cyclic
interrupts.
OSTM_HIRES: OSTM timer is used and runs in
high resolution timer mode.
Which interrupt channel is used for a specific
derivative can be found in chapter 8.1.
3.41 OSTM Sub-Attributes
Sub-Attribute Name Values Description

(default value is
OIL XML written in bold)
EnableNesting OsCounterEnabl | TRUE Specifies whether the timer interrupt which drives
eNesting FALSE the hardware counter can be interrupted by
No default higher priority interrupts.
InterruptPriority OsCounterinterr | 0...15 The priority of the timer ISR which drives the
uptPriority 0..7(F1L) hardware counter.
StackSize OsCounterStack | 0... OXFFFC Stack size of the timer ISR which drives the
Size hardware counter.

3.4.2 OSTM_HIRES Sub-Attributes

Sub-Attribute Name

Values

Description

(default value is
OIL XML written in bold)
EnableNesting OsCounterEnabl | TRUE Specifies whether the timer interrupt which drives
eNesting FALSE the hardware counter can be interrupted by
No default higher priority interrupts.
InterruptPriority OsCounterinterr | 0... 15 The priority of the timer ISR which drives the
uptPriority 0..7(FIL) hardware counter.
StackSize OsCounterStack | 0 ... OXFFFC Stack size of the timer ISR which drives the
Size hardware counter.
MinTimeBetween | OsCounterMinTi | uint32 Defines the number of timer ticks which at least
Timerlrgs meBetweenTim | @ must be between two timer interrupts (shortest

erlrgs

possible time between two timer interrupts).

Detailed description how to configure software and hardware counter can be found in [3].

©2016, Vector Informatik GmbH

Version: 1.11

15/58

Technical Reference MICROSAR OS RH850 VeCtOf

3.5 ISR Attributes

Attribute Name

Values
Default value is written in bold

Description

OIL XML
ExceptionType OsOSExceptionType | GENERAL_EXCEPTION | Select EIINT for El level interrupts.
EIINT Select GENERAL_EXCEPTION for
core exceptions.
EnableNesting OsOSEnableNesting | TRUE Must be set FALSE if the
FALSE configured CAT2 ISR shall not be
interrupted by CAT1 or CAT2 ISRs
with higher priority level. This
attribute is ignored for CAT1 ISRs.
UseSpecialFunc | OsOSUseSpecialFun | TRUE This is a feature for mapping
tionName ctionName FALSE different interrupt / exception

sources to one interrupt handler.

This feature is supported as
described in [3].

Table 2: RH850 specific ISR attributes

3.5.1

ExceptionType Sub-Attributes

ExceptionType = GENERAL_EXCEPTION

Attribute Name Values Description
OIL XML
ExceptionAddress OsOSExceptionAddress No default Interrupt vector address offset.

Table 3: Sub-attributes of ExceptionType=GENERAL_EXCEPTION

ExceptionType = EIINT

Attribute Name Values Description
OIL XML
IntChannel OsOSIntChannel 0...511 Channel index of El level
No default interrupt.
Max channel number depends
on used CPU derivative.
InterruptPriority OsOSlInterruptPriority SC1 and SC3:0...15 Defines the interrupt priority
SC4:1...15 level of the ISR. Lower value
No default means higher priority.
InterruptStackSize OsOSinterruptStackSize 0 ... OXFFFC Size of the ISR stack
No default
Table 4: Sub-attributes of ExceptionType=EIINT
©2016, Vector Informatik GmbH Version: 1.11 16 / 58

Technical Reference MICROSAR OS RH850 VeCtOf

3.6 Application Attributes
The following specific attributes are provided for SC3 and SC4:

Attribute Name Values Description
Default value is

OIL XML written in bold

ASID OsApplicationASID 0 ... Ox3FE Value to be written to ASID register
0x3FF on application switch. The

maximum value 0x3FF is used as
default value.

MpuRegion OsApplicationMpuRegion Enable Configures application specific
dynamic MPU region

Table 5: RH850: Application specific attributes

3.6.1 Attribute MpuRegion

Attribute MpuRegion must be configured for non-trusted applications which need write
access to application specific memory areas. If dynamic MPU region is enabled then the
memory area is specified by following sub-attributes:

Sub-Attribute Name Values Description
(default value
OIL XML is written in
bold)
StartAddr OsApplication | string Start address of application specific MPU region
StartAddr No default hexadecimal value:

StartAddr = 0x...
or application specific linker symbol:
StartAddr = <appl_linker_start_symbol>

EndAddr OsApplication | string End address of application specific MPU region
EndAddr No default hexadecimal value:
EndAddr = Ox...

or application specific linker symbol:

EndAddr = <appl_linker_end_symbol>

Value of StartAddr must always point to the first valid Byte in the specified memory area.
Value of EndAddr must always point to the last valid Byte in the specified memory area.
MpuRegion = Enable

{

StartAddr = 0x... ;
EndAddr =0x...;

|

The total number of used dynamic MPU regions depends on the application which has the
most number of dynamic regions.

Example: if an application has 3 dynamic regions and other application has 5 dynamic
regions then the total number of used dynamic MPU regions is 5.

©2016, Vector Informatik GmbH Version: 1.11 17 / 58

Technical Reference MICROSAR OS RH850 VeCtOf

3.7 Event Attributes

Events in the MICROSAR OS operating system are always implemented as bits in bit
fields. The user could use bit masks like ‘0x00000001’ but to achieve portability between
different MICROSAR OS implementation he should use event names which are mapped
by the code generator to the defined bits. The MICROSAR OS RH850 implementation
allows up to 32 events per task. The required size of the event masks is calculated
automatically by the code generator. Possible event mask sizes are 8, 16 and 32 Bits.

3.8 Linker Include Files (SC3 and SC4)

The generated linker include files osdata.dld, osrom.dld, ossdata.dld, osstacks.dld and
ostdata.dld are example files which can be used for mapping the OS and application data.
osdata.dld

Include file osdata.dld contains mapping for application and OS data. It should be included
immediately after the default .data section.

osrom.dld

Include osrom.dld contains the mapping of initialized data which is copied by the start-up
code from ROM to RAM area. It should be included at end of ROM section.

ossdata.dld

Include file ossdata.dld contains the mapping of application and OS data in SDA section.
Due to limited number of MPU protection areas the SDA section of non-trusted application
contain SDA and non-SDA data. This affects also the global shared data sections. This file
must be included after the .sdata section.

osstacks.dld

Include file osstacks.dld contains the mapping of system stack, all task and all ISR stacks.
This file should be included before application specific data sections.

ostdata.dld

Include file ostdata.dld contains mapping for application data in TDA section. This file
should be included after the .zdata section.

©2016, Vector Informatik GmbH Version: 1.11 18 /58

Technical Reference MICROSAR OS RH850 VeCtOF

4 System Generation

The system generation process is described in the document [3] which is common to all
implementation. The following section describes the RH850 specific parts of the generating
process.

Code
generator

AUTOSAR XML
Configuration Tool

alternative

Configuration
Files *.c, *.h

OIL
Configurator

Compileand
link Applicati
pplication
+ Files *.c, *.h

OS source Files *.c, *.h

executable

Figure 4-1 System Generation

©2016, Vector Informatik GmbH Version: 1.11 19/ 58

Technical Reference MICROSAR OS RH850 VeCtOf

41

Code Generator

The following files are generated by the code generator genRH850.exe

config.xml
intvect_c0.c
tcb.c

tcb.h
tcbpost.h
trustfct.h
trustfct.c

configuration information in XML-format
interrupt vector tables
applications and OS configuration

trusted function stubs

osConfigBlock.c contains the configuration block

osStacks.h
osStacks.c

stack definitions

Os_MemMap.h contains definitions for MemMap usage
OILFileName.ort
OILFileName.htm

For SC3 and SC4 the following additional files are generated:

osdata.dld
osrom.dld
ossdata.dld
osstacks.dld
ostdata.dld
nontrustfct.h

example linker include file for application data

example linker include file for application data initialization
example linker include file for application data in SDA
example linker include file for stacks

example linker include file for application data in TDA

For multicore systems the following additional files are generated:

ioc.h

ioc.c

ccb.h

ccbh.c
intvect_c1.c

Header for IOC related functions

IOC related functions

Header for multicore related attributes
Multicore related attributes

Interrupt vector tables for second core

The files tcb.c, tcb.h, trustfct.c, trustfct.h and nontrustfct.h are described in document [3].

The module intvect_c<X>.c contains the interrupt vector tables for the Green Hills
compiler, where X is the corresponding logical core ID.

The module OILFileName.ort is only generated if the configuration attribute
ORTIDebugSupport is selected.

OILFileName.htm is containing information about the configuration settings.

©2016, Vector Informatik GmbH Version: 1.11 20/58

Technical Reference MICROSAR OS RH850 VeCtOf

5 Stack Handling

5.1 Task Stacks

Each task runs on an own separate task stack. Tasks might share a stack as described in
[3]. The PreTaskHook function always uses the system stack. The PostTaskHook function
uses the system stack or in case of a task termination, it uses the task stack of the task
that is terminated. Note that all task stacks must provide sufficient size for the maximum
nesting level of ISR category 1. Therefore it is recommended to use ISR category 2 if
possible.

The size of each task stack is determined by the configuration attribute StackSize of the
configuration object TASK.

5.2 ISR Stacks

An interrupt stack is defined for each interrupt priority level which is assigned to a CAT2
ISR. Each CAT2 ISR runs on the interrupt stack which is assigned to its priority level.

5.3 System Stack
The system stack is used by the dispatcher and by the hook wrappers.

5.4 Startup Stack
In function osStartOSasm the stack pointer is initialized to point to the system stack.
The system stack can be used as start-up stack.

The following linker symbol is provided for each core X to use the system stack as start-up
stack:

_osSystemStack EndAddr_c<X>

5.5 Stack Usage Size
The OS offers the possibility to determine the maximum stack usage of the OS stacks.

Please be aware, that the function stack usage determination for system stacks depends
heavily on the positions in the code, where an ISR is interrupted by another ISR.

In the single stack model, the measured value for the system stack usage also depends
heavily on the position in the code, where a basic task is preempted by another task. For
this reason, it is extremely difficult, to find a conclusion for the worst case system stack
usage from the measured stack usage.

NOTE: The API functions for determination of the stack usage are only available with the
following configuration settings:

STACKMONITORING = TRUE
StackUsageMeasurement = TRUE

©2016, Vector Informatik GmbH Version: 1.11 21/58

Technical Reference MICROSAR OS RH850 VeCtOf

5.5.1 Task Stack Usage
API function osGetStackUsage is described in [3].

5.5.2 System Stack Usage

The usage of the system stack since the start of the OS can be determined by using the
function osGetSystemStackUsage.

Prototype:
typedef osuintlé osStackUsageType;

osStackUsageType osGetSystemStackUsage (void) ;

Argument: none

Return value: Maximum stack usage (bytes) of the system stack since StartOS().

5.5.3 ISR Stack Usage

The usage of the ISR stacks since the start of the OS can be determined by using the
function osGetISRStackUsage.

Prototype:
typedef osuintlé osStackUsageType;

osStackUsageType osGetISRStackUsage (ISRType IsrIndex);

Argument: Index of the ISR
Return value: Maximum stack usage (bytes) of the ISR stack since StartOS().

©2016, Vector Informatik GmbH Version: 1.11 22 /58

Technical Reference MICROSAR OS RH850 VeCtOf

6 Interrupt Handling

- Note
This implementation supports interrupt handling according to the RH850 “expanded
specifications” with a separate vector table for EIINT interrupts.

6.1 Interrupt Vectors

The code generator generates the interrupt vector tables. Therefore, all interrupt-service-
routines have to be defined in the configuration. The interrupt vector tables are generated
into the file intvect_c<X>.c for the Green Hills compiler, where X is the corresponding
logical core ID.

The interrupt vector tables are generated into three sections:

= ". osExceptionVectorTable c<X>"
contains the core exception vector table

" ". osEIINTVectorTable c<X>"
contains the EIINT exceptions vector table

= ".os_text"

Contains the ISR prologue for CAT2 ISR wrappers

The length of the mentioned vector tables depends on the concrete derivative.

6.1.1 Reset Vector

The user can specify an own reset vector. For this the user must configure a category 1
ISR which has the vector address 0x0, i.e. attribute ExceptionAddress=0x0.

If a category 1 ISR is configured for vector 0x0, this vector is generated as a jump to the
specified address.

If this vector is not configured in the configuration, the vector 0x0 is generated as a jump to
the startup code, delivered with the compiler.

Please note that all examples use the start-up module which is delivered with the compiler.
For the Green Hills compiler this module is crt0.0

6.1.2 Level Initialization

The user has to configure an interrupt priority level for all ISRs. MICROSAR OS initializes
the appropriate interrupt control register with the level, configured by the user. The
application is not allowed to change the interrupt priority level after StartOS is called.

©2016, Vector Informatik GmbH Version: 1.11 23/58

Technical Reference MICROSAR OS RH850 VeCtOf

6.2 Interrupt Level and Category

The RH850 controllers support interrupt levels. ISRs with lower level have priority over
those with higher level. ISRs of lower level might therefore be nested into ISRs of higher
level. Interrupt levels cannot be chosen independently from the category.

Because ISRs of category 2 can activate tasks, the exit code of a non-nested category 2
ISR has to check, if a task has been activated by the ISR itself or by any nested ISRs. If
so, a task switch has to be set off. As category 1 ISRs have no such exit code, they must
not be interrupted by category 2 ISRs. For this reason, MICROSAR OS checks, that all
category 1 ISRs have lower or equal level value than the category 2 ISR with lowest level.

Note: Scalability class SC4 does not allow use of category 2 ISRs with priority level 0

6.3 Interrupt Category 1

For interrupts of category 1 no MICROSAR OS API functions can be used. Note that the
category 1 ISR with highest priority value must have lower or equal priority value than the
category 2 ISR with lowest priority value.

Example: if category 2 ISRs have priority levels 8, 10, 11 and 12 then category 1 cannot
use priority levels 8 ... 15. Category 1 ISRs must then use priority levels 0 ... 7

Note: Scalability class SC4 does not allow use of category 1 ISRs for EIINT exceptions

6.3.1 Interrupt Processing in C

Using the Green Hills compiler, category 1 interrupt functions written in C must be
implemented as described in the compiler manual:

For EIINT, you can use either of the following methods to declare a function as an interrupt
routine:

. Place #pragma ghs interrupt immediately before the function.
. Prepend the __interrupt keyword to the function definition.

Independently from the compiler, the user should not provide the interrupt vector number
to the compiler, as the compiler would generate an interrupt vector in this case. Interrupt
vector generation is always done by the operating system.

6.3.2 Unhandled Exception Determination

If an unexpected interrupt occurs which is caused by an unused interrupts source then the
ErrorHook and ShutdownHook are called and the system shutdown is requested.

The error type is reported to the application via error code E_OS_SYS_ ABORT.

If an unhandled core exception has occurred then the error reason is reported to the
application via error number osdErrUEUnhandledCoreException. The global variable
ossUnhandledCoreExceptionDetail contains the content of register FEIC and the global
variable ossUnhandledExceptionDetail contains the offset of the core exception.

If an unhandled EIINT exception has occurred then the error reason is reported to the
application via error number osdErrUEUnhandledEIINTException. The global variable
ossUnhandledEIINTDetail contains the content of register EIIC and the global variable
ossUnhandledExceptionDetail contains the index of the EIINT exception.

©2016, Vector Informatik GmbH Version: 1.11 24 /58

Technical Reference MICROSAR OS RH850 VeCtOf

6.4 Interrupt Category 2

6.4.1 Interrupt Entry

The entry code of category 2 ISRs is automatically generated by MICROSAR OS. This
code stores the GPR registers onto stack and calls the CAT2 ISR wrapper.

SC1 and SC3: The CAT2 ISR wrapper clears the global interrupt disable flag if the
attribute EnableNesting is set for this ISR before calling the corresponding ISR function. If
this attribute is not set then the CAT2 ISR wrapper does not clear the global interrupt
disable flag.

SC4: The CAT2 ISR wrapper sets register PMR to system level and clears the global
interrupt disable flag if the attribute EnableNesting is set for this ISR before calling the
corresponding ISR function. If this attribute is not set then the CAT2 ISR wrapper sets
register PMR to task level and then clears the global interrupt disable.

6.4.2 Interrupt Exit

The necessary return from exception is implemented in the CAT2 ISR wrapper exit code.
The application is not allowed to issue a return from exception instruction.

6.4.3 CAT2ISR Function

For category 2 ISRs, the user has to use the ISR-macro provided by MICROSAR OS. The
name which is given to this macro must be identical to the name in the configuration.
ISR(myISR)

{
.. /* ISR function body */

}

6.5 Disabling Interrupts

Caution
(' E It is not allowed to disable interrupts longer than the tick time SECONDSPERTICK of the
¥ hardware counter (timer). If interrupts are disabled longer than the tick time the alarm
management could be handled wrong. This error is not detected by the operating

system.

Only when compiling the operating system with the extended status additional error
checking is performed.

©2016, Vector Informatik GmbH Version: 1.11 25/58

Technical Reference MICROSAR OS RH850 VeCtOf

7 MPU Handling (SC3 and SC4)

7.1 MPU Region Usage

MPU region 0 is used for stack area protection and all other MPU regions can be
configured by the user to be static or dynamic (reprogrammed).

The total number of available MPU regions depends on the derivative group:

D1L and D1M 12
E1L and E1M 12
E1x-FCC2 16
F1H and F1M 16
F1L 4

P1M 12

711 MPU Region 0

MPU region 0 is used for stack area protection and cannot be configured by the user. It is
always reprogrammed by the OS when the context is switched. Therefore trusted and non-
trusted applications can only write to the task and ISR stacks which belong to the
application.

7.1.2 Static MPU Regions

If a MPU region shall be static, i.e. it is only initialized in StartOS and not reprogrammed
when context is switched then it has to be configured in the OS specific section. The
region number is not required. The OS generator assigns a region number for each
configured static MPU region.

The user must specify start address, end address and region attributes of the memory
area. Furthermore, for Multicore OS the core assignment has to be specified.

If a MPU region is configured to be static then it is initialized in StartOS with settings from
the configuration block.

©2016, Vector Informatik GmbH Version: 1.11 26 /58

Technical Reference MICROSAR OS RH850 VeCtOf

7.1.3 Dynamic MPU Regions

If a MPU region shall be dynamic, i.e. it is always reprogrammed when context is switched
then it has to be configured in each corresponding non-trusted application section. The
region number is not required. The OS generator assigns a region number for each
configured dynamic MPU region. Trusted applications cannot be configured with MPU
regions.

The user must specify start and end address of the memory area. The region attributes are
configured by the OS.

If a MPU region is configured to be dynamic then it is initialized in StartOS to be unused.
After StartOS it is always reprogrammed when a non-trusted application is started or
terminated.

Non-trusted applications can have different number of MPU regions. The total number of
reprogrammed MPU regions depends on the application which has the most dynamic
regions on the corresponding core. Example: If a system has 2 non-trusted applications on
the same core, one application configured with 2 MPU regions and the other application
configured with 3 MPU regions, then the total number of dynamic MPU regions is 3. During
runtime when context is switched then always 3 MPU regions are reprogrammed.

Non-trusted application Appl1:
= MPU region 1 used
= MPU region 2 used
Non-trusted application Appl2:
= MPU region 1 used
= MPU region 2 used
= MPU region 3 used

When application Appl1 is started then MPU regions 1 and 2 are reprogrammed with
application specific settings and MPU region 3 is set to unused.

When application Appl2 is started then MPU regions 1, 2 and 3 are reprogrammed with
application specific settings.

©2016, Vector Informatik GmbH Version: 1.11 27/ 58

Technical Reference MICROSAR OS RH850 vecktor'

8 RH850 Peripherals

8.1 Supported System Timer

MICROSAR OS RH850 uses the timer unit OSTM as driver for a configured hardware
counter (see 3.4). The corresponding interrupt channel depends on the derivative group:

Derivative |Used Interrupt Channel Used Hardware Unit
group
D1L/D1M 125 OSTMO
E1L/E1IM 25 OSTMO
E1x-FCC2 25 OSTMO
26 for second core (Multicore OS) OSTM1 for second core (Multicore OS)
F1M 84 OSTMO
F1H 84 OSTMO
314 for second core (Multicore OS) OSTM5 for second core (Multicore OS)
F1L 76 OSTMO
P1M 74 OSTMO
Table 3 RHB850 driver for hardware counter

8.2 Supported Time Monitoring Timer
MICROSAR OS RH850 uses the timer unit TAUJO for SC4 timing protection:

Derivative Used Interrupt Channels Used Hardware Unit
group

D1L/D1M 121, 122, 123 TAUJO

E1L/E1M Timing Protection not supported -

F1H/F1M 80, 81, 82 TAUJO

F1L 72,73,74 TAUJO

P1M 133, 134, 135 TAUJO

Table 4 RHB850 timer units for timing protection

8.3 Initialization

The OS initializes the interrupt controller INTC before the StartupHook is called.

Register SCBASE and SCCFG are initialized to use the OS syscall table (SC3 and SC4).
The OS initializes the timer OSTM after the StartupHook is called.

In case of SC3 and SC4, the OS initializes the memory protection unit MPU before the
StartupHook is called.

In case of SC4, the OS initializes the timer unit TAUJO before the StartupHook is called.

©2016, Vector Informatik GmbH Version: 1.11 28 /58

Technical Reference MICROSAR OS RH850 VeCtOf

9 Implementation Specifics

9.1 API Functions

9.1.1 DisableAlllnterrupts
SC1 and SC3: The function DisableAllinterrupts disables all interrupts. This is achieved by
setting the ID-Bit in register PSW. The old value of the ID-Bit is stored for later restore.

SC4: The function DisableAlllnterrupts disables interrupts up to priority level 1. Interrupts
with priority level O stay enabled. This is performed by setting bits 1...15 in register PMR.
The old value of the register is stored for later restore. Interrupts of priority level 0 stay
enabled so that timing protection exceptions can still occur.

Remark: Nested calls are not possible.

9.1.2 EnableAlllnterrupts
SC1 and SC3: The function EnableAlllnterrupts restores the content of the ID-Bit which
was stored by DisableAllInterrupts.

SC4: The function EnableAllinterrupts restores the content of register PMR which was
stored by DisableAllInterrupts.

Remark: Nested calls are not possible.

9.1.3 SuspendAllinterrupts
SC1 and SC3: The function SuspendAllinterrupts disables all interrupts. This is achieved
by setting the ID-Bit in register PSW. The old value of the ID-Bit is stored for later restore.

SC4: The function SuspendAllinterrupts disables interrupts up to priority level 1. Interrupts
with priority level O stay enabled. This is performed by setting bits 1...15 in register PMR.
The old value of the register is stored for later restore. Interrupts of priority level 0 stay
enabled so that timing protection exceptions can still occur.

Remark: Nested calls are possible.

9.1.4 ResumeAllinterrupts
SC1 and SC3: The function ResumeAllinterrupts restores the content of the ID-Bit which
was stored by SuspendAllinterrupts.

SC4: The function ResumeAllinterrupts restores the content of register PMR which was
stored by SuspendAllinterrupts.

Remark: Nested calls are possible.

9.1.5 SuspendOSinterrupts

The function SuspendOSinterrupts disables all category 2 interrupts. This is achieved by
setting the PMR register to system level (highest interrupt priority of all category 2
interrupts). The old value of the PMR register is stored for later restore.

Remark: Nested calls are possible.

©2016, Vector Informatik GmbH Version: 1.11 29 /58

Technical Reference MICROSAR OS RH850 VeCtOf

9.1.6 ResumeOSinterrupts

The function ResumeOSinterrupts restores the content of register PMR which was stored
by SuspendOSinterrupts.

Remark: Nested calls are possible.

Note

If OS API functions are used before StartOS then oslnitialize must be called
before any OS API function is called. If SC3 or SC4 is used, then also
osInitINTC must be called before StartOS.

9.1.7 GetResource

MICROSAR OS RH850 SC3/SC4 does not support the extension of the resource concept
for interrupt levels.

9.1.8 ReleaseResource

MICROSAR OS RH850 SC3/SC4 does not support the extension of the resource concept
for interrupt levels.

9.1.9 GetAlarmBase
MICROSAR OS RH850 SC3/SC4 does not support API function GetAlarmBase.

9.1.10 oslnitialize

Function oslnitialize is used for initializing OS global variables which are used by
osDispatcher and interrupt handling API. It is called by the OS in StartOS.

Prototype: void oslnitialize(void)

9.1.11 osInitINTC

Function osInitINTC initializes the interrupt controller INTC and some core registers for the
corresponding core X:

= EBASE = &osExceptionVectorTable c<X>

= INTBP = &osEIINTVectorTable_c<X>

= INTCFG=0

= SCBP = &0sSysCallTable_c<X> (SC3 and SC4)

» SCCFG = osdNumberOfSysCallFunctions (SC3 and SC4)

= set table mode and priority level for each configured EIINT interrupt source
assigned to core X

osInitINTC is called by the OS in StartOS.
Prototype: void osInitINTC(void)

©2016, Vector Informatik GmbH Version: 1.11 30/58

Technical Reference MICROSAR OS RH850 vecktor'

9.2 Peripheral Region API

In a safety application there is the need to access peripheral components from QM
software (non-trusted).

For QM software, which runs in restricted mode (e.g. user mode) the peripheral access
must be granted by the MPU. Sometimes there are peripheral registers which cannot be
written at all in restricted mode.

Therefore the OS offers the concept of the peripheral region API.

The peripheral regions are defined in the configuration. Access rights are also configured
on application level.

With an API any Software (also non trusted) is capable to write to peripheral registers even
if the access is not granted by the MPU.

9.21.1 Read Functions

There are three reading functions.

Prototype
osuint8 osReadPeripheral8 (osuintl6 area, osuint32 address)
osuintl6 osReadPeripherall6(osuintl6 area, osuint32 address)

osuint32 osReadPeripheral32(osuintl6 area, osuint32 address)

area Identifier of peripheral regions to the read from
address Address to be read from

Return code

The content of “address” interpreted as 8 bit, 16 bit or 32 bit value

Functional Description

> reads either an 8 bit, or a 16 bit or a 32 bit value from “address”

> The function performs accessing checks (whether the caller has accessing rights to the
peripheral region and whether the address to be read from is within the configured range of
the peripheral region)

> The error hook is raised in case of an error
> A shutdown is not issued in case of an error

Particularities and Limitations

> These functions may not be called from OS hooks
Call context

> These functions may be called from Task context
> These functions may be called from category 2 ISR context
> These functions can be called with interrupts enabled or with interrupts disabled

©2016, Vector Informatik GmbH Version: 1.11 31/58

Technical Reference MICROSAR OS RH850 vecktor'

9.21.2 Write Functions
There are three writing functions.

Prototype
void osWritePeripheral8 (osuintl6 area, osuint32 address, osuint8 value)
volid osWritePeripherall6(osuintl6 area, osuint32 address, osuintlé6 value)

volid osWritePeripheral32(osuintl6 area, osuint32 address, osuint32 value)

area Identifier of peripheral regions to the read from
address Address to write to
value Value to be written

Return code

None

Functional Description

> Writes to either an 8 bit, or a 16 bit or a 32 bit value

> The function performs accessing checks (whether the caller has accessing rights to the
peripheral region and whether the address to be read from is within the configured range of
the peripheral region)

> The error hook is raised in case of an error
> A shutdown is not issued in case of an error

Particularities and Limitations

> These functions may not be called from OS hooks
Call context

> These functions may be called from Task context
> These functions may be called from category 2 ISR context
> These functions can be called with interrupts enabled or with interrupts disabled

©2016, Vector Informatik GmbH Version: 1.11 32/58

Technical Reference MICROSAR OS RH850 vecktor'

9.2.1.3 Modify Functions
There are three modifying functions.

Prototype
voilid osModifyPeripheral8 (osuintl6é area, osuint32 address, osuint8 clearmask,
osuint8 setmask)

void osModifyPeripherall6(osuintl6 area, osuint32 address, osuintl6 clearmask,
osuintl6 setmask)

void osModifyPeripheral32(osuintl6 area, osuint32 address, osuint32 clearmask,
osuint32 setmask)

area Identifier of peripheral regions to the read from
address Address to be modified

clearmask Bitmask which is bitwise “ANDed” to “address”
setmask Bitmask which is bitwise “ORed” to “address”

Return code

None

Functional Description

> The function performs accessing checks (whether the caller has accessing rights to the
peripheral region and whether the address to be read from is within the configured range of
the peripheral region)

> The error hook is raised in case of an error
> A shutdown is not issued in case of an error

> After the access checks has passed first the “clearmask” is ANDed to “address” and
afterwards the “setmask” is ORed to it.

Particularities and Limitations
> These functions may not be called from OS hooks
Call context

> These functions may be called from Task context
> These functions may be called from category 2 ISR context
> These functions can be called with interrupts enabled or with interrupts disabled

©2016, Vector Informatik GmbH Version: 1.11 33/58

Technical Reference MICROSAR OS RH850 VeCtOf

9.3 Peripheral Interrupt APl Functions (SC3 and SC4)

The OS provides functions which can be used to perform write access to the interrupt
controller INTC control registers in user mode.

If read access to SFR registers is enabled in user mode then the following macros can be
used to read from interrupt controller INTC registers.

#define osReadICRS8 (addr) (* ((osuint8%*) (addr)))
#define osReadICR1l6 (addr) (* ((osuintlé*) (addr)))

This chapter describes API functions which can be used to access the interrupt control
registers within the corresponding address range:

D1L/D1M FFFE EAOO - FFFE EA3E (EICO to EIC31)
FFFF B040 - FFFF B1FE (EIC32 to EIC255)
E1L/E1M FFFE EAOO - FFFE EA3E (EICO to EIC31)
FFFF B040 - FFFF B3FE (EIC32 to EIC511)
Elx-Fcc2 FFFE EAOO - FFFE EA3E (EICO to EIC31)
FFFF B040 - FFFF B3FE (EIC32 to EIC511)
F1H FFFE EAOO - FFFE EA3E (EICO to EIC31)
FFFF B040 - FFFF B2BC (EIC32 to EIC350)
F1L FFFF 9000 - FFFF 903E (EICO- EIC31)
FFFF A040 - FFFF A232 (EIC32- EIC281)
F1M FFFE EAOO - FFFE EA3E (EICO to EIC31)
FFFF B040 - FFFF B25C (EIC32 to EIC297)
P1M FFFE EAOO0 - FFFE EA3E (EICO to EIC31)
FFFF B040 - FFFF B2FE (EIC32 to EIC383)

©2016, Vector Informatik GmbH Version: 1.11 34/58

Technical Reference MICROSAR OS RH850 vector'

9.3.1 Write to Interrupt Control Register

Writing 1 or 2 Byte to the interrupt controller INTC control register is achieved by
osWritel CR8/osWritel CR16 and osWritelCRxLo/ osWritel CRxHi/ osWritel CRx16:

osWritelCR8

This function writes 1 Byte at specified destination address. Before writing the address
parameter is checked to be in valid range.

Prototype
void osWriteICR8 (uint32 addr, uint8 wval);

Parameter

addr destination address
val value to be written at destination address

Return Code

vosa [
Functional Description
* (uint8*)addr = (uint8)val;

osWritelCR16

This function writes 2 Bytes at specified destination address. Before writing the address
parameter is checked to be in valid range.

Prototype
void osWriteICR1l6 (uint32 addr, uintlé wval);

Parameter

addr destination address
val value to be written at destination address

Return Code

i -

Functional Description

* (uintl6*)addr = (uintlé)val;

©2016, Vector Informatik GmbH Version: 1.11 35/58

Technical Reference MICROSAR OS RH850 vector'

osWritelCRxLo

This function writes the lower Byte of the control register of the specified interrupt number.
Before writing the index is checked to be in valid range.

Prototype

void osWriteICRxLo (uint32 index, uint8 val);

Parameter

index interrupt number
val value to be written to control register

Return Code

voia [
Functional Description
* (uint8*)addr = (uint8)val;

osWritelCRxHi

This function writes the upper Byte of the control register of the specified interrupt number.
Before writing the index is checked to be in valid range.

Prototype
void osWriteICRxHi (uint32 index, uint8 val);

Parameter

index interrupt number

Return Code

voia [
Functional Description

* (uint8*)addr = (uint8)val;

osWriteICRx16

This function writes both Bytes of the control register of the specified interrupt number.
Before writing the index is checked to be in valid range.

Prototype
void osWriteICRx16 (uint32 index, uintlé val);

Parameter

index interrupt number
val value to be written to control register

Return Code

voia [
Functional Description
* (uint8*)addr = (uint8)val;

©2016, Vector Informatik GmbH Version: 1.11 36/58

Technical Reference MICROSAR OS RH850 vector'

9.3.2 Set or Clear Mask Flag

The mask flag of the interrupt control register can be set or cleared by osSetlICRMask and
osClearICRMask.

osSetlICRMask

This function sets the mask flag at specified destination address which must be even.
Before writing the address parameter is checked to be in valid range. The address
parameter is not checked to be even. The user must take care about it.

Prototype

void osSetICRMask (uint32 addr) ;

Parameter

m destination address

Return Code

voia [
Functional Description
* (uint8*)addr |= (uint8)0x80;

osClearICRMask

This function clears the mask flag at specified destination address which must be even.
Before writing the address parameter is checked to be in valid range. The address
parameter is not checked to be even. The user must take care about it.

Prototype

void osClearICRMask (uint32 addr) ;
Parameter

m destination address

Return Code

voia
Functional Description
* (uint8*)addr &= (uint8)O0x7F;

©2016, Vector Informatik GmbH Version: 1.11 37/58

Technical Reference MICROSAR OS RH850 vector'

9.3.3 Set or Clear ICR Request Flag

The request flag of the interrupt control register can be set and cleared by calling the
functions 0sSetICRReq and osClearlCRReq:

osSetICRReq

This function sets the interrupt request flag at specified destination address. Before writing
the address parameter is checked to be in valid range. The destination address is
automatically made an odd address by the function.

Prototype
void osSetICRReq(uint32 addr) ;

Parameter

m destination address

Return Code

voia [
Functional Description
* (uint8*) (addr | 0x01l) |= (uint8)0x10;

osClearICRReq

This function clears the interrupt request flag at specified destination address. Before
writing the address parameter is checked to be in valid range. The destination address is
automatically made an odd address by the function.

Prototype

void osClearICRReq(uint32 addr);

Parameter

m destination address

voia [
Functional Description
* (uint8*) (addr | 0x0l1l) &= (uint8)OxEF;

©2016, Vector Informatik GmbH Version: 1.11 38/58

Technical Reference MICROSAR OS RH850 vector'

9.3.4 Read, Set or Clear Mask Bit in Registers IMRm

The mask bits in IMRm registers can be read, set and cleared by calling functions
osGetIMRmEI, osSetIMRmEI and osClearIMRmEI.

osGetIMRmEI

This function returns the current value of the mask bit specified by index (interrupt
number). Before read access the index parameter is checked to be in the valid range.

Prototype
void osGetIMRmEI (uintl6 index);

Parameter

mask register index

Return Code

return mask flag IMRmEIMK<index>

Functional Description
return (uint8) (IMRmEIMK<index>) ;

osSetIMRmEI

This function sets the mask bit specified by index (interrupt numer). Before write access
the index parameter is checked to be in the valid range.

Prototype

void osSetIMRmEI (uintlé index) ;

Parameter

Return Code

vosa [
Functional Description

IMRmEIMK<index> = 1;

osClearIMRmEI

This function clears the mask bit specified by index (interrupt number). Before write access
the index parameter is checked to be in the valid range.

Prototype
void osClearIMRmEI (uintl6 index) ;

Parameter

mask register index

Return Code

voia [
Functional Description
IMRmEIMK<index> = 0;

©2016, Vector Informatik GmbH Version: 1.11 39/58

Technical Reference MICROSAR OS RH850 vector'

9.3.5 Write to Registers IMRm

The registers IMRm can be written with 1 Byte, 2 Byte and 4 Byte value by calling functions
osWritelMR8, osWriteIMR16 and osWritelMR32.

osWritelMRS8

Function osWriteIMR8 writes 1 Byte to register IMRm specified by address. Before write access
the address parameter is checked to be in the valid range.

Prototype

void osWriteIMR8 (uint32 addr, uint8 wval);

Parameter

addr destination address
val value to be written at destination address

Return Code

vosa [
Functional Description
* (uint8*)addr = (uint8)val;

osWritelMIR16

This function writes 2 Bytes to register IMRm specified by address. Before write access the
address parameter is checked to be in the valid range.

Prototype

void osWriteIMR1l6 (uint32 addr, uintlé wval);

Parameter

addr destination address

Return Code

vosa [
Functional Description

* (uintl6*)addr = (uintlé)val;

osWritelMIR32

This function writes 4 Bytes to register IMRm specified by address. Before write access the
address parameter is checked to be in the valid range.

Prototype
void osWriteIMR32 (uint32 addr, uint32 wval);
Parameter

addr destination address

Return Code

voia []
Functional Description

* (uint32*)addr = (uint32)val;

©2016, Vector Informatik GmbH Version: 1.11 40/ 58

Technical Reference MICROSAR OS RH850 VeCtOf

9.4 Hook Routines

The MICROSAR OS specification [3] allows implementation specific additional parameters
in hook routines. The prototypes of the hook routines are described in [1].

The contexts where hook routines are called are implementation specific and are
described below. All hook routines are called with disabled interrupts.

9.4.1 ErrorHook

The ErrorHook is called if an error is detected in an API-function and if a system error is
detected. The ErrorHook runs on the task or ISR stack if an API error is reported and it
runs on the system stack if an unrecoverable system error is reported. Interrupts are
disabled and CPU runs in supervisor mode.

9.4.2 StartupHook

The StartupHook runs always on the system stack. Interrupts are disabled and CPU runs
in supervisor mode.

9.4.3 ShutdownHook

SC1: The ShutdownHook runs on the stack of the task or ISR which has called
ShutdownOS(). El level interrupts are disabled.

SC3 and SC4: The ShutdownHook runs always on the system stack. El level interrupts are
disabled and the CPU runs in supervisor mode.

9.4.4 PreTaskHook

The PreTaskHook runs always on the system stack. Interrupts are disabled and CPU runs
in supervisor mode.

9.4.5 PostTaskHook

The PostTaskHook runs on the task stack or on the system stack. Interrupts are disabled
and CPU runs in supervisor mode.

9.4.6 PreAlarmHook (SC1 only)

When entering the ISR “osTimerinterrupt” there is a call of the PreAlarmHook when the
corresponding configuration switch is set. The user has to take care for the implementation
of this routine. Please implement this hook routine as follows:

void PreAlarmHook (void)

{

/* user specific code */

}

The Hook Routine is called before incrementing the system counter and before handling
all alarms! The Hook Routine runs on system stack.

©2016, Vector Informatik GmbH Version: 1.11 41/ 58

Technical Reference MICROSAR OS RH850 VeCtOf

9.4.7 ISRHooks (SC1 only)

The ISRHooks — UserPrelSRHook and UserPostISRHook — run on the system stack. If
EnableNesting is set to TRUE for the respective ISR, these hooks run with interrupts
enabled; otherwise they run with interrupts disabled.. For a more detailed description of
these hooks see [3].

9.4.8 Callbacks (SC1 only)

Callbacks run on the stack of the entity that led to their activation. E.g. if an alarm callback
is activated through a call to IncrementCounter() by a task, it runs on this tasks stack. If
IncrementCounter() was called by an interrupt (for example the system timer
interrupt), the Callback runs onthe corresponding ISR stack.

9.4.9 ProtectionHook (SC3 and SC4)

The ProtectionHook is called if a memory protection or privileged instruction violation was
detected. It runs always on the system stack. Interrupts are disabled and CPU runs in
supervisor mode.

©2016, Vector Informatik GmbH Version: 1.11 42 /58

Technical Reference MICROSAR OS RH850 VeCtOf

9.5 Functions for MPU functionality checks
The OS provides 2 functions which can be called to check the functionality of the MPU.

9.5.1 Function osCheckMPUAccess
Function osCheckMPUAccess can be called to check the current MPU protection settings.

uint8 osCheckMPUAccess (const uint8* addr)

addr The address to be checked for read and write access

. 0 = E_OK: read and write access to given address is possible
uint8

1=E_OS_ACCESS: access to given address has caused memory protection violation

e disable interrupts

¢ call internal function osAsmCheckMPU to check read and write access to destination address
¢ store the return value of internal function osAsmCheckMPU into local variable

e restore previous interrupt state

o return with given return value

The internal function osAsmCheckMPU first reads 1 byte from the destination address and then writes
this value back to the destination address. If read and write access is possible the value on the given
destination address is not changed. If read or write access is not possible then an access violation is
detected by the MPU and a protection exception occurs. The protection exception handler returns to
internal function osAsmCheckMPU with return value = 1. This return value is returned to the caller of
function osCheckMPUAccess to signal the access violation.

Not allowed before call of StartOS()

Table 5: Function osCheckMPUAccess

©2016, Vector Informatik GmbH Version: 1.11 43/ 58

Technical Reference MICROSAR OS RH850 VeCtOf

9.5.2 Function osCheckAndRefreshMPU

Function osCheckAndRefreshMPU can be called to check and re-initialize all MPU
registers which are not reprogrammed during runtime.

StatusType osCheckAndRefreshMPU (void)

StatusType |E _OK: all MPU registers have expected content
E_OS_SYS API_ERROR: invalid content was detected in MPU registers

o checks all MPU registers which are not reprogrammed

¢ re-initialize all MPU registers which are not reprogrammed

o returns E_OK if all MPU registers have expected content

e returns E_OS_SYS_API_ERROR if invalid content was detected in MPU registers

= Callis only allowed after StartOS()
= Call is only allowed by trusted applications

Table 6: Function osCheckAndRefreshMPU

©2016, Vector Informatik GmbH Version: 1.11 44/ 58

Technical Reference MICROSAR OS RH850 VeCtOf

9.6 Function for OSTM functionality checks

9.6.1 Function osCheckAndRefreshTimer

Function osCheckAndRefreshTimer can be called by trusted applications at any time after
StartOS to check and re-initialize the register settings of system timer OSTM.

StatusType osCheckAndRefreshTimer (void)

StatusType |E OK: all registers of OSTM have expected content
E_OS_SYS_API_ERROR: invalid content was detected in OSTM register

e check content of all used OSTM registers

e re-initialize all OSTM registers which have wrong content

e returns E_OK if all OSTM registers have expected content

e returns E_OS_SYS APl _ERROR if invalid content was detected in OSTM registers

= Call is only allowed after StartOS()
= Call is only allowed by trusted applications

Table 7: Function osCheckAndRefreshTimer

©2016, Vector Informatik GmbH Version: 1.11 45/ 58

Technical Reference MICROSAR OS RH850 VeCtOf

10 Non-Trusted Functions (SC3 and SC4)

Non-trusted functions are a VECTOR extension to the AUTOSAR OS specification. This concept
allows non-trusted applications to provide interface functions which might be called by trusted or
non-trusted tasks and ISRs.

10.1 Functionality

Non-trusted functions can be used to provide service functions by non-trusted applications. Non-
trusted functions are called with memory access rights and service protection rights of the owner
application, independent from the access rights of the caller. These functions can access local data
of the owner application without the possibility to overwrite data of other applications.

The caller might be a task of a trusted application with global memory access, developed
according to high safety standards. The called non-trusted function might be developed according
to lower standards but is not able to access any other memory than limited accessible memory of
the non-trusted owner application. During the call, the non-trusted function is executed on a
separate stack, isolated from the caller stack by the MPU.

©2016, Vector Informatik GmbH Version: 1.11 46 / 58

Technical Reference MICROSAR OS RH850 vecktor'

10.2 API

Prototype

StatusType osCallNonTrustedFunction (NonTrustedFunctionIndexType FunctionIndex,

NonTrustedFunctionParameterRefType FunctionParams) ;

Functionindex Index of the function to be called.
FunctionParams Pointer to the parameters for the function to be called. If no parameters are provided,

a NULL pointer has to be passed.

Return code

E OK No error

E_OS_SERVICEID No function defined for this index

Functional Description

Executes the non-trusted function referenced by Functionindex and passes argument FunctionParams.

The non-trusted function must conform to the following C prototype:

void NONTRUSTED <name of the non-trusted function (NonTrustedFunctionIndexType,
NonTrustedFunctionParameterRefType) ;

The arguments are the same as the arguments of CallNonTrustedFunction.

Particularities and Limitations

> The non-trusted function is called in user mode with memory protection enabled
> The function has memory access rights of the owner application
> The function has the service protection rights of the owner application

Call context
> Task, CAT2 ISR, trusted function, non-trusted function

Table 8 API CallNonTrustedFunction

'_]. Note
I Vector MICROSAR OS implementations offer the possibility of stub function generation
> for trusted functions. This mechanism is not available for non-trusted functions.

©2016, Vector Informatik GmbH Version: 1.11 47 / 58

Technical Reference MICROSAR OS RH850

10.3 Call Context

The following table shows the API functions callable from non-trusted functions.

API Functions Call allowed API Functions Call allowed

ActivateTask
TerminateTask
ChainTask

Schedule
DisableAlllnterrupts
EnableAllinterrupts
SuspendAllinterrupts
ResumeAlllnterrupts
SuspendOSinterrupts
ResumeOSinterrupts
GetResource
ReleaseResource
SetEvent

ClearEvent

GetEvent

WaitEvent

GetAlarm
SetRelAlarm
SetAbsAlarm

CancelAlarm

Abbreviations:
X: Allowed

DC: Dependent on caller. Allowed if called from task, not allowed from ISR

P: Pairwise, when

DC
DC

@)
(@)

X X X T U U U U T

GetTaskID

GetTaskState

StartOS

ShutdownOS
GetApplicationlD
GetActiveApplicationMode
GetISRID
CallTrustedFunction
CallNonTrustedFunction
CheckObjectAccess
CheckObjectOwnership
StartScheduleTableRel
StartScheduleTableAbs
StopScheduleTable
NextScheduleTable
StartScheduleTableSynchron
SyncScheduleTable
GetScheduleTableStatus
SetScheduleTableAsync

IncrementCounter

they need to be re-enabled within the same function

©2016, Vector Informatik GmbH

Version: 1.11

X X X X X X X X X X X X X X X X

vector”

interrupts are disabled within the (trusted/non-trusted) function,

48 /58

Technical Reference MICROSAR OS RH850 VeCtOf

10.3.1 Example
Non-trusted functions have to be defined and called as followed:

Example for calling a non-trusted function (configured function name = MyNTF used as index
number):

TASK (Taskl)

{
MyNTFParametersStruct callArg;

callArg.a = 2;
CallNonTrustedFunction (MyNTF, (NonTrustedFunctionParameterRefType)
(&callArg)) ;

}

Definition and prototype of the non-trusted function must have the prefix NONTRUSTED _ :

void NONTRUSTED MyNTF (NonTrustedFunctionIndexType idx,
NonTrustedFunctionParameterRefType param)

{
if(((MyNTFParametersStruct *) param)->a == 2)

{
/* do something */

}

The non-trusted function parameters must be declared via typedef struct:

typedef struct
{

unsigned char a;
} MyNTFParametersStruct;

©2016, Vector Informatik GmbH Version: 1.11 49 /58

Technical Reference MICROSAR OS RH850 VeCtOf

11 Multicore

This OS implements the Autosar OS Multi Core feature according to Autosar specification
4.0.3.

11.1 Configuration

Each application has to be assigned to a core. This is done with the application attribute
“CORE".

Since each configuration object has to be assigned to an application the core assignment
of the object is implicitly done with the application assignment.

11.1.1 Core IDs

The physical core ID which is provided in hardware register HTCFGO differs from the
logical core ID used by the OS internally, which is returned by GetCorelID () .

CPU1 (PE1) CPU2 (PE2)

Physical core ID

Logical core ID

Table 9: Mapping of physical and logical core |D

11.2 Multi-Core start-up

As immediately after reset both cores begin execution, the master-slave startup behavior is
emulated in software. Therefore, a handshake synchronization is performed by calling
osInitMultiCoreOS () on PE1 and calling osInitSlaveCore () on PE2. It is not
allowed to use any other API function before this initial synchronization step is done.

By calling osInitMultiCoreOS () PE1 initializes the multi-core OS related variables and
synchronizes with PE2. By calling osInitSlaveCore () PE2 synchronizes with PE1 and
resides in a busy waiting state, until it is started by StartCore() or
StartNonAutosarCore (). If only PE2 should be controlled by the OS, then PE2 has to
call osInitMultiCore0OS () after osInitSlaveCore ().

| Caution
The hardware register OSTMO_CMP is used for synchronization purpose.

Therefore, 0STMO_CMP must not be modified before initial synchronization.

The following chapters provide code examples for the multi-core startup.

©2016, Vector Informatik GmbH Version: 1.11 50 /58

Technical Reference MICROSAR OS RH850

11.2.1 Both PEs controlled by OS

void main ()
{
[...]
switch (GetCorelID())
{
case OS CORE ID O:
[...]
osInitMultiCoreOS () ;
StartCore (0OS CORE ID 1);
StartOS (OSDEFAULTAPPMODE) ;
break;
case OS CORE ID 1:
[...]
osInitSlaveCore();
StartOS (OSDEFAULTAPPMODE) ;
break;
default:
[..]
break;

11.2.2 Only PE1 controlled by OS

void main ()

{
[..]
switch (GetCorelID())

{
case OS CORE ID O:

[...]
osInitMultiCoreOS () ;

StartNonAutosarCore (OS _CORE ID 1);

StartOS (OSDEFAULTAPPMODE) ;
break;
case OS CORE ID 1:
[...]
osInitSlaveCore();
[..]
break;
default:

[...]
break;

©2016, Vector Informatik GmbH

Version: 1.11

vector”

/* may be called later */

51/58

Technical Reference MICROSAR OS RH850 VeCtOf

11.2.3 Only PE2 controlled by OS

void main ()

{
[..]
switch (GetCorelID())

{
case OS CORE ID O:

[...]
osInitMultiCoreOS () ;
StartCore (0OS CORE ID 1);
[...]
break;

case OS CORE ID 1:
[...]
osInitSlaveCore();
osInitMultiCoreOS () ;
StartNonAutosarCore (OS_CORE ID 0);
StartOS (OSDEFAULTAPPMODE) ;
break;

default:
[...]
break;

/* adjusts the state of PE1*/

©2016, Vector Informatik GmbH Version: 1.11 52 /58

Technical Reference MICROSAR OS RH850

12 Timing Protection (SC4)

MICROSAR OS RH850 SC4 provides timing protection by using timer unit TAUJO:
TAUJO timer channel O is used for inter arrival time monitoring.

TAUJO timer channel 1 is used for execution time monitoring.

TAUJO timer channel 2 is used for blocking time monitoring.

TAUJO timer channel 3 is not used and therefore disabled.

TAUJO timer channels 0, 1 and 2 are initialized with interrupt priority level 0.

12.1 Configuration Attributes

The common SC4 attributes are described in the general MICROSAR OS manual.
RH850 specific SC4 attributes

OS attribute TimingProtectionTimerClock must be specified in [kHz] by user:
Example: If the peripheral clock of TAUJO is 20 MHz then set
TimingProtectionTimerClock = 20000

12.2 Restrictions for SC4 Configurations
MICROSAR OS RH850 has the following restrictions for SC configurations:
. It is not allowed to use category 1 ISRs
. It is not allowed to configure category 2 ISRs with priority level O
. It is not allowed to modify any register of unit TAUJO after calling StartOS

©2016, Vector Informatik GmbH Version: 1.11

vector”

53 /58

Technical Reference MICROSAR OS RH850 VeCtOf

13 Error Handling

13.1 MICROSAR OS RH850 Error Numbers

In addition to the AUTOSAR OS error numbers all MICROSAR OS implementations
provide unique error numbers for an exact error description. All error numbers are defined
as a 16 bit value. The error numbers are defined in the header file osekerr.h and are

defined according to the following syntax:

Oxgfee
| | +--- consecutive error number
|+---- number of function in the function group
+-———- number of function group

Error numbers common for all MICROSAR OS implementations are described in [3].

13.1.1 RH850 specific Error Numbers

The RH850 implementation specific error numbers have a function group number starting
at 0xA101 and are described in the following table:

osdErrYOSystemStackOverflow 0xA101 SysCheck system stack overflow is detected
osdErrYOTaskStackOverflow 0xA102 SysCheck task stack overflow is detected
osdErrYOISRStackOverflow 0xA103 SysCheck ISR stack overflow is detected
osdErrSCWrongSysCallParameter 0xA201 SysCheck invalid syscall parameter is used
osdErrDPStartValidContext 0xA401 SysCheck new task is started with valid
context
osdErrDPResumelnvalidContext 0xA402 SysCheck preempted task is resumed with
invalid context
osdErrDPInvalidTaskindex 0xA403 SysCheck invalid active task index
osdErrDPInvalidApplicationID 0xA404 SysCheck invalid active application ID
osdErrEXMemoryViolation 0xA501 SysCheck memory protection violation
osdErrEXPrivilegedIinstruction 0xA502 SysCheck privileged instruction violation
osdErrSUInvalidTaskindex 0xA601 SysCheck invalid task index used in
osGetStackUsage
osdErrSUInvalidlsrindex 0xA602 SysCheck invalid ISR index used in
osGetISRStackUsage
osdErrSUInvalidlsrPriolLevel 0xA603 SysCheck invalid ISR priority level used in
osGetISRStackUsage
osdErrClinvalidlsrindex 0xA701 SysCheck CAT2 ISR wrapper called with
invalid ISR ID
osdErrClinvalidlsrPrioLevel O0xA702 SysCheck invalid ISR priority level used in
CAT2 ISR wrapper
osdErrClinvalidApplicationID 0xA703 SysCheck invalid application ID used in
CAT2 ISR wrapper
©2016, Vector Informatik GmbH Version: 1.11 54/ 58

Technical Reference MICROSAR OS RH850

osdErrCIMissingIntRequest
osdErrClinterruptisMasked
osdErrCIWronglIntPriority
osdErrPIGetIMRInvalidindex

osdErrPISetIMRInvalidIndex
osdErrPIClearIMRInvalidindex

osdErrPIWritelMR8InvalidAddr

osdErrPIWritelIMR16InvalidAddr

osdErrPIWriteIMR32InvalidAddr
osdErrPISetlICRMasklInvalidAddr
osdErrPIClearl CRMasklInvalidAddr
osdErrPISetlICRReqlInvalidAddr
osdErrPIClearlCRReqlnvalidAddr
osdErrPIWritel CR8InvalidAddr
osdErrPIWritelCR16InvalidAddr
osdErrPIWritel CRxLolnvalidindex
osdErrPIWritelCRxHilnvalidindex
osdErrPIWrite CRx16Invalidindex
osdErrCRInvalidSettingOSTM
osdErrCRInvalidSettingMPU
osdErrUEUnhandledCoreException

osdErrUEUnhandledDirectBranch

Table 10 RH850 specific Error Numbers

©2016, Vector Informatik GmbH

O0xA704
O0xA705
O0xA706
0xA801

0xA802

0xA803

0xA804

0xA805

0xA806

0xA807

0xA808

0xA809

OxA80A

0xA80B

0xA80C

0xA80D

OxA80E

OxA80F

0xA901

0xA902

O0xAAO01

O0xAA02

SysCheck
SysCheck
SysCheck
SysCheck

SysCheck
SysCheck
SysCheck
SysCheck
SysCheck
SysCheck
SysCheck
SysCheck
SysCheck
SysCheck
SysCheck
SysCheck
SysCheck
SysCheck
SysCheck
SysCheck
SysCheck

SysCheck

Version: 1.11

vector”

Missing interrupt request
Interrupt is masked
Wrong interrupt priority

invalid IMR index used in
0osGetIMR

invalid IMR index used in
osSetIMR

invalid IMR index used in
osClearlIMR

invalid IMR address used in
osWriteIMR8

invalid IMR address used in
osWriteIMR16

invalid IMR address used in
osWriteIMR32

invalid ICR address used in
osSetlICRMask

invalid ICR address used in
osClearlICRMask

invalid ICR address used in
0sSetlICRReq

invalid ICR address used in
osClearlCRReq

invalid ICR address used in
osWriteICR8

invalid ICR address used in
osWriteICR16

invalid ICR index used in
osWritelCRxLo

invalid ICR index used in
osWrite|CRxHi

invalid ICR index used in
osWritelCRx16

invalid register content found in
osCheckAndRefreshTimer

invalid register content found in
osCheckAndRefreshMPU

unhandled core exception
occurred

unhandled direct branch
exception occurred

55/58

Technical Reference MICROSAR OS RH850 VeCtor

14 Modules

MICROSAR OS RH850 source and header files depend on the scalability class:

14.1 Source Files

Module Name Description
[J [J

atosappl.c Memory protection related functions

atostime.c Schedule table related functions ° ° °
atosTProt.c Timing protection related functions °
osek.c System initialisation, scheduler, interrupt control) ° °
osekalrm.c Alarm related functions ° ° °
osekasm.c Compiler specific assembler functions and syscalls) ° °
osekerr.c Error handling ° ° °
osekevnt.c Event handling ° ° °
osekrsrc.c Resource handling ° ° °
oseksched.c Schedule table related functions ° ° °
osekstart.c OS start-up related functions ° ° °
osektask.c Task management ° ° °
osektime.c Timer interrupt routine and alarm management) ° °
osSysCall.c Compiler specific syscall table ° °
osOstmHiRes.c Timer specific functions ° ° °
osMultiCore.c Multicore related functions mMc’ MC

Table 11 List of source files

" Only for multi core systems

©2016, Vector Informatik GmbH Version: 1.11 56 / 58

Technical Reference MICROSAR OS RH850

14.2 Header Files

vector”

Module Name - sc3 | sca

This header has to be included by the

application
Included by Os.h, includes the Autosar Header
Os_Cfg.h files if selected by the attribute
TypeHeaderInclude
osek.h Included by Os_cfg.h, basic OS header
osekasm.h Compiler specific header for assembler code
Included by osek.h, macro-definitions for
osekasrt.h) .
assertion-handling
osekcov.h Coverage macros
Included by osek.h, definitions of all error-
osekerr.h
numbers
osekext.h Header file for OS internal functions
oseksched.h Header for schedule table related functions
emptymac.h Empty APl hook macros
testmaci.h User APl hook macros (contains macros for
' ORTI debug support)
testmac3.h User APl hook macros (contains macros for
' ORTI debug support)
testmac4.h User API hook macros (contains macros for
' ORTI debug support)
Included by all headers and system modules,
vrm.h
Vector release management
Linker specific symbols for the syscall table.
osSysCallTable.dld This file must be included into the global project

linker file.

osDerivatives.h dependent header.

File for including the necessary derivative

osRH850_<Derivative>.h RH850 Derivative specific header file.

osINTC2.h
controller.

Contains specific code for the interrupt

osMultiCore.h Header for multicore related functions

Table 12 List of header files

©2016, Vector Informatik GmbH

Version: 1.11

MC

MC

57 /58

Technical Reference MICROSAR OS RH850

15 Contact

Visit our website for more information on

News

Products
Demo software
Support
Training data

Addresses

www.vector.com

In case of OSEK / MICROSAR OS related problems you may write an email to

osek-support@yvector.com

©2016, Vector Informatik GmbH

Version: 1.11

vector”

58 /58

http://www.vector.com/
mailto:osek-support@vector.com

	1 Overview of MICROSAR OS
	1.1 Overview of Properties

	2 Installation
	2.1 OIL-Configurator
	2.1.1 OIL-Implementation Files

	3 Configuration
	3.1 XML Configuration
	3.2 OIL Configuration
	3.3 OS Attributes
	3.3.1 MpuRegion Sub-Attributes (SC3 and SC4)
	3.3.2 PeripheralRegion Sub-Attributes (SC3 and SC4)

	3.4 Counter Attributes
	3.4.1 OSTM Sub-Attributes
	3.4.2 OSTM_HIRES Sub-Attributes

	3.5 ISR Attributes
	3.5.1 ExceptionType Sub-Attributes

	3.6 Application Attributes
	3.6.1 Attribute MpuRegion

	3.7 Event Attributes
	3.8 Linker Include Files (SC3 and SC4)

	4 System Generation
	4.1 Code Generator

	5 Stack Handling
	5.1 Task Stacks
	5.2 ISR Stacks
	5.3 System Stack
	5.4 Startup Stack
	5.5 Stack Usage Size
	5.5.1 Task Stack Usage
	5.5.2 System Stack Usage
	5.5.3 ISR Stack Usage

	6 Interrupt Handling
	6.1 Interrupt Vectors
	6.1.1 Reset Vector
	6.1.2 Level Initialization

	6.2 Interrupt Level and Category
	6.3 Interrupt Category 1
	6.3.1 Interrupt Processing in C
	6.3.2 Unhandled Exception Determination

	6.4 Interrupt Category 2
	6.4.1 Interrupt Entry
	6.4.2 Interrupt Exit
	6.4.3 CAT2 ISR Function

	6.5 Disabling Interrupts

	7 MPU Handling (SC3 and SC4)
	7.1 MPU Region Usage
	7.1.1 MPU Region 0
	7.1.2 Static MPU Regions
	7.1.3 Dynamic MPU Regions

	8 RH850 Peripherals
	8.1 Supported System Timer
	8.2 Supported Time Monitoring Timer
	8.3 Initialization

	9 Implementation Specifics
	9.1 API Functions
	9.1.1 DisableAllInterrupts
	9.1.2 EnableAllInterrupts
	9.1.3 SuspendAllInterrupts
	9.1.4 ResumeAllInterrupts
	9.1.5 SuspendOSInterrupts
	9.1.6 ResumeOSInterrupts
	9.1.7 GetResource
	9.1.8 ReleaseResource
	9.1.9 GetAlarmBase
	9.1.10 osInitialize
	9.1.11 osInitINTC

	9.2 Peripheral Region API
	9.2.1.1 Read Functions
	9.2.1.2 Write Functions
	9.2.1.3 Modify Functions

	9.3 Peripheral Interrupt API Functions (SC3 and SC4)
	9.3.1 Write to Interrupt Control Register
	9.3.2 Set or Clear Mask Flag
	9.3.3 Set or Clear ICR Request Flag
	9.3.4 Read, Set or Clear Mask Bit in Registers IMRm
	9.3.5 Write to Registers IMRm

	9.4 Hook Routines
	9.4.1 ErrorHook
	9.4.2 StartupHook
	9.4.3 ShutdownHook
	9.4.4 PreTaskHook
	9.4.5 PostTaskHook
	9.4.6 PreAlarmHook (SC1 only)
	9.4.7 ISRHooks (SC1 only)
	9.4.8 Callbacks (SC1 only)
	9.4.9 ProtectionHook (SC3 and SC4)

	9.5 Functions for MPU functionality checks
	9.5.1 Function osCheckMPUAccess
	9.5.2 Function osCheckAndRefreshMPU

	9.6 Function for OSTM functionality checks
	9.6.1 Function osCheckAndRefreshTimer

	10 Non-Trusted Functions (SC3 and SC4)
	10.1 Functionality
	10.2 API
	10.3 Call Context
	10.3.1 Example

	11 Multicore
	11.1 Configuration
	11.1.1 Core IDs

	11.2 Multi-Core start-up
	11.2.1 Both PEs controlled by OS
	11.2.2 Only PE1 controlled by OS
	11.2.3 Only PE2 controlled by OS

	12 Timing Protection (SC4)
	12.1 Configuration Attributes
	12.2 Restrictions for SC4 Configurations

	13 Error Handling
	13.1 MICROSAR OS RH850 Error Numbers
	13.1.1 RH850 specific Error Numbers

	14 Modules
	14.1 Source Files
	14.2 Header Files

	15 Contact

